aws

Developer Guide for SDK v2

AWS SDK for JavaScript

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK for JavaScript Developer Guide for SDK v2

AWS SDK for JavaScript: Developer Guide for SDK v2

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS SDK for JavaScript Developer Guide for SDK v2

Table of Contents

... ix
What Is the AWS SDK for JAVaSCriPt? ..ccciiieeeeeeeciiiiiieeeiiinnesessssssssssssssess 1
Maintenance and support for SDK mMajor VEISIONSccceceeererieneeeeecctecrestesteceeee e eesessessessessenas 1
USIiNG the SDK With NOGE.JS ..ecueeeeeeeeeeeee ettt ettt sa et et e st e st e b e s e sassnennens 2
Using the SDK With AWS CLOUD ...ttt ste e e e e e et saestesaesaa s e s e s e e e ennens 2
Using the SDK With AWS AMPLITY ..ottt ettt te e a e sa e saan 2
Using the SDK With WED BrOWSEIS ...ttt e e s s st stesaesse s ss e e nennan 2
COMMION USE CASES ..ttt sttt et e st esse st e st s s e st e st e sessbe s st e sseebeestessessesatesseensasnsensasas 3
ADOUL the EXAMPLES ..ottt ettt ettt et e s e s e e e e e et e st e st e st e sbasbesseesa e s esaenaensansansn 3
Getting Started ... iiiiiiiiiiiiiiieiiieieeiiittseeessesissssseettttessnsnssss 4
Getting Started iN @ BroWSEr SCIPL ...ttt ettt te s e e s et e b e stesaesba e snennens 4
TRE SCENAMIO .ottt ettt ettt s s b et et s et et e e be st esaesesbesassassassenassansesassans 4
Step 1: Create an Amazon Cognito Identity POOLccuooveieieoeneeececeeeeeeteee e 5
Step 2: Add a Policy to the Created IAM ROLE ...ttt nens 6
Step 3: Create the HTML PAge ...ttt ve et e st et saestesse e e s e s s e saeaanaans 7
Step 4: Write the BroWSEr SCIPL ...ttt e et st aeste s e e e e e aesa e ae s 8
Step 5: RUN the SAMIPLE ..ottt st e e e a e sae st e b e ae s ae s nennens 9

FULL SAIMIPLE .ttt ettt te st e e s e e e et et et et e st et e s s e s s e e seess e st et ensasaassassessessaensensansans 10
POSSIDlE ENNANCEMENTS ..ottt ettt et sse st et s a et s s et e e s e s e s s e ssanes 11
Getting STArted iN NOGE.JS ..ottt st e te st e e e e e e e e e e e saestessasaessessnenaannans 12
TRE SCENAMIO ettt ettt et st s s s et st s b et et e e sae st e e sse st e e ssassensenessansanaes 12
Prer@qUISITE TASKS ..ccvciiieiecieiecteeeeee et ete e stestestesteste e e e e e e e s e st e st e st e st assassaesaesaensetansessasassassesseessensan 12

Step 1: Install the SDK and DePeNndENCIESceeveieiecieneeeceeeeeeeeee ettt aesaesaesae s 13
Step 2: Configure Your Cred@ntialscccceceeeiieieieciececeseeeeeete ettt ste e e e aesa e st aanas 13
Step 3: Create the Package JSON for the Project ...t 14
Step 4: Write the NOAE.[S COAE ...ttt e e et ae st e stesae s e s e s saennennns 15
Step 5: RUN the SAMIPLE ...ttt sae e e e e s e s et e aebanaans 16
Using AWS Cloud9 with the SDK for JavaScCriptccccciiiiimmeennneenciiiiccccinnnnnessssssssssssscsssssssssssssssses 17
Step 1: Set up Your AWS Account to Use AWS Cloud9eiiieieceeceeeeeceeeete e enennens 17
Step 2: Set up Your AWS Cloud9 Development ENVIironmMentccccoeeeeeveeceeceeceeceeseceseeeeeenen. 17
Step 3: Set up the SDK for JAVaSCript ...ttt st nan 18
To set up the SDK for JavaScript fOr NOAE.|Sccevueeeeeeeeeeteeeeeee ettt 18

To set up the SDK for JavaScript in the Browser ...t 19

Step 4: Download EXAmMPLe COAE ...ttt svestesse e s e e sa et saesaesaessaesa e e esnennannans 19

AWS SDK for JavaScript Developer Guide for SDK v2

Step 5: Run and Debug EXAamMPLe COAE ...ttt sae e se s a et saesaaseens 19
Setting Up the SDK for JAVAaSCIIPtiiiiiiiiiiiiiienmnniiiiiiiieiiiiiesaesssssssssssssssessssssssssssssssssssssssssssssses 20
PrEIEGQUISITES ..ottt ettt e st e s e s sae e s ae s s ae e st e ssaa s st e s saeessaessaessssasseessaesssessssessseesssessseesseennses 20
Setting Up an AWS Node.js ENVIFONMENTccuoiieieeeeeeeeeetetese ettt seesae st se e e eneaa s 20
WeDb BroWSers SUPPOITEAcouiieeieieeetetetetestesee e e testesteste e s e e e e s e ssesaessestassassasssssssssensansansans 21
INSTALLING ThE SDK ...ttt et e e e e e e e st e st e e st e e e e e e e e aesaabessassasseesnenaaneans 22
INSTALlNG USING BOWET ...ttt te et e et e sttt este s e s e e e e e et et e b e aasseenaesnans 23
LOAAING ThE SDK ...ttt te et e st e st e e e et et e st e st e s be s b e s seese e st et et et assansasseessansansansansan 23
UpGrading From VEISION T ...ttt ettt testesteste s e s e e e e e e s et e saa st e saassassessaesnessenaansanes 24
Automatic Conversion of Base64 and Timestamp Types on Input/Outputccceveevevenenne. 24
Moved response.data.Requestld to response.requestidcoveeieececeneneniececceeee e, 25
EXposed Wrapper ELEMENTS ...ttt te e e e st e sae st e st s se s s e e s e aesaennan 26
Dropped CLIENT ProPertiescceceeiiececeeeetetetestestee et ae e steste s e s e e e e s e s e st essestassessassaesessnennan 31
Configuring the SDK for JAVaSCriPtcceciiiiiiiiiiiiiinnnnennniiiiiiiiiiiiiesassssssssssssssssssssssssssssssssssses 32
Using the Global Configuration ODjJECE ...t 32
Setting GLlobal ConfiGUIAtioN ...ttt st s es 33
Setting ConNfigUration PEI SEIVICE ...ttt ettt ste st ae s sa e s st s s 35
Immutable Configuration Data ...ttt et sae b rens 35
Setting the AWS REGION ...ttt e et e et et e st e st e st e s e s e e e e e sae st et assassassaennensanes 35
IN @ ClIeNt Class CONSEIUCLON ...couivviieirieteercrtctresest ettt sttt st se s e st et e e ssesaesassassastesassassensns 36
Using the Global Configuration ODBJECT ...t 36
Using an ENVIronNmMeNnt Variable ...ttt sttt et saesae e s 36
UsiNg @ Shared CONTIg File ..ottt st st ae s et a e a e n e aa s 36
Order of Precedence for Setting the ReGIiON ... 37
Specifying CuStomM ENAPOINTSo.ooieeeee ettt st e sae e ae s s e e et et e s s 37
ENdpoint String FOIMAL ..ottt ste st e ae s e s e e e e et sa e st e sae s e s aessassnennannans 37
Endpoints for the ap-northeast-3 REGION ...t 38
ENdpoints for MEAIiaCONVENt ...ttt e st stesae s e e e s et e s et e s ae s nes 38
SDK authentication With AWS ...ttt sttt ettt sbe b e e s e saasassassans 38
Start an AWS access POrtal SESSIONcciceiieieieiecieceeeeesee et e sae e stesse s e s e e e e e esessessessasansans 40
More authentication INFOrMAtION ...t ees 40
SEHHING CreENTIALS ...ttt s e s te st e e e e e e et et et e aessessessaeseennanean 41
Best Practices fOr Cradentials ...ttt sttt sae e e ssesae e s seen 41
Setting Credentials iN NOAE.|S ...ttt ettt e s resbe e s e e saeaenean 42
Setting Credentials in @ WED BrOWSETcciieeieriereeeceeeeeesteteste e ssesseeeeeessessessessessessassnsseessenean 47
LOCKING APL VEISIONSeveieieieeteeeetctete e cte e teete e e e e eae s esaestestasse s e ssassassaess et asessassassasssssesnsensansensansanes 57

AWS SDK for JavaScript Developer Guide for SDK v2

GELLING AP VEISIONS ...ceeiiiiteiteeierteeteeetee st essressatesaessseessaessatassesssaesssesssessssessssesssessssesssesssassnnes 57
NOAE.jS CONSIAEIATIONS ...ttt ettt e st e st e e e s e e e e s et e saesaessesseesaesaensensansansansansans 58
Using BUilt-IN NOE.JS MOAULESooueeeeeeee ettt ettt ste st e e a e a et aaas 58
USING NPM PACKAGES ...ttt ettt stesteste s e e te s s e e s e ste st e ta st e saasse s e esnenaenaessansansans 58
Configuring MaXSOCKEtS iIN NOGE.JSccuicieeieeeeececeeectetetetes et saesae e se e e e e e aesaennans 59
Reusing Connections with Keep-Alive in NOAE.[Sceceeieiieiicececececeeeete et 60
Configuring ProXi€s fOr NOGE.|S ...ccueeuiiiiieieeecececeetetete ettt sae st e st ae s se s e e e aennan 61
Registering Certificate BUNdLles in NOE.|S ..c.coueeuieeiiieeeeeeeeeeeete ettt sae e 62
Browser Script CONSIAEIatioNS ...ttt e e et et stesae b e s sasaa e e naennan 62
BUilding the SDK fOr BrOWSELSccuecuieieieicieeetestestesesesee e e testestesaessessessssssessesaessessessassasssensansans 63
Cross-0Origin Resource Sharing (CORS) ...ttt sae e sae e s e s sa e saa s 66
BUNAUING With WEDPACK ...ttt ettt et e st sttt e s ae s e e neaennans 70
INSEALLING WEDPACK ...ttt ettt et e sae s e e e e e e e aesaantans 70
CONFIGUIING WEDPACK ...ttt ettt et et e stesaestestesse e e e e e e et et e saessesaassaeseessensensensansanes 71
RUNNING WEDPACK ...ttt ettt tesaeste s et e e e s e e et e st e st e sassessaensensanaensansansans 72
Using the Webpack BUNALE ..ottt sttt stesaesae e e e s s e e aesaanaans 73
IMPOrting INAIVIAUAL SEIVICES ..ottt st e te e s e e e e e e s e aasaesbanaens 73
BUNAUING FOr NOGE.JS .ttt ettt steste e e e e et e st e st e be st e s s e e e e sae e esaesaessansannan 74
WOrKing With SEIVICESceeeeeiiiiiiiiiiiiinnnnenniiiiiiiiceiiiiesss 76
Creating and Calling Service ODjJECLS ...ttt st a e e saesaa s 77
ReqUIriNg INAIVIAUAL SEIVICES ...ttt see s e et stessesae e e e e e aesaesaansans 78
Creating Service ODJECES ...ttt te s e e e a e et et e st e s ae e e e e e e e nnennanes 79
Locking the API Version of @ Service ObjJECt ... ieiicieieeececee ettt nesaesae e 80
Specifying Service Object PAaramELErs ...ttt e e s e saesaesae s saens 80
Logging AWS SDK for JAvaScript Calls ...ttt ae s nenens 81
USING @ THIrd-Party LOGQEN ...ttt stesteste s e s e s e e e s s eaestaseasaessassassnennannans 81
Calling Services ASYCHIONOUSLYcc.ccuiceieeeeeceeteeteete ettt tesae e e e s e e e e e e e e stasaesaessessnennens 82
Managing ASYChroNOUS CallS ...ttt ae s tesre e e e aeea e nnan 82
Using @ Callback FUNCLION ..c.uieieeeeeeeee ettt a et saesaesae s e e e e s a e aesaaaans 83
Using a Request Object EVENt LISTENEN ...ttt et 85
USING QSYNC/AWAIT ..ttt sa et st et e st e e s e e e e e et et e stessasseesessnensansansansan 90
USING PrOMUSES ...eiiiiiiiiieieecitestersteesite st estessseesstesssessssessseesssessssssssesssessssesssessssessssesssessseesssessssessaesssesns 91
Using the RESPONSE ODJECT ...ttt sttt reenenenans 93
Accessing Data Returned in the ReSponse ObjJECtuccveieieeieeeeeeeeeeeeteee e 93
Paging Through ReturNed Data ...ttt sae st e s e nennan 94
Accessing Error Information from a Response Object ... 95

AWS SDK for JavaScript Developer Guide for SDK v2

Accessing the Originating Request ODbJECt ...t 95
WOTrKING WIith JSON ...ttt et e te st esae st e et e e e e et e st e st e stessassesseessensantensansansans 95
JSON as Service Object PAramELErs ...ttt e seaesaeste s e ssesse s s e s e e e saensansans 96
Returning Data @S JSON ...ttt sttt e e st e s saessreesae s sae s e e e sssaesbassseasssassaesssassneens 97
SDK for JavaScript Code EXamPLescceeeeciiiiiieeininnennnnnnnssssseccennnsssases 929
Amazon CloudWatch EXQMPLES ...ttt e e sa et ste st e sae st esae e s e e e s e s et e saessanes 99
Creating Alarms in AmMazon CloUAWAAtCh ...ttt aens 100
Using Alarm Actions in Amazon CloudWatch ... 104
Getting Metrics from Amazon ClLoudWatch ... 108
Sending Events to Amazon CloudWatch EVENLS ...ttt 111
Using Subscription Filters in Amazon CloudWatch LOgscoeveeieiecieciececececeeeeeeeeeeve e 116
Amazon DyNamoDB EXQMIPLESeiieieieieececee ettt e e a et st sae st esse s s e e s e e a e a e aaae s 121
Creating and Using Tables in DYNamODB ...ttt ae st s s eaas 122
Reading and Writing A Single Item in DynamoDB ... 127
Reading and Writing Items in Batch in DynamoDB ... 130
Querying and Scanning @ DynamoDB Table ... 134
Using the DynamoDB Document CLENT ..ottt a et saesae e 137
AMAZON EC2 EXQAMPLES ..ottt te st te e e e e s e s ae st e stesaessasse e e e e e s et essastassassassnsssensassansans 143
Creating an AMAzon EC2 INSTANCEiiiieiriiiereecteesteete st ee st s ressse e s saessaeessaesssnesssesssnassaessnas 144
Managing AmAzon EC2 INSTANCEScociiriiiiierieertictesieestee st sseessseestesssessssessssesssesssessssessssessnasns 147
Working with AmMAazon EC2 KEY PilSccccueciecieiecieeeceseeeeeete s ste e saestesses e e s esaesaessessessessessenns 153
Using Regions and Availability Zones with Amazon EC2ooieieiecececececeeeeeeeeeeee e 156
Working with Security Groups in AMAzon EC2 ...ttt sae e ssessens 158
Using Elastic IP Addresses in AMAzon EC2 ... eeieneeeceeeeeerecee e stesses e e s e sasssessessaneens 163
MediaCoNVErt EXAMPLEScoueeeeeeeeeeeetecectee ettt et ste e teese e e e e e s e s e s et e st e s sassassassae e esaenaansansanean 167
Getting Your Region-Specific ENAPOiNtcooviieoieeeeeeeeeeeeee et 167
Creating and Managing JODS ...ttt te ettt ae e e ae e e aennens 169
USING JOD TEMIPLALES ..ottt ste e s e sa et et e st e st e sae e e e aea e e e taaanes 177
AmMazon S3 GlACier EXAMIPLES ...ttt teste s e e et et e tesaesaessessa e e e s e s e s e naesaaneans 185
Creating @ S3 GLlacier VAULL ...ttt ettt s ae b ns 186
Uploading an Archive t0 S3 GLACIEN ...ttt a et saesse s e s e e e e aenens 187
Doing a Multipart Upload t0 S3 GLACIErcueeueeeeeeceeeeteteteesese ettt re e e ae e s e s enaens 188
AWS [AM EXQIMPLES ...cvonrereieeeeieeetecteste e stestestee e e e e s e saestestessessassassesssessesaessessansassassassasssesssssensensansansanes 190
MaANAGING TAM USEIS ...ttt eete st e s ste e satestessssesstessseasssesssaasssassstasssesssaesssessseesssessssesnnes 191
WOrking With TAM POLICIES ...eoveeeieeeeceetetete ettt steste st s e e s e s s et sa e ba s e sa e e e e enennan 196
ManNAGiNG [AM ACCESS KEYSueeiriieieriinieecteertesseessteesrtessaessseesssessssesssessssesssessssesssessssesssessssessssssses 202

Vi

AWS SDK for JavaScript Developer Guide for SDK v2

Working with IAM Server CertifiCates ... 207
Managing |AM ACCOUNT ALI@SESceecveciecieeieeeceeeeteee et ste e e et saeste st e s se s e e e e e e s e s e saassansanes 211
AmMazon KiNeSiS EXAMIPLE ..ottt e et s e e et e st e s aesae b e e e e e e e e s et e aaaanes 214
Capturing Web Page Scroll Progress with Amazon KiNesisccceeeveeviecieceenenesesieseeeesnenens 214
AMAZON S3 EXQAMPLES ..ottt te e e e e e et et e st e s ae e s e e s e e sa e e e s et e saa st e bassassassnesasnsenaanes 221
Amazon S3 Browser EXAMPLES ...ttt e e et e saesaesae s se e n s 222
AmaAazon S3 NOE.JS EXAMPLEScoueeeeieieteteceetee ettt ste e e e e e e e s e sae st e saessesse e e e e e nnennanes 251
AMAZON SES EXAMIPLES ..ottt ettt te s te et e e sa s s b e st e st e s ba s e sa e e e e e e esaabansanean 271
MaNAGING [AENLITIES ...uveeeeeeeeeeee ettt te e e e e et et esae st e saessesseesae e esseaesansans 272
Working wWith EMail TEMPLAtES ...ttt sttt s a e aenee 278
Sending Email Using AMAzon SES ...ttt ettt st e s e s st e saesse s e sa s s e e nennan 284
USING 1P AAIreSS FILLEIS ...oueeeeeeeeeeeeeete ettt ettt s teste e e e se et a et esaesaesaassassnennennans 290
USING RECEIPT RULES ...ttt te st e e sa et et e st e s ae s s s sa et et et e aasassassesnnenean 294
AMAZON SNS EXAMPLES ...voriiiieeeeeeeetetecteetes et e e e e e et e saestestestesse s e s s e s essessessessessassassessassesssensensansans 299
MaANAGING TOPICS weeuiieiiiiiieieeriertereteerteest e st sstessteesatesssesssaesseesseesssesssaesssessstesssesssaesssessssesssesssaesnses 300
Publishing Messages t0 @ TOPICcceeeceeieeeeeeceetetectete e e e stestesaesae s e s e e e s e e e e saenaannan 306
Managing SUDSCHIPLIONSoovieeeceecee ettt e s e et a e st e st e st e e e e e e sa e a et e s e sanes 308
SENAING SMS MESSAGESeovieieeeietetertecere st eee e e e e testestessessessessessessessessessassessassassesssssasssessesansans 314
AMAzon SQS EXAMIPLES ..ottt e e e et e te s testessa e e e e e s et e ssestassassessaennesaensansanes 320
Using Queues in AMAZON SQS ... iiiierecrteeesseesseesstesstesseesssessseesssessssesssessssasssessssesssesssaans 321
Sending and Receiving Messages in AMazon SQS ... oeirieiereceecestese e saesaeseens 325
Managing Visibility Timeout in AMAzon SQS ...t e e e neaens 329
Enabling Long Polling in AMAzon SQS ...ttt re s st ste e s a s 331
Using Dead Letter Queues in AMAzon SQS ...t sre e e e e saesaesaesaens 335
TUROKHIALS ceverrriiiiiiiiiiiiiiiiitiiiiiiiiiiieeesssssess 338
Tutorial: Setting Up Node.js on an Amazon EC2 INStANCEcceeeeeeeeieceecieceereceeeeeeeeee e saesaeeeas 338
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 338
PIOCEAUIE .ttt ettt ettt et et e st et s et e st e e s s e st et s sesae b e st ssasbastesessentesaesesansensssanes 338
Creating an AmMazon Maching IMAgE ...ttt snens 340
RELALEA RESOUICES ...ttt sttt ettt e e st e e s et et e e sse st e e ssessessesassensensnas 340
APl Reference and Changelog ...cciiiueeeeeeeiiiiiiiiiiininnennnneesssssccceniss 341
SDK Changelog 0N GItHUD ...ttt ettt s ae s e e e a et et nan 341
SECUNITY ceiiiiiiiieennneniiiiiieiiitnensessssssssssssesessnssssss 342
DAta PrOTECLION ...ttt s e et e et e st e s sae e st e s aesssaessaaessaasssassssassaesssessaanns 342
Identity and Access ManNAgQEIMENTccuecieieeiieieieteteste ettt e e aesaestestesaesse s e e e e e e s e s e aensessensanes 343
AUAIENCE ..ttt ettt et s b et s s b et et esa b et e e s s et et s sa b et esassasestesassansesessansensesanns 344

vii

AWS SDK for JavaScript Developer Guide for SDK v2

Authenticating With identities ..ottt nnens 344
Managing access USING POLICIES ..c..ocueeueeieieieteeeec ettt a et e s e st e s se s e e e n e aanes 348

How AWS services WOrk With TAM ...ttt ettt ae s st sse st s sse s e ene 350
Troubleshooting AWS identity and @CCESS ...t 350
ComMPLIANCE Valid@tion ...ttt te e e e s et e st e saesbesse s e eseennesaaneans 352
RESILIEICE .ottt ettt et e s be st et s s et et e e b et esa s s et et esassastesassansensans 353
INFrAaStrUCTUIE SECUIILY ..cuveeeeeeeeeeee ettt e st et e s e e e e e e s et e stessassessasanesaanaans 354
Enforcing @ minimum Version Of TLS ...ttt sae e s e e aesaenan 355
Verify and enforce TLS iN NOGE.|S ..coviieeeececeeeceeteetete ettt sve e s s e a et sae s 355
Verify and enforce TLS in @ browser SCript ...ttt 357
AdditioNal RESOUICEScceueereeeeeeeereressssssssssnssnssssnneesssesttttttisttessesss 360
AWS SDKs and Tools Reference GUIEcocceueirerenirinentiiresictsesiesteeseste st e sresse e ssessesaesessasaesasses 360
JAVASCIIPT SDK FOFUM ettt ettt e see st e esae s st e s sa e s sa e s sae e st e s saesssaesssaesssassseessaennses 360
JavaScript SDK and Developer Guide on GitHUD ..o 360
JAVASCIIPT SDK ON GIEEEE ..ttt st te st e ae s sre e s e e s sae e s e e s saaessaessaaessnassnasnns 360

(0T oYal Ty 1 L= 31 o 1T o oV UPUP 361
DOCUMIENT HISTOIY oottt sttt ettt st e s e e s ae e st e s ssa e s sae s saa e b e s ssaesssesssaasssassseesssassneens 361
EQrliEr UPAAteS ...ttt ettt ettt et e st e st e s e e e s s e s e e et e b et e s b assessaesaensensensansansans 362

viii

AWS SDK for JavaScript Developer Guide for SDK v2

We announced the upcoming end-of-support for AWS SDK for JavaScript v2. We recommend that
you migrate to AWS SDK for JavaScript v3. For dates, additional details, and information on how to
migrate, please refer to the linked announcement.

https://aws.amazon.com/blogs/developer/announcing-end-of-support-for-aws-sdk-for-javascript-v2/
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/

AWS SDK for JavaScript Developer Guide for SDK v2

What Is the AWS SDK for JavaScript?

The AWS SDK for JavaScript provides a JavaScript API for AWS services. You can use the JavaScript
API to build libraries or applications for Node.js or the browser.

nede ||||

. Amazon 53 Amazon EC2
Mode.js on seners [|
amazon
Wb SrACeS
JE Identity & Access Amazon SOS Other services

Management (LAM)

| [| Amazon SDK
B ' for JavaScript ‘

"

Browser scripts Amazon Amazon
CloudWatch DynamoDB

JavaScript environments Amazon Web Services

Not all services are immediately available in the SDK. To find out which services are currently
supported by the AWS SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/master/
SERVICES.md. For information about the SDK for JavaScript on GitHub, see Additional Resources.

Maintenance and support for SDK major versions

For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the AWS SDKs and Tools Reference Guide:

« AWS SDKs and tools maintenance policy

o AWS SDKs and tools version support matrix

Maintenance and support for SDK major versions 1

https://nodejs.org/en/
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://docs.aws.amazon.com/sdkref/latest/guide/overview.html
https://docs.aws.amazon.com/sdkref/latest/guide/maint-policy.html
https://docs.aws.amazon.com/sdkref/latest/guide/version-support-matrix.html

AWS SDK for JavaScript Developer Guide for SDK v2

Using the SDK with Node.js

Node.js is a cross-platform runtime for running server-side JavaScript applications. You can set
up Node.js on an Amazon EC2 instance to run on a server. You can also use Node.js to write on-
demand AWS Lambda functions.

Using the SDK for Node.js differs from the way in which you use it for JavaScript in a web
browser. The difference comes from the way in which you load the SDK and in how you obtain the
credentials needed to access specific web services. When use of particular APIs differs between
Node.js and the browser, those differences will be called out.

Using the SDK with AWS Cloud9

You can also develop Node.js applications using the SDK for JavaScript in the AWS Cloud?9 IDE.

For a sample of how to use AWS Cloud9 for Node.js development, see Node.js Sample for AWS
Cloud9 in the AWS Cloud9 User Guide. For more information on using AWS Cloud9 with the SDK for
JavaScript, see Using AWS Cloud9 with the AWS SDK for JavaScript.

Using the SDK with AWS Amplify

For browser-based web, mobile, and hybrid apps, you can also use the AWS Amplify Library on

GitHub, which extends the SDK for JavaScript, providing a declarative interface.

(® Note

Frameworks such as AWS Amplify might not offer the same browser support as the SDK for
JavaScript. Check a framework's documentation for details.

Using the SDK with Web Browsers

All major web browsers support execution of JavaScript. JavaScript code that is running in a web
browser is often called client-side JavaScript.

Using the SDK for JavaScript in a web browser differs from the way in which you use it for
Node.js. The difference comes from the way in which you load the SDK and in how you obtain the
credentials needed to access specific web services. When use of particular APIs differs between
Node.js and the browser, those differences will be called out.

Using the SDK with Node.js 2

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-nodejs.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-nodejs.html
https://github.com/aws/aws-amplify
https://github.com/aws/aws-amplify

AWS SDK for JavaScript Developer Guide for SDK v2

For a list of browsers that are supported by the AWS SDK for JavaScript, see Web Browsers
Supported.

Common Use Cases

Using the SDK for JavaScript in browser scripts makes it possible to realize a number of compelling
use cases. Here are several ideas for things you can build in a browser application by using the SDK
for JavaScript to access various web services.

 Build a custom console to AWS services in which you access and combine features across Regions
and services to best meet your organizational or project needs.

« Use Amazon Cognito Identity to enable authenticated user access to your browser applications
and websites, including use of third-party authentication from Facebook and others.

« Use Amazon Kinesis to process click streams or other marketing data in real time.

« Use Amazon DynamoDB for serverless data persistence such as individual user preferences for
website visitors or application users.

» Use AWS Lambda to encapsulate proprietary logic that you can invoke from browser scripts
without downloading and revealing your intellectual property to users.

About the Examples

You can browse the SDK for JavaScript examples in the AWS Code Example Library.

Common Use Cases 3

https://docs.aws.amazon.com/code-library/latest/ug/javascript_2_code_examples.html

AWS SDK for JavaScript Developer Guide for SDK v2

Getting Started with the AWS SDK for JavaScript

The AWS SDK for JavaScript provides access to web services in either browser scripts or Node.js.
This section has two getting started exercises that show you how to work with the SDK for
JavaScript in each of these JavaScript environments.

You can also develop Node.js applications using the SDK for JavaScript in the AWS Cloud9 IDE. For
a sample of how to use AWS Cloud9 for Node.js development, see Node.js Sample for AWS Cloud9
in the AWS Cloud9 User Guide.

Topics

o Getting Started in a Browser Script

o Getting Started in Node.js

Getting Started in a Browser Script

J5

This browser script example shows you:

« How to access AWS services from a browser script using Amazon Cognito Identity.
« How to turn text into synthesized speech using Amazon Polly.

« How to use a presigner object to create a presigned URL.

The Scenario

Amazon Polly is a cloud service that converts text into lifelike speech. You can use Amazon Polly to
develop applications that increase engagement and accessibility. Amazon Polly supports multiple
languages and includes a variety of lifelike voices. For more information about Amazon Polly, see
the Amazon Polly Developer Guide.

The example shows how to set up and run a simple browser script that takes text you enter, sends
that text to Amazon Polly, and then returns the URL of the synthesized audio of the text for you to
play. The browser script uses Amazon Cognito Identity to provide credentials needed to access AWS

Getting Started in a Browser Script 4

https://docs.aws.amazon.com/cloud9/latest/user-guide/sample-nodejs.html
https://docs.aws.amazon.com/polly/latest/dg/

AWS SDK for JavaScript Developer Guide for SDK v2

services. You will see the basic patterns for loading and using the SDK for JavaScript in browser
scripts.

(@ Note

Playback of the synthesized speech in this example depends on running in a browser that
supports HTML 5 audio.

Amazon Cognito

AWS.CogniteIdentityCredentials ~

Js ~ unauthenticated identities LAM role

request . .

AWS.Polly.Presigner .

T~ response

"\-\.

T ™ presigned URL to audio stream

Browser script Amazon SDK
for JavaScript

Amazon Polly

The browser script uses the SDK for JavaScript to synthesize text by using these APIs:

« AWS.CognitoIdentityCredentials constructor

e AWS.Polly.Presigner constructor

e getSynthesizeSpeechUrl

Step 1: Create an Amazon Cognito Identity Pool

In this exercise, you create and use an Amazon Cognito identity pool to provide unauthenticated
access to your browser script for the Amazon Polly service. Creating an identity pool also creates
two IAM roles, one to support users authenticated by an identity provider and the other to support
unauthenticated guest users.

In this exercise, we will only work with the unauthenticated user role to keep the task focused. You
can integrate support for an identity provider and authenticated users later. For more information
about adding a Amazon Cognito identity pool, see Tutorial: Creating an identity pool in the Amazon

Cognito Developer Guide.

Step 1: Create an Amazon Cognito Identity Pool 5

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/CognitoIdentityCredentials.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Polly/Presigner.html#getSynthesizeSpeechUrl-property
https://docs.aws.amazon.com/cognito/latest/developerguide/tutorial-create-identity-pool.html

AWS SDK for JavaScript Developer Guide for SDK v2

To create an Amazon Cognito identity pool

1. Sign in to the AWS Management Console and open the Amazon Cognito console at https://
console.aws.amazon.com/cognito/.

2. In the left navigation pane, choose Identity pools.

3. Choose Create identity pool.

4. In Configure identity pool trust, choose Guest access for user authentication.

5. In Configure permissions, choose Create a new IAM role and enter a name (for example,
getStartedRole) in the IAM role name.

6. In Configure properties, enter a name (for example, getStartedPool) in Identity pool name.

7. In Review and create, confirm the selections that you made for your new identity pool. Select
Edit to return to the wizard and change any settings. When you're done, select Create identity
pool.

8. Note the Identity pool ID and the Region of the newly created Amazon Cognito identity
pool. You need these values to replace IDENTITY_POOL_ID and REGION in Step 4: Write the
Browser Script.

After you create your Amazon Cognito identity pool, you're ready to add permissions for Amazon
Polly that are needed by your browser script.

Step 2: Add a Policy to the Created IAM Role

To enable browser script access to Amazon Polly for speech synthesis, use the unauthenticated IAM
role created for your Amazon Cognito identity pool. This requires you to add an IAM policy to the
role. For more information about modifying IAM roles, see Modifying a role permissions policy in
the IAM User Guide.

To add an Amazon Polly policy to the IAM role associated with unauthenticated users

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the left navigation pane, choose Roles.

3. Choose the name of the role that you want to modify (for example, getStartedRole), and then
choose the Permissions tab.

4. Choose Add permissions and then choose Attach policies.

Step 2: Add a Policy to the Created IAM Role 6

https://console.aws.amazon.com/cognito/
https://console.aws.amazon.com/cognito/
https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS SDK for JavaScript Developer Guide for SDK v2

5. In the Add permissions page for this role, find and then select the check box for
AmazonPollyFullAccess .

(® Note

You can use this process to enable access to any AWS service.

6. Choose Add permissions.

After you create your Amazon Cognito identity pool and add permissions for Amazon Polly to your
IAM role for unauthenticated users, you are ready to build the webpage and browser script.

Step 3: Create the HTML Page

The sample app consists of a single HTML page that contains the user interface and browser script.
To begin, create an HTML document and copy the following contents into it. The page includes an

input field and button, an <audio> element to play the synthesized speech, and a <p> element to
display messages. (Note that the full example is shown at the bottom of this page.)

For more information on the <audio> element, see audio.

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>AWS SDK for JavaScript - Browser Getting Started Application</title>
</head>

<body>
<div id="textToSynth">
<input autofocus size="23" type="text" id="textEntry" value="It's very good to
meet you."/>
<button class="btn default" onClick="speakText()">Synthesize</button>
<p id="result">Enter text above then click Synthesize</p>
</div>
<audio id="audioPlayback" controls>
<source id="audioSource" type="audio/mp3" src="">
</audio>
<!-- (script elements go here) -->
</body>
</html>

Step 3: Create the HTML Page 7

https://www.w3schools.com/tags/tag_audio.asp

AWS SDK for JavaScript Developer Guide for SDK v2

Save the HTML file, naming it polly.html. After you have created the user interface for the
application, you're ready to add the browser script code that runs the application.

Step 4: Write the Browser Script

The first thing to do when creating the browser script is to include the SDK for JavaScript
by adding a <script> element after the <audio> element in the page. To find the current
SDK_VERSION_NUMBER, see the API Reference for the SDK for JavaScript at AWS SDK for
JavaScript API Reference Guide.

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></script>

Then add a new <script type="text/javascript"> element after the SDK entry. You'll add
the browser script to this element. Set the AWS Region and credentials for the SDK. Next, create a
function named speakText () that will be invoked as an event handler by the button.

To synthesize speech with Amazon Polly, you must provide a variety of parameters including the
sound format of the output, the sampling rate, the ID of the voice to use, and the text to play back.
When you initially create the parameters, set the Text: parameter to an empty string; the Text:
parameter will be set to the value you retrieve from the <input> element in the webpage. Replace
IDENTITY_POOL_ID and REGION in the following code with values noted in Step 1: Create an
Amazon Cognito Identity Pool.

<script type="text/javascript">

// Initialize the Amazon Cognito credentials provider

AWS.config.region = 'REGION';

AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId:
"IDENTITY_POOL_ID'});

// Function invoked by button click
function speakText() {
// Create the JSON parameters for getSynthesizeSpeechUrl
var speechParams = {
OutputFormat: "mp3",
SampleRate: "16000",
Text: "",
TextType: "text",
VoiceIld: "Matthew"
};

Step 4: Write the Browser Script 8

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/

AWS SDK for JavaScript Developer Guide for SDK v2

speechParams.Text = document.getElementById("textEntry").value;

Amazon Polly returns synthesized speech as an audio stream. The easiest way to play that audio in
a browser is to have Amazon Polly make the audio available at a presigned URL you can then set as
the sxc attribute of the <audio> element in the webpage.

Create a new AWS.Polly service object. Then create the AWS.Polly.Presigner object you'll use
to create the presigned URL from which the synthesized speech audio can be retrieved. You must
pass the speech parameters that you defined as well as the AWS . Polly service object that you
created to the AWS.Polly.Presigner constructor.

After you create the presigner object, call the getSynthesizeSpeechUrl method of that object,
passing the speech parameters. If successful, this method returns the URL of the synthesized
speech, which you then assign to the <audio> element for playback.

// Create the Polly service object and presigner object
var polly = new AWS.Polly({apiVersion: '2016-06-10'3});
var signer = new AWS.Polly.Presigner(speechParams, polly)

// Create presigned URL of synthesized speech file
signer.getSynthesizeSpeechUrl(speechParams, function(error, url) {
if (error) {
document.getElementById('result').innerHTML = error;
} else {
document.getElementById('audioSource').src = url;
document.getElementById('audioPlayback').load();
document.getElementById('result').innerHTML = "Speech ready to play.";
}
3
}

</script>

Step 5: Run the Sample

To run the sample app, load polly.html into a web browser. This is what the browser
presentation should resemble.

Step 5: Run the Sample 9

AWS SDK for JavaScript Developer Guide for SDK v2

It's very good to meet you. Synthesize

Enter text above then click Synthesize

b @ s =00:00

Enter a phrase you want turned to speech in the input box, then choose Synthesize. When the
audio is ready to play, a message appears. Use the audio player controls to hear the synthesized
speech.

Full Sample

Here is the full HTML page with the browser script. It's also available here on GitHub.

<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>AWS SDK for JavaScript - Browser Getting Started Application</title>
</head>

<body>
<div id="textToSynth">
<input autofocus size="23" type="text" id="textEntry" value="It's very good to
meet you."/>
<button class="btn default" onClick="speakText()">Synthesize</button>
<p id="result">Enter text above then click Synthesize</p>
</div>
<audio id="audioPlayback" controls>
<source id="audioSource" type="audio/mp3" src="">
</audio>
<script src="https://sdk.amazonaws.com/js/aws-sdk-2.410.0.min.js"></script>
<script type="text/javascript">

// Initialize the Amazon Cognito credentials provider

AWS.config.region = 'REGION';

AWS.config.credentials = new AWS.CognitoIdentityCredentials({IdentityPoolId:
"IDENTITY_POOL_ID'});

// Function invoked by button click
function speakText() {

Full Sample 10

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code//browserstart/polly.html

AWS SDK for JavaScript Developer Guide for SDK v2

// Create the JSON parameters for getSynthesizeSpeechUrl
var speechParams = {
QutputFormat: "mp3",
SampleRate: "16000",
Text: "",
TextType: "text",
Voiceld: "Matthew"
i
speechParams.Text = document.getElementById("textEntry").value;

// Create the Polly service object and presigner object
var polly = new AWS.Polly({apiVersion: '2016-06-10'});
var signer = new AWS.Polly.Presigner(speechParams, polly)

// Create presigned URL of synthesized speech file
signer.getSynthesizeSpeechUrl(speechParams, function(error, url) {
if (error) {
document.getElementById('result').innerHTML = error;
} else {
document.getElementById('audioSource').src = url;
document.getElementById('audioPlayback').load();
document.getElementById('result').innerHTML = "Speech ready to play.";
}
18
}
</script>
</body>
</html>

Possible Enhancements

Here are variations on this application you can use to further explore using the SDK for JavaScript
in a browser script.

» Experiment with other sound output formats.

« Add the option to select any of the various voices provided by Amazon Polly.

« Integrate an identity provider like Facebook or Amazon to use with the authenticated IAM role.

Possible Enhancements

11

AWS SDK for JavaScript Developer Guide for SDK v2

Getting Started in Node.js

nade

This Node.js code example shows:

« How to create the package. json manifest for your project.
« How to install and include the modules that your project uses.

» How to create an Amazon Simple Storage Service (Amazon S3) service object from the AWS.S3
client class.

« How to create an Amazon S3 bucket and upload an object to that bucket.

The Scenario

The example shows how to set up and run a simple Node.js module that creates an Amazon S3
bucket, then adds a text object to it.

Because bucket names in Amazon S3 must be globally unique, this example includes a third-party
Node.js module that generates a unique ID value that you can incorporate into the bucket name.
This additional module is named uuid.

Prerequisite Tasks

To set up and run this example, you must first complete these tasks:

» Create a working directory for developing your Node.js module. Name this directory
awsnodesample. Note that the directory must be created in a location that can be updated by
applications. For example, in Windows, do not create the directory under "C:\Program Files".

« Install Node.js. For more information, see the Node.js website. You can find downloads of the
current and LTS versions of Node.js for a variety of operating systems at https://nodejs.org/en/

download/current/.

Contents

» Step 1: Install the SDK and Dependencies

Getting Started in Node.js 12

https://nodejs.org
https://nodejs.org/en/download/current/
https://nodejs.org/en/download/current/

AWS SDK for JavaScript Developer Guide for SDK v2

» Step 2: Configure Your Credentials

o Step 3: Create the Package JSON for the Project

o Step 4: Write the Node.js Code

» Step 5: Run the Sample

Step 1: Install the SDK and Dependencies

You install the SDK for JavaScript package using npm (the Node.js package manager).

From the awsnodesample directory in the package, type the following at the command line.

npm install aws-sdk

This command installs the SDK for JavaScript in your project, and updates package. json to list
the SDK as a project dependency. You can find information about this package by searching for
"aws-sdk" on the npm website.

Next, install the uuid module to the project by typing the following at the command line, which
installs the module and updates package. json. For more information about uuid, see the
module's page at https://www.npmjs.com/package/uuid.

npm install uuid

These packages and their associated code are installed in the node_modules subdirectory of your
project.

For more information on installing Node.js packages, see Downloading and installing packages

locally and Creating Node.js Modules on the npm (Node.js package manager) website. For

information about downloading and installing the AWS SDK for JavaScript, see Installing the SDK

for JavaScript.

Step 2: Configure Your Credentials

You need to provide credentials to AWS so that only your account and its resources are accessed by
the SDK. For more information about obtaining your account credentials, see SDK authentication
with AWS.

Step 1: Install the SDK and Dependencies 13

https://www.npmjs.com
https://www.npmjs.com
https://www.npmjs.com/package/uuid
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/installing-npm-packages-locally
https://docs.npmjs.com/getting-started/creating-node-modules
https://www.npmjs.com

AWS SDK for JavaScript Developer Guide for SDK v2

To hold this information, we recommend you create a shared credentials file. To learn how, see
Loading Credentials in Node.js from the Shared Credentials File. Your credentials file should
resemble the following example.

[default]
aws_access_key_id = YOUR_ACCESS_KEY_ID
aws_secret_access_key = YOUR_SECRET_ACCESS_KEY

You can determine whether you have set your credentials correctly by executing the following code
with node:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) {
if (err) console.log(err.stack);
// credentials not loaded
else {
console.log("Access key:", AWS.config.credentials.accessKeyId);

}
1)

Similarly, if you have set your region correctly in your config file, you can display that value
by setting the AWS_SDK_LOAD_CONFIG environment variable to a truthy value and using the
following code:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Step 3: Create the Package JSON for the Project

After you create the awsnodesample project directory, you create and add a package. json file
for holding the metadata for your Node.js project. For details about using package. jsonina
Node.js project, see Creating a package.json file.

In the project directory, create a new file named package. json. Then add this JSON to the file.

{
"dependencies": {3},
"name": "aws-nodejs-sample",

Step 3: Create the Package JSON for the Project 14

https://docs.npmjs.com/creating-a-package-json-file

AWS SDK for JavaScript Developer Guide for SDK v2

"description": "A simple Node.js application illustrating usage of the SDK for
JavaScript.",

"version": "1.0.1",

"main": "sample.js",

"devDependencies": {3},

"scripts": {

"test": "echo \"Error: no test specified\" && exit 1"

.

"author": "NAME",

"license": "ISC"

Save the file. As you install the modules you need, the dependencies portion of the file will be
completed. You can find a JSON file that shows an example of these dependencies here on GitHub.

Step 4: Write the Node.js Code

Create a new file named sample. js to contain the example code. Begin by adding the require
function calls to include the SDK for JavaScript and uuid modules so that they are available for
you to use.

Build a unique bucket name that is used to create an Amazon S3 bucket by appending a unique ID
value to a recognizable prefix, in this case 'node-sdk-sample-". You generate the unique ID by
calling the uuid module. Then create a name for the Key parameter used to upload an object to
the bucket.

Create a promise object to call the createBucket method of the AWS.S3 service object. On a
successful response, create the parameters needed to upload text to the newly created bucket.
Using another promise, call the putObject method to upload the text object to the bucket.

// Load the SDK and UUID
var AWS = require("aws-sdk");
var uuid = require("uuid");

// Create unique bucket name

var bucketName = "node-sdk-sample-" + uuid.v4();
// Create name for uploaded object key

var keyName = "hello_world.txt";

// Create a promise on S3 service object
var bucketPromise = new AWS.S3({ apiVersion: "2006-03-01" })

Step 4: Write the Node.js Code 15

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/example_package.json

AWS SDK for JavaScript

Developer Guide for SDK v2

.createBucket({ Bucket: bucketName })
.promise();

// Handle promise fulfilled/rejected states
bucketPromise
.then(function (data) {
// Create params for putObject call
var objectParams = {
Bucket: bucketName,
Key: keyName,
Body: "Hello World!",
i
// Create object upload promise
var uploadPromise = new AWS.S3({ apiVersion: "2006-03-01" })
.putObject(objectParams)
.promise();
uploadPromise.then(function (data) {
console.log(
"Successfully uploaded data to " + bucketName + "/" + keyName
I
1);
1)
.catch(function (err) {
console.error(err, err.stack);

1)

This sample code can be found here on GitHub.

Step 5: Run the Sample

Type the following command to run the sample.

node sample.js

If the upload is successful, you'll see a confirmation message at the command line. You can also

find the bucket and the uploaded text object in the Amazon S3 console.

Step 5: Run the Sample

16

https://github.com/awsdocs/aws-doc-sdk-examples/blob/main/javascript/example_code/nodegetstarted/sample.js
https://console.aws.amazon.com/s3/

AWS SDK for JavaScript Developer Guide for SDK v2

Using AWS Cloud9 with the AWS SDK for JavaScript

You can use AWS Cloud9 with the AWS SDK for JavaScript to write and run your JavaScript in

the browser code —as well as write, run, and debug your Node.js code—using just a browser.

AWS Cloud9 includes tools such as a code editor and terminal, plus a debugger for Node.js code.
Because the AWS Cloud9 IDE is cloud based, you can work on your projects from your office, home,
or anywhere using an internet-connected machine. For general information about AWS Cloud9, see
the AWS Cloud9 User Guide.

Follow these steps to set up AWS Cloud9 with the SDK for JavaScript:

Contents

» Step 1: Set up Your AWS Account to Use AWS Cloud9

Step 2: Set up Your AWS Cloud9 Development Environment

Step 3: Set up the SDK for JavaScript

» To set up the SDK for JavaScript for Node.js

» To set up the SDK for JavaScript in the browser

Step 4: Download Example Code

Step 5: Run and Debug Example Code

Step 1: Set up Your AWS Account to Use AWS Cloud9

Start to use AWS Cloud9 by signing in to the AWS Cloud9 console as an AWS Identity and Access
Management (IAM) entity (for example, an 1AM user) who has access permissions for AWS Cloud9 in
your AWS account.

To set up an IAM entity in your AWS account to access AWS Cloud9, and to sign in to the AWS
Cloud9 console, see Team Setup for AWS Cloud9 in the AWS Cloud9 User Guide.

Step 2: Set up Your AWS Cloud9 Development Environment

After you sign in to the AWS Cloud9 console, use the console to create an AWS Cloud9
development environment. After you create the environment, AWS Cloud9 opens the IDE for that
environment.

Step 1: Set up Your AWS Account to Use AWS Cloud9 17

https://docs.aws.amazon.com/cloud9/latest/user-guide/
https://docs.aws.amazon.com/cloud9/latest/user-guide/setup.html

AWS SDK for JavaScript

Developer Guide for SDK v2

See Creating an Environment in AWS Cloud9 in the AWS Cloud9 User Guide for details.

(@ Note

As you create your environment in the console for the first time, we recommend that you
choose the option to Create a new instance for environment (EC2). This option tells AWS
Cloud9 to create an environment, launch an Amazon EC2 instance, and then connect the
new instance to the new environment. This is the fastest way to begin using AWS Cloud9.

Step 3: Set up the SDK for JavaScript

After AWS Cloud9 opens the IDE for your development environment, follow one or both of the

following procedures to use the IDE to set up the SDK for JavaScript in your environment.

To set up the SDK for JavaScript for Node.js

1.

If the terminal isn't already open in the IDE, open it. To do this, on the menu bar in the IDE,
choose Window, New Terminal.

Run the following command to use npm to install the SDK for JavaScript.

npm install aws-sdk

If the IDE can't find npm, run the following commands, one at a time in the following order,
to install npm. (These commands assume you chose the option to Create a new instance for
environment (EC2), earlier in this topic.)

/A Warning

AWS does not control the following code. Before you run it, be sure to verify its
authenticity and integrity. More information about this code can be found in the nvm
GitHub repository.

curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.34.0/install.sh | bash #
Download and install Node Version Manager (nvm).

. ~/.bashzc #
Activate nvm.

Step 3: Set up the SDK for JavaScript

18

https://docs.aws.amazon.com/cloud9/latest/user-guide/create-environment.html
https://github.com/nvm-sh/nvm/blob/master/README.md

AWS SDK for JavaScript Developer Guide for SDK v2

nvm install node #
Use nvm to install npm (and Node.js at the same time).

To set up the SDK for JavaScript in the browser

You don't have to install the SDK for JavaScript to use it in browser scripts. You can load the hosted
SDK for JavaScript package directly from AWS with a script in your HTML pages.

You can download minified and non-minified distributable versions of the current SDK for
JavaScript from GitHub at https://github.com/aws/aws-sdk-js/tree/master/dist.

Step 4: Download Example Code

Use the terminal you opened in the previous step to download example code for the SDK for
JavaScript into the AWS Cloud9 development environment. (If the terminal isn't already open in
the IDE, open it by choosing Window, New Terminal on the menu bar in the IDE.)

To download the example code, run the following command. This command downloads a copy of
all of the code examples used in the official AWS SDK documentation into your environment's root
directory.

git clone https://github.com/awsdocs/aws-doc-sdk-examples.git

To find code examples for the SDK for JavaScript, use the Environment window to open the
ENVIRONMENT_NAME\aws-doc-sdk-examples\javascript\example_code, where
ENVIRONMENT_NAME is the name of your AWS Cloud9 development environment.

To learn how to work with these and other code examples, see SDK for JavaScript Code Examples.

Step 5: Run and Debug Example Code

To run code in your AWS Cloud9 development environment, see Run Your Code in the AWS Cloud9
User Guide.

To debug Node.js code, see Debug Your Code in the AWS Cloud9 User Guide.

To set up the SDK for JavaScript in the browser 19

https://github.com/aws/aws-sdk-js/tree/master/dist
https://docs.aws.amazon.com/sdk-for-javascript/latest/developer-guide/sdk-code-samples.html
https://docs.aws.amazon.com/cloud9/latest/user-guide/build-run-debug.html#build-run-debug-run
https://docs.aws.amazon.com/cloud9/latest/user-guide/build-run-debug.html#build-run-debug-debug

AWS SDK for JavaScript Developer Guide for SDK v2

Setting Up the SDK for JavaScript

The topics in this section explain how to install the SDK for JavaScript for use in web browsers and
with Node.js. It also shows how to load the SDK so you can access the web services supported by
the SDK.

(@ Note

React Native developers should use AWS Amplify to create new projects on AWS. See the
aws-sdk-react-native archive for details.

Topics

« Prerequisites
« Installing the SDK for JavaScript

» Loading the SDK for JavaScript

» Upgrading the SDK for JavaScript from Version 1

Prerequisites

Before you use the AWS SDK for JavaScript, determine whether your code needs to run in Node.js
or web browsers. After that, do the following:

» For Node.js, install Node.js on your servers if it is not already installed.

» For web browsers, identify the browser versions you need to support.

Topics

» Setting Up an AWS Node.js Environment

» Web Browsers Supported

Setting Up an AWS Node.js Environment

To set up an AWS Node.js environment in which you can run your application, use any of the
following methods:

Prerequisites 20

https://github.com/amazon-archives/aws-sdk-react-native

AWS SDK for JavaScript Developer Guide for SDK v2

Choose an Amazon Machine Image (AMI) with Node.js pre-installed and create an Amazon EC2
instance using that AMI. When creating your Amazon EC2 instance, choose your AMI from the
AWS Marketplace. Search the AWS Marketplace for Node.js and choose an AMI option that
includes a version of Node.js (32-bit or 64-bit) pre-installed.

Create an Amazon EC2 instance and install Node.js on it. For more information about how to
install Node.js on an Amazon Linux instance, see Tutorial: Setting Up Node.js on an Amazon EC2

Instance.

Create a serverless environment using AWS Lambda to run Node.js as a Lambda function. For
more information about using Node.js within a Lambda function, see Programming Model
(Node.js) in the AWS Lambda Developer Guide.

Deploy your Node.js application to AWS Elastic Beanstalk. For more information on using Node.js
with Elastic Beanstalk, see Deploying Node.js Applications to AWS Elastic Beanstalk in the AWS
Elastic Beanstalk Developer Guide.

Create a Node.js application server using AWS OpsWorks. For more information on using Node.js
with AWS OpsWorks, see Creating Your First Node.js Stack in the AWS OpsWorks User Guide.

Web Browsers Supported

The SDK for JavaScript supports all modern web browsers, including these minimum versions:

Browser Version
Google Chrome 28.0+
Mozilla Firefox 26.0+
Opera 17.0+
Microsoft Edge 25.10+
Windows Internet Explorer N/A
Apple Safari 5+
Android Browser 4.3+

Web Browsers Supported 21

https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
https://docs.aws.amazon.com/lambda/latest/dg/programming-model.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.html
https://docs.aws.amazon.com/opsworks/latest/userguide/gettingstarted-node.html

AWS SDK for JavaScript Developer Guide for SDK v2

® Note

Frameworks such as AWS Amplify might not offer the same browser support as the SDK for
JavaScript. Check a framework's documentation for details.

Installing the SDK for JavaScript

Whether and how you install the AWS SDK for JavaScript depends whether the code executes in
Node.js modules or browser scripts.

Not all services are immediately available in the SDK. To find out which services are currently
supported by the AWS SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/master/
SERVICES.md

Node

The preferred way to install the AWS SDK for JavaScript for Node.js is to use npm, the Node.js

package manager. To do so, type this at the command line.

npm install aws-sdk

In the event you see this error message:

npm WARN deprecated node-uuid@l.4.8: Use uuid module instead

Type these commands at the command line:

npm uninstall --save node-uuid
npm install --save uuid

Browser

You don't have to install the SDK to use it in browser scripts. You can load the hosted SDK
package directly from Amazon Web Services with a script in your HTML pages. The hosted SDK
package supports the subset of AWS services that enforce cross-origin resource sharing (CORS).
For more information, see Loading the SDK for JavaScript.

You can create a custom build of the SDK in which you select the specific web services
and versions that you want to use. You then download your custom SDK package for local

Installing the SDK 22

https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://www.npmjs.com/
https://www.npmjs.com/

AWS SDK for JavaScript Developer Guide for SDK v2

development and host it for your application to use. For more information about creating a
custom build of the SDK, see Building the SDK for Browsers.

You can download minified and non-minified distributable versions of the current AWS SDK for
JavaScript from GitHub at:

https://github.com/aws/aws-sdk-js/tree/master/dist

Installing Using Bower

Bower is a package manager for the web. After you install Bower, you can use it to install the SDK.
To install the SDK using Bower, type the following into a terminal window:

bower install aws-sdk-js

Loading the SDK for JavaScript

How you load the SDK for JavaScript depends on whether you are loading it to run in a web
browser or in Node.js.

Not all services are immediately available in the SDK. To find out which services are currently
supported by the AWS SDK for JavaScript, see https://github.com/aws/aws-sdk-js/blob/master/
SERVICES.md

Node.js

After you install the SDK, you can load the AWS package in your node application using
require.

var AWS = require('aws-sdk');

React Native

To use the SDK in a React Native project, first install the SDK using npm:

npm install aws-sdk

In your application, reference the React Native compatible version of the SDK with the following
code:

Installing Using Bower 23

https://github.com/aws/aws-sdk-js/tree/master/dist
https://bower.io
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md
https://github.com/aws/aws-sdk-js/blob/master/SERVICES.md

AWS SDK for JavaScript Developer Guide for SDK v2

var AWS = require('aws-sdk/dist/aws-sdk-react-native');

Browser

The quickest way to get started with the SDK is to load the hosted SDK package directly
from Amazon Web Services. To do this, add a <script> element to your HTML pages in the
following form:

<script src="https://sdk.amazonaws.com/js/aws-sdk-SDK_VERSION_NUMBER.min.js"></
script>

To find the current SDK_VERSION_NUMBER, see the APl Reference for the SDK for JavaScript at
AWS SDK for JavaScript API Reference Guide.

After the SDK loads in your page, the SDK is available from the global variable AWS (or
window.AWS).

If you bundle your code and module dependencies using browserify, you load the SDK using
require, just as you do in Node.js.

Upgrading the SDK for JavaScript from Version 1
The following notes help you upgrade the SDK for JavaScript from version 1 to version 2.

Automatic Conversion of Base64 and Timestamp Types on Input/
Output

The SDK now automatically encodes and decodes base64-encoded values, as well as timestamp
values, on the user's behalf. This change affects any operation where base64 or timestamp values
were sent by a request or returned in a response that allows for base64-encoded values.

User code that previously converted base64 is no longer required. Values encoded as base64 are
now returned as buffer objects from server responses and can also be passed as buffer input. For
example, the following version 1 SQS. sendMessage parameters:

var params = {
MessageBody: 'Some Message',
MessageAttributes: {
attrName: {

Upgrading From Version 1 24

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/
http://browserify.org

AWS SDK for JavaScript Developer Guide for SDK v2

DataType: 'Binary',
BinaryValue: new Buffer('example text').toString('base64')

};
Can be rewritten as follows.

var params = {
MessageBody: 'Some Message',
MessageAttributes: {
attrName: {
DataType: 'Binary',
BinaryValue: 'example text'

};
Here is how the message is read.

sqs.receiveMessage(params, function(err, data) {
// buf is <Buffer 65 78 61 6d 70 6¢c 65 20 74 65 78 74>
var buf = data.Messages[0@].MessageAttributes.attrName.BinaryValue;
console.log(buf.toString()); // "example text"

)i

Moved response.data.Requestld to response.requestid

The SDK now stores request IDs for all services in a consistent place on the response object,
rather than inside the response.data property. This improves consistency across services
that expose request IDs in different ways. This is also a breaking change that renames the
response.data.RequestId property to response.requestId (this.requestIdinside a
callback function).

In your code, change the following:

svc.operation(params, function (err, data) {
console.log('Request ID:', data.RequestId);

1)

To the following:

Moved response.data.Requestld to response.requestid 25

AWS SDK for JavaScript Developer Guide for SDK v2

svc.operation(params, function () {
console.log('Request ID:', this.requestId);
1);

Exposed Wrapper Elements

If you use AWS.ElastiCache, AWS.RDS, or AWS.Redshift, you must access the response
through the top-level output property in the response for some operations.

For example, the RDS.describeEngineDefaultParameters method used to return the
following.

{ Parameters: [...] }

It now returns the following.

{ EngineDefaults: { Parameters: [... 1 } }

The list of affected operations for each service are shown in the following table.

Client Class Operations

AWS.ElastiCache authorizeCacheSecurityGroup
Ingress
createCacheCluster

createCacheParameterGroup
createCacheSecurityGroup
createCacheSubnetGroup
createReplicationGroup
deleteCacheCluster
deleteReplicationGroup

describeEngineDefaultParameters

Exposed Wrapper Elements 26

AWS SDK for JavaScript

Developer Guide for SDK v2

Client Class

Operations

modifyCacheCluster
modifyCacheSubnetGroup
modifyReplicationGroup

purchaseReservedCacheNodesO
ffering

rebootCacheCluster

revokeCacheSecurityGroupIngress

Exposed Wrapper Elements

27

AWS SDK for JavaScript

Developer Guide for SDK v2

Client Class

AWS .RDS

Operations

addSourceldentifierToSubscr
iption

authorizeDBSecurityGroupIngress
copyDBSnapshot createDBInstance
createDBInstanceReadReplica
createDBParameterGroup
createDBSecurityGroup
createDBSnapshot
createDBSubnetGroup
createEventSubscription
createOptionGroup
deleteDBInstance
deleteDBSnapshot
deleteEventSubscription
describeEngineDefaultParameters
modifyDBInstance
modifyDBSubnetGroup
modifyEventSubscription
modifyOptionGroup

promoteReadReplica

Exposed Wrapper Elements

28

AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

purchaseReservedDBInstances
Offering

rebootDBInstance

removeSourceldentifierFromS
ubscription

restoreDBInstanceFromDBSnapshot
restoreDBInstanceToPointInTime

revokeDBSecurityGroupIngress

Exposed Wrapper Elements 29

AWS SDK for JavaScript

Developer Guide for SDK v2

Client Class

AWS .Redshift

Operations

authorizeClusterSecurityGro
upIngress

authorizeSnapshotAccess
copyClusterSnapshot
createCluster
createClusterParameterGroup
createClusterSecurityGroup
createClusterSnapshot
createClusterSubnetGroup
createEventSubscription
createHsmClientCertificate
createHsmConfiguration
deleteCluster
deleteClusterSnapshot
describeDefaultClusterParameters
disableSnapshotCopy
enableSnapshotCopy
modifyCluster
modifyClusterSubnetGroup

modifyEventSubscription

Exposed Wrapper Elements

30

AWS SDK for JavaScript Developer Guide for SDK v2

Client Class Operations

modifySnapshotCopyRetention
Period

purchaseReservedNodeOffering
rebootCluster
restoreFromClusterSnapshot

revokeClusterSecurityGroupl
ngress

revokeSnapshotAccess

rotateEncryptionKey

Dropped Client Properties

The .Client and .client properties have been removed from service objects. If you use the
.Client property on a service class or a .client property on a service object instance, remove
these properties from your code.

The following code used with version 1 of the SDK for JavaScript:

var sts = new AWS.STS.Client();

// or
var sts = new AWS.STS();

sts.client.operation(...);

Should be changed to the following code.

var sts = new AWS.STS();
sts.operation(...)

Dropped Client Properties 31

AWS SDK for JavaScript Developer Guide for SDK v2

Configuring the SDK for JavaScript

Before you use the SDK for JavaScript to invoke web services using the API, you must configure the
SDK. At a minimum, you must configure these settings:

« The Region in which you will request services.

» The credentials that authorize your access to SDK resources.

In addition to these settings, you may also have to configure permissions for your AWS resources.
For example, you can limit access to an Amazon S3 bucket or restrict an Amazon DynamoDB table
for read-only access.

The AWS SDKs and Tools Reference Guide also contains settings, features, and other foundational
concepts common among many of the AWS SDKs.

The topics in this section describe various ways to configure the SDK for JavaScript for Node.js and
JavaScript running in a web browser.

Topics

» Using the Global Configuration Object

» Setting the AWS Region

» Specifying Custom Endpoints

« SDK authentication with AWS

» Setting Credentials

» Locking API Versions

» Node.js Considerations

» Browser Script Considerations

« Bundling Applications with Webpack

Using the Global Configuration Object

There are two ways to configure the SDK:

« Set the global configuration using AWS.Config.

Using the Global Configuration Object 32

https://docs.aws.amazon.com/sdkref/latest/guide/

AWS SDK for JavaScript

Developer Guide for SDK v2

» Pass extra configuration information to a service object.

Setting global configuration with AWS . Config is often easier to get started, but service-level
configuration can provide more control over individual services. The global configuration specified
by AWS . Config provides default settings for service objects that you create subsequently,

simplifying their configuration. However, you can update the configuration of individual service

objects when your needs vary from the global configuration.

Setting Global Configuration

After you load the aws-sdk package in your code you can use the AWS global variable to access

the SDK's classes and interact with individual services. The SDK includes a global configuration

object, AWS.Config, that you can use to specify the SDK configuration settings required by your

application.

Configure the SDK by setting AWS . Config properties according to your application needs. The
following table summarizes AWS . Config properties commonly used to set the configuration of

the SDK.

Configuration Options

credentials

region

maxRetries

logger

update

Description

Required. Specifies the credentials used to
determine access to services and resources.

Required. Specifies the Region in which
requests for services are made.

Optional. Specifies the maximum number of
times a given request is retried.

Optional. Specifies a logger object to which
debugging information is written.

Optional. Updates the current configuration
with new values.

For more information about the configuration object, see Class: AWS.Config inthe API

Reference.

Setting Global Configuration

33

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html

AWS SDK for JavaScript Developer Guide for SDK v2

Global Configuration Examples

You must set the Region and the credentials in AWS.Config. You can set these properties as part
of the AWS . Config constructor, as shown in the following browser script example:

var myCredentials = new
AWS.CognitoIdentityCredentials({IdentityPoolId:'IDENTITY_POOL_ID'});
var myConfig = new AWS.Config({

credentials: myCredentials, region: 'us-west-2'

1)

You can also set these properties after creating AWS . Config using the update method, as shown
in the following example that updates the Region:

myConfig = new AWS.Config();
myConfig.update({region: 'us-east-1'});

You can get your default credentials by calling the static getCredentials method of
AWS . config:

var AWS = require("aws-sdk");

AWS.config.getCredentials(function(err) {
if (err) console.log(err.stack);
// credentials not loaded
else {
console.log("Access key:", AWS.config.credentials.accessKeyId);
}
)8

Similarly, if you have set your region correctly in your config file, you get that value by setting
the AWS_SDK_LOAD_CONFIG environment variable is set to a truthy value and calling the static
region property of AWS.config:

var AWS = require("aws-sdk");

console.log("Region: ", AWS.config.region);

Setting Global Configuration 34

AWS SDK for JavaScript Developer Guide for SDK v2

Setting Configuration Per Service

Each service that you use in the SDK for JavaScript is accessed through a service object that is part
of the API for that service. For example, to access the Amazon S3 service you create the Amazon
S3 service object. You can specify configuration settings that are specific to a service as part of
the constructor for that service object. When you set configuration values on a service object, the
constructor takes all of the configuration values used by AWS . Config, including credentials.

For example, if you need to access Amazon EC2 objects in multiple Regions, create an Amazon
EC2 service object for each Region and then set the Region configuration of each service object
accordingly.

var ec2_regionA = new AWS.EC2({region: 'ap-southeast-2', maxRetries: 15, apiVersion:
'2014-10-01"'3%});

var ec2_regionB = new AWS.EC2({region: 'us-east-1', maxRetries: 15, apiVersion:
'2014-10-01"'3%});

You can also set configuration values specific to a service when configuring the SDK with

AWS . Config. The global configuration object supports many service-specific configuration
options. For more information about service-specific configuration, see Class: AWS.Configin
the AWS SDK for JavaScript APl Reference.

Immutable Configuration Data

Global configuration changes apply to requests for all newly created service objects. Newly
created service objects are configured with the current global configuration data first and then any
local configuration options. Updates you make to the global AWS . config object don't apply to
previously created service objects.

Existing service objects must be manually updated with new configuration data or you must create
and use a new service object that has the new configuration data. The following example creates a
new Amazon S3 service object with new configuration data:

s3 = new AWS.S3(s3.config);

Setting the AWS Region

A Region is a named set of AWS resources in the same geographical area. An example of a Region
is us-east-1, which is the US East (N. Virginia) Region. You specify a Region when configuring

Setting Configuration Per Service 35

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/Config.html

AWS SDK for JavaScript Developer Guide for SDK v2

the SDK for JavaScript so that the SDK accesses the resources in that Region. Some services are
available only in specific Regions.

The SDK for JavaScript doesn't select a Region by default. However, you can set the Region using
an environment variable, a shared config file, or the global configuration object.

In a Client Class Constructor

When you instantiate a service object, you can specify the Region for that resource as part of the
client class constructor, as shown here.

var s3 = new AWS.S3({apiVersion: '2006-03-01', region: 'us-east-1'});

Using the Global Configuration Object

To set the Region in your JavaScript code, update the AWS.Config global configuration object as
shown here.

AWS.config.update({region: 'us-east-1'});

For more information about current Regions and available services in each Region, see AWS
Regions and Endpoints in the AWS General Reference.

Using an Environment Variable

You can set the Region using the AWS_REGION environment variable. If you define this variable, the
SDK for JavaScript reads it and uses it.

Using a Shared Config File

Much like the shared credentials file lets you store credentials for use by the SDK, you can keep
your Region and other configuration settings in a shared file named config that is used by SDKs.
If the AWS_SDK_LOAD_CONFIG environment variable has been set to a truthy value, the SDK for
JavaScript automatically searches for a config file when it loads. Where you save the config file
depends on your operating system:

 Linux, macOS, or Unix users: ~/.aws/config

« Windows users: C:\Users\USER_NAME\.aws\config

In a Client Class Constructor 36

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for JavaScript Developer Guide for SDK v2

If you don't already have a shared config file, you can create one in the designated directory. In
the following example, the config file sets both the Region and the output format.

[default]
region=us-east-1
output=json

For more information about using shared config and credentials files, see Loading Credentials
in Node.js from the Shared Credentials File or Configuration and Credential Files in the AWS
Command Line Interface User Guide.

Order of Precedence for Setting the Region

The order of precedence for Region setting is as follows:

If a Region is passed to a client class constructor, that Region is used. If not, then...

If a Region is set on the global configuration object, that Region is used. If not, then...
o If the AWS_REGION environment variable is a truthy value, that Region is used. If not, then...
« If the AMAZON_REGION environment variable is a truthy value, that Region is used. If not, then...

 If the AWS_SDK_LOAD_CONFIG environment variable is set to a truthy value
and the shared credentials file (~/.aws/credentials or the path indicated by
AWS_SHARED_CREDENTIALS_FILE) contains a Region for the configured profile, that Region is
used. If not, then...

 If the AWS_SDK_LOAD_CONFIG environment variable is set to a truthy value and the config
file (~/.aws/config or the path indicated by AWS_CONFIG_FILE) contains a Region for the
configured profile, that Region is used.

Specifying Custom Endpoints

Calls to APl methods in the SDK for JavaScript are made to service endpoint URIs. By default,
these endpoints are built from the Region you have configured for your code. However, there are
situations in which you need to specify a custom endpoint for your API calls.

Endpoint String Format

Endpoint values should be a string in the format:

Order of Precedence for Setting the Region 37

https://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html
https://developer.mozilla.org/en-US/docs/Glossary/Truthy

AWS SDK for JavaScript Developer Guide for SDK v2

https://{service}.{region}.amazonaws.com

Endpoints for the ap-northeast-3 Region

The ap-northeast-3 Region in Japan is not returned by Region enumeration APIs, such as
EC2.describeRegions. To define endpoints for this Region, follow the format described
previously. So the Amazon EC2 endpoint for this Region would be

ec2.ap-northeast-3.amazonaws.com

Endpoints for MediaConvert

You need to create a custom endpoint to use with MediaConvert. Each customer account is
assigned its own endpoint, which you must use. Here is an example of how to use a custom
endpoint with MediaConvert.

// Create MediaConvert service object using custom endpoint
var mcClient = new AWS.MediaConvert({endpoint: 'https://abcdl234.mediaconvert.us-
west-1.amazonaws.com'});

var getJobParams = {Id: 'job_ID'};
mcClient.getJob(getJobParams, function(err, data)) {
if (err) console.log(err, err.stack); // an error occurred

else console.log(data); // successful response

};

To get your account APl endpoint, see MediaConvert.describeEndpoints in the API

Reference.

Make sure you specify the same Region in your code as the Region in the custom endpoint URI. A
mismatch between the Region setting and the custom endpoint URI can cause API calls to fail.

For more information on MediaConvert, see the AWS .MediaConvert class in the APl Reference or
the AWS Elemental MediaConvert User Guide .

SDK authentication with AWS

You must establish how your code authenticates with AWS when developing with AWS services.
You can configure programmatic access to AWS resources in different ways depending on the
environment and the AWS access available to you.

Endpoints for the ap-northeast-3 Region 38

https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/EC2.html#describeRegions-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html#describeEndpoints-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/MediaConvert.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/

AWS SDK for JavaScript Developer Guide for SDK v2

To choose your method of authentication and configure it for the SDK, see Authentication and
access in the AWS SDKs and Tools Reference Guide.

We recommend that new users who are developing locally and are not given a method of
authentication by their employer should set up AWS IAM Identity Center. This method includes
installing the AWS CLI for ease of configuration and for regularly signing in to the AWS access
portal. If you choose this method, your environment should contain the following elements after
you complete the procedure for IAM Identity Center authentication in the AWS SDKs and Tools
Reference Guide:

o The AWS CLI, which you use to start an AWS access portal session before you run your
application.

« Ashared AWSconfig file having a [default] profile with a set of configuration values that can
be referenced from the SDK. To find the location of this file, see Location of the shared files in
the AWS SDKs and Tools Reference Guide.

« The shared config file sets the region setting. This sets the default AWS Region that the SDK
uses for AWS requests. This Region is used for SDK service requests that aren't specified with a
Region to use.

» The SDK uses the profile's SSO token provider configuration to acquire credentials before
sending requests to AWS. The sso_role_name value, which is an IAM role connected to an IAM

Identity Center permission set, allows access to the AWS services used in your application.

The following sample config file shows a default profile set up with SSO token provider
configuration. The profile's sso_session setting refers to the named sso-session section.

The sso-session section contains settings to initiate an AWS access portal session.

[default]

sso_session = my-sso
sso_account_id = 111122223333
sso_role_name = SampleRole
region = us-east-1

output = json

[sso-session my-sso]

sso_region = us-east-1

sso_start_url = https://provided-domain.awsapps.com/start
sso_registration_scopes = sso:account:access

SDK authentication with AWS 39

https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html
https://docs.aws.amazon.com/sdkref/latest/guide/file-location.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-region.html
https://docs.aws.amazon.com/sdkref/latest/guide/feature-sso-credentials.html#feature-sso-credentials-profile
https://docs.aws.amazon.com/sdkref/latest/guide/file-format.html#section-session

AWS SDK for JavaScript Developer Guide for SDK v2

The SDK for JavaScript does not need additional packages (such as SSO and SSO0IDC) to be added
to your application to use IAM Identity Center authentication.

Start an AWS access portal session

Before running an application that accesses AWS services, you need an active AWS access portal
session for the SDK to use IAM Identity Center authentication to resolve credentials. Depending on
your configured session lengths, your access will eventually expire and the SDK will encounter an
authentication error. To sign in to the AWS access portal, run the following command in the AWS
CLI.

aws sso login

If you followed the guidance and have a default profile setup, you do not need to call the
command with a --profile option. If your SSO token provider configuration is using a named
profile, the command is aws sso login --profile named-profile.

To optionally test if you already have an active session, run the following AWS CLI command.

aws sts get-caller-identity

If your session is active, the response to this command reports the IAM Identity Center account and
permission set configured in the shared config file.

® Note

If you already have an active AWS access portal session and run aws sso login, you will
not be required to provide credentials.

The sign-in process might prompt you to allow the AWS CLI access to your data. Because
the AWS CLI is built on top of the SDK for Python, permission messages might contain
variations of the botocore name.

More authentication information

Human users, also known as human identities, are the people, administrators, developers,
operators, and consumers of your applications. They must have an identity to access your AWS
environments and applications. Human users that are members of your organization - that means
you, the developer - are known as workforce identities.

Start an AWS access portal session 40

AWS SDK for JavaScript Developer Guide for SDK v2

Use temporary credentials when accessing AWS. You can use an identity provider for your human
users to provide federated access to AWS accounts by assuming roles, which provide temporary
credentials. For centralized access management, we recommend that you use AWS IAM ldentity
Center (IAM Identity Center) to manage access to your accounts and permissions within those
accounts. For more alternatives, see the following:

« To learn more about best practices, see Security best practices in IAM in the /AM User Guide.

» To create short-term AWS credentials, see Temporary Security Credentials in the IAM User Guide.

» To learn about other SDK for JavaScript credential providers, see Standardized credential

providers in the AWS SDKs and Tools Reference Guide.

Setting Credentials

AWS uses credentials to identify who is calling services and whether access to the requested
resources is allowed.

Whether running in a web browser or in a Node.js server, your JavaScript code must obtain valid
credentials before it can access services through the API. Credentials can be set globally on the
configuration object, using AWS . Config, or per service, by passing credentials directly to a service
object.

There are several ways to set credentials that differ between Node.js and JavaScript in web
browsers. The topics in this section describe how to set credentials in Node.js or web browsers. In
each case, the options are presented in recommended order.

Best Practices for Credentials

Properly setting credentials ensures that your application or browser script can access the services
and resources needed while minimizing exposure to security issues that may impact mission critical
applications or compromise sensitive data.

An important principle to apply when setting credentials is to always grant the least privilege
required for your task. It's more secure to provide minimal permissions on your resources and add
further permissions as needed, rather than provide permissions that exceed the least privilege
and, as a result, be required to fix security issues you might discover later. For example, unless you
have a need to read and write individual resources, such as objects in an Amazon S3 bucket or a
DynamoDB table, set those permissions to read only.

Setting Credentials 41

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html
https://docs.aws.amazon.com/sdkref/latest/guide/standardized-credentials.html

AWS SDK for JavaScript Developer Guide for SDK v2

For more information on granting the least privilege, see the Grant Least Privilege section of the
Best Practices topic in the IAM User Guide.

/A Warning

While it is possible to do so, we recommend you not hard code credentials inside an
application or browser script. Hard coding credentials poses a risk of exposing sensitive
information.

For more information about how to manage your access keys, see Best Practices for Managing
AWS Access Keys in the AWS General Reference.

Topics

« Setting Credentials in Node.js

» Setting Credentials in a Web Browser

Setting Credentials in Node.js

There are several ways in Node.js to supply your credentials to the SDK. Some of these are more
secure and others afford greater convenience while developing an application. When obtaining
credentials in Node.js, be careful about relying on more than one source such as an environment
variable and a JSON file you load. You can change the permissions under which your code runs
without realizing the change has happened.

Here are the ways you can supply your credentials in order of recommendation:

1. Loaded from AWS Identity and Access Management (IAM) roles for Amazon EC2
2. Loaded from the shared credentials file (~/.aws/credentials)

3. Loaded from environment variables

4. Loaded from a JSON file on disk

5. Other credential-provider classes provided by the JavaScript SDK

If more than one credential source is available to the SDK, the default precedence of selection is as
follows:

1. Credentials that are explicitly set through the service-client constructor

Setting Credentials in Node.js 42

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#grant-least-privilege
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS SDK for JavaScript Developer Guide for SDK v2

2. Environment variables

3. The shared credentials file

4. Credentials loaded from the ECS credentials provid