
Using Apache Iceberg on AWS

AWS Prescriptive Guidance

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Using Apache Iceberg on AWS

AWS Prescriptive Guidance: Using Apache Iceberg on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Table of Contents

Introduction ... 1
Modern data lakes ... 2

Advanced use cases in modern data lakes .. 2
Introduction to Apache Iceberg ... 3
AWS support for Apache Iceberg .. 4

Getting started with Iceberg tables in Athena SQL .. 6
Creating an unpartitioned table .. 6
Creating a partitioned table ... 7
Creating a table and loading data with a single CTAS statement .. 7
Inserting, updating, and deleting data .. 8
Querying Iceberg tables .. 8
Iceberg table anatomy .. 9

Working with Iceberg in Amazon EMR .. 12
Version and feature compatibility .. 12
Creating an Amazon EMR cluster with Iceberg .. 12
Developing Iceberg applications in Amazon EMR ... 13

Using Amazon EMR Studio notebooks ... 13
Running Iceberg jobs in Amazon EMR ... 14

Best practices for Amazon EMR .. 18
Working with Iceberg in AWS Glue .. 20

Using native Iceberg integration ... 20
Using a custom Iceberg version .. 20

Using a custom connector .. 21
Bringing your own JAR files ... 22

Spark configurations for Iceberg in AWS Glue .. 23
Best practices for AWS Glue jobs ... 24

Working with Iceberg tables by using Spark ... 26
Creating and writing Iceberg tables ... 26

Using Spark SQL ... 26
Using the DataFrames API .. 27

Updating data in Iceberg tables ... 28
Upserting data in Iceberg tables .. 29
Deleting data in Iceberg tables ... 29
Reading data ... 30

iii

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Using time travel .. 30
Using incremental queries .. 31
Accessing metadata ... 32

Working with Iceberg tables by using Athena SQL ... 33
Version and feature compatibility .. 33

Iceberg table specification support ... 33
Iceberg feature support ... 33

Working with Iceberg tables .. 34
Migrating existing tables to Iceberg .. 35

In-place migration .. 35
Full data migration ... 40

Choosing a migration strategy .. 41
Best practices for optimizing Iceberg workloads .. 43

General best practices ... 43
Optimizing read performance ... 44

Partitioning ... 44
Tuning file sizes ... 46
Optimize column statistics ... 48
Choose the right update strategy ... 49
Use ZSTD compression .. 49
Set the sort order ... 50

Optimizing write performance .. 52
Set the table distribution mode .. 52
Choose the right update strategy ... 52
Choose the right file format .. 53

Optimizing storage .. 54
Enable S3 Intelligent-Tiering .. 54
Archive or delete historic snapshots ... 54
Delete orphan files ... 58

Maintaining tables by using compaction .. 58
Iceberg compaction .. 59
Tuning compaction behavior .. 60
Running compaction with Spark on Amazon EMR or AWS Glue ... 62
Running compaction with Amazon Athena ... 62
Recommendations for running compaction .. 63

Using Iceberg workloads in Amazon S3 .. 64

iv

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Prevent hot partitioning (HTTP 503 errors) .. 64
Use Iceberg maintenance operations to release unused data ... 65
Replicate data across AWS Regions .. 65

Monitoring Iceberg workloads .. 67
Table-level monitoring .. 67
Database-level monitoring ... 69
Preventive maintenance .. 70

Governance and access control ... 72
Reference architectures ... 73

Nightly batch ingestion .. 73
Data lake that combines batch and near real-time ingestion ... 74

Resources .. 75
Contributors ... 76
Document history .. 78
Glossary .. 79

... 79
A ... 80
B ... 83
C ... 85
D ... 88
E ... 92
F ... 94
G ... 95
H ... 96
I .. 97
L ... 99
M .. 100
O .. 104
P ... 107
Q .. 109
R ... 110
S ... 112
T ... 116
U .. 117
V ... 118
W ... 118

v

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Z ... 119

vi

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Using Apache Iceberg on AWS

Amazon Web Services (contributors)

April 2024 (document history)

Apache Iceberg is an open-source table format that simplifies table management while improving
performance. AWS analytics services such as Amazon EMR, AWS Glue, Amazon Athena, and
Amazon Redshift include native support for Apache Iceberg, so you can easily build transactional
data lakes on top of Amazon Simple Storage Service (Amazon S3) on AWS.

This technical guide provides guidance on getting started with Apache Iceberg on different AWS
services, and includes best practices and recommendations for running Apache Iceberg on AWS at
scale while optimizing cost and performance.

This guide applies to anyone who is using Apache Iceberg on AWS, from novice users who want to
swiftly get started with Apache Iceberg to advanced users who want to optimize and tune their
existing Apache Iceberg workloads on AWS.

In this guide:

• Modern data lakes

• Getting started with Iceberg tables in Athena SQL

• Working with Iceberg in Amazon EMR

• Working with Iceberg in AWS Glue

• Working with Iceberg tables by using Spark

• Working with Iceberg tables by using Athena SQL

• Best practices for optimizing Iceberg workloads

• Monitoring Iceberg workloads

• Governance and access control

• Reference architectures

• Resources

• Contributors

1

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Modern data lakes

Advanced use cases in modern data lakes

Data lakes offer one of the best options for storing data in terms of cost, scalability, and flexibility.
You can use a data lake to retain large volumes of structured and unstructured data at a low cost,
and use this data for different types of analytics workloads, from business intelligence reporting to
big data processing, real-time analytics, machine learning, and generative artificial intelligence (AI),
to help guide better decisions.

Despite these benefits, data lakes weren't initially designed with database-like capabilities. A data
lake doesn't provide support for atomicity, consistency, isolation, and durability (ACID) processing
semantics, which you might require to effectively optimize and manage your data at scale across
hundreds or thousands of users by using a multitude of different technologies. Data lakes don't
provide native support for the following functionality:

• Performing efficient record-level updates and deletions as data changes in your business

• Managing query performance as tables grow to millions of files and hundreds of thousands of
partitions

• Ensuring data consistency across multiple concurrent writers and readers

• Preventing data corruption when write operations fail partway through the operation

• Evolving table schemas over time without (partially) rewriting datasets

These challenges have become particularly prevalent in use cases such as handling change data
capture (CDC) or use cases pertaining to privacy, deletion of data, and streaming data ingestion,
which can result in sub-optimal tables.

Data lakes that use the traditional Hive-format tables support write operations only for entire files.
This makes updates and deletes difficult to implement, time consuming, and costly. Moreover,
concurrency controls and guarantees offered in ACID-compliant systems are needed to ensure data
integrity and consistency.

To help overcome these challenges, Apache Iceberg provides additional database-like functionality
that simplifies the optimization and management overhead of data lakes, while still supporting
storage on cost-effective systems such as Amazon Simple Storage Service (Amazon S3).

Advanced use cases in modern data lakes 2

https://aws.amazon.com/s3

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Introduction to Apache Iceberg

Apache Iceberg is an open-source table format that provides features in data lake tables that were
historically only available in databases or data warehouses. It's designed for scale and performance,
and is well-suited for managing tables that are over hundreds of gigabytes. Some of the main
features of Iceberg tables are:

• Delete, update, and merge. Iceberg supports standard SQL commands for data warehousing for
use with data lake tables.

• Fast scan planning and advanced filtering. Iceberg stores metadata such as partition and
column-level statistics that can be used by engines to speed up planning and running queries.

• Full schema evolution. Iceberg supports adding, dropping, updating, or renaming columns
without side-effects.

• Partition evolution. You can update the partition layout of a table as data volume or query
patterns change. Iceberg supports changing the columns that a table is partitioned on, or adding
columns to, or removing columns from, composite partitions.

• Hidden partitioning. This feature prevents reading unnecessary partitions automatically. This
eliminates the need for users to understand the table's partitioning details or to add extra filters
to their queries.

• Version rollback. Users can quickly correct problems by reverting to a pre-transaction state.

• Time travel. Users can query a specific previous version of a table.

• Serializable isolation. Table changes are atomic, so readers never see partial or uncommitted
changes.

• Concurrent writers. Iceberg uses optimistic concurrency to allow multiple transactions to
succeed. In case of conflicts, one of the writers has to retry the transaction.

• Open file formats. Iceberg supports multiple open source file formats, including Apache
Parquet, Apache Avro, and Apache ORC.

In summary, data lakes that use the Iceberg format benefit from transactional consistency, speed,
scale, and schema evolution. For more information about these and other Iceberg features, see the
Apache Iceberg documentation.

Introduction to Apache Iceberg 3

https://parquet.apache.org/
https://parquet.apache.org/
https://avro.apache.org/
https://orc.apache.org/
https://iceberg.apache.org/docs/latest/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

AWS support for Apache Iceberg

Apache Iceberg is supported by popular open-source data processing frameworks and by AWS
services such as Amazon EMR, Amazon Athena, Amazon Redshift, and AWS Glue. The following
diagram depicts a simplified reference architecture of a data lake that's based on Iceberg.

The following AWS services provide native Iceberg integrations. There are additional AWS services
that can interact with Iceberg, either indirectly or by packaging the Iceberg libraries.

• Amazon S3 is the best place to build data lakes because of its durability, availability, scalability,
security, compliance, and audit capabilities. Iceberg was designed and built to interact with
Amazon S3 seamlessly, and provides support for many Amazon S3 features as listed in the
Iceberg documentation.

• Amazon EMR is a big data solution for petabyte-scale data processing, interactive analytics,
and machine learning by using open source frameworks such as Apache Spark, Flink, Trino, and
Hive. Amazon EMR can run on customized Amazon Elastic Compute Cloud (Amazon EC2) clusters,
Amazon Elastic Kubernetes Service (Amazon EKS), AWS Outposts, or Amazon EMR Serverless.

• Amazon Athena is a serverless, interactive analytics service that's built on open source
frameworks. It supports open-table and file formats and provides a simplified, flexible way
to analyze petabytes of data where it lives. Athena provides native support for read, time

AWS support for Apache Iceberg 4

https://aws.amazon.com/pm/emr/
https://aws.amazon.com/athena/
https://aws.amazon.com/pm/redshift/
https://aws.amazon.com/glue/
https://iceberg.apache.org/docs/latest/aws/#s3-fileio

AWS Prescriptive Guidance Using Apache Iceberg on AWS

travel, write, and DDL queries for Iceberg and uses the AWS Glue Data Catalog for the Iceberg
metastore.

• Amazon Redshift is a petabyte-scale cloud data warehouse that supports both cluster-based
and serverless deployment options. Amazon Redshift Spectrum can query external tables that
are registered with the AWS Glue Data Catalog and stored on Amazon S3. Redshift Spectrum
also provides support for the Iceberg storage format.

• AWS Glue is a serverless data integration service that makes it easier to discover, prepare, move,
and integrate data from multiple sources for analytics, machine learning (ML), and application
development. AWS Glue 3.0 and later versions support the Iceberg framework for data lakes. You
can use AWS Glue to perform read and write operations on Iceberg tables in Amazon S3, or work
with Iceberg tables by using the AWS Glue Data Catalog. Additional operations such as insert,
update, Spark queries, and Spark writes are also supported.

• AWS Glue Data Catalog provides a Hive metastore-compatible data catalog service that
supports Iceberg tables.

• AWS Glue crawler provides automations to register Iceberg tables in the AWS Glue Data Catalog.

• Amazon SageMaker supports the storage of feature sets in Amazon SageMaker Feature Store by
using Iceberg format.

• AWS Lake Formation provides coarse and fine-grained access control permissions to access
data, including Iceberg tables consumed by Athena or Amazon Redshift. To learn more about
permissions support for Iceberg tables, see the Lake Formation documentation.

AWS has a wide range of services that support Iceberg, but covering all these services is beyond
the scope of this guide. The following sections cover Spark (batch and structured streaming) on
Amazon EMR and AWS Glue, as well as Amazon Athena SQL. The following section provides a quick
look at Iceberg support in Athena SQL.

AWS support for Apache Iceberg 5

https://docs.aws.amazon.com/lake-formation/latest/dg/working-with-services.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Getting started with Apache Iceberg tables in Amazon
Athena SQL

Amazon Athena provides built-in support for Apache Iceberg. You can use Iceberg without any
additional steps or configuration except for setting up the service prerequisites detailed in the
Getting started section of the Athena documentation. This section provides a brief introduction to
creating tables in Athena. For more information, see Working with Apache Iceberg tables by using
Athena SQL later in this guide.

You can create Iceberg tables on AWS by using different engines. Those tables work seamlessly
across AWS services. To create your first Iceberg tables with Athena SQL, you can use the following
boilerplate code.

CREATE TABLE <table_name> (
 col_1 string,
 col_2 string,
 col_3 bigint,
 col_ts timestamp)
PARTITIONED BY (col_1, <<<partition_transform>>>(col_ts))
LOCATION 's3://<bucket>/<folder>/<table_name>/'
TBLPROPERTIES (
 'table_type' ='ICEBERG'
)

The following sections provide examples of creating partitioned and unpartitioned Iceberg table in
Athena. For more information, see the Iceberg syntax detailed in the Athena documentation.

Creating an unpartitioned table

The following example statement customizes the boilerplate SQL code to create an unpartitioned
Iceberg table in Athena. You can add this statement to the query editor in the Athenaconsole to
create the table.

CREATE TABLE athena_iceberg_table (
 color string,
 date string,
 name string,
 price bigint,

Creating an unpartitioned table 6

https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-creating-tables.html#querying-iceberg-partitioning
https://console.aws.amazon.com/athena/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

 product string,
 ts timestamp)
LOCATION 's3://DOC_EXAMPLE_BUCKET/ice_warehouse/iceberg_db/athena_iceberg_table/'
TBLPROPERTIES (
 'table_type' ='ICEBERG'
)

For step-by-step instructions for using the query editor, see Getting started in the Athena
documentation.

Creating a partitioned table

The following statement creates a partitioned table based on the date by using Iceberg's concept
of hidden partitioning. It uses the day() transform to derive daily partitions, using the dd-mm-
yyyy format, out of a timestamp column. Iceberg doesn't store this value as a new column in the
dataset. Instead, the value is derived on the fly when when you write or query data.

CREATE TABLE athena_iceberg_table_partitioned (
 color string,
 date string,
 name string,
 price bigint,
 product string,
 ts timestamp)
PARTITIONED BY (day(ts))
LOCATION 's3://DOC_EXAMPLE_BUCKET/ice_warehouse/iceberg_db/athena_iceberg_table/'
TBLPROPERTIES (
 'table_type' ='ICEBERG'
)

Creating a table and loading data with a single CTAS statement

In the partitioned and unpartitioned examples in the previous sections, the Iceberg tables
are created as empty tables. You can load data to the tables by using the INSERT or MERGE
statement. Alternatively, you can use a CREATE TABLE AS SELECT (CTAS) statement to create
and load data into an Iceberg table in a single step.

CTAS is the best way in Athena to create a table and load data in a single statement. The following
example illustrates how to use CTAS to create an Iceberg table (iceberg_ctas_table) from an
existing Hive/Parquet table (hive_table) in Athena.

Creating a partitioned table 7

https://docs.aws.amazon.com/athena/latest/ug/getting-started.html
https://iceberg.apache.org/docs/latest/partitioning/#icebergs-hidden-partitioning

AWS Prescriptive Guidance Using Apache Iceberg on AWS

CREATE TABLE iceberg_ctas_table WITH (
 table_type = 'ICEBERG',
 is_external = false,
 location = 's3://DOC_EXAMPLE_BUCKET/ice_warehouse/iceberg_db/iceberg_ctas_table/'
) AS
SELECT * FROM "iceberg_db"."hive_table" limit 20

SELECT * FROM "iceberg_db"."iceberg_ctas_table" limit 20

To learn more about CTAS, see the Athena CTAS documentation.

Inserting, updating, and deleting data

Athena supports different ways of writing data to an Iceberg table by using the INSERT INTO,
UPDATE, MERGE INTO, and DELETE FROM statements.

Note: UPDATE, MERGE INTO, and DELETE FROM use the merge-on-read approach with positional
deletes. The copy-on-write approach isn't currently supported in Athena SQL.

For example, the following statement uses INSERT INTO to add data to an Iceberg table:

INSERT INTO "iceberg_db"."ice_table" VALUES (
 'red', '222022-07-19T03:47:29', 'PersonNew', 178, 'Tuna', now()
)

SELECT * FROM "iceberg_db"."ice_table"
where color = 'red' limit 10;

Sample output:

For more information, see the Athena documentation.

Querying Iceberg tables

You can run regular SQL queries against your Iceberg tables by using Athena SQL, as illustrated in
the previous example.

Inserting, updating, and deleting data 8

https://docs.aws.amazon.com/athena/latest/ug/ctas.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-updating-iceberg-table-data.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

In addition to the usual queries, Athena also supports time travel queries for Iceberg tables. As
discussed previously, you can change existing records through updates or deletes in an Iceberg
table, so it's convenient to use time travel queries to look back into older versions of your table
based on a timestamp or a snapshot ID.

For example, the following statement updates a color value for Person5, and then displays an
earlier value from January 4, 2023:

UPDATE ice_table SET color='new_color' WHERE name='Person5'

SELECT * FROM "iceberg_db"."ice_table" FOR TIMESTAMP AS OF TIMESTAMP '2023-01-04
 12:00:00 UTC'

Sample output:

For syntax and additional examples of time travel queries, see the Athena documentation.

Iceberg table anatomy

Now that we've covered the basic steps of working with Iceberg tables, let's dive deeper into the
intricate details and design of an Iceberg table.

To enable the features described earlier in this guide, Iceberg is designed with hierarchical layers of
data and metadata files. These layers manage metadata intelligently to optimize query planning
and execution.

The following diagram portrays the organization of an Iceberg table through two perspectives: the
AWS services used to store the table and the file placement in Amazon S3.

Iceberg table anatomy 9

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-table-data.html#querying-iceberg-time-travel-and-version-travel-queries

AWS Prescriptive Guidance Using Apache Iceberg on AWS

As shown in the diagram, an Iceberg table consists of three main layers:

• Iceberg catalog: AWS Glue Data Catalog integrates natively with Iceberg and is, for most use
cases, the best option for workloads that run on AWS. Services that interact with Iceberg tables
(for example, Athena) use the catalog to find the current snapshot version of the table, either to
read or to write data.

• Metadata layer: Metadata files, namely the manifest files and manifest list files, keep track of
information such as the schema of the tables, the partition strategy, and the location of the data
files, as well as column-level statistics such as minimum and maximum ranges for the records
that are stored in each data file. These metadata files are stored in Amazon S3 within the table
path.

• Manifest files contain a record for each data file, including its location, format, size, checksum,
and other relevant information.

• Manifest lists provide an index of the manifest files. As the number of manifest files grows
in a table, breaking up that information into smaller subsections helps reduce the number of
manifest files that need to be scanned by queries.

Iceberg table anatomy 10

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Metadata files contain information about the whole Iceberg table, including the manifest lists,
the schemas, partition metadata, snapshot files, and other files that are used to manage the
table's metadata.

• Data layer: This layer contains the files that have the data records that queries will run against.
These files can be stored in different formats, including Apache Parquet, Apache Avro, and
Apache ORC.

• Data files contain the data records for a table.

• Delete files encode row-level delete and update operations in an Iceberg table. Iceberg has
two types of delete files, as described in the Iceberg documentation. These files are created by
operations by using the merge-on-read mode.

Iceberg table anatomy 11

https://parquet.apache.org/
https://avro.apache.org/
https://orc.apache.org/
https://iceberg.apache.org/spec/#delete-formats

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Working with Apache Iceberg in Amazon EMR

Amazon EMR provides petabyte-scale data processing, interactive analytics, and machine learning
in the cloud by using open source frameworks such as Apache Spark, Apache Hive, Flink, and Trino.

Note

This guide uses Apache Spark for examples.

Amazon EMR supports multiple deployment options: Amazon EMR on Amazon EC2, Amazon
EMR on Amazon EKS, Amazon EMR Serverless, and Amazon EMR on AWS Outposts. To choose a
deployment option for your workload, see the Amazon EMR FAQ.

Version and feature compatibility

Amazon EMR version 6.5.0 and later versions support Apache Iceberg natively. For a list of
supported Iceberg versions for each Amazon EMR release, see Iceberg release history in the
Amazon EMR documentation. Also review considerations and limitations for using Iceberg on
Amazon EMR to see which Iceberg features are supported in Amazon EMR on different frameworks.

We recommend that you use the latest Amazon EMR version to benefit from the latest supported
Iceberg version. The code examples and configurations in this section assume that you're using
Amazon EMR release emr-6.9.0.

Creating an Amazon EMR cluster with Iceberg

To create an Amazon EMR cluster on Amazon EC2 with Iceberg installed, follow the instructions in
the Amazon EMR documentation.

Specifically, your cluster should be configured with the following classification:

[{
 "Classification": "iceberg-defaults",
 "Properties": {
 "iceberg.enabled": "true"
 }

Version and feature compatibility 12

https://aws.amazon.com/emr/faqs/
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/Iceberg-release-history.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg-considerations.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg-considerations.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg-use-cluster.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

}]

You can also choose to use Amazon EMR Serverless or Amazon EMR on Amazon EKS as deployment
options for your Iceberg workloads, starting from Amazon EMR 6.6.0.

Developing Iceberg applications in Amazon EMR

To develop the Spark code for your Iceberg applications, you can use Amazon EMR Studio, which is
a web-based integrated development environment (IDE) for fully managed Jupyter notebooks that
run on Amazon EMR clusters.

Using Amazon EMR Studio notebooks

You can interactively develop Spark applications in Amazon EMR Studio Workspace notebooks
and connect those notebooks to your Amazon EMR on Amazon EC2 clusters or Amazon EMR on
Amazon EKS managed endpoints. See AWS service documentation for instructions on setting up an
EMR Studio for Amazon EMR on Amazon EC2 and Amazon EMR on Amazon EKS.

To use Iceberg in EMR Studio, follow these steps:

1. Launch an Amazon EMR cluster with Iceberg enabled, as instructed in Use a cluster with Iceberg
Installed.

2. Set up an EMR Studio. For instructions, see Set up an Amazon EMR Studio.

3. Open an EMR Studio Workspace notebook and run the following code as the first cell in the
notebook to configure your Spark session for using Iceberg:

%%configure -f
{
 "conf": {
 "spark.sql.catalog.<catalog_name>": "org.apache.iceberg.spark.SparkCatalog",
 "spark.sql.catalog.<catalog_name>.warehouse": "s3://YOUR-BUCKET-NAME/YOUR-
FOLDER-NAME/",
 "spark.sql.catalog.<catalog_name>.catalog-impl":
 "org.apache.iceberg.aws.glue.GlueCatalog",
 "spark.sql.catalog.<catalog_name>.io-impl":
 "org.apache.iceberg.aws.s3.S3FileIO",
 "spark.sql.extensions":
 "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions"
 }

Developing Iceberg applications in Amazon EMR 13

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-set-up.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-create-eks-cluster.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg-use-cluster.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg-use-cluster.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-studio-set-up.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

}

where:

• <catalog_name> is your Iceberg Spark session catalog name. Replace it with the name of
your catalog, and remember to change the references throughout all configurations that are
associated with this catalog. In your code, you should then refer to your Iceberg tables with
the fully qualified table name, including the Spark session catalog name, as follows:

<catalog_name>.<database_name>.<table_name>

• <catalog_name>.warehouse points to the Amazon S3 path where you want to store your
data and metadata.

• To make the catalog an AWS Glue Data Catalog, set <catalog_name>.catalog-impl
to org.apache.iceberg.aws.glue.GlueCatalog. This key is required to point to an
implementation class for any custom catalog implementation. The General best practices
section later in this guide describes the different Iceberg-supported catalogs.

• Use org.apache.iceberg.aws.s3.S3FileIO as the <catalog_name>.io-impl in order
to take advantage of Amazon S3 multipart upload for high parallelism.

4. You can now start interactively developing your Spark application for Iceberg in the notebook,
as you would for any other Spark application.

For more information about configuring Spark for Apache Iceberg by using Amazon EMR Studio,
see the blog post Build a high-performance, ACID compliant, evolving data lake using Apache
Iceberg on Amazon EMR.

Running Iceberg jobs in Amazon EMR

After you develop the Spark application code for your Iceberg workload, you can run it on any
Amazon EMR deployment option that supports Iceberg (see the Amazon EMR FAQ).

As with other Spark jobs, you can submit work to an Amazon EMR on Amazon EC2 cluster by
adding steps or by interactively submitting Spark jobs to the master node. To run a Spark job, see
the following Amazon EMR documentation pages:

• For an overview of the different options for submitting work to an Amazon EMR on Amazon EC2
cluster and detailed instructions for each option, see Submit work to a cluster.

• For Amazon EMR on Amazon EKS, see Running Spark jobs with StartJobRun.

Running Iceberg jobs in Amazon EMR 14

https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-evolving-data-lake-using-apache-iceberg-on-amazon-emr/
https://aws.amazon.com/blogs/big-data/build-a-high-performance-acid-compliant-evolving-data-lake-using-apache-iceberg-on-amazon-emr/
https://aws.amazon.com/emr/faqs/#Deployment_options
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-work-with-steps.html
https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/job-runs.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• For Amazon EMR Serverless, see Running jobs.

The following sections provide an example for each Amazon EMR deployment option.

Amazon EMR on Amazon EC2

You can use these steps to submit the Iceberg Spark job:

1. Create the file emr_step_iceberg.json with the following content on your workstation:

[{
 "Name": "iceberg-test-job",
 "Type": "spark",
 "ActionOnFailure": "CONTINUE",
 "Args": [
 "--deploy-mode",
 "client",
 "--conf",

 "spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
 "--conf",
 "spark.sql.catalog.<catalog_name>=org.apache.iceberg.spark.SparkCatalog",
 "--conf",
 "spark.sql.catalog.<catalog_name>.catalog-
impl=org.apache.iceberg.aws.glue.GlueCatalog",
 "--conf",
 "spark.sql.catalog.<catalog_name>.warehouse=s3://YOUR-BUCKET-NAME/YOUR-
FOLDER-NAME/",
 "--conf",
 "spark.sql.catalog.<catalog_name>.io-
impl=org.apache.iceberg.aws.s3.S3FileIO",
 "s3://YOUR-BUCKET-NAME/code/iceberg-job.py"
]
}]

2. Modify the configuration file for your specific Spark job by customizing the Iceberg
configuration options that are highlighted in bold.

3. Submit the step by using the AWS Command Line Interface (AWS CLI). Run the command in the
directory where the emr_step_iceberg.json file is located.

aws emr add-steps ‐‐cluster-id <cluster_id> ‐‐steps file://emr_step_iceberg.json

Running Iceberg jobs in Amazon EMR 15

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Amazon EMR Serverless

To submit an Iceberg Spark job to Amazon EMR Serverless by using the AWS CLI:

1. Create the file emr_serverless_iceberg.json with the following content on your
workstation:

{
 "applicationId": "<APPLICATION_ID>",
 "executionRoleArn": "<ROLE_ARN>",
 "jobDriver": {
 "sparkSubmit": {
 "entryPoint": "s3://YOUR-BUCKET-NAME/code/iceberg-job.py",
 "entryPointArguments": [],
 "sparkSubmitParameters": "--jars /usr/share/aws/iceberg/lib/iceberg-
spark3-runtime.jar"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {
 "spark.sql.extensions":
 "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
 "spark.sql.catalog.<catalog_name>":
 "org.apache.iceberg.spark.SparkCatalog",
 "spark.sql.catalog.<catalog_name>.catalog-impl":
 "org.apache.iceberg.aws.glue.GlueCatalog",
 "spark.sql.catalog.<catalog_name>.warehouse": "s3://YOUR-BUCKET-NAME/
YOUR-FOLDER-NAME/",
 "spark.sql.catalog.<catalog_name>.io-impl":
 "org.apache.iceberg.aws.s3.S3FileIO",
 "spark.jars":"/usr/share/aws/iceberg/lib/iceberg-spark3-runtime.jar",

 "spark.hadoop.hive.metastore.client.factory.class":"com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"
 }
 }],
 "monitoringConfiguration": {
 "s3MonitoringConfiguration": {
 "logUri": "s3://YOUR-BUCKET-NAME/emr-serverless/logs/"
 }
 }
 }

Running Iceberg jobs in Amazon EMR 16

AWS Prescriptive Guidance Using Apache Iceberg on AWS

}

2. Modify the configuration file for your specific Spark job by customizing the Iceberg
configuration options that are highlighted in bold.

3. Submit the job by using the AWS CLI. Run the command in the directory where the
emr_serverless_iceberg.json file is located:

aws emr-serverless start-job-run ‐‐cli-input-json file://emr_serverless_iceberg.json

To submit an Iceberg Spark job to Amazon EMR Serverless by using the EMR Studio console:

1. Follow the instructions in the Amazon EMR Serverless documentation.

2. For Job configuration, use the Iceberg configuration for Spark provided for the AWS CLI and
customize the highlighted fields for Iceberg. For detailed instructions, see Using Apache Iceberg
with EMR Serverless in the Amazon EMR documentation.

Amazon EMR on Amazon EKS

To submit an Iceberg Spark job to Amazon EMR on Amazon EKS by using the AWS CLI:

1. Create the file emr_eks_iceberg.json with the following content on your workstation:

{
 "name": "iceberg-test-job",
 "virtualClusterId": "<VIRTUAL_CLUSTER_ID>",
 "executionRoleArn": "<ROLE_ARN>",
 "releaseLabel": "emr-6.9.0-latest",
 "jobDriver": {
 "sparkSubmitJobDriver": {
 "entryPoint": "s3://YOUR-BUCKET-NAME/code/iceberg-job.py",
 "entryPointArguments": [],
 "sparkSubmitParameters": "--jars local:///usr/share/aws/iceberg/lib/
iceberg-spark3-runtime.jar"
 }
 },
 "configurationOverrides": {
 "applicationConfiguration": [{
 "classification": "spark-defaults",
 "properties": {

Running Iceberg jobs in Amazon EMR 17

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-studio.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-iceberg.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-iceberg.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

 "spark.sql.extensions":
 "org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
 "spark.sql.catalog.<catalog_name>":
 "org.apache.iceberg.spark.SparkCatalog",
 "spark.sql.catalog.<catalog_name>.catalog-impl":
 "org.apache.iceberg.aws.glue.GlueCatalog",
 "spark.sql.catalog.<catalog_name>.warehouse": "s3://YOUR-BUCKET-NAME/
YOUR-FOLDER-NAME/",
 "spark.sql.catalog.<catalog_name>.io-impl":
 "org.apache.iceberg.aws.s3.S3FileIO",
 "spark.hadoop.hive.metastore.client.factory.class":
 "com.amazonaws.glue.catalog.metastore.AWSGlueDataCatalogHiveClientFactory"
 }
 }],
 "monitoringConfiguration": {
 "persistentAppUI": "ENABLED",
 "s3MonitoringConfiguration": {
 "logUri": "s3://YOUR-BUCKET-NAME/emr-serverless/logs/"
 }
 }
 }
}

2. Modify the configuration file for your Spark job by customizing the Iceberg configuration
options that are highlighted in bold.

3. Submit the job by using the AWS CLI. Run the following command in the directory where the
emr_eks_iceberg.json file is located:

aws emr-containers start-job-run ‐‐cli-input-json file://emr_eks_iceberg.json

For detailed instructions, see Using Apache Iceberg with Amazon EMR on EKS in the Amazon EMR
on EKS documentation.

Best practices for Amazon EMR

This section provides general guidelines for tuning Spark jobs in Amazon EMR to optimize reading
and writing data to Iceberg tables. For Iceberg-specific best practices, see the Best practices section
later in this guide.

Best practices for Amazon EMR 18

https://docs.aws.amazon.com/emr/latest/EMR-on-EKS-DevelopmentGuide/tutorial-iceberg.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Use the latest version of Amazon EMR – Amazon EMR provides Spark optimizations out of the
box with the Amazon EMR Spark runtime. AWS improves the performance of the Spark runtime
engine with each new release.

• Determine the optimal infrastructure for your Spark workloads – Spark workloads might
require different types of hardware for different job characteristics to ensure optimal
performance. Amazon EMR supports several instance types (such as compute optimized,
memory optimized, general purpose, and storage optimized) to cover all types of processing
requirements. When you onboard new workloads, we recommend that you benchmark with
general instance types such as M5 or M6g. Monitor the operating system (OS) and YARN metrics
from Ganglia and Amazon CloudWatch to determine the system bottlenecks (CPU, memory,
storage, and I/O) at peak load and choose appropriate hardware.

• Tune spark.sql.shuffle.partitions – Set the spark.sql.shuffle.partitions
property to the total number of virtual cores (vCores) in your cluster or to a multiple of that
value (typically, 1 to 2 times the total number of vCores). This setting affects the parallelism of
Spark when you use hash and range partitioning as the write distribution mode. It requests a
shuffle before writing to organize the data, which ensures partition alignment.

• Enable managed scaling – For almost all use cases, we recommend that you enable managed
scaling and dynamic allocation. However, if you have a workload that has a predictable pattern,
we suggest that you disable automatic scaling and dynamic allocation. When managed scaling is
enabled, we recommend that you use Spot Instances to reduce costs. Use Spot Instances for task
nodes instead of core or master nodes. When you use Spot Instances, use instance fleets with
multiple instance types per fleet to ensure spot availability.

• Use broadcast join when possible – Broadcast (mapside) join is the most optimal join, as long
as one of your tables is small enough to fit in the memory of your smallest node (in the order
of MBs) and you are performing an equi (=) join. All join types except for full outer joins are
supported. A broadcast join broadcasts the smaller table as a hash table across all worker nodes
in memory. After the small table has been broadcast, you cannot make changes to it. Because
the hash table is locally in the Java virtual machine (JVM), it can be merged easily with the large
table based on the join condition by using a hash join. Broadcast joins provide high performance
because of minimal shuffle overhead.

• Tune the garbage collector – If garbage collection (GC) cycles are slow, consider switching
from the default parallel garbage collector to G1GC for better performance. To optimize GC
performance, you can fine-tune the GC parameters. To track GC performance, you can monitor it
by using the Spark UI. Ideally, the GC time should be less than or equal to 1 percent of the total
task runtime.

Best practices for Amazon EMR 19

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-supported-instance-types.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Working with Apache Iceberg in AWS Glue

AWS Glue is a serverless data integration service that makes it easier to discover, prepare, move,
and integrate data from multiple sources for analytics, machine learning (ML), and application
development. One of the core capabilities of AWS Glue is its ability to perform extract, transform,
and load (ETL) operations in a simple and cost-effective manner. This helps categorize your data,
clean it, enrich it, and move it reliably between various data stores and data streams.

AWS Glue jobs encapsulate scripts that define transformation logic by using an Apache Spark or
Python runtime. AWS Glue jobs can be run in both batch and streaming mode.

When you create Iceberg jobs in AWS Glue, depending on the version of AWS Glue, you can use
either native Iceberg integration or a custom Iceberg version to attach Iceberg dependencies to the
job.

Using native Iceberg integration

AWS Glue versions 3.0 and 4.0 natively support transactional data lake formats such as Apache
Iceberg, Apache Hudi, and Linux Foundation Delta Lake in AWS Glue for Spark. This integration
feature simplifies the configuration steps required to start using these frameworks in AWS Glue.

To enable Iceberg support for your AWS Glue job, set the job: Choose the Job details tab for
your AWS Glue job, scroll to Job parameters under Advanced properties, and set the key to --
datalake-formats and its value to iceberg.

If you are authoring a job by using a notebook, you can configure the parameter in the first
notebook cell by using the %%configure magic as follows:

%%configure
{
 "--conf" : <job-specific Spark configuration discussed later>,
 "--datalake-formats" : "iceberg"
}

Using a custom Iceberg version

In some situations, you might want to retain control over the Iceberg version for the job and
upgrade it at your own pace. For example, upgrading to a later version can unlock access to new

Using native Iceberg integration 20

https://aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/etl-jobs-section.html
https://spark.apache.org/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

features and performance enhancements. To use a specific Iceberg version with AWS Glue, you can
use a custom connector or your own JAR file.

Using a custom connector

AWS Glue supports connectors, which are optional code packages that assist with accessing data
stores in AWS Glue Studio. You can subscribe to a connector in AWS Marketplace, or you can create
a custom connector.

Note

AWS Marketplace offers the Apache Iceberg connector for AWS Glue. However, we
recommend that you use a custom connector instead to retain control over Iceberg
versions.

For example, to create a customer connector for Iceberg version 0.13.1, follow these steps:

1. Upload the files iceberg-spark-runtime-3.1_2.12-0.13.1.jar,
bundle-2.17.161.jar, and url-connection-client-2.17.161.jar to an Amazon S3
bucket. You can download these files from their respective Apache Maven repositories.

2. On the AWS Glue Studio console, create a custom Spark connector:

a. In the navigation pane, choose Data connections. (If you're using the older navigation, choose
Connectors, Create custom connector.)

b. In the Connectors box, choose Create custom connector.

c. On the Create custom connector page:

• Specify the path to the JAR files in Amazon S3.

• Enter a name for the connector.

• Choose Spark as the connector type.

• For Class name, specify the fully qualified data source class name (or its alias) that you use
when loading the Spark data source with the format operator.

• (Optional) Provide a description of the connector.

3. Choose Create connector.

Using a custom connector 21

https://docs.aws.amazon.com/glue/latest/dg/connectors-chapter.html#subscribe-marketplace-connectors
https://aws.amazon.com/marketplace/pp/prodview-iicxofvpqvsio
https://console.aws.amazon.com/gluestudio/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

When you work with connectors in AWS Glue, you must create a connection for the connector.
A connection contains the properties that are required to connect to a particular data store.
You use the connection with your data sources and data targets in the ETL job. Connectors and
connections work together to facilitate access to the data stores.

To create a connection by using the custom Iceberg connector you created:

1. On the AWS Glue Studio console, select your custom Iceberg connector.

2. Follow the prompts to supply the details, such as your VPC and other network configurations
required by the job, and then choose Create connection.

You can now use the connection in your AWS Glue ETL job. Depending on how you create the job,
there are different ways to attach the connection to your job:

• If you create a visual job by using AWS Glue Studio, you can select the connection from the
Connection list on the Data source properties – Connector tab.

• If you develop the job in a notebook, use the %connections magic to set the connection name:

%glue_version 3.0

%connections <name-of-the iceberg-connection>

%%configure
{
 "--conf" : "job-specific Spark configurations, to be discussed later",
 "--datalake-formats" : "iceberg"
}

• If you author the job by using the script editor, specify the connection on the Job details tab,
under Advanced properties, Additional network connections.

For more information about the procedures in this section, see Using connectors and connections
with AWS Glue Studio in the AWS Glue documentation.

Bringing your own JAR files

In AWS Glue, you can also work with Iceberg without having to use a connector. This approach
is useful when you want to retain control over the Iceberg version and quickly update it. To
use this option, upload the required Iceberg JAR files into an S3 bucket of your choice and

Bringing your own JAR files 22

https://console.aws.amazon.com/gluestudio/
https://docs.aws.amazon.com/glue/latest/dg/connectors-chapter.html
https://docs.aws.amazon.com/glue/latest/dg/connectors-chapter.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

reference the files in your AWS Glue job. For example, if you're working with Iceberg 1.0.0, the
required JAR files are iceberg-spark-runtime-3.0_2.12-1.0.0.jar, url-connection-
client-2.15.40.jar, and bundle-2.15.40.jar. You can also prioritize the additional JAR
files in the class path by setting the --user-jars-first parameter to true for the job.

Spark configurations for Iceberg in AWS Glue

This section discusses the Spark configurations required to author an AWS Glue ETL job for an
Iceberg dataset. You can set these configurations by using the --conf Spark key with a comma-
separated list of all Spark configuration keys and values. You can use the %%configure magic in a
notebook, or the Job parameters section of the AWS Glue Studio console.

%glue_version 3.0

%connections <name-of-the iceberg-connection>

%%configure
{
 "--conf" : "spark.sql.extensions=org.apache.iceberg.spark.extensions...",
 "--datalake-formats" : "iceberg"
}

Configure the Spark session with the following properties:

• <catalog_name> is your Iceberg Spark session catalog name. Replace it with the name of
your catalog, and remember to change the references throughout all configurations that
are associated with this catalog. In your code, you should then refer to your Iceberg tables
with the fully qualified table name, including the Spark session catalog name, as follows:
<catalog_name>.<database_name>.<table_name>.

• <catalog_name>.<warehouse> points to the Amazon S3 path where you want to store your
data and metadata.

• To make the catalog an AWS Glue Data Catalog, set <catalog_name>.catalog-impl
to org.apache.iceberg.aws.glue.GlueCatalog. This key is required to point to an
implementation class for any custom catalog implementation. For catalogs supported by Iceberg,
see the General best practices??? section later in this guide.

• Use org.apache.iceberg.aws.s3.S3FileIO as the <catalog_name>.io-impl in order to
take advantage of Amazon S3 multipart upload for high parallelism.

Spark configurations for Iceberg in AWS Glue 23

AWS Prescriptive Guidance Using Apache Iceberg on AWS

For example, if you have a catalog called glue_iceberg, you can configure your job by using
multiple --conf keys as follows:

%%configure
{
 "‐‐datalake-formats" : "iceberg",
 "‐‐conf" :
 "spark.sql.extensions=org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
 "‐‐conf" : "spark.sql.catalog.glue_iceberg=org.apache.iceberg.spark.SparkCatalog",
 "‐‐conf" : "spark.sql.catalog.glue_iceberg.warehouse=s3://<your-warehouse-dir>=>/",
 "‐‐conf" : " spark.sql.catalog.glue_iceberg.catalog-
impl=org.apache.iceberg.aws.glue.GlueCatalog ",
 "‐‐conf" : " spark.sql.catalog.glue_iceberg.io-
impl=org.apache.iceberg.aws.s3.S3FileIO
}

Alternatively, you can use code to add the above configurations to your Spark script as follows:

spark = SparkSession.builder\

 .config("spark.sql.extensions","org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions")\
 .config("spark.sql.catalog.glue_iceberg",
 "org.apache.iceberg.spark.SparkCatalog")\
 .config("spark.sql.catalog.glue_iceberg.warehouse","s3://<your-
warehouse-dir>/")\
 .config("spark.sql.catalog.glue_iceberg.catalog-impl",
 "org.apache.iceberg.aws.glue.GlueCatalog") \
 .config("spark.sql.catalog.glue_iceberg.io-impl",
 "org.apache.iceberg.aws.s3.S3FileIO") \
 .getOrCreate()

Best practices for AWS Glue jobs

This section provides general guidelines for tuning Spark jobs in AWS Glue to optimize reading and
writing data to Iceberg tables. For Iceberg-specific best practices, see the Best practices section
later in this guide.

• Use the latest version of AWS Glue and upgrade whenever possible – New versions of AWS
Glue provide performance improvements, reduced startup times, and new features. They also
support newer Spark versions that might be required for the latest Iceberg versions. For a

Best practices for AWS Glue jobs 24

AWS Prescriptive Guidance Using Apache Iceberg on AWS

list of available AWS Glue versions and the Spark versions they support, see the AWS Glue
documentation.

• Optimize AWS Glue job memory – Follow the recommendations in the AWS blog post Optimize
memory management in AWS Glue.

• Use AWS Glue Auto Scaling – When you enable Auto Scaling, AWS Glue automatically adjusts
the number of AWS Glue workers dynamically based on your workload. This helps reduce the
cost of your AWS Glue job during peak loads, because AWS Glue scales down the number of
workers when the workload is small and workers are sitting idle. To use AWS Glue Auto Scaling,
you specify a maximum number of workers that your AWS Glue job can scale to. For more
information, see Using auto scaling for AWS Glue in the AWS Glue documentation.

• Use custom connectors or add library dependencies - AWS Glue native integration for Iceberg
is best for getting started with Iceberg. However, for production workloads, we recommend that
you use custom containers or add library dependencies (as discussed earlier in this guide) to get
full control over the Iceberg version. This approach helps you benefit from the latest Iceberg
features and performance improvements in your AWS Glue jobs.

• Enable the Spark UI for monitoring and debugging – You can also use the Spark UI in AWS
Glue to inspect your Iceberg job by visualizing the different stages of a Spark job in a directed
acyclic graph (DAG) and monitoring the jobs in detail. Spark UI provides an effective way to
both troubleshoot and optimize Iceberg jobs. For example, you can identify bottleneck stages
that have large shuffles or disk spill to identify tuning opportunities. For more information, see
Monitoring jobs using the Apache Spark web UI in the AWS Glue documentation.

Best practices for AWS Glue jobs 25

https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://docs.aws.amazon.com/glue/latest/dg/release-notes.html
https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/
https://aws.amazon.com/blogs/big-data/optimize-memory-management-in-aws-glue/
https://docs.aws.amazon.com/glue/latest/dg/auto-scaling.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html
https://docs.aws.amazon.com/glue/latest/dg/monitor-spark-ui.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Working with Apache Iceberg tables by using Apache
Spark

This section provides an overview of using Apache Spark to interact with Iceberg tables. The
examples are boilerplate code that can run on Amazon EMR or AWS Glue.

Note: The primary interface for interacting with Iceberg tables is SQL, so most of the examples will
combine Spark SQL with the DataFrames API.

Creating and writing Iceberg tables

You can use Spark SQL and Spark DataFrames to create and add data to Iceberg tables.

Using Spark SQL

To write an Iceberg dataset, use standard Spark SQL statements such as CREATE TABLE and
INSERT INTO.

Unpartitioned tables

Here's an example of creating an unpartitioned Iceberg table with Spark SQL:

spark.sql(f"""
 CREATE TABLE IF NOT EXISTS {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_nopartitions (
 c_customer_sk int,
 c_customer_id string,
 c_first_name string,
 c_last_name string,
 c_birth_country string,
 c_email_address string)
 USING iceberg
 OPTIONS ('format-version'='2')
""")

To insert data into an unpartitioned table, use a standard INSERT INTO statement:

spark.sql(f"""
INSERT INTO {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_nopartitions

Creating and writing Iceberg tables 26

AWS Prescriptive Guidance Using Apache Iceberg on AWS

SELECT c_customer_sk, c_customer_id, c_first_name, c_last_name, c_birth_country,
 c_email_address
FROM another_table
""")

Partitioned tables

Here's an example of creating a partitioned Iceberg table with Spark SQL:

spark.sql(f"""
 CREATE TABLE IF NOT EXISTS {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_withpartitions (
 c_customer_sk int,
 c_customer_id string,
 c_first_name string,
 c_last_name string,
 c_birth_country string,
 c_email_address string)
 USING iceberg
 PARTITIONED BY (c_birth_country)
 OPTIONS ('format-version'='2')
""")

To insert data into a partitioned Iceberg table with Spark SQL, you perform a global sort and then
write the data:

spark.sql(f"""
INSERT INTO {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_withpartitions
SELECT c_customer_sk, c_customer_id, c_first_name, c_last_name, c_birth_country,
 c_email_address
FROM another_table
ORDER BY c_birth_country
""")

Using the DataFrames API

To write an Iceberg dataset, you can use the DataFrameWriterV2 API.

To create an Iceberg table and write data to it, use the df.writeTo(t) function. If the table
exists, use the .append() function. If it doesn't, use .create(). The following examples use
.createOrReplace(), which is a variation of .create() that's equivalent to CREATE OR
REPLACE TABLE AS SELECT.

Using the DataFrames API 27

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Unpartitioned tables

To create and populate an unpartitioned Iceberg table by using the DataFrameWriterV2 API:

input_data.writeTo(f"{CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_nopartitions") \
 .tableProperty("format-version", "2") \
 .createOrReplace()

To insert data into an existing unpartitioned Iceberg table by using the DataFrameWriterV2 API:

input_data.writeTo(f"{CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_nopartitions") \
 .append()

Partitioned tables

To create and populate a partitioned Iceberg table by using the DataFrameWriterV2 API, you can
use a local sort to ingest data:

input_data.sortWithinPartitions("c_birth_country") \
 .writeTo(f"{CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_withpartitions") \
 .tableProperty("format-version", "2") \
 .partitionedBy("c_birth_country") \
 .createOrReplace()

To insert data into a partitioned Iceberg table by using the DataFrameWriterV2 API, you can use
a global sort to ingest data:

input_data.orderBy("c_birth_country") \
 .writeTo(f"{CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}_withpartitions") \
 .append()

Updating data in Iceberg tables

The following example shows how to update data in an Iceberg table. This example modifies all
rows that have an even number in the c_customer_sk column.

spark.sql(f"""
UPDATE {CATALOG_NAME}.{db.name}.{table.name}
SET c_email_address = 'even_row'
WHERE c_customer_sk % 2 == 0

Updating data in Iceberg tables 28

AWS Prescriptive Guidance Using Apache Iceberg on AWS

""")

This operation uses the default copy-on-write strategy, so it rewrites all impacted data files.

Upserting data in Iceberg tables

Upserting data refers to inserting new data records and updating existing data records in a single
transaction. To upsert data into an Iceberg table, you use the SQL MERGE INTO statement.

The following example upserts the content of the table {UPSERT_TABLE_NAME} inside the table
{TABLE_NAME}:

spark.sql(f"""
 MERGE INTO {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME} t
 USING {UPSERT_TABLE_NAME} s
 ON t.c_customer_id = s.c_customer_id
 WHEN MATCHED THEN UPDATE SET t.c_email_address = s.c_email_address
 WHEN NOT MATCHED THEN INSERT *
""")

• If a customer record that's in {UPSERT_TABLE_NAME} already exists in {TABLE_NAME} with the
same c_customer_id, the {UPSERT_TABLE_NAME} record c_email_address value overrides
the existing value (update operation).

• If a customer record that's in {UPSERT_TABLE_NAME} doesn't exist in {TABLE_NAME}, the
{UPSERT_TABLE_NAME} record is added to {TABLE_NAME} (insert operation).

Deleting data in Iceberg tables

To delete data from an Iceberg table, use the DELETE FROM expression and specify a filter that
matches the rows to delete.

spark.sql(f"""
DELETE FROM {CATALOG_NAME}.{db.name}.{table.name}
WHERE c_customer_sk % 2 != 0
""")

If the filter matches an entire partition, Iceberg performs a metadata-only delete and leaves the
data files in place. Otherwise, it rewrites only the affected data files.

Upserting data in Iceberg tables 29

AWS Prescriptive Guidance Using Apache Iceberg on AWS

The delete method takes the data files that are impacted by the WHERE clause and creates a copy
of them without the deleted records. It then creates a new table snapshot that points to the new
data files. Therefore, the deleted records are still present in the older snapshots of the table.
For example, if you retrieve the previous snapshot of the table, you'll see the data that you just
deleted. For information about removing unneeded old snapshots with the related data files for
cleanup purposes, see the section Maintaining files by using compaction later in this guide.

Reading data

You can read the latest status of your Iceberg tables in Spark with both Spark SQL and
DataFrames.

Example using Spark SQL:

spark.sql(f"""
SELECT * FROM {CATALOG_NAME}.{db.name}.{table.name} LIMIT 5
""")

Example using the DataFrames API:

df = spark.table(f"{CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}").limit(5)

Using time travel

Each write operation (insert, update, upsert, delete) in an Iceberg table creates a new snapshot. You
can then use these snapshots for time travel—to go back in time and check the status of a table in
the past.

For information about how to retrieve the history of snapshots for tables by using snapshot-id
and timing values, see the Accessing metadata section later in this guide.

The following time travel query displays the status of a table based on a specific snapshot-id.

Using Spark SQL:

spark.sql(f"""
SELECT * FROM {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME} VERSION AS OF {snapshot_id}
""")

Reading data 30

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Using the DataFrames API:

df_1st_snapshot_id = spark.read.option("snapshot-id", snapshot_id) \
 .format("iceberg") \
 .load(f"{CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}") \
 .limit(5)

The following time travel query displays the status of a table based on the last snapshot that was
created before a specific timestamp, in milliseconds (as-of-timestamp).

Using Spark SQL:

spark.sql(f"""
SELECT * FROM dev.{db.name}.{table.name} TIMESTAMP AS OF '{snapshot_ts}'
""")

Using the DataFrames API:

df_1st_snapshot_ts = spark.read.option("as-of-timestamp", snapshot_ts) \
 .format("iceberg") \
 .load(f"dev.{DB_NAME}.{TABLE_NAME}") \
 .limit(5)

Using incremental queries

You can also use Iceberg snapshots to read appended data incrementally.

Note: Currently, this operation supports reading data from append snapshots. It doesn't support
fetching data from operations such as replace, overwrite, or delete. Additionally, incremental
read operations aren't supported in the Spark SQL syntax.

The following example retrieves all the records appended to an Iceberg table between the
snapshot start-snapshot-id (exclusive) and end-snapshot-id (inclusive).

df_incremental = (spark.read.format("iceberg")
 .option("start-snapshot-id", snapshot_id_start)
 .option("end-snapshot-id", snapshot_id_end)
 .load(f"glue_catalog.{DB_NAME}.{TABLE_NAME}")
)

Using incremental queries 31

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Accessing metadata

Iceberg provides access to its metadata through SQL. You can access the metadata for any given
table (<table_name>) by querying the namespace <table_name>.<metadata_table>. For a
complete list of metadata tables, see Inspecting tables in the Iceberg documentation.

The following example shows how to access the Iceberg history metadata table, which shows the
history of commits (changes) for an Iceberg table.

Using Spark SQL (with the %%sql magic) from an Amazon EMR Studio notebook:

Spark.sql(f“””
SELECT * FROM {CATALOG_NAME}.{DB_NAME}.{TABLE_NAME}.history LIMIT 5
""")

Using the DataFrames API:

spark.read.format("iceberg").load("{CATALOG_NAME}.{DB_NAME}.
{TABLE_NAME}.history").show(5,False)

Sample output:

Accessing metadata 32

https://iceberg.apache.org/docs/latest/spark-queries/#inspecting-tables

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Working with Apache Iceberg tables by using Amazon
Athena SQL

Amazon Athena provides built-in support for Apache Iceberg, and doesn't require additional steps
or configuration. This section provides a detailed overview of supported features and high-level
guidance for using Athena to interact with Iceberg tables.

Version and feature compatibility

Note

The following sections assume that you're using Athena engine version 3.

Iceberg table specification support

The Apache Iceberg table specification specifies how Iceberg tables should behave. Athena
supports table format version 2, so any Iceberg table that you create with the console, CLI, or SDK
inherently uses that version.

If you use an Iceberg table that was created with another engine, such as Apache Spark on Amazon
EMR or AWS Glue, make sure to set the table format version by using table properties. As a
reference, see the section Creating and writing Iceberg tables earlier in this guide.

Iceberg feature support

You can use Athena to read from and write to Iceberg tables. When you change data by using the
UPDATE, MERGE INTO, and DELETE FROM statements, Athena supports merge-on-read mode
only. This property cannot be changed. In order to update or delete data with copy-on-write, you
have to use other engines such as Apache Spark on Amazon EMR or AWS Glue. The following table
summarizes Iceberg feature support in Athena.

Version and feature compatibility 33

https://docs.aws.amazon.com/athena/latest/ug/engine-versions-reference-0003.html
https://iceberg.apache.org/docs/latest/configuration/#reserved-table-properties

AWS Prescriptive Guidance Using Apache Iceberg on AWS

 DDL support DML support AWS Lake
Formation
for
security
(optional)

 Table
format

Create
table

Schema
evolution

Reading
data

Writing
data

Row/
colum
n access
control

X Copy-
on-write

✓Amazon
Athena

Version 2 ✓ ✓ ✓

✓ Merge-
on-read

✓

Note

Athena doesn't support Incremental queries.

Working with Iceberg tables

For a quick start to using Iceberg in Athena, see the section Getting started with Iceberg tables in
Athena SQL earlier in this guide.

The following table lists limitations and recommendations.

Scenario Limitation Recommendation

Table DDL generation Iceberg tables created with
other engines can have
properties that are not
exposed in Athena. For these
tables, it's not possible to
generate the DDL.

Use the equivalent statement
in the engine that created the
table (for example, the SHOW
CREATE TABLE statement for
Spark).

Working with Iceberg tables 34

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Scenario Limitation Recommendation

Random Amazon S3 prefixes
in objects that are written to
an Iceberg table

By default, Iceberg tables that
are created with Athena have
the write.object-stora
ge.enabled property
enabled.

To disable this behavior and
gain full control over Iceberg
table properties, create an
Iceberg table with another
engine such as Spark on
Amazon EMR or AWS Glue.

Incremental queries Not currently supported in
Athena.

To use incremental queries
to enable incremental data
ingestion pipelines, use Spark
on Amazon EMR or AWS Glue.

Migrating existing tables to Iceberg

To migrate your current Athena or AWS Glue tables (also known as Hive tables) to Iceberg format,
you can use either in-place or full data migration:

• In-place migration is the process of generating Iceberg's metadata files on top of existing data
files.

• Full data migration creates the Iceberg metadata layer and also rewrites existing data files from
the original table to the new Iceberg table.

The following sections provide an overview of the APIs available to migrate tables and guidance
for choosing a migration strategy. For more information about these two strategies, see the Table
Migration section in the Iceberg documentation.

In-place migration

In-place migration eliminates the need to rewrite all the data files. Instead, Iceberg metadata files
are generated and linked to your existing data files. Iceberg offers three options for implementing
in-place migration:

• Using the snapshot procedure, as explained in the sections Snapshot Table and Spark
procedure: snapshot in the Iceberg documentation.

Migrating existing tables to Iceberg 35

https://iceberg.apache.org/docs/latest/table-migration/
https://iceberg.apache.org/docs/latest/table-migration/
https://iceberg.apache.org/docs/latest/spark-procedures/#snapshot
https://iceberg.apache.org/docs/latest/spark-procedures/#snapshot
https://iceberg.apache.org/docs/latest/spark-procedures/#snapshot

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Using the add_files procedure, as explained in the sections Add Files and Spark procedure:
add_files in the Iceberg documentation.

• Using the migrate procedure, as explained in the sections Migrate Table and Spark procedure:
Migrate in the Iceberg documentation.

Currently, the migrate procedure doesn't work directly with the AWS Glue Data Catalog—it works
only with the Hive metastore. If you have a requirement to use the migrate procedure instead of
snapshot or add_files, you can use a temporary Amazon EMR cluster with the Hive metastore
(HMS). This approach requires Iceberg version 1.2 or later.

Let's say you want to create the following Hive table:

You can create this Hive table by running this code in the Athena console:

CREATE EXTERNAL TABLE 'hive_table'(
 'id' bigint,
 'data' string)
USING parquet
LOCATION
 's3://datalake-xxxx/aws_workshop/iceberg_db/hive_table'

INSERT INTO iceberg_db.hive_table VALUES (1, 'a')

If your Hive table is partitioned, include the partition statement and add the partitions according to
Hive requirements.

ALTER TABLE default.placeholder_table_for_migration ADD

In-place migration 36

https://iceberg.apache.org/docs/latest/table-migration/#add-files
https://iceberg.apache.org/docs/latest/spark-procedures/#add_files
https://iceberg.apache.org/docs/latest/spark-procedures/#add_files
https://iceberg.apache.org/docs/latest/table-migration/#migrate-table
https://iceberg.apache.org/docs/latest/spark-procedures/#migrate
https://iceberg.apache.org/docs/latest/spark-procedures/#migrate

AWS Prescriptive Guidance Using Apache Iceberg on AWS

 PARTITION (date = '2023-10-10')

Steps:

1. Create an Amazon EMR cluster without enabling the AWS Glue Data Catalog integration—that
is, don't select the check boxes for Hive or Spark table metadata. That's because you will use the
native Hive metastore (HMS) that's available in the cluster for this workaround.

2. Configure the Spark session to use the Iceberg Hive catalog implementation.

"spark.sql.extensions":"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
"spark.sql.catalog.spark_catalog": "org.apache.iceberg.spark.SparkSessionCatalog",
 "spark.sql.catalog.spark_catalog.type": "hive",

3. Validate that your Amazon EMR cluster isn't connected to the AWS Glue Data Catalog by running
show databases or show tables.

4. Register the Hive table in the Hive metastore of your Amazon EMR cluster, and then use the
Iceberg migrate procedure.

In-place migration 37

AWS Prescriptive Guidance Using Apache Iceberg on AWS

This procedure creates the Iceberg metadata files in the same location as the Hive table.

5. Register the migrated Iceberg table in the AWS Glue Data Catalog.

6. Switch back to an Amazon EMR cluster that has the AWS Glue Data Catalog integration enabled.

In-place migration 38

AWS Prescriptive Guidance Using Apache Iceberg on AWS

7. Use the following Iceberg configuration in the Spark session.

"spark.sql.extensions":"org.apache.iceberg.spark.extensions.IcebergSparkSessionExtensions",
 "spark.sql.catalog.glue_catalog": "org.apache.iceberg.spark.SparkCatalog",
 "spark.sql.catalog.glue_catalog.warehouse": "s3://datalake-xxxx/
aws_workshop",
 "spark.sql.catalog.glue_catalog.catalog-impl":
 "org.apache.iceberg.aws.glue.GlueCatalog",
 "spark.sql.catalog.glue_catalog.io-impl":
 "org.apache.iceberg.aws.s3.S3FileIO",

You can now query this table from Amazon EMR, AWS Glue, or Athena.

In-place migration 39

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Full data migration

Full data migration recreates the data files as well as the metadata. This approach takes longer and
requires additional computing resources compared with in-place migration. However, this option
helps improve table quality: You can validate the data, make schema and partition changes, resort
the data, and so on. To implement full data migration, use one of the following options:

• Use the CREATE TABLE ... AS SELECT (CTAS) statement in Spark on Amazon EMR, AWS
Glue, or Athena. You can set the partition specification and table properties for the new Iceberg
table by using the PARTITIONED BY and TBLPROPERTIES clauses. You can fine-tune the

Full data migration 40

https://iceberg.apache.org/docs/latest/spark-ddl/#create-table--as-select

AWS Prescriptive Guidance Using Apache Iceberg on AWS

schema and partitioning for the new table according to your needs instead of simply inheriting
them from the source table.

• Read from the source table and write the data as a new Iceberg table by using Spark on Amazon
EMR or AWS Glue (see Creating a table in the Iceberg documentation).

Choosing a migration strategy

To choose the best migration strategy, consider the questions in the following table.

Question Recommendation

What is the data file format (for example,
CSV or Apache Parquet)?

• Consider in-place migration if your table file
format is Parquet, ORC, or Avro.

• For other formats such as CSV, JSON, and so
on, use full data migration.

Do you want to update or consolidate the
table schema?

• If you want to evolve the table schema by
using Iceberg native capabilities, consider
in-place migration. For example, you can
rename columns after the migration. (The
schema can be changed in the Iceberg
metadata layer.)

• If you want to delete entire columns from
data files, we recommend that you use full
data migration.

Would the table benefit from changing the
partition strategy?

• If Iceberg's partitioning approach meets
your requirements (for example, new data
is stored by using the new partition layout
while existing partitions remain as is),
consider in-place migration.

• If you want to use hidden partitions in your
table, consider full data migration. For more

Choosing a migration strategy 41

https://iceberg.apache.org/docs/nightly/spark-getting-started/#creating-a-table

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Question Recommendation

information about hidden partitions, see the
Best practices section.

Would the table benefit from adding or
changing the sort order strategy?

• Adding or changing the sort order of your
data requires rewriting the dataset. In this
case, consider using full data migration.

• For large tables where it's prohibitively
expensive to rewrite all the table partition
s, consider using in-place migration and run
compaction (with sorting enabled) for the
most frequently accessed partitions.

Does the table have many small files? • Merging small files into larger files requires
rewriting the dataset. In this case, consider
using full data migration.

• For large tables where it's prohibitively
expensive to rewrite all the table partition
s, consider using in-place migration and run
compaction (with sorting enabled) for the
most frequently accessed partitions.

Choosing a migration strategy 42

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Best practices for optimizing Apache Iceberg workloads

Iceberg is a table format that's designed to simplify data lake management and enhance workload
performance. Different use cases might prioritize different aspects such as cost, read performance,
write performance, or data retention, so Iceberg offers configuration options to manage these
trade-offs. This section provides insights for optimizing and fine-tuning your Iceberg workloads to
meet your requirements.

Topics

• General best practices

• Optimizing read performance

• Optimizing write performance

• Optimizing storage

• Maintaining tables by using compaction

• Using Iceberg workloads in Amazon S3

General best practices

Regardless of your use case, when you use Apache Iceberg on AWS, we recommend that you follow
these general best practices.

• Use Iceberg format version 2.

Athena uses Iceberg format version 2 by default.

When you use Spark on Amazon EMR or AWS Glue to create Iceberg tables, specify the format
version as described in the Iceberg documentation.

• Use the AWS Glue Data Catalog as your data catalog.

Athena uses the AWS Glue Data Catalog by default.

When you use Spark on Amazon EMR or AWS Glue to work with Iceberg, add the following
configuration to your Spark session to use the AWS Glue Data Catalog. For more information, see
the section Spark configurations for Iceberg in AWS Glue earlier in this guide.

General best practices 43

https://iceberg.apache.org/docs/nightly/configuration/#reserved-table-properties

AWS Prescriptive Guidance Using Apache Iceberg on AWS

"spark.sql.catalog.<your_catalog_name>.catalog-impl":
 "org.apache.iceberg.aws.glue.GlueCatalog"

• Use the AWS Glue Data Catalog as lock manager.

Athena uses the AWS Glue Data Catalog as lock manager by default for Iceberg tables.

When you use Spark on Amazon EMR or AWS Glue to work with Iceberg, make sure to configure
your Spark session configuration to use the AWS Glue Data Catalog as lock manager. For more
information, see Optimistic Locking in the Iceberg documentation.

• Use Zstandard (ZSTD) compression.

The default compression codec of Iceberg is gzip, which can be modified by using the table
property write.<file_type>.compression-codec. Athena already uses ZSTD as the default
compression codec for Iceberg tables.

In general, we recommend using the ZSTD compression codec because it strikes a balance
between GZIP and Snappy, and offers good read/write performance without compromising the
compression ratio. Additionally, compression levels can be adjusted to suit your needs. For more
information, see ZSTD compression levels in Athena in the Athena documentation.

Snappy might provide the best overall read and write performance but has a lower compression
ratio than GZIP and ZSTD. If you prioritize performance—even if it means storing larger data
volumes in Amazon S3—Snappy might be the optimal choice.

Optimizing read performance

This section discusses table properties that you can tune to optimize read performance,
independent of the engine.

Partitioning

As with Hive tables, Iceberg uses partitions as the primary layer of indexing to avoid reading
unnecessary metadata files and data files. Column statistics are also taken into consideration as
a secondary layer of indexing to further improve query planning, which leads to better overall
execution time.

Optimizing read performance 44

https://iceberg.apache.org/docs/latest/aws/#optimistic-locking
https://docs.aws.amazon.com/athena/latest/ug/compression-support-zstd-levels.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Partition your data

To reduce the amount of data that's scanned when querying Iceberg tables, choose a balanced
partition strategy that aligns with your expected read patterns:

• Identify columns that are frequently used in queries. These are ideal partitioning candidates.
For example, if you typically query data from a particular day, a natural example of a partition
column would be a date column.

• Choose a low cardinality partition column to avoid creating an excessive number of partitions.
Too many partitions can increase the number of files in the table, which can negatively impact
query performance. As a rule of thumb, “too many partitions” can be defined as a scenario where
the data size in the majority of partitions is less than 2-5 times the value set by target-file-
size-bytes.

Note

If you typically query by using filters on a high cardinality column (for example, an id
column that can have thousands of values), use Iceberg's hidden partitioning feature with
bucket transforms, as explained in the next section.

Use hidden partitioning

If your queries commonly filter on a derivative of a table column, use hidden partitions instead of
explicitly creating new columns to work as partitions. For more information about this feature, see
the Iceberg documentation.

For example, in a dataset that has a timestamp column (for example, 2023-01-01 09:00:00),
instead of creating a new column with the parsed date (for example, 2023-01-01), use partition
transforms to extract the date part from the timestamp and create these partitions on the fly.

The most common use cases for hidden partitioning are:

• Partitioning on date or time, when the data has a timestamp column. Iceberg offers multiple
transforms to extract the date or time parts of a timestamp.

• Partitioning on a hash function of a column, when the partitioning column has high cardinality
and would result in too many partitions. Iceberg's bucket transform groups multiple partition

Partitioning 45

https://iceberg.apache.org/docs/latest/partitioning/#icebergs-hidden-partitioning

AWS Prescriptive Guidance Using Apache Iceberg on AWS

values together into fewer, hidden (bucket) partitions by using hash functions on the partitioning
column.

See partition transforms in the Iceberg documentation for an overview of all available partition
transforms.

Columns that are used for hidden partitioning can become part of query predicates through the
use of regular SQL functions such as year() and month(). Predicates can also be combined with
operators such as BETWEEN and AND.

Note

Iceberg cannot perform partition pruning for functions that yield a different data type; for
example, substring(event_time, 1, 10) = '2022-01-01'.

Use partition evolution

Use Iceberg's partition evolution when the existing partition strategy isn't optimal. For example, if
you choose hourly partitions that turn out to be too small (just a few megabytes each), consider
shifting to daily or monthly partitions.

You can use this approach when the best partition strategy for a table is initially unclear, and
you want to refine your partitioning strategy as you gain more insights. Another effective use of
partition evolution is when data volumes change and the current partitioning strategy becomes
less effective over time.

For instructions on how to evolve partitions, see ALTER TABLE SQL extensions in the Iceberg
documentation.

Tuning file sizes

Optimizing query performance involves minimizing the number of small files in your tables. For
good query performance, we generally recommend keeping Parquet and ORC files larger than 100
MB.

File size also impacts query planning for Iceberg tables. As the number of files in a table increases,
so does the size of the metadata files. Larger metadata files can result in slower query planning.

Tuning file sizes 46

https://iceberg.apache.org/spec/#partition-transforms
https://iceberg.apache.org/docs/latest/evolution/#partition-evolution
https://iceberg.apache.org/docs/latest/spark-ddl/#alter-table-sql-extensions

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Therefore, when the table size grows, increase the file size to alleviate the exponential expansion of
metadata.

Use the following best practices to create properly sized files in Iceberg tables.

Set target file and row group size

Iceberg offers the following key configuration parameters for tuning the data file layout. We
recommend that you use these parameters to set the target file size and row group or strike size.

Parameter Default value Comment

write.target-file-
size-bytes

512 MB This parameter specifies
the maximum file size that
Iceberg will create. However,
certain files might be written
with a smaller size than this
limit.

write.parquet.row-
group-size-bytes

128 MB Both Parquet and ORC
store data in chunks so that
engines can avoid reading the
entire file for some operation
s.

write.orc.stripe-s
ize-bytes

64 MB

write.distribution-
mode

None, for Iceberg version 1.1
and lower

Hash, starting with Iceberg
version 1.2

Iceberg requests Spark to sort
data between its tasks before
writing to storage.

• Based on your expected table size, follow these general guidelines:

• Small tables (up to few gigabytes) – Reduce the target file size to 128 MB. Also reduce the row
group or stripe size (for example, to 8 or 16 MB).

Tuning file sizes 47

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Medium to large tables (from a few gigabytes to hundreds of gigabytes) – The default values
are a good starting point for these tables. If your queries are very selective, adjust the row
group or stripe size (for example, to 16 MB).

• Very large tables (hundreds of gigabytes or terabytes) – Increase the target file size to 1024
MB or more, and consider increasing the row group or stripe size if your queries usually pull
large sets of data.

• To ensure that Spark applications that write to Iceberg tables create appropriately sized
files, set the write.distribution-mode property to either hash or range. For a detailed
explanation of the difference between these modes, see Writing Distribution Modes in the
Iceberg documentation.

These are general guidelines. We recommend that you run tests to identify the most suitable
values for your specific tables and workloads.

Run regular compaction

The configurations in the previous table set a maximum file size that write tasks can create, but do
not guarantee that files will have that size. To ensure proper file sizes, run compaction regularly
to combine small files into larger files. For detailed guidance on running compaction, see Iceberg
compaction later in this guide.

Optimize column statistics

Iceberg uses column statistics to perform file pruning, which improves query performance by
reducing the amount of data that's scanned by queries. To benefit from column statistics, make
sure that Iceberg collects statistics for all columns that are frequently used in query filters.

By default, Iceberg collects statistics only for the first 100 columns in each table, as defined by the
table property write.metadata.metrics.max-inferred-column-defaults. If your table
has more than 100 columns and your queries frequently reference columns outside of the first 100
columns (for example, you might have queries that filter on column 132), make sure that Iceberg
collects statistics on those columns. There are two options to achieve this:

• When you create the Iceberg table, reorder columns so that the columns you need for queries
fall within the column range set by write.metadata.metrics.max-inferred-column-
defaults (default is 100).

Optimize column statistics 48

https://iceberg.apache.org/docs/latest/spark-writes/#writing-distribution-modes
https://github.com/apache/iceberg/blob/ae15c7e36973501b40443e75816d3eac39eddc90/core/src/main/java/org/apache/iceberg/TableProperties.java#L276

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Note: If you don't need statistics on 100 columns, you can adjust the
write.metadata.metrics.max-inferred-column-defaults configuration to a desired
value (for example, 20) and reorder the columns so that the columns you need to read and write
queries fall within the first 20 columns on the left side of the dataset.

• If you use only a few columns in query filters, you can disable the overall property for metrics
collection and selectively choose individual columns to collect statistics for, as shown in this
example:

.tableProperty("write.metadata.metrics.default", "none")

.tableProperty("write.metadata.metrics.column.my_col_a", "full")

.tableProperty("write.metadata.metrics.column.my_col_b", "full")

Note: Column statistics are most effective when data is sorted on those columns. For more
information, see the Set the sort order section later in this guide.

Choose the right update strategy

Use a copy-on-write strategy to optimize read performance, when slower write operations are
acceptable for your use case. This is the default strategy used by Iceberg.

Copy-on-write results in better read performance, because files are directly written to storage in
a read-optimized fashion. However, compared with merge-on-read, each write operation takes
longer and consumes more compute resources. This presents a classic trade-off between read and
write latency. Typically, copy-on-write is ideal for use cases where most updates are collocated in
the same table partitions (for example, for daily batch loads).

Copy-on-write configurations (write.update.mode, write.delete.mode, and
write.merge.mode) can be set at the table level or independently on the application side.

Use ZSTD compression

You can modify the compression codec used by Iceberg by using the table property
write.<file_type>.compression-codec. We recommend that you use the ZSTD compression
codec to improve overall performance on tables.

By default, Iceberg versions 1.3 and earlier use GZIP compression, which provides slower read/write
performance compared with ZSTD.

Choose the right update strategy 49

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Note: Some engines might use different default values. This is the case for Iceberg tables that are
created with Athena or Amazon EMR version 7.x.

Set the sort order

To improve read performance on Iceberg tables, we recommend that you sort your table based on
one or more columns that are frequently used in query filters. Sorting, combined with Iceberg's
column statistics, can make file pruning significantly more efficient, which results in faster read
operations. Sorting also reduces the number of Amazon S3 requests for queries that use the sort
columns in query filters.

You can set a hierarchical sort order at the table level by running a data definition language (DDL)
statement with Spark. For available options, see the Iceberg documentation. After you set the sort
order, writers will apply this sorting to subsequent data write operations in the Iceberg table.

For example, in tables that are partitioned by date (yyyy-mm-dd) where most of the queries filter
by uuid, you can use the DDL option Write Distributed By Partition Locally Ordered
to make sure that Spark writes files with non-overlapping ranges.

The following diagram illustrates how the efficiency of column statistics improves when tables are
sorted. In the example, the sorted table needs to open only a single file, and maximally benefits
from Iceberg's partition and file. In the unsorted table, any uuid can potentially exist in any data
file, so the query has to open all data files.

Changing the sort order doesn't affect existing data files. You can use Iceberg compaction to apply
the sort order on those.

Set the sort order 50

https://docs.aws.amazon.com/athena/latest/ug/compression-support-iceberg.html
https://docs.aws.amazon.com/athena/latest/ug/compression-support-iceberg.html
https://iceberg.apache.org/docs/latest/spark-ddl/#alter-table--write-ordered-by

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Using Iceberg sorted tables might decrease costs for your workload, as illustrated in the following
graph.

These graphs summarize the results of running the TPC-H benchmark for Hive (Parquet) tables
compared with Iceberg sorted tables. However, the results might be different for other datasets or
workloads.

Set the sort order 51

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Optimizing write performance

This section discusses table properties that you can tune to optimize write performance on Iceberg
tables, independent of the engine.

Set the table distribution mode

Iceberg offers multiple write distribution modes that define how write data is distributed across
Spark tasks. For an overview of the available modes, see Writing Distribution Modes in the Iceberg
documentation.

For use cases that prioritize write speed, especially in streaming workloads, set
write.distribution-mode to none. This ensures that Iceberg doesn't request additional Spark
shuffling and that data is written as it becomes available in Spark tasks. This mode is particularly
suitable for Spark Structured Streaming applications.

Note

Setting the write distribution mode to none tends to produce numerous small files, which
degrades read performance. We recommend regular compaction to consolidate these small
files into properly sized files for query performance.

Choose the right update strategy

Use a merge-on-read strategy to optimize write performance, when slower read operations on the
latest data are acceptable for your use case.

When you use merge-on-read, Iceberg writes updates and deletes to storage as separate small
files. When the table is read, the reader has to merge these changes with the base files to return
the latest view of the data. This results in a performance penalty for read operations, but speeds
up the writing of updates and deletes. Typically, merge-on-read is ideal for streaming workloads
with updates or jobs with few updates that are spread across many table partitions.

You can set merge-on-read configurations (write.update.mode, write.delete.mode, and
write.merge.mode) at the table level or independently on the application side.

Using merge-on-read requires running regular compaction to prevent read performance from
degrading over time. Compaction reconciles updates and deletes with existing data files to create

Optimizing write performance 52

https://iceberg.apache.org/docs/latest/spark-writes/#writing-distribution-modes

AWS Prescriptive Guidance Using Apache Iceberg on AWS

a new set of data files, thereby eliminating the performance penalty incurred on the read side.
By default, Iceberg's compaction doesn't merge delete files unless you change the default of the
delete-file-threshold property to a smaller value (see the Iceberg documentation). To learn
more about compaction, see the section Iceberg compaction later in this guide.

Choose the right file format

Iceberg supports writing data in Parquet, ORC, and Avro formats. Parquet is the default format.
Parquet and ORC are columnar formats that offer superior read performance but are generally
slower to write. This represents the typical trade-off between read and write performance.

If write speed is important for your use case, such as in streaming workloads, consider writing in
Avro format by setting write-format to Avro in the writer's options. Because Avro is a row-based
format, it provides faster write times at the cost of slower read performance.

To improve read performance, run regular compaction to merge and transform small Avro
files into larger Parquet files. The outcome of the compaction process is governed by the
write.format.default table setting. The default format for Iceberg is Parquet, so if you write
in Avro and then run compaction, Iceberg will transform the Avro files into Parquet files. Here's an
example:

spark.sql(f"""
 CREATE TABLE IF NOT EXISTS glue_catalog.{DB_NAME}.{TABLE_NAME} (
 Col_1 float,
 <<<…other columns…>>
 ts timestamp)
 USING iceberg
 PARTITIONED BY (days(ts))
 OPTIONS (
 'format-version'='2',
 write.format.default'=parquet)
""")

query = df \
 .writeStream \
 .format("iceberg") \
 .option("write-format", "avro") \
 .outputMode("append") \
 .trigger(processingTime='60 seconds') \
 .option("path", f"glue_catalog.{DB_NAME}.{TABLE_NAME}") \
 .option("checkpointLocation", f"s3://{BUCKET_NAME}/checkpoints/iceberg/")

Choose the right file format 53

https://iceberg.apache.org/docs/latest/spark-procedures/#rewrite_data_files

AWS Prescriptive Guidance Using Apache Iceberg on AWS

 .start()

Optimizing storage

Updating or deleting data in an Iceberg table increases the number of copies of your data, as
illustrated in the following diagram. The same is true for running compaction: It increases the
number of data copies in Amazon S3. That's because Iceberg treats the files underlying all tables as
immutable.

Follow the best practices in this section to manage storage costs.

Enable S3 Intelligent-Tiering

Use the Amazon S3 Intelligent-Tiering storage class to automatically move data to the most cost-
effective access tier when access patterns change. This option has no operational overhead or
impact on performance.

Note: Don't use the optional tiers (such as Archive Access and Deep Archive Access) in S3
Intelligent-Tiering with Iceberg tables. To archive data, see the guidelines in the next section.

You can also use Amazon S3 Lifecycle rules to set your own rules for moving objects to another
Amazon S3 storage class, such as S3 Standard-IA or S3 One Zone-IA (see Supported transitions and
related constraints in the Amazon S3 documentation).

Archive or delete historic snapshots

For every committed transaction (insert, update, merge into, compaction) to an Iceberg table, a
new version or snapshot of the table is created. Over time, the number of versions and the number
of metadata files in Amazon S3 accumulate.

Optimizing storage 54

https://docs.aws.amazon.com/AmazonS3/latest/userguide/intelligent-tiering-overview.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html#lifecycle-general-considerations-transition-sc
https://docs.aws.amazon.com/AmazonS3/latest/userguide/lifecycle-transition-general-considerations.html#lifecycle-general-considerations-transition-sc

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Keeping snapshots of a table is required for features such as snapshot isolation, table rollback, and
time travel queries. However, storage costs grow with the number of versions that you retain.

The following table describes the design patterns you can implement to manage costs based on
your data retention requirements.

Design pattern Solution Use cases

Delete old snapshots • Use the VACUUM statement
 in Athena to remove old
snapshots. This operation
doesn't incur any compute
cost.

• Alternatively, you can
use Spark on Amazon
EMR or AWS Glue to
remove snapshots.For more
information, see expire_sn
apshots in the Iceberg
documentation.

This approach deletes
snapshots that are no longer
needed to reduce storage
costs. You can configure how
many snapshots should be
retained or for how long,
based on your data retention
 requirements.

This option performs a hard
delete of the snapshots. You
can't roll back or time travel
to expired snapshots.

Set retention policies for
specific snapshots

1. Use tags to mark specific
snapshots and define a
retention policy in Iceberg.
For more information,
see Historical Tags in the
Iceberg documentation.

For example, you can retain
one snapshot per month
for one year by using the
following SQL statement in
Spark on Amazon EMR:

ALTER TABLE glue_cata
log.db.table

This pattern is helpful for
compliance with business
or legal requirements that
require you to show the
state of a table at a given
point in the past. By placing
retention policies on specific
tagged snapshots, you can
remove other (untagged)
snapshots that were created.
This way, you can meet data
retention requirements
without retaining every single
snapshot created.

Archive or delete historic snapshots 55

https://docs.aws.amazon.com/athena/latest/ug/vacuum-statement.html
https://docs.aws.amazon.com/athena/latest/ug/vacuum-statement.html
https://iceberg.apache.org/docs/latest/spark-procedures/#expire_snapshots
https://iceberg.apache.org/docs/latest/spark-procedures/#expire_snapshots
https://iceberg.apache.org/docs/latest/branching/#historical-tags

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Design pattern Solution Use cases

CREATE TAG 'EOM-01' AS
 OF VERSION 30 RETAIN
 365 DAYS

2. Use Spark on Amazon EMR
or AWS Glue to remove
the remaining untagged,
intermediate snapshots.

Archive or delete historic snapshots 56

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Design pattern Solution Use cases

Archive old snapshots 1. Use Amazon S3 tags to
mark objects with Spark.
(Amazon S3 tags are
different from Iceberg tags;
for more information, see
the Iceberg documenta
tion.) For example:

spark.sql.catalog.
my_catalog.s3.dele
te-enabled=false and
 \
spark.sql.catalo
g.my_catalog.s3.de
lete.tags.my_key=t
o_archive

2. Use Spark on Amazon EMR
or AWS Glue to remove
snapshots. When you
use the settings in the
example, this procedure
tags objects and detaches
them from the Iceberg
table metadata instead
of deleting them from
Amazon S3.

3. Use S3 Life cycle rules to
transition objects tagged
as to_archive to one
of the S3 Glacier storage
classes.

4. To query archived data:

• Restore the archived
objects.

This pattern allows you to
keep all table versions and
snapshots at a lower cost.

You cannot time travel or roll
back to archived snapshots
without first restoring those
versions as new tables. This is
typically acceptable for audit
purposes.

You can combine this
approach with the previous
design pattern, setting
retention policies for specific
snapshots.

Archive or delete historic snapshots 57

https://iceberg.apache.org/docs/latest/aws/#s3-tags
https://iceberg.apache.org/docs/latest/aws/#s3-tags
https://iceberg.apache.org/docs/latest/spark-procedures/#expire_snapshots
https://iceberg.apache.org/docs/latest/spark-procedures/#expire_snapshots
https://docs.aws.amazon.com/amazonglacier/latest/dev/introduction.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/introduction.html
https://aws.amazon.com/blogs/storage/restoring-archived-objects-at-scale-from-the-amazon-s3-glacier-storage-classes/
https://aws.amazon.com/blogs/storage/restoring-archived-objects-at-scale-from-the-amazon-s3-glacier-storage-classes/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Design pattern Solution Use cases

• Use the register_table
procedure in Iceberg to
register the snapshot as
a table in the catalog.

For detailed instructions, see
the AWS blog post Improve
operational efficiencies of
Apache Iceberg tables build
on Amazon S3 data lakes.

Delete orphan files

In certain situations, Iceberg applications can fail before you commit your transactions. This leaves
data files in Amazon S3. Because there was no commit, these files won't be associated with any
table, so you might have to clean them up asynchronously.

To handle these deletions, you can use the VACUUM statement in Amazon Athena. This statement
removes snapshots and also deletes orphaned files. This is very cost-efficient, because Athena
doesn't charge for the compute cost of this operation. Also, you don't have to schedule any
additional operations when you use the VACUUM statement.

Alternatively, you can use Spark on Amazon EMR or AWS Glue to run the remove_orphan_files
procedure. This operation has a compute cost and has to be scheduled independently. For more
information, see the Iceberg documentation.

Maintaining tables by using compaction

Iceberg includes features that enable you to carry out table maintenance operations after writing
data to the table. Some maintenance operations focus on streamlining metadata files, while others
enhance how the data is clustered in the files so that query engines can efficiently locate the
necessary information to respond to user requests. This section focuses on compaction-related
optimizations.

Delete orphan files 58

https://iceberg.apache.org/docs/latest/spark-procedures/#register_table
https://iceberg.apache.org/docs/latest/spark-procedures/#register_table
https://aws.amazon.com/blogs/big-data/improve-operational-efficiencies-of-apache-iceberg-tables-built-on-amazon-s3-data-lakes/
https://aws.amazon.com/blogs/big-data/improve-operational-efficiencies-of-apache-iceberg-tables-built-on-amazon-s3-data-lakes/
https://aws.amazon.com/blogs/big-data/improve-operational-efficiencies-of-apache-iceberg-tables-built-on-amazon-s3-data-lakes/
https://aws.amazon.com/blogs/big-data/improve-operational-efficiencies-of-apache-iceberg-tables-built-on-amazon-s3-data-lakes/
https://docs.aws.amazon.com/athena/latest/ug/vacuum-statement.html
https://iceberg.apache.org/docs/latest/spark-procedures/#remove_orphan_files
https://iceberg.apache.org/docs/latest/maintenance/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Iceberg compaction

In Iceberg, you can use compaction to perform four tasks:

• Combining small files into larger files that are generally over 100 MB in size. This technique is
known as bin packing.

• Merging delete files with data files. Delete files are generated by updates or deletes that use the
merge-on-read approach.

• (Re)sorting the data in accordance with query patterns. Data can be written without any sort
order or with a sort order that is suitable for writes and updates.

• Clustering the data by using space filling curves to optimize for distinct query patterns,
particularly z-order sorting.

On AWS, you can run table compaction and maintenance operations for Iceberg through Amazon
Athena or by using Spark in Amazon EMR or AWS Glue.

When you run compaction by using the rewrite_data_files procedure, you can adjust several knobs
to control the compaction behavior. The following diagram shows the default behavior of bin
packing. Understanding bin packing compaction is key to understanding hierarchical sorting and
Z-order sorting implementations, because they are extensions of the bin packing interface and
operate in a similar manner. The main distinction is the additional step required for sorting or
clustering the data.

Iceberg compaction 59

https://iceberg.apache.org/docs/latest/spark-procedures/#rewrite_data_files

AWS Prescriptive Guidance Using Apache Iceberg on AWS

In this example, the Iceberg table consists of four partitions. Each partition has a different size
and different number of files. If you start a Spark application to run compaction, the application
creates a total of four file groups to process. A file group is an Iceberg abstraction that represents
a collection of files that will be processed by a single Spark job. That is, the Spark application that
runs compaction will create four Spark jobs to process the data.

Tuning compaction behavior

The following key properties control how data files are selected for compaction:

Tuning compaction behavior 60

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• MAX_FILE_GROUP_SIZE_BYTES sets the data limit for a single file group (Spark job) at 100 GB
by default. This property is especially important for tables without partitions or tables with
partitions that span hundreds of gigabytes. By setting this limit, you can break down operations
to plan work and make progress while preventing resource exhaustion on the cluster.

Note: Each file group is sorted separately. Therefore, if you want to perform a partition-level
sort, you must adjust this limit to match the partition size.

• MIN_FILE_SIZE_BYTES or MIN_FILE_SIZE_DEFAULT_RATIO defaults to 75 percent of the target
file size set at the table level. For example, if a table has a target size of 512 MB, any file that is
smaller than 384 MB is included in the set of files that will be compacted.

• MAX_FILE_SIZE_BYTES or MAX_FILE_SIZE_DEFAULT_RATIO defaults to 180 percent of the target
file size. As with the two properties that set minimum file sizes, these properties are used to
identify candidate files for the compaction job.

• MIN_INPUT_FILES specifies the minimum number of files to be compacted if a table partition
size is smaller than the target file size. The value of this property is used to determine whether it
is worthwhile to compact the files based on the number of files (defaults to 5).

• DELETE_FILE_THRESHOLD specifies the minimum number of delete operations for a file before
it's included in compaction. Unless you specify otherwise, compaction doesn't combine delete
files with data files. To enable this functionality, you must set a threshold value by using this
property. This threshold is specific to individual data files, so if you set it to 3, a data file will be
rewritten only if there are three or more delete files that reference it.

These properties provide insight into the formation of the file groups in the previous diagram.

For example, the partition labeled month=01 includes two file groups because it exceeds the
maximum size constraint of 100 GB. In contrast, the month=02 partition contains a single file
group because it's under 100 GB. The month=03 partition doesn't satisfy the default minimum
input file requirement of five files. As a result, it won't be compacted. Lastly, although the
month=04 partition doesn't contain enough data to form a single file of the desired size, the files
will be compacted because the partition includes more than five small files.

You can set these parameters for Spark running on Amazon EMR or AWS Glue. For Amazon
Athena, you can manage similar properties by using the table properties that start with the prefix
optimize_).

Tuning compaction behavior 61

https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/RewriteDataFiles.html#MAX_FILE_GROUP_SIZE_BYTES
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/BinPackStrategy.html#MIN_FILE_SIZE_BYTES
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/BinPackStrategy.html#MIN_FILE_SIZE_DEFAULT_RATIO
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/BinPackStrategy.html#MAX_FILE_SIZE_BYTES
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/BinPackStrategy.html#MAX_FILE_SIZE_DEFAULT_RATIO
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/BinPackStrategy.html#MIN_INPUT_FILES
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/BinPackStrategy.html#DELETE_FILE_THRESHOLD
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-creating-tables.html#querying-iceberg-table-properties

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Running compaction with Spark on Amazon EMR or AWS Glue

This section describes how to properly size a Spark cluster to run Iceberg's compaction utility.
The following example uses Amazon EMR Serverless, but you can use the same methodology in
Amazon EMR on Amazon EC2 or Amazon EKS, or in AWS Glue.

You can take advantage of the correlation between file groups and Spark jobs to plan the cluster
resources. To process the file groups sequentially, considering the maximum size of 100 GB per file
group, you can set the following Spark properties:

• spark.dynamicAllocation.enabled = FALSE

• spark.executor.memory = 20 GB

• spark.executor.instances = 5

If you want to speed up compaction, you can scale horizontally by increasing the number of file
groups that are compacted in parallel. You can also scale Amazon EMR by using manual or dynamic
scaling.

• Manually scaling (for example, by a factor of 4)

• MAX_CONCURRENT_FILE_GROUP_REWRITES = 4 (our factor)

• spark.executor.instances = 5 (value used in the example) x 4 (our factor) = 20

• spark.dynamicAllocation.enabled = FALSE

• Dynamic scaling

• spark.dynamicAllocation.enabled = TRUE (default, no action required)

• MAX_CONCURRENT_FILE_GROUP_REWRITES = N (align this value with
spark.dynamicAllocation.maxExecutors, which is 100 by default; based on the
executor configurations in the example, you can set N to 20)

These are guidelines to help size the cluster. However, you should also monitor the performance
of your Spark jobs to find the best settings for your workloads.

Running compaction with Amazon Athena

Athena offers an implementation of Iceberg's compaction utility as a managed feature through the
OPTIMIZE statement. You can use this statement to run compaction without having to evaluate the
infrastructure.

Running compaction with Spark on Amazon EMR or AWS Glue 62

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/jobs-spark.html#spark-defaults
https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/RewriteDataFiles.html#MAX_CONCURRENT_FILE_GROUP_REWRITES
https://docs.aws.amazon.com/athena/latest/ug/optimize-statement.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

This statement groups small files into larger files by using the bin packing algorithm and merges
delete files with existing data files. To cluster the data by using hierarchical sorting or z-order
sorting, use Spark on Amazon EMR or AWS Glue.

You can change the default behavior of the OPTIMIZE statement at table creation by passing table
properties in the CREATE TABLE statement, or after table creation by using the ALTER TABLE
statement. For default values, see the Athena documentation.

Recommendations for running compaction

Use case Recommendation

Running bin packing compaction based on a
schedule

• Use the OPTIMIZE statement in Athena if
you don't know how many small files your
table contains. The Athena pricing model is
based on the data scanned, so if there are
no files to be compacted, there is no cost
associated with these operations. To avoid
encountering timeouts on Athena tables,
run OPTIMIZE on a per-table-partition
basis.

• Use Amazon EMR or AWS Glue with dynamic
scaling when you expect large volumes of
small files to be compacted.

Running bin packing compaction based on
events

• Use Amazon EMR or AWS Glue with dynamic
scaling when you expect large volumes of
small files to be compacted.

Running compaction to sort data • Use Amazon EMR or AWS Glue, because
sorting is an expensive operation and might
need to spill data to disk.

Running compaction to cluster the data
using z-order sorting

• Use Amazon EMR or AWS Glue, because z-
order sorting is a very expensive operation
and might need to spill data to disk.

Recommendations for running compaction 63

https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg-creating-tables.html#querying-iceberg-table-properties

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Use case Recommendation

Running compaction on partitions that
might be updated by other applications
because of late-arriving data

• Use Amazon EMR or AWS Glue. Enable the
Iceberg PARTIAL_PROGRESS_ENABLED
property. When you use this option, Iceberg
splits the compaction output into multiple
commits. If there is a collision (that is, if
the data file is updated while compactio
n is running), this setting reduces the cost
of retry by limiting it to the commit that
includes the affected file. Otherwise, you
might have to recompact all files.

Using Iceberg workloads in Amazon S3

This section discusses Iceberg properties that you can use to optimize Iceberg's interaction with
Amazon S3.

Prevent hot partitioning (HTTP 503 errors)

Some data lake applications that run on Amazon S3 handle millions or billions of objects and
process petabytes of data. This can lead to prefixes that receive a high volume of traffic, which are
typically detected through HTTP 503 (service unavailable) errors. To prevent this issue, use the
following Iceberg properties:

• Set write.distribution-mode to hash or range so that Iceberg writes large files, which
results in fewer Amazon S3 requests. This is the preferred configuration and should address the
majority of cases.

• If you continue to experience 503 errors due to an immense volume of data in your workloads,
you can set write.object-storage.enabled to true in Iceberg. This instructs Iceberg to
hash object names and distribute the load across multiple, randomized Amazon S3 prefixes.

For more information about these properties, see Write properties in the Iceberg documentation.

Using Iceberg workloads in Amazon S3 64

https://iceberg.apache.org/javadoc/1.2.0/org/apache/iceberg/actions/RewriteDataFiles.html#PARTIAL_PROGRESS_ENABLED
https://iceberg.apache.org/docs/latest/configuration/#write-properties

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Use Iceberg maintenance operations to release unused data

To manage Iceberg tables, you can use the Iceberg core API, Iceberg clients (such as Spark), or
managed services such as Amazon Athena. To delete old or unused files from Amazon S3, we
recommend that you only use Iceberg native APIs to remove snapshots, remove old metadata files,
and delete orphan files.

Using Amazon S3 APIs through Boto3, the Amazon S3 SDK, or the AWS Command Line Interface
(AWS CLI), or using any other, non-Iceberg methods to overwrite or remove Amazon S3 files for an
Iceberg table leads to table corruption and query failures.

Replicate data across AWS Regions

When you store Iceberg tables in Amazon S3, you can use the built-in features in Amazon S3, such
as Cross-Region Replication (CRR) and Multi-Region Access Points (MRAP), to replicate data across
multiple AWS Regions. MRAP provides a global endpoint for applications to access S3 buckets that
are located in multiple AWS Regions. Iceberg doesn't support relative paths, but you can use MRAP
to perform Amazon S3 operations by mapping buckets to access points. MRAP also integrates
seamlessly with the Amazon S3 Cross-Region Replication process, which introduces a lag of up to
15 minutes. You have to replicate both data and metadata files.

Important

Currently, Iceberg integration with MRAP works only with Apache Spark. If you need to fail
over to the secondary AWS Region, you have to plan to redirect user queries to a Spark SQL
environment (such as Amazon EMR) in the failover Region.

The CRR and MRAP features help you build a cross-Region replication solution for Iceberg tables, as
illustrated in the following diagram.

Use Iceberg maintenance operations to release unused data 65

https://iceberg.apache.org/docs/latest/maintenance/#expire-snapshots
https://iceberg.apache.org/docs/latest/maintenance/#remove-old-metadata-files
https://iceberg.apache.org/docs/latest/maintenance/#delete-orphan-files
https://docs.aws.amazon.com/AmazonS3/latest/userguide/replication.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/MultiRegionAccessPoints.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

To set up this cross-Region replication architecture:

1. Create tables by using the MRAP location. This ensures that Iceberg metadata files point to the
MRAP location instead of the physical bucket location.

2. Replicate Iceberg files by using Amazon S3 MRAP. MRAP supports data replication with a
service-level agreement (SLA) of 15 minutes. Iceberg prevents read operations from introducing
inconsistencies during replication.

3. Make the tables available in the AWS Glue Data Catalog in the secondary Region. You can choose
from two options:

• Set up a pipeline for replicating Iceberg table metadata by using AWS Glue Data Catalog
replication. This utility is available in the GitHub Glue Catalog and Lake Formation
Permissions replication repository. This event-driven mechanism replicates tables in the target
Region based on event logs.

• Register the tables in the secondary Region when you need to fail over. For this option, you
can use the previous utility or the Iceberg register_table procedure and point it to the latest
metadata.json file.

Replicate data across AWS Regions 66

https://github.com/aws-samples/lake-formation-pemissions-sync
https://github.com/aws-samples/lake-formation-pemissions-sync
https://iceberg.apache.org/docs/latest/spark-procedures/#register_table

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Monitoring Apache Iceberg workloads

To monitor Iceberg workloads, you have two options: analyzing metadata tables or using metrics
reporters. Metrics reporters were introduced in Iceberg version 1.2 and are available only for REST
and JDBC catalogs.

If you're using AWS Glue Data Catalog, you can gain insights into the health of your Iceberg tables
by setting up monitoring on top of the metadata tables that Iceberg exposes.

Monitoring is crucial for performance management and troubleshooting. For example, when a
partition in an Iceberg table reaches a certain percentage of small files, your workload can start a
compaction job to consolidate the files into larger ones. This prevents queries from slowing down
beyond an acceptable level.

Table-level monitoring

The following screen shows a table monitoring dashboard that was created in Amazon QuickSight.
This dashboard queries Iceberg metadata tables by using Spark SQL, and captures detailed metrics
such as the number of active files and total storage. This information is then stored in AWS
Glue tables for operational purposes. Finally, a QuickSight dashboard, as shown in the following
illustration, is created by using Amazon Athena. This information helps you identify and address
specific problems in your systems.

Table-level monitoring 67

https://iceberg.apache.org/docs/latest/spark-queries/#inspecting-tables
https://iceberg.apache.org/javadoc/latest/index.html?org/apache/iceberg/metrics/MetricsReporter.html
https://iceberg.apache.org/javadoc/latest/index.html?org/apache/iceberg/metrics/MetricsReporter.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

The example QuickSight dashboard collects the following key performance indicators (KPIs) for an
Iceberg table:

KPI Description Query

Number of files The number of files in
the Iceberg table (for all
snapshots)

select count(*)
from <catalog.database.
table_name>.all_files

Number of active files The number of active files
in the last snapshot of the
Iceberg table

select count(*)
from <catalog.database.
table_name>.files

Average file size The average file size, in
megabytes, for all files in the
Iceberg table

select avg(file_
size_in_bytes)/100
0000
from <catalog.database.
table_name>.all_files

Average active file size The average file size, in
megabytes, for the active
files in the Iceberg table

select avg(file_
size_in_bytes)/100
0000
from <catalog.database.
table_name>.files

Percentage of small files The percentage of active files
that are smaller than 100 MB

select cast(sum(
case when file_size
_in_bytes < 100000000
 then 1 else 0 end)*100/
count(*) as decimal(1
0,2))
from <catalog.database.
table_name>.files

Total storage size The total size of all the files in
the table, excluding orphaned
files and Amazon S3 object
versions (if enabled)

select sum(file_
size_in_bytes)/100
0000

Table-level monitoring 68

AWS Prescriptive Guidance Using Apache Iceberg on AWS

KPI Description Query

from <catalog.database.
table_name>.all_files

Total active storage size The total size of all files in the
current snapshots of a given
table

select sum(file_
size_in_bytes)/100
0000
from <catalog.database.
table_name>.files

Database-level monitoring

The following example shows a monitoring dashboard that was created in QuickSight to provide an
overview of database-level KPIs for a collection of Iceberg tables.

This dashboard collects the following KPIs:

KPI Description Query

Number of files The number of files in the
Iceberg database (for all
snapshots)

This dashboard uses the
table-level queries provided
in the previous section and
consolidates the outcomes.

Database-level monitoring 69

AWS Prescriptive Guidance Using Apache Iceberg on AWS

KPI Description Query

Number of active files The number of active files in
the Iceberg database (based
on the last snapshots of
Iceberg tables)

Average file size The average file size, in
megabytes, for all files in the
Iceberg database

Average active file size The average file size, in
megabytes, for all active files
in the Iceberg database

Percentage of small files The percentage of active files
that are smaller than 100 MB
in the Iceberg database

Total Storage size The total size of all files in the
database, excluding orphaned
files and Amazon S3 object
versions (if enabled)

Total active storage size The total size of all files in the
current snapshots of all tables
in the database

Preventive maintenance

By setting up the monitoring capabilities discussed in the previous sections, you can approach table
maintenance from a preventive instead of reactive angle. For example, you can use the table-level
and database-level metrics to schedule actions such as the following:

• Use bin packing compaction to group small files when a table reaches N small files.

• Use bin packing compaction to merge delete files when a table reaches N delete files in a given
partition.

Preventive maintenance 70

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Remove small files that were already compacted by removing snapshots when the total storage
is X times higher than active storage.

Preventive maintenance 71

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Governance and access control for Apache Iceberg on
AWS

Apache Iceberg integrates with AWS Lake Formation to simplify data governance. This integration
allows data lake administrators to assign cell-level access permissions to Iceberg tables. For an
example of querying Iceberg tables by using Amazon Athena and AWS Lake Formation, see the
AWS blog post Interact with Apache Iceberg tables using Amazon Athena and cross account fine-
grained permissions using AWS Lake Formation.

72

https://aws.amazon.com/blogs/big-data/interact-with-apache-iceberg-tables-using-amazon-athena-and-cross-account-fine-grained-permissions-using-aws-lake-formation/
https://aws.amazon.com/blogs/big-data/interact-with-apache-iceberg-tables-using-amazon-athena-and-cross-account-fine-grained-permissions-using-aws-lake-formation/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Reference architectures for Apache Iceberg on AWS

This section provides examples of how to apply best practices in different use cases such as batch
ingestion and a data lake that combines batch and streaming data ingestion.

Nightly batch ingestion

For this hypothetical use case, let's say that your Iceberg table ingests credit card transactions on a
nightly basis. Each batch contains only incremental updates, which must be merged into the target
table. Several times per year, full historical data is received. For this scenario, we recommend the
following architecture and configurations.

Note: This is just an example. The optimal configuration depends on your data and requirements.

Recommendations:

• File size: 128 MB, because Apache Spark tasks process data in 128 MB chunks.

• Write type: copy-on-write. As detailed earlier in this guide, this approach helps ensure that data
is written in a read-optimized fashion.

Nightly batch ingestion 73

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Partition variables: year/month/day. In our hypothetical use case, we query recent data most
frequently, although we occasionally run full table scans for the past two years of data. The goal
of partitioning is to drive fast read operations based on the requirements of the use case.

• Sort order: timestamp

• Data catalog: AWS Glue Data Catalog

Data lake that combines batch and near real-time ingestion

You can provision a data lake on Amazon S3 that shares batch and streaming data across accounts
and Regions. For an architecture diagram and details, see the AWS blog post Build a transactional
data lake using Apache Iceberg, AWS Glue, and cross-account data shares using AWS Lake
Formation and Amazon Athena.

Data lake that combines batch and near real-time ingestion 74

https://aws.amazon.com/blogs/big-data/build-a-transactional-data-lake-using-apache-iceberg-aws-glue-and-cross-account-data-shares-using-aws-lake-formation-and-amazon-athena/
https://aws.amazon.com/blogs/big-data/build-a-transactional-data-lake-using-apache-iceberg-aws-glue-and-cross-account-data-shares-using-aws-lake-formation-and-amazon-athena/
https://aws.amazon.com/blogs/big-data/build-a-transactional-data-lake-using-apache-iceberg-aws-glue-and-cross-account-data-shares-using-aws-lake-formation-and-amazon-athena/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Resources

• Using the Iceberg framework in AWS Glue (AWS Glue documentation)

• Iceberg (Amazon EMR documentation)

• Using Apache Iceberg tables (Amazon Athena documentation)

• Amazon S3 documentation

• Amazon QuickSight documentation

• Glue Catalog and Lake Formation Permissions replication (GitHub repository)

• Apache Iceberg documentation

• Apache Spark documentation

75

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-programming-etl-format-iceberg.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-iceberg.html
https://docs.aws.amazon.com/athena/latest/ug/querying-iceberg.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Welcome.html
https://docs.aws.amazon.com/quicksight/latest/user/welcome.html
https://github.com/aws-samples/lake-formation-pemissions-sync
https://iceberg.apache.org/docs/latest/
https://spark.apache.org/docs/latest/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Contributors

The following people at AWS authored, co-authored, and reviewed this guide.

Contributors

• Carlos Rodrigues, Solutions Architect, Big Data

• Imtiaz (Taz) Sayed, Solutions Architect Tech Leader, Analytics

• Shana Schipers, Solutions Architect, Big Data

• Prashant Singh, Software Development Engineer, Amazon EMR

• Stefano Sandona, Solutions Architect, Big Data

• Arun A K, Solutions Architect, Big Data and ETL

• Francisco Morillo, Solutions Architect, Streaming

• Suthan Phillips, Analytics Architect, Amazon EMR

• Sercan Karaoglu, Solutions Architect

• Yonatan Dolan, Analytics Specialist

• Guy Bachar, Solutions Architect

• Sofia Zilberman, Solutions Architect, Streaming

• Ismail Makhlouf, Solutions Architect, Analytics

• Dan Stair, Specialist Solutions Architect

• Sakti Mishra, Solutions Architect

Reviewers

• Rick Sears, General Manager, Amazon EMR

• Linda OConnor, Amazon EMR Specialist

• Ian Meyers, Director, Amazon EMR

• Vinita Ananth, Director, Amazon EMR Product Management

• Jason Berkowitz, Product Manager, AWS Lake Formation

• Mahesh Mishra, Product Manager, Amazon Redshift

• Vladimir Zlatkin, Manager, Solutions Architecture, Big Data

• Karthik Prabhakar, Analytics Architect, Amazon EMR

76

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Jack Ye, Software Development Engineer, Amazon EMR

• Vijay Jain, Product Manager

• Anupriti Warade, Product Manager, Amazon S3

• Molly Brown, General Manager, AWS Lake Formation

• Ajit Tandale, Solutions Architect, Data

• Gwen Chen, Product Marketing Manager

77

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Initial publication — April 30, 2024

78

https://docs.aws.amazon.com/prescriptive-guidance/latest/apache-iceberg-on-aws/apache-iceberg-on-aws.rss

AWS Prescriptive Guidance Using Apache Iceberg on AWS

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

79

AWS Prescriptive Guidance Using Apache Iceberg on AWS

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which in which the source and target databases are kept in
sync, but only the source database handles transactions from connecting applications while
data is replicated to the target database. The target database doesn’t accept any transactions
during migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 80

AWS Prescriptive Guidance Using Apache Iceberg on AWS

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 81

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-portfolio-discovery/welcome.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 82

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Using Apache Iceberg on AWS

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 83

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 84

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 85

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or AWS CodeCommit. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 86

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual formats
such as digital images and videos. For example, AWS Panorama offers devices that add CV to
on-premises camera networks, and Amazon SageMaker provides image processing algorithms
for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 87

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 88

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 89

AWS Prescriptive Guidance Using Apache Iceberg on AWS

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

D 90

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

D 91

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

E

EDA

See exploratory data analysis.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts
or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more
information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

E 92

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

ERP

See enterprise resource planning.

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

E 93

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations
(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with :AWS.

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

FGAC

See fine-grained access control.

F 94

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

G

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.
Detective guardrails detect policy violations and compliance issues, and generate alerts

G 95

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

for remediation. They are implemented by using AWS Config, AWS Security Hub, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

H 96

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends

I 97

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

I 98

https://www.weforum.org/about/klaus-schwab/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

L 99

https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

lower environments

See environment.

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

M 100

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/what-is/machine-learning/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include

M 101

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,
migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

M 102

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

ML

See machine learning.

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and

M 103

https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

O 104

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

O 105

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends

O 106

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

P 107

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

Privacy by Design

An approach in system engineering that takes privacy into account throughout the whole
engineering process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

P 108

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

Q 109

https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

R 110

AWS Prescriptive Guidance Using Apache Iceberg on AWS

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the

R 111

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://aws.amazon.com/resilience/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

retire

See 7 Rs.

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API

S 112

https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.
The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

S 113

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

S 114

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your
organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

S 115

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/

AWS Prescriptive Guidance Using Apache Iceberg on AWS

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

T 116

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

U 117

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

V 118

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Using Apache Iceberg on AWS

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

Z 119

AWS Prescriptive Guidance Using Apache Iceberg on AWS

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 120

	AWS Prescriptive Guidance
	Table of Contents
	Using Apache Iceberg on AWS
	Modern data lakes
	Advanced use cases in modern data lakes
	Introduction to Apache Iceberg
	AWS support for Apache Iceberg

	Getting started with Apache Iceberg tables in Amazon Athena SQL
	Creating an unpartitioned table
	Creating a partitioned table
	Creating a table and loading data with a single CTAS statement
	Inserting, updating, and deleting data
	Querying Iceberg tables
	Iceberg table anatomy

	Working with Apache Iceberg in Amazon EMR
	Version and feature compatibility
	Creating an Amazon EMR cluster with Iceberg
	Developing Iceberg applications in Amazon EMR
	Using Amazon EMR Studio notebooks
	Running Iceberg jobs in Amazon EMR
	Amazon EMR on Amazon EC2
	Amazon EMR Serverless
	Amazon EMR on Amazon EKS

	Best practices for Amazon EMR

	Working with Apache Iceberg in AWS Glue
	Using native Iceberg integration
	Using a custom Iceberg version
	Using a custom connector
	Bringing your own JAR files

	Spark configurations for Iceberg in AWS Glue
	Best practices for AWS Glue jobs

	Working with Apache Iceberg tables by using Apache Spark
	Creating and writing Iceberg tables
	Using Spark SQL
	Unpartitioned tables
	Partitioned tables

	Using the DataFrames API
	Unpartitioned tables
	Partitioned tables

	Updating data in Iceberg tables
	Upserting data in Iceberg tables
	Deleting data in Iceberg tables
	Reading data
	Using time travel
	Using incremental queries
	Accessing metadata

	Working with Apache Iceberg tables by using Amazon Athena SQL
	Version and feature compatibility
	Iceberg table specification support
	Iceberg feature support

	Working with Iceberg tables
	Migrating existing tables to Iceberg
	In-place migration
	Full data migration

	Choosing a migration strategy

	Best practices for optimizing Apache Iceberg workloads
	General best practices
	Optimizing read performance
	Partitioning
	Partition your data
	Use hidden partitioning
	Use partition evolution

	Tuning file sizes
	Set target file and row group size
	Run regular compaction

	Optimize column statistics
	Choose the right update strategy
	Use ZSTD compression
	Set the sort order

	Optimizing write performance
	Set the table distribution mode
	Choose the right update strategy
	Choose the right file format

	Optimizing storage
	Enable S3 Intelligent-Tiering
	Archive or delete historic snapshots
	Delete orphan files

	Maintaining tables by using compaction
	Iceberg compaction
	Tuning compaction behavior
	Running compaction with Spark on Amazon EMR or AWS Glue
	Running compaction with Amazon Athena
	Recommendations for running compaction

	Using Iceberg workloads in Amazon S3
	Prevent hot partitioning (HTTP 503 errors)
	Use Iceberg maintenance operations to release unused data
	Replicate data across AWS Regions

	Monitoring Apache Iceberg workloads
	Table-level monitoring
	Database-level monitoring
	Preventive maintenance

	Governance and access control for Apache Iceberg on AWS
	Reference architectures for Apache Iceberg on AWS
	Nightly batch ingestion
	Data lake that combines batch and near real-time ingestion

	Resources
	Contributors
	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

