
Choosing a Git branching strategy for multi-account DevOps environments

AWS Prescriptive Guidance

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

AWS Prescriptive Guidance: Choosing a Git branching strategy for
multi-account DevOps environments

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Table of Contents

Introduction ... 1
Objectives ... 1
Using CI/CD practices .. 2

Understanding the DevOps environments ... 4
Sandbox environment .. 5

Access ... 5
Build steps .. 5
Deployment steps ... 5
Expectations before moving to the development environment .. 6

Development environment ... 6
Access ... 5
Build steps .. 5
Deployment steps ... 5
Expectations before moving to the testing environment ... 7

Testing environment .. 7
Access ... 5
Build steps .. 5
Deployment steps ... 5
Expectations before moving to the staging environment .. 9

Staging environment ... 9
Access ... 5
Build steps .. 5
Deployment steps ... 5
Expectations before moving to the production environment ... 10

Production environment ... 10
Access ... 5
Build steps .. 5
Deployment steps ... 5

Best practices for Git-based development ... 12
Git branching strategies .. 14

Trunk branching strategy ... 14
Visual overview of the Trunk strategy ... 15
Branches in a Trunk strategy ... 16
Advantages and disadvantages of the Trunk strategy .. 18

iii

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

GitHub Flow branching strategy ... 21
Visual overview of the GitHub Flow strategy ... 21
Branches in a GitHub Flow strategy ... 22
Advantages and disadvantages of the GitHub Flow strategy .. 24

Gitflow branching strategy .. 27
Visual overview of the Gitflow strategy .. 27
Branches in a Gitflow strategy .. 29
Advantages and disadvantages of the Gitflow strategy ... 32

Next steps .. 35
Resources .. 36

AWS Prescriptive Guidance .. 36
Other AWS guidance ... 36
Other resources .. 36

Contributors ... 38
Authoring ... 38
Reviewing ... 38
Technical writing .. 38

Document history .. 39
Glossary .. 40

... 40
A ... 41
B ... 44
C ... 46
D ... 49
E ... 53
F ... 55
G ... 56
H ... 57
I .. 58
L ... 61
M .. 62
O .. 66
P ... 68
Q .. 71
R ... 71
S ... 74

iv

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

T ... 78
U ... 79
V ... 80
W .. 80
Z ... 81

v

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Choosing a Git branching strategy for multi-account
DevOps environments

Amazon Web Services (contributors)

February 2024 (document history)

Moving to a cloud-based approach and delivering software solutions on AWS can be
transformative. It might require changes to your software development lifecycle process. Typically,
multiple AWS accounts are used during the development process in the AWS Cloud. Choosing
a compatible Git branching strategy to pair with your DevOps processes is essential to success.
Choosing the right Git branching strategy for your organization helps you concisely communicate
DevOps standards and best practices across development teams. Git branching can be simple in
a single environment, but it can become confusing when applied across multiple environments,
such as sandbox, development, testing, staging, and production environments. Having multiple
environments increases the complexity of the DevOps implementation.

This guide provides visual diagrams of Git branching strategies that show how an organization can
implement a multi-account DevOps process. Visual guides help teams understand how to merge
their Git branching strategies with their DevOps practices. Using a standard branching model,
like Gitflow, GitHub Flow, or Trunk, for managing the source code repository helps development
teams align their work. These teams can also use standard Git training resources on the internet to
understand and implement those models and strategies.

For DevOps best practices on AWS, review the DevOps Guidance in AWS Well-Architected. As you
review this guide, use due diligence to select the right branching strategy for your organization.
Some strategies might fit your use case better than others.

Objectives

This guide is part of a documentation series about choosing and implementing DevOps branching
strategies for organizations with multiple AWS accounts. This series is designed to help you apply
the strategy that best meets your requirements, goals, and best practices from the outset, to
streamline your experience in the AWS Cloud. This guide does not contain DevOps executable
scripts because they vary based on the continuous integration and continuous delivery (CI/CD)
engine and technology frameworks that your organization uses.

Objectives 1

https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/devops-guidance.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

This guide explains the differences between three common Git branching strategies: GitHub Flow,
Gitflow, and Trunk. The recommendations in this guide help teams identify a branching strategy
that aligns with their organizational goals. After reviewing this guide, you should be able to choose
a branching strategy for your organization. After choosing a strategy, you can use one of the
following patterns to help you implement that strategy with your development teams:

• Implement a Trunk branching strategy for multi-account DevOps environments

• Implement a GitHub Flow branching strategy for multi-account DevOps environments

• Implement a Gitflow branching strategy for multi-account DevOps environments

It's important to note that what works for one organization, team, or project might not be suitable
for others. The choice between Git branching strategies depends on various factors, such as team
size, project requirements, and the desired balance between collaboration, integration frequency,
and release management.

Using CI/CD practices

AWS recommends that you implement continuous integration and continuous delivery (CI/CD),
which is the process of automating the software release lifecycle. It automates much or all of
the manual DevOps processes that are traditionally required to get new code from development
into production. A CI/CD pipeline encompasses the sandbox, development, testing, staging, and
production environments. In each environment, the CI/CD pipeline provisions any infrastructure
that is needed to deploy or test the code. By using CI/CD, development teams can make changes
to code that are then automatically tested and deployed. CI/CD pipelines also provide governance
and guardrails for development teams. They enforce consistency, standards, best practices, and
minimum acceptance levels for feature acceptance and deployment. For more information, see
Practicing Continuous Integration and Continuous Delivery on AWS.

All of the branching strategies discussed in this guide are well suited to CI/CD practices. The
complexity of the CI/CD pipeline increases with the complexity of the branching strategy. For
example, Gitflow is the most complex branching strategy discussed in this guide. CI/CD pipelines
for this strategy require more steps (such as for compliance reasons), and they must support
multiple, simultaneous production releases. Using CI/CD also becomes more important as the
complexity of the branching strategy increases. This is because CI/CD establishes guardrails and
mechanisms for development teams that prevents developers from intentionally or unintentionally
circumnavigating the defined process.

Using CI/CD practices 2

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-trunk-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-github-flow-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-gitflow-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/welcome.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

AWS offers a suite of developer services that are designed to help you build CI/CD pipelines.
For example, AWS CodePipeline is a fully managed continuous delivery service that helps you
automate your release pipelines for fast and reliable application and infrastructure updates. AWS
CodeCommit is designed to securely host scalable Git repositories, and AWS CodeBuild compiles
source code, runs tests, and produces ready-to-deploy software packages. For more information,
see Developer Tools on AWS.

Using CI/CD practices 3

https://docs.aws.amazon.com/codepipeline/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html
https://docs.aws.amazon.com/codebuild/latest/userguide/welcome.html
https://aws.amazon.com/products/developer-tools/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Understanding the DevOps environments

To understand the branching strategies, you must understand the purpose and activities that
occur in each environment. Establishing several environments helps you separate the development
activities into stages, monitor those activities, and prevent the unintentional release of unapproved
features. You can have one or more AWS accounts in each environment.

Most organizations have several environments outlined for use. However, the number of
environments can vary by organization and according to software development policies. This
documentation series assumes that you have the following five, common environments that span
your development pipeline, although they might be called by different names:

• Sandbox – An environment where developers write code, make mistakes, and perform proof of
concept work.

• Development – An environment where developers integrate their code to confirm that it all
works as a single, cohesive application.

• Testing – An environment where QA teams or acceptance testing takes place. Teams often do
performance or integration testing in this environment.

• Staging – A preproduction environment where you validate that the code and infrastructure
perform as expected under production-equivalent circumstances. This environment is configured
to be as similar as possible to the production environment.

• Production – An environment that handles traffic from your end users and customers.

This section describes each environment in detail. It also describes the build steps, deployment
steps, and exit criteria for each environment so that you can proceed to the next. The following
image shows these environments in sequence.

Topics in this section:

• Sandbox environment

• Development environment

4

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

• Testing environment

• Staging environment

• Production environment

Sandbox environment

The sandbox environment is where developers write code, make mistakes, and perform proof of
concept work. You can deploy to a sandbox environment from a local workstation or through a
script on a local workstation.

Access

Developers should have full access to the sandbox environment.

Build steps

Developers manually run the build on their local workstations when they are ready to deploy
changes to the sandbox environment.

1. Use git-secrets (GitHub) to scan for sensitive information

2. Lint the source code

3. Build and compile the source code, if applicable

4. Perform unit testing

5. Perform code coverage analysis

6. Perform static code analysis

7. Build infrastructure as code (IaC)

8. Perform IaC security analysis

9. Extract open source licenses

10.Publish build artifacts

Deployment steps

If you're using the Gitflow or Trunk models, the deployment steps automatically initiate when
a feature branch is successfully built in the sandbox environment. If you're using the GitHub

Sandbox environment 5

https://github.com/awslabs/git-secrets

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Flow model, then you manually perform the following deployment steps. The following are the
deployment steps in the sandbox environment:

1. Download published artifacts

2. Perform database versioning

3. Perform IaC deployment

4. Perform integration testing

Expectations before moving to the development environment

• Successful build of the feature branch in the sandbox environment

• A developer has manually deployed and tested the feature in the sandbox environment

Development environment

The development environment is where developers integrate their code together to ensure it all
works as one cohesive application. In Gitflow, the development environment contains the latest
features included by merge request and are ready for release. In GitHub Flow and Trunk strategies,
the development environment is considered to be a testing environment, and the code base might
be unstable and unsuitable for deployment to production.

Access

Assign permissions according to the principle of least privilege. Least privilege is the security best
practice of granting the minimum permissions required to perform a task. Developers should have
less access to the development environment than they have to the sandbox environment.

Build steps

Creating a merge request to the develop branch (Gitflow) or the main branch (Trunk or GitHub
Flow) automatically starts the build.

1. Use git-secrets (GitHub) to scan for sensitive information

2. Lint the source code

3. Build and compile the source code, if applicable

4. Perform unit testing

Expectations before moving to the development environment 6

https://github.com/awslabs/git-secrets

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

5. Perform code coverage analysis

6. Perform static code analysis

7. Build IaC

8. Perform IaC security analysis

9. Extract open source licenses

Deployment steps

If you're using the Gitflow model, the deployment steps automatically initiate when a develop
branch is successfully built in the development environment. If you're using the GitHub Flow
model or Trunk model, then the deployment steps automatically initiate when a merge request
is created against the main branch. The following are the deployment steps in the development
environment:

1. Download the published artifacts from the build steps

2. Perform database versioning

3. Perform IaC deployment

4. Perform integration tests

Expectations before moving to the testing environment

• Successful build and deployment of the develop branch (Gitflow) or the main branch (Trunk or
GitHub Flow) in the development environment

• Unit testing passes at 100%

• Successful IaC build

• Deployment artifacts were successfully created

• A developer has performed a manual verification to confirm that the feature is functioning as
expected

Testing environment

Quality assurance (QA) personnel use the testing environment to validate features. They approve
the changes after they finish testing. When they approve, the branch moves on to the next

Deployment steps 7

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

environment, staging. In Gitflow, this environment and others above it are only available for
deployment from release branches. A release branch is based on a develop branch that
contains the planned features.

Access

Assign permissions according to the principle of least privilege. Developers should have less access
to the testing environment than they have to the development environment. QA personnel require
sufficient permissions to test the feature.

Build steps

The build process in this environment is only applicable for bugfixes when using the Gitflow
strategy. Creating a merge request to the bugfix branch automatically starts the build.

1. Use git-secrets (GitHub) to scan for sensitive information

2. Lint the source code

3. Build and compile the source code, if applicable

4. Perform unit testing

5. Perform code coverage analysis

6. Perform static code analysis

7. Build IaC

8. Perform IaC security analysis

9. Extract open source licenses

Deployment steps

Automatically initiate deployment of the release branch (Gitflow) or the main branch (Trunk or
GitHub Flow) in the testing environment after deployment in the development environment. The
following are the deployment steps in the testing environment:

1. Deploy the release branch (Gitflow) or main branch (Trunk or GitHub Flow) in the testing
environment

2. Pause for manual approval by designated personnel

Access 8

https://github.com/awslabs/git-secrets

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

3. Download published artifacts

4. Perform database versioning

5. Perform IaC deployment

6. Perform integration tests

7. Perform performance tests

8. Quality assurance approval

Expectations before moving to the staging environment

• The development and QA teams have performed sufficient testing to satisfy your organization's
requirements.

• The development team has resolved any discovered bugs through a bugfix branch.

Staging environment

The staging environment is configured to be the same as the production environment. For example,
the data setup should be similar in scope and size to production workloads. Use the staging
environment to verify that code and infrastructure operate as expected. This environment is also
the preferred choice for business use cases, such as previews or customer demonstrations.

Access

Assign permissions according to the principle of least privilege. Developers should have the same
access to the staging environment as they do the production environment.

Build steps

None. The same artifacts that were used in the testing environment are reused in the staging
environment.

Deployment steps

Automatically initiate deployment of the release branch (Gitflow) or the main branch (Trunk
or GitHub Flow) in the staging environment after approval and deployment in the testing
environment. The following are the deployment steps in the staging environment:

Expectations before moving to the staging environment 9

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

1. Deploy the release branch (Gitflow) or main branch (Trunk or GitHub Flow) in the staging
environment

2. Pause for manual approval by designated personnel

3. Download published artifacts

4. Perform database versioning

5. Perform IaC deployment

6. (Optional) Perform integration testing

7. (Optional) Perform load testing

8. Obtain approval from the required development, QA, product, or business approvers

Expectations before moving to the production environment

• A production-equivalent release has been deployed successfully to the staging environment

• (Optional) Integration and load testing were successful

Production environment

The production environment supports the released product, handling real data by real clients. This
is a protected environment that is assigned access by least privilege and elevated access should
only be allowed through an audited exception process for a limited period of time.

Access

In the production environment, developers should have limited, read-only access in the AWS
Management Console. For example, developers should be able to access log data for day-to-day
operations. All releases to production should be gated by an approval step prior to deployment.

Build steps

None. The same artifacts that were used in the testing and staging environments are reused in the
production environment.

Expectations before moving to the production environment 10

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Deployment steps

Automatically initiate deployment of the release branch (Gitflow) or the main branch (Trunk
or GitHub Flow) in the production environment after approval and deployment in the staging
environment. The following are the deployment steps in the production environment:

1. Deploy the release branch (Gitflow) or main branch (Trunk or GitHub Flow) in the production
environment

2. Pause for manual approval by designated personnel

3. Download published artifacts

4. Perform database versioning

5. Perform IaC deployment

Deployment steps 11

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Best practices for Git-based development

To successfully adopt Git-based development, it's important to follow a set of best practices that
promote collaboration, maintain code quality, and support continuous integration and continuous
delivery (CI/CD). In addition to the best practices in this guide, review the AWS Well-Architected
DevOps Guidance. The following are some key best practices for Git-based development on AWS:

• Keep changes small and frequent – Encourage developers to commit small, incremental
changes or features. This reduces the risk of merge conflicts and makes it easier to identify and
fix issues quickly.

• Use feature toggles – To manage the release of incomplete or experimental features, use feature
toggles or feature flags. This helps you hide, enable, or disable specific features in production
without affecting the main branch's stability.

• Maintain a robust test suite – A comprehensive, well-maintained test suite is crucial for
detecting issues early and verifying that the code base remains stable. Invest in test automation
and prioritize fixing any failing tests.

• Embrace continuous integration – Use continuous integration tools and practices to
automatically build, test, and integrate code changes into the develop branch (Gitflow) or
main branch (Trunk or GitHub Flow). This helps you catch issues early and streamlines the
development process.

• Perform code reviews – Encourage peer reviews of code to maintain quality, share knowledge,
and catch potential issues before they're integrated into the main branch. Use pull requests or
other code review tools to facilitate this process.

• Monitor and fix broken builds – When a build breaks or tests fail, prioritize fixing the issue as
soon as possible. This keeps the develop branch (Gitflow) or main branch (Trunk or GitHub
Flow) in a releasable state and minimizes the impact on other developers.

• Communicate and collaborate – Promote open communication and collaboration among team
members. Make sure that developers are aware of ongoing work and changes being made to the
code base.

• Refactor continuously – Regularly refactor the code base to improve its maintainability and
reduce technical debt. Encourage developers to leave the code in a better state than they found
it.

• Use short-lived branches for complex tasks – For larger or more complex tasks, use short-lived
branches (also known as task branches) to work on the changes. However, make sure to keep the

12

https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/devops-guidance.html
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/devops-guidance.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

branch lifespan short, typically less than a day. Merge the changes back into the develop branch
(Gitflow) or main branch (Trunk or GitHub Flow) as soon as possible. Smaller and more frequent
merges and reviews are easier for a team to consume and process than one large merge request.

• Train and support the team – Provide training and support to developers who are new to Git-
based development or who require guidance in adopting its best practices.

13

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Git branching strategies

In order of least to most complex, this guide describes the following Git-based branching strategies
in detail:

• Trunk – Trunk-based development is a software development practice in which all developers
work on a single branch, typically called the trunk or main branch. The idea behind this
approach is to keep the code base in a continuously releasable state by integrating code changes
frequently and relying on automated testing and continuous integration.

• GitHub Flow – GitHub Flow is a lightweight, branch-based workflow that was developed by
GitHub. It is based on the idea of short-lived feature branches. When a feature is complete and
ready to be deployed, the feature is merged into the main branch.

• Gitflow – With a Gitflow approach, development is completed in individual feature branches.
After approval, you merge feature branches into an integration branch that is usually named
develop. When enough features have accumulated in the develop branch, a release branch
is created to deploy the features to upper environments.

Each branching strategy has advantages and disadvantages. Although they all use the same
environments, they don't all use the same branches or manual approval steps. In this section of
the guide, review each branching strategy in detail so that you're familiar with its nuances and can
evaluate whether it fits your organization's use case.

Topics in this section:

• Trunk branching strategy

• GitHub Flow branching strategy

• Gitflow branching strategy

Trunk branching strategy

Trunk-based development is a software development practice in which all developers work on a
single branch, typically called the trunk or main branch. The idea behind this approach is to keep
the code base in a continuously releasable state by integrating code changes frequently and relying
on automated testing and continuous integration.

Trunk branching strategy 14

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

In trunk-based development, developers commit their changes to the main branch multiple times
a day, aiming for small, incremental updates. This enables quick feedback loops, reduces the risk
of merge conflicts, and fosters collaboration among team members. The practice emphasizes
the importance of a well-maintained test suite because it relies on automated testing to catch
potential issues early and make sure that the code base remains stable and releasable.

Trunk-based development is often contrasted with feature-based development (also known as
feature branching or feature-driven development), where each new feature or bug fix is developed
in its own dedicated branch, separate from the main branch. The choice between trunk-based
development and feature-based development depends on factors such as team size, project
requirements, and the desired balance between collaboration, integration frequency, and release
management.

For more information about the Trunk branching strategy, see the following resources:

• Implement a Trunk branching strategy for multi-account DevOps environments (AWS
Prescriptive Guidance)

• Introduction to Trunk-Based Development (Trunk Based Development website)

Topics in this section:

• Visual overview of the Trunk strategy

• Branches in a Trunk strategy

• Advantages and disadvantages of the Trunk strategy

Visual overview of the Trunk strategy

The following diagram can be used like a Punnett square (Wikipedia) to understand the Trunk
branching strategy. Line up the branches on the vertical axis with the AWS environments on
the horizontal axis to determine what actions to perform in each scenario. The circled numbers
guide you through the sequence of actions represented in the diagram. This diagram shows the
development workflow of a Trunk branching strategy, from a feature branch in the sandbox
environment to production release of the main branch. For more information about the activities
that occur in each environment, see DevOps environments in this guide.

Visual overview of the Trunk strategy 15

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-trunk-branching-strategy-for-multi-account-devops-environments.html
https://trunkbaseddevelopment.com/
https://en.wikipedia.org/wiki/Punnett_square

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Branches in a Trunk strategy

A Trunk branching strategy commonly has the following branches.

Branches in a Trunk strategy 16

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

feature branch

You develop features or create a hotfix in a feature branch. To create a feature branch, you
branch off of the main branch. Developers iterate, commit, and test code in a feature branch.
When a feature is complete, the developer promotes the feature. There are only two paths forward
from a feature branch:

• Merge into the sandbox branch

• Create a merge request into the main branch

Naming convention: feature/<story number>_<developer
 initials>_<descriptor>

Naming convention example: feature/123456_MS_Implement
_Feature_A

sandbox branch

This branch is a non-standard trunk branch, but it is useful for CI/CD pipeline development. The
sandbox branch is primarily used for the following purposes:

Branches in a Trunk strategy 17

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

• Perform a full deployment to the sandbox environment by using the CI/CD pipelines

• Develop and test a pipeline before submitting merge requests for full testing in a lower
environment, such as development or testing.

Sandbox branches are temporary in nature and are intended to be short-lived. They should be
deleted after the specific testing is complete.

Naming convention: sandbox/<story number>_<developer
 initials>_<descriptor>

Naming convention example: sandbox/123456_MS_Test_Pipe
line_Deploy

main branch

The main branch always represents the code that is running in production. Code is branched
from main, developed, and then merged back to main. Deployments from main could target any
environment. To protect against deletion, enable branch protection for the main branch.

Naming convention: main

hotfix branch

There is no dedicated hotfix branch in a trunk-based workflow. Hotfixes use feature branches.

Advantages and disadvantages of the Trunk strategy

The Trunk branching strategy is well suited for smaller, mature, development teams that have
strong communication skills. It also works well if you have continuous, rolling feature releases for
the application. It is not well suited if you have large or fragmented development teams or if you
have expansive, scheduled feature releases. Merge conflicts will occur in this model, so be aware
that resolution of merge conflicts is a key skill. All team members must be trained accordingly.

Advantages and disadvantages of the Trunk strategy 18

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Advantages

Trunk-based development offers several advantages that can improve the development process,
streamline collaboration, and enhance the overall quality of the software. The following are some
of the key benefits:

• Faster feedback loops – With trunk-based development, developers integrate their code
changes frequently, often multiple times a day. This enables faster feedback regarding potential
issues and helps developers identify and fix problems more quickly than they would in a feature-
based development model.

• Reduced merge conflicts – In trunk-based development, the risk of large, complicated merge
conflicts is minimized because changes are integrated continuously. This helps maintain a cleaner
code base and reduces the amount of time spent resolving conflicts. Resolving conflicts can be
both time-consuming and error-prone in feature-based development.

• Improved collaboration – Trunk-based development encourages developers to work together on
the same branch, promoting better communication and collaboration within the team. This can
lead to faster problem-solving and a more cohesive team dynamic.

• Easier code reviews – Because code changes are smaller and more frequent in trunk-based
development, it can be easier to conduct thorough code reviews. Smaller changes are generally
easier to understand and review, leading to more effective identification of potential issues and
improvements.

• Continuous integration and delivery – Trunk-based development supports the principles of
continuous integration and continuous delivery (CI/CD). By keeping the code base in a releasable
state and integrating changes frequently, teams can more easily adopt CI/CD practices, which
leads to faster deployment cycles and improved software quality.

• Enhanced code quality – With frequent integration, testing, and code reviews, trunk-based
development can contribute to better overall code quality. Developers can catch and fix issues
more quickly, reducing the likelihood of technical debt accumulating over time.

• Simplified branching strategy – Trunk-based development simplifies the branching strategy by
reducing the number of long-lived branches. This can make it easier to manage and maintain the
code base, especially for large projects or teams.

Advantages and disadvantages of the Trunk strategy 19

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Disadvantages

Trunk-based development does have some disadvantages, which can impact the development
process and the team dynamics. The following are a few notable drawbacks:

• Limited isolation – Because all developers work on the same branch, their changes are
immediately visible to everyone on the team. This can lead to interference or conflicts, causing
unintended side effects or breaking the build. In contrast, feature-based development isolates
changes better so that developers can work more independently.

• Increased pressure on testing – Trunk-based development relies on continuous integration
and automated testing to catch issues quickly. However, this approach can put a lot of pressure
on the testing infrastructure and requires a well-maintained test suite. If the tests aren't
comprehensive or reliable, it can lead to undetected issues in the main branch.

• Less control over releases – Trunk-based development aims to keep the code base in a
continuously releasable state. While this can be advantageous, it might not always be suitable
for projects with strict release schedules or those that require specific features to be released
together. Feature-based development provides more control over when and how features are
released.

• Code churn – With developers constantly integrating changes into the main branch, trunk-based
development can lead to increased code churn. This can make it difficult for developers to keep
track of the current state of the code base and might cause confusion when trying to understand
the effect of recent changes.

• Requires a strong team culture – Trunk-based development demands a high level of discipline,
communication, and collaboration among team members. This can be challenging to maintain,
particularly in larger teams or when working with developers who are less experienced with this
approach.

• Scalability challenges – As the size of the development team grows, the number of code
changes being integrated into the main branch can increase rapidly. This can lead to more
frequent build breaks and test failures, making it difficult to keep the code base in a releasable
state.

Advantages and disadvantages of the Trunk strategy 20

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

GitHub Flow branching strategy

GitHub Flow is a lightweight, branch-based workflow was developed by GitHub. GitHub Flow is
based on the idea of short-lived feature branches that are merged into the main branch when the
feature is complete and ready to be deployed. The key principles of GitHub Flow are:

• Branching is lightweight – Developers can create feature branches for their work with just a few
clicks, improving the ability to collaborate and experiment without affecting the main branch.

• Continuous deployment – Changes are deployed as soon as they are merged into the main
branch, which allows for rapid feedback and iteration.

• Merge requests – Developers use merge requests to initiate a discussion and review process
before merging their changes into the main branch.

For more information about GitHub Flow, see the following resources:

• Implement a GitHub Flow branching strategy for multi-account DevOps environments (AWS
Prescriptive Guidance)

• GitHub Flow Quickstart (GitHub documentation)

• Why GitHub Flow? (GitHub Flow website)

Topics in this section:

• Visual overview of the GitHub Flow strategy

• Branches in a GitHub Flow strategy

• Advantages and disadvantages of the GitHub Flow strategy

Visual overview of the GitHub Flow strategy

The following diagram can be used like a Punnett square to understand the GitHub Flow branching
strategy. Line up the branches on the vertical axis with the AWS environments on the horizontal
axis to determine what actions to perform in each scenario. The circled numbers guide you
through the sequence of actions represented in the diagram. This diagram shows the development
workflow of a GitHub Flow branching strategy, from a feature branch in the sandbox environment
to production release of the main branch. For more information about the activities that occur in
each environment, see DevOps environments in this guide.

GitHub Flow branching strategy 21

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-github-flow-branching-strategy-for-multi-account-devops-environments.html
https://docs.github.com/en/get-started/quickstart/github-flow
https://githubflow.github.io/
https://en.wikipedia.org/wiki/Punnett_square

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Branches in a GitHub Flow strategy

A GitHub Flow branching strategy commonly has the following branches.

Branches in a GitHub Flow strategy 22

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

feature branch

You develop features in feature branches. To create a feature branch, you branch off of the
main branch. Developers iterate, commit, and test the code in the feature branch. When a
feature is complete, the developer promotes the feature by creating a merge request to main.

Naming convention: feature/<story number>_<developer
 initials>_<descriptor>

Naming convention example: feature/123456_MS_Implement
_Feature_A

bugfix branch

The bugfix branch is used to fix issues. These branches are branched off of the main branch.
After the bugfix is tested in sandbox or any of the lower environments, it can be promoted to
higher environments by merging it to main through a merge request. This is a suggested naming
convention for organization and tracking, this process could also be managed using a feature
branch.

Branches in a GitHub Flow strategy 23

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Naming convention: bugfix/<ticket number>_<developer
 initials>_<descriptor>

Naming convention example: bugfix/123456_MS_Fix_Problem_A

hotfix branch

The hotfix branch is used to resolve high impact critical issues with minimal delay between
the development staff and the code deployed in production. These branches are branched off of
the main branch. After the hotfix is tested in sandbox or any of the lower environments, it can
be promoted to higher environments by merging it to main through a merge request. This is a
suggested naming convention for organization and tracking, this process could also be managed
using a feature branch.

Naming convention: hotfix/<ticket number>_<developer
 initials>_<descriptor>

Naming convention example: hotfix/123456_MS_Fix_Problem_A

main branch

The main branch always represents the code that is running in production. Code is merged into the
main branch from feature branches by using merge requests. To protect against deletion and
to prevent developers from pushing code directly to main, enable branch protection for the main
branch.

Naming convention: main

Advantages and disadvantages of the GitHub Flow strategy

The Github Flow branching strategy is well suited for smaller, mature, development teams
that have strong communication skills. This strategy is well suited to teams that want to
implement continuous delivery, and it is well supported by common CI/CD engines. GitHub Flow is

Advantages and disadvantages of the GitHub Flow strategy 24

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

lightweight, doesn't have too many rules, and is capable of supporting fast-moving teams. It is not
well suited if your teams have strict compliance or release processes to follow. Merge conflicts are
common in this model and will likely happen often. Resolution of merge conflicts is a key skill, and
you must train all team members accordingly.

Advantages

GitHub Flow offers several advantages that can improve the development process, streamline
collaboration, and enhance the overall quality of the software. The following are some of the key
benefits:

• Flexible and lightweight – GitHub Flow is a lightweight and flexible workflow that helps
developers collaborate on software development projects. It allows for quick iteration and
experimentation with minimal complexity.

• Simplified collaboration – GitHub Flow provides a clear and streamlined process for managing
feature development. It encourages small, focused changes that can be quickly reviewed and
merged, improving efficiency.

• Clear version control – With GitHub Flow, every change is made in a separate branch. This
establishes a clear and traceable version control history. This helps developers track and
understand changes, revert if necessary, and maintain a reliable code base.

• Seamless continuous integration – GitHub Flow integrates with continuous integration tools.
Creation of pull requests can initiate automated testing and deployment processes. CI tools help
you thoroughly test changes before they are merged into the main branch, reducing the risk of
introducing bugs into the code base.

• Rapid feedback and continuous improvement – GitHub Flow encourages a rapid feedback loop
by promoting frequent code reviews and discussions through pull requests. This facilitates early
detection of issues, promotes knowledge sharing among team members, and ultimately leads to
higher code quality and better collaboration within the development team.

• Simplified rollbacks and reverts – In the event that a code change introduces an unexpected
bug or issue, GitHub Flow simplifies the process of rolling back or reverting the change. By
having a clear history of commits and branches, it is easier to identify and revert problematic
changes, helping to maintain a stable and functional code base.

• Lightweight learning curve – GitHub Flow can be easier to learn and adopt than Gitflow,
especially for teams already familiar with Git and version control concepts. Its simplicity and
intuitive branching model make it accessible for developers of varying experience levels,
reducing the learning curve associated with adopting new development workflows.

Advantages and disadvantages of the GitHub Flow strategy 25

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

• Continuous development – GitHub Flow empowers teams to embrace a continuous deployment
approach by enabling the immediate deployment of every change as soon as it is merged into
the main branch. This streamlined process eliminates unnecessary delays and makes sure that
the latest updates and improvements are quickly made available to users. This results in a more
agile and responsive development cycle.

Disadvantages

While GitHub Flow offers several advantages, it is important to consider its potential disadvantages
as well:

• Limited suitability for large projects – GitHub Flow may not be as suitable for large-scale
projects with complex code bases and multiple long-term feature branches. In such cases, a more
structured workflow, like Gitflow, might provide better control over concurrent development and
release management.

• Lack of formal release structure – GitHub Flow does not explicitly define a release process or
support features such as versioning, hotfixes, or maintenance branches. This can be a limitation
for projects that require strict release management or have a need for long-term support and
maintenance.

• Limited support for long-term release planning – GitHub Flow focuses on short-lived feature
branches, which might not align well with projects that require long-term release planning, such
as those with strict roadmaps or extensive feature dependencies. Managing complex release
schedules can be challenging within the constraints of GitHub Flow.

• Potential for frequent merge conflicts – Because GitHub Flow encourages frequent branching
and merging, there is a possibility of encountering merge conflicts, especially in projects with a
lot of development activity. Resolving these conflicts can be time-consuming and might require
additional effort from the development team.

• Lack of formalized workflow phases – GitHub Flow does not define explicit phases for
development, such as alpha, beta, or release candidate stages. This can make it harder to
communicate the project's current state or the stability level of different branches or releases.

• Impact of breaking changes – Because GitHub Flow encourages merging changes into the
main branch frequently, there is a higher risk of introducing breaking changes that affect the
stability of the code base. Strict code review and testing practices are crucial to mitigate this risk
effectively.

Advantages and disadvantages of the GitHub Flow strategy 26

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Gitflow branching strategy

Gitflow is a branching model that involves the use of multiple branches to move code from
development to production. Gitflow works well for teams that have scheduled release cycles and a
need to define a collection of features as a release. Development is completed in individual feature
branches that are merged, with approval, into a develop branch, which is used for integration.
The features in this branch are considered ready for production. When all planned features
have accumulated in the develop branch, a release branch is created for deployments to upper
environments. This separation improves control over which changes are moving to which named
environment on a defined schedule. If necessary, you can accelerate this process into a faster
deployment model.

For more information about the Gitflow branching strategy, see the following resources:

• Implement a Gitflow branching strategy for multi-account DevOps environments (AWS
Prescriptive Guidance)

• The original Gitflow blog (Vincent Driessen blog post)

• Gitflow workflow (Atlassian)

Topics in this section:

• Visual overview of the Gitflow strategy

• Branches in a Gitflow strategy

• Advantages and disadvantages of the Gitflow strategy

Visual overview of the Gitflow strategy

The following diagram can be used like a Punnett square to understand the Gitflow branching
strategy. Line up the branches on the vertical axis with the AWS environments on the horizontal
axis to determine what actions to perform in each scenario. The circled numbers guide you through
the sequence of actions represented in the diagram. For more information about the activities that
occur in each environment, see DevOps environments in this guide.

Gitflow branching strategy 27

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-gitflow-branching-strategy-for-multi-account-devops-environments.html
https://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://en.wikipedia.org/wiki/Punnett_square

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Visual overview of the Gitflow strategy 28

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Branches in a Gitflow strategy

A Gitflow branching strategy commonly has the following branches.

feature branch

Feature branches are short-term branches where you develop features. The feature branch is
created by branching off of the develop branch. Developers iterate, commit, and test code in the

Branches in a Gitflow strategy 29

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

feature branch. When the feature is complete, the developer promotes the feature. There are
only two paths forward from a feature branch:

• Merge into the sandbox branch

• Create a merge request into the develop branch

Naming convention: feature/<story number>_<developer
 initials>_<descriptor>

Naming convention example: feature/123456_MS_Implement
_Feature_A

sandbox branch

The sandbox branch is a non-standard, short-term branch for Gitflow. However, it is useful for CI/
CD pipeline development. The sandbox branch is primarily used for the following purposes:

• Perform a full deployment to the sandbox environment by using the CI/CD pipelines rather than
a manual deployment.

• Develop and test a pipeline before submitting merge requests for full testing in a lower
environment, such as development or testing.

Sandbox branches are temporary in nature and are not meant to be long-lived. They should be
deleted after the specific testing is complete.

Naming convention: sandbox/<story number>_<developer
 initials>_<descriptor>

Naming convention example: sandbox/123456_MS_Test_Pipe
line_Deploy

develop branch

The develop branch is a long-lived branch where features are integrated, built, validated, and
deployed to the development environment. All feature branches are merged into the develop

Branches in a Gitflow strategy 30

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

branch. Merges into the develop branch are completed through a merge request that requires a
successful build and two developer approvals. To prevent deletion, enable branch protection on the
develop branch.

Naming convention: develop

release branch

In Gitflow, release branches are short-term branches. These branches are special because
you can deploy them to multiple environments, embracing the build-once, deploy-many
methodology. Release branches can target the testing, staging, or production environments.
After a development team has decided to promote features into higher environments, they create
a new release branch and use increment the version number from the previous release. At gates
in each environment, deployments require manual approvals to proceed. Release branches should
require a merge request to be changed.

After the release branch has deployed to production, it should be merged back into the develop
and main branches to make sure that any bugfixes or hotfixes are merged back into future
development efforts.

Naming convention: release/v{major}.{minor}

Naming convention example: release/v1.0

main branch

The main branch is a long-lived branch that always represents the code that is running in
production. Code is merged into the main branch automatically from a release branch after a
successful deployment from the release pipeline. To prevent deletion, enable branch protection on
the main branch.

Naming convention: main

Branches in a Gitflow strategy 31

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

bugfix branch

The bugfix branch is a short-term branch that is used to fix issues in release branches that haven't
been released to production. A bugfix branch should only be used to promote fixes in release
branches to the testing, staging, or production environments. A bugfix branch is always branched
off of a release branch.

After the bugfix is tested, it can be promoted to the release branch through a merge request.
Then you can push the release branch forward by following the standard release process.

Naming convention: bugfix/<ticket>_<developer
initials>_<descriptor>

Naming convention example: bugfix/123456_MS_Fix_Problem_A

hotfix branch

The hotfix branch is a short-term branch that is used to fix issues in production. It only be used
to promote fixes that must be expedited to reach the production environment. A hotfix branch is
always branched from main.

After the hotfix is tested, you can promote it to production through a merge request into the
release branch that was created from main. For testing, you can then push the release branch
forward by following the standard release process.

Naming convention: hotfix/<ticket>_<developer
initials>_<descriptor>

Naming convention example: hotfix/123456_MS_Fix_Problem_A

Advantages and disadvantages of the Gitflow strategy

The Gitflow branching strategy is well suited to larger, more distributed teams that have strict
release and compliance requirements. Gitflow contributes to a predictable release cycle for the
organization, and this is often preferred by larger organizations. Gitflow is also well suited for

Advantages and disadvantages of the Gitflow strategy 32

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

teams that require guardrails to complete their software development lifecycle properly. This is
because there are multiple opportunities for reviews and quality assurance built into the strategy.
Gitflow is also well suited for teams that must maintain multiple versions of production releases
simultaneously. Some disadvantages of GItflow are that is it more complex than other branching
models and requires strict adherence to the pattern to complete successfully. Gitflow does not
work well for organizations striving for continuous delivery due to the rigid nature of managing
release branches. Gitflow release branches can be long-lived branches that can accumulate
technical debt if not properly addressed in a timely manner.

Advantages

Gitflow-based development offers several advantages that can improve the development process,
streamline collaboration, and enhance the overall quality of the software. The following are some
of the key benefits:

• Predictable release process – Gitflow follows a regular and predictable release process. It is well
suited to teams with regular development and release cadences.

• Improved collaboration – Gitflow encourages the use of feature and release branches.
These two branches help teams work in parallel with minimal dependencies on each other.

• Well suited for multiple environments – Gitflow uses release branches, which can be longer-
lived branches. These branches enable teams to target individual releases over a longer period of
time.

• Multiple versions in production – If your team supports multiple versions of the software in
production, Gitflow release branches support this requirement.

• Built-in code quality reviews – Gitflow requires and encourages the use of code reviews and
approvals before code is promoted to another environment. This process removes friction
between developers by requiring this step for all code promotions.

• Organization benefits – Gitflow has advantages at an organization level as well. Gitflow
encourages the use of a standard release cycle, which helps the organization understand and
anticipate the release schedule. Because the business now understands when new features can
be delivered, there is reduced friction about timelines because there are set delivery dates.

Disadvantages

Gitflow-based development does have some disadvantages that can impact the development
process and the team dynamics. The following are a few notable drawbacks:

Advantages and disadvantages of the Gitflow strategy 33

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

• Complexity – Gitflow is a complex pattern for new teams to learn, and you must adhere to the
rules of Gitflow to use this successfully.

• Continuous deployment – Gitflow doesn't fit a model where many deployments are released to
production in a rapid fashion. This is because Gitflow requires the use of multiple branches and a
strict workflow governing the release branch.

• Branch management – Gitflow uses many branches, which can become burdensome to maintain.
It can be challenging to track the various branches and merge released code in order to keep the
branches properly aligned with each other.

• Technical debt – Because Gitflow releases are typically slower than the other branching models,
more features can accumulate for release, which can cause technical debt to accumulate.

Teams should carefully consider these drawbacks when deciding whether Gitflow-based
development is the right approach for their project.

Advantages and disadvantages of the Gitflow strategy 34

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Next steps

This guide explains the differences between three common Git branching strategies: GitHub Flow,
Gitflow, and Trunk. It describes their workflows in detail and also provides the advantages and
disadvantages of each. The next steps are to choose one of these standard workflows for your
organization. To implement one of these branching strategies, see the following:

• Implement a Trunk branching strategy for multi-account DevOps environments

• Implement a GitHub Flow branching strategy for multi-account DevOps environments

• Implement a Gitflow branching strategy for multi-account DevOps environments

If you are unsure where to start your team's journey to using Git and DevOps processes, we
recommend picking a standard solution and testing it. Using a standard branching convention
helps the team build upon existing documentation and learn what works best for them.

Don't be afraid to change your strategy if it isn't working for your organization or development
teams. The needs and requirements of development teams can change over time, and there is no
single, perfect solution.

35

https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-trunk-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-github-flow-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-gitflow-branching-strategy-for-multi-account-devops-environments.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Resources

This guide doesn't include training for Git; however, there are many high-quality resources available
on the internet if you need this training. We recommend that you start with the Git documentation
site.

The following resources can help you with your Git branching journey in the AWS Cloud.

AWS Prescriptive Guidance

• Implement a Trunk branching strategy for multi-account DevOps environments

• Implement a GitHub Flow branching strategy for multi-account DevOps environments

• Implement a Gitflow branching strategy for multi-account DevOps environments

Other AWS guidance

• AWS DevOps Guidance

• AWS Deployment Pipeline Reference Architecture

• What is DevOps?

• DevOps resources

Other resources

• Twelve-factor app methodology (12factor.net)

• Git-Secrets (GitHub)

• Gitflow

• The original Gitflow blog (Vincent Driessen blog post)

• Gitflow workflow (Atlassian)

• Gitflow on GitHub: How to use Git Flow workflows with GitHub Based Repos (YouTube video)

• Git Flow Init Example (YouTube video)

• The Gitflow Release Branch from Start to Finish (YouTube video)

• GitHub Flow

AWS Prescriptive Guidance 36

https://git-scm.com/doc
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-trunk-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-github-flow-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/patterns/implement-a-gitflow-branching-strategy-for-multi-account-devops-environments.html
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/devops-guidance.html
https://pipelines.devops.aws.dev/
https://aws.amazon.com/devops/what-is-devops/
https://aws.amazon.com/devops/resources/
https://12factor.net/
https://github.com/awslabs/git-secrets
https://nvie.com/posts/a-successful-git-branching-model/
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://youtu.be/WQuxeEvaCxs
https://www.youtube.com/watch?v=d4cDLBFbekw
https://www.youtube.com/watch?v=rX80eKPdA28

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

• GitHub Flow Quickstart (GitHub documentation)

• Why GitHub Flow? (GitHub Flow website)

• Trunk

• Introduction to Trunk-Based Development (Trunk Based Development website)

Other resources 37

https://docs.github.com/en/get-started/quickstart/github-flow
https://githubflow.github.io/
https://trunkbaseddevelopment.com/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Contributors

Authoring

• Mike Stephens, Senior Cloud Application Architect, AWS

• Rayjan Wilson, Senior Cloud Application Architect, AWS

• Abhilash Vinod, Team Lead, Senior Cloud Application Architect, AWS

Reviewing

• Stephen DiCato, Senior Security Consultant, AWS

• Gaurav Samudra, Cloud Application Architect, AWS

• Steven Guggenheimer, Team Lead, Senior Cloud Application Architect, AWS

Technical writing

• Lilly AbouHarb, Senior Technical Writer, AWS

Authoring 38

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Initial publication — February 15, 2024

39

https://docs.aws.amazon.com/prescriptive-guidance/latest/choosing-git-branch-approach/choosing-git-branch-approach.rss

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

40

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which in which the source and target databases are kept in
sync, but only the source database handles transactions from connecting applications while
data is replicated to the target database. The target database doesn’t accept any transactions
during migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 41

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 42

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-portfolio-discovery/welcome.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 44

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 45

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 46

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or AWS CodeCommit. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 47

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual formats
such as digital images and videos. For example, AWS Panorama offers devices that add CV to
on-premises camera networks, and Amazon SageMaker provides image processing algorithms
for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 48

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 49

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 50

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

D 51

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

D 52

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

E

EDA

See exploratory data analysis.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts

E 53

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more
information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

E 54

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

ERP

See enterprise resource planning.

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations

F 55

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with :AWS.

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

FGAC

See fine-grained access control.

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

G

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

G 56

https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.
Detective guardrails detect policy violations and compliance issues, and generate alerts
for remediation. They are implemented by using AWS Config, AWS Security Hub, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

H 57

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

I 58

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

I 59

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://www.weforum.org/about/klaus-schwab/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

I 60

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

lower environments

See environment.

L 61

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

M 62

https://aws.amazon.com/what-is/machine-learning/
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include
microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

M 63

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,
migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

M 64

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html
https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

ML

See machine learning.

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and
milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

M 65

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

O 66

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

O 67

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

P 68

https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

P 69

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

Privacy by Design

An approach in system engineering that takes privacy into account throughout the whole
engineering process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

P 70

https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

Q 71

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

R 72

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the
matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

R 73

https://aws.amazon.com/resilience/
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

retire

See 7 Rs.

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API
operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

S 74

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.
The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

S 75

https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

S 76

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your
organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

S 77

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

T 78

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

U 79

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

V 80

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Choosing a Git branching strategy for multi-account DevOps
environments

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 81

	AWS Prescriptive Guidance
	Table of Contents
	Choosing a Git branching strategy for multi-account DevOps environments
	Objectives
	Using CI/CD practices

	Understanding the DevOps environments
	Sandbox environment
	Access
	Build steps
	Deployment steps
	Expectations before moving to the development environment

	Development environment
	Access
	Build steps
	Deployment steps
	Expectations before moving to the testing environment

	Testing environment
	Access
	Build steps
	Deployment steps
	Expectations before moving to the staging environment

	Staging environment
	Access
	Build steps
	Deployment steps
	Expectations before moving to the production environment

	Production environment
	Access
	Build steps
	Deployment steps

	Best practices for Git-based development
	Git branching strategies
	Trunk branching strategy
	Visual overview of the Trunk strategy
	Branches in a Trunk strategy
	feature branch
	sandbox branch
	main branch
	hotfix branch

	Advantages and disadvantages of the Trunk strategy
	Advantages
	Disadvantages

	GitHub Flow branching strategy
	Visual overview of the GitHub Flow strategy
	Branches in a GitHub Flow strategy
	feature branch
	bugfix branch
	hotfix branch
	main branch

	Advantages and disadvantages of the GitHub Flow strategy
	Advantages
	Disadvantages

	Gitflow branching strategy
	Visual overview of the Gitflow strategy
	Branches in a Gitflow strategy
	feature branch
	sandbox branch
	develop branch
	release branch
	main branch
	bugfix branch
	hotfix branch

	Advantages and disadvantages of the Gitflow strategy
	Advantages
	Disadvantages

	Next steps
	Resources
	AWS Prescriptive Guidance
	Other AWS guidance
	Other resources

	Contributors
	Authoring
	Reviewing
	Technical writing

	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

