
Database decomposition on AWS

AWS Prescriptive Guidance

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Database decomposition on AWS

AWS Prescriptive Guidance: Database decomposition on AWS

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Database decomposition on AWS

Table of Contents

Introduction ... 1
Intended audience .. 2
Objectives ... 2

Challenges and responsibilities .. 3
Common challenges ... 3
Defining roles and responsibilities .. 3

Scope and requirements ... 6
Core analysis framework ... 6
System boundaries ... 7
Release cycles .. 7
Technical constraints .. 8
Organizational context .. 8
Risk assessment .. 8
Success criteria .. 9

Controlling access .. 10
Database wrapper service pattern .. 11

Benefits and limitations .. 11
Implementation ... 12
Example ... 13

CQRS pattern .. 15
Cohesion and coupling .. 17

About cohesion and coupling .. 17
Common coupling patterns ... 18

Implementation coupling pattern ... 19
Temporal coupling pattern ... 19
Deployment coupling pattern .. 20
Domain coupling pattern .. 20

Common cohesion patterns ... 21
Functional cohesion pattern ... 21
Sequential cohesion pattern .. 22
Communicational cohesion pattern .. 22
Procedural cohesion pattern .. 23
Temporal cohesion pattern ... 23
Logical or coincidental cohesion pattern ... 24

iii

AWS Prescriptive Guidance Database decomposition on AWS

Implementation .. 25
Best practices ... 25
Phase 1: Map data dependencies .. 25
Phase 2: Analyze transaction boundaries and access patterns .. 25
Phase 3: Identify self-contained tables .. 26

Business logic ... 28
Phase 1: Analysis .. 28
Phase 2: Classification ... 29
Phase 3: Migration ... 30
Rollback strategy .. 30

Maintain backward compatibility .. 31
Emergency rollback plan ... 31

Table relationships .. 32
Denormalization strategy ... 32
Reference-by-key strategy .. 33
CQRS pattern .. 33
Event-based data synchronization ... 34
Implementing alternatives to table joins .. 35
Scenario-based example ... 36

Best practices ... 39
Measuring success .. 39
Documentation requirements .. 39
Continuous improvement strategy ... 40
Overcoming common challenges in database decomposition .. 40

FAQ ... 41
Scope and requirements FAQ .. 41

How detailed should the initial scope definition be? .. 42
What if I discover additional dependencies after starting the project? 42
How do I handle stakeholders from different departments who have conflicting
requirements? .. 42
What's the best way to assess technical constraints when documentation is poor or
outdated? .. 42
How do I balance immediate business needs with long-term technical goals? 43
How do I make sure that I'm not missing critical requirements from silent stakeholders? 43
Do these recommendations apply for monolithic mainframe databases? 43

Database access FAQ ... 44

iv

AWS Prescriptive Guidance Database decomposition on AWS

Won't the wrapper service become a new bottleneck? .. 44
What happens to existing stored procedures? ... 44
How do I manage schema changes during the transition? .. 44

Cohesion and coupling FAQ ... 45
How do I identify the right level of granularity when analyzing coupling? 45
What tools can I use to analyze database coupling and cohesion? .. 45
What's the best way to document coupling and cohesion findings? ... 46
How do I prioritize which coupling issues to address first? ... 47
How do I handle transactions that span multiple operations? .. 47

Business logic migration FAQ .. 47
How do I identify which stored procedures to migrate first? .. 48
What are the risks of moving logic to the application layer? .. 48
How do I maintain performance when moving logic away from the database? 49
What should I do with complex stored procedures that involve multiple tables? 49
How do I handle database triggers during migration? ... 49
What's the best way to test the migrated business logic? ... 50
How do I manage the transition period when both database and application logic exist? 50
How do I handle error scenarios in the application layer that were previously managed by
the database? ... 50

Next steps .. 52
Incremental strategies ... 52
Technical considerations ... 52
Organizational changes .. 53

Resources .. 54
AWS Prescriptive Guidance .. 54
AWS blog posts .. 54
AWS services ... 54
Other tools .. 54
Other resources .. 55

Document history .. 56
Glossary .. 57

... 57
A ... 58
B ... 61
C ... 63
D ... 66

v

AWS Prescriptive Guidance Database decomposition on AWS

E ... 70
F ... 72
G ... 74
H ... 75
I .. 76
L ... 78
M .. 80
O .. 84
P ... 86
Q .. 89
R ... 89
S ... 92
T ... 96
U ... 97
V ... 98
W .. 98
Z ... 99

vi

AWS Prescriptive Guidance Database decomposition on AWS

Database decomposition on AWS

Philippe Wanner and Saurabh Sharma, Amazon Web Services

October 2025 (document history)

Database modernization, particularly the decomposition of monolithic databases, is a critical
workstream for organizations that want to improve agility, scalability, and performance in their
data management systems. As businesses grow and their data needs become more complex,
traditional monolithic databases often struggle to keep pace. This leads to performance
bottlenecks, maintenance challenges, and difficulty adapting to changing business requirements.

The following are common challenges with monolithic databases:

• Business domain misalignment – Monolithic databases often fail to align technology with
distinct business domains, which can limit organizational growth.

• Scalability constraints – Systems frequently hit scaling limits, which creates barriers to business
expansion.

• Architectural rigidity – Tightly coupled structures make it difficult to update specific
components without affecting the entire system.

• Performance degradation – Growing data loads and increasing user concurrency often lead to
deteriorating system performance.

The following are the benefits of database decomposition:

• Enhanced business agility – Decomposition enables rapid adaptation to changing business
needs and supports independent scaling.

• Optimized performance – Decomposition helps you create specialized database solutions that
are tailored to specific use cases and independently scale each database.

• Improved cost management – Decomposition enables more efficient resource utilization and
reduces operational costs.

• Flexible licensing options – Decomposition creates opportunities to transition from costly
proprietary licenses to open source alternatives.

• Innovation enablement – Decomposition facilitates the adoption of purpose-built databases for
specific workloads.

1

AWS Prescriptive Guidance Database decomposition on AWS

Intended audience

This guide helps database architects, cloud solutions architects, application development teams,
and enterprise architects. It is designed to help you decompose monolithic databases into
microservices-aligned data stores, implement domain-driven database architectures, plan database
migration strategies, and scale database operations to meet growing business demands. To
understand the concepts and recommendations in this guide, you should be familiar with relational
and NoSQL database principles, AWS managed database services, and microservices architecture
patterns. This guide is intended to help organizations that are in the initial stages of a database
decomposition project.

Objectives

This guide can help your organization achieve the following objectives:

• Collect requirements for decomposing your target architecture.

• Develop a systematic methodology for evaluating risk and communicating.

• Create a decomposition plan.

• Define success metrics, key performance indicators (KPIs), a mitigation strategy, and a business
continuity plan.

• Establish a better workload elasticity that helps you follow business demand.

• Learn how to adopt specialized databases for specific use cases, which enables innovation.

• Strengthen your organization's data security and governance.

• Reduce costs through the following:

• Reduced licensing fees

• Reduced vendor lock-in

• Improved access to broader community support and innovations

• Ability to choose different database technologies for different components

• Gradual migration, which reduces risk and spreads costs over time

• Improved resource utilization

Intended audience 2

AWS Prescriptive Guidance Database decomposition on AWS

Common challenges and managing responsibilities for
database decomposition

Database decomposition is a complex process that requires careful planning, execution, and
management. As organizations seek to modernize their data infrastructure, they often encounter
a myriad of challenges that can impact the success of their projects. This section describes the
common hurdles and introduces a structured approach to overcoming these obstacles.

Common challenges

A database decomposition project faces several challenges across technical, people, and business
dimensions. On the technical front, ensuring data consistency across distributed systems poses
a significant hurdle. It can also have potential performance and stability impacts during the
transition period, and you must seamlessly integrate with existing systems. People-related
challenges include the learning curve associated with the new system, potential resistance to
change from employees, and the availability of necessary resources. From a business perspective,
the project must contend with the risks of timeline overruns, budget constraints, and the potential
for business disruption during the migration process.

Defining roles and responsibilities

Given these complex challenges that span technical, people, and business dimensions, establishing
clear roles and responsibilities becomes critical for project success. A Responsible, Accountable,
Consulted, and Informed (RACI) matrix provides the necessary structure to navigate these
challenges. It explicitly defines who makes decisions, who performs the work, who provides input,
and who needs to stay informed at each stage of the decomposition. This clarity helps prevent
delays caused by ambiguous decision-making, encourages appropriate stakeholder engagement,
and creates accountability for key deliverables. Without such a framework, teams may struggle
with overlapping responsibilities, missed communications, and unclear escalation paths—issues
that could exacerbate the existing technical complexities and change management challenges
while increasing the risk of timeline and budget overruns.

The following sample RACI matrix is a starting point that can help you clarify potential roles and
responsibilities in your organization.

Common challenges 3

AWS Prescriptive Guidance Database decomposition on AWS

Task or activity Project
manager

Architect Developer Stakeholder

Identify business
outcomes and
challenges

A/R R C –

Define the scope
and identify
requirements

A R C C/I

Identify the
project success
metrics

A R C I

Create and
execute the
communication
plan

A/R C C I

Define the
target architect
ure

I A/R C –

Control
database access

I A/R R –

Create and
execute the
business
continuity plan

A/R C I –

Analyze
cohesion and
coupling

I A/R R I

Move the
business logic
(such as stored

I A R –

Defining roles and responsibilities 4

AWS Prescriptive Guidance Database decomposition on AWS

procedure
s) from the
database to the
application layer

Decouple table
relationships,
known as joins

I A R –

Defining roles and responsibilities 5

AWS Prescriptive Guidance Database decomposition on AWS

Defining the scope and requirements for database
decomposition

When you define the scope and identify requirements for your database decomposition project,
you must work backward from your organization's needs. This requires a systematic approach that
balances technical feasibility with business value. This initial step sets the foundation for the entire
process and helps you make sure that the project's objectives align with the organization's goals
and capabilities.

This section contains the following topics:

• Establishing a core analysis framework

• Defining system boundaries for database decomposition

• Considering release cycles

• Evaluating technical constraints for database decomposition

• Understanding organizational context

• Assessing risk for database decomposition

• Defining success criteria for database decomposition

Establishing a core analysis framework

The scope definition begins with a systematic workflow that guides the analysis through four
interconnected phases. This comprehensive approach makes sure that database decomposition
efforts are grounded in a thorough understanding of the existing systems and operational
requirements. The following are the phases in the core analysis framework:

1. Actor analysis – Thoroughly identify all systems and applications that interact with the
database. This involves mapping both producers that perform write operations and consumers
that handle read operations, while documenting their access patterns, frequencies, and peak
usage times. This customer-centric view helps you understand the impact of any changes and
identify critical paths that require special attention during decomposition.

2. Activity analysis – Dive deep into the specific operations that each actor performs. You
create detailed create, read, update, and delete (CRUD) matrices for each system and identify
which tables they access and how. This analysis helps you discover natural boundaries for
decomposition and highlights areas where you can simplify the current architecture.

Core analysis framework 6

AWS Prescriptive Guidance Database decomposition on AWS

3. Dependency mapping – Document both direct and indirect dependencies between systems,
creating clear visualizations of data flows and relationships. This helps identify potential
breaking points and areas where careful planning is needed to earn trust. The analysis considers
both technical dependencies, such as shared tables and foreign keys, and business process
dependencies, such as workflow sequences and reporting requirements.

4. Consistency requirements – Examine each operation's consistency needs with high standards.
Determine which operations require immediate consistency, such as financial transactions.
Other operations can operate with eventual consistency, such as analytics updates. This analysis
directly influences the choice of decomposition patterns and architectural decisions throughout
the project.

Defining system boundaries for database decomposition

System boundaries are logical perimeters that define where one system ends and another begins,
encompassing data ownership, access patterns, and integration points. When defining system
boundaries, make thoughtful but decisive choices that balance comprehensive planning with
practical implementation needs. Consider the database as a logical unit that might span multiple
physical databases or schemas. This boundary definition accomplishes the following critical
objectives:

• Identifies all external actors and their interaction patterns

• Comprehensively maps both inbound and outbound dependencies

• Documents technical and operational constraints

• Clearly delineates the scope of the decomposition effort

Considering release cycles

Understanding release cycles is crucial for planning database decomposition. Review the
renewal times for both the target system and any dependent systems. Identify opportunities for
coordinated changes. Consider any planned decommissioning of connected systems because this
might influence your decomposition strategy. Factor in existing change windows and deployment
constraints to minimize business disruption. Make sure that your implementation plan aligns with
release schedules across all connected systems.

System boundaries 7

AWS Prescriptive Guidance Database decomposition on AWS

Evaluating technical constraints for database decomposition

Before proceeding with database decomposition, assess the key technical limitations that will
shape your modernization approach. Examine the capabilities of your current technology stack,
including database versions, frameworks, performance requirements, and service level agreements.
Consider security and compliance mandates, especially for regulated industries. Review current
data volumes, growth projections, and available migration tools to inform your scaling decisions.
Finally, confirm your access rights to source code and system modifications because these will
determine the viable decomposition strategies.

Understanding organizational context

Successful database decomposition requires that you understand the broader organizational
landscape in which the system operates. Map cross-departmental dependencies, and establish clear
communication channels between teams. Assess your team's technical capabilities, and identify any
training needs or skill gaps that you need to address. Consider change management implications,
including how to manage transitions and maintain business continuity. Evaluate available resources
and any constraints, such as budget or staffing limitations. Finally, align your decomposition
strategy with stakeholder expectations and priorities to promote continued support throughout
the project.

Assessing risk for database decomposition

A comprehensive risk assessment is essential for database decomposition success. Carefully
evaluate risks, such as data integrity during the migration, potential system performance
degradation, possible integration failures, and security vulnerabilities. These technical challenges
must be balanced against business risks, including potential operational disruptions, resource
limitations, timeline delays, and budget constraints. For each identified risk, develop specific
mitigation strategies and contingency plans in order to maintain project momentum while
protecting business operations.

Create a risk matrix that evaluates both impact and probability of potential issues. Work with
technical teams and business stakeholders to identify risks, set clear thresholds for intervention,
and develop specific mitigation strategies. For example, rate data loss risk as high impact and low
probability, and it requires robust backup strategies. Minor performance degradation might be
medium impact and high probability, and it requires proactive monitoring.

Technical constraints 8

AWS Prescriptive Guidance Database decomposition on AWS

Establish regular risk review cycles to reassess priorities and adjust mitigation plans as the project
evolves. This systematic approach makes sure that resources are focused on the most critical risks
while maintaining clear escalation paths for emerging issues.

Defining success criteria for database decomposition

Success criteria for database decomposition must be clearly defined and measurable across
multiple dimensions. From a business perspective, establish specific targets for cost reduction,
improved time-to-market, system availability, and customer satisfaction. Technical success should
be measured through quantifiable improvements in system performance, deployment efficiency,
data consistency, and overall reliability. For the migration process, define strict requirements for
zero data loss, acceptable business disruption limits, budget compliance, and timeline adherence.

Document these criteria thoroughly by maintaining baseline and target metrics, clear measurement
methodologies, and regular review schedules. Assign clear owners for each success metric, and map
dependencies between different metrics. This comprehensive approach to measuring success aligns
technical achievements with business outcomes, while maintaining accountability throughout the
decomposition journey.

Success criteria 9

AWS Prescriptive Guidance Database decomposition on AWS

Controlling database access during decomposition

Many organizations face a common scenario: a central database that has grown organically over
many years and is accessed directly by multiple services and teams. This creates several critical
problems:

• Uncontrolled growth – As teams continuously add new features and modify schemas, the
database becomes increasingly complex and difficult to manage.

• Performance concerns – Even with hardware improvements, the growing load eventually
threatens to exceed the database's capabilities. Impossibility to tune queries due to schema
complexity or lack of skills. Unable to predict or explain system performance.

• Decomposition paralysis – It becomes nearly impossible to split or refactor the database while
it's actively being modified by multiple teams.

Note

Monolithic database systems often reuse the same credentials for applications or services
or for administration. This leads to poor database traceability. Setting dedicated roles and
adopting the principle of least privilege can help you increase security and availability.

When dealing with a monolithic database that has become unwieldy, one of the most effective
patterns to control access is called a database wrapper service. It provides a strategic first step
in managing complex database systems. It establishes controlled database access and enables
gradual modernization, while reducing risk. This approach creates a foundation for incremental
improvements by providing clear visibility into data usage patterns and dependencies. It's a
transitional architecture that serves as a step toward full database decomposition. The wrapper
service provides the stability and control needed to make that journey successfully.

This section contains the following topics:

• Controlling access with the database wrapper service pattern

• Controlling access with the CQRS pattern

10

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#bp-users-federation-idp
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Prescriptive Guidance Database decomposition on AWS

Controlling access with the database wrapper service pattern

A wrapper service is a service layer that acts as a facade for the database. This approach is
particularly valuable when you need to maintain existing functionality while preparing for future
decomposition. This pattern follows a simple principle—when something is too messy, start by
containing the mess. The wrapper service becomes the only authorized way to access the database,
providing a controlled interface while hiding the underlying complexity.

Use this pattern when immediate database decomposition isn't feasible due to complex schemas
or when multiple services require continuous data access. It's particularly valuable during transition
periods because it provides time for careful refactoring while maintaining system stability. The
pattern works well when consolidating data ownership to specific teams or when new applications
need aggregated views across multiple tables.

For example, apply this pattern when:

• Schema complexity prevents immediate separation

• Multiple teams need ongoing data access

• Gradual modernization is preferred

• Team restructuring requires clear data ownership

• New applications need consolidated data views

Benefits and limitations of the database wrapper service pattern

The following are the benefits of the database wrapper pattern:

• Controlled growth – The wrapper service prevents further uncontrolled additions to the
database schema.

• Clear boundaries – The implementation process helps you establish clear ownership and
responsibility boundaries.

• Refactoring freedom – A wrapper service lets you make internal changes without impacting
consumers.

• Improved observability – A wrapper service is a single point for monitoring and logging.

• Simplified testing – A wrapper service makes it easier for consuming services to create
simplified, mock versions for testing.

Database wrapper service pattern 11

AWS Prescriptive Guidance Database decomposition on AWS

The following are the limitations of the database wrapper pattern.

• Technology coupling – A wrapper service works best when it uses the same technology stack as
the consuming services.

• Initial overhead – The wrapper service requires additional infrastructure that might affect
performance.

• Migration effort – To implement the wrapper service, you must coordinate across teams to
transition away from direct access.

• Performance – If the wrapping service experiences high traffic, heavy usage, or frequent access,
consuming services might experience poor performance. On top of the database, the wrapper
service must handle pagination, cursors, and database connections. Depending it on your use
case, it might not scale well, and it might be a poor fit for extract, transform, and load (ETL)
workloads.

Implementing the database wrapper service pattern

There are two phases to implement the database wrapper service pattern. First, you create the
database wrapper service. Then, you direct all access through it and document the access patterns.

Phase 1: Creating the database wrapper service

Create a lightweight service layer that acts as a gatekeeper to your database. Initially, it should
mirror all existing functionalities. This wrapper service becomes the mandatory access point for all
database operations, which converts direct database dependencies into service-level dependencies.
Implement detailed logging and monitoring at this layer to track usage patterns, performance
metrics, and access frequencies. Maintain your existing stored procedures, but make sure that
they're accessed only through this new service interface.

Phase 2: Implementing access control

Systematically redirect all database access through the wrapper service, and then revoke direct
database permissions from external systems that access the database directly. Document each
access pattern and dependency as services are migrated. This controlled access enables internal
refactoring of database components without disrupting external consumers. For example, start
with low-risk, read-only operations instead of complex transactional workflows.

Implementation 12

AWS Prescriptive Guidance Database decomposition on AWS

Phase 3: Monitor database performance

Use the wrapper service as a centralized monitoring point for database performance. Track key
metrics, including query response times, usage patterns, error rates, and resource utilization. Set
up alerts for performance thresholds and unusual patterns. For example, monitor slow-running
queries, connection pool utilization, and transaction throughput to proactively identify potential
issues.

Use this consolidated view to optimize database performance through query tuning, resource
allocation adjustments, and usage pattern analysis. The centralized nature of the wrapper service
makes it easier to implement improvements and validate their impact across all consumers, while
maintaining consistent performance standards.

Best practices for implementing a database wrapper service

The following best practices can help you implement a database wrapper service:

• Start small – Begin with a minimal wrapper that simply proxies existing functionality

• Maintain stability – Keep the service interface stable while making internal improvements

• Monitor usage – Implement comprehensive monitoring to understand access patterns

• Clear ownership – Assign a dedicated team to maintain both the wrapper and the underlying
schema

• Encourage local storage – Motivate teams to store their data in their own databases

Scenario-based example

This section describes an example of how a fictitious company, named AnyCompany Books, could
use the database wrapper pattern to control access to their monolithic database system. At
AnyCompany Books, there are three critical services: Dispatch, Finance, and Order Processing.
These services share access to a central database. Each service is maintained by a different team.
Over time, they independently modify the database schema to meet their specific needs. This has
led to a tangled web of dependencies and an increasingly complex database structure.

Example 13

AWS Prescriptive Guidance Database decomposition on AWS

The company's application or enterprise architect recognizes the need to decompose this
monolithic database. Their goal is to give each service its own dedicated database to improve
maintainability and reduce cross-team dependencies. However, they face a significant challenge—
it's nearly impossible to decompose the database while all three teams continue to actively modify
it for their ongoing projects. The constant schema changes and lack of coordination between teams
make it extremely risky to attempt any significant restructuring.

The architect uses the database wrapper service pattern to start controlling access to the
monolithic database. First, they set up the database wrapper service for a particular module, called

Example 14

AWS Prescriptive Guidance Database decomposition on AWS

the Order service. Then, they redirect the Order Processing service to access the wrapper service
instead of directly accessing the database. The following image shows the modified infrastructure.

Controlling access with the CQRS pattern

Another pattern that you can use to isolate external systems that connect to this central database
is command query responsibility segregation (CQRS). If some of the external systems are connecting
to your central database primarily for reads, such as analytics, reporting, or other read-intensive
operations, you can create separate read-optimized data stores.

This pattern effectively isolates these external systems from the impacts of database
decomposition and schema changes. By maintaining dedicated read replicas or purpose-built data
stores for specific query patterns, teams can continue their operations without being affected by
changes in the primary database structure. For example, while you decompose your monolithic

CQRS pattern 15

AWS Prescriptive Guidance Database decomposition on AWS

database, reporting systems can continue to work with their existing data views, and analytical
workloads can maintain their current query patterns through dedicated analytical stores. This
approach provides technical isolation and enables organizational autonomy because different
teams can evolve their systems independently without tight coupling to the primary database's
transformation journey.

For more information about this pattern and an example of its use to decouple table relationships,
see CQRS pattern later in this guide.

CQRS pattern 16

AWS Prescriptive Guidance Database decomposition on AWS

Analyzing cohesion and coupling for database
decomposition

This section helps you analyze coupling and cohesion patterns in your monolithic database to
guide its decomposition. Understanding how database components interact and depend on
each other is crucial for identifying natural break points, assessing complexity, and planning a
phased migration approach. This analysis reveals hidden dependencies, highlights areas that are
suitable for immediate separation, and helps you prioritize decomposition efforts while minimizing
transformation risks. By examining both coupling and cohesion, you can make informed decisions
about the component separation sequence in order to maintain system stability throughout the
transformation process.

This section contains the following topics:

• About cohesion and coupling

• Common coupling patterns in monolithic databases

• Common cohesion patterns in monolithic databases

• Implementing low coupling and high cohesion

About cohesion and coupling

Coupling measures the degree of interdependence between database components. In a well-
designed system, you want to achieve loose coupling, where changes to one component have
minimal impact on others. Cohesion measures how well the elements within a database component
work together to serve a single, well-defined purpose. High cohesion indicates that a component's
elements are strongly related and focused on a specific function. When decomposing a monolithic
database, you must analyze both the cohesion within individual components and the coupling
between them. This analysis helps you make informed decisions about how to break down the
database while maintaining system integrity and performance.

The following image shows loose coupling with high cohesion. The components in the database
work together to perform a specific function, and you minimize the impact of change on a single
component. This is the ideal state.

About cohesion and coupling 17

AWS Prescriptive Guidance Database decomposition on AWS

The following image shows high coupling with low cohesion. The database components are
disconnected, and changes are highly likely to impact other components.

Common coupling patterns in monolithic databases

There are several coupling patterns that are commonly found when decomposing a monolithic
database into microservice-specific databases. Understanding these patterns is crucial for

Common coupling patterns 18

AWS Prescriptive Guidance Database decomposition on AWS

successful database modernization initiatives. This section describes each pattern, its challenges,
and best practices for reducing coupling.

Implementation coupling pattern

Definition: Components are tightly interconnected at the code and schema level. For example,
modifying the structure of a customer table impacts order, inventory, and billing services.

Modernization impact: Each microservice requires its own dedicated database schema and data
access layer.

Challenges:

• Changes to shared tables affect multiple services

• High risk of unintended side effects

• Increased testing complexity

• Difficult to modify individual components

Best practices to reduce coupling:

• Define clear interfaces between components

• Use abstraction layers to hide implementation details

• Implement domain-specific schemas

Temporal coupling pattern

Definition: Operations must run in a specific sequence. For example, order processing cannot
proceed until inventory updates are complete.

Modernization impact: Each microservice needs autonomous data control.

Challenges:

• Breaking synchronous dependencies between services

• Performance bottlenecks

• Difficult to optimize

Implementation coupling pattern 19

AWS Prescriptive Guidance Database decomposition on AWS

• Limited parallel processing

Best practices to reduce coupling:

• Implement asynchronous processing where possible

• Use event-driven architectures

• Design for eventual consistency when appropriate

Deployment coupling pattern

Definition: System components must be deployed as a single unit. For example, a minor change to
the payment processing logic requires redeploying the entire database.

Modernization impact: Independent database deployments per service

Challenges:

• High-risk deployments

• Limited deployment frequency

• Complex rollback procedures

Best practices to reduce coupling:

• Break down into independently deployable components

• Implement database sharding strategies

• Use blue-green deployment patterns

Domain coupling pattern

Definition: Business domains share database structures and logic. For example, the customer,
order, and inventory domains share tables and stored procedures.

Modernization impact: Domain-specific data isolation

Challenges:

• Complex domain boundaries

Deployment coupling pattern 20

AWS Prescriptive Guidance Database decomposition on AWS

• Difficult to scale individual domains

• Tangled business rules

Best practices to reduce coupling:

• Identify clear domain boundaries

• Separate data by domain context

• Implement domain-specific services

Common cohesion patterns in monolithic databases

There are several cohesion patterns that are commonly found when evaluating database
components for decomposition. Understanding these patterns is crucial for identifying well-
structured database components. This section describes each pattern, its characteristics, and best
practices for strengthening cohesion.

Functional cohesion pattern

Definition: All elements directly support and contribute to performing a single, well-defined
function. For example, all stored procedures and tables in a payment-processing module handle
only payment-related operations.

Modernization impact: Ideal pattern for microservice database design

Challenges:

• Identifying clear functional boundaries

• Separating mixed-purpose components

• Maintaining single responsibility

Best practices to strengthen cohesion:

• Group related functions together

• Remove unrelated functionality

• Define clear component boundaries

Common cohesion patterns 21

AWS Prescriptive Guidance Database decomposition on AWS

Sequential cohesion pattern

Definition: Output from one element becomes input for another. For example, validation results
for an order feed into order processing.

Modernization impact: Requires careful workflow analysis and data flow mapping

Challenges:

• Managing dependencies between steps

• Handling failure scenarios

• Maintaining process order

Best practices to strengthen cohesion:

• Document clear data flows

• Implement proper error handling

• Design clear interfaces between steps

Communicational cohesion pattern

Definition: Elements operate on the same data. For example, customer-profile management
functions all work with customer data.

Modernization impact: Helps identify data boundaries for service separation to decrease coupling
between modules

Challenges:

• Determining data ownership

• Managing shared data access

• Maintaining data consistency

Best practices to strengthen cohesion:

• Define clear data ownership

• Implement proper data access patterns

Sequential cohesion pattern 22

AWS Prescriptive Guidance Database decomposition on AWS

• Design effective data partitioning

Procedural cohesion pattern

Definition: Elements are grouped together because they must be executed in a specific order,
but they may not be functionally related. For example, in order processing, a stored procedure
that handles both order validation and user notification is grouped together simply because they
happen in sequence, even though they serve different purposes and could be handled by separate
services.

Modernization impact: Requires careful separation of procedures while maintaining process flow

Challenges:

• Maintaining correct process flow after decomposition

• Identifying true functional boundaries compared to procedural dependencies

Best practices to strengthen cohesion:

• Separate procedures based on their functional purpose rather than execution order

• Use orchestration patterns to manage process flow

• Implement workflow management systems for complex sequences

• Design event-driven architectures to handle process steps independently

Temporal cohesion pattern

Definition: Elements are related by timing requirements. For example, when an order is
placed, several operations must execute together: inventory check, payment processing, order
confirmation, and shipping notification must all occur within a specific time window to maintain a
consistent order state.

Modernization impact: Might require special handling in distributed systems

Challenges:

• Coordinating timing dependencies across distributed services

• Managing distributed transactions

Procedural cohesion pattern 23

AWS Prescriptive Guidance Database decomposition on AWS

• Confirming process completion across multiple components

Best practices to strengthen cohesion:

• Implement proper scheduling mechanisms and timeouts

• Use event-driven architectures with clear sequence handling

• Design for eventual consistency with compensation patterns

• Implement saga patterns for distributed transactions

Logical or coincidental cohesion pattern

Definition: Elements are logically categorized to do the same things, even though they have weak
or no meaningful relationships. An example is storing customer order data, warehouse inventory
counts, and marketing email templates in the same database schema because they all relate to
sales operations, despite having different access patterns, lifecycle management, and scaling
requirements. Another example is combining order payment processing and product catalog
management within the same database component because they're both part of the e-commerce
system, even though they serve distinct business functions with different operational needs.

Modernization impact: Should be refactored or reorganized

Challenges:

• Identifying better organization patterns

• Breaking unnecessary dependencies

• Restructuring components that were arbitrarily grouped

Best practices to strengthen cohesion:

• Reorganize based on true functional boundaries and business domains

• Remove arbitrary groupings based on superficial relationships

• Implement proper separation of elements based on business capabilities

• Align database components with their specific operational requirements

Logical or coincidental cohesion pattern 24

AWS Prescriptive Guidance Database decomposition on AWS

Implementing low coupling and high cohesion

Best practices

The following best practices can help you achieve low coupling:

• Minimize dependencies between database components

• Use well-defined interfaces for component interaction

• Avoid shared state and global data structures

The following best practices can help you achieve high cohesion:

• Group related data and operations together

• Make sure that each component has a single, clear responsibility

• Maintain clear boundaries between different business domains

Phase 1: Map data dependencies

Map data relationships and identify natural boundaries. You can use tools, such as SchemaSpy, to
visualize the database by showing the tables in entity-relationship (ER) diagram. This provides a
static analysis of the database and indicates some of the clear boundaries and dependencies within
the database.

You can also export your database schemas in a graph database or in a Jupiter notebook. Then,
you can apply clustering or interconnected components algorithms to identify natural boundaries
and dependencies. Other AWS Partner tools, such as CAST Imaging, can help to understand your
database dependencies.

Phase 2: Analyze transaction boundaries and access patterns

Analyze transaction patterns to maintain atomicity, consistency, isolation, durability (ACID)
properties and understand how data is accessed and modified. You can use database analysis
and diagnosis tools, such as Oracle Automatic Workload Repository (AWR) or PostgreSQL
pg_stat_statements. This analysis helps you understand who is accessing the database and what
the transaction boundaries are. It can also help you understand the cohesion and coupling between
tables at runtime. You can also use monitoring and profiling tools that can link code and database
execution profiles, such as Dynatrace AppEngine.

Implementation 25

https://schemaspy.org/
https://www.castsoftware.com/imaging
https://docs.oracle.com/en-us/iaas/performance-hub/doc/awr-report-ui.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.dynatrace.com/platform/appengine/

AWS Prescriptive Guidance Database decomposition on AWS

AI tools, such as vFunction, can help you identify domain boundaries by analyzing the application's
functional and domain boundaries. Although vFunction primarily analyzes the application layer,
its insights can guide the decomposition of both the application and the database, supporting
alignment with business domains.

Phase 3: Identify self-contained tables

Look for tables that demonstrate two key characteristics:

• High cohesion – The table's contents are strongly related to each other

• Low coupling – They have minimal dependencies on other tables.

The following coupling-cohesion matrix can help you identify the difficulty of decoupling each
table. Tables that appear in the upper-right quadrant of this matrix are ideal candidates for initial
decoupling efforts because they're the easiest to separate. In an ER diagram, these tables have few
foreign key relationships or other dependencies. After you have decoupled these tables, progress
toward tables with more complex relationships.

Phase 3: Identify self-contained tables 26

https://vfunction.com/

AWS Prescriptive Guidance Database decomposition on AWS

Note

Database structure often mirrors application architecture. Tables that are easier to
decouple at the database level typically correspond to components that are easier to
convert into microservices at the application level.

Phase 3: Identify self-contained tables 27

AWS Prescriptive Guidance Database decomposition on AWS

Migrating business logic from the database to the
application layer

Migrating business logic from database-stored procedures, triggers, and functions to application-
layer services is a critical step in decomposing monolithic databases. This transformation improves
service autonomy, simplifies maintenance, and enhances scalability. This section provides guidance
on analyzing database logic, planning the migration strategy, and then implementing the
transformation while maintaining business continuity. It also discusses establishing an effective
rollback plan.

This section contains the following topics:

• Phase 1: Analyzing the business logic

• Phase 2: Classifying the business logic

• Phase 3: Migrating the business logic

• Rollback strategy for business logic

Phase 1: Analyzing the business logic

When modernizing monolithic databases, you must first conduct a comprehensive analysis of your
existing database logic. This phase focuses on three primary categories:

• Stored procedures often contain critical business operations, including data-manipulation logic,
business rules, validation checks, and calculations. As core components of the application
business logic, they require careful decomposition. For instance, a financial organization's stored
procedures might handle interest calculations, account reconciliation, and compliance checks.

• Triggers are key database components that handle audit trails, data validation, calculations,
and cross-table consistency. For example, a retail organization might use triggers to manage
inventory updates throughout their order processing system, which demonstrates the complexity
of automated database operations.

• Functions in databases primarily manage data transformations, calculations, and lookup
operations. They are often embedded across multiple procedures and applications. For example,
a healthcare organization might use functions to normalize patient data or look up medical
codes.

Phase 1: Analysis 28

AWS Prescriptive Guidance Database decomposition on AWS

Each category represents different aspects of business logic that is embedded within the database
layer. You need to carefully evaluate and plan each in order migrate them to the application layer.

During this analysis phase, customers typically face three significant challenges. First, complex
dependencies emerge through nested procedure calls, cross-schema references, and implicit
data dependencies. Second, transaction management becomes critical, particularly when dealing
with multi-step transactions and maintaining data consistency across distributed systems.
Third, performance considerations must be carefully evaluated, especially for batch processing
operations, bulk data updates, and real-time calculations that currently benefit from being close to
the data.

To effectively address these challenges, you can use AWS Schema Conversion Tool (AWS SCT)
for initial analysis and then use detailed dependency-mapping tools. This approach helps you
understand the full scope of your database logic and create a comprehensive migration strategy
that maintains business continuity during decomposition.

By thoroughly understanding these components and challenges, you can better plan your
modernization journey and make informed decisions about which elements to prioritize during the
migration to a microservices-based architecture.

When analyzing database code components, create comprehensive documentation for each stored
procedure, trigger, and function. Start by clearly describing its purpose and core functionality,
including business rules it implements. Detail all input and output parameters, and note their
data types and valid ranges. Map out dependencies on other database objects, external systems,
and downstream processes. Clearly define transaction boundaries and isolation requirements
to maintain data integrity. Document any performance expectations, including response time
requirements and resource utilization patterns. Finally, analyze usage patterns to understand peak
loads, frequency of execution, and critical business periods.

Phase 2: Classifying the business logic

Effective database decomposition requires systematic categorization of database logic across key
dimensions: complexity, business impact, dependencies, usage patterns, and migration difficulty.
This classification helps you identify high-risk components, determine testing requirements, and
establish migration priorities. For example, complex stored procedures with high business impact
and frequent usage require careful planning and extensive testing. However, simple, rarely used
functions with minimal dependencies might be suitable for early migration phases.

Phase 2: Classification 29

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

This structured approach creates a balanced migration roadmap that minimizes business disruption
while maintaining system stability. By understanding these interrelationships, you can improve the
sequence of your decomposition efforts and allocate resources appropriately.

Phase 3: Migrating the business logic

After you have analyzed and classified your business logic, it is time to migrate it. There are two
approaches when migrating business logic out of a monolithic database: move the database
logic to the application layer, or move the business logic to another database that is part of the
microservice.

If you migrate the business logic to the application, then the database tables store only the data,
and the database doesn't contain any business logic. This is the recommended approach. You
can use Ispirer or generative AI tools, such as Amazon Q Developer or Kiro, to convert database
business logic for the application layer, such as conversion to Java. For more information, see
Migrate business logic from database to application for faster innovation and flexibility (AWS blog
post).

If you migrate the business logic to another database, you can use AWS Schema Conversion Tool
(AWS SCT) to convert existing database schemas and code objects to your target database. It
supports purpose-built AWS database services, such as Amazon DynamoDB, Amazon Aurora, and
Amazon Redshift. By providing a comprehensive assessment report and automated conversion
capabilities, AWS SCT helps streamline the transition process, allowing you to focus on optimizing
your new database structure for improved performance and scalability. As you progress through
your modernization project, AWS SCT can handle incremental conversions to support a phased
approach, enabling you to validate and fine-tune each step of your database transformation.

Rollback strategy for business logic

Two critical aspects of any decomposition strategy are maintaining backward compatibility and
implementing comprehensive rollback procedures. These elements work together to help protect
operations during the transition period. This section describes how to manage compatibility during
the decomposition process and establish effective emergency rollback capabilities that safeguard
against potential issues.

Phase 3: Migration 30

https://aws.amazon.com/marketplace/seller-profile?id=seller-6w64f4cwyhmiw
https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/what-is.html
https://kiro.dev/
https://aws.amazon.com/blogs/mt/migrate-business-logic-from-database-to-application-for-faster-innovation-and-flexibility/
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Introduction.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/CHAP_AuroraOverview.html
https://docs.aws.amazon.com/redshift/latest/mgmt/welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

Maintain backward compatibility

During database decomposition, maintaining backward compatibility is essential for smooth
transitions. Keep existing database procedures temporarily in place while gradually implementing
new functionality. Use version control to track all changes and manage multiple database versions
simultaneously. Plan for an extended coexistence period where both the source and target systems
must operate reliably. This provides time to test and validate the new system before retiring legacy
components. This approach minimizes business disruption and provides a safety net for rollback if
needed.

Emergency rollback plan

A comprehensive rollback strategy is essential for safe database decomposition. Implement feature
flags in your code to control which version of business logic is active. This allows you to instantly
switch between the new and original implementations without deployment changes. This approach
provides fine-grained control over the transition and helps you roll back quickly if issues arise.
Keep the original logic as a verified backup, and maintain detailed rollback procedures that specify
triggers, responsibilities, and recovery steps.

Regularly test these rollback scenarios under various conditions to validate their effectiveness, and
make sure that teams are familiar with emergency procedures. Feature flags also enable gradual
rollouts by selectively enabling new functionality for specific user groups or transactions. This
provides an additional layer of risk mitigation during the transition.

Maintain backward compatibility 31

AWS Prescriptive Guidance Database decomposition on AWS

Decoupling table relationships during database
decomposition

This section provides guidance on breaking down complex table relationships and JOIN operations
during monolithic database decomposition. A table join combines rows from two or more tables
based on a related column between them. The goal of separating these relationships is to reduce
high coupling between tables while maintaining data integrity across microservices.

This section contains the following topics:

• Denormalization strategy

• Reference-by-key strategy

• CQRS pattern

• Event-based data synchronization

• Implementing alternatives to table joins

• Scenario-based example

Denormalization strategy

Denormalization is a database design strategy that involves intentionally introducing redundancy
by combining or duplicating data across tables. When breaking apart a large database into small
databases, it might make sense to duplicate some data across services. For example, storing
basic customer details, such as name and email addresses, in both a marketing service and an
order service eliminates the need for constant cross-service lookups. The marketing service might
need customer preferences and contact information for campaign targeting, while the order
service requires the same data for order processing and notifications. While this creates some
data redundancy, it can significantly improve service performance and independence, allowing
the marketing team to operate their campaigns without depending on real-time customer service
lookups.

When implementing denormalization, focus on frequently accessed fields that you identify
through careful analysis of data access patterns. You can use tools, such Oracle AWR reports or
pg_stat_statements, to understand which data is commonly retrieved together. Domain experts
can also provide valuable insights into natural data groupings. Remember that denormalization

Denormalization strategy 32

AWS Prescriptive Guidance Database decomposition on AWS

isn't an all-or-nothing approach—only duplicate data that demonstrably improves system
performance or reduces complex dependencies.

Reference-by-key strategy

A reference-by-key strategy is a database design pattern where relationships between entities are
maintained through unique keys rather than storing the actual related data. Instead of traditional
foreign key relationships, modern microservices often store just the unique identifiers of related
data. For example, rather than keeping all customer details in the order table, the order service
only stores the customer ID and retrieves additional customer information through an API call
when needed. This approach maintains service independence while ensuring access to related data.

CQRS pattern

The Command Query Responsibility Segregation (CQRS) pattern separates the read and write
operations of a data store. This pattern is particularly useful in complex systems with high-
performance requirements, especially those with asymmetric read/write loads. If your application
frequently needs data combined from multiple sources, you can create a dedicated CQRS model
instead of complex joins. For example, rather than joining Product, Pricing, and Inventory
tables on every request, maintain a consolidated Product Catalog table that contains the
necessary data. The benefits of this approach can outweigh the costs of the additional table.

Consider a scenario where Product, Price, and Inventory services frequently need product
information. Instead of configuring these services to directly access shared tables, create a
dedicated Product Catalog service. This service maintains its own database that contains the
consolidated product information. It acts as a single source of truth for product-related queries.
When product details, prices, or inventory levels change, respective services can publish events to
update the Product Catalog service. This provides data consistency while maintaining service
independence. The following image shows this configuration, where Amazon EventBridge serves as
an event bus.

Reference-by-key strategy 33

https://aws.amazon.com/eventbridge/

AWS Prescriptive Guidance Database decomposition on AWS

As discussed in Event-based data synchronization, the next section, keep the CQRS model
updated through events. When product details, prices, or inventory levels change, the respective
services publish events. The Product Catalog service subscribes to these events and updates
its consolidated view. This provides fast reads without complex joins, and it maintains service
independence.

Event-based data synchronization

Event-based data synchronization is a pattern where changes to data are captured and propagated
as events, which enables different systems or components to maintain synchronized data states.
When data changes, instead of updating all related databases immediately, publish an event
to notify subscribed services. For example, when a customer changes their shipping address in

Event-based data synchronization 34

AWS Prescriptive Guidance Database decomposition on AWS

the Customer service, a CustomerUpdated event initiates updates to the Order service and
Delivery service on each service's schedule. This approach replaces rigid table joins with flexible,
scalable event-driven updates. Some services might briefly have outdated data, but the trade-off is
improved system scalability and service independence.

Implementing alternatives to table joins

Begin your database decomposition with read operations because they're typically simpler to
migrate and validate. After read paths are stable, tackle the more complex write operations. For
critical, high-performance requirements, consider implementing the CQRS pattern. Use a separate,
optimized database for reads while maintaining another for writes.

Build resilient systems by adding retry logic for cross-service calls and implementing appropriate
caching layers. Monitor service interactions closely, and set up alerts for data consistency issues.
The end goal isn't perfect consistency everywhere—it's creating independent services that perform
well while maintaining acceptable data accuracy for your business needs.

The decoupled nature of microservices introduces the following new complexities in data
management:

• Data is distributed. Data now resides in separate databases, which are managed by independent
services.

• Real-time synchronization across services is often impractical, necessitating an eventual
consistency model.

• Operations that previously occurred within a single database transaction now span multiple
services.

To address these challenges, do the following:

• Implement an event-driven architecture – Use message queues and event publishing to
propagate data changes across services. For more information, see Building Event Driven
Architectures on Serverless Land.

• Adopt the saga orchestration pattern – This pattern helps you manage distributed transactions
and maintain data integrity across services. For more information, see Building a serverless
distributed application using a saga orchestration pattern on AWS Blogs.

• Design for failure – Incorporate retry mechanisms, circuit breakers, and compensating
transactions to handle network issues or service failures.

Implementing alternatives to table joins 35

https://serverlessland.com/event-driven-architecture/intro
https://serverlessland.com/event-driven-architecture/intro
https://aws.amazon.com/blogs/compute/building-a-serverless-distributed-application-using-a-saga-orchestration-pattern/
https://aws.amazon.com/blogs/compute/building-a-serverless-distributed-application-using-a-saga-orchestration-pattern/

AWS Prescriptive Guidance Database decomposition on AWS

• Use version stamping – Track data versions to manage conflicts and make sure that the most
recent updates are applied.

• Regular reconciliation – Implement periodic data synchronization processes to catch and correct
any inconsistencies.

Scenario-based example

The following schema example has two tables, a Customer table and an Order table:

-- Customer table
CREATE TABLE customer (
 customer_id INT PRIMARY KEY,
 first_name VARCHAR(100),
 last_name VARCHAR(100),
 email VARCHAR(255),
 phone VARCHAR(20),
 address TEXT,
 created_at TIMESTAMP
);

-- Order table
CREATE TABLE order (
 order_id INT PRIMARY KEY,
 customer_id INT,
 order_date TIMESTAMP,
 total_amount DECIMAL(10,2),
 status VARCHAR(50),
 FOREIGN KEY (customer_id) REFERENCES customers(id)
);

The following is an example of how you could use a denormalized approach:

CREATE TABLE order (
 order_id INT PRIMARY KEY,
 customer_id INT, -- Reference only
 customer_first_name VARCHAR(100), -- Denormalized
 customer_last_name VARCHAR(100), -- Denormalized
 customer_email VARCHAR(255), -- Denormalized
 order_date TIMESTAMP,
 total_amount DECIMAL(10,2),
 status VARCHAR(50)

Scenario-based example 36

AWS Prescriptive Guidance Database decomposition on AWS

);

The new Order table has customer name and email addresses that are denormalized. The
customer_id is referenced, and there is no foreign key constraint with the Customer table. The
following are the benefits of this denormalized approach:

• The Order service can display order history with customer details, and it doesn't require API calls
to the Customer microservice.

• If the Customer service is down, the Order service remains fully functional.

• Queries for order processing and reporting run faster.

The following diagram shows a monolithic application that retrieves order data using
getOrder(customer_id), getOrder(order_id), getCustomerOders(customer_id), and
createOrder(Order order) API calls to the Order microservice.

Scenario-based example 37

AWS Prescriptive Guidance Database decomposition on AWS

During the microservices migration, you can maintain the Order table in the monolithic database
as a transitional safety measure, ensuring that the legacy application remains functional. However,
it's crucial that all new order-related operations are routed through the Order microservice API,
which maintains its own database while simultaneously writing to the legacy database as a backup.
This dual-write pattern provides a safety net. It allows for gradual migration while maintaining
system stability. After all customers have successfully migrated to the new microservice, you can
deprecate the legacy Order table in the monolithic database. After decomposing the monolithic
application and its database into separate Customer and Order microservices, maintaining data
consistency becomes the primary challenge.

Scenario-based example 38

AWS Prescriptive Guidance Database decomposition on AWS

Best practices for database decomposition

When decomposing a monolithic database, organizations must establish clear frameworks
for tracking progress, maintaining system knowledge, and addressing emerging challenges.
This section provides best practices for measuring decomposition success, maintaining crucial
documentation, implementing continuous improvement processes, and navigating common
challenges. Understanding and following these guidelines helps you make sure that database
decomposition efforts deliver their intended benefits while minimizing operational disruptions and
technical debt.

This section contains the following topics:

• Measuring success

• Documentation requirements

• Continuous improvement strategy

• Overcoming common challenges in database decomposition

Measuring success

Track decomposition success through a mix of technical, operational, and business metrics.
Technically, monitor query response times, system uptime improvements, and deployment
frequency increases. Operationally, measure incident reductions, issue resolution speed, and
resource utilization improvements. For development, track feature implementation speed, release
cycle acceleration, and reduction in cross-team dependencies. Business impacts should result
in reduced operational costs, faster time-to-market, and improved customer satisfaction. These
metrics are often defined during the scope phase. For more information, see Defining the scope
and requirements for database decomposition in this guide.

Documentation requirements

Maintain up-to-date system architecture documentation with clear service boundaries, data flows,
and interface specifications. Use architecture decision records (ADRs) to capture key technical
decisions, including their context, consequences, and alternatives considered. For example,
document why specific services were separated first or how certain data consistency trade-offs
were made.

Measuring success 39

AWS Prescriptive Guidance Database decomposition on AWS

Schedule monthly architecture reviews to assess system health through key metrics: performance
trends, security compliance, and cross-service dependencies. Include feedback from development
teams about integration challenges and operational issues. This regular review cycle helps you
identify emerging problems early and validates that decomposition efforts remain aligned with
business goals.

Continuous improvement strategy

Treat database decomposition as an iterative process, not a one-time project. Monitor system
performance metrics and service interactions to identify optimization opportunities. Each quarter,
prioritize addressing technical debt based on operational impact and maintenance costs. For
example, automate frequently performed database operations, enhance monitoring coverage, and
refine deployment procedures based on learned patterns.

Overcoming common challenges in database decomposition

Performance optimization requires a multi-faceted approach. Implement strategic caching at
service boundaries, optimize query patterns based on actual usage, and continuously monitor
key metrics. Address performance bottlenecks proactively by analyzing trends and setting clear
thresholds for intervention.

Data consistency challenges demand careful architectural choices. Implement event-driven
patterns for cross-service updates and use saga orchestration patterns for complex transactions.
Define clear service boundaries, and accept eventual consistency where business requirements
permit. This balance between consistency and service autonomy is crucial for successful
decomposition.

Operational excellence requires automation of routine tasks and standardized procedures across
services. Maintain comprehensive monitoring with clear alerting thresholds, and invest in regular
team training for new patterns and tools. This systematic approach to operations promotes reliable
service delivery while managing complexity.

Continuous improvement strategy 40

AWS Prescriptive Guidance Database decomposition on AWS

FAQ for database decomposition

This comprehensive FAQ section addresses the most common questions and challenges
organizations face when undertaking database decomposition projects. From defining the initial
scope and requirements to migrating stored procedures, these questions provide practical insights
and strategic approaches to help teams successfully navigate their database modernization
journey. Whether you're in the planning phase or already executing your decomposition strategy,
these answers can help you avoid common pitfalls and implement best practices for optimal
results.

This section contains the following topics:

• FAQs about defining scope and requirements

• FAQs about controlling database access

• FAQs about analyzing cohesion and coupling

• FAQs about migrating the business logic to the application layer

FAQs about defining scope and requirements

The Defining the scope and requirements for database decomposition section of this guide
discusses how to analyze interactions, map dependencies, and establish success criteria. This FAQ
section addresses key questions about establishing and managing project boundaries. Whether
you're dealing with unclear technical constraints, conflicting departmental needs, or evolving
business requirements, these FAQs provide practical guidance on maintaining a balanced approach.

This section contains the following questions:

• How detailed should the initial scope definition be?

• What if I discover additional dependencies after starting the project?

• How do I handle stakeholders from different departments who have conflicting requirements?

• What's the best way to assess technical constraints when documentation is poor or outdated?

• How do I balance immediate business needs with long-term technical goals?

• How do I make sure that I'm not missing critical requirements from silent stakeholders?

• Do these recommendations apply for monolithic mainframe databases?

Scope and requirements FAQ 41

AWS Prescriptive Guidance Database decomposition on AWS

How detailed should the initial scope definition be?

Working backwards from your customers' needs, define project scope with enough detail to
identify system boundaries and critical dependencies while maintaining flexibility for discovery.
Map essential elements, including system interfaces, key stakeholders, and major technical
constraints. Start small by selecting a bounded, low-risk portion of the system that provides
measurable value. This approach helps teams to learn and adjust strategies before tackling more
complex components.

Document critical business requirements that drive the decomposition effort, but avoid over-
specifying details that might change during implementation. This balanced approach makes
sure that teams can move forward with clarity while remaining adaptable to new insights and
challenges that emerge during the modernization journey.

What if I discover additional dependencies after starting the project?

Expect to uncover additional dependencies as the project progresses. Maintain a live dependency
log and conduct regular scope reviews to assess impact on timelines and resources. Implement a
clear change management process, and include buffer time in project plans to handle unexpected
discoveries. The goal isn't to prevent changes but to manage them effectively. This helps teams to
adapt quickly while maintaining project momentum.

How do I handle stakeholders from different departments who have
conflicting requirements?

Handle conflicting departmental requirements through clear prioritization that is based on
business value and system impact. Secure executive sponsorship to drive key decisions and resolve
conflicts quickly. Schedule regular stakeholder alignment meetings to discuss trade-offs and
maintain transparency. Document all decisions and their rationale to promote clear communication
and maintain project momentum. Focus discussions on quantifiable business benefits rather than
departmental preferences.

What's the best way to assess technical constraints when
documentation is poor or outdated?

When facing poor documentation, combine traditional analysis with modern AI tools. Use large
language models (LLMs) to analyze code repositories, logs, and existing documentation in order
to identify patterns and potential constraints. Interview experienced developers and database

How detailed should the initial scope definition be? 42

AWS Prescriptive Guidance Database decomposition on AWS

architects to validate AI findings and uncover undocumented constraints. Deploy monitoring tools
that have enhanced AI capabilities in order to observe system behavior and predict potential issues.

Create small technical experiments that validate your assumptions. You can use AI-powered testing
tools to accelerate the process. Document findings in a knowledge base that can be continuously
enhanced through AI-assisted updates. Consider engaging subject matter experts for complex
areas, and use AI pair-programming tools to accelerate their analysis and documentation efforts.

How do I balance immediate business needs with long-term technical
goals?

Create a phased project roadmap that aligns immediate business needs with long-term technical
objectives. Identify quick wins that deliver tangible value early so that you can build stakeholder
confidence. Break down the decomposition into clear milestones. Each should deliver measurable
business benefits while progressing toward architectural goals. Maintain flexibility to address
urgent business needs through regular roadmap reviews and adjustments.

How do I make sure that I'm not missing critical requirements from
silent stakeholders?

Map all potential stakeholders across the organization, including downstream system owners
and indirect users. Create multiple feedback channels through structured interviews, workshops,
and regular review sessions. Build proof-of-concepts and prototypes to make requirements
tangible and spark meaningful discussions. For example, a simple dashboard that shows system
dependencies often reveals hidden stakeholders and requirements that weren't initially apparent.

Conduct regular validation sessions with both vocal and quiet stakeholders, and make sure that all
perspectives are captured. Critical insights often come from those closest to daily operations rather
than the loudest voices in the planning meetings.

Do these recommendations apply for monolithic mainframe databases?

The methodology described in this guide also applies to decomposing monolithic mainframe
databases. The primary challenges with these databases are managing requirements from the
various stakeholders. The technology recommendations in this guide might apply to monolithic
mainframe databases. If the mainframe has a relational database, such as an online transaction
processing (OLTP) database, then many of the recommendations apply. For online analytical
processing (OLAP) databases, such as those used to generate business reports, then only some of
the recommendations apply.

How do I balance immediate business needs with long-term technical goals? 43

AWS Prescriptive Guidance Database decomposition on AWS

FAQs about controlling database access

Controlling database access by using the database wrapper service pattern is discussed in the
Controlling database access during decomposition section of this guide. This FAQ section addresses
common concerns and questions about introducing a database wrapper service, including its
potential impact on performance, handling of existing stored procedures, managing complex
transactions, and overseeing schema changes.

This section contains the following questions:

• Won't the wrapper service become a new bottleneck?

• What happens to existing stored procedures?

• How do I manage schema changes during the transition?

Won't the wrapper service become a new bottleneck?

While the database wrapper service does add an extra network hop, the impact is usually
minimal. You can scale the service horizontally, and the benefits of controlled access typically
outweigh the small performance cost. Consider it a temporary trade-off between performance and
maintainability.

What happens to existing stored procedures?

Initially, the database wrapper service can expose stored procedures as service methods. Over time,
you can gradually move the logic into the application layer, which improves testing and version
control. Migrate the business logic incrementally to minimize risk.

How do I manage schema changes during the transition?

Centralize schema change control through the wrapper service team. This team is responsible for
maintaining comprehensive visibility across all consumers. This team reviews proposed changes for
system-wide impact, coordinates with affected teams, and implements modifications by using a
controlled deployment process. For instance, when adding new fields, this team should maintain
backward compatibility by implementing default values or initially allowing nulls.

Establish a clear change management process that includes impact assessment, testing
requirements, and rollback procedures. Use database versioning tools, and maintain clear

Database access FAQ 44

AWS Prescriptive Guidance Database decomposition on AWS

documentation of all changes. This centralized approach prevents schema modifications from
disrupting dependent services and maintains system stability.

FAQs about analyzing cohesion and coupling

Understanding and effectively analyzing database coupling and cohesion is fundamental to
successful database decomposition. Coupling and cohesion are discussed in the Analyzing cohesion
and coupling for database decomposition section of this guide. This FAQ section addresses key
questions about identifying appropriate levels of granularity, selecting the right analysis tools,
documenting findings, and prioritizing coupling issues.

This section contains the following questions:

• How do I identify the right level of granularity when analyzing coupling?

• What tools can I use to analyze database coupling and cohesion?

• What's the best way to document coupling and cohesion findings?

• How do I prioritize which coupling issues to address first?

• How do I handle transactions that span multiple operations?

How do I identify the right level of granularity when analyzing
coupling?

Start with a broad analysis of database relationships, then systematically drill down to identify
natural separation points. Use database analysis tools to map table-level relationships, schema
dependencies, and transaction boundaries. For example, examine join patterns in SQL queries to
understand data access dependencies. You can also analyze transaction logs to identify business
process boundaries.

Focus on areas where coupling is naturally minimal. These often align with business domain
boundaries and represent optimal decomposition points. When determining appropriate service
boundaries, consider both technical coupling (such as shared tables and foreign keys) and business
coupling (such as process flows and reporting needs).

What tools can I use to analyze database coupling and cohesion?

You can use a combination of automated tools and manual analysis to assess database coupling
and cohesion. The following tools can help you with this assessment:

Cohesion and coupling FAQ 45

AWS Prescriptive Guidance Database decomposition on AWS

• Schema visualization tools – You can use tools like SchemaSpy or pgAdmin to generate ER
diagrams. These diagrams reveal table relationships and potential coupling points.

• Query analysis tools – You can use pg_stat_statements or SQL Server Query Store to identify
frequently joined tables and access patterns.

• Database profiling tools – Tools such as Oracle SQL Developer or MySQL Workbench provide
insights into query performance and data dependencies.

• Dependency mapping tools – The AWS Schema Conversion Tool (AWS SCT) can help you
visualize schema relationships and identify tightly coupled components. vFunction can help you
identify domain boundaries by analyzing the application's functional and domain boundaries.

• Transaction monitoring tools – You can use database-specific tools, such as Oracle Enterprise
Manager or SQL Server Extended Events, to analyze transaction boundaries.

• Business logic migration tools – You can use Ispirer or generative AI tools, such as Amazon Q
Developer or Kiro, to convert database business logic for the application layer, such as conversion
to Java.

Combine these automated analyses with manual review of business processes and domain
knowledge to fully understand system coupling. This multi-faceted approach makes sure that both
technical and business perspectives are considered in your decomposition strategy.

What's the best way to document coupling and cohesion findings?

Create comprehensive documentation that visualizes database relationships and usage patterns.
The following are the types of assets that you can use to record your findings:

• Dependency matrices – Map table dependencies and highlight high-coupling areas.

• Relationship diagrams – Use ER diagrams to show schema connections and foreign key
relationships.

• Table usage heat maps – Visualize query frequency and data access patterns across tables.

• Transaction flow diagrams – Document multi-table transactions and their boundaries.

• Domain boundary maps – Outline potential service boundaries based on business domains.

Combine these artifacts in a document, and regularly update it as the decomposition progresses.
For diagrams, you can use tools such as draw.io or Lucidchart. Consider implementing a wiki for
easy team access and collaboration. This multi-faceted documentation approach provides a clear,
shared understanding of system coupling and cohesion.

What's the best way to document coupling and cohesion findings? 46

https://schemaspy.org/
https://www.pgadmin.org/
https://www.postgresql.org/docs/current/pgstatstatements.html
https://learn.microsoft.com/en-us/sql/relational-databases/performance/monitoring-performance-by-using-the-query-store
https://www.oracle.com/database/sqldeveloper/
https://www.mysql.com/products/workbench/
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://vfunction.com/
https://www.oracle.com/enterprise-manager/
https://www.oracle.com/enterprise-manager/
https://learn.microsoft.com/en-us/sql/relational-databases/extended-events/quick-start-extended-events-in-sql-server?view=sql-server-ver17
https://aws.amazon.com/marketplace/seller-profile?id=seller-6w64f4cwyhmiw
https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/what-is.html
https://docs.aws.amazon.com/amazonq/latest/qdeveloper-ug/what-is.html
https://kiro.dev/
https://drawio-app.com/
https://www.lucidchart.com/pages

AWS Prescriptive Guidance Database decomposition on AWS

How do I prioritize which coupling issues to address first?

Prioritize coupling issues based on a balanced assessment of business and technical factors.
Evaluate each issue against business impact (such as revenue and customer experience), technical
risk (such as system stability and data integrity), implementation effort, and team capabilities.
Create a prioritization matrix that scores each issue from 1-5 across these dimensions. This matrix
helps you identify the most valuable opportunities with manageable risks.

Start with high-impact, low-risk changes that align with existing team expertise. This helps
you build organizational confidence and momentum for more complex changes. This approach
promotes realistic execution and maximizes business value. Regularly review and adjust the
priorities to help maintain alignment with changing business needs and team capacity.

How do I handle transactions that span multiple operations?

Handle multi-operation transactions through carefully designed service-level coordination.
Implement saga patterns for complex distributed transactions. Break them into smaller, reversible
steps that can be managed independently. For example, an order processing flow might be split
into separate steps for inventory check, payment processing, and order creation, each with its own
compensation mechanism.

Where possible, redesign operations to be more atomic, which reduces the need for distributed
transactions. When distributed transactions are unavoidable, implement robust tracking and
compensation mechanisms to promote data consistency. Monitor transaction completion rates and
implement clear error recovery procedures to maintain system reliability.

FAQs about migrating the business logic to the application
layer

Migrating business logic from the database to the application layer is a critical and complex aspect
of database modernization. This business logic migration is discussed in the Migrating business
logic from the database to the application layer section of this guide. This FAQ section addresses
common questions about managing this transition effectively, from selecting initial candidates for
migration to handling complex stored procedures and triggers.

This section contains the following questions:

• How do I identify which stored procedures to migrate first?

How do I prioritize which coupling issues to address first? 47

AWS Prescriptive Guidance Database decomposition on AWS

• What are the risks of moving logic to the application layer?

• How do I maintain performance when moving logic away from the database?

• What should I do with complex stored procedures that involve multiple tables?

• How do I handle database triggers during migration?

• What's the best way to test the migrated business logic?

• How do I manage the transition period when both database and application logic exist?

• How do I handle error scenarios in the application layer that were previously managed by the
database?

How do I identify which stored procedures to migrate first?

Start by identifying stored procedures that offer the best combination of low-risk and high-
learning value. Focus on procedures that have minimal dependencies, clear functionality, and non-
critical business impact. These make ideal candidates for initial migration because they help the
team build confidence and establish patterns. For example, choose procedures that handle simple
data operations over those that manage complex transactions or critical business logic.

Use database monitoring tools to analyze usage patterns and identify infrequently accessed
procedures as early candidates. This approach minimizes business risk while providing valuable
experience for tackling more complex migrations later. Score each procedure on complexity,
business criticality, and dependency levels to create a prioritized migration sequence.

What are the risks of moving logic to the application layer?

Moving database logic to the application layer introduces several key challenges. System
performance can degrade due to increased network calls, especially for data-intensive operations
that were previously handled within the database. Transaction management becomes more
complex and requires careful coordination to maintain data integrity across distributed operations.
Ensuring data consistency becomes challenging, particularly for operations that previously relied
on database-level constraints.

Potential business disruption during the migration and the learning curve for developers are also
significant concerns. Mitigate these risks through thorough planning, extensive testing in staged
environments, and gradual migration that starts with less-critical components. Implement robust
monitoring and rollback procedures to quickly identify and address issues in production.

How do I identify which stored procedures to migrate first? 48

AWS Prescriptive Guidance Database decomposition on AWS

How do I maintain performance when moving logic away from the
database?

Implement appropriate caching mechanisms for frequently accessed data, optimize data access
patterns to minimize network calls, and use batch processing for bulk operations. For non-time-
critical operations, consider asynchronous processing to improve system responsiveness.

Monitor application performance metrics closely and tune them as needed. For example, you
can replace multiple single-row operations with bulk processing, you can cache reference data
that changes infrequently, and you can optimize query patterns to reduce data transfer. Regular
performance testing and tuning helps the system maintain acceptable response times and
improves maintainability and scalability.

What should I do with complex stored procedures that involve multiple
tables?

Approach complex, multi-table stored procedures through systematic decomposition. Start
by breaking them into smaller, logically coherent components, and identify clear transaction
boundaries and data dependencies. Create service interfaces for each logical component. This helps
you gradually migrate without disrupting the existing functionality.

Implement a step-by-step migration, starting with the least coupled components. For highly
intricate procedures, consider temporarily keeping them in the database while migrating simpler
parts. This hybrid approach maintains system stability while you progress toward your architectural
goals. Continuously monitor performance and functionality during the migration, and be prepared
to adjust your strategy based on the results.

How do I handle database triggers during migration?

Transform database triggers into application-level event handlers while maintaining system
functionality. Replace synchronous triggers with event-driven patterns that message queues for
asynchronous operations. Consider using Amazon Simple Notification Service (Amazon SNS) or
Amazon Simple Queue Service (Amazon SQS) for the message queues. For audit requirements,
implement application-level logging or use database change data capture (CDC) features.

Analyze each trigger's purpose and criticality. Some triggers might be better served by application
logic, and others might require event-sourcing patterns to maintain data consistency. Start with

How do I maintain performance when moving logic away from the database? 49

https://docs.aws.amazon.com/sns/latest/dg/welcome.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

simple triggers, such as audit logs, before tackling complex ones that manage business rules
or data integrity. Monitor carefully during the migration to make sure that there is no loss of
functionality or data consistency.

What's the best way to test the migrated business logic?

Implement a multi-layered testing approach before you deploy the migrated business logic. Start
with unit tests for new application code, then add integration tests that cover end-to-end business
flows. Run old and new implementations in parallel, and then compare the results in order to
validate functional equivalence. Conduct performance testing under various load conditions to
verify that the system behavior matches or exceeds previous capabilities.

Use feature flags to control deployment so that you can quickly roll back if issues arise. Involve
business users in the validation, particularly for critical workflows. Monitor key metrics during
initial deployment, and gradually increase traffic to the new implementation. Throughout,
maintain the ability to revert to the original database logic if needed.

How do I manage the transition period when both database and
application logic exist?

When the database and application logic are both in use, implement feature flags that control
traffic flow and enable quick switching between old and new implementations. Maintain rigorous
version control, and clearly document both implementations and their respective responsibilities.
Set up comprehensive monitoring for both systems to quickly identify any discrepancies or
performance issues.

Establish clear rollback procedures for each migrated component so that you can revert to the
original logic if needed. Communicate regularly with all stakeholders about the transition status,
potential impacts, and escalation procedures. This approach helps you gradually migrate while
maintaining system stability and stakeholder confidence.

How do I handle error scenarios in the application layer that were
previously managed by the database?

Replace database-level error handling with robust application-layer mechanisms. Implement circuit
breakers and retry logic for transient failures. Use compensating transactions for maintaining data
consistency across distributed operations. For example, if a payment update fails, the application
should automatically retry within defined limits and initiate compensating actions if needed.

What's the best way to test the migrated business logic? 50

AWS Prescriptive Guidance Database decomposition on AWS

Set up comprehensive monitoring and alerting to quickly identify issues, and maintain detailed
audit logs for troubleshooting. Design error handling to be as automated as possible, and define
clear escalation paths for scenarios that require human intervention. This multi-layered approach
provides system resilience while maintaining data integrity and business process continuity.

How do I handle error scenarios in the application layer that were previously managed by the database? 51

AWS Prescriptive Guidance Database decomposition on AWS

Next steps for database decomposition on AWS

After implementing initial database decomposition strategies through database wrapper services
and moving business logic to the application layer, organizations must plan their next evolution.
This section outlines key considerations for continuing your modernization journey.

This section contains the following topics:

• Incremental strategies for database decomposition

• Technical considerations for distributed database environments

• Organizational changes to support distributed architectures

Incremental strategies for database decomposition

Database decomposition follows a gradual evolution through three distinct phases. Teams first
wrap the monolithic database with a database wrapper service to control access. They then begin
splitting the data into service-specific databases, while maintaining the primary database for
legacy needs. Finally, they complete migrate the business logic in order to transition to fully
independent service databases.

Throughout this journey, teams must implement careful data synchronization patterns and
continuously validate consistency across services. Performance monitoring becomes crucial to
identify and address potential issues early. As services evolve independently, their schemas should
be optimized based on actual usage patterns, and you should remove redundant structures that
accumulated over time.

This incremental approach helps minimize risks while maintaining system stability throughout the
transformation process.

Technical considerations for distributed database environments

In a distributed database environment, performance monitoring becomes essential to identify and
address bottlenecks early. Teams must implement comprehensive monitoring systems and caching
strategies to maintain performance levels. Read/write splitting can effectively balance loads across
the system.

Incremental strategies 52

AWS Prescriptive Guidance Database decomposition on AWS

Data consistency requires careful orchestration across distributed services. Teams should
implement eventual consistency patterns where appropriate and establish clear data ownership
boundaries. Robust monitoring promotes data integrity across all services.

In addition, security must evolve to accommodate the distributed architecture. Each service
needs fine-grained security controls, and your access patterns require regular review. Enhanced
monitoring and auditing become critical in this distributed environment.

Organizational changes to support distributed architectures

The team structure should align with service boundaries in order to define clear ownership and
accountability. Organizations must establish new communication patterns and build additional
technical capabilities within teams. This structure should support both maintenance of existing
services and your continued architectural evolution.

You must update your operational processes to handle the distributed architecture. Teams
must modify deployment procedures, adapt incident response processes, and evolve change
management practices to coordinate across multiple services.

Organizational changes 53

AWS Prescriptive Guidance Database decomposition on AWS

Resources

The following additional resources and tools can help your organization on its database
decomposition journey.

AWS Prescriptive Guidance

• Migrating Oracle databases to the AWS Cloud

• Replatform options for Oracle Database on AWS

• Cloud design patterns, architectures, and implementations

AWS blog posts

• Migrate business logic from database to application for faster innovation and flexibility

AWS services

• AWS Application Migration Service

• AWS Database Migration Service (AWS DMS)

• Migration Evaluator

• AWS Schema Conversion Tool (AWS SCT)

• AWS Transform

Other tools

• AppEngine (Dynatrace website)

• Oracle Automatic Workload Repository (Oracle website)

• CAST Imaging (CAST website)

• Kiro (Kiro website)

• pgAdmin (pgAdmin website)

• pg_stat_statements (PostgreSQL website)

• SchemaSpy (SchemaSpy website)

AWS Prescriptive Guidance 54

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-oracle-database/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/replatform-oracle-database-options/introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/introduction.html
https://aws.amazon.com/blogs/mt/migrate-business-logic-from-database-to-application-for-faster-innovation-and-flexibility/
https://docs.aws.amazon.com/mgn/latest/ug/what-is-application-migration-service.html
https://docs.aws.amazon.com/dms/latest/userguide/Welcome.html
https://aws.amazon.com/migration-evaluator/
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html
https://docs.aws.amazon.com/transform/latest/userguide/what-is-service.html
https://www.dynatrace.com/platform/appengine/
https://docs.oracle.com/en-us/iaas/performance-hub/doc/awr-report-ui.html
https://www.castsoftware.com/imaging
https://kiro.dev/
https://www.pgadmin.org/
https://www.postgresql.org/docs/current/pgstatstatements.html
https://schemaspy.org/

AWS Prescriptive Guidance Database decomposition on AWS

• SQL Developer (Oracle website)

• SQLWays (Ispirer website)

• vFunction (vFunction website)

Other resources

• Monolith to microservices (O'Reilly website)

Other resources 55

https://www.oracle.com/database/sqldeveloper/
https://www.ispirer.com/sqlways-converter-for-small-business-needs
https://vfunction.com/
https://www.oreilly.com/library/view/monolith-to-microservices/9781492047834/ch04.html

AWS Prescriptive Guidance Database decomposition on AWS

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Mainframe FAQ and AI tools We added the Do these
recommendations apply
for monolithic mainframe
databases? FAQ, and we
added additional informati
on about AI tools that you
can use during database
decomposition.

October 14, 2025

Initial publication — September 30, 2025

56

https://docs.aws.amazon.com/prescriptive-guidance/latest/database-decomposition/database-decomposition.rss
https://docs.aws.amazon.com/prescriptive-guidance/latest/database-decomposition/faq-scope.html#do-these-recommendations-apply-for-monolithic-mainframe-databases
https://docs.aws.amazon.com/prescriptive-guidance/latest/database-decomposition/faq-scope.html#do-these-recommendations-apply-for-monolithic-mainframe-databases
https://docs.aws.amazon.com/prescriptive-guidance/latest/database-decomposition/faq-scope.html#do-these-recommendations-apply-for-monolithic-mainframe-databases
https://docs.aws.amazon.com/prescriptive-guidance/latest/database-decomposition/faq-scope.html#do-these-recommendations-apply-for-monolithic-mainframe-databases

AWS Prescriptive Guidance Database decomposition on AWS

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

57

AWS Prescriptive Guidance Database decomposition on AWS

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which the source and target databases are kept in sync, but
only the source database handles transactions from connecting applications while data is
replicated to the target database. The target database doesn’t accept any transactions during
migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 58

AWS Prescriptive Guidance Database decomposition on AWS

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 59

https://docs.aws.amazon.com/prescriptive-guidance/latest/application-portfolio-assessment-guide/introduction.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Database decomposition on AWS

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 60

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Database decomposition on AWS

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 61

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Database decomposition on AWS

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 62

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 63

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Database decomposition on AWS

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or Bitbucket Cloud. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 64

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Database decomposition on AWS

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual
formats such as digital images and videos. For example, Amazon SageMaker AI provides image
processing algorithms for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 65

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Database decomposition on AWS

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 66

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Database decomposition on AWS

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 67

AWS Prescriptive Guidance Database decomposition on AWS

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

D 68

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Database decomposition on AWS

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

D 69

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

AWS Prescriptive Guidance Database decomposition on AWS

E

EDA

See exploratory data analysis.

EDI

See electronic data interchange.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

electronic data interchange (EDI)

The automated exchange of business documents between organizations. For more information,
see What is Electronic Data Interchange.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts
or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more

E 70

https://aws.amazon.com/what-is/electronic-data-interchange/

AWS Prescriptive Guidance Database decomposition on AWS

information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

ERP

See enterprise resource planning.

E 71

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

AWS Prescriptive Guidance Database decomposition on AWS

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations
(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with AWS.

F 72

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS Prescriptive Guidance Database decomposition on AWS

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

few-shot prompting

Providing an LLM with a small number of examples that demonstrate the task and desired
output before asking it to perform a similar task. This technique is an application of in-context
learning, where models learn from examples (shots) that are embedded in prompts. Few-shot
prompting can be effective for tasks that require specific formatting, reasoning, or domain
knowledge. See also zero-shot prompting.

FGAC

See fine-grained access control.

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

FM

See foundation model.

foundation model (FM)

A large deep-learning neural network that has been training on massive datasets of generalized
and unlabeled data. FMs are capable of performing a wide variety of general tasks, such as
understanding language, generating text and images, and conversing in natural language. For
more information, see What are Foundation Models.

F 73

https://aws.amazon.com/what-is/foundation-models/

AWS Prescriptive Guidance Database decomposition on AWS

G

generative AI

A subset of AI models that have been trained on large amounts of data and that can use a
simple text prompt to create new content and artifacts, such as images, videos, text, and audio.
For more information, see What is Generative AI.

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

golden image

A snapshot of a system or software that is used as a template to deploy new instances of that
system or software. For example, in manufacturing, a golden image can be used to provision
software on multiple devices and helps improve speed, scalability, and productivity in device
manufacturing operations.

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.

G 74

https://aws.amazon.com/what-is/generative-ai/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Database decomposition on AWS

Detective guardrails detect policy violations and compliance issues, and generate alerts
for remediation. They are implemented by using AWS Config, AWS Security Hub, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

holdout data

A portion of historical, labeled data that is withheld from a dataset that is used to train a
machine learning model. You can use holdout data to evaluate the model performance by
comparing the model predictions against the holdout data.

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

H 75

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

I 76

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html

AWS Prescriptive Guidance Database decomposition on AWS

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

I 77

https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://www.weforum.org/about/klaus-schwab/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Database decomposition on AWS

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

L 78

https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS Prescriptive Guidance Database decomposition on AWS

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large language model (LLM)

A deep learning AI model that is pretrained on a vast amount of data. An LLM can perform
multiple tasks, such as answering questions, summarizing documents, translating text into
other languages, and completing sentences. For more information, see What are LLMs.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

LLM

See large language model.

lower environments

See environment.

L 79

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://aws.amazon.com/what-is/large-language-model/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Prescriptive Guidance Database decomposition on AWS

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

M 80

https://aws.amazon.com/what-is/machine-learning/
https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS Prescriptive Guidance Database decomposition on AWS

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include
microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,

M 81

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/

AWS Prescriptive Guidance Database decomposition on AWS

migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

ML

See machine learning.

M 82

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html
https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and
milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

M 83

https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Database decomposition on AWS

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

O 84

AWS Prescriptive Guidance Database decomposition on AWS

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

O 85

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/

AWS Prescriptive Guidance Database decomposition on AWS

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends
setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

P 86

https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Database decomposition on AWS

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

P 87

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html#id_roles_terms-and-concepts

AWS Prescriptive Guidance Database decomposition on AWS

privacy by design

A system engineering approach that takes privacy into account through the whole development
process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

prompt chaining

Using the output of one LLM prompt as the input for the next prompt to generate better
responses. This technique is used to break down a complex task into subtasks, or to iteratively
refine or expand a preliminary response. It helps improve the accuracy and relevance of a
model’s responses and allows for more granular, personalized results.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

P 88

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html
https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Database decomposition on AWS

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

RAG

See Retrieval Augmented Generation.

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

Q 89

AWS Prescriptive Guidance Database decomposition on AWS

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

R 90

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html

AWS Prescriptive Guidance Database decomposition on AWS

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the
matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

retire

See 7 Rs.

Retrieval Augmented Generation (RAG)

A generative AI technology in which an LLM references an authoritative data source that is
outside of its training data sources before generating a response. For example, a RAG model
might perform a semantic search of an organization's knowledge base or custom data. For more
information, see What is RAG.

R 91

https://aws.amazon.com/resilience/
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html
https://aws.amazon.com/what-is/retrieval-augmented-generation/

AWS Prescriptive Guidance Database decomposition on AWS

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API
operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.

S 92

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html

AWS Prescriptive Guidance Database decomposition on AWS

The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security by design

A system engineering approach that takes security into account through the whole
development process.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

S 93

https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS Prescriptive Guidance Database decomposition on AWS

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your

S 94

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Database decomposition on AWS

organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

system prompt

A technique for providing context, instructions, or guidelines to an LLM to direct its behavior.
System prompts help set context and establish rules for interactions with users.

S 95

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS Prescriptive Guidance Database decomposition on AWS

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

T 96

https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html

AWS Prescriptive Guidance Database decomposition on AWS

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

U 97

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Database decomposition on AWS

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

V 98

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Database decomposition on AWS

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

zero-shot prompting

Providing an LLM with instructions for performing a task but no examples (shots) that can help
guide it. The LLM must use its pre-trained knowledge to handle the task. The effectiveness of
zero-shot prompting depends on the complexity of the task and the quality of the prompt. See
also few-shot prompting.

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 99

	AWS Prescriptive Guidance
	Table of Contents
	Database decomposition on AWS
	Intended audience
	Objectives

	Common challenges and managing responsibilities for database decomposition
	Common challenges
	Defining roles and responsibilities

	Defining the scope and requirements for database decomposition
	Establishing a core analysis framework
	Defining system boundaries for database decomposition
	Considering release cycles
	Evaluating technical constraints for database decomposition
	Understanding organizational context
	Assessing risk for database decomposition
	Defining success criteria for database decomposition

	Controlling database access during decomposition
	Controlling access with the database wrapper service pattern
	Benefits and limitations of the database wrapper service pattern
	Implementing the database wrapper service pattern
	Phase 1: Creating the database wrapper service
	Phase 2: Implementing access control
	Phase 3: Monitor database performance
	Best practices for implementing a database wrapper service

	Scenario-based example

	Controlling access with the CQRS pattern

	Analyzing cohesion and coupling for database decomposition
	About cohesion and coupling
	Common coupling patterns in monolithic databases
	Implementation coupling pattern
	Temporal coupling pattern
	Deployment coupling pattern
	Domain coupling pattern

	Common cohesion patterns in monolithic databases
	Functional cohesion pattern
	Sequential cohesion pattern
	Communicational cohesion pattern
	Procedural cohesion pattern
	Temporal cohesion pattern
	Logical or coincidental cohesion pattern

	Implementing low coupling and high cohesion
	Best practices
	Phase 1: Map data dependencies
	Phase 2: Analyze transaction boundaries and access patterns
	Phase 3: Identify self-contained tables

	Migrating business logic from the database to the application layer
	Phase 1: Analyzing the business logic
	Phase 2: Classifying the business logic
	Phase 3: Migrating the business logic
	Rollback strategy for business logic
	Maintain backward compatibility
	Emergency rollback plan

	Decoupling table relationships during database decomposition
	Denormalization strategy
	Reference-by-key strategy
	CQRS pattern
	Event-based data synchronization
	Implementing alternatives to table joins
	Scenario-based example

	Best practices for database decomposition
	Measuring success
	Documentation requirements
	Continuous improvement strategy
	Overcoming common challenges in database decomposition

	FAQ for database decomposition
	FAQs about defining scope and requirements
	How detailed should the initial scope definition be?
	What if I discover additional dependencies after starting the project?
	How do I handle stakeholders from different departments who have conflicting requirements?
	What's the best way to assess technical constraints when documentation is poor or outdated?
	How do I balance immediate business needs with long-term technical goals?
	How do I make sure that I'm not missing critical requirements from silent stakeholders?
	Do these recommendations apply for monolithic mainframe databases?

	FAQs about controlling database access
	Won't the wrapper service become a new bottleneck?
	What happens to existing stored procedures?
	How do I manage schema changes during the transition?

	FAQs about analyzing cohesion and coupling
	How do I identify the right level of granularity when analyzing coupling?
	What tools can I use to analyze database coupling and cohesion?
	What's the best way to document coupling and cohesion findings?
	How do I prioritize which coupling issues to address first?
	How do I handle transactions that span multiple operations?

	FAQs about migrating the business logic to the application layer
	How do I identify which stored procedures to migrate first?
	What are the risks of moving logic to the application layer?
	How do I maintain performance when moving logic away from the database?
	What should I do with complex stored procedures that involve multiple tables?
	How do I handle database triggers during migration?
	What's the best way to test the migrated business logic?
	How do I manage the transition period when both database and application logic exist?
	How do I handle error scenarios in the application layer that were previously managed by the database?

	Next steps for database decomposition on AWS
	Incremental strategies for database decomposition
	Technical considerations for distributed database environments
	Organizational changes to support distributed architectures

	Resources
	AWS Prescriptive Guidance
	AWS blog posts
	AWS services
	Other tools
	Other resources

	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

