
Best practices for using the Terraform AWS Provider

AWS Prescriptive Guidance

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

AWS Prescriptive Guidance: Best practices for using the Terraform
AWS Provider

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Table of Contents

Introduction ... 1
Objectives ... 1
Target audience ... 2

Overview .. 3
Security best practices .. 5

Follow the principle of least privilege ... 5
Use IAM roles .. 6

Grant least privilege access by using IAM policies ... 6
Assume IAM roles for local authentication .. 6
Use IAM roles for Amazon EC2 authentication ... 8
Use dynamic credentials for HCP Terraform workspaces ... 9
Use IAM roles in AWS CodeBuild ... 9
Run GitHub Actions remotely on HCP Terraform ... 9
Use GitHub Actions with OIDC and configure the AWS Credentials action 9
Use GitLab with OIDC and the AWS CLI .. 9

Use unique IAM users with legacy automation tools ... 10
Use the Jenkins AWS Credentials plugin ... 10

Continuously monitor, validate, and optimize least privilege ... 10
Continuously monitor access key usage .. 10
Continually validate IAM policies ... 6

Secure remote state storage ... 11
Enable encryption and access controls .. 12
Limit direct access to collaborative workflows ... 12

Use AWS Secrets Manager ... 12
Continuously scan infrastructure and source code ... 12

Use AWS services for dynamic scanning .. 13
Perform static analysis .. 13
Ensure prompt remediation .. 13

Enforce policy checks .. 13
Backend best practices .. 15

Use Amazon S3 for remote storage ... 16
Enable remote state locking .. 16
Enable versioning and automatic backups .. 16
Restore previous versions if needed ... 17

iii

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Use HCP Terraform ... 17
Facilitate team collaboration ... 17

Improve accountability by using AWS CloudTrail .. 17
Separate the backends for each environment ... 18

Reduce the scope of impact ... 18
Restrict production access .. 18
Simplify access controls .. 18
Avoid shared workspaces .. 19

Actively monitor remote state activity .. 19
Get alerts on suspicious unlocks ... 19
Monitor access attempts ... 19

Best practices for code base structure and organization .. 20
Implement a standard repository structure ... 21

Root module structure ... 24
Reusable module structure ... 24

Structure for modularity .. 25
Don't wrap single resources ... 26
Encapsulate logical relationships .. 26
Keep inheritance flat .. 26
Reference resources in outputs .. 26
Don't configure providers .. 26
Declare required providers .. 27

Follow naming conventions ... 28
Follow guidelines for resource naming .. 28
Follow guidelines for variable naming ... 28

Use attachment resources .. 29
Use default tags ... 30
Meet Terraform registry requirements .. 30
Use recommended module sources ... 31

Registry ... 31
VCS providers ... 32

Follow coding standards ... 33
Follow style guidelines .. 34
Configure pre-commit hooks ... 34

Best practices for AWS Provider version management ... 35
Add automated version checks ... 35

iv

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Monitor new releases .. 35
Contribute to providers .. 36

Best practices for community modules .. 37
Discover community modules ... 37

Use variables for customization .. 37
Understand dependencies .. 37
Use trusted sources ... 38

Subscribe to notifications ... 38
Contribute to community modules .. 38

FAQ ... 40
Next steps .. 41
Resources .. 42

References .. 42
Tools .. 42

Document history .. 43
Glossary .. 44

... 44
A ... 45
B ... 48
C ... 50
D ... 53
E ... 57
F ... 59
G ... 60
H ... 61
I .. 62
L ... 64
M .. 65
O .. 69
P ... 72
Q .. 74
R ... 75
S ... 77
T ... 81
U ... 82
V ... 83

v

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

W .. 83
Z ... 84

vi

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Best practices for using the Terraform AWS Provider

Michael Begin, Senior DevOps Consultant, Amazon Web Services (AWS)

May 2024 (document history)

Managing infrastructure as code (IaC) with Terraform on AWS offers important benefits such as
improved consistency, security, and agility. However, as your Terraform configuration grows in size
and complexity, it becomes critical to follow best practices to avoid pitfalls.

This guide provides recommended best practices for using the Terraform AWS Provider from
HashiCorp. It walks you through proper versioning, security controls, remote backends, codebase
structure, and community providers to optimize Terraform on AWS. Each section dives into more
details on the specifics of applying these best practices:

• Security

• Backends

• Code base structure and organization

• AWS Provider version management

• Community modules

Objectives

This guide helps you gain operational knowledge on the Terraform AWS Provider and addresses
the following business goals that you can achieve by following IaC best practices around security,
reliability, compliance, and developer productivity.

• Improve infrastructure code quality and consistency across Terraform projects.

• Accelerate developer onboarding and ability to contribute to infrastructure code.

• Increase business agility through faster infrastructure changes.

• Reduce errors and downtime related to infrastructure changes.

• Optimize infrastructure costs by following IaC best practices.

• Strengthen your overall security posture through best practice implementation.

Objectives 1

https://registry.terraform.io/providers/hashicorp/aws/latest/docs

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Target audience

The target audience for this guide includes technical leads and managers who oversee teams
that use Terraform for IaC on AWS. Other potential readers include infrastructure engineers,
DevOps engineers, solutions architects, and developers who actively use Terraform to manage AWS
infrastructure.

Following these best practices will save time and help unlock the benefits of IaC for these roles.

Target audience 2

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Overview

Terraform providers are plugins that allow Terraform to interact with different APIs. The Terraform
AWS Provider is the official plugin for managing AWS infrastructure as code (IaC) with Terraform. It
translates Terraform syntax into AWS API calls to create, read, update, and delete AWS resources.

The AWS Provider handles authentication, translating Terraform syntax to AWS API calls, and
provisioning resources in AWS. You use a Terraform provider code block to configure the provider
plugin that Terraform uses to interact with the AWS API. You can configure multiple AWS Provider
blocks to manage resources across different AWS accounts and Regions.

Here's an example Terraform configuration that uses multiple AWS Provider blocks with aliases
to manage an Amazon Relational Database Service (Amazon RDS) database that has a replica in a
different Region and account. The primary and secondary providers assume different AWS Identity
and Access Management (IAM) roles:

Configure the primary AWS Provider
provider "aws" {
 region = "us-west-1"
 alias = "primary"
}

Configure a secondary AWS Provider for the replica Region and account
provider "aws" {
 region = "us-east-1"
 alias = "replica"
 assume_role {
 role_arn = "arn:aws:iam::<replica-account-id>:role/<role-name>"
 session_name = "terraform-session"
 }
}

Primary Amazon RDS database
resource "aws_db_instance" "primary" {
 provider = aws.primary

 # ... RDS instance configuration
}

Read replica in a different Region and account
resource "aws_db_instance" "read_replica" {

3

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

 provider = aws.replica

 # ... RDS read replica configuration
 replicate_source_db = aws_db_instance.primary.id
}

In this example:

• The first provider block configures the primary AWS Provider in the us-west-1 Region with
the alias primary.

• The second provider block configures a secondary AWS Provider in the us-east-1 Region
with the alias replica. This provider is used to create a read replica of the primary database in
a different Region and account. The assume_role block is used to assume an IAM role in the
replica account. The role_arn specifies the Amazon Resource Name (ARN) of the IAM role to
assume, and session_name is a unique identifier for the Terraform session.

• The aws_db_instance.primary resource creates the primary Amazon RDS database by using
the primary provider in the us-west-1 Region.

• The aws_db_instance.read_replica resource creates a read replica of the primary database
in the us-east-1 Region by using the replica provider. The replicate_source_db
attribute references the ID of the primary database.

4

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Security best practices

Properly managing authentication, access controls, and security is critical for secure usage of the
Terraform AWS Provider. This section outlines best practices around:

• IAM roles and permissions for least-privilege access

• Securing credentials to help prevent unauthorized access to AWS accounts and resources

• Remote state encryption to help protect sensitive data

• Infrastructure and source code scanning to identify misconfigurations

• Access controls for remote state storage

• Sentinel policy enforcement to implement governance guardrails

Following these best practices helps strengthen your security posture when you use Terraform to
manage AWS infrastructure.

Follow the principle of least privilege

Least privilege is a fundamental security principle that refers to granting only the minimum
permissions required for a user, process, or system to perform its intended functions. It's a core
concept in access control and a preventative measure against unauthorized access and potential
data breaches.

The principle of least privilege is emphasized multiple times in this section because it directly
relates to how Terraform authenticates and runs actions against cloud providers such as AWS.

When you use Terraform to provision and manage AWS resources, it acts on behalf of an entity
(user or role) that requires appropriate permissions to make API calls. Not following least privilege
opens up major security risks:

• If Terraform has excessive permissions beyond what's needed, an unintended misconfiguration
could make undesired changes or deletions.

• Overly permissive access grants increase the scope of impact if Terraform state files or
credentials are compromised.

• Not following least privilege goes against security best practices and regulatory compliance
requirements for granting minimal required access.

Follow the principle of least privilege 5

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Use IAM roles

Use IAM roles instead of IAM users wherever possible to enhance security with the Terraform
AWS Provider. IAM roles provide temporary security credentials that automatically rotate, which
eliminates the need to manage long-term access keys. Roles also offer precise access controls
through IAM policies.

Grant least privilege access by using IAM policies

Carefully construct IAM policies to ensure that roles and users have only the minimum set of
permissions that are required for their workload. Start with an empty policy and iteratively add
allowed services and actions. To accomplish this:

• Enable IAM Access Analyzer to evaluate policies and highlight unused permissions that can be
removed.

• Manually review policies to remove any capabilities that aren't essential for the role's intended
responsibility.

• Use IAM policy variables and tags to simplify permission management.

Well-constructed policies grant just enough access to accomplish the workload's responsibilities
and nothing more. Define actions at the operation level, and allow calls only to required APIs on
specific resources.

Following this best practice reduces the scope of impact and follows the fundamental security
principles of separation of duties and least privilege access. Start strict and open access gradually
as needed, instead of starting open and trying to restrict access later.

Assume IAM roles for local authentication

When you run Terraform locally, avoid configuring static access keys. Instead, use IAM roles to grant
privileged access temporarily without exposing long-term credentials.

First, create an IAM role with the necessary minimum permissions and add a trust relationship
that allows the IAM role to be assumed by your user account or federated identity. This authorizes
temporary usage of the role.

Trust relationship policy example:

Use IAM roles 6

https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://aws.amazon.com/blogs/security/how-to-use-trust-policies-with-iam-roles/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::111122223333:role/terraform-execution"
 },
 "Action": "sts:AssumeRole"
 }
]
}

Then, run the AWS CLI command aws sts assume-role to retrieve short-lived credentials for the
role. These credentials are typically valid for one hour.

AWS CLI command example:

aws sts assume-role --role-arn arn:aws:iam::111122223333:role/terraform-execution --
role-session-name terraform-session-example

The output of the command contains an access key, secret key, and session token that you can use
to authenticate to AWS:

{
 "AssumedRoleUser": {
 "AssumedRoleId": "AROA3XFRBF535PLBIFPI4:terraform-session-example",
 "Arn": "arn:aws:sts::111122223333:assumed-role/terraform-execution/terraform-
session-example"
 },
 "Credentials": {
 "SecretAccessKey": " wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY",
 "SessionToken": " AQoEXAMPLEH4aoAH0gNCAPyJxz4BlCFFxWNE1OPTgk5TthT
+FvwqnKwRcOIfrRh3c/LTo6UDdyJwOOvEVPvLXCrrrUtdnniCEXAMPLE/
IvU1dYUg2RVAJBanLiHb4IgRmpRV3zrkuWJOgQs8IZZaIv2BXIa2R4OlgkBN9bkUDNCJiBeb/
AXlzBBko7b15fjrBs2+cTQtpZ3CYWFXG8C5zqx37wnOE49mRl/+OtkIKGO7fAE",
 "Expiration": "2024-03-15T00:05:07Z",
 "AccessKeyId": "ASIAIOSFODNN7EXAMPLE"
 }
}

The AWS Provider can also automatically handle assuming the role.

Assume IAM roles for local authentication 7

https://registry.terraform.io/providers/hashicorp/aws/latest/docs#assuming-an-iam-role

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Provider configuration example for assuming an IAM role:

provider "aws" {
 assume_role {
 role_arn = "arn:aws:iam::111122223333:role/terraform-execution"
 session_name = "terraform-session-example"
 }
}

This grants elevated privilege strictly for the Terraform session's duration. The temporary keys
cannot be leaked because they expire automatically after the maximum duration of the session.

The key benefits of this best practice include improved security compared with long-lived access
keys, fine-grained access controls on the role for least privileges, and the ability to easily revoke
access by modifying the role's permissions. By using IAM roles, you also avoid having to directly
store secrets locally in scripts or on disk, which helps you share Terraform configuration securely
across a team.

Use IAM roles for Amazon EC2 authentication

When you run Terraform from Amazon Elastic Compute Cloud (Amazon EC2) instances, avoid
storing long-term credentials locally. Instead, use IAM roles and instance profiles to grant least-
privilege permissions automatically.

First, create an IAM role with the minimum permissions and assign the role to the instance profile.
The instance profile allows EC2 instances to inherit the permissions defined in the role. Then,
launch instances by specifying that instance profile. The instance will authenticate through the
attached role.

Before you run any Terraform operations, verify that the role is present in the instance metadata to
confirm that the credentials were successfully inherited.

TOKEN=$(curl -s -X PUT "http://169.254.169.254/latest/api/token" -H "X-aws-ec2-
metadata-token-ttl-seconds: 21600")

curl -H "X-aws-ec2-metadata-token: $TOKEN" -s http://169.254.169.254/latest/meta-data/
iam/security-credentials/

This approach avoids hardcoding permanent AWS keys into scripts or Terraform configuration
within the instance. The temporary credentials are made available to Terraform transparently
through the instance role and profile.

Use IAM roles for Amazon EC2 authentication 8

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2_instance-profiles.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instancedata-data-retrieval.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

The key benefits of this best practice include improved security over long-term credentials,
reduced credential management overhead, and consistency between development, test, and
production environments. IAM role authentication simplifies Terraform runs from EC2 instances
while enforcing least-privilege access.

Use dynamic credentials for HCP Terraform workspaces

HCP Terraform is a managed service provided by HashiCorp that helps teams use Terraform to
provision and manage infrastructure across multiple projects and environments. When you run
Terraform in HCP Terraform, use dynamic credentials to simplify and secure AWS authentication.
Terraform automatically exchanges temporary credentials on each run without needing IAM role
assumption.

Benefits include easier secret rotation, centralized credential management across workspaces,
least-privilege permissions, and eliminating hardcoded keys. Relying on hashed ephemeral keys
enhances security compared with long-lived access keys.

Use IAM roles in AWS CodeBuild

In AWS CodeBuild, run your builds by using an IAM role that's assigned to the CodeBuild project.
This allows each build to automatically inherit temporary credentials from the role instead of using
long-term keys.

Run GitHub Actions remotely on HCP Terraform

Configure GitHub Actions workflows to run Terraform remotely on HCP Terraform workspaces. Rely
on dynamic credentials and remote state locking instead of GitHub secrets management.

Use GitHub Actions with OIDC and configure the AWS Credentials
action

Use the OpenID Connect (OIDC) standard to federate GitHub Actions identity through IAM. Use the
Configure AWS Credentials action to exchange the GitHub token for temporary AWS credentials
without needing long-term access keys.

Use GitLab with OIDC and the AWS CLI

Use the OIDC standard to federate GitLab identities through IAM for temporary access. By
relying on OIDC, you avoid having to directly manage long-term AWS access keys within GitLab.

Use dynamic credentials for HCP Terraform workspaces 9

https://developer.hashicorp.com/terraform/cloud-docs/workspaces/dynamic-provider-credentials/aws-configuration
https://docs.aws.amazon.com/codebuild/latest/userguide/auth-and-access-control-iam-identity-based-access-control.html
https://docs.github.com/en/actions/deployment/security-hardening-your-deployments/configuring-openid-connect-in-amazon-web-services
https://github.com/aws-actions/configure-aws-credentials
https://docs.gitlab.com/ee/ci/cloud_services/aws/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Credentials are exchanged just-in-time, which improves security. Users also gain least privilege
access according to the permissions in the IAM role.

Use unique IAM users with legacy automation tools

If you have automation tools and scripts that lack native support for using IAM roles, you can
create individual IAM users to grant programmatic access. The principle of least privilege still
applies. Minimize policy permissions and rely on separate roles for each pipeline or script. As you
migrate to more modern tools or tools, begin supporting roles natively and gradually transition to
them.

Warning

IAM users have long-term credentials, which present a security risk. To help mitigate this
risk, we recommend that you provide these users with only the permissions they require to
perform the task and that you remove these users when they are no longer needed.

Use the Jenkins AWS Credentials plugin

Use the AWS Credentials plugin in Jenkins to centrally configure and inject AWS credentials into
builds dynamically. This avoids checking secrets into source control.

Continuously monitor, validate, and optimize least privilege

Over time, additional permissions might get granted that can exceed the minimum policies
required. Continuously analyze access to identify and remove any unnecessary entitlements.

Continuously monitor access key usage

If you cannot avoid using access keys, use IAM credential reports to find unused access keys that
are older than 90 days, and revoke inactive keys across both user accounts and machine roles. Alert
administrators to manually confirm the removal of keys for active employees and systems.

Monitoring key usage helps you optimize permissions because you can identify and remove unused
entitlements. When you follow this best practice with access key rotation, it limits credential
lifespan and enforces least privilege access.

Use unique IAM users with legacy automation tools 10

https://plugins.jenkins.io/aws-credentials/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_getting-report.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_RotateAccessKey

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

AWS provides several services and features that you can use to set up alerts and notifications for
administrators. Here are some options:

• AWS Config: You can use AWS Config rules to evaluate the configuration settings of your AWS
resources, including IAM access keys. You can create custom rules to check for specific conditions,
such as unused access keys that are older than a specific number of days. When a rule is violated,
AWS Config can start an evaluation for remediation or send notifications to an Amazon Simple
Notification Service (Amazon SNS) topic.

• AWS Security Hub: Security Hub provides a comprehensive view of your AWS account's security
posture and can help detect and notify you about potential security issues, including unused or
inactive IAM access keys. Security Hub can integrate with Amazon EventBridge and Amazon SNS
or AWS Chatbot to send notifications to administrators.

• AWS Lambda: Lambda functions can be called by various events, including Amazon CloudWatch
Events or AWS Config rules. You can write custom Lambda functions to evaluate IAM access key
usage, perform additional checks, and send notifications by using services such as Amazon SNS
or AWS Chatbot.

Continually validate IAM policies

Use IAM Access Analyzer to evaluate policies that are attached to roles and identify any unused
services or excess actions that were granted. Implement periodic access reviews to manually verify
that policies match current requirements.

Compare the existing policy with the policy generated by IAM Access Analyzer and remove any
unnecessary permissions. You should also provide reports to users and automatically revoke
unused permissions after a grace period. This helps ensure that minimal policies remain in effect.

Proactively and frequently revoking obsolete access minimizes the credentials that might be at risk
during a breach. Automation provides sustainable, long-term credential hygiene and permissions
optimization. Following this best practice limits the scope of impact by proactively enforcing least
privilege across AWS identities and resources.

Secure remote state storage

Remote state storage refers to storing the Terraform state file remotely instead of locally on the
machine where Terraform is running. The state file is crucial because it keeps track of the resources
that are provisioned by Terraform and their metadata.

Continually validate IAM policies 11

https://aws.amazon.com/config/
https://aws.amazon.com/security-hub/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-generation.html#access-analyzer-policy-generation-console
https://developer.hashicorp.com/terraform/language/state/remote

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Failure to secure remote state can lead to serious issues such as loss of state data, inability to
manage infrastructure, inadvertent resource deletion, and exposure of sensitive information that
might be present in the state file. For this reason, securing remote state storage is crucial for
production-grade Terraform usage.

Enable encryption and access controls

Use Amazon Simple Storage Service (Amazon S3) server-side encryption (SSE) to encrypt remote
state at rest.

Limit direct access to collaborative workflows

• Structure collaboration workflows in HCP Terraform or in a CI/CD pipeline within your Git
repository to limit direct state access.

• Rely on pull requests, run approvals, policy checks, and notifications to coordinate changes.

Following these guidelines helps secure sensitive resource attributes and avoids conflicts with team
members' changes. Encryption and strict access protections help reduce the attack surface, and
collaboration workflows enable productivity.

Use AWS Secrets Manager

There are many resources and data sources in Terraform that store secret values in plaintext in the
state file. Avoid storing secrets in state―use AWS Secrets Manager instead.

Instead of attempting to manually encrypt sensitive values, rely on Terraform's built-in support for
sensitive state management. When exporting sensitive values to output, make sure that the values
are marked as sensitive.

Continuously scan infrastructure and source code

Proactively scan both infrastructure and source code continuously for risks such as exposed
credentials or misconfigurations to harden your security posture. Address findings promptly by
reconfiguring or patching resources.

Enable encryption and access controls 12

https://docs.aws.amazon.com/AmazonS3/latest/userguide/serv-side-encryption.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://developer.hashicorp.com/terraform/plugin/best-practices/sensitive-state
https://www.terraform.io/docs/configuration/outputs.html#sensitive-suppressing-values-in-cli-output

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Use AWS services for dynamic scanning

Use AWS native tools such as Amazon Inspector, AWS Security Hub, Amazon Detective, and
Amazon GuardDuty to monitor provisioned infrastructure across accounts and Regions. Schedule
recurring scans in Security Hub to track deployment and configuration drift. Scan EC2 instances,
Lambda functions, containers, S3 buckets, and other resources.

Perform static analysis

Embed static analyzers such as Checkov directly into CI/CD pipelines to scan Terraform
configuration code (HCL) and identify risks preemptively before deployment. This moves security
checks to an earlier point in the development process (referred to as shifting left) and prevents
misconfigured infrastructure.

Ensure prompt remediation

For all scan findings, ensure prompt remediation by either updating Terraform configuration,
applying patches, or reconfiguring resources manually as appropriate. Lower risk levels by
addressing the root causes.

Using both infrastructure scanning and code scanning provides layered insight across Terraform
configurations, the provisioned resources, and application code. This maximizes the coverage of risk
and compliance through preventative, detective, and reactive controls while embedding security
earlier into the software development lifecycle (SDLC).

Enforce policy checks

Use code frameworks such as HashiCorp Sentinel policies to provide governance guardrails and
standardized templates for infrastructure provisioning with Terraform.

Sentinel policies can define requirements or restrictions on Terraform configuration to align with
organizational standards and best practices. For example, you can use Sentinel policies to:

• Require tags on all resources.

• Restrict instance types to an approved list.

• Enforce mandatory variables.

• Prevent the destruction of production resources.

Use AWS services for dynamic scanning 13

https://aws.amazon.com/inspector/
https://aws.amazon.com/security-hub/
https://aws.amazon.com/detective/
https://aws.amazon.com/guardduty/
https://www.checkov.io/
https://developer.hashicorp.com/terraform/tutorials/policy

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Embedding policy checks into Terraform configuration lifecycles enables proactive enforcement of
standards and architecture guidelines. Sentinel provides shared policy logic that helps accelerate
development while preventing unapproved practices.

Enforce policy checks 14

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Backend best practices

Using a proper remote backend to store your state file is critical for enabling collaboration,
ensuring state file integrity through locking, providing reliable backup and recovery, integrating
with CI/CD workflows, and taking advantage of advanced security, governance, and management
features offered by managed services such as HCP Terraform.

Terraform supports various backend types such as Kubernetes, HashiCorp Consul, and HTTP.
However, this guide focuses on Amazon S3, which is an optimal backend solution for most AWS
users.

As a fully managed object storage service that offers high durability and availability, Amazon S3
provides a secure, scalable and low-cost backend for managing Terraform state on AWS. The global
footprint and resilience of Amazon S3 exceeds what most teams can achieve by self-managing
state storage. Additionally, being natively integrated with AWS access controls, encryption options,
versioning capabilities, and other services makes Amazon S3 a convenient backend choice.

This guide doesn't provide backend guidance for other solutions such as Kubernetes or Consul
because the primary target audience is AWS customers. For teams that are fully in the AWS
Cloud, Amazon S3 is typically the ideal choice over Kubernetes or HashiCorp Consul clusters. The
simplicity, resilience, and tight AWS integration of Amazon S3 state storage provides an optimal
foundation for most users who follow AWS best practices. Teams can take advantage of the
durability, backup protections, and availability of AWS services to keep remote Terraform state
highly resilient.

Following the backend recommendations in this section will lead to more collaborative Terraform
code bases while limiting the impact of errors or unauthorized modifications. By implementing a
well-architected remote backend, teams can optimize Terraform workflows.

Best practices:

• Use Amazon S3 for remote storage

• Facilitate team collaboration

• Separate the backends for each environment

• Actively monitor remote state activity

15

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Use Amazon S3 for remote storage

Storing Terraform state remotely in Amazon S3 and implementing state locking and consistency
checking by using Amazon DynamoDB provide major benefits over local file storage. Remote state
enables team collaboration, change tracking, backup protections, and remote locking for increased
safety.

Using Amazon S3 with the S3 Standard storage class (default) instead of ephemeral local storage
or self-managed solutions provides 99.999999999% durability and 99.99% availability protections
to prevent accidental state data loss. AWS managed services such as Amazon S3 and DynamoDB
provide service-level agreements (SLAs) that exceed what most organizations can achieve when
they self-manage storage. Rely on these protections to keep remote backends accessible.

Enable remote state locking

DynamoDB locking restricts state access to prevent concurrent write operations. This prevents
simultaneous modifications from multiple users and reduces errors.

Example backend configuration with state locking:

terraform {
 backend "s3" {
 bucket = "myorg-terraform-states"
 key = "myapp/production/tfstate"
 region = "us-east-1"
 dynamodb_table = "TerraformStateLocking"
 }
}

Enable versioning and automatic backups

For additional safeguarding, enable automatic versioning and backups by using AWS Backup on
Amazon S3 backends. Versioning preserves all previous versions of the state whenever changes are
made. It also lets you restore previous working state snapshots if needed to roll back unwanted
changes or recover from accidents.

Use Amazon S3 for remote storage 16

https://developer.hashicorp.com/terraform/language/settings/backends/s3#dynamodb-state-locking
https://docs.aws.amazon.com/AmazonS3/latest/userguide/Versioning.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/backup-for-s3.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Restore previous versions if needed

Versioned Amazon S3 state buckets make it easy to revert changes by restoring a previous known
good state snapshot. This helps protect against accidental changes and provides additional backup
capabilities.

Use HCP Terraform

HCP Terraform provides a fully managed backend alternative to configuring your own state
storage. HCP Terraform automatically handles the secure storage of state and encryption while
unlocking additional features.

When you use HCP Terraform, state is stored remotely by default, which enables state sharing
and locking across your organization. Detailed policy controls help you restrict state access and
changes.

Additional capabilities include version control integrations, policy guardrails, workflow automation,
variables management, and single sign-on integrations with SAML. You can also use Sentinel policy
as code to implement governance controls.

Although HCP Terraform requires using a software as a service (SaaS) platform, for many teams
the benefits around security, access controls, automated policy checks, and collaboration features
make it an optimal choice over self-managing state storage with Amazon S3 or DynamoDB.

Easy integration with services such as GitHub and GitLab with minor configuration also appeals to
users who fully embrace cloud and SaaS tools for better team workflows.

Facilitate team collaboration

Use remote backends to share state data across all the members of your Terraform team. This
facilitates collaboration because it gives the entire team visibility into infrastructure changes.
Shared backend protocols combined with state history transparency simplify internal change
management. All infrastructure changes go through the established pipeline, which increases
business agility across the enterprise.

Improve accountability by using AWS CloudTrail

Integrate AWS CloudTrail with the Amazon S3 bucket to capture API calls made to the state bucket.
Filter CloudTrail events to track PutObject, DeleteObject, and other relevant calls.

Restore previous versions if needed 17

https://developer.hashicorp.com/terraform/cloud-docs
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-concepts.html#cloudtrail-concepts-events

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

CloudTrail logs show the AWS identity of the principal that made each API call for state change.
The user's identity can be matched to a machine account or to members of the team who interact
with the backend storage.

Combine CloudTrail logs with Amazon S3 state versioning to tie infrastructure changes to the
principal who applied them. By analyzing multiple revisions, you can attribute any updates to the
machine account or responsible team member.

If an unintended or disruptive change occurs, state versioning provides rollback capabilities.
CloudTrail traces the change to the user so you can discuss preventative improvements.

We also recommend that you enforce IAM permissions to limit state bucket access. Overall, S3
Versioning and CloudTrail monitoring supports auditing across infrastructure changes. Teams gain
improved accountability, transparency, and audit capabilities into the Terraform state history.

Separate the backends for each environment

Use distinct Terraform backends for each application environment. Separate backends isolate state
between development, test, and production.

Reduce the scope of impact

Isolating state helps ensure that changes in lower environments don't impact production
infrastructure. Accidents or experiments in development and test environments have limited
impact.

Restrict production access

Lock down permissions for the production state backend to read-only access for most users. Limit
who can modify the production infrastructure to the CI/CD pipeline and break glass roles.

Simplify access controls

Managing permissions at the backend level simplifies access control between environments.
Using distinct S3 buckets for each application and environment means that broad read or write
permissions can be granted on entire backend buckets.

Separate the backends for each environment 18

https://docs.aws.amazon.com/whitepapers/latest/organizing-your-aws-environment/break-glass-access.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Avoid shared workspaces

Although you can use Terraform workspaces to separate state between environments, distinct
backends provide stronger isolation. If you have shared workspaces, accidents can still impact
multiple environments.

Keeping environment backends fully isolated minimizes the impact of any single failure or
breach. Separate backends also align access controls to the environment's sensitivity level. For
example, you can provide write protection for the production environment and broader access for
development and test environments.

Actively monitor remote state activity

Continuously monitoring remote state activity is critical for detecting potential issues early. Look
for anomalous unlocks, changes, or access attempts.

Get alerts on suspicious unlocks

Most state changes should run through CI/CD pipelines. Generate alerts if state unlocks occur
directly through developer workstations, which could signal unauthorized or untested changes.

Monitor access attempts

Authentication failures on state buckets might indicate reconnaissance activity. Notice if multiple
accounts are trying to access state, or unusual IP addresses appear, which signals compromised
credentials.

Avoid shared workspaces 19

https://developer.hashicorp.com/terraform/language/state/workspaces

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Best practices for code base structure and organization

Proper code base structure and organization is critical as Terraform usage grows across large teams
and enterprises. A well-architected code base enables collaboration at scale while enhancing
maintainability.

This section provides recommendations on Terraform modularity, naming conventions,
documentation, and coding standards that support quality and consistency.

Guidance includes breaking configuration into reusable modules by environment and components,
establishing naming conventions by using prefixes and suffixes, documenting modules and clearly
explaining inputs and outputs, and applying consistent formatting rules by using automated style
checks.

Additional best practices cover logically organizing modules and resources in a structured
hierarchy, cataloging public and private modules in documentation, and abstracting unnecessary
implementation details in modules to simplify usage.

By implementing code base structure guidelines around modularity, documentation, standards, and
logical organization, you can support broad collaboration across teams while keeping Terraform
maintainable as usage spreads across an organization. By enforcing conventions and standards, you
can avoid the complexity of a fragmented code base.

Best practices:

• Implement a standard repository structure

• Structure for modularity

• Follow naming conventions

• Use attachment resources

• Use default tags

• Meet Terraform registry requirements

• Use recommended module sources

• Follow coding standards

20

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Implement a standard repository structure

We recommend that you implement the following repository layout. Standardizing on these
consistency practices across modules improves discoverability, transparency, organization, and
reliability while enabling reuse across many Terraform configurations.

• Root module or directory: This should be the primary entry point for both Terraform root and
re-usable modules and is expected to be unique. If you have a more complex architecture, you
can use nested modules to create lightweight abstractions. This helps you describe infrastructure
in terms of its architecture instead of directly, in terms of physical objects.

• README: The root module and any nested modules should have README files. This file must
be named README.md. It should contain a description of the module and what it should be
used for. If you want to include an example of using this module with other resources, put it in
an examples directory. Consider including a diagram that depicts the infrastructure resources
the module might create and their relationships. Use terraform-docs to automatically generate
inputs or outputs of the module.

• main.tf: This is the primary entry point. For a simple module, all resources might be created in
this file. For a complex module, resource creation might be spread across multiple files, but any
nested module calls should be in the main.tf file.

• variables.tf and outputs.tf: These files contain the declarations for variables and outputs. All
variables and outputs should have one-sentence or two-sentence descriptions that explain
their purpose. These descriptions are used for documentation. For more information, see the
HashiCorp documentation for variable configuration and output configuration.

• All variables must have a defined type.

• The variable declaration can also include a default argument. If the declaration includes a
default argument, the variable is considered to be optional, and the default value is used if you
don't set a value when you call the module or run Terraform. The default argument requires
a literal value and cannot reference other objects in the configuration. To make a variable
required, omit a default in the variable declaration and consider whether setting nullable =
false makes sense.

• For variables that have environment-independent values (such as disk_size), provide default
values.

• For variables that have environment-specific values (such as project_id), don't provide
default values. In this case, the calling module must provide meaningful values.

Implement a standard repository structure 21

https://developer.hashicorp.com/terraform/language/files#the-root-module
https://developer.hashicorp.com/terraform/language/modules/develop
https://github.com/terraform-docs/terraform-docs
https://developer.hashicorp.com/terraform/language/values/variables
https://developer.hashicorp.com/terraform/language/values/outputs

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

• Use empty defaults for variables such as empty strings or lists only when leaving the variable
empty is a valid preference that the underlying APIs don't reject.

• Be judicious in your use of variables. Parameterize values only if they must vary for each
instance or environment. When you decide whether to expose a variable, ensure that you have
a concrete use case for changing that variable. If there's only a small chance that a variable
might be needed, don't expose it.

• Adding a variable with a default value is backward compatible.

• Removing a variable is backward incompatible.

• In cases where a literal is reused in multiple places, you should use a local value without
exposing it as a variable.

• Don't pass outputs directly through input variables, because doing so prevents them from
being properly added to the dependency graph. To ensure that implicit dependencies are
created, make sure that outputs reference attributes from resources. Instead of referencing an
input variable for an instance directly, pass the attribute.

• locals.tf: This file contains local values that assign a name to an expression, so a name can be
used multiple times within a module instead of repeating the expression. Local values are like
a function's temporary local variables. The expressions in local values aren't limited to literal
constants; they can also reference other values in the module, including variables, resource
attributes, or other local values, in order to combine them.

• providers.tf: This file contains the terraform block and provider blocks. provider blocks must
be declared only in root modules by consumers of modules.

If you're using HCP Terraform, also add an empty cloud block. The cloud block should be
configured entirely through environment variables and environment variable credentials as part
of a CI/CD pipeline.

• versions.tf: This file contains the required_providers block. All Terraform modules must declare
which providers it requires so that Terraform can install and use these providers.

• data.tf: For simple configuration, put data sources next to the resources that reference them.
For example, if you are fetching an image to be used in launching an instance, place it alongside
the instance instead of collecting data resources in their own file. If the number of data sources
becomes too large, consider moving them to a dedicated data.tf file.

• .tfvars files: For root modules, you can provide non-sensitive variables by using a .tfvars file.
For consistency, name the variable files terraform.tfvars. Place common values at the root
of the repository, and environment-specific values within the envs/ folder.

Implement a standard repository structure 22

https://learn.hashicorp.com/terraform/getting-started/dependencies.html
https://www.terraform.io/language/settings
https://developer.hashicorp.com/terraform/language/providers/configuration#provider-configuration-1
https://developer.hashicorp.com/terraform/cli/cloud/settings#the-cloud-block
https://developer.hashicorp.com/terraform/cli/cloud/settings#environment-variables
https://developer.hashicorp.com/terraform/cli/config/config-file#environment-variable-credentials
https://developer.hashicorp.com/terraform/language/providers/requirements#requiring-providers
https://developer.hashicorp.com/terraform/language/data-sources

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

• Nested modules: Nested modules should exist under the modules/ subdirectory. Any nested
module that has a README.md is considered usable by an external user. If a README.md doesn't
exist, the module is considered for internal use only. Nested modules should be used to split
complex behavior into multiple small modules that users can carefully pick and choose.

If the root module includes calls to nested modules, these calls should use relative paths such
as ./modules/sample-module so that Terraform will consider them to be part of the same
repository or package instead of downloading them again separately.

If a repository or package contains multiple nested modules, they should ideally be composable
by the caller instead of directly calling each other and creating a deeply nested tree of modules.

• Examples: Examples of using a reusable module should exist under the examples/ subdirectory
at the root of the repository. For each example, you can add a README to explain the goal and
usage of the example. Examples for submodules should also be placed in the root examples/
directory.

Because examples are often copied into other repositories for customization, module blocks
should have their source set to the address an external caller would use, not to a relative path.

• Service named files: Users often want to separate Terraform resources by service in multiple
files. This practice should be discouraged as much as possible, and resources should be defined
in main.tf instead. However, if a collection of resources (for example, IAM roles and policies)
exceeds 150 lines, it's reasonable to break it into its own files, such as iam.tf. Otherwise, all
resource code should be defined in the main.tf.

• Custom scripts: Use scripts only when necessary. Terraform doesn't account for, or manage,
the state of resources that are created through scripts. Use custom scripts only when Terraform
resources don't support the desired behavior. Place custom scripts called by Terraform in a
scripts/ directory.

• Helper scripts: Organize helper scripts that aren't called by Terraform in a helpers/ directory.
Document helper scripts in the README.md file with explanations and example invocations. If
helper scripts accept arguments, provide argument checking and --help output.

• Static files: Static files that Terraform references but doesn't run (such as startup scripts loaded
onto EC2 instances) must be organized into a files/ directory. Place lengthy documents in
external files, separate from their HCL. Reference them with the file() function.

• Templates: For files that the Terraform templatefile function reads in, use the file extension
.tftpl. Templates must be placed in a templates/ directory.

Implement a standard repository structure 23

https://www.terraform.io/language/functions/file
https://www.terraform.io/docs/configuration/functions/templatefile.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Root module structure

Terraform always runs in the context of a single root module. A complete Terraform configuration
consists of a root module and the tree of child modules (which includes the modules that are called
by the root module, any modules called by those modules, and so on).

Terraform root module layout basic example:

.
data.tf
envs
dev
terraform.tfvars
prod
terraform.tfvars
test
terraform.tfvars
locals.tf
main.tf
outputs.tf
providers.tf
README.md
terraform.tfvars
variables.tf
versions.tf

Reusable module structure

Reusable modules follow the same concepts as root modules. To define a module, create a new
directory for it and place the .tf files inside, just as you would define a root module. Terraform
can load modules either from local relative paths or from remote repositories. If you expect a
module to be reused by many configurations, place it in its own version control repository. It's
important to keep the module tree relatively flat to make it easier to reuse the modules in different
combinations.

Terraform reusable module layout basic example:

.
data.tf
examples

Root module structure 24

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

multi-az-new-vpc
data.tf
locals.tf
main.tf
outputs.tf
providers.tf
README.md
terraform.tfvars
variables.tf
versions.tf
vpc.tf
single-az-existing-vpc
data.tf
locals.tf
main.tf
outputs.tf
providers.tf
README.md
terraform.tfvars
variables.tf
versions.tf
iam.tf
locals.tf
main.tf
outputs.tf
README.md
variables.tf
versions.tf

Structure for modularity

In principle, you can combine any resources and other constructs into a module, but overusing
nested and reusable modules can make your overall Terraform configuration harder to understand
and maintain, so use these modules in moderation.

When it makes sense, break your configuration into reusable modules that raise the level of
abstraction by describing a new concept in your architecture that is constructed from resource
types.

When you modularize your infrastructure into reusable definitions, aim for logical sets of resources
instead of individual components or overly complex collections.

Structure for modularity 25

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Don't wrap single resources

You shouldn't create modules that are thin wrappers around other single resource types. If you
have trouble finding a name for your module that's different from the name of the main resource
type inside it, your module probably isn't creating a new abstraction―it's adding unnecessary
complexity. Instead, use the resource type directly in the calling module.

Encapsulate logical relationships

Group sets of related resources such as networking foundations, data tiers, security controls, and
applications. A reusable module should encapsulate infrastructure pieces that work together to
enable a capability.

Keep inheritance flat

When you nest modules in subdirectories, avoid going more than one or two levels deep. Deeply
nested inheritance structures complicate configurations and troubleshooting. Modules should build
on other modules―not build tunnels through them.

By focusing modules on logical resource groupings that represent architecture patterns, teams can
quickly configure reliable infrastructure foundations. Balance abstraction without over-engineering
or over-simplification.

Reference resources in outputs

For every resource that's defined in a reusable module, include at least one output that references
the resource. Variables and outputs let you infer dependencies between modules and resources.
Without any outputs, users cannot properly order your module in relation to their Terraform
configurations.

Well-structured modules that provide environment consistency, purpose-driven groupings, and
exported resource references enable organization-wide Terraform collaboration at scale. Teams can
assemble infrastructure from reusable building blocks.

Don't configure providers

Although shared modules inherit providers from calling modules, modules should not configure
provider settings themselves. Avoid specifying provider configuration blocks in modules. This
configuration should only be declared once globally.

Don't wrap single resources 26

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Declare required providers

Although provider configurations are shared between modules, shared modules must also declare
their own provider requirements. This practice enables Terraform to ensure that there is a single
version of the provider that's compatible with all modules in the configuration, and to specify the
source address that serves as the global (module-agnostic) identifier for the provider. However,
module-specific provider requirements don't specify any of the configuration settings that
determine what remote endpoints the provider will access, such as an AWS Region.

By declaring version requirements and avoiding hardcoded provider configuration, modules provide
portability and reusability across Terraform configurations using shared providers.

For shared modules, define the minimum required provider versions in a required_providers block
in versions.tf.

To declare that a module requires a particular version of the AWS provider, use a
required_providers block inside a terraform block:

terraform {
 required_version = ">= 1.0.0"

 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = ">= 4.0.0"
 }
 }
}

If a shared module supports only a specific version of the AWS provider, use the pessimistic
constraint operator (~>), which allows only the rightmost version component to increment:

terraform {
 required_version = ">= 1.0.0"

 required_providers {
 aws = {
 source = "hashicorp/aws"
 version = "~> 4.0"
 }

Declare required providers 27

https://developer.hashicorp.com/terraform/language/providers/requirements
https://developer.hashicorp.com/terraform/language/modules/develop/providers#provider-version-constraints-in-modules

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

 }
}

In this example, ~> 4.0 allows the installation of 4.57.1 and 4.67.0 but not 5.0.0. For more
information, see Version Constraint Syntax in the HashiCorp documentation.

Follow naming conventions

Clear, descriptive names simplify your understanding of relationships between resources in the
module and the purpose of configuration values. Consistency with style guidelines enhances
readability for both module users and maintainers.

Follow guidelines for resource naming

• Use snake_case (where lowercase terms are separated by underscores) for all resource names to
match Terraform style standards. This practice ensures consistency with the naming convention
for resource types, data source types, and other predefined values. This convention doesn't apply
to name arguments.

• To simplify references to a resource that is the only one of its type (for example, a single load
balancer for an entire module), name the resource main or this for clarity.

• Use meaningful names that describe the purpose and context of the resource, and that help
differentiate between similar resources (for example, primary for the main database and
read_replica for a read replica of the database).

• Use singular, not plural names.

• Don't repeat the resource type in the resource name.

Follow guidelines for variable naming

• Add units to the names of inputs, local variables, and outputs that represent numeric values such
as disk size or RAM size (for example, ram_size_gb for RAM size in gigabytes). This practice
makes the expected input unit clear for configuration maintainers.

• Use binary units such as MiB and GiB for storage sizes, and decimal units such as MB or GB for
other metrics.

• Give Boolean variables positive names such as enable_external_access.

Follow naming conventions 28

https://developer.hashicorp.com/terraform/language/expressions/version-constraints#version-constraint-syntax
https://www.terraform.io/docs/glossary#argument

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Use attachment resources

Some resources have pseudo-resources embedded as attributes in them. Where possible, you
should avoid using these embedded resource attributes and use the unique resource to attach that
pseudo-resource instead. These resource relationships can cause cause-and-effect issues that are
unique for each resource.

Using an embedded attribute (avoid this pattern):

resource "aws_security_group" "allow_tls" {
 ...
 ingress {
 description = "TLS from VPC"
 from_port = 443
 to_port = 443
 protocol = "tcp"
 cidr_blocks = [aws_vpc.main.cidr_block]
 ipv6_cidr_blocks = [aws_vpc.main.ipv6_cidr_block]
 }

 egress {
 from_port = 0
 to_port = 0
 protocol = "-1"
 cidr_blocks = ["0.0.0.0/0"]
 ipv6_cidr_blocks = ["::/0"]
 }
}

Using attachment resources (preferred):

resource "aws_security_group" "allow_tls" {
 ...
}

resource "aws_security_group_rule" "example" {
 type = "ingress"
 description = "TLS from VPC"
 from_port = 443
 to_port = 443
 protocol = "tcp"
 cidr_blocks = [aws_vpc.main.cidr_block]

Use attachment resources 29

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

 ipv6_cidr_blocks = [aws_vpc.main.ipv6_cidr_block]
 security_group_id = aws_security_group.allow_tls.id
}

Use default tags

Assign tags to all resources that can accept tags. The Terraform AWS Provider has an
aws_default_tags data source that you should use inside the root module.

Consider adding necessary tags to all resources that are created by a Terraform module. Here's a
list of possible tags to attach:

• Name: Human-readable resource name

• AppId: The ID for the application that uses the resource

• AppRole: The resource's technical function; for example, "webserver" or "database"

• AppPurpose: The resource's business purpose; for example, "frontend ui" or "payment processor"

• Environment: The software environment, such as dev, test, or prod

• Project: The projects that use the resource

• CostCenter: Who to bill for resource usage

Meet Terraform registry requirements

A module repository must meet all of the following requirements so it can be published to a
Terraform registry.

You should always follow these requirements even if you aren't planning to publish the module
to a registry in the short term. By doing so, you can publish the module to a registry later without
having to change the configuration and structure of the repository.

• Repository name: For a module repository, use the three-part name terraform-aws-<NAME>,
where <NAME> reflects the type of infrastructure the module manages. The <NAME> segment can
contain additional hyphens (for example, terraform-aws-iam-terraform-roles).

• Standard module structure: The module must adhere to the standard repository structure. This
allows the registry to inspect your module and generate documentation, track resource usage,
and more.

Use default tags 30

https://registry.terraform.io/providers/hashicorp/aws/latest/docs/data-sources/default_tags

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

• After you create the Git repository, copy the module files to the root of the repository. We
recommend that you place each module that is intended to be reusable in the root of its own
repository, but you can also reference modules from subdirectories.

• If you're using HCP Terraform, publish the modules that are intended to be shared to your
organization registry. The registry handles downloads and controls access with HCP Terraform
API tokens, so consumers do not need access to the module's source repository even when
they run Terraform from the command line.

• Location and permissions: The repository must be in one of your configured version control
system (VCS) providers, and the HCP Terraform VCS user account must have administrator access
to the repository. The registry needs administrator access to create the webhooks to import new
module versions.

• x.y.z tags for releases: At least one release tag must be present for you to publish a module. The
registry uses release tags to identify module versions. Release tag names must use semantic
versioning, which you can optionally prefix with a v (for example, v1.1.0 and 1.1.0). The
registry ignores tags that do not look like version numbers. For more information about
publishing modules, see the Terraform documentation.

For more information, see Preparing a Module Repository in the Terraform documentation.

Use recommended module sources

Terraform uses the source argument in a module block to find and download the source code for
a child module.

We recommend that you use local paths for closely related modules that have the primary purpose
of factoring out repeated code elements, and using a native Terraform module registry or a VCS
provider for modules that are intended to be shared by multiple configurations.

The following examples illustrate the most common and recommended source types for sharing
modules. Registry modules support versioning. You should always provide a specific version, as
shown in the following examples.

Registry

Terraform registry:

module "lambda" {

Use recommended module sources 31

https://developer.hashicorp.com/terraform/cloud-docs/vcs
https://developer.hashicorp.com/terraform/cloud-docs/vcs
https://semver.org/
https://semver.org/
https://developer.hashicorp.com/terraform/cloud-docs/registry/publish-modules#publishing-a-new-module
https://developer.hashicorp.com/terraform/cloud-docs/registry/publish-modules#preparing-a-module-repository
https://developer.hashicorp.com/terraform/language/modules/sources
https://developer.hashicorp.com/terraform/language/modules/syntax#version

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

 source = "github.com/terraform-aws-modules/terraform-aws-lambda.git?
ref=e78cdf1f82944897ca6e30d6489f43cf24539374" #--> v4.18.0

 ...

}

By pinning commit hashes, you can avoid drift from public registries that are vulnerable to supply
chain attacks.

HCP Terraform:

module "eks_karpenter" {
 source = "app.terraform.io/my-org/eks/aws"
 version = "1.1.0"

 ...

 enable_karpenter = true
}

Terraform Enterprise:

module "eks_karpenter" {
 source = "terraform.mydomain.com/my-org/eks/aws"
 version = "1.1.0"

 ...

 enable_karpenter = true
}

VCS providers

VCS providers support the ref argument for selecting a specific revision, as shown in the following
examples.

GitHub (HTTPS):

module "eks_karpenter" {

VCS providers 32

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

 source = "github.com/my-org/terraform-aws-eks.git?ref=v1.1.0"

 ...

 enable_karpenter = true
}

Generic Git repository (HTTPS):

module "eks_karpenter" {
 source = "git::https://example.com/terraform-aws-eks.git?ref=v1.1.0"

 ...

 enable_karpenter = true
}

Generic Git repository (SSH):

Warning

You need to configure credentials to access private repositories.

module "eks_karpenter" {
 source = "git::ssh://username@example.com/terraform-aws-eks.git?ref=v1.1.0"

 ...

 enable_karpenter = true
}

Follow coding standards

Apply consistent Terraform formatting rules and styles across all configuration files. Enforce
standards by using automated style checks in CI/CD pipelines. When you embed coding best
practices into team workflows, configurations remain readable, maintainable, and collaborative as
usage spreads widely across an organization.

Follow coding standards 33

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Follow style guidelines

• Format all Terraform files (.tf files) with the terraform fmt command to match HashiCorp style
standards.

• Use the terraform validate command to verify the syntax and structure of your configuration.

• Statically analyze code quality by using TFLint. This linter checks for Terraform best practices
beyond just formatting and fails builds when it encounters errors.

Configure pre-commit hooks

Configure client-side pre-commit hooks that run terraform fmt, tflint, checkov, and other
code scans and style checks before you allow commits. This practice helps you validate standards
conformance earlier in developer workflows.

Use pre-commit frameworks such as pre-commit to add Terraform linting, formatting, and code
scanning as hooks on your local machine. Hooks run on each Git commit and fail the commit if
checks don't pass.

Moving style and quality checks to local pre-commit hooks provides rapid feedback to developers
before changes are introduced. Standards become part of the coding workflow.

Follow style guidelines 34

https://developer.hashicorp.com/terraform/cli/commands/fmt
https://developer.hashicorp.com/terraform/cli/commands/validate
https://github.com/terraform-linters/tflint
https://pre-commit.com/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Best practices for AWS Provider version management

Carefully managing versions of the AWS Provider and associated Terraform modules is critical for
stability. This section outlines best practices around version constraints and upgrades.

Best practices:

• Add automated version checks

• Monitor new releases

• Contribute to providers

Add automated version checks

Add version checks for Terraform providers in your CI/CD pipelines to validate version pinning, and
fail builds if the version is undefined.

• Add TFLint checks in CI/CD pipelines to scan for provider versions that don't have pinned major/
minor version constraints defined. Use the TFLint ruleset plugin for Terraform AWS Provider,
which provides rules for detecting possible errors and checks for best practices about AWS
resources.

• Fail CI runs that detect unpinned provider versions to prevent implicit upgrades from reaching
production.

Monitor new releases

• Monitor provider release notes and changelog feeds. Get notifications on new major/minor
releases.

• Assess release notes for potentially breaking changes and evaluate their impact on your existing
infrastructure.

• Upgrade minor versions in non-production environments first to validate them before updating
the production environment.

By automating version checks in pipelines and monitoring new releases, you can catch unsupported
upgrades early and give your teams time to evaluate the impact of new major/minor releases
before you update production environments.

Add automated version checks 35

https://github.com/terraform-linters/tflint
https://github.com/terraform-linters/tflint-ruleset-aws

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Contribute to providers

Actively contribute to HashiCorp AWS Provider by reporting defects or requesting features in
GitHub issues:

• Open well-documented issues on the AWS Provider repository to detail any bugs you
encountered or functionality that is missing. Provide reproducible steps.

• Request and vote on enhancements to expand the capabilities of the AWS Provider for managing
new services.

• Reference issued pull requests when you contribute proposed fixes for provider defects or
enhancements. Link to related issues.

• Follow the contribution guidelines in the repository for coding conventions, testing standards,
and documentation.

By giving back to the providers you use, you can provide direct input into their roadmap and help
improve their quality and capabilities for all users.

Contribute to providers 36

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Best practices for community modules

Using modules effectively is key to managing complex Terraform configurations and promoting
reuse. This section provides best practices around community modules, dependencies, sources,
abstraction, and contributions.

Best practices:

• Discover community modules

• Understand dependencies

• Use trusted sources

• Contribute to community modules

Discover community modules

Search the Terraform Registry, GitHub, and other sources for existing AWS modules that might
solve your use case before you build a new module. Look for popular options that have recent
updates and are actively maintained.

Use variables for customization

When you use community modules, pass inputs through variables instead of forking or directly
modifying the source code. Override defaults where required instead of changing the internals of
the module.

Forking should be limited to contributing fixes or features to the original module to benefit the
broader community.

Understand dependencies

Before you use the module, review its source code and documentation to identify dependencies:

• Required providers: Note the versions of AWS, Kubernetes, or other providers the module
requires.

• Nested modules: Check for other modules used internally that introduce cascading
dependencies.

Discover community modules 37

https://registry.terraform.io/namespaces/terraform-aws-modules
https://github.com/terraform-aws-modules

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

• External data sources: Note the APIs, custom plugins, or infrastructure dependencies that the
module relies on.

By mapping out the full tree of direct and indirect dependencies, you can avoid surprises when you
use the module.

Use trusted sources

Sourcing Terraform modules from unverified or unknown publishers introduces significant risk. Use
modules only from trusted sources.

• Favor certified modules from the Terraform Registry that are published by verified creators such
as AWS or HashiCorp partners.

• For custom modules, review publisher history, support levels, and usage reputation, even if the
module is from your own organization.

By not allowing modules from unknown or unvetted sources, you can reduce the risk of injecting
vulnerabilities or maintenance issues into your code.

Subscribe to notifications

Subscribe to notifications for new module releases from trusted publishers:

• Watch GitHub module repositories to get alerts on new versions of the module.

• Monitor publisher blogs and changelogs for updates.

• Get proactive notifications for new versions from verified, highly rated sources instead of
implicitly pulling in updates.

Consuming modules only from trusted sources and monitoring changes provide stability and
security. Vetted modules enhance productivity while minimizing supply chain risk.

Contribute to community modules

Submit fixes and enhancements for community modules that are hosted in GitHub:

• Open pull requests on modules to address defects or limitations that you encounter in your
usage.

Use trusted sources 38

https://registry.terraform.io/namespaces/terraform-aws-modules

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

• Request new best practice configurations to be added to existing OSS modules by creating
issues.

Contributing to community modules enhances reusable, codified patterns for all Terraform
practitioners.

Contribute to community modules 39

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

FAQ

Q. Why focus on the AWS Provider?

A. The AWS Provider is one of the most widely used and complex providers for provisioning
infrastructure in Terraform. Following these best practices help users optimize their usage of the
provider for the AWS environment.

Q. I'm new to Terraform. Can I use this guide?

A. The guide is for people who are new to Terraform as well as more advanced practitioners who
want to level up their skills. The practices improve workflows for users at any stage of learning.

Q. What are some key best practices covered?

A. Key best practices include using IAM roles over access keys, pinning versions, incorporating
automated testing, remote state locking, credential rotation, contributing back to providers, and
logically organizing code bases.

Q. Where can I learn more about Terraform?

A. The Resources section includes links to the official HashiCorp Terraform documentation and
community forums. Use the links to learn more about advanced Terraform workflows.

40

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Next steps

Here are some potential next steps after reading this guide:

• If you have an existing Terraform code base, review your configuration and identify areas that
could be improved based on the recommendations that are provided in this guide. For example,
review best practices for implementing remote backends, separating code into modules, using
version pinning, and so on, and validate these in your configuration.

• If you don't have an existing Terraform code base, use these best practices when you structure
your new configuration. Follow the advice around state management, authentication, code
structure, and so on from the beginning.

• Try using some of the HashiCorp community modules referenced in this guide to see if they
simplify your architecture patterns. The modules allow higher levels of abstraction, so you don't
have to rewrite common resources.

• Enable linting, security scans, policy checks, and automated testing tools to reinforce some of
the best practices around security, compliance, and code quality. Tools such as TFLint, tfsec, and
Checkov can help.

• Review the latest AWS Provider documentation to see if there are any new resources or
functionality that could help optimize your Terraform usage. Stay up to date on new versions of
the AWS Provider.

• For additional guidance, see the Terraform documentation, best practices guide, and style guide
on the HashiCorp website.

41

https://developer.hashicorp.com/terraform/language
https://developer.hashicorp.com/terraform/cloud-docs/recommended-practices
https://developer.hashicorp.com/terraform/language/style

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Resources

References

The following links provide additional reading material for the Terraform AWS Provider and using
Terraform for IaC on AWS.

• Terraform AWS Provider (HashiCorp documentation)

• Terraform modules for AWS services (Terraform Registry)

• The AWS and HashiCorp Partnership (HashiCorp blog post)

• Dynamic Credentials with the AWS Provider (HCP Terraform documentation)

• DynamoDB State Locking (Terraform documentation)

• Enforce Policy with Sentinel (Terraform documentation)

Tools

The following tools help improve code quality and automation of Terraform configurations on
AWS, as recommended in this best practices guide.

Code quality:

• Checkov: Scans Terraform code to identify misconfigurations before deployment.

• TFLint: Identifies possible errors, deprecated syntax, and unused declarations. This linter can also
enforce AWS best practices and naming conventions.

• terraform-docs: Generates documentation from Terraform modules in various output formats.

Automation tools:

• HCP Terraform: Helps teams version, collaborate, and build Terraform workflows with policy
checks and approval gates.

• Atlantis: An open source Terraform pull request automation tool for validating code changes.

• CDK for Terraform: A framework that lets you use familiar languages such as TypeScript, Python,
Java, C#, and Go instead of HashiCorp Configuration Language (HCL) to define, provision, and
test your Terraform infrastructure as code.

References 42

https://registry.terraform.io/providers/hashicorp/aws/latest/docs
https://registry.terraform.io/namespaces/terraform-aws-modules
https://www.hashicorp.com/blog/hashicorp-at-aws-re-invent-2020
https://developer.hashicorp.com/terraform/cloud-docs/workspaces/dynamic-provider-credentials/aws-configuration
https://developer.hashicorp.com/terraform/language/settings/backends/s3#dynamodb-state-locking
https://developer.hashicorp.com/terraform/tutorials/policy
https://www.checkov.io/
https://github.com/terraform-linters/tflint
https://github.com/terraform-docs/terraform-docs
https://www.terraform.io/cloud
https://www.runatlantis.io/
https://developer.hashicorp.com/terraform/cdktf

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Document history

The following table describes significant changes to this guide. If you want to be notified about
future updates, you can subscribe to an RSS feed.

Change Description Date

Initial publication — May 28, 2024

43

https://docs.aws.amazon.com/prescriptive-guidance/latest/terraform-aws-provider-best-practices/terraform-aws-provider-best-practices.rss

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

AWS Prescriptive Guidance glossary

The following are commonly used terms in strategies, guides, and patterns provided by AWS
Prescriptive Guidance. To suggest entries, please use the Provide feedback link at the end of the
glossary.

Numbers

7 Rs

Seven common migration strategies for moving applications to the cloud. These strategies build
upon the 5 Rs that Gartner identified in 2011 and consist of the following:

• Refactor/re-architect – Move an application and modify its architecture by taking full
advantage of cloud-native features to improve agility, performance, and scalability. This
typically involves porting the operating system and database. Example: Migrate your on-
premises Oracle database to the Amazon Aurora PostgreSQL-Compatible Edition.

• Replatform (lift and reshape) – Move an application to the cloud, and introduce some level
of optimization to take advantage of cloud capabilities. Example: Migrate your on-premises
Oracle database to Amazon Relational Database Service (Amazon RDS) for Oracle in the AWS
Cloud.

• Repurchase (drop and shop) – Switch to a different product, typically by moving from
a traditional license to a SaaS model. Example: Migrate your customer relationship
management (CRM) system to Salesforce.com.

• Rehost (lift and shift) – Move an application to the cloud without making any changes to
take advantage of cloud capabilities. Example: Migrate your on-premises Oracle database to
Oracle on an EC2 instance in the AWS Cloud.

• Relocate (hypervisor-level lift and shift) – Move infrastructure to the cloud without
purchasing new hardware, rewriting applications, or modifying your existing operations.
You migrate servers from an on-premises platform to a cloud service for the same platform.
Example: Migrate a Microsoft Hyper-V application to AWS.

• Retain (revisit) – Keep applications in your source environment. These might include
applications that require major refactoring, and you want to postpone that work until a later
time, and legacy applications that you want to retain, because there’s no business justification
for migrating them.

44

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

• Retire – Decommission or remove applications that are no longer needed in your source
environment.

A

ABAC

See attribute-based access control.

abstracted services

See managed services.

ACID

See atomicity, consistency, isolation, durability.

active-active migration

A database migration method in which the source and target databases are kept in sync (by
using a bidirectional replication tool or dual write operations), and both databases handle
transactions from connecting applications during migration. This method supports migration in
small, controlled batches instead of requiring a one-time cutover. It’s more flexible but requires
more work than active-passive migration.

active-passive migration

A database migration method in which in which the source and target databases are kept in
sync, but only the source database handles transactions from connecting applications while
data is replicated to the target database. The target database doesn’t accept any transactions
during migration.

aggregate function

A SQL function that operates on a group of rows and calculates a single return value for the
group. Examples of aggregate functions include SUM and MAX.

AI

See artificial intelligence.

AIOps

See artificial intelligence operations.

A 45

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

anonymization

The process of permanently deleting personal information in a dataset. Anonymization can help
protect personal privacy. Anonymized data is no longer considered to be personal data.

anti-pattern

A frequently used solution for a recurring issue where the solution is counter-productive,
ineffective, or less effective than an alternative.

application control

A security approach that allows the use of only approved applications in order to help protect a
system from malware.

application portfolio

A collection of detailed information about each application used by an organization, including
the cost to build and maintain the application, and its business value. This information is key to
the portfolio discovery and analysis process and helps identify and prioritize the applications to
be migrated, modernized, and optimized.

artificial intelligence (AI)

The field of computer science that is dedicated to using computing technologies to perform
cognitive functions that are typically associated with humans, such as learning, solving
problems, and recognizing patterns. For more information, see What is Artificial Intelligence?

artificial intelligence operations (AIOps)

The process of using machine learning techniques to solve operational problems, reduce
operational incidents and human intervention, and increase service quality. For more
information about how AIOps is used in the AWS migration strategy, see the operations
integration guide.

asymmetric encryption

An encryption algorithm that uses a pair of keys, a public key for encryption and a private key
for decryption. You can share the public key because it isn’t used for decryption, but access to
the private key should be highly restricted.

atomicity, consistency, isolation, durability (ACID)

A set of software properties that guarantee the data validity and operational reliability of a
database, even in the case of errors, power failures, or other problems.

A 46

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-portfolio-discovery/welcome.html
https://aws.amazon.com/what-is/artificial-intelligence/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/aiops.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

attribute-based access control (ABAC)

The practice of creating fine-grained permissions based on user attributes, such as department,
job role, and team name. For more information, see ABAC for AWS in the AWS Identity and
Access Management (IAM) documentation.

authoritative data source

A location where you store the primary version of data, which is considered to be the most
reliable source of information. You can copy data from the authoritative data source to other
locations for the purposes of processing or modifying the data, such as anonymizing, redacting,
or pseudonymizing it.

Availability Zone

A distinct location within an AWS Region that is insulated from failures in other Availability
Zones and provides inexpensive, low-latency network connectivity to other Availability Zones in
the same Region.

AWS Cloud Adoption Framework (AWS CAF)

A framework of guidelines and best practices from AWS to help organizations develop an
efficient and effective plan to move successfully to the cloud. AWS CAF organizes guidance
into six focus areas called perspectives: business, people, governance, platform, security,
and operations. The business, people, and governance perspectives focus on business skills
and processes; the platform, security, and operations perspectives focus on technical skills
and processes. For example, the people perspective targets stakeholders who handle human
resources (HR), staffing functions, and people management. For this perspective, AWS CAF
provides guidance for people development, training, and communications to help ready the
organization for successful cloud adoption. For more information, see the AWS CAF website and
the AWS CAF whitepaper.

AWS Workload Qualification Framework (AWS WQF)

A tool that evaluates database migration workloads, recommends migration strategies, and
provides work estimates. AWS WQF is included with AWS Schema Conversion Tool (AWS SCT). It
analyzes database schemas and code objects, application code, dependencies, and performance
characteristics, and provides assessment reports.

A 47

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://aws.amazon.com/cloud-adoption-framework/
https://d1.awsstatic.com/whitepapers/aws_cloud_adoption_framework.pdf

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

B

bad bot

A bot that is intended to disrupt or cause harm to individuals or organizations.

BCP

See business continuity planning.

behavior graph

A unified, interactive view of resource behavior and interactions over time. You can use a
behavior graph with Amazon Detective to examine failed logon attempts, suspicious API
calls, and similar actions. For more information, see Data in a behavior graph in the Detective
documentation.

big-endian system

A system that stores the most significant byte first. See also endianness.

binary classification

A process that predicts a binary outcome (one of two possible classes). For example, your ML
model might need to predict problems such as “Is this email spam or not spam?" or "Is this
product a book or a car?"

bloom filter

A probabilistic, memory-efficient data structure that is used to test whether an element is a
member of a set.

blue/green deployment

A deployment strategy where you create two separate but identical environments. You run the
current application version in one environment (blue) and the new application version in the
other environment (green). This strategy helps you quickly roll back with minimal impact.

bot

A software application that runs automated tasks over the internet and simulates human
activity or interaction. Some bots are useful or beneficial, such as web crawlers that index
information on the internet. Some other bots, known as bad bots, are intended to disrupt or
cause harm to individuals or organizations.

B 48

https://docs.aws.amazon.com/detective/latest/userguide/behavior-graph-data-about.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

botnet

Networks of bots that are infected by malware and are under the control of a single party,
known as a bot herder or bot operator. Botnets are the best-known mechanism to scale bots and
their impact.

branch

A contained area of a code repository. The first branch created in a repository is the main
branch. You can create a new branch from an existing branch, and you can then develop
features or fix bugs in the new branch. A branch you create to build a feature is commonly
referred to as a feature branch. When the feature is ready for release, you merge the feature
branch back into the main branch. For more information, see About branches (GitHub
documentation).

break-glass access

In exceptional circumstances and through an approved process, a quick means for a user to
gain access to an AWS account that they don't typically have permissions to access. For more
information, see the Implement break-glass procedures indicator in the AWS Well-Architected
guidance.

brownfield strategy

The existing infrastructure in your environment. When adopting a brownfield strategy for a
system architecture, you design the architecture around the constraints of the current systems
and infrastructure. If you are expanding the existing infrastructure, you might blend brownfield
and greenfield strategies.

buffer cache

The memory area where the most frequently accessed data is stored.

business capability

What a business does to generate value (for example, sales, customer service, or marketing).
Microservices architectures and development decisions can be driven by business capabilities.
For more information, see the Organized around business capabilities section of the Running
containerized microservices on AWS whitepaper.

business continuity planning (BCP)

A plan that addresses the potential impact of a disruptive event, such as a large-scale migration,
on operations and enables a business to resume operations quickly.

B 49

https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests/about-branches
https://docs.aws.amazon.com/wellarchitected/latest/devops-guidance/ag.sad.5-implement-break-glass-procedures.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/organized-around-business-capabilities.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/running-containerized-microservices/welcome.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

C

CAF

See AWS Cloud Adoption Framework.

canary deployment

The slow and incremental release of a version to end users. When you are confident, you deploy
the new version and replace the current version in its entirety.

CCoE

See Cloud Center of Excellence.

CDC

See change data capture.

change data capture (CDC)

The process of tracking changes to a data source, such as a database table, and recording
metadata about the change. You can use CDC for various purposes, such as auditing or
replicating changes in a target system to maintain synchronization.

chaos engineering

Intentionally introducing failures or disruptive events to test a system’s resilience. You can use
AWS Fault Injection Service (AWS FIS) to perform experiments that stress your AWS workloads
and evaluate their response.

CI/CD

See continuous integration and continuous delivery.

classification

A categorization process that helps generate predictions. ML models for classification problems
predict a discrete value. Discrete values are always distinct from one another. For example, a
model might need to evaluate whether or not there is a car in an image.

client-side encryption

Encryption of data locally, before the target AWS service receives it.

C 50

https://docs.aws.amazon.com/fis/latest/userguide/what-is.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Cloud Center of Excellence (CCoE)

A multi-disciplinary team that drives cloud adoption efforts across an organization, including
developing cloud best practices, mobilizing resources, establishing migration timelines, and
leading the organization through large-scale transformations. For more information, see the
CCoE posts on the AWS Cloud Enterprise Strategy Blog.

cloud computing

The cloud technology that is typically used for remote data storage and IoT device
management. Cloud computing is commonly connected to edge computing technology.

cloud operating model

In an IT organization, the operating model that is used to build, mature, and optimize one or
more cloud environments. For more information, see Building your Cloud Operating Model.

cloud stages of adoption

The four phases that organizations typically go through when they migrate to the AWS Cloud:

• Project – Running a few cloud-related projects for proof of concept and learning purposes

• Foundation – Making foundational investments to scale your cloud adoption (e.g., creating a
landing zone, defining a CCoE, establishing an operations model)

• Migration – Migrating individual applications

• Re-invention – Optimizing products and services, and innovating in the cloud

These stages were defined by Stephen Orban in the blog post The Journey Toward Cloud-First
& the Stages of Adoption on the AWS Cloud Enterprise Strategy blog. For information about
how they relate to the AWS migration strategy, see the migration readiness guide.

CMDB

See configuration management database.

code repository

A location where source code and other assets, such as documentation, samples, and scripts,
are stored and updated through version control processes. Common cloud repositories include
GitHub or AWS CodeCommit. Each version of the code is called a branch. In a microservice
structure, each repository is devoted to a single piece of functionality. A single CI/CD pipeline
can use multiple repositories.

C 51

https://aws.amazon.com/blogs/enterprise-strategy/tag/ccoe/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-cloud-operating-model/introduction.html
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://aws.amazon.com/blogs/enterprise-strategy/the-journey-toward-cloud-first-the-stages-of-adoption/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

cold cache

A buffer cache that is empty, not well populated, or contains stale or irrelevant data. This
affects performance because the database instance must read from the main memory or disk,
which is slower than reading from the buffer cache.

cold data

Data that is rarely accessed and is typically historical. When querying this kind of data, slow
queries are typically acceptable. Moving this data to lower-performing and less expensive
storage tiers or classes can reduce costs.

computer vision (CV)

A field of AI that uses machine learning to analyze and extract information from visual formats
such as digital images and videos. For example, AWS Panorama offers devices that add CV to
on-premises camera networks, and Amazon SageMaker provides image processing algorithms
for CV.

configuration drift

For a workload, a configuration change from the expected state. It might cause the workload to
become noncompliant, and it's typically gradual and unintentional.

configuration management database (CMDB)

A repository that stores and manages information about a database and its IT environment,
including both hardware and software components and their configurations. You typically use
data from a CMDB in the portfolio discovery and analysis stage of migration.

conformance pack

A collection of AWS Config rules and remediation actions that you can assemble to customize
your compliance and security checks. You can deploy a conformance pack as a single entity in
an AWS account and Region, or across an organization, by using a YAML template. For more
information, see Conformance packs in the AWS Config documentation.

continuous integration and continuous delivery (CI/CD)

The process of automating the source, build, test, staging, and production stages of the
software release process. CI/CD is commonly described as a pipeline. CI/CD can help you
automate processes, improve productivity, improve code quality, and deliver faster. For more
information, see Benefits of continuous delivery. CD can also stand for continuous deployment.
For more information, see Continuous Delivery vs. Continuous Deployment.

C 52

https://docs.aws.amazon.com/config/latest/developerguide/conformance-packs.html
https://docs.aws.amazon.com/whitepapers/latest/practicing-continuous-integration-continuous-delivery/benefits-of-continuous-delivery.html
https://aws.amazon.com/devops/continuous-delivery/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

CV

See computer vision.

D

data at rest

Data that is stationary in your network, such as data that is in storage.

data classification

A process for identifying and categorizing the data in your network based on its criticality and
sensitivity. It is a critical component of any cybersecurity risk management strategy because
it helps you determine the appropriate protection and retention controls for the data. Data
classification is a component of the security pillar in the AWS Well-Architected Framework. For
more information, see Data classification.

data drift

A meaningful variation between the production data and the data that was used to train an ML
model, or a meaningful change in the input data over time. Data drift can reduce the overall
quality, accuracy, and fairness in ML model predictions.

data in transit

Data that is actively moving through your network, such as between network resources.

data mesh

An architectural framework that provides distributed, decentralized data ownership with
centralized management and governance.

data minimization

The principle of collecting and processing only the data that is strictly necessary. Practicing
data minimization in the AWS Cloud can reduce privacy risks, costs, and your analytics carbon
footprint.

data perimeter

A set of preventive guardrails in your AWS environment that help make sure that only trusted
identities are accessing trusted resources from expected networks. For more information, see
Building a data perimeter on AWS.

D 53

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/data-classification.html
https://docs.aws.amazon.com/whitepapers/latest/building-a-data-perimeter-on-aws/building-a-data-perimeter-on-aws.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

data preprocessing

To transform raw data into a format that is easily parsed by your ML model. Preprocessing data
can mean removing certain columns or rows and addressing missing, inconsistent, or duplicate
values.

data provenance

The process of tracking the origin and history of data throughout its lifecycle, such as how the
data was generated, transmitted, and stored.

data subject

An individual whose data is being collected and processed.

data warehouse

A data management system that supports business intelligence, such as analytics. Data
warehouses commonly contain large amounts of historical data, and they are typically used for
queries and analysis.

database definition language (DDL)

Statements or commands for creating or modifying the structure of tables and objects in a
database.

database manipulation language (DML)

Statements or commands for modifying (inserting, updating, and deleting) information in a
database.

DDL

See database definition language.

deep ensemble

To combine multiple deep learning models for prediction. You can use deep ensembles to
obtain a more accurate prediction or for estimating uncertainty in predictions.

deep learning

An ML subfield that uses multiple layers of artificial neural networks to identify mapping
between input data and target variables of interest.

D 54

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

defense-in-depth

An information security approach in which a series of security mechanisms and controls are
thoughtfully layered throughout a computer network to protect the confidentiality, integrity,
and availability of the network and the data within. When you adopt this strategy on AWS,
you add multiple controls at different layers of the AWS Organizations structure to help
secure resources. For example, a defense-in-depth approach might combine multi-factor
authentication, network segmentation, and encryption.

delegated administrator

In AWS Organizations, a compatible service can register an AWS member account to administer
the organization’s accounts and manage permissions for that service. This account is called the
delegated administrator for that service. For more information and a list of compatible services,
see Services that work with AWS Organizations in the AWS Organizations documentation.

deployment

The process of making an application, new features, or code fixes available in the target
environment. Deployment involves implementing changes in a code base and then building and
running that code base in the application’s environments.

development environment

See environment.

detective control

A security control that is designed to detect, log, and alert after an event has occurred.
These controls are a second line of defense, alerting you to security events that bypassed the
preventative controls in place. For more information, see Detective controls in Implementing
security controls on AWS.

development value stream mapping (DVSM)

A process used to identify and prioritize constraints that adversely affect speed and quality in
a software development lifecycle. DVSM extends the value stream mapping process originally
designed for lean manufacturing practices. It focuses on the steps and teams required to create
and move value through the software development process.

digital twin

A virtual representation of a real-world system, such as a building, factory, industrial
equipment, or production line. Digital twins support predictive maintenance, remote
monitoring, and production optimization.

D 55

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services_list.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/detective-controls.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

dimension table

In a star schema, a smaller table that contains data attributes about quantitative data in a
fact table. Dimension table attributes are typically text fields or discrete numbers that behave
like text. These attributes are commonly used for query constraining, filtering, and result set
labeling.

disaster

An event that prevents a workload or system from fulfilling its business objectives in its primary
deployed location. These events can be natural disasters, technical failures, or the result of
human actions, such as unintentional misconfiguration or a malware attack.

disaster recovery (DR)

The strategy and process you use to minimize downtime and data loss caused by a disaster. For
more information, see Disaster Recovery of Workloads on AWS: Recovery in the Cloud in the
AWS Well-Architected Framework.

DML

See database manipulation language.

domain-driven design

An approach to developing a complex software system by connecting its components to
evolving domains, or core business goals, that each component serves. This concept was
introduced by Eric Evans in his book, Domain-Driven Design: Tackling Complexity in the Heart of
Software (Boston: Addison-Wesley Professional, 2003). For information about how you can use
domain-driven design with the strangler fig pattern, see Modernizing legacy Microsoft ASP.NET
(ASMX) web services incrementally by using containers and Amazon API Gateway.

DR

See disaster recovery.

drift detection

Tracking deviations from a baselined configuration. For example, you can use AWS
CloudFormation to detect drift in system resources, or you can use AWS Control Tower to detect
changes in your landing zone that might affect compliance with governance requirements.

DVSM

See development value stream mapping.

D 56

https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-workloads-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/considerations.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-stack-drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html
https://docs.aws.amazon.com/controltower/latest/userguide/drift.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

E

EDA

See exploratory data analysis.

edge computing

The technology that increases the computing power for smart devices at the edges of an IoT
network. When compared with cloud computing, edge computing can reduce communication
latency and improve response time.

encryption

A computing process that transforms plaintext data, which is human-readable, into ciphertext.

encryption key

A cryptographic string of randomized bits that is generated by an encryption algorithm. Keys
can vary in length, and each key is designed to be unpredictable and unique.

endianness

The order in which bytes are stored in computer memory. Big-endian systems store the most
significant byte first. Little-endian systems store the least significant byte first.

endpoint

See service endpoint.

endpoint service

A service that you can host in a virtual private cloud (VPC) to share with other users. You can
create an endpoint service with AWS PrivateLink and grant permissions to other AWS accounts
or to AWS Identity and Access Management (IAM) principals. These accounts or principals
can connect to your endpoint service privately by creating interface VPC endpoints. For more
information, see Create an endpoint service in the Amazon Virtual Private Cloud (Amazon VPC)
documentation.

enterprise resource planning (ERP)

A system that automates and manages key business processes (such as accounting, MES, and
project management) for an enterprise.

E 57

https://docs.aws.amazon.com/vpc/latest/privatelink/create-endpoint-service.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

envelope encryption

The process of encrypting an encryption key with another encryption key. For more
information, see Envelope encryption in the AWS Key Management Service (AWS KMS)
documentation.

environment

An instance of a running application. The following are common types of environments in cloud
computing:

• development environment – An instance of a running application that is available only to the
core team responsible for maintaining the application. Development environments are used
to test changes before promoting them to upper environments. This type of environment is
sometimes referred to as a test environment.

• lower environments – All development environments for an application, such as those used
for initial builds and tests.

• production environment – An instance of a running application that end users can access. In a
CI/CD pipeline, the production environment is the last deployment environment.

• upper environments – All environments that can be accessed by users other than the core
development team. This can include a production environment, preproduction environments,
and environments for user acceptance testing.

epic

In agile methodologies, functional categories that help organize and prioritize your work. Epics
provide a high-level description of requirements and implementation tasks. For example, AWS
CAF security epics include identity and access management, detective controls, infrastructure
security, data protection, and incident response. For more information about epics in the AWS
migration strategy, see the program implementation guide.

ERP

See enterprise resource planning.

exploratory data analysis (EDA)

The process of analyzing a dataset to understand its main characteristics. You collect or
aggregate data and then perform initial investigations to find patterns, detect anomalies,
and check assumptions. EDA is performed by calculating summary statistics and creating data
visualizations.

E 58

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-program-implementation/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

F

fact table

The central table in a star schema. It stores quantitative data about business operations.
Typically, a fact table contains two types of columns: those that contain measures and those
that contain a foreign key to a dimension table.

fail fast

A philosophy that uses frequent and incremental testing to reduce the development lifecycle. It
is a critical part of an agile approach.

fault isolation boundary

In the AWS Cloud, a boundary such as an Availability Zone, AWS Region, control plane, or data
plane that limits the effect of a failure and helps improve the resilience of workloads. For more
information, see AWS Fault Isolation Boundaries.

feature branch

See branch.

features

The input data that you use to make a prediction. For example, in a manufacturing context,
features could be images that are periodically captured from the manufacturing line.

feature importance

How significant a feature is for a model’s predictions. This is usually expressed as a numerical
score that can be calculated through various techniques, such as Shapley Additive Explanations
(SHAP) and integrated gradients. For more information, see Machine learning model
interpretability with :AWS.

feature transformation

To optimize data for the ML process, including enriching data with additional sources, scaling
values, or extracting multiple sets of information from a single data field. This enables the ML
model to benefit from the data. For example, if you break down the “2021-05-27 00:15:37”
date into “2021”, “May”, “Thu”, and “15”, you can help the learning algorithm learn nuanced
patterns associated with different data components.

FGAC

See fine-grained access control.

F 59

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/abstract-and-introduction.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/overview.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

fine-grained access control (FGAC)

The use of multiple conditions to allow or deny an access request.

flash-cut migration

A database migration method that uses continuous data replication through change data
capture to migrate data in the shortest time possible, instead of using a phased approach. The
objective is to keep downtime to a minimum.

G

geo blocking

See geographic restrictions.

geographic restrictions (geo blocking)

In Amazon CloudFront, an option to prevent users in specific countries from accessing content
distributions. You can use an allow list or block list to specify approved and banned countries.
For more information, see Restricting the geographic distribution of your content in the
CloudFront documentation.

Gitflow workflow

An approach in which lower and upper environments use different branches in a source code
repository. The Gitflow workflow is considered legacy, and the trunk-based workflow is the
modern, preferred approach.

greenfield strategy

The absence of existing infrastructure in a new environment. When adopting a greenfield
strategy for a system architecture, you can select all new technologies without the restriction
of compatibility with existing infrastructure, also known as brownfield. If you are expanding the
existing infrastructure, you might blend brownfield and greenfield strategies.

guardrail

A high-level rule that helps govern resources, policies, and compliance across organizational
units (OUs). Preventive guardrails enforce policies to ensure alignment to compliance standards.
They are implemented by using service control policies and IAM permissions boundaries.
Detective guardrails detect policy violations and compliance issues, and generate alerts

G 60

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/georestrictions.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

for remediation. They are implemented by using AWS Config, AWS Security Hub, Amazon
GuardDuty, AWS Trusted Advisor, Amazon Inspector, and custom AWS Lambda checks.

H

HA

See high availability.

heterogeneous database migration

Migrating your source database to a target database that uses a different database engine
(for example, Oracle to Amazon Aurora). Heterogeneous migration is typically part of a re-
architecting effort, and converting the schema can be a complex task. AWS provides AWS SCT
that helps with schema conversions.

high availability (HA)

The ability of a workload to operate continuously, without intervention, in the event of
challenges or disasters. HA systems are designed to automatically fail over, consistently deliver
high-quality performance, and handle different loads and failures with minimal performance
impact.

historian modernization

An approach used to modernize and upgrade operational technology (OT) systems to better
serve the needs of the manufacturing industry. A historian is a type of database that is used to
collect and store data from various sources in a factory.

homogeneous database migration

Migrating your source database to a target database that shares the same database engine
(for example, Microsoft SQL Server to Amazon RDS for SQL Server). Homogeneous migration
is typically part of a rehosting or replatforming effort. You can use native database utilities to
migrate the schema.

hot data

Data that is frequently accessed, such as real-time data or recent translational data. This data
typically requires a high-performance storage tier or class to provide fast query responses.

H 61

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Welcome.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

hotfix

An urgent fix for a critical issue in a production environment. Due to its urgency, a hotfix is
usually made outside of the typical DevOps release workflow.

hypercare period

Immediately following cutover, the period of time when a migration team manages and
monitors the migrated applications in the cloud in order to address any issues. Typically, this
period is 1–4 days in length. At the end of the hypercare period, the migration team typically
transfers responsibility for the applications to the cloud operations team.

I

IaC

See infrastructure as code.

identity-based policy

A policy attached to one or more IAM principals that defines their permissions within the AWS
Cloud environment.

idle application

An application that has an average CPU and memory usage between 5 and 20 percent over
a period of 90 days. In a migration project, it is common to retire these applications or retain
them on premises.

IIoT

See industrial Internet of Things.

immutable infrastructure

A model that deploys new infrastructure for production workloads instead of updating,
patching, or modifying the existing infrastructure. Immutable infrastructures are inherently
more consistent, reliable, and predictable than mutable infrastructure. For more information,
see the Deploy using immutable infrastructure best practice in the AWS Well-Architected
Framework.

inbound (ingress) VPC

In an AWS multi-account architecture, a VPC that accepts, inspects, and routes network
connections from outside an application. The AWS Security Reference Architecture recommends

I 62

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/rel_tracking_change_management_immutable_infrastructure.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

incremental migration

A cutover strategy in which you migrate your application in small parts instead of performing
a single, full cutover. For example, you might move only a few microservices or users to the
new system initially. After you verify that everything is working properly, you can incrementally
move additional microservices or users until you can decommission your legacy system. This
strategy reduces the risks associated with large migrations.

Industry 4.0

A term that was introduced by Klaus Schwab in 2016 to refer to the modernization of
manufacturing processes through advances in connectivity, real-time data, automation,
analytics, and AI/ML.

infrastructure

All of the resources and assets contained within an application’s environment.

infrastructure as code (IaC)

The process of provisioning and managing an application’s infrastructure through a set
of configuration files. IaC is designed to help you centralize infrastructure management,
standardize resources, and scale quickly so that new environments are repeatable, reliable, and
consistent.

industrial Internet of Things (IIoT)

The use of internet-connected sensors and devices in the industrial sectors, such as
manufacturing, energy, automotive, healthcare, life sciences, and agriculture. For more
information, see Building an industrial Internet of Things (IIoT) digital transformation strategy.

inspection VPC

In an AWS multi-account architecture, a centralized VPC that manages inspections of network
traffic between VPCs (in the same or different AWS Regions), the internet, and on-premises
networks. The AWS Security Reference Architecture recommends setting up your Network
account with inbound, outbound, and inspection VPCs to protect the two-way interface
between your application and the broader internet.

I 63

https://www.weforum.org/about/klaus-schwab/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-iiot-transformation/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Internet of Things (IoT)

The network of connected physical objects with embedded sensors or processors that
communicate with other devices and systems through the internet or over a local
communication network. For more information, see What is IoT?

interpretability

A characteristic of a machine learning model that describes the degree to which a human
can understand how the model’s predictions depend on its inputs. For more information, see
Machine learning model interpretability with AWS.

IoT

See Internet of Things.

IT information library (ITIL)

A set of best practices for delivering IT services and aligning these services with business
requirements. ITIL provides the foundation for ITSM.

IT service management (ITSM)

Activities associated with designing, implementing, managing, and supporting IT services for
an organization. For information about integrating cloud operations with ITSM tools, see the
operations integration guide.

ITIL

See IT information library.

ITSM

See IT service management.

L

label-based access control (LBAC)

An implementation of mandatory access control (MAC) where the users and the data itself are
each explicitly assigned a security label value. The intersection between the user security label
and data security label determines which rows and columns can be seen by the user.

L 64

https://aws.amazon.com/what-is/iot/
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-model-interpretability/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/tools-integration.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

landing zone

A landing zone is a well-architected, multi-account AWS environment that is scalable and
secure. This is a starting point from which your organizations can quickly launch and deploy
workloads and applications with confidence in their security and infrastructure environment.
For more information about landing zones, see Setting up a secure and scalable multi-account
AWS environment.

large migration

A migration of 300 or more servers.

LBAC

See label-based access control.

least privilege

The security best practice of granting the minimum permissions required to perform a task. For
more information, see Apply least-privilege permissions in the IAM documentation.

lift and shift

See 7 Rs.

little-endian system

A system that stores the least significant byte first. See also endianness.

lower environments

See environment.

M

machine learning (ML)

A type of artificial intelligence that uses algorithms and techniques for pattern recognition and
learning. ML analyzes and learns from recorded data, such as Internet of Things (IoT) data, to
generate a statistical model based on patterns. For more information, see Machine Learning.

main branch

See branch.

M 65

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-aws-environment/welcome.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://aws.amazon.com/what-is/machine-learning/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

malware

Software that is designed to compromise computer security or privacy. Malware might disrupt
computer systems, leak sensitive information, or gain unauthorized access. Examples of
malware include viruses, worms, ransomware, Trojan horses, spyware, and keyloggers.

managed services

AWS services for which AWS operates the infrastructure layer, the operating system, and
platforms, and you access the endpoints to store and retrieve data. Amazon Simple Storage
Service (Amazon S3) and Amazon DynamoDB are examples of managed services. These are also
known as abstracted services.

manufacturing execution system (MES)

A software system for tracking, monitoring, documenting, and controlling production processes
that convert raw materials to finished products on the shop floor.

MAP

See Migration Acceleration Program.

mechanism

A complete process in which you create a tool, drive adoption of the tool, and then inspect the
results in order to make adjustments. A mechanism is a cycle that reinforces and improves itself
as it operates. For more information, see Building mechanisms in the AWS Well-Architected
Framework.

member account

All AWS accounts other than the management account that are part of an organization in AWS
Organizations. An account can be a member of only one organization at a time.

MES

See manufacturing execution system.

Message Queuing Telemetry Transport (MQTT)

A lightweight, machine-to-machine (M2M) communication protocol, based on the publish/
subscribe pattern, for resource-constrained IoT devices.

microservice

A small, independent service that communicates over well-defined APIs and is typically
owned by small, self-contained teams. For example, an insurance system might include

M 66

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/building-mechanisms.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

microservices that map to business capabilities, such as sales or marketing, or subdomains,
such as purchasing, claims, or analytics. The benefits of microservices include agility, flexible
scaling, easy deployment, reusable code, and resilience. For more information, see Integrating
microservices by using AWS serverless services.

microservices architecture

An approach to building an application with independent components that run each application
process as a microservice. These microservices communicate through a well-defined interface
by using lightweight APIs. Each microservice in this architecture can be updated, deployed,
and scaled to meet demand for specific functions of an application. For more information, see
Implementing microservices on AWS.

Migration Acceleration Program (MAP)

An AWS program that provides consulting support, training, and services to help organizations
build a strong operational foundation for moving to the cloud, and to help offset the initial
cost of migrations. MAP includes a migration methodology for executing legacy migrations in a
methodical way and a set of tools to automate and accelerate common migration scenarios.

migration at scale

The process of moving the majority of the application portfolio to the cloud in waves, with
more applications moved at a faster rate in each wave. This phase uses the best practices and
lessons learned from the earlier phases to implement a migration factory of teams, tools, and
processes to streamline the migration of workloads through automation and agile delivery. This
is the third phase of the AWS migration strategy.

migration factory

Cross-functional teams that streamline the migration of workloads through automated, agile
approaches. Migration factory teams typically include operations, business analysts and owners,
migration engineers, developers, and DevOps professionals working in sprints. Between 20
and 50 percent of an enterprise application portfolio consists of repeated patterns that can
be optimized by a factory approach. For more information, see the discussion of migration
factories and the Cloud Migration Factory guide in this content set.

migration metadata

The information about the application and server that is needed to complete the migration.
Each migration pattern requires a different set of migration metadata. Examples of migration
metadata include the target subnet, security group, and AWS account.

M 67

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-integrating-microservices/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/microservices-on-aws/microservices-on-aws.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/migrations-phase.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-factory-cloudendure/welcome.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

migration pattern

A repeatable migration task that details the migration strategy, the migration destination, and
the migration application or service used. Example: Rehost migration to Amazon EC2 with AWS
Application Migration Service.

Migration Portfolio Assessment (MPA)

An online tool that provides information for validating the business case for migrating to
the AWS Cloud. MPA provides detailed portfolio assessment (server right-sizing, pricing, TCO
comparisons, migration cost analysis) as well as migration planning (application data analysis
and data collection, application grouping, migration prioritization, and wave planning). The
MPA tool (requires login) is available free of charge to all AWS consultants and APN Partner
consultants.

Migration Readiness Assessment (MRA)

The process of gaining insights about an organization’s cloud readiness status, identifying
strengths and weaknesses, and building an action plan to close identified gaps, using the AWS
CAF. For more information, see the migration readiness guide. MRA is the first phase of the AWS
migration strategy.

migration strategy

The approach used to migrate a workload to the AWS Cloud. For more information, see the 7 Rs
entry in this glossary and see Mobilize your organization to accelerate large-scale migrations.

ML

See machine learning.

modernization

Transforming an outdated (legacy or monolithic) application and its infrastructure into an agile,
elastic, and highly available system in the cloud to reduce costs, gain efficiencies, and take
advantage of innovations. For more information, see Strategy for modernizing applications in
the AWS Cloud.

modernization readiness assessment

An evaluation that helps determine the modernization readiness of an organization’s
applications; identifies benefits, risks, and dependencies; and determines how well the
organization can support the future state of those applications. The outcome of the assessment
is a blueprint of the target architecture, a roadmap that details development phases and

M 68

https://mpa.accelerate.amazonaws.com/
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-migration/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-modernizing-applications/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

milestones for the modernization process, and an action plan for addressing identified gaps. For
more information, see Evaluating modernization readiness for applications in the AWS Cloud.

monolithic applications (monoliths)

Applications that run as a single service with tightly coupled processes. Monolithic applications
have several drawbacks. If one application feature experiences a spike in demand, the
entire architecture must be scaled. Adding or improving a monolithic application’s features
also becomes more complex when the code base grows. To address these issues, you can
use a microservices architecture. For more information, see Decomposing monoliths into
microservices.

MPA

See Migration Portfolio Assessment.

MQTT

See Message Queuing Telemetry Transport.

multiclass classification

A process that helps generate predictions for multiple classes (predicting one of more than
two outcomes). For example, an ML model might ask "Is this product a book, car, or phone?" or
"Which product category is most interesting to this customer?"

mutable infrastructure

A model that updates and modifies the existing infrastructure for production workloads. For
improved consistency, reliability, and predictability, the AWS Well-Architected Framework
recommends the use of immutable infrastructure as a best practice.

O

OAC

See origin access control.

OAI

See origin access identity.

OCM

See organizational change management.

O 69

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-assessing-applications/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-decomposing-monoliths/welcome.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

offline migration

A migration method in which the source workload is taken down during the migration process.
This method involves extended downtime and is typically used for small, non-critical workloads.

OI

See operations integration.

OLA

See operational-level agreement.

online migration

A migration method in which the source workload is copied to the target system without being
taken offline. Applications that are connected to the workload can continue to function during
the migration. This method involves zero to minimal downtime and is typically used for critical
production workloads.

OPC-UA

See Open Process Communications - Unified Architecture.

Open Process Communications - Unified Architecture (OPC-UA)

A machine-to-machine (M2M) communication protocol for industrial automation. OPC-UA
provides an interoperability standard with data encryption, authentication, and authorization
schemes.

operational-level agreement (OLA)

An agreement that clarifies what functional IT groups promise to deliver to each other, to
support a service-level agreement (SLA).

operational readiness review (ORR)

A checklist of questions and associated best practices that help you understand, evaluate,
prevent, or reduce the scope of incidents and possible failures. For more information, see
Operational Readiness Reviews (ORR) in the AWS Well-Architected Framework.

operational technology (OT)

Hardware and software systems that work with the physical environment to control industrial
operations, equipment, and infrastructure. In manufacturing, the integration of OT and
information technology (IT) systems is a key focus for Industry 4.0 transformations.

O 70

https://docs.aws.amazon.com/wellarchitected/latest/operational-readiness-reviews/wa-operational-readiness-reviews.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

operations integration (OI)

The process of modernizing operations in the cloud, which involves readiness planning,
automation, and integration. For more information, see the operations integration guide.

organization trail

A trail that’s created by AWS CloudTrail that logs all events for all AWS accounts in an
organization in AWS Organizations. This trail is created in each AWS account that’s part of the
organization and tracks the activity in each account. For more information, see Creating a trail
for an organization in the CloudTrail documentation.

organizational change management (OCM)

A framework for managing major, disruptive business transformations from a people, culture,
and leadership perspective. OCM helps organizations prepare for, and transition to, new
systems and strategies by accelerating change adoption, addressing transitional issues, and
driving cultural and organizational changes. In the AWS migration strategy, this framework is
called people acceleration, because of the speed of change required in cloud adoption projects.
For more information, see the OCM guide.

origin access control (OAC)

In CloudFront, an enhanced option for restricting access to secure your Amazon Simple Storage
Service (Amazon S3) content. OAC supports all S3 buckets in all AWS Regions, server-side
encryption with AWS KMS (SSE-KMS), and dynamic PUT and DELETE requests to the S3 bucket.

origin access identity (OAI)

In CloudFront, an option for restricting access to secure your Amazon S3 content. When you
use OAI, CloudFront creates a principal that Amazon S3 can authenticate with. Authenticated
principals can access content in an S3 bucket only through a specific CloudFront distribution.
See also OAC, which provides more granular and enhanced access control.

ORR

See operational readiness review.

OT

See operational technology.

outbound (egress) VPC

In an AWS multi-account architecture, a VPC that handles network connections that are
initiated from within an application. The AWS Security Reference Architecture recommends

O 71

https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-operations-integration/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-ocm/
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/network.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

setting up your Network account with inbound, outbound, and inspection VPCs to protect the
two-way interface between your application and the broader internet.

P

permissions boundary

An IAM management policy that is attached to IAM principals to set the maximum permissions
that the user or role can have. For more information, see Permissions boundaries in the IAM
documentation.

personally identifiable information (PII)

Information that, when viewed directly or paired with other related data, can be used to
reasonably infer the identity of an individual. Examples of PII include names, addresses, and
contact information.

PII

See personally identifiable information.

playbook

A set of predefined steps that capture the work associated with migrations, such as delivering
core operations functions in the cloud. A playbook can take the form of scripts, automated
runbooks, or a summary of processes or steps required to operate your modernized
environment.

PLC

See programmable logic controller.

PLM

See product lifecycle management.

policy

An object that can define permissions (see identity-based policy), specify access conditions (see
resource-based policy), or define the maximum permissions for all accounts in an organization
in AWS Organizations (see service control policy).

P 72

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

polyglot persistence

Independently choosing a microservice’s data storage technology based on data access patterns
and other requirements. If your microservices have the same data storage technology, they can
encounter implementation challenges or experience poor performance. Microservices are more
easily implemented and achieve better performance and scalability if they use the data store
best adapted to their requirements. For more information, see Enabling data persistence in
microservices.

portfolio assessment

A process of discovering, analyzing, and prioritizing the application portfolio in order to plan
the migration. For more information, see Evaluating migration readiness.

predicate

A query condition that returns true or false, commonly located in a WHERE clause.

predicate pushdown

A database query optimization technique that filters the data in the query before transfer. This
reduces the amount of data that must be retrieved and processed from the relational database,
and it improves query performance.

preventative control

A security control that is designed to prevent an event from occurring. These controls are a first
line of defense to help prevent unauthorized access or unwanted changes to your network. For
more information, see Preventative controls in Implementing security controls on AWS.

principal

An entity in AWS that can perform actions and access resources. This entity is typically a root
user for an AWS account, an IAM role, or a user. For more information, see Principal in Roles
terms and concepts in the IAM documentation.

Privacy by Design

An approach in system engineering that takes privacy into account throughout the whole
engineering process.

private hosted zones

A container that holds information about how you want Amazon Route 53 to respond to DNS
queries for a domain and its subdomains within one or more VPCs. For more information, see
Working with private hosted zones in the Route 53 documentation.

P 73

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-data-persistence/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/migration-readiness/welcome.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/preventative-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_terms-and-concepts.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/hosted-zones-private.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

proactive control

A security control designed to prevent the deployment of noncompliant resources. These
controls scan resources before they are provisioned. If the resource is not compliant with the
control, then it isn't provisioned. For more information, see the Controls reference guide in the
AWS Control Tower documentation and see Proactive controls in Implementing security controls
on AWS.

product lifecycle management (PLM)

The management of data and processes for a product throughout its entire lifecycle, from
design, development, and launch, through growth and maturity, to decline and removal.

production environment

See environment.

programmable logic controller (PLC)

In manufacturing, a highly reliable, adaptable computer that monitors machines and automates
manufacturing processes.

pseudonymization

The process of replacing personal identifiers in a dataset with placeholder values.
Pseudonymization can help protect personal privacy. Pseudonymized data is still considered to
be personal data.

publish/subscribe (pub/sub)

A pattern that enables asynchronous communications among microservices to improve
scalability and responsiveness. For example, in a microservices-based MES, a microservice can
publish event messages to a channel that other microservices can subscribe to. The system can
add new microservices without changing the publishing service.

Q

query plan

A series of steps, like instructions, that are used to access the data in a SQL relational database
system.

Q 74

https://docs.aws.amazon.com/controltower/latest/controlreference/controls.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/proactive-controls.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

query plan regression

When a database service optimizer chooses a less optimal plan than it did before a given
change to the database environment. This can be caused by changes to statistics, constraints,
environment settings, query parameter bindings, and updates to the database engine.

R

RACI matrix

See responsible, accountable, consulted, informed (RACI).

ransomware

A malicious software that is designed to block access to a computer system or data until a
payment is made.

RASCI matrix

See responsible, accountable, consulted, informed (RACI).

RCAC

See row and column access control.

read replica

A copy of a database that’s used for read-only purposes. You can route queries to the read
replica to reduce the load on your primary database.

re-architect

See 7 Rs.

recovery point objective (RPO)

The maximum acceptable amount of time since the last data recovery point. This determines
what is considered an acceptable loss of data between the last recovery point and the
interruption of service.

recovery time objective (RTO)

The maximum acceptable delay between the interruption of service and restoration of service.

refactor

See 7 Rs.

R 75

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

Region

A collection of AWS resources in a geographic area. Each AWS Region is isolated and
independent of the others to provide fault tolerance, stability, and resilience. For more
information, see Specify which AWS Regions your account can use.

regression

An ML technique that predicts a numeric value. For example, to solve the problem of "What
price will this house sell for?" an ML model could use a linear regression model to predict a
house's sale price based on known facts about the house (for example, the square footage).

rehost

See 7 Rs.

release

In a deployment process, the act of promoting changes to a production environment.

relocate

See 7 Rs.

replatform

See 7 Rs.

repurchase

See 7 Rs.

resiliency

An application's ability to resist or recover from disruptions. High availability and disaster
recovery are common considerations when planning for resiliency in the AWS Cloud. For more
information, see AWS Cloud Resilience.

resource-based policy

A policy attached to a resource, such as an Amazon S3 bucket, an endpoint, or an encryption
key. This type of policy specifies which principals are allowed access, supported actions, and any
other conditions that must be met.

responsible, accountable, consulted, informed (RACI) matrix

A matrix that defines the roles and responsibilities for all parties involved in migration activities
and cloud operations. The matrix name is derived from the responsibility types defined in the

R 76

https://docs.aws.amazon.com/accounts/latest/reference/manage-acct-regions.html
https://aws.amazon.com/resilience/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

matrix: responsible (R), accountable (A), consulted (C), and informed (I). The support (S) type
is optional. If you include support, the matrix is called a RASCI matrix, and if you exclude it, it’s
called a RACI matrix.

responsive control

A security control that is designed to drive remediation of adverse events or deviations from
your security baseline. For more information, see Responsive controls in Implementing security
controls on AWS.

retain

See 7 Rs.

retire

See 7 Rs.

rotation

The process of periodically updating a secret to make it more difficult for an attacker to access
the credentials.

row and column access control (RCAC)

The use of basic, flexible SQL expressions that have defined access rules. RCAC consists of row
permissions and column masks.

RPO

See recovery point objective.

RTO

See recovery time objective.

runbook

A set of manual or automated procedures required to perform a specific task. These are
typically built to streamline repetitive operations or procedures with high error rates.

S

SAML 2.0

An open standard that many identity providers (IdPs) use. This feature enables federated
single sign-on (SSO), so users can log into the AWS Management Console or call the AWS API

S 77

https://docs.aws.amazon.com/prescriptive-guidance/latest/aws-security-controls/responsive-controls.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

operations without you having to create user in IAM for everyone in your organization. For more
information about SAML 2.0-based federation, see About SAML 2.0-based federation in the IAM
documentation.

SCADA

See supervisory control and data acquisition.

SCP

See service control policy.

secret

In AWS Secrets Manager, confidential or restricted information, such as a password or user
credentials, that you store in encrypted form. It consists of the secret value and its metadata.
The secret value can be binary, a single string, or multiple strings. For more information, see
What's in a Secrets Manager secret? in the Secrets Manager documentation.

security control

A technical or administrative guardrail that prevents, detects, or reduces the ability of a threat
actor to exploit a security vulnerability. There are four primary types of security controls:
preventative, detective, responsive, and proactive.

security hardening

The process of reducing the attack surface to make it more resistant to attacks. This can include
actions such as removing resources that are no longer needed, implementing the security best
practice of granting least privilege, or deactivating unnecessary features in configuration files.

security information and event management (SIEM) system

Tools and services that combine security information management (SIM) and security event
management (SEM) systems. A SIEM system collects, monitors, and analyzes data from servers,
networks, devices, and other sources to detect threats and security breaches, and to generate
alerts.

security response automation

A predefined and programmed action that is designed to automatically respond to or remediate
a security event. These automations serve as detective or responsive security controls that help
you implement AWS security best practices. Examples of automated response actions include
modifying a VPC security group, patching an Amazon EC2 instance, or rotating credentials.

S 78

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers_saml.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/whats-in-a-secret.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

server-side encryption

Encryption of data at its destination, by the AWS service that receives it.

service control policy (SCP)

A policy that provides centralized control over permissions for all accounts in an organization
in AWS Organizations. SCPs define guardrails or set limits on actions that an administrator can
delegate to users or roles. You can use SCPs as allow lists or deny lists, to specify which services
or actions are permitted or prohibited. For more information, see Service control policies in the
AWS Organizations documentation.

service endpoint

The URL of the entry point for an AWS service. You can use the endpoint to connect
programmatically to the target service. For more information, see AWS service endpoints in
AWS General Reference.

service-level agreement (SLA)

An agreement that clarifies what an IT team promises to deliver to their customers, such as
service uptime and performance.

service-level indicator (SLI)

A measurement of a performance aspect of a service, such as its error rate, availability, or
throughput.

service-level objective (SLO)

A target metric that represents the health of a service, as measured by a service-level indicator.

shared responsibility model

A model describing the responsibility you share with AWS for cloud security and compliance.
AWS is responsible for security of the cloud, whereas you are responsible for security in the
cloud. For more information, see Shared responsibility model.

SIEM

See security information and event management system.

single point of failure (SPOF)

A failure in a single, critical component of an application that can disrupt the system.

S 79

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

SLA

See service-level agreement.

SLI

See service-level indicator.

SLO

See service-level objective.

split-and-seed model

A pattern for scaling and accelerating modernization projects. As new features and product
releases are defined, the core team splits up to create new product teams. This helps scale your
organization’s capabilities and services, improves developer productivity, and supports rapid
innovation. For more information, see Phased approach to modernizing applications in the AWS
Cloud.

SPOF

See single point of failure.

star schema

A database organizational structure that uses one large fact table to store transactional or
measured data and uses one or more smaller dimensional tables to store data attributes. This
structure is designed for use in a data warehouse or for business intelligence purposes.

strangler fig pattern

An approach to modernizing monolithic systems by incrementally rewriting and replacing
system functionality until the legacy system can be decommissioned. This pattern uses the
analogy of a fig vine that grows into an established tree and eventually overcomes and replaces
its host. The pattern was introduced by Martin Fowler as a way to manage risk when rewriting
monolithic systems. For an example of how to apply this pattern, see Modernizing legacy
Microsoft ASP.NET (ASMX) web services incrementally by using containers and Amazon API
Gateway.

subnet

A range of IP addresses in your VPC. A subnet must reside in a single Availability Zone.

S 80

https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-phased-approach/step3.html
https://martinfowler.com/bliki/StranglerFigApplication.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/
https://docs.aws.amazon.com/prescriptive-guidance/latest/modernization-aspnet-web-services/

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

supervisory control and data acquisition (SCADA)

In manufacturing, a system that uses hardware and software to monitor physical assets and
production operations.

symmetric encryption

An encryption algorithm that uses the same key to encrypt and decrypt the data.

synthetic testing

Testing a system in a way that simulates user interactions to detect potential issues or to
monitor performance. You can use Amazon CloudWatch Synthetics to create these tests.

T

tags

Key-value pairs that act as metadata for organizing your AWS resources. Tags can help you
manage, identify, organize, search for, and filter resources. For more information, see Tagging
your AWS resources.

target variable

The value that you are trying to predict in supervised ML. This is also referred to as an outcome
variable. For example, in a manufacturing setting the target variable could be a product defect.

task list

A tool that is used to track progress through a runbook. A task list contains an overview of
the runbook and a list of general tasks to be completed. For each general task, it includes the
estimated amount of time required, the owner, and the progress.

test environment

See environment.

training

To provide data for your ML model to learn from. The training data must contain the correct
answer. The learning algorithm finds patterns in the training data that map the input data
attributes to the target (the answer that you want to predict). It outputs an ML model that
captures these patterns. You can then use the ML model to make predictions on new data for
which you don’t know the target.

T 81

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html
https://docs.aws.amazon.com/tag-editor/latest/userguide/tagging.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

transit gateway

A network transit hub that you can use to interconnect your VPCs and on-premises
networks. For more information, see What is a transit gateway in the AWS Transit Gateway
documentation.

trunk-based workflow

An approach in which developers build and test features locally in a feature branch and then
merge those changes into the main branch. The main branch is then built to the development,
preproduction, and production environments, sequentially.

trusted access

Granting permissions to a service that you specify to perform tasks in your organization in AWS
Organizations and in its accounts on your behalf. The trusted service creates a service-linked
role in each account, when that role is needed, to perform management tasks for you. For more
information, see Using AWS Organizations with other AWS services in the AWS Organizations
documentation.

tuning

To change aspects of your training process to improve the ML model's accuracy. For example,
you can train the ML model by generating a labeling set, adding labels, and then repeating
these steps several times under different settings to optimize the model.

two-pizza team

A small DevOps team that you can feed with two pizzas. A two-pizza team size ensures the best
possible opportunity for collaboration in software development.

U

uncertainty

A concept that refers to imprecise, incomplete, or unknown information that can undermine the
reliability of predictive ML models. There are two types of uncertainty: Epistemic uncertainty
is caused by limited, incomplete data, whereas aleatoric uncertainty is caused by the noise and
randomness inherent in the data. For more information, see the Quantifying uncertainty in
deep learning systems guide.

U 82

https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_integrate_services.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/ml-quantifying-uncertainty/concepts.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

undifferentiated tasks

Also known as heavy lifting, work that is necessary to create and operate an application but
that doesn’t provide direct value to the end user or provide competitive advantage. Examples of
undifferentiated tasks include procurement, maintenance, and capacity planning.

upper environments

See environment.

V

vacuuming

A database maintenance operation that involves cleaning up after incremental updates to
reclaim storage and improve performance.

version control

Processes and tools that track changes, such as changes to source code in a repository.

VPC peering

A connection between two VPCs that allows you to route traffic by using private IP addresses.
For more information, see What is VPC peering in the Amazon VPC documentation.

vulnerability

A software or hardware flaw that compromises the security of the system.

W

warm cache

A buffer cache that contains current, relevant data that is frequently accessed. The database
instance can read from the buffer cache, which is faster than reading from the main memory or
disk.

warm data

Data that is infrequently accessed. When querying this kind of data, moderately slow queries
are typically acceptable.

V 83

https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

window function

A SQL function that performs a calculation on a group of rows that relate in some way to the
current record. Window functions are useful for processing tasks, such as calculating a moving
average or accessing the value of rows based on the relative position of the current row.

workload

A collection of resources and code that delivers business value, such as a customer-facing
application or backend process.

workstream

Functional groups in a migration project that are responsible for a specific set of tasks. Each
workstream is independent but supports the other workstreams in the project. For example,
the portfolio workstream is responsible for prioritizing applications, wave planning, and
collecting migration metadata. The portfolio workstream delivers these assets to the migration
workstream, which then migrates the servers and applications.

WORM

See write once, read many.

WQF

See AWS Workload Qualification Framework.

write once, read many (WORM)

A storage model that writes data a single time and prevents the data from being deleted or
modified. Authorized users can read the data as many times as needed, but they cannot change
it. This data storage infrastructure is considered immutable.

Z

zero-day exploit

An attack, typically malware, that takes advantage of a zero-day vulnerability.

zero-day vulnerability

An unmitigated flaw or vulnerability in a production system. Threat actors can use this type of
vulnerability to attack the system. Developers frequently become aware of the vulnerability as a
result of the attack.

Z 84

AWS Prescriptive Guidance Best practices for using the Terraform AWS Provider

zombie application

An application that has an average CPU and memory usage below 5 percent. In a migration
project, it is common to retire these applications.

Z 85

	AWS Prescriptive Guidance
	Table of Contents
	Best practices for using the Terraform AWS Provider
	Objectives
	Target audience

	Overview
	Security best practices
	Follow the principle of least privilege
	Use IAM roles
	Grant least privilege access by using IAM policies
	Assume IAM roles for local authentication
	Use IAM roles for Amazon EC2 authentication
	Use dynamic credentials for HCP Terraform workspaces
	Use IAM roles in AWS CodeBuild
	Run GitHub Actions remotely on HCP Terraform
	Use GitHub Actions with OIDC and configure the AWS Credentials action
	Use GitLab with OIDC and the AWS CLI

	Use unique IAM users with legacy automation tools
	Use the Jenkins AWS Credentials plugin

	Continuously monitor, validate, and optimize least privilege
	Continuously monitor access key usage
	Continually validate IAM policies

	Secure remote state storage
	Enable encryption and access controls
	Limit direct access to collaborative workflows

	Use AWS Secrets Manager
	Continuously scan infrastructure and source code
	Use AWS services for dynamic scanning
	Perform static analysis
	Ensure prompt remediation

	Enforce policy checks

	Backend best practices
	Use Amazon S3 for remote storage
	Enable remote state locking
	Enable versioning and automatic backups
	Restore previous versions if needed
	Use HCP Terraform

	Facilitate team collaboration
	Improve accountability by using AWS CloudTrail

	Separate the backends for each environment
	Reduce the scope of impact
	Restrict production access
	Simplify access controls
	Avoid shared workspaces

	Actively monitor remote state activity
	Get alerts on suspicious unlocks
	Monitor access attempts

	Best practices for code base structure and organization
	Implement a standard repository structure
	Root module structure
	Reusable module structure

	Structure for modularity
	Don't wrap single resources
	Encapsulate logical relationships
	Keep inheritance flat
	Reference resources in outputs
	Don't configure providers
	Declare required providers

	Follow naming conventions
	Follow guidelines for resource naming
	Follow guidelines for variable naming

	Use attachment resources
	Use default tags
	Meet Terraform registry requirements
	Use recommended module sources
	Registry
	VCS providers

	Follow coding standards
	Follow style guidelines
	Configure pre-commit hooks

	Best practices for AWS Provider version management
	Add automated version checks
	Monitor new releases
	Contribute to providers

	Best practices for community modules
	Discover community modules
	Use variables for customization

	Understand dependencies
	Use trusted sources
	Subscribe to notifications

	Contribute to community modules

	FAQ
	Next steps
	Resources
	References
	Tools

	Document history
	AWS Prescriptive Guidance glossary
	Numbers
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

