
User Guide

AWS Payment Cryptography

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Payment Cryptography User Guide

AWS Payment Cryptography: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Payment Cryptography User Guide

Table of Contents

What is AWS Payment Cryptography? ... 1
Concepts ... 2
Industry terminology ... 4

Common key types ... 4
Other terms .. 6

Related services .. 9
For more information .. 10
Endpoints ... 10

Control plane endpoints .. 10
Data plane endpoints ... 11

Getting started .. 12
Prerequisites .. 12
Step 1: Create a key .. 12
Step 2: Generate a CVV2 value using the key ... 14
Step 3: Verify the value generated in step 2 ... 14
Step 4: Perform a negative test ... 15
Step 5: (Optional) Clean up ... 15

Managing keys ... 17
Generating keys .. 17

Generating a 2KEY TDES key ... 18
Generating a Pin Encryption Key .. 19
Create an asymmetric (RSA) key ... 20
Generating a PIN Verification Value (PVV) Key .. 21

List keys .. 22
Enabling and disabling keys .. 23

Start key usage ... 24
Stop key usage .. 25

Deleting keys ... 26
About the waiting period .. 27

Import and export keys .. 30
Import keys .. 31
Export keys ... 41

Using aliases .. 49
About aliases .. 49

iii

AWS Payment Cryptography User Guide

Using aliases in your applications ... 53
Related APIs ... 53

Get keys .. 53
Get the public key/certificate associated with a key pair ... 55

Tagging keys .. 56
About tags in AWS Payment Cryptography .. 56
Viewing key tags in the console .. 58
Managing key tags with API operations .. 58
Controlling access to tags ... 60
Using tags to control access to keys .. 64

Understanding key attributes .. 68
Symmetric Keys ... 68
Asymmetric Keys ... 70

Data operations ... 71
Encrypt, Decrypt and Re-encrypt data .. 71

Encrypt data ... 72
Decrypt data .. 76

Generate and verify card data .. 79
Generate card data ... 80
Verify card data ... 80

Generate, translate and verify PIN data ... 81
Translate PIN data .. 82
Generate PIN data .. 84
Verify PIN data .. 84

Verify auth request (ARQC) cryptogram ... 85
Building transaction data .. 86
Transaction data padding ... 87
Examples ... 87

Generate and verify MAC ... 89
Generate MAC .. 90
Verify MAC .. 91

Key types for specific data operations .. 91
GenerateCardData ... 92
VerifyCardData ... 94
GeneratePinData (for VISA/ABA schemes) .. 94
GeneratePinData (for IBM3624) .. 95

iv

AWS Payment Cryptography User Guide

VerifyPinData (for VISA/ABA schemes) .. 96
VerifyPinData (for IBM3624) .. 97
Decrypt Data .. 98
Encrypt Data .. 99
Translate Pin Data .. 100
VerifyAuthRequestCryptogram .. 102
Unused key types ... 102

Security .. 103
Data protection .. 103

Protecting key material ... 105
Data encryption .. 105
Encryption at rest ... 105
Encryption in transit .. 105
Internetwork traffic privacy .. 106

Resilience ... 106
Regional isolation ... 107
Multi-tenant design .. 107

Infrastructure security ... 108
Isolation of physical hosts .. 108

Security best practices .. 109
Compliance validation ... 111
Identity and access management ... 112

Audience ... 112
Authenticating with identities ... 113

AWS account root user .. 113
IAM users and groups .. 114
IAM roles .. 114

Managing access using policies ... 116
Identity-based policies .. 116
Resource-based policies .. 117
Access control lists (ACLs) ... 117
Other policy types .. 117
Multiple policy types ... 118

How AWS Payment Cryptography works with IAM .. 118
AWS Payment Cryptography Identity-based policies .. 118
Authorization based on AWS Payment Cryptography tags ... 121

v

AWS Payment Cryptography User Guide

Identity-based policy examples .. 121
Policy best practices .. 121
Using the console ... 122
Allow users to view their own permissions ... 123
Ability to access all aspects of AWS Payment Cryptography ... 124
Ability to call APIs using specified keys ... 124
Ability to specifically deny a resource .. 125

Troubleshooting ... 126
Monitoring ... 127

CloudTrail logs .. 128
AWS Payment Cryptography information in CloudTrail ... 128
Understanding AWS Payment Cryptography log file entries .. 129

Cryptographic details .. 133
Design goals .. 134
Foundations ... 135

Cryptographic primitives ... 135
Entropy and random number generation ... 135
Symmetric key operations .. 135
Asymmetric key operations .. 136
Key storage .. 136
Key import using symmetric keys ... 137
Key import using asymmetric keys ... 137
Key export .. 137
Derived Unique Key Per Transaction (DUKPT) protocol ... 137
Key hierarchy ... 137

Internal operations .. 141
HSM specifications and lifecycle ... 141
HSM device physical security ... 141
HSM initialization ... 142
HSM service and repair ... 142
HSM decommissioning .. 142
HSM firmware update ... 143
Operator access ... 143
Key management .. 143

Customer operations ... 150
Generating keys .. 151

vi

AWS Payment Cryptography User Guide

Importing keys .. 151
Exporting keys ... 152
Deleting keys ... 152
Rotating keys ... 152

Quotas .. 153
Document history .. 155

vii

AWS Payment Cryptography User Guide

What is AWS Payment Cryptography?

AWS Payment Cryptography is a managed AWS service that provides access to cryptographic
functions and key management used in payment processing in accordance with payment card
industry (PCI) standards without the need for you to procure dedicated payment HSM instances.
AWS Payment Cryptography provides customers performing payment functions such as acquirers,
payment facilitators, networks, switches, processors, and banks with the ability to move their
payment cryptographic operations closer to applications in the cloud and minimize dependencies
on auxiliary data centers or colocation facilities containing dedicated payment HSMs.

The service is designed to meet applicable industry rules including PCI PIN, PCI P2PE, and PCI DSS,
and the service leverages hardware that it is PCI PTS HSM V3 and FIPS 140-2 Level 3 certified.
It is designed to support low latency and high levels of up-time and resilience. AWS Payment
Cryptography is fully elastic and eliminates many of the operational requirements of on premises
HSMs, such as the need to provision hardware, securely manage key material, and to maintain
emergency backups in secure facilities. AWS Payment Cryptography also provides you with the
option to share keys with your partners electronically, eliminating the need to share paper clear
text components.

You can use the AWS Payment Cryptography Control Plane API to create and manage keys.

You can use the AWS Payment Cryptography Data Plane API to use encryption keys for payment-
related transaction processing and associated cryptographic operations.

AWS Payment Cryptography provides important features that you can use to manage your keys:

• Create and manage symmetric and asymmetric AWS Payment Cryptography keys, including
TDES, AES, and RSA keys and specify their intended purpose such as for CVV generation or
DUKPT key derivation.

• Automatically store your AWS Payment Cryptography keys securely, protected by hardware
security modules (HSMs) while enforcing key separation between use cases.

• Create, delete, list, and update aliases, which are "friendly names" that can be used to access or
control access to your AWS Payment Cryptography keys.

• Tag your AWS Payment Cryptography keys for identification, grouping, automation, access
control, and cost tracking.

1

https://aws.amazon.com/payment-cryptography/sla/?did=sla_card&trk=sla_card
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/Welcome.html

AWS Payment Cryptography User Guide

• Import and export symmetric keys between AWS Payment Cryptography and your HSM (or 3rd
parties) using Key Encryption Keys (KEK) following TR-31(Interoperable Secure Key Exchange Key
Block Specification).

• Import and export symmetric Key Encryption Keys (KEK) between AWS Payment Cryptography
and other systems using asymmetric key pairs following by using electronic means such as TR-34
(Method For Distribution Of Symmetric Keys Using Asymmetric Techniques).

You can use your AWS Payment Cryptography keys in cryptographic operations, such as:

• Encrypt, decrypt, and re-encrypt data with symmetric or asymmetric AWS Payment
Cryptography keys.

• Securely translate sensitive data (such as cardholder pins) between encryption keys without
exposing the clear text in accordance with PCI PIN rules.

• Generate or validate cardholder data such as CVV, CVV2 or ARQC.

• Generate and validate cardholder pins.

• Generate or validate MAC signatures.

Concepts

Learn the basic terms and concepts used in AWS Payment Cryptography and how you can use them
to help you protect your data.

Alias

A user-friendly name that is associated with an AWS Payment Cryptography key. The alias
can be used interchangeably with key ARN in many of the AWS Payment Cryptography API
operations. Aliases allow keys to be rotated or otherwise changed without impacting your
application code. The alias name is a string of up to 256 characters. It uniquely identifies an
associated AWS Payment Cryptography key within an account and region. In AWS Payment
Cryptography, alias names always begin with alias/.

The format of an alias name is as follows:

alias/<alias-name>

For example:

Concepts 2

AWS Payment Cryptography User Guide

alias/sampleAlias2

Key ARN

The key ARN is the Amazon Resource Name (ARN) of a key entry in AWS Payment Cryptography.
It is a unique, fully qualified identifier for the AWS Payment Cryptography key. A key ARN
includes an AWS account, region, and a randomly generated ID. The ARN is not related or
derived from the key material. As they are automatically assigned during create or import
operations, these values are not idempotent. Importing the same key multiple times will result
in multiple key ARNs with their own lifecycle.

The format of a key ARN is as follows:

arn:<partition>:payment-cryptography:<region>:<account-id>:alias/<alias-name>

The following is a sample key ARN:

arn:aws:payment-cryptography:us-east-2:111122223333:key/kwapwa6qaifllw2h

AWS Payment Cryptography keys

AWS Payment Cryptography keys (keys) are used for all cryptographic functions. Keys are either
generated directly by you using the create key command or added to the system by you calling
key import. The origin of a key can be determined by reviewing the attribute KeyOrigin. AWS
Payment Cryptography also supports derived or intermediate keys used during cryptographic
operations such as those used by DUKPT.

These keys have both immutable and mutable attributes defined at creation. Attributes, such
as algorithm, length, and usage are defined at creation and cannot be changed. Others, such
as effective date or expiration date, can be modified. See the AWS Payment Cryptography API
Reference for a complete list of AWS Payment Cryptography Key attributes.

AWS Payment Cryptography keys have key types, principally defined by ANSI X9 TR 31, that
restrict their use to their intended purpose as specified in PCI PIN v3.1 Requirement 19.

Attributes are bound to keys using key blocks when stored, shared with other accounts, or
exported as specified in PCI PIN v3.1 Requirement 18-3.

Keys are identified in the AWS Payment Cryptography platform using a unique value known as a
key Amazon Resource Name (ARN).

Concepts 3

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/

AWS Payment Cryptography User Guide

Note

Key ARN is generated when a key is initially created or imported into the AWS Payment
Cryptography service. Thus, if adding the same key material multiple times using the
import key functionality, the same key material will be located under multiple key but
each with a different key lifecycle.

Industry terminology

Topics

• Common key types

• Other terms

Common key types

AWK

An acquirer working key (AWK) is a key typically used to exchange data between an acquirer/
acquirer processor and a network (such as Visa or Mastercard). Historically AWK leverages 3DES
for encryption and would be represented as TR31_P0_PIN_ENCRYPTION_KEY.

BDK

A base derivation key (BDK) is a working key used to derive subsequent keys and
is commonly used as part of PCI PIN and PCI P2PE DUKPT process. It is denoted as
TR31_B0_BASE_DERIVATION_KEY.

CMK

A card master key (CMK) is one or more card specific key(s) typically derived from a Issuer
Master Key ,PAN and PSN and are typically 3DES keys. These keys are stored on the EMV Chip
during personalization. Examples of CMKs include AC, SMI and SMC keys.

CMK-AC

An application cryptogram (AC) key is used as part of EMV transactions to generate the
transaction cryptogram and is a type of card master key.

Industry terminology 4

AWS Payment Cryptography User Guide

CMK-SMI

An secure messaging integrity (SMI) key is used as part of EMV to verify the integrity of
payloads sent to the card using MAC such as pin update scripts. It is a type of card master key.

CMK-SMC

An secure messaging confidentiality (SMC) key is used as part of EMV to encrypt data sent to
the card such as pin updates. It is a type of card master key.

CVK

A card verification key (CVK) is a key used for generating CVV, CVV2 and similar
values using a defined algorithm as well as validating an input. It is denoted as a
TR31_C0_CARD_VERIFICATION_KEY.

IMK

An issuer master key (IMK) is a master key used as part of EMV chip card personalization.
Typically there will be 3 IMKs - one each for AC (cryptogram), SMI (script master key for
integrity/signature), and SMC (script master key for confidentiality/encryption) keys.

IK

An initial key (IK) is the first key used in the DUKPT process and derives from the Base
Derivation Key (BDK). No transactions are processed on this key, but it is used to derive future
keys that will be used for transactions. The derivation method for creating an IK was defined
in X9.24-1:2017. When an TDES BDK is used, X9.24-1:2009 is the applicable standard and IK is
replaced by Initial Pin Encryption Key (IPEK).

IPEK

An initial PIN encryption key (IPEK) is the initial key used in the DUKPT process and derives from
the Base Derivation Key (BDK). No transactions are processed on this key, but it is used to derive
future keys that will be used for transactions. IPEK is a misnomer as this key can also be used to
derive data encryption and mac keys. The derivation method for creating an IPEK was defined
in X9.24-1:2009. When an AES BDK is used, X9.24-1:2017 is the applicable standard and IPEK is
replaced by Initial Key (IK).

IWK

An issuer working key (IWK) is a key typically used to exchange data between an issuer/issuer
processor and a network (such as Visa or Mastercard). Historically IWK leverages 3DES for
encryption and is represented as TR31_P0_PIN_ENCRYPTION_KEY.

Common key types 5

AWS Payment Cryptography User Guide

KEK

A key encryption key (KEK) is a key used to encrypt other keys either for transmission
or storage. Keys meant for protecting other keys typically have a KeyUsage of
TR31_K0_KEY_ENCRYPTION_KEY according to the TR-31 standard.

PEK

A PIN encryption key (PEK) is a type of working key used for encrypting PINs either for storage
or transmission between two parties. IWK and AWK are two examples of specific uses of pin
encryption keys. These keys are represented as TR31_P0_PIN_ENCRYPTION_KEY.

PVK

A PIN verification key (PVK) is a type of working key used for generating PIN verification values
such as PVV. The two most common kinds are TR31_V1_IBM3624_PIN_VERIFICATION_KEY used
for generating IBM3624 offset values and TR31_V2_VISA_PIN_VERIFICATION_KEY used for Visa/
ABA verification values.

Other terms

ARQC

Authorization Request Cryptogram (ARQC) is a cryptogram generated at transaction time by
an EMV standard chip card (or equivalent contactless implementation). Typically, an ARQC is
generated by a chip card and forwarded to an issuer or their agent to verify at transaction time.

DUKPT

Derived Unique Key Per Transaction (DUKPT) is a key management standard typically
used to define the use of one-time use encryption keys on physical POS/POI. Historically
DUKPT leverages 3DES for encryption. The industry standard for DUKPT is defined in ANSI
X9.24-3-2017.

EMV

EMV (originally Europay, Mastercard, Visa) is a technical body that works with payment
stakeholders to create interoperable payment standards and technologies. One example
standard is for chip/contactless cards and the payment terminals they interact with, including
the cryptography used. EMV key derivation refers to method(s) of generating unique keys for
each payment card based on an initial set of keys such as an IMK

Other terms 6

https://www.emvco.com/

AWS Payment Cryptography User Guide

HSM

A Hardware Security Module (HSM) is a physical device that protects cryptographic operations
(for example, encryption, decryption, and digital signatures) as well as the underlying keys used
for these operations.

KCV

Key Check Value (KCV) refers to a variety of checksum methods primary used to compare to
keys to each other without having access to the actual key material. KCV have also been used
for integrity validation (especially when exchanging keys), although this role is now included
as part of key block formats such as TR-31. For TDES keys, the KCV is computed by encrypting
8 bytes, each with value of zero, with the key to be checked and retaining the 3 highest order
bytes of the encrypted result. For AES keys, the KCV is computed using a CMAC algorithm where
the input data is 16 bytes of zero and retaining the 3 highest order bytes of the encrypted
result.

KDH

A Key Distribution Host (KDH) is a device or system that is sending keys in a key exchange
process such as TR-34. When sending keys from AWS Payment Cryptography, it is considered
the KDH.

KIF

A Key Injection Facility (KIF) is a secure facility used for initializing payment terminals including
loading them with encryption keys.

KRD

A Key Receiving Device (KRD) is a device that is receiving keys in a key exchange process such as
TR-34. When sending keys to AWS Payment Cryptography, it is considered the KRD.

KSN

A Key Serial Number (KSN) is a value used as an input to DUKPT encryption/decryption to
create unique encryption keys per transaction. The KSN typically consists of a BDK identifier,a
semi-unique terminal ID as well as a transaction counter that increments on each transition
processed on a given payment terminal.

PAN

A Primary Account Number (PAN) is a unique identifier for an account such as a credit or debit
card. Typically 13-19 digits in length. The first 6-8 digits identifies the network and the issuing
bank.

Other terms 7

AWS Payment Cryptography User Guide

PIN Block

A block of data containing a PIN during processing or transmission as well as other data
elements. PIN block formats standardize the content of the PIN block and how it can be
processed to retrieve the PIN. Most PIN block are composed of the PIN, the PIN length, and
frequently contain part or all of the PAN. AWS Payment Cryptography supports ISO 9564-1
formats 0, 1, 3 and 4. Format 4 is required for AES keys. When verifying or translating PINs,
there is a need to specify the PIN block of the incoming or outgoing data.

POI

Point of Interaction (POI), also frequently used synonymously with Point of Sale (POS), is the
hardware device that the cardholder interacts with to present their payment credential. An
example of a POI is the physical terminal in a merchant location. For the list of certified PCI PTS
POI terminals, see the PCI website.

PSN

PAN Sequence Number (PSN) is a numeric value used to differentiate multiple cards issued with
the same PAN.

Public key

When using asymmetric ciphers (RSA), the public key is the public component of a public-
private key pair. The public key can be shared and distributed to entities that need to encrypt
data for the owner of the public-private key pair. For digital signature operations, the public key
is used to verify the signature.

Private key

When using asymmetric ciphers (RSA), the private key is the private component of a public-
private key pair. The private key is used to decrypt data or create digital signatures. Similar
to symmetric AWS Payment Cryptography keys, private keys are securely created by HSMs.
They are decrypted only into the volatile memory of the HSM and only for the time needed to
process your cryptographic request.

PVV

Pin Verification Value (PVV) is a value algorithmically derived from a series of inputs such as
card number and PIN that generates a value that can be used for subsequent validation. One
such scheme is known as Visa PVV (also known as ABA method) although it is used for PINs on
any network.

Other terms 8

https://www.pcisecuritystandards.org/

AWS Payment Cryptography User Guide

RSA Wrap/Unwrap

RSA wrap uses an asymmetric key to wrap a symmetric key (such as a TDES key) for
transmission to another system. Only the system with the matching private key can decrypt
the payload and load the symmetric key. Conversely, RSA unwrap, will securely decrypt a key
encrypted using RSA and then load the key into the AWS Payment Cryptography. RSA wrap is a
low level method of exchanging keys and does not transmit keys in key block format and does
not utilize payload signing by the sending party. Alternate controls should be considered to
ascertain providence and key attributes are not mutated.

TR-34 also utilizes RSA internally, but is a separate format and is not interoperable.

TR-31

TR-31 (formally defined as ANSI X9 TR 31) is a key block format that is defined by the American
National Standards Institute (ANSI) to support defining key attributes in the same data
structure as the key data itself. The TR-31 key block format defines a set of key attributes that
are tied to the key so that they are held together. AWS Payment Cryptography uses TR-31
standardized terms whenever possible to ensure proper key separation and key purpose. TR-31
has been superceded by ANSI X9.143-2022.

TR-34

TR-34 is an implementation of ANSI X9.24-2 that described a protocol to securely distribute
symmetric keys (such as 3DES and AES) using asymmetric techniques (such as RSA). AWS
Payment Cryptography uses TR-34 methods to permit secure import and export of keys.

Related services

AWS Key Management Service

AWS Key Management Service (AWS KMS) is a managed service that makes it easy for you to
create and control the cryptographic keys that are used to protect your data. AWS KMS uses
hardware security modules (HSMs) to protect and validate your AWS KMS keys.

AWS CloudHSM

AWS CloudHSM provides customers with dedicated general purpose HSM instances in the AWS
Cloud. AWS CloudHSM can provide a variety of cryptographic functions such as creating keys,
data signing or encrypting and decrypting data.

Related services 9

https://webstore.ansi.org/standards/ascx9/ansix91432022
https://aws.amazon.com/kms/
https://aws.amazon.com/cloudhsm/

AWS Payment Cryptography User Guide

For more information

• To learn about the terms and concepts used in AWS Payment Cryptography, see AWS Payment
Cryptography Concepts.

• For information about the AWS Payment Cryptography Control Plane API, see AWS Payment
Cryptography Control Plane API Reference.

• For information about the AWS Payment Cryptography Data Plane API, see AWS Payment
Cryptography Data Plane API Reference.

• For detailed technical information about how AWS Payment Cryptography uses cryptography
and secures AWS Payment Cryptography keys, see Cryptographic details.

Endpoints for AWS Payment Cryptography

To connect programmatically to AWS Payment Cryptography, you use an endpoint, the URL of
the entry point for the service. The AWS SDKs and the command line tools automatically use the
default endpoint for the service in an AWS Region based on the region context of a request, so
there's typically no need to explicitly set these values. When needed, you can specify a different
endpoint for your API requests.

Control plane endpoints

Region name Region Endpoint Protocol

US East (N. Virginia) us-
east-1

controlplane.payment-cryptography.us
-east-1.amazonaws.com

HTTPS

US East (Ohio) us-
east-2

controlplane.payment-cryptography.us
-east-2.amazonaws.com

HTTPS

US West (Oregon) us-
west-2

controlplane.payment-cryptography.us
-west-2.amazonaws.com

HTTPS

For more information 10

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/Welcome.html
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/Welcome.html

AWS Payment Cryptography User Guide

Data plane endpoints

Region name Region Endpoint Protocol

US East (N. Virginia) us-
east-1

dataplane.payment-cryptography.us-ea
st-1.amazonaws.com

HTTPS

US East (Ohio) us-
east-2

dataplane.payment-cryptography.us-ea
st-2.amazonaws.com

HTTPS

US West (Oregon) us-
west-2

dataplane.payment-cryptography.us-
west-2.amazonaws.com

HTTPS

Data plane endpoints 11

AWS Payment Cryptography User Guide

Getting started with AWS Payment Cryptography

To get started with AWS Payment Cryptography, you'll first want to create keys and then use them
in various cryptographic operations. The below tutorial provides a simple use case of generating
a key to be used for generating/verifying CVV2 values. To try out other examples and to explore
deployment patterns within AWS, please try out the following AWS Payment Cryptography
Workshop or explore our sample project available on Github

This tutorial walks you through creating a single key and performing cryptographic operations
using the key. Afterward, you delete the key if you no longer want it, which completes the key
lifecycle.

Topics

• Prerequisites

• Step 1: Create a key

• Step 2: Generate a CVV2 value using the key

• Step 3: Verify the value generated in step 2

• Step 4: Perform a negative test

• Step 5: (Optional) Clean up

Prerequisites

Before you begin, make sure that:

• You have permission to access the service. For more information, see IAM policies.

• You have the AWS CLI installed. You can also use AWS SDKs or AWS APIs to access AWS Payment
Cryptography, but the instructions in this tutorial use the AWS CLI.

Step 1: Create a key

The first step is to create a key. For this tutorial, you create a CVK double-length 3DES (2KEY TDES)
key for generating and verifying CVV/CVV2 values.

$ aws payment-cryptography create-key \

Prerequisites 12

https://catalog.us-east-1.prod.workshops.aws/workshops/b85843d4-a5e4-40fc-9a96-de0a99312a4b/en-US
https://catalog.us-east-1.prod.workshops.aws/workshops/b85843d4-a5e4-40fc-9a96-de0a99312a4b/en-US
https://github.com/aws-samples/samples-for-payment-cryptography-service
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/Welcome.html

AWS Payment Cryptography User Guide

 --exportable
 --key-attributes KeyAlgorithm=TDES_2KEY,KeyUsage=TR31_C0_CARD_VERIFICATION_KEY,\
 KeyClass=SYMMETRIC_KEY,\
 KeyModesOfUse='{Generate=true,Verify=true}'

The response echoes back the request parameters, including an ARN for subsequent calls as well as
a Key Check Value (KCV).

{
 "Key": {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyAttributes": {
 "KeyUsage": "TR31_C0_CARD_VERIFICATION_KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyAlgorithm": "TDES_2KEY",
 "KeyModesOfUse": {
 "Encrypt": false,
 "Decrypt": false,
 "Wrap": false,
 "Unwrap": false,
 "Generate": true,
 "Sign": false,
 "Verify": true,
 "DeriveKey": false,
 "NoRestrictions": false
 }
 },
 "KeyCheckValue": "CADDA1",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "Enabled": true,
 "Exportable": true,
 "KeyState": "CREATE_COMPLETE",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "CreateTimestamp": "2023-06-05T06:41:46.648000-07:00",
 "UsageStartTimestamp": "2023-06-05T06:41:46.626000-07:00"
 }
}

Take note of the KeyArn that represents the key, for example arn:aws:payment-cryptography:us-
east-2:111122223333:key/tqv5yij6wtxx64pi. You need that in the next step.

Step 1: Create a key 13

AWS Payment Cryptography User Guide

Step 2: Generate a CVV2 value using the key

In this step, you generate a CVV2 for a given PAN and expiration date using the key from step 1.

$ aws payment-cryptography-data generate-card-validation-data \
 --key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi \
 --primary-account-number=171234567890123 \
 --generation-attributes CardVerificationValue2={CardExpiryDate=0123}

{
 "CardDataGenerationKeyCheckValue": "CADDA1",
 "CardDataGenerationKeyIdentifier": "arn:aws:payment-cryptography:us-
east-2:111122223333:key/tqv5yij6wtxx64pi",
 "CardDataType": "CARD_VERIFICATION_VALUE_2",
 "CardDataValue": "144"
}

Take note of the cardDataValue, in this case the 3-digit number 144. You need that in the next
step.

Step 3: Verify the value generated in step 2

In this example, you validate the CVV2 from step 2 using the key you created in step 1.

Run the following command to validate the CVV2.

$ aws payment-cryptography-data verify-card-validation-data \
 --key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi \
 --primary-account-number=171234567890123 \
 --verification-attributes CardVerificationValue2={CardExpiryDate=0123} \
 --validation-data 144

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "CADDA1"
}

Step 2: Generate a CVV2 value using the key 14

AWS Payment Cryptography User Guide

The service returns an HTTP response of 200 to indicate that it validated the CVV2.

Step 4: Perform a negative test

In this step, you create a negative test where the CVV2 is not correct and does not validate. You
attempt to validate an incorrect CVV2 using the key you created in step 1. This is an expected
operation for example if a cardholder entered the wrong CVV2 at checkout.

$ aws payment-cryptography-data verify-card-validation-data \
 --key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi \
 --primary-account-number=171234567890123 \
 --verification-attributes CardVerificationValue2={CardExpiryDate=0123} \
 --validation-data 999

Card validation data verification failed.

The service returns an HTTP response of 400 with the message "Card validation data verification
failed" and a reason of INVALID_VALIDATION_DATA.

Step 5: (Optional) Clean up

Now you can delete the key you created in step 1. To minimize unrecoverable changes, the default
key deletion period is seven days.

$ aws payment-cryptography delete-key \
 --key-identifier=arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi

{
 "Key": {
 "CreateTimestamp": "2022-10-27T08:27:51.795000-07:00",
 "DeletePendingTimestamp": "2022-11-03T13:37:12.114000-07:00",
 "Enabled": true,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_3KEY",

Step 4: Perform a negative test 15

AWS Payment Cryptography User Guide

 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": true,
 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": true,
 "Verify": false,
 "Wrap": true
 },
 "KeyUsage": "TR31_P0_PIN_ENCRYPTION_KEY"
 },
 "KeyCheckValue": "CADDA1",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "DELETE_PENDING",
 "UsageStartTimestamp": "2022-10-27T08:27:51.753000-07:00"
 }
}

Take note of two fields in the output. The deletePendingTimestamp is set to seven days in the
future by default. The keyState is set to DELETE_PENDING. You can cancel this deletion any time
before the scheduled deletion time by calling restore-key.

Step 5: (Optional) Clean up 16

https://docs.aws.amazon.com/cli/latest/reference/payment-cryptography/restore-key.html

AWS Payment Cryptography User Guide

Managing keys

To get started with AWS Payment Cryptography, you'll want create an AWS Payment Cryptography
key.

The topics in this section explain how to create and manage a variety of AWS Payment
Cryptography key types, from creation to deletion. It includes topics on creating, editing and
viewing keys, tagging keys, creating key aliases, as well as enabling and disabling keys.

Topics

• Generating keys

• List keys

• Enabling and disabling keys

• Deleting keys

• Import and export keys

• Using aliases

• Get keys

• Tagging keys

• Understanding key attributes for AWS Payment Cryptography key

Generating keys

You can create AWS Payment Cryptography keys by using the CreateKey API operation.
During this process, you will specify various attributes of the key or the resultant
output such as the key algorithm (for example, TDES_3KEY), the KeyUsage (for example
TR31_P0_PIN_ENCRYPTION_KEY) , permitted operations (for example, encrypt, signing) and
whether it is exportable. You cannot change these properties after the AWS Payment Cryptography
key is created.

Examples

• Generating a 2KEY TDES key

• Generating a Pin Encryption Key

• Create an asymmetric (RSA) key

Generating keys 17

AWS Payment Cryptography User Guide

• Generating a PIN Verification Value (PVV) Key

Generating a 2KEY TDES key

Example

This command generates a 2KEY TDES key for the purpose of generating and verifying CVV/CVV2
values. The response echos back the request parameters, including an ARN for subsequent calls as
well as a KCV (Key Check Value).

$ aws payment-cryptography create-key --exportable --key-attributes
 KeyAlgorithm=TDES_2KEY,\
KeyUsage=TR31_C0_CARD_VERIFICATION_KEY,KeyClass=SYMMETRIC_KEY, \
KeyModesOfUse='{Generate=true,Verify=true}'

 {
 "Key": {
 "CreateTimestamp": "2022-10-26T16:04:11.642000-07:00",
 "Enabled": true,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
hjprdg5o4jtgs5tw",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_2KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": false,
 "DeriveKey": false,
 "Encrypt": false,
 "Generate": true,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": false,
 "Verify": true,
 "Wrap": false
 },
 "KeyUsage": "TR31_C0_CARD_VERIFICATION_KEY"
 },
 "KeyCheckValue": "B72F",

Generating a 2KEY TDES key 18

AWS Payment Cryptography User Guide

 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2022-10-26T16:04:11.559000-07:00"
 }
}

Generating a Pin Encryption Key

Example Generating a Pin Encryption Key (PEK)

This command generates a 3KEY TDES key for the purpose of encrypting PIN values (known as a
Pin Encryption Key). This key may be used for securing storing PINs or for decrypting PINs provided
during a verification attempt, for example during a transaction. The response echos back the
request parameters, including an ARN for subsequent calls as well as a KCV (Key Check Value).

$ aws payment-cryptography create-key --exportable --key-attributes \
 KeyAlgorithm=TDES_3KEY,KeyUsage=TR31_P0_PIN_ENCRYPTION_KEY, \
 KeyClass=SYMMETRIC_KEY,/

 KeyModesOfUse='{Encrypt=true,Decrypt=true,Wrap=true,Unwrap=true}'

{
 "Key": {
 "CreateTimestamp": "2022-10-27T08:27:51.795000-07:00",
 "Enabled": true,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_3KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": true,
 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,

Generating a Pin Encryption Key 19

AWS Payment Cryptography User Guide

 "Unwrap": true,
 "Verify": false,
 "Wrap": true
 },
 "KeyUsage": "TR31_P0_PIN_ENCRYPTION_KEY"
 },
 "KeyCheckValue": "9CA6",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2022-10-27T08:27:51.753000-07:00"
 }
}

Create an asymmetric (RSA) key

Example

In this example, we will generate a new asymmetric RSA 2048 bit key pair. A new private key
will be generated as well as the matching public key. The public key can be retrieved using the
getPublicCertificate API.

$ aws payment-cryptography create-key --exportable \
--key-attributes
 KeyAlgorithm=RSA_2048,KeyUsage=TR31_D1_ASYMMETRIC_KEY_FOR_DATA_ENCRYPTION, \
KeyClass=ASYMMETRIC_KEY_PAIR,KeyModesOfUse='{Encrypt=true,
 Decrypt=True,Wrap=True,Unwrap=True}'

{
 "Key": {
 "CreateTimestamp": "2022-11-15T11:15:42.358000-08:00",
 "Enabled": true,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
nsq2i3mbg6sn775f",
 "KeyAttributes": {
 "KeyAlgorithm": "RSA_2048",
 "KeyClass": "ASYMMETRIC_KEY_PAIR",
 "KeyModesOfUse": {
 "Decrypt": true,

Create an asymmetric (RSA) key 20

AWS Payment Cryptography User Guide

 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": true,
 "Verify": false,
 "Wrap": true
 },
 "KeyUsage": "TR31_D1_ASYMMETRIC_KEY_FOR_DATA_ENCRYPTION"
 },
 "KeyCheckValue": "40AD487F",
 "KeyCheckValueAlgorithm": "CMAC",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2022-11-15T11:15:42.182000-08:00"
 }
}

Generating a PIN Verification Value (PVV) Key

Example

This command generates a 3KEY TDES key for the purpose of generating PVV values (known as
a Pin Verification Value). You can use this key for generating a PVV value that can be compared
against a subsequent calculated PVV. The response echos back the request parameters, including
an ARN for subsequent calls as well as a KCV (Key Check Value).

$ aws payment-cryptography create-key --exportable/
--key-attributes KeyAlgorithm=TDES_3KEY,KeyUsage=TR31_V2_VISA_PIN_VERIFICATION_KEY,/
KeyClass=SYMMETRIC_KEY,KeyModesOfUse='{Generate=true,Verify=true}'

{
 "Key": {
 "CreateTimestamp": "2022-10-27T10:22:59.668000-07:00",
 "Enabled": true,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
j4u4cmnzkelhc6yb",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_3KEY",

Generating a PIN Verification Value (PVV) Key 21

AWS Payment Cryptography User Guide

 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": false,
 "DeriveKey": false,
 "Encrypt": false,
 "Generate": true,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": false,
 "Verify": true,
 "Wrap": false
 },
 "KeyUsage": "TR31_V2_VISA_PIN_VERIFICATION_KEY"
 },
 "KeyCheckValue": "5132",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2022-10-27T10:22:59.614000-07:00"
 }
}

List keys

List Keys presents a list of keys accesible to the caller in this account and Region.

Example

$ aws payment-cryptography list-keys

 {"Keys": [
 {
 "CreateTimestamp": "2022-10-12T10:58:28.920000-07:00",
 "Enabled": false,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
alsuwfxug3pgy6xh",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_3KEY",

List keys 22

AWS Payment Cryptography User Guide

 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": true,
 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": true,
 "Verify": false,
 "Wrap": true
 },
 "KeyUsage": "TR31_P1_PIN_GENERATION_KEY"
 },
 "KeyCheckValue": "369D",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "CREATE_COMPLETE",
 "UsageStopTimestamp": "2022-10-27T14:19:42.488000-07:00"
 }
]
}

Enabling and disabling keys

You can disable and re-enable AWS Payment Cryptography keys. When you create key, it is enabled
by default. If you disable a key, it cannot be used in any cryptographic operation until you re-
enable it. Start/stop usage commands take immediate effect, so it's recommended that you review
usage before making such a change. You can also set a change (start or stop usage) to take effect
in the future using the optional timestamp parameter.

Because it's temporary and easily undone, disabling an AWS Payment Cryptography key is a safer
alternative to deleting an AWS Payment Cryptography key, an action that is destructive and
irreversible. If you are considering deleting an AWS Payment Cryptography key, disable it first and
ensure that you will not need to use the key to encrypt or decrypt data in the future.

Topics

• Start key usage

• Stop key usage

Enabling and disabling keys 23

AWS Payment Cryptography User Guide

Start key usage

Key usage must be enabled in order to use a key for cryptographic operations. If a key is not
enabled, you can use this operation to make it usable. The field UsageStartTimestamp will
represent when the key became/will become active. This will be in the past for an enabled token,
and in the future if pending activation.

Example

In this example, a key is requested to be enabled for key usage. The response includes the key
information and the enable flag has been transitioned to true. This will also be reflected in list-keys
response object.

$ aws payment-cryptography start-key-usage --key-identifier "arn:aws:payment-
cryptography:us-east-2:111122223333:key/alsuwfxug3pgy6xh"

{
 "Key": {
 "CreateTimestamp": "2022-10-12T10:58:28.920000-07:00",
 "Enabled": true,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
alsuwfxug3pgy6xh",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_3KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": true,
 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": true,
 "Verify": false,
 "Wrap": true
 },
 "KeyUsage": "TR31_P1_PIN_GENERATION_KEY"
 },
 "KeyCheckValue": "369D",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",

Start key usage 24

AWS Payment Cryptography User Guide

 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2022-10-27T14:09:59.468000-07:00"
 }
}

Stop key usage

If you no longer plan to use a key, you can stop the key usage to prevent further cryptographic
operations. This operation is not permanent, so you are able to reverse it using starting key usage.
You can also set a key to be disabled in the future. The field UsageStopTimestamp will represent
when the key became/will become disabled.

Example

In this example, it's requested to stop key usage in the future. After execution, this key cannot be
used for cryptographic operations unless re-enabled via start key usage The response includes the
key information and the enable flag has been transitioned to false. This will also be reflected in
list-keys response object.

$ aws payment-cryptography stop-key-usage --key-identifier "arn:aws:payment-
cryptography:us-east-2:111122223333:key/alsuwfxug3pgy6xh"

{
 "Key": {
 "CreateTimestamp": "2022-10-12T10:58:28.920000-07:00",
 "Enabled": false,
 "Exportable": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
alsuwfxug3pgy6xh",
 "KeyAttributes": {
 "KeyAlgorithm": "TDES_3KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": true,
 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": true,
 "Verify": false,

Stop key usage 25

AWS Payment Cryptography User Guide

 "Wrap": true
 },
 "KeyUsage": "TR31_P1_PIN_GENERATION_KEY"
 },
 "KeyCheckValue": "369D",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "KeyState": "CREATE_COMPLETE",
 "UsageStopTimestamp": "2022-10-27T14:09:59.468000-07:00"
 }
}

Deleting keys

Deleting an AWS Payment Cryptography key deletes the key material and all metadata associated
with the key and is irreversible unless a copy of the key is available outside of AWS Payment
Cryptography. After a key is deleted, you can no longer decrypt the data that was encrypted under
that key, which means that data may become unrecoverable. You should delete a key only when
you are sure that you don't need to use it anymore and no other parties are utilizing this key. If you
are not sure, consider disabling the key instead of deleting it. You can re-enable a disabled key if
you need to use it again later, but you cannot recover a deleted AWS Payment Cryptography key
unless you are able to re-import it from another source.

Before deleting a key, you should ensure that you no longer need the key. AWS Payment
Cryptography does not store the results of cryptographic operations like CVV2 and is unable to
determine if a key is needed for any persistent cryptographic material.

AWS Payment Cryptography never deletes keys belonging to active AWS accounts unless you
explicitly schedule them for deletion and the mandatory waiting period expires.

However, you might choose to delete an AWS Payment Cryptography key for one or more of the
following reasons:

• To complete the key lifecycle for a key that you no longer need

• To avoid the management overhead associated with maintaining unused AWS Payment
Cryptography keys

Deleting keys 26

AWS Payment Cryptography User Guide

Note

If you close or delete your AWS account, your AWS Payment Cryptography key become
inaccessible. You do not need to schedule deletion of your AWS Payment Cryptography key
separate from closing the account.

AWS Payment Cryptography records an entry in your AWS CloudTrail log when you schedule
deletion of the AWS Payment Cryptography key and when the AWS Payment Cryptography key is
actually deleted.

About the waiting period

Because deleting a key is irreversible, AWS Payment Cryptography requires you to set a waiting
period of between 3–180 days. The default waiting period is seven days.

However, the actual waiting period might be up to 24 hours longer than the one you scheduled.
To get the actual date and time when the AWS Payment Cryptography key will be deleted, use the
GetKey operations. Be sure to note the time zone.

During the waiting period, the AWS Payment Cryptography key status and key state is Pending
deletion.

Note

An AWS Payment Cryptography key pending deletion cannot be used in any cryptographic
operations.

After the waiting period ends, AWS Payment Cryptography deletes the AWS Payment
Cryptography key, its aliases, and all related AWS Payment Cryptography metadata.

Use the waiting period to ensure that you don't need the AWS Payment Cryptography key now
or in the future. If you find that you do need the key during the waiting period, you can cancel
key deletion before the waiting period ends. After the waiting period ends, you cannot cancel key
deletion, and the service deletes the key.

About the waiting period 27

https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://console.aws.amazon.com/cloudtrail

AWS Payment Cryptography User Guide

Example

In this example, a key is requested to be deleted. Besides the basic key information, two relevant
fields are that key state has been changed to DELETE_PENDING and deletePendingTimestamp
represents when the key is currently scheduled to delete.

$ aws payment-cryptography delete-key \
 --key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/kwapwa6qaifllw2h

 {
 "Key": {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h",
 "KeyAttributes": {
 "KeyUsage": "TR31_V2_VISA_PIN_VERIFICATION_KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyAlgorithm": "TDES_3KEY",
 "KeyModesOfUse": {
 "Encrypt": false,
 "Decrypt": false,
 "Wrap": false,
 "Unwrap": false,
 "Generate": true,
 "Sign": false,
 "Verify": true,
 "DeriveKey": false,
 "NoRestrictions": false
 }
 },
 "KeyCheckValue": "",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "Enabled": false,
 "Exportable": true,
 "KeyState": "DELETE_PENDING",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "CreateTimestamp": "2023-06-05T12:01:29.969000-07:00",
 "UsageStopTimestamp": "2023-06-05T14:31:13.399000-07:00",
 "DeletePendingTimestamp": "2023-06-12T14:58:32.865000-07:00"
 }

About the waiting period 28

AWS Payment Cryptography User Guide

}

Example

In this example, a pending deletion is cancelled. Once completed successfully, a key will no
longer be deleted per the previous schedule. The response contains the basic key information;
additionally, two relevant fields have changed - KeyState and deletePendingTimestamp.
KeyState is returned to a value of CREATE_COMPLETE, while DeletePendingTimestamp is
removed.

$ aws payment-cryptography restore-key --key-identifier arn:aws:payment-
cryptography:us-east-2:111122223333:key/kwapwa6qaifllw2h

{
 "Key": {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h",
 "KeyAttributes": {
 "KeyUsage": "TR31_V2_VISA_PIN_VERIFICATION_KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyAlgorithm": "TDES_3KEY",
 "KeyModesOfUse": {
 "Encrypt": false,
 "Decrypt": false,
 "Wrap": false,
 "Unwrap": false,
 "Generate": true,
 "Sign": false,
 "Verify": true,
 "DeriveKey": false,
 "NoRestrictions": false
 }
 },
 "KeyCheckValue": "",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "Enabled": false,
 "Exportable": true,
 "KeyState": "CREATE_COMPLETE",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "CreateTimestamp": "2023-06-08T12:01:29.969000-07:00",
 "UsageStopTimestamp": "2023-06-08T14:31:13.399000-07:00"

About the waiting period 29

AWS Payment Cryptography User Guide

 }
}

Import and export keys

AWS Payment Cryptography keys can be imported from other solutions or exported to other
solutions (such as other HSMs). It is a common use case to exchange keys with service providers
using import and export functionality. As a cloud service, AWS Payment Cryptography takes
a modern, electronic approach to key management while helping you maintain applicable
compliance and controls. The long-term objective is to move away from paper-based key
components towards standards-based, electronic means of key exchange.

Key Encryption Key (KEK) Exchange

AWS Payment Cryptography encourages the use of public key cryptography (RSA) for the initial
key exchange using the well established ANSI X9.24 TR-34 norm. Common names for this initial
key type includes Key Encryption Key (KEK), Zone Master Key (ZMK) and Zone Control Master
Key (ZCMK). If your systems or partners are not yet able to support TR-34, you can also consider
utilizing RSA Wrap/Unwrap.

If you have a need to continue processing paper key components until all partners support
electronic key exchange, you can consider retaining an offline HSM for this purpose.

Note

If you would like to import your own test keys, please check out the sample project on
Github. For instructions on how to import/export keys from other platforms, please
consult the user guide for those platforms.

Working Key (WK) Exchange

AWS Payment Cryptography uses the relevant industry norm (ANSI X9.24 TR 31-2018) for
exchanging working keys. TR-31 assumes that a KEK has previously been exchanged. This is
consistent with requirement of PCI PIN to cryptographically bind key material to its key type
and usage at all times. Working keys have various names including acquirer working keys, issuer
working keys, BDK, IPEK, etc.

Topics

Import and export keys 30

https://github.com/aws-samples/samples-for-payment-cryptography-service/tree/main/key-import-export

AWS Payment Cryptography User Guide

• Import keys

• Export keys

Import keys

Important

Examples may require the latest version of the AWS CLI V2. Before getting started, please
ensure that you have upgraded to the latest version.

Topics

• Importing symmetric keys

• Importing asymmetric (RSA) keys

Importing symmetric keys

Topics

• Import keys using asymmetric techniques (TR-34)

• Import keys using asymmetric techniques (RSA Unwrap)

• Import symmetric keys using a pre-established key exchange key (TR-31)

Import keys 31

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Payment Cryptography User Guide

Import keys using asymmetric techniques (TR-34)

Overview: TR-34 utilizes RSA asymmetric cryptography to encrypt symmetric keys for exchange as
well as ensuring the source of the data (signing). This ensures both the confidentiality (encryption)
and integrity (signature) of the wrapped key.

If you would like to import your own keys, please check out the sample project on Github. For
instructions on how to import/export keys from other platforms, please consult the user guide for
those platforms.

1. Call the initialize import command

Call get-parameters-for-import to initialize the import process. This API will generate
a keypair for the purpose of key imports, sign the key and return back the certificate and
certificate root. Ultimately, the key to be exported should be encrypted using this key. In TR-34
terminology, this is known as the KRD Cert. Note that these certificates are short lived and are
only intended for this purpose.

Import keys 32

https://github.com/aws-samples/samples-for-payment-cryptography-service/tree/main/key-import-export

AWS Payment Cryptography User Guide

2. Install public certificate on key source system

With many HSMs, you may need to install/load/trust the public certificate generated in step 1
in order to export keys using it.

3. Generate public key and provide certificate root to AWS Payment Cryptography

To ensure integrity of the transmitted payload, it is signed by the sending party (known as
the Key Distribution Host or KDH). The sending party will want to generate a public key for
this purpose and then create a public key certificate (X509) that can be provided back to AWS
Payment Cryptography. AWS Private CA is one option for generating certificates, but there is no
restrictions on the certificate authority used.

Once you have the certificate, you'll want to load the root certificate
to AWS Payment Cryptography using the importKey command and
KeyMaterialType of ROOT_PUBLIC_KEY_CERTIFICATE and KeyUsageType of
TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE.

4. Export key from source system

Many HSMs and related systems support the ability to export keys using the TR-34 norm. You'll
want to specify the public key from step 1 as the KRD (encryption) cert and the key from step
3 as the KDH (signing) cert. In order to import to AWS Payment Cryptography, you'll want to
specify the format to be TR-34.2012 non-CMS two pass format which may also be referred to
as the TR-34 Diebold format.

5. Call import key

As the last step, you will call the importKey API with a KeyMaterialType of TR34_KEY_BLOCK.
The certificate-authority-public-key-identifier will be the keyARN of the root CA
imported in step 3, key-material will be wrapped key material from step 4 and signing-
key-certificate is the leaf certificate from step 3. You will also need to provide the import-
token from step 1.

6. Use imported key for cryptographic operations or subsequent import

If the imported KeyUsage was TR31_K0_KEY_ENCRYPTION_KEY, then this key can be
used for subsequent key imports using TR-31. If the key type was any other type (such as
TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY), then the key can be directly used for
cryptographic operations.

Import keys 33

AWS Payment Cryptography User Guide

Import keys using asymmetric techniques (RSA Unwrap)

Overview: AWS Payment Cryptography supports RSA wrap/unwrap for key exchange when TR-34
is not feasible. Similar to TR-34, this technique utilizes RSA asymmetric cryptography to encrypt
symmetric keys for exchange. However, unlike TR-34, this method does not have the payload
signed by the sending party. Also, this RSA wrap technique does not maintain the integrity of the
key metadata during transfer by virtue of not including key blocks.

Note

RSA wrap can be used to import or export TDES and AES-128 keys.

1. Call the initialize import command

Call get-parameters-for-import to initialize the import process with a key material type
of KEY_CRYPTOGRAM. WrappingKeyAlgorithm can be RSA_2048 when exchanging TDES keys.
RSA_3072 or RSA_4096 can be used when exchanging TDES or AES-128 keys. This API will
generate a keypair for the purpose of key imports, sign the key using a certificate root and
return back both the certificate and certificate root. Ultimately, the key to be exported should
be encrypted using this key. Note that these certificates are short lived and are only intended
for this purpose.

$ aws payment-cryptography get-parameters-for-import --key-material-type
 KEY_CRYPTOGRAM --wrapping-key-algorithm RSA_4096

{
 "ImportToken": "import-token-bwxli6ocftypneu5",
 "ParametersValidUntilTimestamp": 1698245002.065,
 "WrappingKeyCertificateChain": "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0....",
 "WrappingKeyCertificate": "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0....",
 "WrappingKeyAlgorithm": "RSA_4096"
}

2. Install public certificate on key source system

With many HSMs, you may need to install/load/trust the public certificate(and/or its root)
generated in step 1 in order to export keys using it.

Import keys 34

AWS Payment Cryptography User Guide

3. Export key from source system

Many HSMs and related systems support the ability to export keys using RSA wrap. You'll want
to specify the public key from step 1 as the (encryption) cert (WrappingKeyCertificate). If you
need the chain of trust, this is contained in the response field WrappingKeyCertificateChain in
step #1. When exporting the key from your HSM, you'll want to specify the format to be RSA,
Padding Mode = PKCS#1 v2.2 OAEP (with SHA 256 or SHA 512).

4. Call import key

As the last step, you will call the importKey API with a KeyMaterialType of KeyMaterial. You
will need the import-token from step 1 and the key-material (wrapped key material) from
step 3. You will need to provide the key parameters (such as Key Usage) since RSA wrap does
not utilize key blocks.

$ cat import-key-cryptogram.json
 {
 "KeyMaterial": {
 "KeyCryptogram": {
 "Exportable": true,
 "ImportToken": "import-token-bwxli6ocftypneu5",
 "KeyAttributes": {
 "KeyAlgorithm": "AES_128",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": true,
 "DeriveKey": false,
 "Encrypt": true,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": true,
 "Verify": false,
 "Wrap": true
 },
 "KeyUsage": "TR31_K0_KEY_ENCRYPTION_KEY"
 },
 "WrappedKeyCryptogram": "18874746731....",
 "WrappingSpec": "RSA_OAEP_SHA_256"
 }
 }
 }

Import keys 35

AWS Payment Cryptography User Guide

$ aws payment-cryptography import-key --cli-input-json file://import-key-
cryptogram.json

{
 "Key": {
 "KeyOrigin": "EXTERNAL",
 "Exportable": true,
 "KeyCheckValue": "DA1ACF",
 "UsageStartTimestamp": 1697643478.92,
 "Enabled": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h",
 "CreateTimestamp": 1697643478.92,
 "KeyState": "CREATE_COMPLETE",
 "KeyAttributes": {
 "KeyAlgorithm": "AES_128",
 "KeyModesOfUse": {
 "Encrypt": true,
 "Unwrap": true,
 "Verify": false,
 "DeriveKey": false,
 "Decrypt": true,
 "NoRestrictions": false,
 "Sign": false,
 "Wrap": true,
 "Generate": false
 },
 "KeyUsage": "TR31_K0_KEY_ENCRYPTION_KEY",
 "KeyClass": "SYMMETRIC_KEY"
 },
 "KeyCheckValueAlgorithm": "CMAC"
 }
 }

5. Use imported key for cryptographic operations or subsequent import

If the imported KeyUsage was TR31_K0_KEY_ENCRYPTION_KEY, then this key can be
used for subsequent key imports using TR-31. If the key type was any other type (such as
TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY), then the key can be directly used for
cryptographic operations.

Import keys 36

AWS Payment Cryptography User Guide

Import symmetric keys using a pre-established key exchange key (TR-31)

When partners are exchanging multiple keys (or to support key rotation), it is typical to first
exchange an initial key encryption key (KEK) using techniques such as paper key components or in
the case of AWS Payment Cryptography using TR-34.

Once a KEK is established, you can use this key to transport subsequent keys (including other
KEKs). AWS Payment Cryptography supports this kind of key exchange using ANSI TR-31 which is
widely used and widely supported by HSM vendors.

1. Import Key Encryption Key (KEK)

It is assumed that you've already imported your KEK and have the keyARN (or keyAlias)
available to you.

2. Create key on source platform

If the key doesn't already exist, create the key on the source platform. Conversely, you can
create the key on AWS Payment Cryptography and use the export command instead.

3. Export key from source platform

When exporting, ensure that you specify the export format as TR-31. The source platform will
also ask you for the key to be exported and the key encryption key to use.

Import keys 37

AWS Payment Cryptography User Guide

4. Import into AWS Payment Cryptography

When calling the importKey command, WrappingKeyIdentifier should be the keyARN (or alias)
of your key encryption key and WrappedKeyBlock is the output from the source platform.

Example

$ aws payment-cryptography import-key \
 --key-material="Tr31KeyBlock={WrappingKeyIdentifier="arn:aws:payment-
cryptography:us-east-2:111122223333:key/ov6icy4ryas4zcza",\

 WrappedKeyBlock="D0112B0AX00E00002E0A3D58252CB67564853373D1EBCC1E23B2ADE7B15E967CC27B85D5999EF58E11662991FF5EB1381E987D744334B99D"}"

 {
 "Key": {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h",
 "KeyAttributes": {
 "KeyUsage": "TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyAlgorithm": "AES_128",
 "KeyModesOfUse": {
 "Encrypt": true,
 "Decrypt": true,
 "Wrap": true,
 "Unwrap": true,
 "Generate": false,
 "Sign": false,
 "Verify": false,
 "DeriveKey": false,
 "NoRestrictions": false
 }
 },
 "KeyCheckValue": "0A3674",
 "KeyCheckValueAlgorithm": "CMAC",
 "Enabled": true,
 "Exportable": true,
 "KeyState": "CREATE_COMPLETE",
 "KeyOrigin": "EXTERNAL",
 "CreateTimestamp": "2023-06-02T07:38:14.913000-07:00",
 "UsageStartTimestamp": "2023-06-02T07:38:14.857000-07:00"

Import keys 38

AWS Payment Cryptography User Guide

 }
 }

Importing asymmetric (RSA) keys

Importing RSA public keys

AWS Payment Cryptography supports importing public RSA keys in the form of X.509 certificates.
In order to import a certificate, you will need to first import its root certificate. All certificates
should be unexpired at the time of import. The certificate should be in PEM format and should be
base64 encoded.

1. Import into Root Certificate into AWS Payment Cryptography

Example

$ aws payment-cryptography import-key \
 --key-material='{"RootCertificatePublicKey":{"KeyAttributes":
{"KeyAlgorithm":"RSA_2048", \
 "KeyClass":"PUBLIC_KEY", "KeyModesOfUse":{"Verify":
 true},"KeyUsage":"TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE"}, \

 "PublicKeyCertificate":"LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSURKVENDQWcyZ0F3SUJBZ0lCWkRBTkJna3Foa2lHOXcwQkFR..."}}'

 {
 "Key": {
 "CreateTimestamp": "2023-08-08T18:52:01.023000+00:00",
 "Enabled": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
zabouwe3574jysdl",
 "KeyAttributes": {
 "KeyAlgorithm": "RSA_2048",
 "KeyClass": "PUBLIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": false,
 "DeriveKey": false,
 "Encrypt": false,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,

Import keys 39

AWS Payment Cryptography User Guide

 "Unwrap": false,
 "Verify": true,
 "Wrap": false
 },
 "KeyUsage": "TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE"
 },
 "KeyOrigin": "EXTERNAL",
 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2023-08-08T18:52:01.023000+00:00"
 }
}

2. Import Public Key Certificate into AWS Payment Cryptography

You can now import a public key. There are two options for importing public keys.
TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE can be used if the
purpose of the key is to verify signatures (for instance when importing using TR-34).
TR31_D1_ASYMMETRIC_KEY_FOR_DATA_ENCRYPTION can be used when encrypting data that
is meant for use with another system.

Example

$ aws payment-cryptography import-key \
 --key-material='{"TrustedCertificatePublicKey":
{"CertificateAuthorityPublicKeyIdentifier":"arn:aws:payment-cryptography:us-
east-2:111122223333:key/zabouwe3574jysdl", \
 "KeyAttributes":
{"KeyAlgorithm":"RSA_2048","KeyClass":"PUBLIC_KEY","KeyModesOfUse":
{"Verify":true},"KeyUsage":"TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE"},\
 "PublicKeyCertificate":"LS0tLS1CRUdJTiB..."}}'

{
 "Key": {
 "CreateTimestamp": "2023-08-08T18:55:46.815000+00:00",
 "Enabled": true,
 "KeyArn": "arn:aws:payment-cryptography:us-
east-2:111122223333:key/4kd6xud22e64wcbk",
 "KeyAttributes": {
 "KeyAlgorithm": "RSA_4096",
 "KeyClass": "PUBLIC_KEY",
 "KeyModesOfUse": {

Import keys 40

AWS Payment Cryptography User Guide

 "Decrypt": false,
 "DeriveKey": false,
 "Encrypt": false,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": false,
 "Verify": true,
 "Wrap": false
 },
 "KeyUsage": "TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE"
 },
 "KeyOrigin": "EXTERNAL",
 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2023-08-08T18:55:46.815000+00:00"
 }
}

Export keys

Topics

• Exporting symmetric keys

• Exporting asymmetric (RSA) keys

Exporting symmetric keys

Important

Examples may require the latest version of the AWS CLI V2. Before getting started, please
ensure that you have upgraded to the latest version.

Topics

• Export keys using asymmetric techniques (TR-34)

• Export keys using asymmetric techniques (RSA Wrap)

• Export symmetric keys using a pre-established key exchange key (TR-31)

• Export DUKPT Initial Keys (IPEK/IK)

Export keys 41

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

AWS Payment Cryptography User Guide

Export keys using asymmetric techniques (TR-34)

Overview: TR-34 utilizes RSA asymmetric cryptography to encrypt symmetric keys for exchange as
well as ensuring the source of the data (signing). This ensures both the confidentiality (encryption)
and integrity (signature) of the wrapped key. When exporting, AWS Payment Cryptography
becomes the key distribution host (KDH) and the target system becomes the key receiving device
(KRD).

1. Call the initialize export command

Call get-parameters-for-export to initialize the export process. This API will generate
a keypair for the purpose of key exports, sign the key and return back the certificate and
certificate root. Ultimately, the private key generated by this command used to sign the
export payload. In TR-34 terminology, this is known as the KDH signing cert. Note that
these certificates are short lived and are only intended for this purpose. The parameter
ParametersValidUntilTimestamp specifies their duration.

NOTE: All certificates are returned in a base64 encoded format

Example

$ aws payment-cryptography get-parameters-for-export \
 --signing-key-algorithm RSA_2048 --key-material-type
 TR34_KEY_BLOCK

{
 "SigningKeyCertificate":
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUV2RENDQXFTZ0F3SUJBZ0lRZFAzSzNHNEFKT0I4WTNpTmUvYlF0akFOQmdrcWhraUc5dzBCQVEwRkFEQ0IKaVRFTE1Ba0dBMVVFQmhNQ1ZWTXhHVEFYQmdOVkJBb01FRUZYVXlCRGNubHdkRzluY21Gd2FIa3hJVEFmQmdOVgpCQXNNR0VGWFV5QlFZWGx0Wlc1MElFTnllWEIwYjJkeVlYQm9lVEVSTUE4R0ExVUVDQXdJVm1seVoybHVhV0V4CkZUQVRCZ05WQkFNTUREVXlPVEF5TnpRMU5UUTVOVEVTTUJBR0ExVUVCd3dKUVhKc2FXNW5kRzl1TUI0WERUSXoKTURZd05qSXhOREF5TVZvWERUSXpNRFl4TXpJeU5EQXlNRm93TERFVk1CTUdBMVVFQXd3TU5USTVNREkzTkRVMQpORGsxTVJNd0VRWURWUVFGRXdveE9ETTROemt5TWpNeU1JSUJJakFOQmdrcWhraUc5dzBCQVFFRkFBT0NBUThBCk1JSUJDZ0tDQVFFQXNTLzZ0TkhPK29RaTczVFMvYXJFSE40aEhRSjdFVThaT3dXN0RuNVlTTlZmZmM0b1B6ZVUKNHQ5Q045djViamxrL3p5TTJORllVL0NsTHNueFk2Y3IvaWwwY2hROVFtM1hUMHZVWGZGNzdRSzFSWnZzNkVkdApicVFaWGlqVDZ4UkJGcUxUMjV0dGJYQTlXMjlUd1d1eXdVN1c4dDZDZEIxSVFoOFFhYlBGaHRhWmVpWmVVWjNPCnRSa2NZU1VtRDRncWJxTElEL2M2RlpmdGpkYS9HbkhkZ1dmMk5oUUFvVnkxOS9ZZXhlZzdmTlVOZXVzWmRYSWYKZkNpM0VNaFF4S3lYY3dUMC9TZ2g5alZNakQwSDdyZWpCMGF4Tit0RUNqeVFEcm5XS2ZvbVA2ZFdkMExCSUM2bgpNQ1VKcmVtSDV3emVzZjFrWnF1VjRMbjYwdzZSNDNhQzRRSURBUUFCbzN3d2VqQUpCZ05WSFJNRUFqQUFNQjhHCkExVWRJd1FZTUJhQUZDNklyYUZzYnRUMDFGL2JjQ0c3Z3RVR1phM1RNQjBHQTFVZERnUVdCQlRXbldEWXNsMXMKalhnVExRRmFCYm1DakFZcHNUQU9CZ05WSFE4QkFmOEVCQU1DQmFBd0hRWURWUjBsQkJZd0ZBWUlLd1lCQlFVSApBd0VHQ0NzR0FRVUZCd01DTUEwR0NTcUdTSWIzRFFFQkRRVUFBNElDQVFCdUJmVjJmVFBlM0VkSEhnODFoVnZECnRQZUJsQzAvRy8wQ25XNFhPVEt2NUJtNXNudDBpczg4Yzc1SlRRUXdvdm9ScEVUTzZLdXdxMUFuUFR1c3RyRDYKL0I1bDd0MGw3ZUh6Z3pPVGZSN29Wem9TZXlGamkvVEVwK2M0NXBHWDBpY0ovTDlMaE0ybUVOZHhqNmtzVUcxMApuZnJCbzJyejkwRUJQYTVFb1lhMlRYYW90VlU4NFRiSFVyMlUzaFhrRExDWmhpSTdLY2I5cWRwenVlV0dWRzRTCmFreGJQcW5LQjMrek9JSzFZYTl2aENHZjRaMDFtWFFtVmRjQlpnbGE5SWFyeEcvKy9xWXEvNzBKalFnYk5HOUUKcUd1UFFadE5QQ0lJckJXOFN4cVpmUjVJbmxtUDlkZEY0SStOR002aHNoRUNXeWJCWkdUZjhYVCtwYVRFZXA2ZQpZUHp2UXI2cWQ4TExDYk5wOEI3ZTNrcmRKc0VUV0tBaU93TzFoZ1BReld2ZTRWKzBNdVlQaDczNk0xUS9rUTJVCmN5VmhDVDNCWENmOFhXVjMwYzg2c2J2dlhIeGJ5cVl1dWs4anZvRHl6T3R0T0QxbVdlRDBNeXV6OU1Fb3JTanIKM3ZwUDhBWXowMVI0UWNBMUR5cVl1dVErQ1BFRHlqU3VPK2tTQ1JIYXFLRzFOVzY5aVMxWWQyWG9LZTdtRlVpaAp3REM0WTlISlZjNjk5bWNMQ0NXWmhyYlZmZUJrOUxDS1BlUzZWUFZDMGdpVnJRYUtxbFhkTnh5SGJ2ZzBsRlUvCjZkUm5nYmVPMTZQdUhhN1hjL2FCUUF6N3JNaWlvRFFjSVdrQVdyK0NIOHl0UVFXZXRjSFdHNWRMMmZiSFgzOU0KMWhIeXFraHAwdDhXc0dTdVhjbWJBQT09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0=",
 "SigningKeyCertificateChain":
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUY0VENDQThtZ0F3SUJBZ0lSQUtlN2piaHFKZjJPd3FGUWI5c3VuOEV3RFFZSktvWklodmNOQVFFTkJRQXcKZ1lreEN6QUpCZ05WQkFZVEFsVlRNUmt3RndZRFZRUUtEQkJCVjFNZ1EzSjVjSFJ2WjNKaGNHaDVNU0V3SHdZRApWUVFMREJoQlYxTWdVR0Y1YldWdWRDQkRjbmx3ZEc5bmNtRndhSGt4RVRBUEJnTlZCQWdNQ0ZacGNtZHBibWxoCk1SVXdFd1lEVlFRRERBdzFNamt3TWpjME5UVTBPVFV4RWpBUUJnTlZCQWNNQ1VGeWJHbHVaM1J2YmpBZUZ3MHkKTXpBMk1EWXdNalEzTlRKYUZ3MHlPREEyTURZd016UTNOVEphTUlHSk1Rc3dDUVlEVlFRR0V3SlZVekVaTUJjRwpBMVVFQ2d3UVFWZFRJRU55ZVhCMGIyZHlZWEJvZVRFaE1COEdBMVVFQ3d3WVFWZFRJRkJoZVcxbGJuUWdRM0o1CmNIUnZaM0poY0doNU1SRXdEd1lEVlFRSURBaFdhWEpuYVc1cFlURVZNQk1HQTFVRUF3d01OVEk1TURJM05EVTEKTkRrMU1SSXdFQVlEVlFRSERBbEJjbXhwYm1kMGIyNHdnZ0lpTUEwR0NTcUdTSWIzRFFFQkFRVUFBNElDRHdBdwpnZ0lLQW9JQ0FRQzJyMld2eGJxZjJSUHhOem1JUk5ZeWZRQ2labGxYUVBQSDQycnAyQ1VtTk1VMkc2ZzdFRUZBCm5TWnNvRlN6Z1NJaEhUSWU4UDdUd1l3ckpPL3VNcEtka3lac1ppTEhUNGo4M1l1VkNlT1dSVERjdnRWMFV0M1IKaCs5UWVyaHhRQnVrK2dnZkRkT0FFUkR3S1pWckZqM3diT1FFMXY2WnRYSmpVZytWTXZKcEphUTg0WkFvYnpyUgpuY2JaL0hnbFhDM09xampSSk1laGJFaE93ZFJCTU4yQ2dTNHlhWTB3YlBvazhMSlRORVp5ZnkxUEtkaTd1UmxxCm9qeEdjc3pCRHFvdCsvTURBNVdZUjd5NVhiOGdOdSt0alkrMWdQSGRkWHFhRTR2bXV2cEtsQUttcml2SDRYWXQKZk9sa1kzYnRJckVuWDEwQkp1UXVGN0dRNyt3ZjN6TDZ4NFNIcGpiQWxpMDQyUmdXTVpibmlscW15YnhuUkRrUwpjZXZ3aEx2L0tnT09WM05KZlplWlVzT1N6NWNzTmRLME4rM2FCUlZQcVc5b2k3dDJ2dTc5eCtvb1pIS2FibFdiCmJDMDJxR1VDaTE3cHhDQ0JJdUVDZWJiWDhSS3dLa3RwbTRSOUZWYjBXZGFqNUc1ekdudTBsUlRMUVNaZ0QyU1EKSjRmQjh2em9Bb3BYenpSSStMSjNBaC9NcThXSTNHTHFIakhzcm5vdVJzMmNzcjVBYnNMbXUyUTlvMFJmNTd1RApwK1R1cXpKTysrNFpUWDlsb0N3UXdzKzNEZWUyL1pUSmJCNkFCdy9xdnovQjhsL2duY29Wc3lHTFhkaXdleTV1CjJHNnl2NGgrN0FBQldvdjhwWVBPUlRMY1FkanhVdWNDdllRYjJiRXY4ZGh1anN6TWo2ZDBDUUlEQVFBQm8wSXcKUURBUEJnTlZIUk1CQWY4RUJUQURBUUgvTUIwR0ExVWREZ1FXQkJRdWlLMmhiRzdVOU5SZjIzQWh1NExWQm1XdAowekFPQmdOVkhROEJBZjhFQkFNQ0FZWXdEUVlKS29aSWh2Y05BUUVOQlFBRGdnSUJBSS9Ta1NaS0pyMm1JakJ6ClJxQXQ3dmJ4eWNhQXhCU3VqbDlqVSttYkh1RDg4Qyt3TDh4TzNYRHJ1Vm9IZTdYanhrNXpaN0RWMjMza3haQlEKR3BET1hWaGNZdE5UNzk2YXd1K0VNU2kzK3RzTVJBMmMxODJ2ZVNDSE9HQmVseTlRS3FHWkJBZGU2ZGNzTkpMTwpiRE10NlB3NXpiRHNqalJnMGY5SGQrRFZheXV6QzBtdXVGWEZkT0txU0VWZVNmZWVNOUl5KzFMWDMzOFlVd05zCjdhS2ppaFVFSkg4ZkVFU1NEUGE5OGNOSEsyZ0t5UENrRUorMGlNZkJiTi9yUE1CYlhqTUtHYWpXSFFhWWtieDUKalVRUmdvd25ZbStycDRwRnNhalpSTFB0NE9mbkswNWYvRHdCUXVGWUUzUFJ2d2NQSWxJNHpkcWh0NE9ZSVY4RAo2MktleVEzb3R6eTdsVXIxamNrZldkSHpHc3NKVjYxc0xRTTBudVFNUnRTZjlHeEpYTEkyNjFaRWFMYVY5WFduCnY3YnByb090UTNiYk9RbjI0elJDVm5kZ0Z3aCtUVHMzVmFOQjhURmY2QjFoV1R5aTYzOCtoa1FTRnJTbXI1WTcKTXNGUXZXSVZVbjQ2cWNjVGNuNlc2Y2JIUlhyQkRiR0tlWUJiVjVXSkJwRUtSN0JuQ25HNnJCbmxGNjZ5eTUyLwpSbWZLRWZwWG1qbkh0WW94UnlQVlJZWDhPcnkzUFQrYSt0REtlMDBXY1MyM0U3MWl2QTBNdnVrODlwTzJIUVorCjNHUU9xdWJpQ3RMbVppdVFCZC9aN1NGWGlzcUxyTE5aOW52Q2VRSkxTckVDajRpZjV2dmJkWVhLdkozamhtSjkKeVZvc0xZVzA3SklzSFE0aDAwVWphSnhrVjdoWgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0t",
 "SigningKeyAlgorithm": "RSA_2048",
 "ExportToken": "export-token-au7pvkbsq4mbup6i",
 "ParametersValidUntilTimestamp": "2023-06-13T15:40:24.036000-07:00"
}

2. Import AWS Payment Cryptography certificate into receiving system

Import the certificate chain provided in step 1 into your receiving system as necessary.

Export keys 42

AWS Payment Cryptography User Guide

3. Generate a key pair, create a public certificate and provide the certificate root to AWS
Payment Cryptography

To ensure confidentiality of the transmitted payload, it is encrypted by the sending party
(known as the Key Distribution Host or KDH). The receiving party (typically your HSM or your
partners' HSM) will want to generate a public key for this purpose and then create a public key
certificate (x.509) that can be provided back to AWS Payment Cryptography. AWS Private CA is
one option for generating certificates, but there is no restrictions on the certificate authority
used.

Once you have the certificate, you'll want to load the root certificate
to AWS Payment Cryptography using the ImportKey command and
KeyMaterialType of ROOT_PUBLIC_KEY_CERTIFICATE and KeyUsageType of
TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE.

The KeyUsageType of this certificate is TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE
because it is the root key and is used to sign the leaf certificate. Leaf certificates for import/
export are not imported into AWS Payment Cryptography but are passed inline.

Note

If the root certificate was previously imported, this step can be skipped.

4. Call Export key

As the last step, you will call the ExportKey API with a KeyMaterialType of TR34_KEY_BLOCK.
The certificate-authority-public-key-identifier will be the keyARN of the root CA
import in step 3, WrappingKeyCertificate will be leaf certificate from step 3 and export-
key-identifier is the keyARN (or alias) to be exported. You will also need to provide the
export-token from step 1.

Export keys using asymmetric techniques (RSA Wrap)

Overview: AWS Payment Cryptography supports RSA wrap/unwrap for key exchange when TR-34
is not an option available by the counter party. Similar to TR-34, this technique utilizes RSA
asymmetric cryptography to encrypt symmetric keys for exchange. However, unlike TR-34, this
method does not have the payload signed by the sending party. Also, this RSA wrap technique does
not include key blocks which are used to maintain the integrity of key metadata during transport.

Export keys 43

AWS Payment Cryptography User Guide

Note

RSA wrap can be used to export TDES and AES-128 keys.

1. Generate an RSA key and certificate on receiving system

Create (or identify) an RSA key that will be used for receiving the wrapped key. AWS Payment
Cryptography expects keys in X.509 certificate format. Certificate should be signed by a root
certificate that is imported (or can be imported) into AWS Payment Cryptography.

2. Install root public certificate on AWS Payment Cryptography

$ aws payment-cryptography import-key --key-material='{"RootCertificatePublicKey":
{"KeyAttributes":{"KeyAlgorithm":"RSA_4096","KeyClass":"PUBLIC_KEY","KeyModesOfUse":
{"Verify":
 true},"KeyUsage":"TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE"},"PublicKeyCertificate":"LS0tLS1CRUdJTiBDRV..."}}'

 {
 "Key": {
 "CreateTimestamp": "2023-09-14T10:50:32.365000-07:00",
 "Enabled": true,
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
nsq2i3mbg6sn775f",
 "KeyAttributes": {
 "KeyAlgorithm": "RSA_4096",
 "KeyClass": "PUBLIC_KEY",
 "KeyModesOfUse": {
 "Decrypt": false,
 "DeriveKey": false,
 "Encrypt": false,
 "Generate": false,
 "NoRestrictions": false,
 "Sign": false,
 "Unwrap": false,
 "Verify": true,
 "Wrap": false
 },
 "KeyUsage": "TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE"
 },
 "KeyOrigin": "EXTERNAL",

Export keys 44

AWS Payment Cryptography User Guide

 "KeyState": "CREATE_COMPLETE",
 "UsageStartTimestamp": "2023-09-14T10:50:32.365000-07:00“
 }
 }

3. Call export key

Next you want to instruct AWS Payment Cryptography to export your key using your leaf
certificate. You will specify the ARN for the previously imported root certificate, the leaf
certificate to use for export and the symmetric key to export. The output will be a hex encoded
binary wrapped (encrypted) version of your symmetric key.

$ cat export-key.json

 {
 "ExportKeyIdentifier": "arn:aws:payment-cryptography:us-
east-2:111122223333:key/tqv5yij6wtxx64pi",
 "KeyMaterial": {
 "KeyCryptogram": {
 "CertificateAuthorityPublicKeyIdentifier": "arn:aws:payment-
cryptography:us-east-2:111122223333:key/zabouwe3574jysdl",
 "WrappingKeyCertificate": "LS0tLS1CRUdJTiBD...",
 "WrappingSpec": "RSA_OAEP_SHA_256"
 }
 }
 }

$ aws payment-cryptography export-key --cli-input-json file://export-key.json

{
 "WrappedKey": {
 "KeyMaterial":
 "18874746731E9E1C4562E4116D1C2477063FCB08454D757D81854AEAEE0A52B1F9D303FA29C02DC82AE7785353816EFAC8B5F4F79CC29A1DDA80C65F34364373D8C74E5EC67E4CB55DEA7F091210DCACD3C46FE4A5DAA0F0D9CAA7C959CA7144A5E7052F34AAED93EF44C004AE7ABEBD616C955BBA10993C06FB905319F87B9B4E1B7A7C7D17AF15B6154E807B9C574387A43197C31C6E565554437A252EFF8AC81613305760D11F9B53B08A1BA79EC7E7C82C48083C4E2D0B6F86C34AB83647BDD7E85240AD1AF3C0F6CA8C5BF323BB2D3896457C554F978F4C9436513F494130A6FADBC038D51898AAD72E02A89FF256C524E7B5D85B813751B718C4933D9DC6031F2C5B2E13351A54B6021B2DB72AA0C7EA54727FBCD557E67E5E7CC2E165576E39DB4DA33510BA9A3C847313103A18EF3B23A3440471864D58C79C569D5CD2A653AC16043CA9A61E6878F74C18EE15F9AB23754C37A945B68C0437C19F0079F74B573D9B59DAC25A20781DBE8075C947C9EDC76177A1B0794288CBF89567A541E8401C74E85B8E1C3E501860AF702F641CAA04327018A84EF3A82932A2BCF37047AB40FE77E0A6F68D0904C7E60983CD6F871D5E0E27EEF425C97D39E9394E8927EEF5D2EA9388DF3C5C241F99378DF5DADE8D0F0CF453C803BA38BA702B9651685FAFA6DCB4B14333F8D3C57F2D93E0852AA94EEC3AF3217CAE5873EFD9",
 "WrappedKeyMaterialFormat": "KEY_CRYPTOGRAM"
 }
 }

Export keys 45

AWS Payment Cryptography User Guide

4. Import key to receiving system

Many HSMs and related systems support the ability to import keys using RSA unwrap (including
AWS Payment Cryptography). In order to do so, specify the public key from step 1 as the
(encryption) cert. and the format should be specified as RSA, Padding Mode = PKCS#1 v2.2
OAEP (with SHA 256). The exact terminology may vary by HSM.

Note

AWS Payment Cryptography outputs the wrapped key in hexBinary. You may need
to convert the format before importing if your system requires a different binary
representation like base64.

Export symmetric keys using a pre-established key exchange key (TR-31)

When partners are exchanging multiple keys (or to support key rotation), it is typical to first
exchange an initial key encryption key (KEK) using techniques such as paper key components or
in the case of AWS Payment Cryptography using TR-34. Once a KEK is established, you can use
this key to transport subsequent keys (including other KEK). AWS Payment Cryptography supports
this kind of key exchange using ANSI TR-31 which is widely used and widely supported by HSM
vendors.

1. Exchange Key Encryption Key (KEK)

It is assumed that you've already exchange your KEK and have the keyARN (or keyAlias)
available to you.

2. Create key on AWS Payment Cryptography

If the key doesn't already exist, create the key. Conversely, you can create the key on the other
system and use the import command instead.

3. Export key from AWS Payment Cryptography

When exporting, the format will be TR-31. When calling the API, you will specify the key to be
exported and the wrapping key to be used.

$ aws payment-cryptography export-key --key-material='{"Tr31KeyBlock":
 {"WrappingKeyIdentifier": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
ov6icy4ryas4zcza"}}' --export-key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/5rplquuwozodpwsp

Export keys 46

AWS Payment Cryptography User Guide

{
 "WrappedKey": {
 "KeyCheckValue": "73C263",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyMaterial":
 "D0144K0AB00E0000A24D3ACF3005F30A6E31D533E07F2E1B17A2A003B338B1E79E5B3AD4FBF7850FACF9A3784489581A543C84816C8D3542AE888CE6D4EDDFD09C39957B131617BC",
 "WrappedKeyMaterialFormat": "TR31_KEY_BLOCK"
 }
 }

4. Import into your system

You or your partner will use the import key implementation on your system to import the key.

Export DUKPT Initial Keys (IPEK/IK)

When using DUKPT, a single Base Derivation Key(BDK) may be generated for a fleet of terminals.
Terminals, however, never have access to that original BDK but are each injected with a unique,
initial terminal key known as IPEK or Initial Key(IK). Each IPEK is a key derived from the BDK and
is intended to be unique per terminal but is derived from the original BDK. The derivation data
for this calculation is known as the Key Serial Number (KSN). Per X9.24, for TDES the 10 byte
KSN typically consists of 24 bits for the Key Set ID, 19 bits for the terminal ID and 21 bits for the
transaction counter. For AES, the 12 byte KSN typically consists of 32 bits for the BDK ID, 32 bits
for the derivation identifier(ID) and 32 bits for the transaction counter.

AWS Payment Cryptography provides a mechanism to generate and export these initial keys. Once
generated, these keys can be exported using the TR-31, TR-34 and RSA wrap methods. IPEK keys
are not persisted and cannot be used for subsequent operations on AWS Payment Cryptography

AWS Payment Cryptography does not enforce the split between the first two parts of the KSN. If
you wish to store the derivation identifier along with the BDK, you can use the AWS tags feature for
this purpose.

Note

The counter portion of the KSN (32 bits for AES DUKPT) is not used for IPEK/IK derivation.
Therefore, an input of 12345678901234560001 and 12345678901234569999 will output
the same IPEK.

Export keys 47

AWS Payment Cryptography User Guide

$ aws payment-cryptography export-key --key-material='{"Tr31KeyBlock":
 {"WrappingKeyIdentifier": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
ov6icy4ryas4zcza"}}' --export-key-identifier arn:aws:payment-
cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi --export-attributes
 'ExportDukptInitialKey={KeySerialNumber=12345678901234560001}'

{
 "WrappedKey": {
 "KeyCheckValue": "73C263",
 "KeyCheckValueAlgorithm": "ANSI_X9_24",
 "KeyMaterial":
 "B0096B1TX00S000038A8A06588B9011F0D5EEF1CCAECFA6962647A89195B7A98BDA65DDE7C57FEA507559AF2A5D601D1",
 "WrappedKeyMaterialFormat": "TR31_KEY_BLOCK"
 }
}

Exporting asymmetric (RSA) keys

Call get-public-key-certificate to export a public key in certificate form. This API will
export the certificate as well as its root certificate encoded in base64 format.

NOTE: This API is not idempotent - subsequent calls may result in different certificates even though
the underlying key is the same.

Example

$ aws payment-cryptography get-public-key-certificate \
 —key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/5dza7xqd6soanjtb

{
 "KeyCertificate": "LS0tLS1CRUdJTi...",
 "KeyCertificateChain": "LS0tLS1CRUdJT...“
}

Export keys 48

AWS Payment Cryptography User Guide

Using aliases

An alias is a friendly name for an AWS Payment Cryptography key. For example, an alias lets
you refer to a key as alias/test-key instead of arn:aws:payment-cryptography:us-
east-2:111122223333:key/kwapwa6qaifllw2h.

You can use an alias to identify a key in most key management (control plane) operations, and in
cryptographic (dataplane) operations.

You can also allow and deny access to AWS Payment Cryptography key based on their aliases
without editing policies or managing grants. This feature is part of the service's support for
attribute-based access control (ABAC).

Much of the power of aliases comes from your ability to change the key associated with an alias at
any time. Aliases can make your code easier to write and maintain. For example, suppose you use
an alias to refer to a particular AWS Payment Cryptography key and you want to change the AWS
Payment Cryptography key. In that case, just associate the alias with a different key. You don't need
to change your code or application configuration.

Aliases also make it easier to reuse the same code in different AWS Regions. Create aliases with the
same name in multiple Regions and associate each alias with an AWS Payment Cryptography key
in its Region. When the code runs in each Region, the alias refers to the associated AWS Payment
Cryptography key in that Region.

You can create an alias for an AWS Payment Cryptography key by using the CreateAlias API.

The AWS Payment Cryptography API provides full control of aliases in each account and Region.
The API includes operations to create an alias (CreateAlias), view alias names and the linked
keyARN (list-aliases), change the AWS Payment Cryptography key associated with an alias
(update-alias), and delete an alias (delete-alias).

Topics

• About aliases

• Using aliases in your applications

• Related APIs

About aliases

Learn how aliases work in AWS Payment Cryptography.

Using aliases 49

AWS Payment Cryptography User Guide

An alias is an independent AWS resource

An alias is not a property of an AWS Payment Cryptography key. The actions that you take
on the alias don't affect its associated key. You can create an alias for an AWS Payment
Cryptography key and then update the alias so it's associated with a different AWS Payment
Cryptography key. You can even delete the alias without any effect on the associated AWS
Payment Cryptography key. If you delete a AWS Payment Cryptography key, all aliases
associated with that key will become unassigned.

If you specify an alias as the resource in an IAM policy, the policy refers to the alias, not to the
associated AWS Payment Cryptography key.

Each alias has a friendly name

When you create an alias, you specify the alias name prefixed by alias/. For instance alias/
test_1234

Each alias is associated with one AWS Payment Cryptography key at a time

The alias and its AWS Payment Cryptography key must be in the same account and Region.

An AWS Payment Cryptography key can be associated with more than one alias concurrently,
but each alias can only be mapped to a single key

For example, this list-aliases output shows that the alias/sampleAlias1 alias is
associated with exactly one target AWS Payment Cryptography key, which is represented by the
KeyArn property.

$ aws payment-cryptography list-aliases

 {
 "Aliases": [
 {
 "AliasName": "alias/sampleAlias1",
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h"
 }
]
}

About aliases 50

AWS Payment Cryptography User Guide

Multiple aliases can be associated with the same AWS Payment Cryptography key

For example, you can associate the alias/sampleAlias1; and alias/sampleAlias2
aliases with the same key.

$ aws payment-cryptography list-aliases

{
 "Aliases": [
 {
 "AliasName": "alias/sampleAlias1",
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h"
 },
 {
 "AliasName": "alias/sampleAlias2",
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h"
 }
]
 }

An alias must be unique for a given account and Region

For example, you can have only one alias/sampleAlias1 alias in each account and
Region. Aliases are case-sensitive, but we recommend against using aliases that only differ in
capitalization as they can be prone to error. You cannot change an alias name. However, you can
delete the alias and create a new alias with the desired name.

You can create an alias with the same name in different Regions

For example, you can have alias alias/sampleAlias2 in US East (N. Virginia) and alias
alias/sampleAlias2 in US West (Oregon). Each alias would be associated with an AWS
Payment Cryptography key in its Region. If your code refers to an alias name like alias/
finance-key, you can run it in multiple Regions. In each Region, it uses a different alias/
sampleAlias2. For details, see Using aliases in your applications.

About aliases 51

AWS Payment Cryptography User Guide

You can change the AWS Payment Cryptography key associated with an alias

You can use the UpdateAlias operation to associate an alias with a different AWS
Payment Cryptography key. For example, if the alias/sampleAlias2 alias is associated
with the arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h AWS Payment Cryptography key, you can update it so it is associated
with the arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi key.

Warning

AWS Payment Cryptography doesn't validate that the old and new keys have all the
same attributes such as key usage. Updating with a different key type may result in
problems in your application.

Some keys don't have aliases

An alias is an optional feature and not all keys will have aliases unless you choose to operate
your environment in this way. Keys can be associated with Aliases using the create-
alias command. Also, you can use the update-alias operation to change the AWS Payment
Cryptography key associated with an alias and the delete-alias operation to delete an alias. As a
result, some AWS Payment Cryptography keys might have several aliases, and some might have
none.

Mapping a key to an alias

You can map a key (represented by an ARN) to one or more aliases using the create-
alias command. This command is not idempotent - to update an alias, use the update-alias
command.

$ aws payment-cryptography create-alias --alias-name alias/sampleAlias1 \
 --key-arn arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h

{
 "Alias": {
 "AliasName": "alias/alias/sampleAlias1",
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h"

About aliases 52

AWS Payment Cryptography User Guide

 }
}

Using aliases in your applications

You can use an alias to represent an AWS Payment Cryptography key in your application code.
The key-identifier parameter in AWS Payment Cryptography data operations as well as other
operations like List Keys accepts an alias name or alias ARN.

$ aws payment-cryptography-data generate-card-validation-data --key-identifier alias/
BIN_123456_CVK --primary-account-number=171234567890123 --generation-attributes
 CardVerificationValue2={CardExpiryDate=0123}

When using an alias ARN, remember that the alias mapping to an AWS Payment Cryptography key
is defined in the account that owns the AWS Payment Cryptography key and might differ in each
Region.

One of the most powerful uses of aliases is in applications that run in multiple AWS Regions.

You could create a different version of your application in each Region or use a dictionary,
configuration or switch statement to select the right AWS Payment Cryptography key for
each Region. But it might be easier to create an alias with the same alias name in each Region.
Remember that the alias name is case-sensitive.

Related APIs

Tags

Tags are key and value pairs that act as metadata for organizing your AWS Payment
Cryptography keys. They can be used to flexibly identify keys or group one or more keys
together.

Get keys

An AWS Payment Cryptography key represents a single unit of cryptographic material and can
only be used for cryptographic operations for this service. The GetKeys API takes a KeyIdentifier
as input and returns the immutable and mutable attributes of the key but does not contain any
cryptographic material.

Using aliases in your applications 53

AWS Payment Cryptography User Guide

Example

$ aws payment-cryptography get-key --key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/kwapwa6qaifllw2h

{
 "Key": {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h",
 "KeyAttributes": {
 "KeyUsage": "TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY",
 "KeyClass": "SYMMETRIC_KEY",
 "KeyAlgorithm": "AES_128",
 "KeyModesOfUse": {
 "Encrypt": true,
 "Decrypt": true,
 "Wrap": true,
 "Unwrap": true,
 "Generate": false,
 "Sign": false,
 "Verify": false,
 "DeriveKey": false,
 "NoRestrictions": false
 }
 },
 "KeyCheckValue": "0A3674",
 "KeyCheckValueAlgorithm": "CMAC",
 "Enabled": true,
 "Exportable": true,
 "KeyState": "CREATE_COMPLETE",
 "KeyOrigin": "AWS_PAYMENT_CRYPTOGRAPHY",
 "CreateTimestamp": "2023-06-02T07:38:14.913000-07:00",
 "UsageStartTimestamp": "2023-06-02T07:38:14.857000-07:00"
 }
}

Get keys 54

AWS Payment Cryptography User Guide

Get the public key/certificate associated with a key pair

Get Public Key/Certificate returns the public key indicated by the KeyArn. This can be the public
key portion of a key pair generated on AWS Payment Cryptography or a previously imported public
key. The most common use case is to provide the public key to an outside service that will encrypt
data. That data can then be passed to an application leveraging AWS Payment Cryptography and
the data can be decrypted using the private key secured within AWS Payment Cryptography.

The service returns public keys as a public certificate. The API result contains the CA and the public
key certificate. Both data elements are base64 encoded.

Note

The public certificate returned is intended to be short lived and is not intended to be
idempotent. You may receive a different certificate on each API call even the public key
itself is unchanged.

Example

$ aws payment-cryptography get-public-key-certificate --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/nsq2i3mbg6sn775f

{
 "KeyCertificate":
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUV2VENDQXFXZ0F3SUJBZ0lSQUo1OWd2VkpDd3dlYldMNldYZEpYYkl3RFFZSktvWklodmNOQVFFTkJRQXcKZ1lreEN6QUpCZ05WQkFZVEFsVlRNUmt3RndZRFZRUUtEQkJCVjFNZ1EzSjVjSFJ2WjNKaGNHaDVNU0V3SHdZRApWUVFMREJoQlYxTWdVR0Y1YldWdWRDQkRjbmx3ZEc5bmNtRndhSGt4RVRBUEJnTlZCQWdNQ0ZacGNtZHBibWxoCk1SVXdFd1lEVlFRRERBdzFNamt3TWpjME5UVTBPVFV4RWpBUUJnTlZCQWNNQ1VGeWJHbHVaM1J2YmpBZUZ3MHkKTXpBMk1EWXdNalEzTlRWYUZ3MHlNekE1TURRd016UTNOVFZhTUN3eEZUQVRCZ05WQkFNTUREVXlPVEF5TnpRMQpOVFE1TlRFVE1CRUdBMVVFQlJNS05EUTBPREV4TnpZMU1UQ0NBU0l3RFFZSktvWklodmNOQVFFQkJRQURnZ0VQCkFEQ0NBUW9DZ2dFQkFOZ0loOS9lckd2azJTbHJ6K1ZaVkl0WXpEMDh3QkoxWVZKaDY1Z1J3NkFzbWJ4RUpYc1cKMjI5b3B1ZjhlOFU5TlBQbXU4TSs1YlRkcUxlbmI0cUowMm5abEtKWmVsdjdpVmQ5YjBmRnV6azlWb1RMMVN4dwpqeTBRd0ZDcTZUUlZveGE2d21PMGRwMHVMV2NBSm9UcENBc2U4ckk4czUxczlFMERaanZqald2cHhwOVRwMUhQClhBNmlzQ2lyUTR2b2FwWlpQNENLTjR6Wm13TE5oaUtuSDVhVnRyWkgyeXBzSll4aGIrTWcwUHZUUnRrRE9VTDcKKzdjb2diUWVlNWx1NDZJWDlyN1ZyRWVTYjEraENrQW5vb1JOL3k1aCtremYySzU4WWxpSWJEdE5aemlYRldIWgpXUnhYK1BWMnhwMFhGMmJUZTVEd2gyVWZ6U1JlNzhqZXlya0NBd0VBQWFOOE1Ib3dDUVlEVlIwVEJBSXdBREFmCkJnTlZIU01FR0RBV2dCUXVpSzJoYkc3VTlOUmYyM0FodTRMVkJtV3QwekFkQmdOVkhRNEVGZ1FVZTFLbWJqby8KOVMwVDZKOUVzT2R2bHRuKzNGb3dEZ1lEVlIwUEFRSC9CQVFEQWdXZ01CMEdBMVVkSlFRV01CUUdDQ3NHQVFVRgpCd01CQmdnckJnRUZCUWNEQWpBTkJna3Foa2lHOXcwQkFRMEZBQU9DQWdFQXNndUZpOVNsZmxCMHVTc2pySXFDCmQ2S3ZSZUdwSmlEZjVjVW4xZmJCeXlzL3NHVzI0dWRkeEc4SDdzQXp0MnlTZnM5L3hTZ1NIOFlqM25sU2l3clkKcS80R2x3Zk5FajBnanY2K1crNk1BazNWK2tjUVhMaUtwZlFrN3Z5OGMvcWRwK2tYd2N2K1pxUG1IUk5yNGl6eQpDSU5zVm04cDl5M0pZWlkwZWZrZU52bDR6enI4RGtNa3hva0liMVcyZVA0cm1BR2w2UHhLYVZmNnNLT1NoYlFXCm1heDBPalg2azdWNWdvbXdSMGVaVEtNQXhTUWpQRU5OSDllMi9kZTRJNG5WVXRFbWU2RjM5SWdiZmZicEhjMEkKNXdsN3FidUMvYnprcnNsNGRzOXB6Q3lQcFVUZjVQOWg5MkVqMzNURzJ1VEZURzRVQm0wMUVMYzFaTjhXbW12WgpWUk92M1VUSWlmQnd2em16OUpjUUZ5R3Nsa2prOTBJdkV0U3lld2psYW52cy9kanRJL2JzRFFPKzI1M2ltOFFRClJkSWVaUTRleWI5YTJxeDVtWDZHOWJ6RDBVRkVxN2JoTlppZlhzNE1YWEFjS051TnpYS1Zja1hKM0trYWt1TUcKVE5BTzc4T01qUUlTWk5NeXE2WmM2MVJVcFBVZ1R1K2Vhd1FGRzBBU0Yxb2w4Wjc4cEFSeE9Oc1lGdkQ5Y3BnUQpzSnlzeDB0Zjl6aTR5Zi80aWNOSkVlWVVNY0lGSXlFKzE0eDBpcFVSRTRGenRad2orYlZFeHdiM0h4aVJQMncyCkJLSnVKeXd4ZGx2L1hTZU1XaDl3UkNCb3lLeXFxWVdWcDcweW15N01oSFlVSERUWEFPL1NJN3B5VnVLaDBReUYKR1pEOHRibi9TR2RqQ0pETEM4bWlmNk09Ci0tLS0tRU5EIENFUlRJRklDQVRFLS0tLS0=",
 "KeyCertificateChain":
 "LS0tLS1CRUdJTiBDRVJUSUZJQ0FURS0tLS0tCk1JSUY0VENDQThtZ0F3SUJBZ0lSQUtlN2piaHFKZjJPd3FGUWI5c3VuOEV3RFFZSktvWklodmNOQVFFTkJRQXcKZ1lreEN6QUpCZ05WQkFZVEFsVlRNUmt3RndZRFZRUUtEQkJCVjFNZ1EzSjVjSFJ2WjNKaGNHaDVNU0V3SHdZRApWUVFMREJoQlYxTWdVR0Y1YldWdWRDQkRjbmx3ZEc5bmNtRndhSGt4RVRBUEJnTlZCQWdNQ0ZacGNtZHBibWxoCk1SVXdFd1lEVlFRRERBdzFNamt3TWpjME5UVTBPVFV4RWpBUUJnTlZCQWNNQ1VGeWJHbHVaM1J2YmpBZUZ3MHkKTXpBMk1EWXdNalEzTlRKYUZ3MHlPREEyTURZd016UTNOVEphTUlHSk1Rc3dDUVlEVlFRR0V3SlZVekVaTUJjRwpBMVVFQ2d3UVFWZFRJRU55ZVhCMGIyZHlZWEJvZVRFaE1COEdBMVVFQ3d3WVFWZFRJRkJoZVcxbGJuUWdRM0o1CmNIUnZaM0poY0doNU1SRXdEd1lEVlFRSURBaFdhWEpuYVc1cFlURVZNQk1HQTFVRUF3d01OVEk1TURJM05EVTEKTkRrMU1SSXdFQVlEVlFRSERBbEJjbXhwYm1kMGIyNHdnZ0lpTUEwR0NTcUdTSWIzRFFFQkFRVUFBNElDRHdBdwpnZ0lLQW9JQ0FRQzJyMld2eGJxZjJSUHhOem1JUk5ZeWZRQ2labGxYUVBQSDQycnAyQ1VtTk1VMkc2ZzdFRUZBCm5TWnNvRlN6Z1NJaEhUSWU4UDdUd1l3ckpPL3VNcEtka3lac1ppTEhUNGo4M1l1VkNlT1dSVERjdnRWMFV0M1IKaCs5UWVyaHhRQnVrK2dnZkRkT0FFUkR3S1pWckZqM3diT1FFMXY2WnRYSmpVZytWTXZKcEphUTg0WkFvYnpyUgpuY2JaL0hnbFhDM09xampSSk1laGJFaE93ZFJCTU4yQ2dTNHlhWTB3YlBvazhMSlRORVp5ZnkxUEtkaTd1UmxxCm9qeEdjc3pCRHFvdCsvTURBNVdZUjd5NVhiOGdOdSt0alkrMWdQSGRkWHFhRTR2bXV2cEtsQUttcml2SDRYWXQKZk9sa1kzYnRJckVuWDEwQkp1UXVGN0dRNyt3ZjN6TDZ4NFNIcGpiQWxpMDQyUmdXTVpibmlscW15YnhuUkRrUwpjZXZ3aEx2L0tnT09WM05KZlplWlVzT1N6NWNzTmRLME4rM2FCUlZQcVc5b2k3dDJ2dTc5eCtvb1pIS2FibFdiCmJDMDJxR1VDaTE3cHhDQ0JJdUVDZWJiWDhSS3dLa3RwbTRSOUZWYjBXZGFqNUc1ekdudTBsUlRMUVNaZ0QyU1EKSjRmQjh2em9Bb3BYenpSSStMSjNBaC9NcThXSTNHTHFIakhzcm5vdVJzMmNzcjVBYnNMbXUyUTlvMFJmNTd1RApwK1R1cXpKTysrNFpUWDlsb0N3UXdzKzNEZWUyL1pUSmJCNkFCdy9xdnovQjhsL2duY29Wc3lHTFhkaXdleTV1CjJHNnl2NGgrN0FBQldvdjhwWVBPUlRMY1FkanhVdWNDdllRYjJiRXY4ZGh1anN6TWo2ZDBDUUlEQVFBQm8wSXcKUURBUEJnTlZIUk1CQWY4RUJUQURBUUgvTUIwR0ExVWREZ1FXQkJRdWlLMmhiRzdVOU5SZjIzQWh1NExWQm1XdAowekFPQmdOVkhROEJBZjhFQkFNQ0FZWXdEUVlKS29aSWh2Y05BUUVOQlFBRGdnSUJBSS9Ta1NaS0pyMm1JakJ6ClJxQXQ3dmJ4eWNhQXhCU3VqbDlqVSttYkh1RDg4Qyt3TDh4TzNYRHJ1Vm9IZTdYanhrNXpaN0RWMjMza3haQlEKR3BET1hWaGNZdE5UNzk2YXd1K0VNU2kzK3RzTVJBMmMxODJ2ZVNDSE9HQmVseTlRS3FHWkJBZGU2ZGNzTkpMTwpiRE10NlB3NXpiRHNqalJnMGY5SGQrRFZheXV6QzBtdXVGWEZkT0txU0VWZVNmZWVNOUl5KzFMWDMzOFlVd05zCjdhS2ppaFVFSkg4ZkVFU1NEUGE5OGNOSEsyZ0t5UENrRUorMGlNZkJiTi9yUE1CYlhqTUtHYWpXSFFhWWtieDUKalVRUmdvd25ZbStycDRwRnNhalpSTFB0NE9mbkswNWYvRHdCUXVGWUUzUFJ2d2NQSWxJNHpkcWh0NE9ZSVY4RAo2MktleVEzb3R6eTdsVXIxamNrZldkSHpHc3NKVjYxc0xRTTBudVFNUnRTZjlHeEpYTEkyNjFaRWFMYVY5WFduCnY3YnByb090UTNiYk9RbjI0elJDVm5kZ0Z3aCtUVHMzVmFOQjhURmY2QjFoV1R5aTYzOCtoa1FTRnJTbXI1WTcKTXNGUXZXSVZVbjQ2cWNjVGNuNlc2Y2JIUlhyQkRiR0tlWUJiVjVXSkJwRUtSN0JuQ25HNnJCbmxGNjZ5eTUyLwpSbWZLRWZwWG1qbkh0WW94UnlQVlJZWDhPcnkzUFQrYSt0REtlMDBXY1MyM0U3MWl2QTBNdnVrODlwTzJIUVorCjNHUU9xdWJpQ3RMbVppdVFCZC9aN1NGWGlzcUxyTE5aOW52Q2VRSkxTckVDajRpZjV2dmJkWVhLdkozamhtSjkKeVZvc0xZVzA3SklzSFE0aDAwVWphSnhrVjdoWgotLS0tLUVORCBDRVJUSUZJQ0FURS0tLS0t"
}

Get the public key/certificate associated with a key pair 55

AWS Payment Cryptography User Guide

Tagging keys

In AWS Payment Cryptography, you can add tags to a AWS Payment Cryptography key when you
create a key, and tag or untag existing keys unless they are pending deletion. Tags are optional, but
they can be very useful.

For general information about tags, including best practices, tagging strategies, and the format
and syntax of tags, see Tagging AWS resources in the Amazon Web Services General Reference.

Topics

• About tags in AWS Payment Cryptography

• Viewing key tags in the console

• Managing key tags with API operations

• Controlling access to tags

• Using tags to control access to keys

About tags in AWS Payment Cryptography

A tag is an optional metadata label that you can assign (or AWS can assign) to an AWS resource.
Each tag consists of a tag key and a tag value, both of which are case-sensitive strings. The tag
value can be an empty (null) string. Each tag on a resource must have a different tag key, but you
can add the same tag to multiple AWS resources. Each resource can have up to 50 user-created
tags.

Do not include confidential or sensitive information in the tag key or tag value. Tags are accessible
to many AWS services, including billing.

In AWS Payment Cryptography, you can add tags to a key when you create the key, and tag or
untag existing keys unless they are pending deletion. You cannot tag aliases. Tags are optional, but
they can be very useful.

For example, you can add a "Project"="Alpha" tag to all AWS Payment Cryptography
keys and Amazon S3 buckets that you use for the Alpha project. Another example is to add
"BIN"="20130622" tag to all keys associated to a specific bank identification number(BIN).

Tagging keys 56

AWS Payment Cryptography User Guide

 [
 {
 "Key": "Project",
 "Value": "Alpha"
 },
 {
 "Key": "BIN",
 "Value": "20130622"
 }
]

For general information about tags, including the format and syntax, see Tagging AWS resources in
the Amazon Web Services General Reference.

Tags help you do the following:

• Identify and organize your AWS resources. Many AWS services support tagging, so you can assign
the same tag to resources from different services to indicate that the resources are related. For
example, you can assign the same tag to an AWS Payment Cryptography keys and an Amazon
Elastic Block Store (Amazon EBS) volume or AWS Secrets Manager secret. You can also use tags
to identify keys for automation.

• Track your AWS costs. When you add tags to your AWS resources, AWS generates a cost
allocation report with usage and costs aggregated by tags. You can use this feature to track AWS
Payment Cryptography costs for a project, application, or cost center.

For more information about using tags for cost allocation, see Using Cost Allocation Tags in the
AWS Billing User Guide. For information about the rules for tag keys and tag values, see User-
Defined Tag Restrictions in the AWS Billing User Guide.

• Control access to your AWS resources. Allowing and denying access to keys based on their tags
is part of AWS Payment Cryptography support for attribute-based access control (ABAC). For
information about controlling access to AWS Payment Cryptography based on their tags, see
Authorization based on AWS Payment Cryptography tags. For more general information about
using tags to control access to AWS resources, see Controlling Access to AWS Resources Using
Resource Tags in the IAM User Guide.

AWS Payment Cryptography writes an entry to your AWS CloudTrail log when you use the
TagResource, UntagResource, or ListTagsForResource operations.

About tags in AWS Payment Cryptography 57

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/cost-alloc-tags.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/allocation-tag-restrictions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS Payment Cryptography User Guide

Viewing key tags in the console

To view tags in the console, you need tagging permission on the key from an IAM policy that
includes the key. You need these permissions in addition to the permissions to view keys in the
console.

Managing key tags with API operations

You can use the AWS Payment Cryptography API to add, delete, and list tags for the keys that you
manage. These examples use the AWS Command Line Interface (AWS CLI), but you can use any
supported programming language. You cannot tag AWS managed keys.

To add, edit, view, and delete tags for a key, you must have the required permissions. For details,
see Controlling access to tags.

Topics

• CreateKey: Add tags to a new key

• TagResource: Add or change tags for a key

• ListResourceTags: Get the tags for a key

• UntagResource: Delete tags from a key

CreateKey: Add tags to a new key

You can add tags when you create a key. To specify the tags, use the Tags parameter of the
CreateKey operation.

To add tags when creating a key, the caller must have payment-cryptography:TagResource
permission in an IAM policy. At a minimum, the permission must cover all keys in the account and
Region. For details, see Controlling access to tags.

The value of the Tags parameter of CreateKey is a collection of case-sensitive tag key and tag
value pairs. Each tag on a key must have a different tag name. The tag value can be a null or empty
string.

For example, the following AWS CLI command creates a symmetric encryption key with a
Project:Alpha tag. When specifying more than one key-value pair, use a space to separate each
pair.

Viewing key tags in the console 58

https://aws.amazon.com/cli/
API_CreateKey.html

AWS Payment Cryptography User Guide

$ aws payment-cryptography create-key --exportable --key-attributes
 KeyAlgorithm=TDES_2KEY, \
 KeyUsage=TR31_C0_CARD_VERIFICATION_KEY,KeyClass=SYMMETRIC_KEY, \
 KeyModesOfUse='{Generate=true,Verify=true}' \
 --tags '[{"Key":"Project","Value":"Alpha"},{"Key":"BIN","Value":"123456"}]'

When this command is successful, it returns a Key object with information about the new key.
However, the Key does not include tags. To get the tags, use the ListResourceTags operation.

TagResource: Add or change tags for a key

The TagResource operation adds one or more tags to a key. You cannot use this operation to add or
edit tags in a different AWS account.

To add a tag, specify a new tag key and a tag value. To edit a tag, specify an existing tag key and
a new tag value. Each tag on a key must have a different tag key. The tag value can be a null or
empty string.

For example, the following command adds UseCase and BIN tags to an example key.

$ aws payment-cryptography tag-resource --resource-arn arn:aws:payment-
cryptography:us-east-2:111122223333:key/kwapwa6qaifllw2h --tags
 '[{"Key":"UseCase","Value":"Acquiring"},{"Key":"BIN","Value":"123456"}]'

When this command is successful, it does not return any output. To view the tags on a key, use the
ListResourceTags operation.

You can also use TagResource to change the tag value of an existing tag. To replace a tag value,
specify the same tag key with a different value. Tags not listed in a modify command are not
changed or removed.

For example, this command changes the value of the Project tag from Alpha to Noe.

The command will return http/200 with no content. To see your changes, use
ListTagsForResource

$ aws payment-cryptography tag-resource --resource-arn arn:aws:payment-cryptography:us-
east-2:111122223333:key/kwapwa6qaifllw2h \
 --tags '[{"Key":"Project","Value":"Noe"}]'

Managing key tags with API operations 59

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ListTagsForResource.html

AWS Payment Cryptography User Guide

ListResourceTags: Get the tags for a key

The ListResourceTags operation gets the tags for a key. The ResourceArn (keyArn or keyAlias)
parameter is required. You cannot use this operation to view the tags on keys in a different AWS
account.

For example, the following command gets the tags for an example key.

$ aws payment-cryptography list-tags-for-resource --resource-arn arn:aws:payment-
cryptography:us-east-2:111122223333:key/kwapwa6qaifllw2h

 {
 "Tags": [
 {
 "Key": "BIN",
 "Value": "20151120"
 },
 {
 "Key": "Project",
 "Value": "Production"
 }
]
}

UntagResource: Delete tags from a key

The UntagResource operation deletes tags from a key. To identify the tags to delete, specify the
tag keys. You cannot use this operation to delete tags from keys a different AWS account.

When it succeeds, the UntagResource operation doesn't return any output. Also, if the specified
tag key isn't found on the key, it doesn't throw an exception or return a response. To confirm that
the operation worked, use the ListResourceTags operation.

For example, this command deletes the Purpose tag and its value from the specified key.

$ aws payment-cryptography untag-resource \
 --resource-arn arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h --tag-keys Project

Controlling access to tags

To add, view, and delete tags by using the API, principals need tagging permissions in IAM policies.

Controlling access to tags 60

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ListTagsForResource.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ListTagsForResource.html

AWS Payment Cryptography User Guide

You can also limit these permissions by using AWS global condition keys for tags. In AWS Payment
Cryptography, these conditions can control access to tagging operations, such as TagResource and
UntagResource.

For example policies and more information, see Controlling Access Based on Tag Keys in the IAM
User Guide.

Permissions to create and manage tags work as follows.

payment-cryptography:TagResource

Allows principals to add or edit tags. To add tags while creating a key, the principal must have
permission in an IAM policy that isn't restricted to particular keys.

payment-cryptography:ListTagsForResource

Allows principals to view tags on keys.

payment-cryptography:UntagResource

Allows principals to delete tags from keys.

Tag permissions in policies

You can provide tagging permissions in a key policy or IAM policy. For example, the following
example key policy gives select users tagging permission on the key. It gives all users who can
assume the example Administrator or Developer roles permission to view tags.

{
 "Version": "2012-10-17",
 "Id": "example-key-policy",
 "Statement": [
 {
 "Sid": "",
 "Effect": "Allow",
 "Principal": {"AWS": "arn:aws:iam::111122223333:root"},
 "Action": "payment-cryptography:*",
 "Resource": "*"
 },
 {
 "Sid": "Allow all tagging permissions",
 "Effect": "Allow",
 "Principal": {"AWS": [

Controlling access to tags 61

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_UntagResource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html#access_tags_control-tag-keys

AWS Payment Cryptography User Guide

 "arn:aws:iam::111122223333:user/LeadAdmin",
 "arn:aws:iam::111122223333:user/SupportLead"
]},
 "Action": [
 "payment-cryptography:TagResource",
 "payment-cryptography:ListTagsForResource",
 "payment-cryptography:UntagResource"
],
 "Resource": "*"
 },
 {
 "Sid": "Allow roles to view tags",
 "Effect": "Allow",
 "Principal": {"AWS": [
 "arn:aws:iam::111122223333:role/Administrator",
 "arn:aws:iam::111122223333:role/Developer"
]},
 "Action": "payment-cryptography:ListResourceTags",
 "Resource": "*"
 }
]
}

To give principals tagging permission on multiple keys, you can use an IAM policy. For this policy
to be effective, the key policy for each key must allow the account to use IAM policies to control
access to the key.

For example, the following IAM policy allows the principals to create keys. It also allows them to
create and manage tags on all keys in the specified account. This combination allows the principals
to use the tags parameter of the CreateKey operation to add tags to a key while they are creating
it.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyCreateKeys",
 "Effect": "Allow",
 "Action": "payment-cryptography:CreateKey",
 "Resource": "*"
 },
 {
 "Sid": "IAMPolicyTags",

Controlling access to tags 62

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_CreateKey.html

AWS Payment Cryptography User Guide

 "Effect": "Allow",
 "Action": [
 "payment-cryptography:TagResource",
 "payment-cryptography:UntagResource",
 "payment-cryptography:ListTagsForResource"
],
 "Resource": "arn:aws:payment-cryptography:*:111122223333:key/*"
 }
]
}

Limiting tag permissions

You can limit tagging permissions by using policy conditions. The following policy
conditions can be applied to the payment-cryptography:TagResource and
payment-cryptography:UntagResource permissions. For example, you can use the
aws:RequestTag/tag-key condition to allow a principal to add only particular tags, or prevent a
principal from adding tags with particular tag keys.

• aws:RequestTag

• aws:ResourceTag/tag-key (IAM policies only)

• aws:TagKeys

As a best practice when you use tags to control access to keys, use the aws:RequestTag/tag-
key or aws:TagKeys condition key to determine which tags (or tag keys) are allowed.

For example, the following IAM policy is similar to the previous one. However, this policy allows
the principals to create tags (TagResource) and delete tags UntagResource only for tags with a
Project tag key.

Because TagResource and UntagResource requests can include multiple tags, you must
specify a ForAllValues or ForAnyValue set operator with the aws:TagKeys condition. The
ForAnyValue operator requires that at least one of the tag keys in the request matches one of the
tag keys in the policy. The ForAllValues operator requires that all of the tag keys in the request
match one of the tag keys in the policy. The ForAllValues operator also returns true if there
are no tags in the request, but TagResource and UntagResource fail when no tags are specified. For
details about the set operators, see Use multiple keys and values in the IAM User Guide.

{

Controlling access to tags 63

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-requesttag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tag-keys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-tagkeys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_multi-value-conditions.html#reference_policies_multi-key-or-value-conditions

AWS Payment Cryptography User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyCreateKey",
 "Effect": "Allow",
 "Action": "payment-cryptography:CreateKey",
 "Resource": "*"
 },
 {
 "Sid": "IAMPolicyViewAllTags",
 "Effect": "Allow",
 "Action": "payment-cryptography:ListResourceTags",
 "Resource": "arn:aws:payment-cryptography:*:111122223333:key/*"
 },
 {
 "Sid": "IAMPolicyManageTags",
 "Effect": "Allow",
 "Action": [
 "payment-cryptography:TagResource",
 "payment-cryptography:UntagResource"
],
 "Resource": "arn:aws:payment-cryptography:*:111122223333:key/*",
 "Condition": {
 "ForAllValues:StringEquals": {"aws:TagKeys": "Project"}
 }
 }
]
}

Using tags to control access to keys

You can control access to AWS Payment Cryptography based on the tags on the key. For example,
you can write an IAM policy that allows principals to enable and disable only the keys that have a
particular tag. Or you can use an IAM policy to prevent principals from using keys in cryptographic
operations unless the key has a particular tag.

This feature is part of AWS Payment Cryptography support for attribute-based access
control(ABAC). For information about using tags to control access to AWS resources, see What
is ABAC for AWS? and Controlling Access to AWS Resources Using Resource Tags in the IAM User
Guide.

Using tags to control access to keys 64

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS Payment Cryptography User Guide

Note

AWS Payment Cryptography supports the aws:ResourceTag/tag-key global condition context key,
which lets you control access to keys based on the tags on the key. Because multiple keys can have
the same tag, this feature lets you apply the permission to a select set of keys. You can also easily
change the keys in the set by changing their tags.

In AWS Payment Cryptography, the aws:ResourceTag/tag-key condition key is supported only
in IAM policies. It isn't supported in key policies, which apply only to one key, or on operations that
don't use a particular key, such as the ListKeys or ListAliases operations.

Controlling access with tags provides a simple, scalable, and flexible way to manage permissions.
However, if not properly designed and managed, it can allow or deny access to your keys
inadvertently. If you are using tags to control access, consider the following practices.

• Use tags to reinforce the best practice of least privileged access. Give IAM principals only the
permissions they need on only the keys they must use or manage. For example, use tags to label
the keys used for a project. Then give the project team permission to use only keys with the
project tag.

• Be cautious about giving principals the payment-cryptography:TagResource and
payment-cryptography:UntagResource permissions that let them add, edit, and delete
tags. When you use tags to control access to keys, changing a tag can give principals permission
to use keys that they didn't otherwise have permission to use. It can also deny access to keys that
other principals require to do their jobs. Key administrators who don't have permission to change
key policies or create grants can control access to keys if they have permission to manage tags.

Whenever possible, use a policy condition, such as aws:RequestTag/tag-key or
aws:TagKeys to limit a principal's tagging permissions to particular tags or tag patterns on
particular keys.

• Review the principals in your AWS account that currently have tagging and untagging
permissions and adjust them, if necessary. IAM policies might allow tag and untag permissions
on all keys. For example, the Admin managed policy allows principals to tag, untag, and list tags
on all keys.

• Before setting a policy that depends on a tag, review the tags on the keys in your AWS account.
Make sure that your policy applies only to the tags you intend to include. Use CloudTrail logs and
CloudWatch alarms to alert you to tag changes that might affect access to your keys.

Using tags to control access to keys 65

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ListAliases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Payment Cryptography User Guide

• The tag-based policy conditions use pattern matching; they aren't tied to a particular instance
of a tag. A policy that uses tag-based condition keys affects all new and existing tags that match
the pattern. If you delete and recreate a tag that matches a policy condition, the condition
applies to the new tag, just as it did to the old one.

For example, consider the following IAM policy. It allows the principals to call the Decrypt
operations only on keys in your account that are the US East (N. Virginia) Region and have a
"Project"="Alpha" tag. You might attach this policy to roles in the example Alpha project.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMPolicyWithResourceTag",
 "Effect": "Allow",
 "Action": [
 "payment-cryptography:DecryptData"
],
 "Resource": "arn:aws::us-east-1:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Project": "Alpha"
 }
 }
 }
]
}

The following example IAM policy allows the principals to use any key in the account for certain
cryptographic operations. But it prohibits the principals from using these cryptographic operations
on keys with a "Type"="Reserved" tag or no "Type" tag.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "IAMAllowCryptographicOperations",
 "Effect": "Allow",
 "Action": [
 "payment-cryptography:EncryptData",
 "payment-cryptography:DecryptData",

Using tags to control access to keys 66

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_Decrypt.html

AWS Payment Cryptography User Guide

 "payment-cryptography:ReEncrypt*"
],
 "Resource": "arn:aws:payment-cryptography:*:111122223333:key/*"
 },
 {
 "Sid": "IAMDenyOnTag",
 "Effect": "Deny",
 "Action": [
 "payment-cryptography:EncryptData",
 "payment-cryptography:DecryptData",
 "payment-cryptography:ReEncrypt*"
],
 "Resource": "arn:aws:payment-cryptography:*:111122223333:key/*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/Type": "Reserved"
 }
 }
 },
 {
 "Sid": "IAMDenyNoTag",
 "Effect": "Deny",
 "Action": [
 "payment-cryptography:EncryptData",
 "payment-cryptography:DecryptData",
 "payment-cryptography:ReEncrypt*"
],
 "Resource": "arn:aws:kms:*:111122223333:key/*",
 "Condition": {
 "Null": {
 "aws:ResourceTag/Type": "true"
 }
 }
 }
]
}

Using tags to control access to keys 67

AWS Payment Cryptography User Guide

Understanding key attributes for AWS Payment Cryptography
key

A tenet of proper key management is that keys are appropriately scoped and can only be used
for permitted operations. As such, certain keys can only be created with certain key modes of use.
Whenever possible, this aligns with the available modes of use as defined by TR-31.

Although AWS Payment Cryptography will prevent you from creating invalid keys, valid
combinations are provided here for your convenience.

Symmetric Keys

• TR31_B0_BASE_DERIVATION_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true },{ NoRestrictions = true }

• TR31_C0_CARD_VERIFICATION_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Generate = true } ,{ Verify = true } ,{ Generate =
true, Verify= true } ,{ NoRestrictions = true }

• TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Encrypt = true, Decrypt = true, Wrap =
true, Unwrap = true } , { Encrypt = true, Wrap = true } ,{ Decrypt = true, Unwrap = true } ,
{ NoRestrictions = true }

• TR31_E0_EMV_MKEY_APP_CRYPTOGRAMS

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true }, { NoRestrictions = true }

• TR31_E1_EMV_MKEY_CONFIDENTIALITY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true }, { NoRestrictions = true }

• TR31_E2_EMV_MKEY_INTEGRITY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true }, { NoRestrictions = true }
Understanding key attributes 68

AWS Payment Cryptography User Guide

• TR31_E4_EMV_MKEY_DYNAMIC_NUMBERS

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true }, { NoRestrictions = true }

• TR31_E5_EMV_MKEY_CARD_PERSONALIZATION

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true }, { NoRestrictions = true }

• TR31_E6_EMV_MKEY_OTHER

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { DeriveKey = true }, { NoRestrictions = true }

• TR31_K0_KEY_ENCRYPTION_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Encrypt = true, Decrypt = true, Wrap =
true, Unwrap = true } , { Encrypt = true, Wrap = true } ,{ Decrypt = true, Unwrap = true } ,
{ NoRestrictions = true }

• TR31_M3_ISO_9797_3_MAC_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Generate = true } ,{ Verify = true } ,{ Generate =
true, Verify= true } ,{ NoRestrictions = true }

• TR31_M6_ISO_9797_5_CMAC_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Generate = true } ,{ Verify = true } ,{ Generate =
true, Verify= true } ,{ NoRestrictions = true }

• TR31_M7_HMAC_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Generate = true } ,{ Verify = true } ,{ Generate =
true, Verify= true } ,{ NoRestrictions = true }

• TR31_P0_PIN_ENCRYPTION_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Encrypt = true, Decrypt = true, Wrap =
true, Unwrap = true } ,{ Encrypt = true, Wrap = true } ,{ Decrypt = true, Unwrap = true } ,
{ NoRestrictions = true }

• TR31_V1_IBM3624_PIN_VERIFICATION_KEY

Symmetric Keys 69

AWS Payment Cryptography User Guide

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Generate = true } ,{ Verify = true } ,{ Generate =
true, Verify= true } ,{ NoRestrictions = true }

• TR31_V2_VISA_PIN_VERIFICATION_KEY

• Allowed Key Algorithms: TDES_2KEY ,TDES_3KEY ,AES_128 ,AES_192 ,AES_256

• Allowed combination of key modes of use: { Generate = true } ,{ Verify = true } ,{ Generate =
true, Verify= true } ,{ NoRestrictions = true }

Asymmetric Keys

• TR31_D1_ASYMMETRIC_KEY_FOR_DATA_ENCRYPTION

• Allowed Key Algorithms: RSA_2048 ,RSA_3072 ,RSA_4096

• Allowed combination of key modes of use: { Encrypt = true, Decrypt = true, Wrap = true,
Unwrap = true } ,{ Encrypt = true, Wrap = true } ,{ Decrypt = true, Unwrap = true }

• NOTE:: { Encrypt = true, Wrap = true } is the only valid option when importing a public key
that is intended for encrypting data or wrapping a key

• TR31_S0_ASYMMETRIC_KEY_FOR_DIGITAL_SIGNATURE

• Allowed Key Algorithms: RSA_2048 ,RSA_3072 ,RSA_4096

• Allowed combination of key modes of use: { Sign = true } ,{ Verify = true }

• NOTE:: { Verify = true } is the only valid option when importing a key meant for signing, such
as root certificate, intermediate certificate or signing certificates for TR-34.

Asymmetric Keys 70

AWS Payment Cryptography User Guide

Data operations

After you have established an AWS Payment Cryptography key, it can be used to perform
cryptographic operations. Different operations perform different types of activity ranging from
encryption, hashing as well as domain specific algorithms such as CVV2 generation.

Encrypted data cannot be decrypted without the matching decryption key (the symmetric key or
private key depending on the encryption type). Hashing and domain specific algorithims similarly
cannot be verified without the symmetric key or public key.

For information on valid key types for specific operations please see Valid keys for cryptographic
operations

Note

We recommend using test data when in a non-production environment. Using production
keys and data (PAN, BDK ID, etc.) in a non-production environment may impact your
compliance scope such as for PCI DSS and PCI P2PE.

Topics

• Encrypt, Decrypt and Re-encrypt data

• Generate and verify card data

• Generate, translate and verify PIN data

• Verify auth request (ARQC) cryptogram

• Generate and verify MAC

• Valid keys for cryptographic operations

Encrypt, Decrypt and Re-encrypt data

Encryption and Decryption methods can be used to encrypt or decrypt data using a variety of
symmetric and asymmetric techniques including TDES, AES and RSA. These methods also support
keys derived using DUKPT and EMV techniques. For use cases where you wish to secure data under
a new key without exposing the underlying data, the ReEncrypt command can also be used.

Encrypt, Decrypt and Re-encrypt data 71

AWS Payment Cryptography User Guide

Note

When using the encrypt/decrypt functions, all inputs are assumed to be in hexBinary - for
instance a value of 1 will be input as 31 (hex) and a lower case t is represented as 74 (hex).
All outputs are in hexBinary as well.

For details on all available options, please consult the API Guide for Encrypt, Decrypt, and Re-
Encrypt.

Topics

• Encrypt data

• Decrypt data

Encrypt data

The Encrypt Data API is used to encrypt data using symmetric and asymmetric data encryption
keys as well as DUKPT and EMV derived keys. Various algorithms and variations are supported
including TDES, RSA and AES.

The primary inputs are the encryption key used to encrypt the data, the plaintext data in hexBinary
format to be encrypted and encryption attributes such as initialization vector and mode for block
ciphers such as TDES. The plaintext data needs to be in multiples of 8 bytes for TDES, 16 bytes for
AES and the length of the key in the case of RSA. Symmetric key inputs (TDES, AES, DUKPT, EMV)
should be padded in cases where the input data does not meet these requirements. The following
table shows the maximum length of plaintext for each type of key and the padding type that you
define in EncryptionAttributes for RSA keys.

Padding type RSA_2048 RSA_3072 RSA_4096

OAEP SHA1 428 684 940

OAEP SHA256 380 636 892

OAEP SHA512 252 508 764

PKCS1 488 744 1000

Encrypt data 72

https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_EncryptData.html
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_DecryptData.html
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_ReEncryptData.html
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_ReEncryptData.html

AWS Payment Cryptography User Guide

Padding type RSA_2048 RSA_3072 RSA_4096

None 488 744 1000

The primary outputs include the encrypted data as ciphertext in hexBinary format and the
checksum value for the encryption key. For details on all available options, please consult the API
Guide for Encrypt.

Examples

• Encrypt data using AES symmetric key

• Encrypt data using DUKPT key

• Encrypt data using EMV-derived symmetric key

• Encrypt data using an RSA key

Encrypt data using AES symmetric key

Note

All examples assume the relevant key already exists. Keys can be created using the
CreateKey operation or imported using the ImportKey operation.

Example

In this example, we will encrypt plaintext data using a symmetric key which has been
created using the CreateKey Operation or imported using the ImportKey Operation. For
this operation, the key must have KeyModesOfUse set to Encrypt and KeyUsage set to
TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY. Please see Keys for Cryptographic Operations for
more options.

$ aws payment-cryptography-data encrypt-data --key-identifier arn:aws:payment-
cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi --plain-text
 31323334313233343132333431323334 --encryption-attributes 'Symmetric={Mode=CBC}'

Encrypt data 73

https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_EncryptData.html

AWS Payment Cryptography User Guide

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "71D7AE",
 "CipherText": "33612AB9D6929C3A828EB6030082B2BD"
}

Encrypt data using DUKPT key

Example

In this example, we will encrypt plaintext data using a DUKPT key. AWS Payment Cryptography
supports TDES and AES DUKPT keys. For this operation, the key must have KeyModesOfUse set
to DeriveKey and KeyUsage set to TR31_B0_BASE_DERIVATION_KEY. Please see Keys for
Cryptographic Operations for more options.

$ aws payment-cryptography-data encrypt-data --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi
 --plain-text 31323334313233343132333431323334 --encryption-attributes
 'Dukpt={KeySerialNumber=FFFF9876543210E00001}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "71D7AE",
 "CipherText": "33612AB9D6929C3A828EB6030082B2BD"
}

Encrypt data using EMV-derived symmetric key

Example

In this example, we will encrypt clear text data using an EMV-derived symmetric key which
has already been created. You might use a command such as this to send data to an EMV card.

Encrypt data 74

AWS Payment Cryptography User Guide

For this operation, the key must have KeyModesOfUse set to Derive and KeyUsage set to
TR31_E1_EMV_MKEY_CONFIDENTIALITY or TR31_E6_EMV_MKEY_OTHER. Please see Keys for
Cryptographic Operations for more details.

$ aws payment-cryptography-data encrypt-data --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi
 --plain-text 33612AB9D6929C3A828EB6030082B2BD --encryption-attributes
 'Emv={MajorKeyDerivationMode=EMV_OPTION_A,PanSequenceNumber=27,PrimaryAccountNumber=1000000000000432,SessionDerivationData=02BB000000000000,
 InitializationVector=1500000000000999,Mode=CBC}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "71D7AE",
 "CipherText": "33612AB9D6929C3A828EB6030082B2BD"
}

Encrypt data using an RSA key

Example

In this example, we will encrypt plaintext data using an RSA public key which has been imported
using the ImportKey operation. For this operation, the key must have KeyModesOfUse set to
Encrypt and KeyUsage set to TR31_D1_ASYMMETRIC_KEY_FOR_DATA_ENCRYPTION. Please see
Keys for Cryptographic Operations for more options.

For PKCS #7 or other padding schemes not currently supported, please apply prior to calling the
service and select no padding by omitting the padding indicator 'Asymmetric={}'

$ aws payment-cryptography-data encrypt-data --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/thfezpmsalcfwmsg
 --plain-text 31323334313233343132333431323334 --encryption-attributes
 'Asymmetric={PaddingType=OAEP_SHA256}'

{
 "CipherText":
 "12DF6A2F64CC566D124900D68E8AFEAA794CA819876E258564D525001D00AC93047A83FB13 \

Encrypt data 75

AWS Payment Cryptography User Guide

 E73F06329A100704FA484A15A49F06A7A2E55A241D276491AA91F6D2D8590C60CDE57A642BC64A897F4832A3930
 \
 0FAEC7981102CA0F7370BFBF757F271EF0BB2516007AB111060A9633D1736A9158042D30C5AE11F8C5473EC70F067
 \
 72590DEA1638E2B41FAE6FB1662258596072B13F8E2F62F5D9FAF92C12BB70F42F2ECDCF56AADF0E311D4118FE3591
 \
 FB672998CCE9D00FFFE05D2CD154E3120C5443C8CF9131C7A6A6C05F5723B8F5C07A4003A5A6173E1B425E2B5E42AD
 \
 7A2966734309387C9938B029AFB20828ACFC6D00CD1539234A4A8D9B94CDD4F23A",
 "KeyArn": "arn:aws:payment-cryptography:us-east-1:529027455495:key/5dza7xqd6soanjtb",
 "KeyCheckValue": "FF9DE9CE"
}

Decrypt data

The Decrypt Data API is used to decrypt data using symmetric and asymmetric data encryption
keys as well as DUKPT and EMV derived keys. Various algorithms and variations are supported
including TDES, RSA and AES.

The primary inputs are the decryption key used to decrypt the data, the ciphertext data in
hexBinary format to be decrypted and decryption attributes such as initialization vector, mode as
block ciphers etc. The primary outputs include the decrypted data as plaintext in hexBinary format
and the checksum value for the decryption key. For details on all available options, please consult
the API Guide for Decrypt.

Examples

• Decrypt data using AES symmetric key

• Decrypt data using DUKPT key

• Decrypt data using EMV-derived symmetric key

• Decrypt data using an RSA key

Decrypt data using AES symmetric key

Example

In this example, we will decrypt ciphertext data using a symmetric key. This example
shows an AES key but TDES_2KEY and TDES_3KEY are also supported. For this

Decrypt data 76

https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_DecryptData.html

AWS Payment Cryptography User Guide

operation, the key must have KeyModesOfUse set to Decrypt and KeyUsage set to
TR31_D0_SYMMETRIC_DATA_ENCRYPTION_KEY. Please see Keys for Cryptographic Operations for
more options.

$ aws payment-cryptography-data decrypt-data --key-identifier arn:aws:payment-
cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi --cipher-text
 33612AB9D6929C3A828EB6030082B2BD --decryption-attributes 'Symmetric={Mode=CBC}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "71D7AE",
 "PlainText": "31323334313233343132333431323334"
}

Decrypt data using DUKPT key

Note

Using decrypt-data with DUKPT for P2PE transactions may return credit card PAN
and other cardholder data to your application that will need to accounted for when
determining its PCI DSS scope.

Example

In this example, we will decrypt ciphertext data using a DUKPT key which has been created
using the CreateKey Operation or imported using the ImportKey Operation. For this
operation, the key must have KeyModesOfUse set to DeriveKey and KeyUsage set to
TR31_B0_BASE_DERIVATION_KEY. Please see Keys for Cryptographic Operations for more
options. When you use DUKPT, for TDES algorithm, the ciphertext data length must be a multiple
of 16 bytes. For AES algorithm, the ciphertext data length must be a multiple of 32 bytes.

$ aws payment-cryptography-data decrypt-data --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi

Decrypt data 77

AWS Payment Cryptography User Guide

 --cipher-text 33612AB9D6929C3A828EB6030082B2BD --decryption-attributes
 'Dukpt={KeySerialNumber=FFFF9876543210E00001}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "71D7AE",
 "PlainText": "31323334313233343132333431323334"
}

Decrypt data using EMV-derived symmetric key

Example

In this example, we will decrypt ciphertext data using an EMV-derived symmetric key which
has been created using the CreateKey operation or imported using the ImportKey operation.
For this operation, the key must have KeyModesOfUse set to Derive and KeyUsage set to
TR31_E1_EMV_MKEY_CONFIDENTIALITY or TR31_E6_EMV_MKEY_OTHER. Please see Keys for
Cryptographic Operations for more details.

$ aws payment-cryptography-data decrypt-data --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi
 --cipher-text 33612AB9D6929C3A828EB6030082B2BD --decryption-attributes
 'Emv={MajorKeyDerivationMode=EMV_OPTION_A,PanSequenceNumber=27,PrimaryAccountNumber=1000000000000432,SessionDerivationData=02BB000000000000,
 InitializationVector=1500000000000999,Mode=CBC}'

{
"KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi",
"KeyCheckValue": "71D7AE",
"PlainText": "31323334313233343132333431323334"
}

Decrypt data 78

AWS Payment Cryptography User Guide

Decrypt data using an RSA key

Example

In this example, we will decrypt ciphertext data using an RSA key pair which has been created
using the CreateKey operation. For this operation, the key must have KeyModesOfUse set to enable
Decrypt and KeyUsage set to TR31_D1_ASYMMETRIC_KEY_FOR_DATA_ENCRYPTION. Please see
Keys for Cryptographic Operations for more options.

For PKCS #7 or other padding schemes not currently supported, please select no padding by
omitting the padding indicator 'Asymmetric={}' and remove padding subsequent to calling the
service.

$ aws payment-cryptography-data decrypt-data \
 --key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/5dza7xqd6soanjtb --cipher-text
 8F4C1CAFE7A5DEF9A40BEDE7F2A264635C... \
 --decryption-attributes 'Asymmetric={PaddingType=OAEP_SHA256}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-
east-1:529027455495:key/5dza7xqd6soanjtb",
 "KeyCheckValue": "FF9DE9CE",
 "PlainText": "31323334313233343132333431323334"
}

Generate and verify card data

Generate and verify card data incorporates data derived from card data, for instance CVV, CVV2,
CVC and DCVV.

Topics

• Generate card data

• Verify card data

Generate and verify card data 79

AWS Payment Cryptography User Guide

Generate card data

The Generate Card Data API is used to generate card data using algorithms such as CVV,CVV2
or Dynamic CVV2. To see what keys can be used for this command, please see Valid keys for
cryptographic operations section.

Example

In this example, we will generate a CVV/CVV2 for a given PAN with inputs of PAN and card
expiration date. Card expiration date can be in MMYY or YYMM format but must match all
subsequent uses in order for validation to work properly. This assumes that you have a card
verification key generated.

$ aws payment-cryptography-data generate-card-validation-data --key-
identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pig --primary-account-number=171234567890123 --generation-attributes
 CardVerificationValue2={CardExpiryDate=0123}

 {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "CADDA1",
 "ValidationData": "801"
 }

Verify card data

Verify Card Data is used to verify data that has been created using payment algorithms that
rely on encryption principals such as DISCOVER_DYNAMIC_CARD_VERIFICATION_CODE.

The input values are typically provided as part of an inbound transaction to an issuer or supporting
platform partner. To verify an ARQC cryptogram (used for EMV chips cards), please see Verify
ARQC.

If the value is verified, then the api will return http/200. If the value is not verified, it will return
http/400.

Generate card data 80

AWS Payment Cryptography User Guide

Example

In this example, we will validate a CVV/CVV2 for a given PAN. The CVV2 is typically provided by
the cardholder or user during transaction time for validation. In order to validate their input, the
following values will be provided at runtime - Key to Use for validation (CVK), PAN, card expiration
date and CVV2 entered. Card expiration format must match that used in initial value generation.

$ aws payment-cryptography-data verify-card-validation-data --key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/tqv5yij6wtxx64pi
 --primary-account-number=171234567890123 --verification-attributes
 CardVerificationValue2={CardExpiryDate=0123} --validation-data 801

 {
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
tqv5yij6wtxx64pi",
 "KeyCheckValue": "CADDA1"
 }

Generate, translate and verify PIN data

PIN data functions allow you to generate random pins, pin verification values (PVV) and validate
inbound encrypted pins against PVV or PIN Offsets.

Pin translation allows you to translate a pin from one working key to another without exposing the
pin in clear text as specified by PCI PIN Requirement 1.

Note

As PIN generation and validation are typically issuer functions and PIN translation is a
typical acquirer function, we recommend that you consider least priviledged access and set
policies appropriately for your systems use case.

Topics

• Translate PIN data

Generate, translate and verify PIN data 81

AWS Payment Cryptography User Guide

• Generate PIN data

• Verify PIN data

Translate PIN data

Translate PIN data functions are used for translating encrypted PIN data from one set of keys to
another without the encrypted data leaving the HSM. It is used for P2PE encryption where the
working keys should change but the processing system either doesn't need to, or is not permitted
to, decrypt the data. The primary inputs are the encrypted data, the encryption key used to
encrypt the data, the parameters used to generate the input values. The other set of inputs are the
requested output parameters such as the key to be used to encrypt the output and the parameters
used to create that output. The primary outputs are a newly encrypted dataset as well as the
parameters used to generate it.

Note

AES key types only support ISO Format 4 pin blocks.

Topics

• PIN from PEK to DUKPT

• PIN from DUKPT to AWK

PIN from PEK to DUKPT

Example

In this example, we will translate a PIN from PEK TDES encryption using ISO 0 PIN block to an
AES ISO 4 PIN Block using the DUKPT algorithm. Typically this might be done in reverse, where
a payment terminal encrypts a pin in ISO 4 and then it may be translated back to TDES for
downstream processing.

$ aws payment-cryptography-data translate-pin-data --encrypted-pin-block
 "AC17DC148BDA645E" --incoming-translation-
attributes=IsoFormat0='{PrimaryAccountNumber=171234567890123}' --incoming-
key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
ivi5ksfsuplneuyt --outgoing-key-identifier arn:aws:payment-cryptography:us-

Translate PIN data 82

AWS Payment Cryptography User Guide

east-2:111122223333:key/4pmyquwjs3yj4vwe --outgoing-translation-attributes
 IsoFormat4="{PrimaryAccountNumber=171234567890123}" --outgoing-dukpt-attributes
 KeySerialNumber="FFFF9876543210E00008"

 {
 "PinBlock": "1F4209C670E49F83E75CC72E81B787D9",
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
ivi5ksfsuplneuyt --outgoing-key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/4pmyquwjs3yj4vwe",
 "KeyCheckValue": "7CC9E2"
 }

PIN from DUKPT to AWK

Example

In this example, we will translate a PIN from an AES DUKPT encrypted PIN to a pin encrypted under
a AWK. It is functionally the inverse of the previous example.

$ aws payment-cryptography-data translate-pin-data --encrypted-pin-
block "1F4209C670E49F83E75CC72E81B787D9" --outgoing-translation-
attributes=IsoFormat0='{PrimaryAccountNumber=171234567890123}' --outgoing-
key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
ivi5ksfsuplneuyt --incoming-key-identifier arn:aws:payment-cryptography:us-
east-2:111122223333:key/4pmyquwjs3yj4vwe --incoming-translation-attributes
 IsoFormat4="{PrimaryAccountNumber=171234567890123}" --incoming-dukpt-attributes
 KeySerialNumber="FFFF9876543210E00008"

 {
 "PinBlock": "AC17DC148BDA645E",
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
ivi5ksfsuplneuyt",
 "KeyCheckValue": "FE23D3"
 }

Translate PIN data 83

AWS Payment Cryptography User Guide

Generate PIN data

Generate PIN data functions are used for generating PIN-related values, such as PVV and pin block
offsets used for validating pin entry by users during transaction or authorization time. This API can
also generate a new random pin using various algorithms.

Example

In this example, we will generate a new (random) pin using Visa pin scheme where the outputs will
be an encrypted PIN block (PinData.PinBlock) and a PVV (pinData.Offset). The key inputs are
PAN, the Pin Verification Key, the Pin Encryption Key and the PIN block format.

$ aws payment-cryptography-data generate-pin-data --generation-key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/37y2tsl45p5zjbh2 --encryption-
key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/ivi5ksfsuplneuyt
 --primary-account-number 171234567890123 --pin-block-format ISO_FORMAT_0 --generation-
attributes VisaPin={PinVerificationKeyIndex=1}

{
 "GenerationKeyArn": "arn:aws:payment-cryptography:us-
east-2:111122223333:key/37y2tsl45p5zjbh2",
 "GenerationKeyCheckValue": "7F2363",
 "EncryptionKeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
ivi5ksfsuplneuyt",
 "EncryptionKeyCheckValue": "7CC9E2",
 "EncryptedPinBlock": "AC17DC148BDA645E",
 "PinData": {
 "VerificationValue": "5507"
 }
 }

Verify PIN data

Verify PIN data functions are used for verifying whether a pin is correct. This typically involves
comparing the pin value previously stored against what was entered by the cardholder at a POI.
These functions compare two values without exposing the underlying value of either source.

Generate PIN data 84

AWS Payment Cryptography User Guide

Validate encrypted PIN

Example

In this example, we will validate a PIN for a given PAN. The PIN is typically provided by the
cardholder or user during transaction time for validation and is compared against the value on file
(this is provided as an encrypted value). In order to validate this input, the following values will also
be provided at runtime - The key used to encrypt the input pin (this is often an IWK), PAN and the
value to verify against (either a PVV or PIN offset).

If AWS Payment Cryptography is able to validate the pin, an http/200 is returned. If the pin is not
validated, it will return an http/400.

$ aws payment-cryptography-data verify-pin-data --verification-key-identifier
 arn:aws:payment-cryptography:us-east-2:111122223333:key/37y2tsl45p5zjbh2 --encryption-
key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/ivi5ksfsuplneuyt
 --primary-account-number 171234567890123 --pin-block-format ISO_FORMAT_0 --
verification-attributes VisaPin="{PinVerificationKeyIndex=1,VerificationValue=5507}" --
encrypted-pin-block AC17DC148BDA645E

 {
 "VerificationKeyArn": "arn:aws:payment-cryptography:us-
east-2:111122223333:key/37y2tsl45p5zjbh2",
 "VerificationKeyCheckValue": "7F2363",
 "EncryptionKeyArn": "arn:aws:payment-cryptography:us-
east-2:111122223333:key/ivi5ksfsuplneuyt",
 "EncryptionKeyCheckValue": "7CC9E2",

 }

Verify auth request (ARQC) cryptogram

The verify auth request cryptogram API is used for verifying ARQC. The generation of the ARQC is
outside of the scope of the AWS Payment Cryptography and is typically performed on an EMV Chip
Card (or digital equivalent such as mobile wallet) during transaction authorization time. An ARQC is
unique to each transactions and is intended to cryptographically show both the validity of the card
as well as to ensure that the transaction data exactly matches the current (expected) transaction.

Verify auth request (ARQC) cryptogram 85

AWS Payment Cryptography User Guide

AWS Payment Cryptography provides a variety of options for validating ARQC and generating
optional ARPC values including those defined in EMV 4.4 Book 2 and other schemes used by Visa
and Mastercard. For a full list of all available options, please see the VerifyCardValidationData
section in the API Guide.

ARQC cryptograms typically require the following inputs (although this may vary by
implementation):

• PAN - Specified in the PrimaryAccountNumber field

• PAN Sequence Number (PSN) - specified in the PanSequenceNumber field

• Key Derivation Method such as Common Session Key (CSK) - Specified in the
SessionKeyDerivationAttributes

• Master Key Derivation Mode (such as EMV Option A) - Specified in the MajorKeyDerivationMode

• Transaction data - a string of various transaction, terminal and card data such as Amount and
Date - specified in the TransactionData field

• Issuer Master Key - the master key used to derive the cryptogram (AC) key used to protect
individual transactions and specified in the KeyIdentifier field

Topics

• Building transaction data

• Transaction data padding

• Examples

Building transaction data

The exact content (and order) of the transaction data field varies by implementation and network
scheme but the minimum recommended fields (and concatenation sequence) is defined in EMV
4.4 Book 2 Section 8.1.1 - Data Selection. If the first three fields are amount (17.00), other amount
(0.00) and country of purchase, that would result in the transaction data beginning as follows:

• 000000001700 - amount - 12 positions implied two digit decimal

• 000000000000 - other amount - 12 positions implied two digit decimal

• 0124 - four digit country code

• Output (partial) Transaction Data - 0000000017000000000000000124

Building transaction data 86

https://www.emvco.com/specifications/?post_id=80377
https://docs.aws.amazon.com/payment-cryptography/latest/DataAPIReference/API_VerifyCardValidationData.html
https://www.emvco.com/specifications/?post_id=80377
https://www.emvco.com/specifications/?post_id=80377

AWS Payment Cryptography User Guide

Transaction data padding

Transaction data should be padded prior to sending to the service. Most schemes use ISO 9797
Method 2 padding, where a hex string is appended by hex 80 followed by 00 until the field is
a multiple of the encryption block size; 8 bytes or 16 characters for TDES and 16 bytes or 32
characters for AES. The alternative (method 1) is not as common but uses only 00 as the padding
characters.

ISO 9797 Method 1 Padding

Unpadded:
00000000170000000000000008400080008000084016051700000000093800000B03011203
(74 characters or 37 bytes)

Padded:
00000000170000000000000008400080008000084016051700000000093800000B03011203000000
(80 characters or 40 bytes)

ISO 9797 Method 2 Padding

Unpadded:
00000000170000000000000008400080008000084016051700000000093800000B1F220103000000
(80 characters or 40 bytes)

Padded:
00000000170000000000000008400080008000084016051700000000093800000B1F2201030000008000000000000000
(88 characters or 44 bytes)

Examples

Visa CVN10

Example

In this example, we will validate an ARQC generated using Visa CVN10.

If AWS Payment Cryptography is able to validate the ARQC, an http/200 is returned. If the arqc is
not validated, it will return a http/400 response.

$ aws payment-cryptography-data verify-auth-request-cryptogram --auth-request-
cryptogram D791093C8A921769 \

Transaction data padding 87

AWS Payment Cryptography User Guide

--key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
pw3s6nl62t5ushfk \
--major-key-derivation-mode EMV_OPTION_A \
--transaction-data
 00000000170000000000000008400080008000084016051700000000093800000B03011203000000 \
--session-key-derivation-attributes='{"Visa":{"PanSequenceNumber":"01" \
,"PrimaryAccountNumber":"9137631040001422"}}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/pw3s6nl62t5ushfk",
 "KeyCheckValue": "08D7B4"
}

Visa CVN18 and Visa CVN22

Example

In this example, we will validate an ARQC generated using Visa CVN18 or CVN22. The
cryptographic operations are the same between CVN18 and CVN22 but the data contained within
transaction data varies. Compared to CVN10, a completely different cryptogram is generated even
with the same inputs.

If AWS Payment Cryptography is able to validate the ARQC, an http/200 is returned. If the arqc is
not validated, it will return an http/400.

$ aws payment-cryptography-data verify-auth-request-cryptogram \
--auth-request-cryptogram 61EDCC708B4C97B4
--key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
pw3s6nl62t5ushfk \
--major-key-derivation-mode EMV_OPTION_A
--transaction-data
 00000000170000000000000008400080008000084016051700000000093800000B1F22010300000000000
 \
0008000000000000000
--session-key-derivation-attributes='{"EmvCommon":
{"ApplicationTransactionCounter":"000B", \
"PanSequenceNumber":"01","PrimaryAccountNumber":"9137631040001422"}}'

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/pw3s6nl62t5ushfk",

Examples 88

AWS Payment Cryptography User Guide

 "KeyCheckValue": "08D7B4"
}

Generate and verify MAC

Message Authentication Codes (MAC) are typically used to authenticate the integrity of a
message (whether it's been modified). Cryptographic hashes such as HMAC (Hash-Based Message
Authentication Code), CBC-MAC and CMAC (Cipher-based Message Authentication Code)
additionally provide additional assurance of the sender of the MAC by utilizing cryptography. HMAC
is based on hash functions while CMAC is based on block ciphers.

All MAC algorithms of this service combine a cryptographic hash function and a shared secret key.
They take a message and a secret key, such as the key material in a key, and return a unique tag or
mac. If even one character of the message changes, or if the secret key changes, the resulting tag
is entirely different. By requiring a secret key, cryptographic MACs also provides authenticity; it is
impossible to generate an identical mac without the secret key. Cryptographic MACs are sometimes
called symmetric signatures, because they work like digital signatures, but use a single key for both
signing and verification.

AWS Payment Cryptography supports several types of MACs:

ISO9797 ALGORITHM 1

Denoted by KeyUsage of ISO9797_ALGORITHM1

ISO9797 ALGORITHM 3 (Retail MAC)

Denoted by KeyUsage of ISO9797_ALGORITHM3

ISO9797 ALGORITHM 5 (CMAC)

Denoted by KeyUsage of TR31_M6_ISO_9797_5_CMAC_KEY

HMAC

Denoted by KeyUsage of TR31_M7_HMAC_KEY including HMAC_SHA224, HMAC_SHA256,
HMAC_SHA384 and HMAC_SHA512

Topics

• Generate MAC

Generate and verify MAC 89

AWS Payment Cryptography User Guide

• Verify MAC

Generate MAC

Generate MAC API is used to authenticate card-related data, such as track data from a card
magnetic stripe, by using known data values to generate a MAC (Message Authentication Code) for
data validation between sending and receiving parties. The data used to generate MAC includes
message data, secret MAC encryption key and MAC algorithm to generate a unique MAC value for
transmission. The receiving party of the MAC will use the same MAC message data, MAC encryption
key, and algorithm to reproduce another MAC value for comparison and data authentication. Even
if one character of the message changes or the MAC key used for verification is not identical, the
resulting MAC value is different. The API supports DUPKT MAC, HMAC and EMV MAC encryption
keys for this operation.

The input value for message-data must be hexBinary data.

In this example, we will generate a HMAC (Hash-Based Message Authentication Code) for card data
authentication using HMAC algorithm HMAC_SHA256 and HMAC encryption key. The key must
have KeyUsage set to TR31_M7_HMAC_KEY and KeyModesOfUse to Generate. The MAC key can
either be created with AWS Payment Cryptography by calling CreateKey or imported by calling
ImportKey.

Example

$ aws payment-cryptography-data generate-mac \
 --key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
qnobl5lghrzunce6 \
 --message-data
 "3b313038383439303031303733393431353d32343038323236303030373030303f33" \
 --generation-attributes Algorithm=HMAC_SHA256

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
qnobl5lghrzunce6,
 "KeyCheckValue": "2976E7",
 "Mac": "ED87F26E961C6D0DDB78DA5038AA2BDDEA0DCE03E5B5E96BDDD494F4A7AA470C"
}

Generate MAC 90

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ImportKey.html

AWS Payment Cryptography User Guide

Verify MAC

Verify MAC API is used to verify MAC (Message Authentication Code) for card-related data
authentication. It must use the same encryption key used during generate MAC to re-produce
MAC value for authentication. The MAC encryption key can either be created with AWS Payment
Cryptography by calling CreateKey or imported by calling ImportKey. The API supports DUPKT
MAC, HMAC and EMV MAC encryption keys for this operation.

If the value is verified, then response parameter MacDataVerificationSuccessful will return
Http/200, otherwise Http/400 with a message indicating that Mac verification failed.

In this example, we will verify a HMAC (Hash-Based Message Authentication Code) for card data
authentication using HMAC algorithm HMAC_SHA256 and HMAC encryption key. The key must have
KeyUsage set to TR31_M7_HMAC_KEY and KeyModesOfUse to Verify.

Example

$ aws payment-cryptography-data verify-mac \
 --key-identifier arn:aws:payment-cryptography:us-east-2:111122223333:key/
qnobl5lghrzunce6 \
 --message-data
 "3b343038383439303031303733393431353d32343038323236303030373030303f33" \
 --verification-attributes='Algorithm=HMAC_SHA256' \
 --mac ED87F26E961C6D0DDB78DA5038AA2BDDEA0DCE03E5B5E96BDDD494F4A7AA470C

{
 "KeyArn": "arn:aws:payment-cryptography:us-east-2:111122223333:key/
qnobl5lghrzunce6,
 "KeyCheckValue": "2976E7",
}

Valid keys for cryptographic operations

Certain keys can only be used for certain operations. Additionally, some operations may limit the
key modes of use for keys. Please see the following table for allowed combinations.

Verify MAC 91

https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ImportKey.html

AWS Payment Cryptography User Guide

Note

Certain combinations, although permitted, may create unusable situations such as
generating CVV codes (generate) but then unable to verify them (verify).

Topics

• GenerateCardData

• VerifyCardData

• GeneratePinData (for VISA/ABA schemes)

• GeneratePinData (for IBM3624)

• VerifyPinData (for VISA/ABA schemes)

• VerifyPinData (for IBM3624)

• Decrypt Data

• Encrypt Data

• Translate Pin Data

• VerifyAuthRequestCryptogram

• Unused key types

GenerateCardData

API Endpoint Cryptographic
Operation or
Algorithm

Allowed Key
Usage

Allowed Key
Algorithm

Allowed
combination of
key modes of
use

GenerateC
ardData

• AMEX_CARD
_SECURITY
_CODE_VER
SION_1

• AMEX_CARD
_SECURITY

TR31_C0_C
ARD_VERIF
ICATION_KEY

• TDES_2KEY

• TDES_3KEY

{ Generate =
true },{ Generate
= true, Verify =
true }

GenerateCardData 92

AWS Payment Cryptography User Guide

API Endpoint Cryptographic
Operation or
Algorithm

Allowed Key
Usage

Allowed Key
Algorithm

Allowed
combination of
key modes of
use

_CODE_VER
SION_2

GenerateC
ardData

• CARD_VERI
FICATION_
VALUE_1

• CARD_VERI
FICATION_
VALUE_2

TR31_C0_C
ARD_VERIF
ICATION_KEY

• TDES_2KEY { Generate =
true },{ Generate
= true, Verify =
true }

GenerateC
ardData

• CARDHOLDE
R_AUTHENT
ICATION_V
ERIFICATI
ON_VALUE

TR31_E6_E
MV_MKEY_O
THER

• TDES_2KEY { DeriveKey =
true }

GenerateC
ardData

• DYNAMIC_C
ARD_VERIF
ICATION_C
ODE

TR31_E4_E
MV_MKEY_D
YNAMIC_NU
MBERS

• TDES_2KEY { DeriveKey =
true }

GenerateC
ardData

• DYNAMIC_C
ARD_VERIF
ICATION_V
ALUE

TR31_E6_E
MV_MKEY_O
THER

• TDES_2KEY { DeriveKey =
true }

GenerateCardData 93

AWS Payment Cryptography User Guide

VerifyCardData

Cryptographic
Operation or
Algorithm

Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

• AMEX_CARD
_SECURITY
_CODE_VERSION_1

• AMEX_CARD
_SECURITY
_CODE_VERSION_2

TR31_C0_C
ARD_VERIF
ICATION_KEY

• TDES_2KEY

• TDES_3KEY

{ Generate = true },
{ Generate = true,
Verify = true }

• CARD_VERI
FICATION_VALUE_1

• CARD_VERI
FICATION_VALUE_2

TR31_C0_C
ARD_VERIF
ICATION_KEY

• TDES_2KEY { Generate = true },
{ Generate = true,
Verify = true }

• CARDHOLDE
R_AUTHENT
ICATION_V
ERIFICATI
ON_VALUE

TR31_E6_E
MV_MKEY_OTHER

• TDES_2KEY { DeriveKey = true }

• DYNAMIC_C
ARD_VERIF
ICATION_CODE

TR31_E4_E
MV_MKEY_D
YNAMIC_NUMBERS

• TDES_2KEY { DeriveKey = true }

• DYNAMIC_C
ARD_VERIF
ICATION_VALUE

TR31_E6_E
MV_MKEY_OTHER

• TDES_2KEY { DeriveKey = true }

GeneratePinData (for VISA/ABA schemes)

VISA_PIN or VISA_PIN_VERIFICATION_VALUE

VerifyCardData 94

AWS Payment Cryptography User Guide

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

PIN Encryption Key TR31_P0_P
IN_ENCRYPTION_KEY

• TDES_2KEY

• TDES_3KEY

• { Encrypt = true,
Wrap = true }

• { Encrypt = true,
Decrypt = true,
Wrap = true,
Unwrap = true }

• { NoRestrictions =
true }

PIN Generation Key TR31_V2_VISA_PIN_V
ERIFICATION_KEY

• TDES_3KEY • { Generate = true }

• { Generate = true,
Verify = true }

GeneratePinData (for IBM3624)

IBM3624_PIN_OFFSET,IBM3624_NATURAL_PIN,IBM3624_RANDOM_PIN,
IBM3624_PIN_FROM_OFFSET)

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

PIN Encryption Key TR31_P0_P
IN_ENCRYPTION_KEY

• TDES_2KEY

• TDES_3KEY

For IBM3624_N
ATURAL_PIN,
IBM3624_R
ANDOM_PIN
, IBM3624_P
IN_FROM_OFFSET

• { Encrypt = true,
Wrap = true }

GeneratePinData (for IBM3624) 95

AWS Payment Cryptography User Guide

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

• { Encrypt = true,
Decrypt = true,
Wrap = true,
Unwrap = true }

• { NoRestrictions =
true }

For IBM3624_P
IN_OFFSET

• { Encrypt = true,
Unwrap = true }

• { Encrypt = true,
Decrypt = true,
Wrap = true,
Unwrap = true }

• { NoRestrictions =
true }

PIN Generation Key TR31_V1_I
BM3624_PIN_VERIFIC
ATION_KEY

• TDES_3KEY • { Generate = true }

• { Generate = true,
Verify = true }

VerifyPinData (for VISA/ABA schemes)

VISA_PIN

VerifyPinData (for VISA/ABA schemes) 96

AWS Payment Cryptography User Guide

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

PIN Encryption Key TR31_P0_P
IN_ENCRYPTION_KEY

• TDES_2KEY

• TDES_3KEY

• { Decrypt = true,
Unwrap = true }

• { Encrypt = true,
Decrypt = true,
Wrap = true,
Unwrap = true }

• { NoRestrictions =
true }

PIN Generation Key TR31_V2_VISA_PIN_V
ERIFICATION_KEY

• TDES_3KEY • { Verify = true }

• { Generate = true,
Verify = true }

VerifyPinData (for IBM3624)

IBM3624_PIN_OFFSET,IBM3624_NATURAL_PIN,IBM3624_RANDOM_PIN,
IBM3624_PIN_FROM_OFFSET)

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

PIN Encryption Key TR31_P0_P
IN_ENCRYPTION_KEY

• TDES_2KEY

• TDES_3KEY

For IBM3624_N
ATURAL_PIN,
IBM3624_R
ANDOM_PIN
, IBM3624_P
IN_FROM_OFFSET

• { Decrypt = true,
Unwrap = true }

VerifyPinData (for IBM3624) 97

AWS Payment Cryptography User Guide

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

• { Encrypt = true,
Decrypt = true,
Wrap = true,
Unwrap = true }

• { NoRestrictions =
true }

PIN Verification Key TR31_V1_I
BM3624_PIN_VERIFIC
ATION_KEY

• TDES_3KEY • { Verify = true }

• { Generate = true,
Verify = true }

Decrypt Data

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

DUKPT TR31_B0_B
ASE_DERIV
ATION_KEY

• TDES_2KEY

• AES_128

• AES_192

• AES_256

• { DeriveKey = true }

• { NoRestrictions =
true }

EMV TR31_E1_E
MV_MKEY_C
ONFIDENTIALITY

TR31_E6_E
MV_MKEY_OTHER

• TDES_2KEY • { DeriveKey = true }

RSA TR31_D1_A
SYMMETRIC

• RSA_2048

• RSA_3072

• RSA_4096

• { Decrypt = true,
Unwrap=true}

Decrypt Data 98

AWS Payment Cryptography User Guide

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

_KEY_FOR_
DATA_ENCRYPTION

• {Encrypt=true,
Wrap=true,Decrypt
= true, Unwrap=tr
ue}

Symmetric keys TR31_D0_S
YMMETRIC_
DATA_ENCR
YPTION_KEY

• TDES_2KEY

• TDES_3KEY

• AES_128

• AES_192

• AES_256

• {Decrypt = true,
Unwrap=true}

• {Encrypt=true,
Wrap=true,Decrypt
= true, Unwrap=tr
ue}

• { NoRestrictions =
true }

Encrypt Data

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

DUKPT TR31_B0_B
ASE_DERIV
ATION_KEY

• TDES_2KEY

• AES_128

• AES_192

• AES_256

• { DeriveKey = true }

• { NoRestrictions =
true }

EMV TR31_E1_E
MV_MKEY_C
ONFIDENTIALITY

TR31_E6_E
MV_MKEY_OTHER

• TDES_2KEY • { DeriveKey = true }

Encrypt Data 99

AWS Payment Cryptography User Guide

Key Type Allowed Key Usage Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

RSA TR31_D1_A
SYMMETRIC
_KEY_FOR_
DATA_ENCRYPTION

• RSA_2048

• RSA_3072

• RSA_4096

• { Encrypt = true,
Wrap=true}

• {Encrypt=true,
Wrap=true,Decrypt
= true, Unwrap=tr
ue}

Symmetric keys TR31_D0_S
YMMETRIC_
DATA_ENCR
YPTION_KEY

• TDES_2KEY

• TDES_3KEY

• AES_128

• AES_192

• AES_256

• {Encrypt = true,
Wrap=true}

• {Encrypt=true,
Wrap=true,Decrypt
= true, Unwrap=tr
ue}

• { NoRestrictions =
true }

Translate Pin Data

Direction Key Type Allowed Key
Usage

Allowed Key
Algorithm

Allowed
combination of
key modes of
use

Inbound Data
Source

DUKPT TR31_B0_B
ASE_DERIV
ATION_KEY

• TDES_2KEY

• AES_128

• AES_192

• AES_256

• { DeriveKey =
true }

• { NoRestric
tions = true }

Inbound Data
Source

non-DUKPT
(PEK, AWK, IWK,
etc)

TR31_P0_P
IN_ENCRYP
TION_KEY

• TDES_2KEY

• TDES_3KEY

• AES_128

• { Decrypt =
true, Unwrap
= true }

Translate Pin Data 100

AWS Payment Cryptography User Guide

Direction Key Type Allowed Key
Usage

Allowed Key
Algorithm

Allowed
combination of
key modes of
use

• AES_192

• AES_256

• { Encrypt =
true, Decrypt
= true, Wrap =
true, Unwrap
= true }

• { NoRestric
tions = true }

Outbound Data
Target

DUKPT TR31_B0_B
ASE_DERIV
ATION_KEY

• TDES_2KEY

• AES_128

• AES_192

• AES_256

• { DeriveKey =
true }

• { NoRestric
tions = true }

Outbound Data
Target

non-DUKPT
(PEK, IWK, AWK,
etc)

TR31_P0_P
IN_ENCRYP
TION_KEY

• TDES_2KEY

• TDES_3KEY

• AES_128

• AES_192

• AES_256

• { Encrypt =
true, Wrap =
true }

• { Encrypt =
true, Decrypt
= true, Wrap =
true, Unwrap
= true }

• { NoRestric
tions = true }

Translate Pin Data 101

AWS Payment Cryptography User Guide

VerifyAuthRequestCryptogram

Allowed Key Usage EMV Option Allowed Key
Algorithm

Allowed combinati
on of key modes of
use

• OPTION A

• OPTION B

TR31_E0_E
MV_MKEY_A
PP_CRYPTOGRAMS

• TDES_2KEY • { DeriveKey = true }

Unused key types

The following key types are not currently used by AWS Payment Cryptography

• TR31_K1_KEY_BLOCK_PROTECTION_KEY

• TR31_P1_PIN_GENERATION_KEY

• TR31_K3_ASYMMETRIC_KEY_FOR_KEY_AGREEMENT

VerifyAuthRequestCryptogram 102

AWS Payment Cryptography User Guide

Security in AWS Payment Cryptography

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud—AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to AWS Payment
Cryptography, see AWS Services in Scope by Compliance Program.

• Security in the cloud—Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This topic helps you understand how to apply the shared responsibility model when using AWS
Payment Cryptography. It shows you how to configure AWS Payment Cryptography to meet your
security and compliance objectives. You also learn how to use other AWS services that help you to
monitor and secure your AWS Payment Cryptography resources.

Topics

• Data protection in AWS Payment Cryptography

• Resilience in AWS Payment Cryptography

• Infrastructure security in AWS Payment Cryptography

• Security best practices for AWS Payment Cryptography

Data protection in AWS Payment Cryptography

The AWS shared responsibility model applies to data protection in AWS Payment Cryptography.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks

Data protection 103

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Payment Cryptography User Guide

for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with AWS Payment Cryptography or other AWS services using the console, API,
AWS CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names
may be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request to
that server.

AWS Payment Cryptography stores and protects your payment encryption keys to make them
highly available while providing you with strong and flexible access control.

Topics

• Protecting key material

• Data encryption

• Encryption at rest

• Encryption in transit

Data protection 104

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

AWS Payment Cryptography User Guide

• Internetwork traffic privacy

Protecting key material

By default, AWS Payment Cryptography protects the cryptographic key material for payment keys
managed by the service. In addition, AWS Payment Cryptography offers options for importing key
material that is created outside of the service. For technical details about payment keys and key
material, see AWS Payment Cryptography Cryptographic Details.

Data encryption

The data in AWS Payment Cryptography consists of AWS Payment Cryptography keys, the
encryption key material they represent, and their usage attributes. Key material exists in plaintext
only within AWS Payment Cryptography hardware security modules (HSMs) and only when in use.
Otherwise, the key material and attributes are encrypted and stored in durable persistent storage.

The key material that AWS Payment Cryptography generates or loads for payment keys never
leaves the boundary of AWS Payment Cryptography HSMs unencrypted. It can be exported
encrypted by AWS Payment Cryptography API operations.

Encryption at rest

AWS Payment Cryptography generates key material for payment keys in PCI PTS HSM-listed HSMs.
When not in use, key material is encrypted by an HSM key and written to durable, persistent
storage. The key material for Payment Cryptography keys and the encryption keys that protect the
key material never leave the HSMs in plaintext form.

Encryption and management of key material for Payment Cryptography keys is handled entirely by
the service.

For more details, see AWS Key Management Service Cryptographic Details.

Encryption in transit

Key material that AWS Payment Cryptography generates or loads for payment keys is never
exported or transmitted in AWS Payment Cryptography API operations in cleartext. AWS Payment
Cryptography uses key identifiers to represent the keys in API operations.

Protecting key material 105

AWS Payment Cryptography User Guide

However, some AWS Payment Cryptography API operations export keys encrypted by a previously
shared or asymmetric key exchange key. Also, customers can use API operations to import
encrypted key material for payment keys.

All AWS Payment Cryptography API calls must be signed and be transmitted using Transport Layer
Security (TLS). AWS Payment Cryptography requires TLS versions and cipher suites defined by PCI
as "strong cryptograpy". All service endpoints support TLS 1.0—1.3 and hybrid post-quantum TLS.

For more details, see AWS Key Management Service Cryptographic Details.

Internetwork traffic privacy

AWS Payment Cryptography supports an AWS Management Console and a set of API operations
that enable you to create and manage payment keys and use them in cryptographic operations.

AWS Pament Cryptography supports two network connectivity options from your private network
to AWS.

• An IPSec VPN connection over the internet.

• AWS Direct Connect, which links your internal network to an AWS Direct Connect location over a
standard Ethernet fiber-optic cable.

All Payment Cryptography API calls must be signed and be transmitted using Transport Layer
Security (TLS). The calls also require a modern cipher suite that supports perfect forward secrecy.
Traffic to the hardware security modules (HSMs) that store key material for payment keys is
permitted only from known AWS Payment Cryptography API hosts over the AWS internal network.

To connect directly to AWS Payment Cryptography from your virtual private cloud (VPC) without
sending traffic over the public internet, use VPC endpoints, powered by AWS PrivateLink. For more
information, see Connecting to AWS Payment Cryptography through a VPC endpoint.

AWS Payment Cryptography also supports a hybrid post-quantum key exchange option for the
Transport Layer Security (TLS) network encryption protocol. You can use this option with TLS when
you connect to AWS Payment Cryptography API endpoints.

Resilience in AWS Payment Cryptography

AWS global infrastructure is built around AWS Regions and Availability Zones. Regions provide
multiple physically separated and isolated Availability Zones, which are connected through

Internetwork traffic privacy 106

AWS Payment Cryptography User Guide

low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Regional isolation

AWS Payment Cryptography is a Regional service that is available in multiple regions.

The Regionally isolated design of AWS Payment Cryptography ensures that an availability issue in
one AWS Region cannot affect AWS Payment Cryptography operation in any other Region. AWS
Payment Cryptography is designed to ensure zero planned downtime, with all software updates
and scaling operations performed seamlessly and imperceptibly.

The AWS Payment Cryptography Service Level Agreement (SLA) includes a service commitment
of 99.99% for all Payment Cryptography APIs. To fulfill this commitment, AWS Payment
Cryptography ensures that all data and authorization information required to execute an API
request is available on all regional hosts that receive the request.

The AWS Payment Cryptography infrastructure is replicated in at least three Availability
Zones (AZs) in each Region. To ensure that multiple host failures do not affect AWS Payment
Cryptography performance, AWS Payment Cryptography is designed to service customer traffic
from any of the AZs in a Region.

Changes that you make to the properties or permissions of a payment key are replicated to all
hosts in the Region to ensure that subsequent request can be processed correctly by any host in
the Region. Requests for cryptographic operations using your payment key are forwarded to a fleet
of AWS Payment Cryptography hardware security modules (HSMs), any of which can perform the
operation with the payment key.

Multi-tenant design

The multi-tenant design of AWS Payment Cryptography enables it to fulfill the availability SLA,
and to sustain high request rates, while protecting the confidentiality of your keys and data.

Multiple integrity-enforcing mechanisms are deployed to ensure that the payment key that you
specified for the cryptographic operation is always the one that is used.

Regional isolation 107

https://aws.amazon.com/about-aws/global-infrastructure/

AWS Payment Cryptography User Guide

The plaintext key material for your Payment Cryptography keys is protected extensively. The
key material is encrypted in the HSM as soon as it is created, and the encrypted key material is
immediately moved to secure storage. The encrypted key is retrieved and decrypted within the
HSM just in time for use. The plaintext key remains in HSM memory only for the time needed to
complete the cryptographic operation. Plaintext key material never leaves the HSMs; it is never
written to persistent storage.

For more information about the mechanisms that AWS Payment Cryptography uses to secure your
keys, see AWS Payment Cryptography Cryptographic Details.

Infrastructure security in AWS Payment Cryptography

As a managed service, AWS Payment Cryptography is protected by the AWS global network
security procedures that are described in the Amazon Web Services: Overview of Security Processes
whitepaper.

You use AWS published API calls to access AWS Payment Cryptography through the network.
Clients must support Transport Layer Security (TLS) 1.2 or later. Clients must also support cipher
suites with perfect forward secrecy (PFS) such as Ephemeral Diffie-Hellman (DHE) or Elliptic Curve
Ephemeral Diffie-Hellman (ECDHE). Most modern systems such as Java 7 and later support these
modes.

Additionally, requests must be signed using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Isolation of physical hosts

The security of the physical infrastructure that AWS Payment Cryptography uses is subject to the
controls described in the Physical and Environmental Security section of Amazon Web Services:
Overview of Security Processes. You can find more detail in compliance reports and third-party
audit findings listed in the previous section.

AWS Payment Cryptography is supported by dedicated commercial-off-the-shelf PCI PTS HSM-
listed hardware security modules (HSMs). The key material for AWS Payment Cryptography keys is
stored only in volatile memory on the HSMs, and only while the Payment Cryptography key is in
use. HSMs are in access controlled racks within Amazon data centers that enforce dual control for
any physical access. For detailed information about the operation of AWS Payment Cryptography
HSMs, see AWS Payment Cryptography Cryptographic Details.

Infrastructure security 108

https://d0.awsstatic.com/whitepapers/Security/AWS_Security_Whitepaper.pdf
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS Payment Cryptography User Guide

Security best practices for AWS Payment Cryptography

AWS Payment Cryptography supports many security features that are either built-in or that you
can optionally implement to enhance the protection of your encryption keys and ensure that they
are used for their intended purpose, including IAM policies, an extensive set of policy condition
keys to refine your key policies and IAM policies and built-in enforcement of PCI PIN rules regarding
key blocks.

Important

The general guidelines provided do not represent a complete security solution. Because
not all best practices are appropriate for all situations, these are not intended to be
prescriptive.

• Key Usage and Modes of Use: AWS Payment Cryptography follows and enforces key usage
and mode of use restrictions as described in ANSI X9 TR 31-2018 Interoperable Secure Key
Exchange Key Block Specification and consistent with PCI PIN Security Requirement 18-3.
This limits the ability to use a single key for multiple purposes and cryptographically binds
the key metadata (such as permitted operations) to the key material itself. AWS Payment
Cryptography automatically enforces these restrictions such as that a key encryption key
(TR31_K0_KEY_ENCRYPTION_KEY) cannot also be used for data decryption. See Understanding
key attributes for AWS Payment Cryptography key for more details.

• Limit sharing of symmetric key material: Only share symmetric key material (such as Pin
Encryption Keys or Key Encryption Keys) with at most one other entity. If there is a need to
transit sensitive material to more entities or partners, create additional keys. AWS Payment
Cryptography never exposes symmetric key material or asymmetric private key material in the
clear.

• Use aliases or tags to associate keys with certain use cases or partners: Aliases can be used to
easily denote the use case associated with a key such as alias/BIN_12345_CVK to denote a card
verification key associated with BIN 12345. To provide more flexibility, consider creating tags
such as bin=12345, use_case=acquiring,country=us,partner=foo. Aliases and tags can also be
used to limit access such as enforcing access controls between issuing and acquiring use cases.

• Practice least privileged access: IAM can be used to limit production access to systems rather
than individuals, such as prohibiting individual users from creating keys or running cryptographic
operations. IAM can also be used to limit access to both commands and keys that may not be

Security best practices 109

AWS Payment Cryptography User Guide

applicable for your use case, such as limiting the ability to generate or validate pins for an
acquirer. Another way to use least privileged access is to restrict sensitive operations (such as
key import) to specific service accounts. See AWS Payment Cryptography identity-based policy
examples for examples.

See also

• Identity and access management for AWS Payment Cryptography

• Security best practices in IAM in the IAM User Guide

Security best practices 110

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Payment Cryptography User Guide

Compliance validation for AWS Payment Cryptography

Third-party auditors assess the security and compliance of AWS Payment Cryptography as part of
multiple AWS compliance programs. These include SOC, PCI, and others.

AWS Payment Cryptography has been assessed for several PCI standards in addition to PCI DSS.
These include PCI PIN Security (PCI PIN) and PCI Point-to-Point (P2PE) Encryption. Please see AWS
Artifact for available attestations and compliance guides.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS Payment Cryptography is determined by
the sensitivity of your data, your company's compliance objectives, and applicable laws and
regulations. AWS provides the following resources to help with compliance:

• Security and Compliance Quick Start Guides—These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• AWS Compliance Resources—This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide—AWS Config; assesses
how well your resource configurations comply with internal practices, industry guidelines, and
regulations.

• AWS Security Hub—This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

111

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Payment Cryptography User Guide

Identity and access management for AWS Payment
Cryptography

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use AWS Payment Cryptography resources. IAM is an AWS
service that you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS Payment Cryptography works with IAM

• AWS Payment Cryptography identity-based policy examples

• Troubleshooting AWS Payment Cryptography identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in AWS Payment Cryptography.

Service user – If you use the AWS Payment Cryptography service to do your job, then your
administrator provides you with the credentials and permissions that you need. As you use more
AWS Payment Cryptography features to do your work, you might need additional permissions.
Understanding how access is managed can help you request the right permissions from your
administrator. If you cannot access a feature in AWS Payment Cryptography, see Troubleshooting
AWS Payment Cryptography identity and access.

Service administrator – If you're in charge of AWS Payment Cryptography resources at your
company, you probably have full access to AWS Payment Cryptography. It's your job to determine
which AWS Payment Cryptography features and resources your service users should access. You
must then submit requests to your IAM administrator to change the permissions of your service
users. Review the information on this page to understand the basic concepts of IAM. To learn more
about how your company can use IAM with AWS Payment Cryptography, see How AWS Payment
Cryptography works with IAM.

Audience 112

AWS Payment Cryptography User Guide

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to AWS Payment Cryptography. To view example AWS Payment
Cryptography identity-based policies that you can use in IAM, see AWS Payment Cryptography
identity-based policy examples.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.

Authenticating with identities 113

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html

AWS Payment Cryptography User Guide

We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control

IAM users and groups 114

https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html

AWS Payment Cryptography User Guide

what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile

IAM roles 115

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

AWS Payment Cryptography User Guide

that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed

Managing access using policies 116

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Payment Cryptography User Guide

policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

Resource-based policies 117

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Payment Cryptography User Guide

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS Payment Cryptography works with IAM

Before you use IAM to manage access to AWS Payment Cryptography, you should understand what
IAM features are available to use with AWS Payment Cryptography. To get a high-level view of how
AWS Payment Cryptography and other AWS services work with IAM, see AWS Services That Work
with IAM in the IAM User Guide.

Topics

• AWS Payment Cryptography Identity-based policies

• Authorization based on AWS Payment Cryptography tags

AWS Payment Cryptography Identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. AWS Payment Cryptography supports
specific actions, resources, and condition keys. To learn about all of the elements that you use in a
JSON policy, see IAM JSON Policy Elements Reference in the IAM User Guide.

Multiple policy types 118

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS Payment Cryptography User Guide

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in AWS Payment Cryptography use the following prefix before the action:
payment-cryptography:. For example, to grant someone permission to execute an
AWS Payment Cryptography VerifyCardData API operation, you include the payment-
cryptography:VerifyCardData action in their policy. Policy statements must include either an
Action or NotAction element. AWS Payment Cryptography defines its own set of actions that
describe tasks that you can perform with this service.

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "payment-cryptography:action1",
 "payment-cryptography:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word List (such as ListKeys and ListAliases), include the following action:

"Action": "payment-cryptography:List*"

To see a list of AWS Payment Cryptography actions, see Actions Defined by AWS Payment
Cryptography in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

AWS Payment Cryptography Identity-based policies 119

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awskeymanagementservice.html#awskeymanagementservice-actions-as-permissions

AWS Payment Cryptography User Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

The payment-cryptography key resource has the following ARN:

arn:${Partition}:payment-cryptography:${Region}:${Account}:key/${keyARN}

For more information about the format of ARNs, see Amazon Resource Names (ARNs) and AWS
Service Namespaces.

For example, to specify the arn:aws:payment-cryptography:us-
east-2:111122223333:key/kwapwa6qaifllw2h instance in your statement, use the following
ARN:

"Resource": "arn:aws:payment-cryptography:us-east-2:111122223333:key/kwapwa6qaifllw2h"

To specify all keys that belong to a specific account, use the wildcard (*):

"Resource": "arn:aws:payment-cryptography:us-east-2:111122223333:key/*"

Some AWS Payment Cryptography actions, such as those for creating keys, cannot be performed
on a specific resource. In those cases, you must use the wildcard (*).

"Resource": "*"

To specify multiple resources in a single statement, use a comma as shown below:

"Resource": [
 "resource1",
 "resource2"

AWS Payment Cryptography Identity-based policies 120

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

AWS Payment Cryptography User Guide

Examples

To view examples of AWS Payment Cryptography identity-based policies, see AWS Payment
Cryptography identity-based policy examples.

Authorization based on AWS Payment Cryptography tags

AWS Payment Cryptography identity-based policy examples

By default, IAM users and roles don't have permission to create or modify AWS Payment
Cryptography resources. They also can't perform tasks using the AWS Management Console,
AWS CLI, or AWS API. An IAM administrator must create IAM policies that grant users and
roles permission to perform specific API operations on the specified resources they need. The
administrator must then attach those policies to the IAM users or groups that require those
permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Using the AWS Payment Cryptography console

• Allow users to view their own permissions

• Ability to access all aspects of AWS Payment Cryptography

• Ability to call APIs using specified keys

• Ability to specifically deny a resource

Policy best practices

Identity-based policies determine whether someone can create, access, or delete AWS Payment
Cryptography resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies

Authorization based on AWS Payment Cryptography tags 121

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS Payment Cryptography User Guide

that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the AWS Payment Cryptography console

To access the AWS Payment Cryptography console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the AWS Payment Cryptography
resources in your AWS account. If you create an identity-based policy that is more restrictive than
the minimum required permissions, the console won't function as intended for entities (IAM users
or roles) with that policy.

Using the console 122

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

AWS Payment Cryptography User Guide

To ensure that those entities can still use the AWS Payment Cryptography console, also attach the
following AWS managed policy to the entities. For more information, see Adding Permissions to a
User in the IAM User Guide.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],

Allow users to view their own permissions 123

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Payment Cryptography User Guide

 "Resource": "*"
 }
]
}

Ability to access all aspects of AWS Payment Cryptography

Warning

This example provides wide permissions and is not recommended. Consider least
priviledged access models instead.

In this example, you want to grant an IAM user in your AWS account access to all of your AWS
Payment Cryptography keys and the ability to call all AWS Payment Cryptography apis including
both ControlPlane and DataPlane operations.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "payment-cryptography:*"
],
 "Resource": [
 "*"
]
 }
]
 }

Ability to call APIs using specified keys

In this example, you want to grant an IAM user in your AWS account access to one
of your AWS Payment Cryptography key, arn:aws:payment-cryptography:us-
east-2:111122223333:key/kwapwa6qaifllw2h and then use this resource in two APIs,
GenerateCardData and VerifyCardData. Conversely, the IAM user will not have access to use
this key on other operations such as DeleteKey or ExportKey

Ability to access all aspects of AWS Payment Cryptography 124

AWS Payment Cryptography User Guide

Resources can be either keys, prefixed with key or aliases, prefixed with alias.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "payment-cryptography:VerifyCardData",
 "payment-cryptography:GenerateCardData"
],
 "Resource": [
 "arn:aws:payment-cryptography:us-east-2:111122223333:key/
kwapwa6qaifllw2h"
]
 }
]
 }

Ability to specifically deny a resource

Warning

Carefully consider the implications of granting wildcard access. Consider a least privilege
model instead.

In this example, you want to permit an IAM user in your AWS account access to any of your AWS
Payment Cryptography key but want to deny permissions to one specific key. The user will have
access to VerifyCardData and GenerateCardData with all keys with the exception of the one
specified in the deny statement.

 {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "payment-cryptography:VerifyCardData",

Ability to specifically deny a resource 125

AWS Payment Cryptography User Guide

 "payment-cryptography:GenerateCardData"
],
 "Resource": [
 "arn:aws:payment-cryptography:us-east-2:111122223333:key/*"
]
 },
 {
 "Effect": "Deny",
 "Action": [
 "payment-cryptography:GenerateCardData"
],
 "Resource": [
 "arn:aws:payment-cryptography:us-east-2:111122223333:key/
arn:aws:payment-cryptography:us-east-2:111122223333:key/kwapwa6qaifllw2h"
]
 }
]
 }

Troubleshooting AWS Payment Cryptography identity and
access

Topics will be added to this section as IAM-related issues that are specific to AWS Payment
Cryptography are identified. For general troubleshooting content on IAM topics, refer to the
troubleshooting section of the IAM User Guide.

Troubleshooting 126

https://docs.aws.amazon.com/IAM/latest/UserGuide/troubleshoot.html

AWS Payment Cryptography User Guide

Monitoring AWS Payment Cryptography

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
Payment Cryptography and your other AWS solutions. AWS provides the following monitoring
tools to watch AWS Payment Cryptography, report when something is wrong, and take automatic
actions when appropriate:

• Amazon CloudWatch monitors your AWS resources and and the applications you run on AWS
in real time. You can collect and track metrics, create customized dashboards, and set alarms
that notify you or take actions when a specified metric reaches a threshold that you specify.
For example, you can have CloudWatch track CPU usage or other metrics of your Amazon EC2
instances and automatically launch new instances when needed. For more information, see the
Amazon CloudWatch User Guide.

• Amazon CloudWatch Logs enables you to monitor, store, and access your log files from Amazon
EC2 instances, CloudTrail, and other sources. CloudWatch Logs can monitor information in the
log files and notify you when certain thresholds are met. You can also archive your log data in
highly durable storage. For more information, see the Amazon CloudWatch Logs User Guide.

• Amazon EventBridge can be used to automate your AWS services and respond automatically
to system events, such as application availability issues or resource changes. Events from AWS
services are delivered to EventBridge in near real time. You can write simple rules to indicate
which events are of interest to you and which automated actions to take when an event matches
a rule. For more information, see Amazon EventBridge User Guide.

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Note

AWS CloudTrail logs are supported for Control Plane operations such as CreateKey but
not for Data Plane operations such as Generate Card Data

127

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/

AWS Payment Cryptography User Guide

Logging AWS Payment Cryptography API calls using AWS
CloudTrail

AWS Payment Cryptography is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in AWS Payment Cryptography. CloudTrail
captures all API calls for AWS Payment Cryptography as events. The calls captured include calls
from the AWS Payment Cryptography console and code calls to the AWS Payment Cryptography
API operations. If you create a trail, you can enable continuous delivery of CloudTrail events to
an Amazon S3 bucket, including events for AWS Payment Cryptography. If you don't configure a
trail, you can still view the most recent events in the CloudTrail console in Event history. Using
the information collected by CloudTrail, you can determine the request that was made to AWS
Payment Cryptography, the IP address from which the request was made, who made the request,
when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Note

Cloudtrail integration is currently supported for control plane operations only.

AWS Payment Cryptography information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
AWS Payment Cryptography, that activity is recorded in a CloudTrail event along with other AWS
service events in Event history. You can view, search, and download recent events in your AWS
account. For more information, see Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for AWS Payment
Cryptography, create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket.
By default, when you create a trail in the console, the trail applies to all AWS Regions. The trail logs
events from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket
that you specify. Additionally, you can configure other AWS services to further analyze and act
upon the event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

CloudTrail logs 128

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

AWS Payment Cryptography User Guide

• Receiving CloudTrail log files from multiple Regions

• Receiving CloudTrail log files from multiple accounts

CloudTrail logs AWS Payment Cryptography operations, such as CreateKey, ImportKey, DeleteKey,
ListKeys, TagResource, and all other control plane operations.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Understanding AWS Payment Cryptography log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

The following example shows a CloudTrail log entry that demonstrates the AWS Payment
Cryptography CreateKey action.

 {
 CloudTrailEvent: {
 tlsDetails= {
 TlsDetails: {
 cipherSuite=TLS_AES_128_GCM_SHA256,
 tlsVersion=TLSv1.3,
 clientProvidedHostHeader=pdx80.controlplane.paymentcryptography.us-
west-2.amazonaws.com
 }
 },
 requestParameters=CreateKeyInput (

Understanding AWS Payment Cryptography log file entries 129

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_CreateKey.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ImportKey.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_DeleteKey.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_ListKeys.html
https://docs.aws.amazon.com/payment-cryptography/latest/APIReference/API_TagResource.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Payment Cryptography User Guide

 keyAttributes=KeyAttributes(
 KeyUsage=TR31_B0_BASE_DERIVATION_KEY,
 keyClass=SYMMETRIC_KEY,
 keyAlgorithm=AES_128,
 keyModesOfUse=KeyModesOfUse(
 encrypt=false,
 decrypt=false,
 wrap=false
 unwrap=false,
 generate=false,
 sign=false,
 verify=false,
 deriveKey=true,
 noRestrictions=false)
),
 keyCheckValueAlgorithm=null,
 exportable=true,
 enabled=true,
 tags=null),
 eventName=CreateKey,
 userAgent=Coral/Apache-HttpClient5,
 responseElements=CreateKeyOutput(
 key=Key(
 keyArn=arn:aws:payment-cryptography:us-
east-2:111122223333:key/5rplquuwozodpwsp,
 keyAttributes=KeyAttributes(
 KeyUsage=TR31_B0_BASE_DERIVATION_KEY,
 keyClass=SYMMETRIC_KEY,
 keyAlgorithm=AES_128,
 keyModesOfUse=KeyModesOfUse(
 encrypt=false,
 decrypt=false,
 wrap=false,
 unwrap=false,
 generate=false,
 sign=false,
 verify=false,
 deriveKey=true,
 noRestrictions=false)
),
 keyCheckValue=FE23D3,
 keyCheckValueAlgorithm=ANSI_X9_24,
 enabled=true,
 exportable=true,

Understanding AWS Payment Cryptography log file entries 130

AWS Payment Cryptography User Guide

 keyState=CREATE_COMPLETE,
 keyOrigin=AWS_PAYMENT_CRYPTOGRAPHY,
 createTimestamp=Sun May 21 18:58:32 UTC 2023,
 usageStartTimestamp=Sun May 21 18:58:32 UTC 2023,
 usageStopTimestamp=null,
 deletePendingTimestamp=null,
 deleteTimestamp=null)
),
 sourceIPAddress=192.158.1.38,
 userIdentity={
 UserIdentity: {
 arn=arn:aws:sts::111122223333:assumed-role/TestAssumeRole-us-west-2-PDX80/
ControlPlane-IntegTest-68211a2a-3e9d-42b7-86ac-c682520e0410,
 invokedBy=null,
 accessKeyId=,
 type=AssumedRole,
 sessionContext={
 SessionContext: {
 sessionIssuer={
 SessionIssuer: {arn=arn:aws:iam::111122223333:role/TestAssumeRole-us-
west-2-PDX80,
 type=Role,
 accountId=111122223333,
 userName=TestAssumeRole-us-west-2-PDX80,
 principalId=}
 },
 attributes={
 SessionContextAttributes: {
 creationDate=Sun May 21 18:58:31 UTC 2023,
 mfaAuthenticated=false
 }
 },
 webIdFederationData=null
 }
 },
 username=null,
 principalId=:ControlPlane-User,
 accountId=111122223333,
 identityProvider=null
 }
 },
 eventTime=Sun May 21 18:58:32 UTC 2023,
 managementEvent=true,
 recipientAccountId=111122223333,

Understanding AWS Payment Cryptography log file entries 131

AWS Payment Cryptography User Guide

 awsRegion=us-west-2,
 requestID=151cdd67-4321-1234-9999-dce10d45c92e,
 eventVersion=1.08, eventType=AwsApiCall,
 readOnly=false,
 eventID=c69e3101-eac2-1b4d-b942-019919ad2faf,
 eventSource=payment-cryptography.amazonaws.com,
 eventCategory=Management,
 additionalEventData={
 }
 }
}

Understanding AWS Payment Cryptography log file entries 132

AWS Payment Cryptography User Guide

Cryptographic details

AWS Payment Cryptography provides a web interface to generate and manage cryptographic keys
for payment transactions. AWS Payment Cryptography offers standard key management services
and payment transaction cryptography and tools you can use for centralized management and
auditing. This documentation provides a detailed description of the cryptographic operations
you can use in AWS Payment Cryptography to assist you in evaluating the features offered by the
service.

AWS Payment Cryptography contains multiple interfaces (including a RESTful API, through the
AWS CLI, AWS SDK and the AWS Management Console) to request cryptographic operations of a
distributed fleet of PCI PTS HSM-validated hardware security modules.

AWS Payment Cryptography is a tiered service consisting of web-facing AWS Payment
Cryptography hosts and a tier of HSMs. The grouping of these tiered hosts forms the AWS
Payment Cryptography stack. All requests to AWS Payment Cryptography must be made over the
Transport Layer Security protocol (TLS) and terminate on an AWS Payment Cryptography host. The
service hosts only allow TLS with a cipher suite that provides perfect forward secrecy. The service
authenticates and authorizes your requests using the same credential and policy mechanisms of
IAM that are available for all other AWS API operations.

AWS Payment Cryptography servers connect to the underlying HSM via a private, non-virtual
network. Connections between service components and HSM are secured with mutual TLS (mTLS)
for authentication and encryption.

133

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

AWS Payment Cryptography User Guide

Design goals

AWS Payment Cryptography is designed to meet the following requirements:

• Trustworthy — Use of keys is protected by access control policies that you define and manage.
There is no mechanism to export plaintext AWS Payment Cryptography keys. The confidentiality
of your cryptographic keys is crucial. Multiple Amazon employees with role-specific access to
quorum-based access controls are required to perform administrative actions on the HSMs. No
Amazon employees have access to HSM main (or master) keys or backups. Main keys cannot be
synchronized with HSMs that are not part of an AWS Payment Cryptography region. All other
keys are protected by HSM main keys. Therefore, customer AWS Payment Cryptography keys
are not usable outside of the AWS Payment Cryptography service operating within a customer's
account.

• Low-latency and high throughput — AWS Payment Cryptography provides cryptographic
operations at latency and throughput level suitable for managing payment cryptographic keys
and processing payment transactions.

• Durability — The durability of cryptographic keys is designed to be equal that of the highest
durability services in AWS. A single cryptographic key can be shared with a payment terminal,
EMV chip card, or other secure cryptographic device (SCD) that is in use for many years.

• Independent Regions — AWS provides independent regions for customers who need to restrict
data access in different regions or need to comply with data residency requirements. Key usage
can be isolated within an AWS Region.

• Secure source of random numbers — Because strong cryptography depends on truly
unpredictable random number generation, AWS Payment Cryptography provides a high-quality
and validated source of random numbers. All key generation for AWS Payment Cryptography
uses PCI PTS HSM-listed HSM, operating in PCI mode.

• Audit — AWS Payment Cryptography records the use and management of cryptographic keys
in CloudTrail logs and service logs available via Amazon CloudWatch. You can use CloudTrail
logs to inspect use of your cryptographic keys, including the use of keys by accounts that you
have shared keys with. AWS Payment Cryptography is audited by third party assessors against
applicable PCI, card brand, and regional payment security standards. Attestations and Shared
Responsibility guides are available on AWS Artifact.

• Elastic — AWS Payment Cryptography scales out and in according to your demand. Instead
of predicting and reserving HSM capacity, AWS Payment Cryptography provides payment
cryptography on-demand. AWS Payment Cryptography takes responsibility for maintaining the
security and compliance of HSM to provide sufficient capacity to meet customer’s peak demand.

Design goals 134

AWS Payment Cryptography User Guide

Foundations

The topics in this chapter describe the cryptographic primitives of AWS Payment Cryptography and
where they are used. They also introduce the basic elements of the service.

Topics

• Cryptographic primitives

• Entropy and random number generation

• Symmetric key operations

• Asymmetric key operations

• Key storage

• Key import using symmetric keys

• Key import using asymmetric keys

• Key export

• Derived Unique Key Per Transaction (DUKPT) protocol

• Key hierarchy

Cryptographic primitives

AWS Payment Cryptography uses parameter-able, standard cryptographic algorithms so that
applications can implement the algorithms needed for their use case. The set of cryptographic
algorithms is defined by PCI, ANSI X9, EMVco, and ISO standards. All cryptography is performed by
PCI PTS HSM standard-listed HSMs running in PCI mode.

Entropy and random number generation

AWS Payment Cryptography key generation is performed on the AWS Payment Cryptography
HSMs. The HSMs implement a random number generator that meets the PCI PTS HSM requirement
for all supported key types and parameters.

Symmetric key operations

Symmetric key algorithms and key strengths defined in ANSI X9 TR 31, ANSI X9.24, and PCI PIN
Annex C are supported:

Foundations 135

AWS Payment Cryptography User Guide

• Hash functions — Algorithms from the SHA2 and SHA3 family with output size greater than
2551. Except for backwards compatibility with pre-PCI PTS POI v3 terminals.

• Encryption and decryption — AES with key size greater than or equal to 128 bits, or TDEA with
keys size greater than or equal to 112 bits (2 key or 3 key).

• Message Authentication Codes (MACs) CMAC or GMAC with AES, as well as HMAC with an
approved hash function and a key size greater than or equal to 128.

AWS Payment Cryptography uses AES 256 for HSM main keys, data protection keys, and TLS
session keys.

Asymmetric key operations

Asymmetric key algorithms and key strengths defined in ANSI X9 TR 31, ANSI X9.24, and PCI PIN
Annex C are supported:

• Approved key establishment schemes — as described in NIST SP800-56A (ECC/FCC2-based key
agreement), NIST SP800-56B (IFC-based key agreement), and NIST SP800-38F (AES-based key
encryption/wrapping).

AWS Payment Cryptography hosts only allow connections to the service using TLS with a cipher
suite that provides perfect forward secrecy.

Key storage

AWS Payment Cryptography keys are protected by HSM AES 256 main keys and stored in ANSI X9
TR 31 key blocks in an encrypted database. The database is replicated to in-memory database on
AWS Payment Cryptography servers.

According to PCI PIN Security Normative Annex C, AES 256 keys are equally as strong as or stronger
than:

• 3-key TDEA

• RSA 15360 bit

• ECC 512 bit

• DSA, DH, and MQV 15360/512

Asymmetric key operations 136

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r2.pdf

AWS Payment Cryptography User Guide

Key import using symmetric keys

AWS Payment Cryptography supports import of cryptograms and key blocks with symmetric
or public keys with a symmetric key encryption key (KEK) that is as strong or stronger than the
protected key for import.

Key import using asymmetric keys

AWS Payment Cryptography supports import of cryptograms and key blocks with symmetric or
public keys protected by a private key encryption key (KEK) that is as strong or stronger than the
protected key for import. The public key provided for decryption must have its authenticity and
integrity ensured by a certificate from an authority trusted by the customer.

Public KEK provided by AWS Payment Cryptography have the authentication and integrity
protection of a certificate authority (CA) with attested compliance to PCI PIN Security and PCI P2PE
Annex A.

Key export

Keys can be exported and protected by keys with the appropriate KeyUsage and that are as strong
as or stronger than the key to be exported.

Derived Unique Key Per Transaction (DUKPT) protocol

AWS Payment Cryptography supports with TDEA and AES base derivation keys (BDK) as described
by ANSI X9.24-3.

Key hierarchy

The AWS Payment Cryptography key hierarchy ensures that keys are always protected by keys as
strong as or stronger than the keys they protect.

Key import using symmetric keys 137

AWS Payment Cryptography User Guide

AWS Payment Cryptography keys are used for key protection within the service:

Key Description

Regional Main Key Protects virtual HSM images, or profiles, used
for cryptographic processing. This key exists
only in HSM and secure backups.

Profile Main Key Top level customer key protection key,
traditionally called a Local Master Key
(LMK) or Master File Key (MFK) for customer
keys. This key exists only in HSM and
secure backups. Profiles define distinct
HSM configurations as required by security
standards for payments use cases.

Key hierarchy 138

AWS Payment Cryptography User Guide

Key Description

Root of trust for AWS Payment Cryptography
public key encryption key (KEK) keys

The trusted root public key and certificate
for authenticating and validating public keys
supplied by AWS Payment Cryptography for
key import and export using asymmetric keys.

Customer keys are grouped by keys used to protect other keys and keys that protect payment-
related data. These are examples of customer keys of both types:

Key Description

Customer-provided trusted root for public KEK
keys

Public key and certificate supplied by you
as the root of trust for authenticating and
validating public keys that you supply for key
import and export using asymmetric keys.

Key Encryption Keys (KEK) KEK are used solely to encrypt other keys
for exchange between external key stores
and AWS Payment Cryptography, business
partners, payment networks, or different
applications within your organization.

Derived Unique Key Per Transaction (DUKPT)
base derivation key (BDK)

BDKs are used to create unique keys for each
payment terminal and translate transactions
from multiple terminals to a single acquiring
bank, or acquirer, working key. The best
practice, which is required by PCI Point-to-
Point Encryption (P2PE), is that different
BDKs are used for different terminal models,
key injection or initialization services, or
other segmentation to limit the impact of
compromising a BDK.

Key hierarchy 139

AWS Payment Cryptography User Guide

Key Description

Payment network zone control master key
(ZCMK)

ZCMK, also referred to as zone keys or
zone master keys, are provided by payment
networks to establish initial working keys.

DUKPT transaction keys Payment terminals configured for DUKPT
derive a unique key for the terminal and
transaction. The HSM receiving the transacti
on can determine the key from the terminal
identifier and transaction sequence number.

Card data preparation keys EMV issuer master keys, EMV card keys and
verification values, and card personalization
data file protection keys are used to create
data for individual cards for use by a card
personalization provider. These keys and
cryptographic validation data are also used by
issuing banks, or issuers, for authenticating
card data as part of authorizing transactions.

Card data preparation keys EMV issuer master keys, EMV card keys and
verification values, and card personalization
data file protection keys are used to create
data for individual cards for use by a card
personalization provider. These keys and
cryptographic validation data are also used by
issuing banks, or issuers, for authenticating
card data as part of authorizing transactions.

Payment network working keys Often referred to as issuer working key or
acquirer working key, these are the keys that
encrypt transaction sent to or received from
payment networks. These keys are rotated
frequently by the network, often daily or
hourly. These are PIN encryption keys (PEK) for
PIN/Debit transactions.

Key hierarchy 140

AWS Payment Cryptography User Guide

Key Description

Personal Identification Number (PIN) encryptio
n keys (PEK)

Applications that create or decrypt PIN blocks
use PEK to prevent storage or transmission of
clear text PIN.

Internal operations

This topic describes internal requirements implemented by the service to secure customer keys and
cryptographic operations for a globally distributed and scalable payment cryptography and key
management service.

HSM specifications and lifecycle

AWS Payment Cryptography uses a fleet of commercially available HSM. The HSMs are FIPS
140-2 Level 3 validated and also use firmware versions and the security policy listed on the PCI
Security Standards Council approved PCI PTS Devices list as PCI HSM v3 complaint. The PCI PTS
HSM standard includes additional requirements for the manufacturing, shipment, deployment,
management, and destruction of HSM hardware which are important for payment security and
compliance but not addressed by FIPS 140.

All HSMs are operated in PCI Mode and configured with the PCI PTS HSM security policy. Only
functions required to support AWS Payment Cryptography use cases are enabled. AWS Payment
Cryptography does not provide for printing, display, or return of clear text PINs.

HSM device physical security

Only HSMs that have device keys signed by an AWS Payment Cryptography certificate authority
(CA) by the manufacturer prior to delivery can be used by the service. The AWS Payment
Cryptography is a sub-CA of the manufacturer’s CA that is the root of trust for HSM manufacturer
and device certificates. The manufacturer’s CA implements ANSI TR 34 and has attested
compliance with PCI PIN Security Annex A and PCI P2PE Annex A. The manufacturer verifies
that all HSM with device keys signed by the AWS Payment Cryptography CA are shipped to AWS’
designated receiver.

As required by PCI PIN Security, the manufacturer supplies a list of serial numbers via a different
communication channel than the HSM shipment. These serial numbers are checked at each step
in the process of HSM installation into AWS data centers. Finally, AWS Payment Cryptography

Internal operations 141

https://listings.pcisecuritystandards.org/assessors_and_solutions/pin_transaction_devices

AWS Payment Cryptography User Guide

operators validate the list of installed HSM against the manufacturer’s list before adding the serial
number to list of HSM permitted to receive AWS Payment Cryptography keys.

HSMs are in secure storage or under dual control at all times, which includes:

• Shipment from the manufacturer to an AWS rack assembly facility.

• During rack assembly.

• Shipment from the rack assembly facility to a data center.

• Receipt and installation into a data center secure processing room. HSM racks enforce dual
control with card access-controlled locks, alarmed door sensors, and cameras.

• During operations.

• During decommissioning and destruction.

A complete chain-of-custody, with individual accountability, is maintained and monitored for each
HSM.

HSM initialization

An HSM is only initialized as part of the AWS Payment Cryptography fleet after its identity and
integrity are validated by serial numbers, manufacturer installed device keys, and firmware
checksum. After the authenticity and integrity of an HSM validated, it is configured, including
enabling PCI Mode. Then AWS Payment Cryptography region main keys and profile main keys are
established and the HSM is available to the service.

HSM service and repair

HSM have serviceable components that do not require violation of the device’s cryptographic
boundary. These components include cooling fans, power supplies, and batteries. If an HSM or
another device within the HSM rack needs service, dual control is maintained during the entire
period that the rack is open.

HSM decommissioning

Decommissioning occurs due to end-of-life or failure of an HSM. HSM are logically zero-ized before
removal from their rack, if functional, then destroyed within secure processing rooms of AWS
data centers. They are never returned to the manufacturer for repair, used for another purpose, or
otherwise removed from a secure processing room before destruction.

HSM initialization 142

AWS Payment Cryptography User Guide

HSM firmware update

HSM firmware updates are applied when required to maintain alignment with PCI PTS HSM and
FIPS 140-2 (or FIPS 140-3) listed versions, if an update is security related, or it is determined that
customers can benefit from features in a new version. AWS Payment Cryptography HSMs run off-
the-shelf firmware, matching PCI PTS HSM-listed versions. New firmware versions are validated
for integrity with the PCI or FIPS certified firmware versions then tested for functionality before
rollout to all HSMs.

Operator access

Operators can have non-console access to HSM for troubleshooting in rare cases that information
gathered from HSM during normal operations is insufficient to identify a problem or plan a change.
The following steps are executed:

• Troubleshooting activities are developed and approved and the non-console session is scheduled.

• An HSM is removed from customer processing service.

• Main keys are deleted, under dual control.

• Operator is permitted non-console access to the HSM to perform approved troubleshooting
activities, under dual control.

• After termination of the non-console session, the initial provisioning process is performed on
the HSM, returning the standard firmware and configuration, then synchronizing the main key,
before returning the HSM to serving customers.

• Records of the session are recorded in change tracking.

• Information obtained from the session is used for planning future changes.

All non-console access records are reviewed for process compliance and potential changes to HSM
monitoring, the non-console-access management process, or operator training.

Key management

All HSM in a region are synchronized to a Region Main Key. A Region Main Key protects at least one
Profile Main Key. A Profile Main Key protects customer keys.

All main keys are generated by an HSM and distributed to by symmetric key distribution using
asymmetric techniques, aligned with ANSI X9 TR 34 and PCI PIN Annex A.

HSM firmware update 143

AWS Payment Cryptography User Guide

Topics

• Generation

• Region main key synchronization

• Region main key rotation

• Profile main key synchronization

• Profile main key rotation

• Protection

• Durability

• Communication security

• Management of customer keys

• Logging and monitoring

Generation

AES 256 bit Main keys are generated on one of the HSM provisioned for the service HSM fleet,
using the PCI PTS HSM random number generator.

Region main key synchronization

HSM region main keys are synchronized by the service across the regional fleet with mechanisms
defined by ANSI X9 TR-34, which include:

• Mutual authentication using key distribution host (KDH) and key receiving device (KRD) keys and
certificates to provide authentication and integrity of for public keys.

• Certificates are signed by a certificate authority (CA) that meets the requirements of PCI PIN
Annex A2, except for asymmetric algorithms and key strengths appropriate for protecting AES
256 bit keys.

• Identification and key protection for the distributed symmetric keys consistent with ANSI X9
TR-34 and PCI PIN Annex A1, except for asymmetric algorithms and key strengths appropriate
for protecting AES 256 bit keys.

Region main keys are established for HSMs that have been authenticated and provisioned for a
region by:

Key management 144

AWS Payment Cryptography User Guide

• A main key is generated on an HSM in the region. That HSM is designated as the key distribution
host.

• All provisioned HSMs in the region generate KRD authentication token, which contain the public
key of the HSM and non-replayable authentication information.

• KRD tokens are added to the KDH allow list after the KDH validates the identity and permission
of the HSM to receive keys.

• The KDH produces an authenticable main key token for each HSM. Tokens contain KDH
authentication information and encrypted main key that is loadable only on an HSM that it has
been created for.

• Each HSM is sent the main key token built for it. After validating the HSM’s own authentication
information and the KDH authentication information, the main key is decrypted by the KRD
private key and loaded into the main key.

In the event that a single HSM must be re-synchronized with a region:

• It is re-validated and provisioned with firmware and configuration.

• If it is new to the region:

• The HSM generates a KRD authentication token.

• The KDH adds the token to its allow list.

• The KDH generates a main key token for the HSM.

• The HSM loads the main key.

• The HSM is made available to the service.

This assures that:

• Only HSM validated for AWS Payment Cryptography processing within a region can receive that
region’s master key.

• Only a master key from an AWS Payment Cryptography HSM can be distributed to an HSM in the
fleet.

Key management 145

AWS Payment Cryptography User Guide

Region main key rotation

Region main keys are rotated at the expiration of the crypto period, in the unlikely event of a
suspected key compromise, or after changes to the service that are determined to impact the
security of the key.

A new region main key is generated and distributed as with initial provisioning. Saved profile main
keys must be translated to the new region main key.

Region main key rotation does not impact customer processing.

Profile main key synchronization

Profile main keys are protected by region main keys. This restricts a profile to a specific region.

Profile main keys are provisioned accordingly:

• A profile main key is generated on an HSM that has the region main key synchronized.

• The profile main key is stored and encrypted with the profile configuration and other context.

• The profile is used for customer cryptographic functions by any HSM in the region with the
region main key.

Profile main key rotation

Profile main keys are rotated at the expiration of the crypto period, after suspected key
compromise, or after changes to the service that are determined to impact the security of the key.

Rotation steps:

• A new profile main key is generated and distributed as a pending main key as with initial
provisioning.

• A background process translates customer key material from the established profile main key to
the pending main key.

• When all customer keys have been encrypted with the pending key, the pending key is promoted
to the profile main key.

• A background process deletes customer key material protected by the expired key.

Profile main key rotation does not impact customer processing.

Key management 146

AWS Payment Cryptography User Guide

Protection

Keys depend only on the key hierarchy for protection. Protection of main keys is critical to prevent
loss or compromise all customer keys.

Region main keys are restorable from backup only to HSM authenticated and provisioned for the
service. These keys can only be stored as mutually authenticable, encrypted main key tokens from
a specific KDH for a specific HSM.

Profile master keys are stored with profile configuration and context information encrypted by
region.

Customer keys are stored in key blocks, protected by a profile master key.

All keys exist exclusively within an HSM or stored protected by another key of equal or stronger
cryptographic strength.

Durability

Customer keys for transaction cryptography and business functions must be available even in
extreme situations that would typically cause outages. AWS Payment Cryptography utilizies a
multiple level redundancy model across availablity zones and AWS regions. Customer’s requiring
higher availability and durability for payment cryptographic operations than what is provided by
the service should implement multi-region architectures.

HSM authentication and main key tokens are saved and may be used to restore a main key or
synchronize with a new main key, in the event that an HSM must be reset. The tokens are archived
and used only under dual control when required.

Communication security

External

AWS Payment Cryptography API endpoints meet AWS security standards including TLS at or above
1.2 and Signature Version 4 for authentication and integrity of requests.

Incoming TLS connections are terminated on network load balancers and forwarded to API
handlers over internal TLS connections.

Internal

Internal communications between service components and between service components and other
AWS service are protected by TLS using strong cryptography.

Key management 147

AWS Payment Cryptography User Guide

HSM are on a private, non-virtual network that is only reachable from service components. All
connections between HSM and service components are secured with mutual TLS (mTLS), at or
above TLS 1.2. Internal certificates for TLS and mTLS are managed by Amazon Certificate Manager
using an AWS Private Certificate Authority. Internal VPCs and the HSM network are monitored for
unexcepted activities and configuration changes.

Management of customer keys

At AWS, customer trust is our top priority. You maintain full control of your keys that you upload or
create in the service under your AWS account and responsibility for configuring access to keys.

AWS Payment Cryptography has full responsibility for the HSM physical compliance and key
management for keys managed by the service. This requires ownership and management of HSM
main keys and storage of protected customer keys within the AWS Payment Cryptography key
database.

Customer key space separation

AWS Payment Cryptography enforces key policies for all key use, including limiting principals to
the account owning the key, unless a key is explicitly shared with another account.

Backup and recovery

Keys and key information for a region is backed up to encrypted archives by AWS. Archives require
dual control by AWS to restore.

Key blocks

All keys are stored in ANSI X9 TR-31 format key blocks.

Keys may be imported into the service from cryptograms or other key block formats supported by
ImportKey. Similarly, keys may be exported, if they are exportable, to other key block formats or
cryptograms supported by key export profiles.

Key use

Key use is restricted to the configured KeyUsage by the service. The service will fail any requests
with inappropriate key usage, mode of use, or algorithm for the requested cryptographic
operation.

Key management 148

AWS Payment Cryptography User Guide

Key exchange relationships

PCI PIN Security and PCI P2PE require that organizations that share keys that encrypt PINs,
including the KEK used to share those keys, not share those keys with any other organizations.
It is a best practice that symmetric keys are shared between only 2 parties, including within the
same organization. This minimizes the impact of suspected key compromises that force replacing
impacted keys.

Even business cases that require sharing keys between more than 2 parties, should keep the
number of parties to the minimum number.

AWS Payment Cryptography provides key tags that can be used to track and enforce key usage
within those requirements.

For example, KEK and BDK for different key injection facilities can by identified by setting a
“KIF”=“POSStation” for all keys shared with that service provider. Another example would be
to tag keys shared with payment networks with “Network”=“PayCard”. Tagging enables you to
create access controls and create audit reports to enforce and demonstrate your key management
practices.

Key deletion

DeleteKey marks keys in the database for deletion after a customer-configurable period. After
this period the key is irretrievably deleted. This is a safety mechanism to prevent the accidental
or malicious deletion of a key. Keys marked for deletion are not available for any actions except
RestoreKey.

Deleted keys remain in service backups for 7 days after deletion. They are not restorable during
this period.

Keys belonging to closed AWS accounts are marked for deletion. If the account is reactivated
before the deletion period is reached any keys marked for deletion are restored, but disabled. They
must be re-enabled by you in order to use them for cryptographic operations.

Key sharing

Keys may be shared with other accounts within or outside of your organization using AWS Resource
Access Manager (https://docs.aws.amazon.com/ARG/index.html). Keys may be grouped in a
resource share then shared with an account or specific IAM users and roles within an account.
You specify usage permissions for each resource share. Sharing permissions are restricted by a

Key management 149

AWS Payment Cryptography User Guide

keys resource policy. A shared key will not permit an action restricted by its own policy. Sharing
permission may be withdrawn at any time.

Logging and monitoring

Internal service logs include:

• CloudTrail logs of AWS service calls made by the service

• CloudWatch logs of both events directly logged to CloudWatch logs or events from HSM

• Log files from HSM and service systems

• Log archives

All log sources monitor and filter for sensitive information, including about keys. Logs are
systematically reviewed to ensure that they contain do not contain sensitive customer information.

Access to logs is restricted to individuals needed for completing job roles.

All logs are retained in alignment with AWS log retention policies.

Customer operations

AWS Payment Cryptography has full responsibility for the HSM physical compliance under PCI
standards. The service also provides a secure key store and ensures that keys can only be used
for the purposes permitted by PCI standards and specified by you during creation or import. You
are responsible for configuring key attributes and access to leverage the security and compliance
capabilities of the service.

Topics

• Generating keys

• Importing keys

• Exporting keys

• Deleting keys

• Rotating keys

Customer operations 150

AWS Payment Cryptography User Guide

Generating keys

When creating keys, you set the attributes that the service uses to enforce compliant use of the
key:

• Algorithm and key length

• Usage

• Availability and expiration

Tags that are used for attribute-based access control (ABAC) are used to limit keys for use with
specific partners or applications should also be set during creation. Be sure to include policies to
limit roles permitted to delete or change tags.

You should ensure that the policies that determine the roles that may use and manage the key are
set prior to the creation of the key.

Note

IAM policies on the CreateKey commands may be used to enforce and demonstrate dual
control for key generation.

Importing keys

When importing keys, the attributes to enforce compliant use of the key are set by the service
using the cryptographically bound information in the key block. The mechanism for setting
fundamental key context is to use key blocks created with the source HSM and protected by a
shared or asymmetric KEK. This aligns with PCI PIN requirements and preserves usage, algorithm,
and key strength from the source application.

Important key attributes, tags, and access control policies must be established on import in
addition to the information in the key block.

Importing keys using cryptograms does not transfer key attributes from the source application. You
must set the attributes appropriately by using this mechanism.

Often keys are exchanged using clear text components, transmitted by key custodians, then loaded
with ceremony implementing dual control in a secure room. This is not directly supported by AWS

Generating keys 151

AWS Payment Cryptography User Guide

Payment Cryptography. The API will export a public key with a certificate that can be imported by
your own HSM to export a key block that is importable by the service. The enables use of your own
HSM for loading clear text components.

You should use Key check values (KCV) to verify that imported keys match source keys.

IAM policies on the ImportKey API may be used to enforce and demonstrate dual control for key
import.

Exporting keys

Sharing keys with partners or on-premises applications may require exporting keys. Using key
blocks for exports maintains fundamental key context with the encrypted key material.

Key tags can be used to limit the export of keys to KEK that share the same tag and value.

AWS Payment Cryptography does not provide or display clear text key components. This requires
direct access by key custodians to PCI PTS HSM or ISO 13491 tested secure cryptographic devices
(SCD) for display or printing. You can establish an asymmetric KEK or a symmetric KEK with your
SCD to conduct the clear text key component creation ceremony under dual control.

Key check values (KCV) should be used to verify that imported by the destination HSM match
source keys.

Deleting keys

You can use the delete key API to schedule keys for deletion after a period of time that you
configure. Before that time keys are recoverable. Once keys are deleted they are permanently
removed from the service.

IAM policies on the DeleteKey API may be used to enforce and demonstrate dual control for key
deletion.

Rotating keys

The effect of key rotation can be implemented using key alias by creating or importing a new key,
then modifying the key alias to refer to the new key. The old key would be deleted or disabled,
depending on your management practices.

Exporting keys 152

AWS Payment Cryptography User Guide

Quotas for AWS Payment Cryptography

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

Name Default Adjustabl
e

Description

Aliases Each supported
Region: 2,000

Yes The maximum number
of aliases you can have
in this account in the
current Region.

Combined rate of control plane
requests

Each supported
Region: 5 per
second

Yes The maximum number
of control plane requests
per second that you can
make in this account
in the current Region.
This quota applies to all
control plane operations
combined.

Combined rate of data plane requests
(asymmetric)

Each supported
Region: 20 per
second

Yes The maximum number
of requests per second
for data plane operation
s with an asymmetric
key that you can make
in this account in the
current Region. This
quota applies to all
data plane operations
combined.

Combined rate of data plane requests
(symmetric)

Each supported
Region: 500 per
second

Yes The maximum number
of requests per second
for data plane operation

153

https://console.aws.amazon.com/servicequotas/home/services/payment-cryptography/quotas/L-10DEBB19
https://console.aws.amazon.com/servicequotas/home/services/payment-cryptography/quotas/L-946BFBA8
https://console.aws.amazon.com/servicequotas/home/services/payment-cryptography/quotas/L-BBE04029
https://console.aws.amazon.com/servicequotas/home/services/payment-cryptography/quotas/L-B90266F0

AWS Payment Cryptography User Guide

Name Default Adjustabl
e

Description

s with a symmetric key
that you can make in this
account in the current
Region. This quota
applies to all data plane
operations combined.

Keys Each supported
Region: 2,000

Yes The maximum number
of keys you can have
in this account in the
current Region, excluding
deleted keys.

154

https://console.aws.amazon.com/servicequotas/home/services/payment-cryptography/quotas/L-23280857

AWS Payment Cryptography User Guide

Document history for the AWS Payment Cryptography
User Guide

The following table describes the documentation releases for AWS Payment Cryptography.

Change Description Date

Feature release Information added on
new features around key
import/export using RSA and
exporting DUKPT IPEK/IK
keys.

January 15, 2024

Initial release Initial release of the AWS
Payment Cryptography User
Guide

June 8, 2023

155

	AWS Payment Cryptography
	Table of Contents
	What is AWS Payment Cryptography?
	Concepts
	Industry terminology
	Common key types
	Other terms

	Related services
	For more information
	Endpoints for AWS Payment Cryptography
	Control plane endpoints
	Data plane endpoints

	Getting started with AWS Payment Cryptography
	Prerequisites
	Step 1: Create a key
	Step 2: Generate a CVV2 value using the key
	Step 3: Verify the value generated in step 2
	Step 4: Perform a negative test
	Step 5: (Optional) Clean up

	Managing keys
	Generating keys
	Generating a 2KEY TDES key
	Generating a Pin Encryption Key
	Create an asymmetric (RSA) key
	Generating a PIN Verification Value (PVV) Key

	List keys
	Enabling and disabling keys
	Start key usage
	Stop key usage

	Deleting keys
	About the waiting period

	Import and export keys
	Import keys
	Importing symmetric keys
	Import keys using asymmetric techniques (TR-34)
	Import keys using asymmetric techniques (RSA Unwrap)
	Import symmetric keys using a pre-established key exchange key (TR-31)

	Importing asymmetric (RSA) keys
	Importing RSA public keys

	Export keys
	Exporting symmetric keys
	Export keys using asymmetric techniques (TR-34)
	Export keys using asymmetric techniques (RSA Wrap)
	Export symmetric keys using a pre-established key exchange key (TR-31)
	Export DUKPT Initial Keys (IPEK/IK)

	Exporting asymmetric (RSA) keys

	Using aliases
	About aliases
	Using aliases in your applications
	Related APIs

	Get keys
	Get the public key/certificate associated with a key pair

	Tagging keys
	About tags in AWS Payment Cryptography
	Viewing key tags in the console
	Managing key tags with API operations
	CreateKey: Add tags to a new key
	TagResource: Add or change tags for a key
	ListResourceTags: Get the tags for a key
	UntagResource: Delete tags from a key

	Controlling access to tags
	Tag permissions in policies
	Limiting tag permissions

	Using tags to control access to keys

	Understanding key attributes for AWS Payment Cryptography key
	Symmetric Keys
	Asymmetric Keys

	Data operations
	Encrypt, Decrypt and Re-encrypt data
	Encrypt data
	Encrypt data using AES symmetric key
	Encrypt data using DUKPT key
	Encrypt data using EMV-derived symmetric key
	Encrypt data using an RSA key

	Decrypt data
	Decrypt data using AES symmetric key
	Decrypt data using DUKPT key
	Decrypt data using EMV-derived symmetric key
	Decrypt data using an RSA key

	Generate and verify card data
	Generate card data
	Verify card data

	Generate, translate and verify PIN data
	Translate PIN data
	PIN from PEK to DUKPT
	PIN from DUKPT to AWK

	Generate PIN data
	Verify PIN data
	Validate encrypted PIN

	Verify auth request (ARQC) cryptogram
	Building transaction data
	Transaction data padding
	ISO 9797 Method 1 Padding
	ISO 9797 Method 2 Padding

	Examples
	Visa CVN10
	Visa CVN18 and Visa CVN22

	Generate and verify MAC
	Generate MAC
	Verify MAC

	Valid keys for cryptographic operations
	GenerateCardData
	VerifyCardData
	GeneratePinData (for VISA/ABA schemes)
	GeneratePinData (for IBM3624)
	VerifyPinData (for VISA/ABA schemes)
	VerifyPinData (for IBM3624)
	Decrypt Data
	Encrypt Data
	Translate Pin Data
	VerifyAuthRequestCryptogram
	Unused key types

	Security in AWS Payment Cryptography
	Data protection in AWS Payment Cryptography
	Protecting key material
	Data encryption
	Encryption at rest
	Encryption in transit
	Internetwork traffic privacy

	Resilience in AWS Payment Cryptography
	Regional isolation
	Multi-tenant design

	Infrastructure security in AWS Payment Cryptography
	Isolation of physical hosts

	Security best practices for AWS Payment Cryptography

	Compliance validation for AWS Payment Cryptography
	Identity and access management for AWS Payment Cryptography
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS Payment Cryptography works with IAM
	AWS Payment Cryptography Identity-based policies
	Actions
	Resources
	Examples

	Authorization based on AWS Payment Cryptography tags

	AWS Payment Cryptography identity-based policy examples
	Policy best practices
	Using the AWS Payment Cryptography console
	Allow users to view their own permissions
	Ability to access all aspects of AWS Payment Cryptography
	Ability to call APIs using specified keys
	Ability to specifically deny a resource

	Troubleshooting AWS Payment Cryptography identity and access

	Monitoring AWS Payment Cryptography
	Logging AWS Payment Cryptography API calls using AWS CloudTrail
	AWS Payment Cryptography information in CloudTrail
	Understanding AWS Payment Cryptography log file entries

	Cryptographic details
	Design goals
	Foundations
	Cryptographic primitives
	Entropy and random number generation
	Symmetric key operations
	Asymmetric key operations
	Key storage
	Key import using symmetric keys
	Key import using asymmetric keys
	Key export
	Derived Unique Key Per Transaction (DUKPT) protocol
	Key hierarchy

	Internal operations
	HSM specifications and lifecycle
	HSM device physical security
	HSM initialization
	HSM service and repair
	HSM decommissioning
	HSM firmware update
	Operator access
	Key management
	Generation
	Region main key synchronization
	Region main key rotation
	Profile main key synchronization
	Profile main key rotation
	Protection
	Durability
	Communication security
	External
	Internal

	Management of customer keys
	Customer key space separation
	Backup and recovery
	Key blocks
	Key use
	Key exchange relationships
	Key deletion
	Key sharing

	Logging and monitoring

	Customer operations
	Generating keys
	Importing keys
	Exporting keys
	Deleting keys
	Rotating keys

	Quotas for AWS Payment Cryptography
	Document history for the AWS Payment Cryptography User Guide

