
User Guide

AWS Secrets Manager

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Secrets Manager User Guide

AWS Secrets Manager: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Secrets Manager User Guide

Table of Contents

What is Secrets Manager? ... 1
Get started with Secrets Manager .. 1
Compliance with standards .. 2
Pricing ... 2
AWS services that use AWS Secrets Manager secrets ... 3

Access Secrets Manager ... 7
Secrets Manager console .. 7
Command line tools ... 7
AWS SDKs ... 8
HTTPS Query API ... 8
Secrets Manager endpoints .. 9

Concepts ... 14
Secret .. 14
Version .. 15
Rotation .. 16
Rotation strategy .. 17

Single user .. 17
Alternating users ... 17

Tutorials ... 20
Amazon CodeGuru Reviewer ... 20
Replace hardcoded secrets ... 20

Step 1: Create the secret .. 21
Step 2: Update your code ... 23
Step 3: Update the secret ... 24
Next steps ... 24

Replace hardcoded DB credentials ... 25
Step 1: Create the secret .. 25
Step 2: Update your code ... 27
Step 3: Rotate the secret .. 27
Next steps ... 28

Alternating users rotation .. 29
Permissions ... 30
Prerequisites ... 30
Step 1: Create an Amazon RDS database user ... 33

iii

AWS Secrets Manager User Guide

Step 2: Create a secret for the user credentials ... 35
Step 3: Test the rotated secret .. 37
Step 4: Clean up resources ... 37
Next steps ... 38

Single user rotation ... 38
Permissions ... 39
Prerequisites ... 39
Step 1: Create an Amazon RDS database user ... 39
Step 2: Create a secret for the database user credentials .. 40
Step 3: Test the rotated password .. 41
Step 4: Clean up resources ... 42
Next steps ... 42

Authentication and access control ... 43
Secrets Manager administrator permissions ... 43
Permissions to access secrets .. 43
Permissions for Lambda rotation functions ... 44
Permissions for encryption keys ... 44
Attach a permissions policy to an identity ... 44
Attach a permissions policy to a secret .. 45

AWS CLI ... 45
AWS SDK ... 46

AWS managed policies .. 47
SecretsManagerReadWrite .. 47
Policy updates ... 49

Determine who has permissions to your secrets ... 50
Cross-account access ... 51
Permissions for rotation ... 53

Policy for a Lambda rotation function execution role .. 54
Policy statement for customer managed key ... 55
Policy statement for alternating users strategy ... 56

Permissions policy examples ... 57
Example: Permission to retrieve individual secret values ... 58
Permission to retrieve a group of secret values in a batch .. 60
Example: Wildcards .. 61
Example: Permission to create secrets ... 63
Example: Permissions and VPCs .. 63

iv

AWS Secrets Manager User Guide

Example: Control access to secrets using tags ... 65
Example: Limit access to identities with tags that match secrets' tags 66
Example: Service principal .. 67

Permissions reference .. 68
Secrets Manager actions ... 68
Secrets Manager resources ... 93
Condition keys ... 93
BlockPublicPolicy condition ... 96
IP address conditions ... 97
VPC endpoint conditions ... 97

Create and manage secrets ... 98
Create a database secret .. 98

AWS CLI .. 100
AWS SDK .. 101

JSON structure of a secret .. 101
Amazon RDS Db2 secret structure .. 102
Amazon RDS MariaDB secret structure .. 102
Amazon RDS and Amazon Aurora MySQL secret structure ... 103
Amazon RDS Oracle secret structure ... 103
Amazon RDS and Amazon Aurora PostgreSQL secret structure ... 104
Amazon RDS Microsoft SQLServer secret structure .. 104
Amazon DocumentDB secret structure .. 105
Amazon Redshift secret structure ... 106
Amazon Redshift Serverless secret structure ... 106
Amazon ElastiCache secret structure ... 107

Create a secret .. 107
AWS CLI .. 109
AWS SDK .. 109

Update a secret value ... 110
AWS CLI .. 110
AWS SDK .. 111

Change the encryption key for a secret ... 111
AWS CLI .. 112

Modify a secret ... 113
AWS CLI .. 114
AWS SDK .. 114

v

AWS Secrets Manager User Guide

Find secrets ... 115
AWS CLI .. 116
AWS SDK .. 116

Delete a secret .. 117
AWS CLI .. 118
AWS SDK .. 119

Restore a secret .. 119
AWS CLI .. 120
AWS SDK .. 120

Replicate a secret to other Regions ... 120
AWS CLI .. 122
AWS SDK .. 122
Troubleshooting .. 122

Promote a replica secret to a standalone secret ... 123
AWS CLI .. 124
AWS SDK .. 124

Tag secrets ... 124
AWS CLI .. 125
AWS SDK .. 126

Retrieve secrets .. 127
In code .. 127
Within other systems and AWS services ... 128
AWS CLI .. 128
AWS console ... 129
Retrieve secrets in a batch .. 129

Permissions for retrieving secrets in a batch .. 129
AWS CLI .. 130

Connect to a SQL database ... 130
Establish a connection to a database .. 132
Establish a connection by specifying the endpoint and port .. 134
Use c3p0 connection pooling to establish a connection .. 137
Use c3p0 connection pooling to establish a connection by specifying the endpoint and
port .. 138

Java applications .. 140
SecretCache .. 141
SecretCacheConfiguration ... 143

vi

AWS Secrets Manager User Guide

SecretCacheHook .. 146
Python applications ... 146

SecretCache .. 148
SecretCacheConfig .. 149
SecretCacheHook .. 150
@InjectSecretString .. 151
@InjectKeywordedSecretString ... 151

.NET applications ... 152
SecretsManagerCache .. 155
SecretCacheConfiguration ... 157
ISecretCacheHook ... 158

Go applications ... 159
type Cache ... 160
type CacheConfig ... 162
type CacheHook .. 162

AWS Batch ... 163
AWS CloudFormation .. 163
Amazon Elastic Container Service .. 164
Amazon EKS .. 165

Install the ASCP .. 165
Set up access control ... 166
Identify which secrets to mount ... 167
Troubleshoot .. 169
Tutorial .. 170
SecretProviderClass .. 172

GitHub jobs ... 175
Prerequisites .. 176
Usage ... 176
Environment variable naming .. 177
Examples ... 178

AWS IoT Greengrass .. 180
AWS Lambda ... 181

Environment variables ... 184
Parameter Store ... 185

Rotate secrets .. 186
How rotation works ... 186

vii

AWS Secrets Manager User Guide

Managed rotation .. 188
Automatic rotation for database secrets (console) ... 190

Step 1: Choose a rotation strategy and (optionally) create a superuser secret 191
Step 2: Configure rotation and create a rotation function .. 192
Step 3: (Optional) Set additional permissions conditions on the rotation function 194
Step 4: Set up network access for the rotation function ... 195
Step 5: (Optional) Customize the rotation function ... 196
Next steps .. 197

Automatic rotation (console) ... 197
Step 1: Configure the secret for rotation .. 198
Step 2: Set permissions for the rotation function ... 200
Step 3: (Optional) Set an additional permissions condition on the rotation function 200
Step 4: Set up network access for the rotation function ... 201
Step 5: Write the rotation function code .. 202
Next steps .. 204

Automatic rotation (AWS CLI) ... 204
(Optional) Step 1: Create a superuser secret .. 205
Step 2: Write the rotation function code .. 206
Step 3: Create the Lambda function and execution role ... 209
Step 4: Set up network access .. 210
Step 5: Configure the secret for rotation .. 211
Next steps .. 211

Rotate a secret immediately ... 212
AWS CLI .. 212

Rotation function templates ... 212
Amazon RDS and Amazon Aurora .. 213
Amazon DocumentDB .. 217
Amazon Redshift .. 218
Amazon ElastiCache ... 218
Other types of secrets ... 219

Schedule expressions .. 221
Rate expressions ... 221
Cron expressions ... 222

Troubleshoot rotation ... 227
No activity after "Found credentials in environment variables" ... 228
No activity after "createSecret" ... 228

viii

AWS Secrets Manager User Guide

Error: "Access to KMS is not allowed" .. 229
Error: "Key is missing from secret JSON" .. 229
Error: "setSecret: Unable to log into database" ... 229
Error: "Unable to import module 'lambda_function'" ... 232
Upgrade an existing rotation function from Python 3.7 to 3.9 .. 232

Secrets managed by other services .. 236
Amazon AppFlow ... 237
AWS Glue DataBrew .. 237
AWS DataSync .. 237
AWS Direct Connect .. 237
Amazon Elastic Container Service .. 238
Amazon EventBridge ... 238
AWS Marketplace ... 238
AWS OpsWorks for Chef Automate ... 238
Amazon RDS and Aurora .. 238
Amazon Redshift .. 239
Amazon Redshift query editor v2 .. 239

VPC endpoint ... 240
Shared subnets ... 241

AWS CloudFormation .. 242
Create a secret .. 242

JSON .. 243
YAML .. 243

Create a secret with Amazon RDS credentials with automatic rotation 244
Create a secret with Amazon Redshift credentials ... 244
Create a secret with Amazon DocumentDB credentials .. 244

JSON .. 245
YAML .. 249

How Secrets Manager uses AWS CloudFormation .. 252
AWS CDK .. 253
Monitor secrets .. 254

Log with AWS CloudTrail ... 254
AWS CLI .. 255
CloudTrail entries .. 255

Match Secrets Manager events with EventBridge ... 260
Match all changes to a specified secret ... 261

ix

AWS Secrets Manager User Guide

Match events when a secret value rotates .. 261
Monitor with CloudWatch .. 262

Secrets Manager metrics and dimensions ... 262
Create alarms to monitor Secrets Manager metrics .. 263
Amazon CloudWatch Synthetics canaries .. 263

Monitor secrets scheduled for deletion .. 264
Step 1: Configure CloudTrail log file delivery to CloudWatch logs .. 264
Step 2: Create the CloudWatch alarm ... 265
Step 3: Test the CloudWatch alarm .. 266

Compliance validation ... 267
Audit secrets for compliance ... 269

.. 269
Aggregate secrets from your AWS accounts and AWS Regions .. 270

Security in Secrets Manager ... 271
Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 271
Data protection in Secrets Manager .. 274

Encryption at rest ... 274
Encryption in transit .. 275
Inter-network traffic privacy .. 275
Encryption key management ... 275

Secret encryption and decryption .. 276
What is encrypted? .. 277
Encryption and decryption processes .. 277
Permissions for the KMS key ... 278
How Secrets Manager uses your KMS key .. 278
Key policy of the AWS managed key (aws/secretsmanager) ... 280
Secrets Manager encryption context .. 282
Monitor Secrets Manager interaction with AWS KMS ... 284

Infrastructure security ... 288
Resilience ... 289
Post-quantum TLS ... 289

Troubleshooting ... 291
"Access denied" messages when sending requests to Secrets Manager 291
"Access denied" for temporary security credentials .. 291
Changes I make aren't always immediately visible. .. 292
“Cannot generate a data key with an asymmetric KMS key” when creating a secret 293

x

AWS Secrets Manager User Guide

An AWS CLI or AWS SDK operation can't find my secret from a partial ARN 293
This secret is managed by an AWS service, and you must use that service to update it. 294

Quotas .. 295
Secrets Manager quotas ... 295
Add retries to your application ... 298

Document history .. 300
Earlier updates .. 300

xi

AWS Secrets Manager User Guide

What is AWS Secrets Manager?

AWS Secrets Manager helps you manage, retrieve, and rotate database credentials, application
credentials, OAuth tokens, API keys, and other secrets throughout their lifecycles. Many AWS
services store and use secrets in Secrets Manager.

Secrets Manager helps you improve your security posture, because you no longer need hard-coded
credentials in application source code. Storing the credentials in Secrets Manager helps avoid
possible compromise by anyone who can inspect your application or the components. You replace
hard-coded credentials with a runtime call to the Secrets Manager service to retrieve credentials
dynamically when you need them.

With Secrets Manager, you can configure an automatic rotation schedule for your secrets. This
enables you to replace long-term secrets with short-term ones, significantly reducing the risk of
compromise. Since the credentials are no longer stored with the application, rotating credentials
no longer requires updating your applications and deploying changes to application clients.

For other types of secrets you might have in your organization:

• AWS credentials – We recommend AWS Identity and Access Management.

• Encryption keys – We recommend AWS Key Management Service.

• SSH keys – We recommend Amazon EC2 Instance Connect.

• Private keys and certificates – We recommend AWS Certificate Manager.

Get started with Secrets Manager

If you are new to Secrets Manager, start with Concepts or one of the following tutorials:

• the section called “Replace hardcoded secrets ”

• the section called “Replace hardcoded DB credentials ”

• the section called “Alternating users rotation”

• the section called “Single user rotation”

Other tasks you can do with secrets:

• Create and manage secrets

Get started with Secrets Manager 1

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/kms/latest/developerguide/overview.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/Connect-using-EC2-Instance-Connect.html
https://docs.aws.amazon.com/acm/latest/userguide/acm-overview.html

AWS Secrets Manager User Guide

• Control access to your secrets

• Retrieve secrets

• Rotate secrets

• Monitor secrets

• Audit secrets for compliance

• Create secrets in AWS CloudFormation

Compliance with standards

AWS Secrets Manager has undergone auditing for the multiple standards and can be part of your
solution when you need to obtain compliance certification. For more information, see Compliance
validation.

Pricing

When you use Secrets Manager, you pay only for what you use, with no minimum or setup fees.
There is no charge for secrets that are marked for deletion. For the current complete pricing list,
see AWS Secrets Manager Pricing.

You can use the AWS managed key aws/secretsmanager that Secrets Manager creates to
encrypt your secrets for free. If you create your own KMS keys to encrypt your secrets, AWS charges
you at the current AWS KMS rate. For more information, see AWS Key Management Service Pricing.

When you turn on automatic rotation (except managed rotation), Secrets Manager uses an AWS
Lambda function to rotate the secret, and you are charged for the rotation function at the current
Lambda rate. For more information, see AWS Lambda Pricing.

If you enable AWS CloudTrail on your account, you can obtain logs of the API calls that Secrets
Manager sends out. Secrets Manager logs all events as management events. AWS CloudTrail stores
the first copy of all management events for free. However, you can incur charges for Amazon S3 for
log storage and for Amazon SNS if you enable notification. Also, if you set up additional trails, the
additional copies of management events can incur costs. For more information, see AWS CloudTrail
pricing.

Compliance with standards 2

https://aws.amazon.com/secrets-manager/pricing
https://aws.amazon.com/kms/pricing
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/cloudtrail/pricing
https://aws.amazon.com/cloudtrail/pricing

AWS Secrets Manager User Guide

AWS services that use AWS Secrets Manager secrets

• AWS App Runner – See Referencing environment variables and Managing environment variables
in the AWS App Runner Developer Guide.

• AWS App2Container – See Manage secrets for AWS App2Container in the AWS App2Container
Use Guide.

• AWS AppConfig – See Creating a freeform configuration profile in the AWS AppConfig User
Guide.

• Amazon AppFlow – See Secrets managed by other services.

• AWS AppSync – See Tutorial: Aurora Serverless in the AWS AppSync Developer Guide .

• Amazon Athena – See Using Amazon Athena Federated Query in the Amazon Athena User Guide.

• Amazon Aurora – See See Secrets managed by other services.

• AWS CodeBuild – See Private registry with AWS Secrets Manager sample for CodeBuild in the
AWS CodeBuild User Guide.

• AWS DataSync – See Secrets managed by other services.

• Amazon DataZone – See Create a data source for an Amazon Redshift database using a new
AWS Glue connection in the Amazon DataZone User Guide.

• AWS Direct Connect – See Secrets managed by other services.

• AWS Directory Service – See Seamlessly join a Linux EC2 instance to your AWS Managed
Microsoft AD directory, Seamlessly join a Linux EC2 instance to your AD Connector directory, and
Seamlessly join a Linux EC2 instance to your Simple AD directory in the AWS Direct Connect User
Guide.

• Amazon DocumentDB (with MongoDB compatibility) – See the section called “Create a
database secret” and Managing Amazon DocumentDB Users in the Amazon DocumentDB
Developer Guide.

• AWS Elastic Beanstalk – See Docker configuration in the AWS Elastic Beanstalk Developer Guide.

• Amazon Elastic Container Registry – See Creating a pull through cache rule in the Amazon ECR
User Guide.

• Amazon Elastic Container Service – See Tutorial: Specifying sensitive data using Secrets
Manager secrets, Retrieve secrets programmatically through your application, Retrieve secrets
through environment variables, Retrieve secrets for logging configuration, Tutorial: Using FSx for
Windows File Server file systems with Amazon ECS, FSx for Windows File Server volumes, and
Private registry authentication for tasks in the Amazon Elastic Container Service Developer Guide.

AWS services that use AWS Secrets Manager secrets 3

https://docs.aws.amazon.com/apprunner/latest/dg/env-variable.html
https://docs.aws.amazon.com/apprunner/latest/dg/env-variable-manage.html
https://docs.aws.amazon.com/app2container/latest/UserGuide/manage-secrets.html
https://docs.aws.amazon.com/appconfig/latest/userguide/appconfig-creating-configuration-and-profile.html#appconfig-creating-configuration-and-profile-free-form-configurations
https://docs.aws.amazon.com/appsync/latest/devguide/tutorial-rds-resolvers.html
https://docs.aws.amazon.com/athena/latest/ug/connect-to-a-data-source.html
https://docs.aws.amazon.com/codebuild/latest/userguide/sample-private-registry.html
https://docs.aws.amazon.com/datazone/latest/userguide/create-redshift-data-source-new-glue-connection-username.html
https://docs.aws.amazon.com/datazone/latest/userguide/create-redshift-data-source-new-glue-connection-username.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/seamlessly_join_linux_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/seamlessly_join_linux_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/ad_connector_seamlessly_join_linux_instance.html
https://docs.aws.amazon.com/directoryservice/latest/admin-guide/simple_ad_seamlessly_join_linux_instance.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/security.managing-users.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/single-container-docker-configuration.html
https://docs.aws.amazon.com/AmazonECR/latest/userguide/pull-through-cache-creating-rule.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-tutorial.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-tutorial.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-app-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-envvar-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-envvar-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-logconfig.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-wfsx-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/tutorial-wfsx-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/wfsx-volumes.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html

AWS Secrets Manager User Guide

• Amazon Elastic Container Service Service Connect – See Secrets managed by other services.

• Amazon ElastiCache – See Automatically rotating passwords for users in the Amazon ElastiCache
User Guide.

• AWS Elemental Live – See How delivery from AWS Elemental Live to MediaConnect works at
runtime in the Elemental Live User Guide.

• AWS Elemental MediaConnect – See Static key encryption in AWS Elemental MediaConnect in
the AWS Elemental MediaConnect User Guide.

• AWS Elemental MediaConvert – See Using Kantar for audio watermarking in AWS Elemental
MediaConvert outputs in the AWS Elemental MediaConvert User Guide.

• AWS Elemental MediaLive – See Setting up MediaLive as a trusted entity in the MediaLive User
Guide.

• AWS Elemental MediaPackage – See Secrets Manager access for CDN authorization in the AWS
Elemental MediaPackage User Guide.

• AWS Elemental MediaTailor – See Configuring AWS Secrets Manager access token
authentication in the AWS Elemental MediaTailor User Guide.

• Amazon EMR running on Amazon EC2 – See Store sensitive configuration data in Secrets
Manager and Add a Git-based Repository to Amazon EMR in the Amazon EMR Management
Guide.

• EMR Serverless – See Secrets Manager for data protection with EMR Serverless in the Amazon
EMR Serverless User Guide.

• Amazon EventBridge – See Secrets managed by other services.

• Amazon FSx – See File shares and Migrating file share configurations to Amazon FSx in the
Amazon FSx for Windows File Server User Guide.

• AWS Glue DataBrew – See Secrets managed by other services.

• AWS Glue Studio – See Tutorial: Using the AWS Glue Connector for Elasticsearch in the AWS Glue
Developer Guide.

• AWS IoT SiteWise – See Configuring data source authentication in the AWS IoT SiteWise User
Guide.

• Amazon Kendra – See Using a database data source in the Amazon Kendra User Guide.

• Amazon Kinesis Video Streams – See Deploy the Amazon Kinesis Video Streams Edge Agent to
AWS IoT Greengrass in the Amazon Kinesis Video Streams Developer Guide.

• AWS Launch Wizard – See Set up for AWS Launch Wizard for Active Directory in the AWS Launch
Wizard User Guide.

AWS services that use AWS Secrets Manager secrets 4

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://docs.aws.amazon.com/elemental-live/latest/ug/setting-up-live-as-contribution-encoder-for-mediaconnect-how-it-works-at-runtime.html
https://docs.aws.amazon.com/elemental-live/latest/ug/setting-up-live-as-contribution-encoder-for-mediaconnect-how-it-works-at-runtime.html
https://docs.aws.amazon.com/mediaconnect/latest/ug/encryption-static-key.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/kantar-watermarking.html
https://docs.aws.amazon.com/mediaconvert/latest/ug/kantar-watermarking.html
https://docs.aws.amazon.com/medialive/latest/ug/device-iam-for-medialive.html
https://docs.aws.amazon.com/mediapackage/latest/ug/setting-up-create-trust-rel-policy-cdn.html
https://docs.aws.amazon.com/mediatailor/latest/ug/channel-assembly-access-configuration-access-configuring.html
https://docs.aws.amazon.com/mediatailor/latest/ug/channel-assembly-access-configuration-access-configuring.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/storing-sensitive-data.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/storing-sensitive-data.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-git-repo-add.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/secrets-manager.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/managing-file-shares.html
https://docs.aws.amazon.com/fsx/latest/WindowsGuide/migrate-file-share-config-to-fsx.html
https://docs.aws.amazon.com/glue/latest/ug/tutorial-elastisearch-connector.html
https://docs.aws.amazon.com/iot-sitewise/latest/userguide/configure-source-authentication-ggv2.html
https://docs.aws.amazon.com/kendra/latest/dg/data-source-database.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/gs-edge-gg.html
https://docs.aws.amazon.com/kinesisvideostreams/latest/dg/gs-edge-gg.html
https://docs.aws.amazon.com/launchwizard/latest/userguide/launch-wizard-ad-setting-up.html

AWS Secrets Manager User Guide

• Amazon Lookout for Metrics – See Using Amazon RDS with Lookout for Metrics and Using
Amazon Redshift with Lookout for Metrics in the Amazon Lookout for Metrics Developer Guide.

• Amazon Managed Grafana – See Configuring Amazon Redshift in the Amazon Managed Grafana
User Guide.

• AWS Managed Services – See AWS Secrets Manager (AMS self-service provisioning) in the AMS
Advanced User Guide.

• Amazon Managed Streaming for Apache Kafka – See Username and password authentication
with AWS Secrets Manager in the Amazon Managed Streaming for Apache Kafka Developer Guide.

• Amazon Managed Workflows for Apache Airflow – See Configuring an Apache Airflow
connection using a Secrets Manager secret and Using a secret key in AWS Secrets Manager for an
Apache Airflow variable in the Amazon Managed Workflows for Apache Airflow User Guide.

• AWS Marketplace – See Secrets managed by other services.

• AWS Migration Hub – See Migrate SAP NetWeaver applications to AWS and Rehost applications
on Amazon EC2 in the AWS Migration Hub Orchestrator User Guide.

• AWS OpsWorks for Chef Automate – See Secrets managed by other services.

• AWS Panorama – See Managing camera streams in AWS Panorama in the AWS Panorama
Developer Guide.

• AWS ParallelCluster – See Integrating Active Directory in the AWS ParallelCluster User Guide.

• Amazon Q – See Concepts - Authentication in the Amazon Q Developer Guide.

• Amazon QuickSight – See Using AWS Secrets Manager secrets in place of database credentials in
Amazon QuickSight in the Amazon QuickSight User Guide.

• Amazon RDS – See Secrets managed by other services.

• Amazon Redshift – See Secrets managed by other services, the section called “Create a database
secret”, Storing database credentials in AWS Secrets Manager, Using the Amazon Redshift Data
API, and Querying a database using the query editor in the Amazon Redshift Management Guide.

• Amazon Redshift query editor v2 – See Secrets managed by other services.

• Amazon SageMaker – See Associate Git Repositories with Amazon SageMaker Notebook
Instances, Import data from Databricks (JDBC), and Import data from Snowflake in the Amazon
SageMaker Developer Guide.

• AWS Schema Conversion Tool – See Using AWS Secrets Manager in the AWS SCT user interface
in the AWS Schema Conversion Tool User Guide.

• AWS Toolkit for JetBrains – See Accessing Amazon Redshift clusters in the AWS Toolkit for
JetBrains User Guide.

AWS services that use AWS Secrets Manager secrets 5

https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-rds.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-redshift.html
https://docs.aws.amazon.com/lookoutmetrics/latest/dev/services-redshift.html
https://docs.aws.amazon.com/grafana/latest/userguide/Redshift-config.html
https://docs.aws.amazon.com/managedservices/latest/userguide/secrets-manager.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://docs.aws.amazon.com/msk/latest/developerguide/msk-password.html
https://docs.aws.amazon.com/mwaa/latest/userguide/connections-secrets-manager.html
https://docs.aws.amazon.com/mwaa/latest/userguide/connections-secrets-manager.html
https://docs.aws.amazon.com/mwaa/latest/userguide/samples-secrets-manager-var.html
https://docs.aws.amazon.com/mwaa/latest/userguide/samples-secrets-manager-var.html
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/migrate-sap.html
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/rehost-on-ec2.html
https://docs.aws.amazon.com/migrationhub-orchestrator/latest/userguide/rehost-on-ec2.html
https://docs.aws.amazon.com/panorama/latest/dev/appliance-cameras.html
https://docs.aws.amazon.com/parallelcluster/latest/ug/tutorials_05_multi-user-ad.html
https://docs.aws.amazon.com/amazonq/latest/business-use-dg/connector-concepts.html#connector-authentication
https://docs.aws.amazon.com/quicksight/latest/user/secrets-manager-integration.html
https://docs.aws.amazon.com/quicksight/latest/user/secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html#data-api-secrets
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/nbi-git-repo.html
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-import.html#data-wrangler-databricks
https://docs.aws.amazon.com/sagemaker/latest/dg/data-wrangler-import.html#data-wrangler-snowflake
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_UserInterface.html#CHAP_UserInterface.SecretsManager
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/redshift-access-prerequisities.html

AWS Secrets Manager User Guide

• AWS Transfer Family – See Basic authentication for AS2 connectors, Working with custom
identity providers, and Generate and manage PGP keys in the AWS Transfer Family User Guide.

• AWS Wickr – See Start the data retention bot in the AWS Wickr Administration Guide.

AWS services that use AWS Secrets Manager secrets 6

https://docs.aws.amazon.com/transfer/latest/userguide/as2-connectors-details.html#as2-basic-auth
https://docs.aws.amazon.com/transfer/latest/userguide/custom-identity-provider-users.html
https://docs.aws.amazon.com/transfer/latest/userguide/custom-identity-provider-users.html
https://docs.aws.amazon.com/transfer/latest/userguide/key-management.html#pgp-key-management
https://docs.aws.amazon.com/wickr/latest/adminguide/starting-data-retention-bot.html#data-retention-startup-asm

AWS Secrets Manager User Guide

Access AWS Secrets Manager

You can work with Secrets Manager in any of the following ways:

• Secrets Manager console

• Command line tools

• AWS SDKs

• HTTPS Query API

• AWS Secrets Manager endpoints

Secrets Manager console

You can manage your secrets using the browser-based Secrets Manager console and perform
almost any task related to your secrets by using the console.

Command line tools

The AWS command line tools allows you to issue commands at your system command line to
perform Secrets Manager and other AWS tasks. This can be faster and more convenient than using
the console. The command line tools can be useful if you want to build scripts to perform AWS
tasks.

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called “Mitigate
the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

The command line tools automatically use the default endpoint for the service in an AWS Region.
You can specify a different endpoint for your API requests. See the section called “Secrets Manager
endpoints”.

AWS provides two sets of command line tools:

• AWS Command Line Interface (AWS CLI)

• AWS Tools for Windows PowerShell

Secrets Manager console 7

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/index.html
https://docs.aws.amazon.com/powershell/latest/reference/

AWS Secrets Manager User Guide

AWS SDKs

The AWS SDKs consist of libraries and sample code for various programming languages and
platforms. The SDKs include tasks such as cryptographically signing requests, managing errors, and
retrying requests automatically. To download and install any of the SDKs, see Tools for Amazon
Web Services.

The AWS SDKs automatically use the default endpoint for the service in an AWS Region. You
can specify a different endpoint for your API requests. See the section called “Secrets Manager
endpoints”.

For SDK documentation, see:

• C++

• Go

• Java

• JavaScript

• Kotlin

• .NET

• PHP

• Python (Boto3)

• Ruby

• Rust

• SAP ABAP

• Swift

HTTPS Query API

The HTTPS Query API gives you programmatic access to Secrets Manager and AWS. The HTTPS
Query API allows you to issue HTTPS requests directly to the service.

Although you can make direct calls to the Secrets Manager HTTPS Query API, we recommend that
you use one of the SDKs instead. The SDK performs many useful tasks you otherwise must perform
manually. For example, the SDKs automatically sign your requests and convert responses into a
structure syntactically appropriate to your language.

AWS SDKs 8

https://aws.amazon.com/tools/#sdk
https://aws.amazon.com/tools/#sdk
http://sdk.amazonaws.com/cpp/api/LATEST/namespace_aws_1_1_secrets_manager.html
https://docs.aws.amazon.com/sdk-for-go/api/service/secretsmanager/
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SecretsManager.html
https://sdk.amazonaws.com/kotlin/api/latest/secretsmanager/index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/NSecretsManagerModel.html
https://docs.aws.amazon.com/aws-sdk-php/v3/api/namespace-Aws.SecretsManager.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SecretsManager.html
https://crates.io/crates/aws-sdk-secretsmanager
https://docs.aws.amazon.com/sdk-for-sap-abap/v1/api/latest/smr/index.html
https://awslabs.github.io/aws-sdk-swift/reference/0.x/AWSSecretsManager/Home
https://docs.aws.amazon.com/secretsmanager/latest/apireference/Welcome.html

AWS Secrets Manager User Guide

To make HTTPS calls to Secrets Manager, you connect to ???.

AWS Secrets Manager endpoints

To connect programmatically to Secrets Manager, you use an endpoint, the URL of the entry point
for the service. Secrets Manager endpoints are dual-stack endpoints, which means they support
both IPv4 and IPv6.

Secrets Manager offers endpoints that support Federal Information Processing Standard (FIPS)
140-2 in some Regions.

Secrets Manager supports TLS 1.2 and 1.3. Secrets Manager supports PQTLS in all regions except
China Regions.

Note

The Python AWS SDK and the AWS CLI attempt to call IPv6 and then IPv4 in sequence, so
if you don't have IPv6 enabled, it can take some time before the call times out and retries
with IPv4. To work around this issue, you can disable IPv6 completely or migrate to IPv6.

The following are the service endpoints for Secrets Manager. Note that the naming differs from the
typical dual-stack naming convention.

Region
Name

Region Endpoint Protocol

US East
(Ohio)

us-east-2 secretsmanager.us-east-2.amazonaws.com

secretsmanager-fips.us-east-2.amazon
aws.com

HTTPS

HTTPS

US
East (N.
Virginia)

us-east-1 secretsmanager.us-east-1.amazonaws.com

secretsmanager-fips.us-east-1.amazon
aws.com

HTTPS

HTTPS

US
West (N.

us-
west-1

secretsmanager.us-west-1.amazonaws.com HTTPS

HTTPS

Secrets Manager endpoints 9

http://aws.amazon.com/compliance/fips/
http://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-migrate-ipv6.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#dual-stack-endpoints

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Californi
a)

secretsmanager-fips.us-west-1.amazon
aws.com

US West
(Oregon)

us-
west-2

secretsmanager.us-west-2.amazonaws.com

secretsmanager-fips.us-west-2.amazon
aws.com

HTTPS

HTTPS

Africa
(Cape
Town)

af-south-
1

secretsmanager.af-south-1.amazonaws.com HTTPS

Asia
Pacific
(Hong
Kong)

ap-
east-1

secretsmanager.ap-east-1.amazonaws.com HTTPS

Asia
Pacific
(Hyderaba
d)

ap-
south-2

secretsmanager.ap-south-2.amazonaws.com HTTPS

Asia
Pacific
(Jakarta)

ap-
southe
ast-3

secretsmanager.ap-southeast-3.amazon
aws.com

HTTPS

Asia
Pacific
(Melbourn
e)

ap-
southe
ast-4

secretsmanager.ap-southeast-4.amazon
aws.com

HTTPS

Asia
Pacific
(Mumbai)

ap-
south-1

secretsmanager.ap-south-1.amazonaws.com HTTPS

Secrets Manager endpoints 10

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Asia
Pacific
(Osaka)

ap-
northe
ast-3

secretsmanager.ap-northeast-3.amazon
aws.com

HTTPS

Asia
Pacific
(Seoul)

ap-
northe
ast-2

secretsmanager.ap-northeast-2.amazon
aws.com

HTTPS

Asia
Pacific
(Singapor
e)

ap-
southe
ast-1

secretsmanager.ap-southeast-1.amazon
aws.com

HTTPS

Asia
Pacific
(Sydney)

ap-
southe
ast-2

secretsmanager.ap-southeast-2.amazon
aws.com

HTTPS

Asia
Pacific
(Tokyo)

ap-
northe
ast-1

secretsmanager.ap-northeast-1.amazon
aws.com

HTTPS

Canada
(Central)

ca-centra
l-1

secretsmanager.ca-central-1.amazonaws.com

secretsmanager-fips.ca-central-1.ama
zonaws.com

HTTPS

HTTPS

Canada
West
(Calgary)

ca-
west-1

secretsmanager.ca-west-1.amazonaws.com

secretsmanager-fips.ca-west-1.amazon
aws.com

HTTPS

HTTPS

Europe
(Frankfur
t)

eu-
central-1

secretsmanager.eu-central-1.amazonaws.com HTTPS

Secrets Manager endpoints 11

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

Europe
(Ireland)

eu-
west-1

secretsmanager.eu-west-1.amazonaws.com HTTPS

Europe
(London)

eu-
west-2

secretsmanager.eu-west-2.amazonaws.com HTTPS

Europe
(Milan)

eu-
south-1

secretsmanager.eu-south-1.amazonaws.com HTTPS

Europe
(Paris)

eu-
west-3

secretsmanager.eu-west-3.amazonaws.com HTTPS

Europe
(Spain)

eu-
south-2

secretsmanager.eu-south-2.amazonaws.com HTTPS

Europe
(Stockhol
m)

eu-
north-1

secretsmanager.eu-north-1.amazonaws.com HTTPS

Europe
(Zurich)

eu-
central-2

secretsmanager.eu-central-2.amazonaws.com HTTPS

Israel
(Tel Aviv)

il-centra
l-1

secretsmanager.il-central-1.amazonaws.com HTTPS

Middle
East
(Bahrain)

me-
south-1

secretsmanager.me-south-1.amazonaws.com HTTPS

Middle
East
(UAE)

me-
central-1

secretsmanager.me-central-1.amazonaws.com HTTPS

Secrets Manager endpoints 12

AWS Secrets Manager User Guide

Region
Name

Region Endpoint Protocol

South
America
(São
Paulo)

sa-east-1 secretsmanager.sa-east-1.amazonaws.com HTTPS

AWS
GovCloud
(US-East)

us-gov-
east-1

secretsmanager.us-gov-east-1.amazona
ws.com

secretsmanager-fips.us-gov-east-1.am
azonaws.com

HTTPS

HTTPS

AWS
GovCloud
(US-
West)

us-gov-
west-1

secretsmanager.us-gov-west-1.amazona
ws.com

secretsmanager-fips.us-gov-west-1.am
azonaws.com

HTTPS

HTTPS

Secrets Manager endpoints 13

AWS Secrets Manager User Guide

AWS Secrets Manager concepts

The following concepts are important for understanding how Secrets Manager works.

• Secret

• Version

• Rotation

• Rotation strategy

Secret

In Secrets Manager, a secret consists of secret information, the secret value, plus metadata about
the secret. A secret value can be a string or binary. To store multiple string values in one secret, we
recommend that you use a JSON text string with key/value pairs, for example:

{
 "host" : "ProdServer-01.databases.example.com",
 "port" : "8888",
 "username" : "administrator",
 "password" : "EXAMPLE-PASSWORD",
 "dbname" : "MyDatabase",
 "engine" : "mysql"
}

A secret's metadata includes:

• An Amazon Resource Name (ARN) with the following format:

arn:aws:secretsmanager:<Region>:<AccountId>:secret:SecretName-6RandomCharacters

Secrets Manager includes six random characters at the end of the secret name to help ensure
that the secret ARN is unique. If the original secret is deleted, and then a new secret is created
with the same name, the two secrets have different ARNs because of these characters. Users with
access to the old secret don't automatically get access to the new secret because the ARNs are
different.

• The name of the secret, a description, a resource policy, and tags.

Secret 14

AWS Secrets Manager User Guide

• The ARN for an encryption key, an AWS KMS key that Secrets Manager uses to encrypt and
decrypt the secret value. Secrets Manager stores secret text in an encrypted form and encrypts
the secret in transit. See the section called “Secret encryption and decryption”.

• Information about how to rotate the secret, if you set up rotation. See the section called
“Rotation”.

Secrets Manager uses IAM permission policies to make sure that only authorized users can access or
modify a secret. See Authentication and access control for AWS Secrets Manager.

A secret has versions which hold copies of the encrypted secret value. When you change the secret
value, or the secret is rotated, Secrets Manager creates a new version. See the section called
“Version”.

You can use a secret across multiple AWS Regions by replicating it. When you replicate a secret,
you create a copy of the original or primary secret called a replica secret. The replica secret remains
linked to the primary secret. See the section called “Replicate a secret to other Regions”.

See Create and manage secrets.

Version

A secret has versions which hold copies of the encrypted secret value. When you change the secret
value, or the secret is rotated, Secrets Manager creates a new version.

Secrets Manager doesn't store a linear history of secrets with versions. Instead, it keeps track of
three specific versions by labelling them:

• The current version - AWSCURRENT

• The previous version - AWSPREVIOUS

• The pending version (during rotation) - AWSPENDING

A secret always has a version labeled AWSCURRENT, and Secrets Manager returns that version by
default when you retrieve the secret value.

You can also label versions with your own labels by calling update-secret-version-stage in
the AWS CLI. You can attach up to 20 labels to versions in a secret. Two versions of a secret can't
have the same staging label. Versions can have multiple labels.

Version 15

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/update-secret-version-stage.html

AWS Secrets Manager User Guide

Secrets Manager never removes labeled versions, but unlabeled versions are considered
deprecated. Secrets Manager removes deprecated versions when there are more than 100. Secrets
Manager doesn't remove versions created less than 24 hours ago.

The following figure shows a secret that has AWS labeled versions and customer labeled versions.
The versions without labels are considered deprecated and will be removed by Secrets Manager at
some point in the future.

Rotation

Rotation is the process of periodically updating a secret to make it more difficult for an attacker
to access the credentials. In Secrets Manager, you can set up automatic rotation for your secrets.
When Secrets Manager rotates a secret, it updates the credentials in both the secret and the
database or service. See Rotate secrets.

Tip

For some Secrets managed by other services, you use managed rotation. To use Managed
rotation, you first create the secret through the managing service.

Rotation 16

AWS Secrets Manager User Guide

Rotation strategy

Secrets Manager offers two rotation strategies:

• Rotation strategy: single user

• Rotation strategy: alternating users

Rotation strategy: single user

This strategy updates credentials for one user in one secret. For Amazon RDS Db2 instances,
because users can't change their own passwords, you must provide admin credentials in a separate
secret. This is the simplest rotation strategy, and it is appropriate for most use cases. In
particular, we recommend you use this strategy for credentials for one-time (ad hoc) or interactive
users.

When the secret rotates, open database connections are not dropped. While rotation is happening,
there is a short period of time between when the password in the database changes and when the
secret is updated. During this time, there is a low risk of the database denying calls that use the
rotated credentials. You can mitigate this risk with an appropriate retry strategy. After rotation,
new connections use the new credentials.

Rotation strategy: alternating users

This strategy updates credentials for two users in one secret. You create the first user, and during
the first rotation, the rotation function clones it to create the second user. Every time the secret
rotates, the rotation function alternates which user's password it updates. Because most users
don't have permission to clone themselves, you must provide the credentials for a superuser in
another secret. We recommend using the single-user rotation strategy when cloned users in your
database don't have the same permissions as the original user, and for credentials for one-time (ad
hoc) or interactive users.

This strategy is appropriate for databases with permission models where one role owns the
database tables and a second role has permission to access the database tables. It is also
appropriate for applications that require high availability. If an application retrieves the secret
during rotation, the application still gets a valid set of credentials. After rotation, both user and
user_clone credentials are valid. There is even less chance of applications getting a deny during
this type of rotation than single user rotation. If the database is hosted on a server farm where the

Rotation strategy 17

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS Secrets Manager User Guide

password change takes time to propagate to all servers, there is a risk of the database denying calls
that use the new credentials. You can mitigate this risk with an appropriate retry strategy.

Secrets Manager creates the cloned user with the same permissions as the original user. If you
change the original user's permissions after the clone is created, you must also change the cloned
user's permissions.

For example, if you create a secret with a database user's credentials, the secret contains one
version with those credentials.

First rotation - The rotation function creates a clone of your user with a generated password, and
those credentials become the current secret version.

Second rotation - The rotation function updates the password for the original user.

Alternating users 18

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS Secrets Manager User Guide

Third rotation - The rotation function updates the password for the cloned user.

Alternating users 19

AWS Secrets Manager User Guide

AWS Secrets Manager tutorials

Topics

• Find unprotected secrets in your code with Amazon CodeGuru Reviewer

• Move hardcoded secrets to AWS Secrets Manager

• Move hardcoded database credentials to AWS Secrets Manager

• Set up alternating users rotation for AWS Secrets Manager

• Set up single user rotation for AWS Secrets Manager

Find unprotected secrets in your code with Amazon CodeGuru
Reviewer

Amazon CodeGuru Reviewer is a service that uses program analysis and machine learning to detect
potential defects that are difficult for developers to find and offers suggestions for improving your
Java and Python code. CodeGuru Reviewer integrates with Secrets Manager to find unprotected
secrets in your code. For the types of secrets it can find, see Types of secrets detected by CodeGuru
Reviewer in the Amazon CodeGuru Reviewer User Guide.

Once you've found hardcoded secrets, take action to replace them:

• the section called “Replace hardcoded DB credentials ”

• the section called “Replace hardcoded secrets ”

Move hardcoded secrets to AWS Secrets Manager

If you have plaintext secrets in your code, we recommend that you rotate them and store them
in Secrets Manager. Moving the secret to Secrets Manager solves the problem of the secret being
visible to anyone who sees the code, because going forward, your code retrieves the secret directly
from Secrets Manager. Rotating the secret revokes the current hardcoded secret so that it is no
longer valid.

For database credential secrets, see Move hardcoded database credentials to AWS Secrets Manager.

Before you begin, you need to determine who needs access to the secret. We recommend using two
IAM roles to manage permission to your secret:

Amazon CodeGuru Reviewer 20

https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/recommendations.html#secrets-found-types
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/recommendations.html#secrets-found-types

AWS Secrets Manager User Guide

• A role that manages the secrets in your organization. For more information, see the section
called “Secrets Manager administrator permissions”. You'll create and rotate the secret using this
role.

• A role that can use the secret at runtime, for example in this tutorial you use
RoleToRetrieveSecretAtRuntime. Your code assumes this role to retrieve the secret. In
this tutorial, you grant the role only the permission to retrieve one secret value, and you grant
permission by using the secret's resource policy. For other alternatives, see the section called
“Next steps”.

Steps:

• Step 1: Create the secret

• Step 2: Update your code

• Step 3: Update the secret

• Next steps

Step 1: Create the secret

The first step is to copy the existing hardcoded secret into Secrets Manager. If the secret is related
to an AWS resource, store it in the same Region as the resource. Otherwise, store it in the Region
that has lowest latency for your use case.

To create a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose Other type of secret.

b. Enter your secret as Key/value pairs or in Plaintext. Some examples:

Step 1: Create the secret 21

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

API key key/value pairs:

ClientID : my_client_id

ClientSecret : wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

Credentials key/value pairs:

Username : saanvis

Password : EXAMPLE-PASSWORD

OAuth token plaintext:

AKIAI44QH8DHBEXAMPLE

Digital certificate plaintext:

-----BEGIN CERTIFICATE-----
EXAMPLE
-----END CERTIFICATE-----

Private key plaintext:

–---BEGIN PRIVATE KEY –--
EXAMPLE
––-- END PRIVATE KEY –---

c. For Encryption key, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key. You can also use your own customer managed
key, for example to access the secret from another AWS account. For information about
the costs of using a customer managed key, see Pricing.

d. Choose Next.

4. On the Choose secret type page, do the following:

a. Enter a descriptive Secret name and Description.

b. In Resource permissions, choose Edit permissions. Paste the following policy, which
allows RoleToRetrieveSecretAtRuntime to retrieve the secret, and then choose Save.

Step 1: Create the secret 22

AWS Secrets Manager User Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountId:role/RoleToRetrieveSecretAtRuntime"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

c. At the bottom of the page, choose Next.

5. On the Configure rotation page, keep rotation off. Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Step 2: Update your code

Your code must assume the IAM role RoleToRetrieveSecretAtRuntime to be able to retrieve
the secret. For more information, see Switching to an IAM role (AWS API).

Next, you update your code to retrieve the secret from Secrets Manager using the sample code
provided by Secrets Manager.

To find the sample code

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. Scroll down to Sample code. Choose your programming language, and then copy the code
snippet.

In your application, remove the hardcoded secret and paste the code snippet. Depending on your
code language, you might need to add a call to the function or method in the snippet.

Test that your application works as expected with the secret in place of the hardcoded secret.

Step 2: Update your code 23

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

Step 3: Update the secret

The last step is to revoke and update the hardcoded secret. Refer to the source of the secret to
find instructions to revoke and update the secret. For example, you might need to deactivate the
current secret and generate a new secret.

To update the secret with the new value

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret.

3. On the Secret details page, scroll down and choose Retrieve secret value, and then choose
Edit.

4. Update the secret and then choose Save.

Next, test that your application works as expected with the new secret.

Next steps

After you remove a hardcoded secret from your code, some ideas to consider next:

• To find hardcoded secrets in your Java and Python applications, we recommend Amazon
CodeGuru Reviewer.

• You can improve performance and reduce costs by caching secrets. For more information, see
Retrieve secrets.

• For secrets that you access from multiple Regions, consider replicating your secret to improve
latency. For more information, see the section called “Replicate a secret to other Regions”.

• In this tutorial, you granted RoleToRetrieveSecretAtRuntime only the permission to
retrieve the secret value. To grant the role more permissions, for example to get metadata about
the secret or to view a list of secrets, see the section called “Permissions policy examples”.

• In this tutorial, you granted permission to RoleToRetrieveSecretAtRuntime by using the
secret's resource policy. For other ways to grant permission, see the section called “Attach a
permissions policy to an identity”.

Step 3: Update the secret 24

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html

AWS Secrets Manager User Guide

Move hardcoded database credentials to AWS Secrets Manager

If you have plaintext database credentials in your code, we recommend that you move the
credentials to Secrets Manager and then rotate them immediately. Moving the credentials to
Secrets Manager solves the problem of the credentials being visible to anyone who sees the code,
because going forward, your code retrieves the credentials directly from Secrets Manager. Rotating
the secret updates the password and then revokes the current hardcoded password so that it is no
longer valid.

For Amazon RDS, Amazon Redshift, and Amazon DocumentDB databases, use the steps in this
page to move hardcoded credentials to Secrets Manager. For other types of credentials and other
secrets, see the section called “Replace hardcoded secrets ”.

Before you begin, you need to determine who needs access to the secret. We recommend using two
IAM roles to manage permission to your secret:

• A role that manages the secrets in your organization. For more information, see the section
called “Secrets Manager administrator permissions”. You'll create and rotate the secret using this
role.

• A role that can use the credentials at runtime, RoleToRetrieveSecretAtRuntime in this
tutorial. Your code assumes this role to retrieve the secret.

Steps:

• Step 1: Create the secret

• Step 2: Update your code

• Step 3: Rotate the secret

• Next steps

Step 1: Create the secret

The first step is to copy the existing hardcoded credentials into a secret in Secrets Manager. For the
lowest latency, store the secret in the same Region as the database.

To create a secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

Replace hardcoded DB credentials 25

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose the type of database credentials to store:

• Amazon RDS database

• Amazon DocumentDB database

• Amazon Redshift data warehouse.

• For other types of secrets, see Replace hardcoded secrets .

b. For Credentials, enter the existing hardcoded credentials for the database.

c. For Encryption key, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key. You can also use your own customer managed
key, for example to access the secret from another AWS account. For information about
the costs of using a customer managed key, see Pricing.

d. For Database, choose your database.

e. Choose Next.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description.

b. In Resource permissions, choose Edit permissions. Paste the following policy, which
allows RoleToRetrieveSecretAtRuntime to retrieve the secret, and then choose Save.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountId:role/RoleToRetrieveSecretAtRuntime"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

c. At the bottom of the page, choose Next.

5. On the Configure rotation page, keep rotation off for now. You'll turn it on later. Choose Next.
Step 1: Create the secret 26

https://docs.aws.amazon.com/secretsmanager/latest/userguide/hardcoded.html

AWS Secrets Manager User Guide

6. On the Review page, review your secret details, and then choose Store.

Step 2: Update your code

Your code must assume the IAM role RoleToRetrieveSecretAtRuntime to be able to retrieve
the secret. For more information, see Switching to an IAM role (AWS API).

Next, you update your code to retrieve the secret from Secrets Manager using the sample code
provided by Secrets Manager.

To find the sample code

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. Scroll down to Sample code. Choose your language, and then copy the code snippet.

In your application, remove the hardcoded credentials and paste the code snippet. Depending on
your code language, you might need to add a call to the function or method in the snippet.

Test that your application works as expected with the secret in place of the hardcoded credentials.

Step 3: Rotate the secret

The last step is to revoke the hardcoded credentials by rotating the secret. Rotation is the process
of periodically updating a secret. When you rotate a secret, you update the credentials in both the
secret and the database. Secrets Manager can automatically rotate a secret for you on a schedule
you set.

Part of setting up rotation is ensuring that the Lambda rotation function can access both Secrets
Manager and your database. When you turn on automatic rotation, Secrets Manager creates the
Lambda rotation function in the same VPC as your database so that it has network access to the
database. The Lambda rotation function must also be able to make calls to Secrets Manager to
update the secret. We recommend that you create a Secrets Manager endpoint in the VPC so that
calls from Lambda to Secrets Manager don't leave AWS infrastructure. For instructions, see VPC
endpoint.

To turn on rotation

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

Step 2: Update your code 27

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-api.html
https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

2. On the Secrets page, choose your secret.

3. On the Secret details page, in the Rotation configuration section, choose Edit rotation.

4. In the Edit rotation configuration dialog box, do the following:

a. Turn on Automatic rotation.

b. Under Rotation schedule, enter your schedule in UTC time zone.

c. Choose Rotate immediately when the secret is stored to rotate your secret when you
save your changes.

d. Under Rotation function, choose Create a new Lambda function and enter a name for
your new function. Secrets Manager adds "SecretsManager" to the beginning of your
function name.

e. For Rotation strategy, choose Single user.

f. Choose Save.

To check that the secret rotated

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret.

3. On the Secret details page, scroll down and choose Retrieve secret value.

If the secret value changed, then rotation succeeded. If the secret value didn't change, you
need to Troubleshoot rotation by looking at the CloudWatch Logs for the rotation function.

Test that your application works as expected with the rotated secret.

Next steps

After you remove a hardcoded secret from your code, some ideas to consider next:

• You can improve performance and reduce costs by caching secrets. For more information, see
Retrieve secrets.

• You can choose a different rotation schedule. For more information, see the section called
“Schedule expressions”.

• To find hardcoded secrets in your Java and Python applications, we recommend Amazon
CodeGuru Reviewer.

Next steps 28

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html
https://docs.aws.amazon.com/codeguru/latest/reviewer-ug/welcome.html

AWS Secrets Manager User Guide

Set up alternating users rotation for AWS Secrets Manager

In this tutorial, you learn how to set up alternating users rotation for a secret that contains
database credentials. Alternating users rotation is a rotation strategy where Secrets Manager
clones the user and then alternates which user's credentials are updated. This strategy is a good
choice if you need high availability for your secret, because one of the alternating users has current
credentials to the database while the other one is being updated. For more information, see the
section called “Alternating users”.

To set up alternating users rotation, you need two secrets:

• One secret with the credentials that you want to rotate.

• A second secret that has admin credentials.

This user has permissions to clone the first user and change the first users's password. In this
tutorial, you have Amazon RDS create this secret for an admin user. Amazon RDS also manages
the admin password rotation. For more information, see the section called “Managed rotation”.

The first part of this tutorial is setting up a realistic environment. To show you how rotation works,
this tutorial uses an example Amazon RDS MySQL database. For security, the database is in a
VPC that restricts inbound internet access. To connect to the database from your local computer
through the internet, you use a bastion host, a server in the VPC that can connect to the database,
but that also allows SSH connections from the internet. The bastion host in this tutorial is an
Amazon EC2 instance, and the security groups for the instance prevent other types of connections.

After you finish the tutorial, we recommend that you clean up the resources from the tutorial.
Don't use them in a production setting.

Secrets Manager rotation uses an AWS Lambda function to update the secret and the database. For
information about the costs of using a Lambda function, see Pricing.

Tutorial:

• Permissions

• Prerequisites

• Step 1: Create an Amazon RDS database user

• Step 2: Create a secret for the user credentials

• Step 3: Test the rotated secret

Alternating users rotation 29

AWS Secrets Manager User Guide

• Step 4: Clean up resources

• Next steps

Permissions

For the tutorial prerequisites, you need administrative permissions to your AWS account. In a
production setting, it is a best practice to use different roles for each of the steps. For example,
a role with database admin permissions would create the Amazon RDS database, and a role with
network admin permissions would set up the VPC and security groups. For the tutorial steps, we
recommend you continue using the same identity.

For information about how to set up permissions in a production environment, see Authentication
and access control.

Prerequisites

For this tutorial, you need the following:

• Prereq A: Amazon VPC

• Prereq B: Amazon EC2 instance

• Prereq C: Amazon RDS database and a Secrets Manager secret for the admin credentials

• Prereq D: Allow your local computer to connect to the EC2 instance

Prereq A: Amazon VPC

In this step, you create a VPC that you can launch an Amazon RDS database and an Amazon EC2
instance into. In a later step, you'll use your computer to connect through the internet to the
bastion and then to the database, so you need to allow traffic out of the VPC. To do this, Amazon
VPC attaches an internet gateway to the VPC and adds a route in the route table so that traffic
destined for outside the VPC is sent to the internet gateway.

Within the VPC, you create a Secrets Manager endpoint and an Amazon RDS endpoint. When you
set up automatic rotation in a later step, Secrets Manager creates a Lambda rotation function
within the VPC so that it can access the database. The Lambda rotation function also calls
Secrets Manager to update the secret, and it calls Amazon RDS to get the database connection
information. By creating endpoints within the VPC, you ensure that calls from the Lambda function
to Secrets Manager and Amazon RDS don't leave AWS infrastructure. Instead, they are routed to
the endpoints within the VPC.

Permissions 30

AWS Secrets Manager User Guide

To create a VPC

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Choose Create VPC.

3. On the Create VPC page, choose VPC and more.

4. Under Name tag auto-generation, under Auto-generate, enter SecretsManagerTutorial.

5. For DNS options, choose both Enable DNS hostnames and Enable DNS resolution.

6. Choose Create VPC.

To create a Secrets Manager endpoint within the VPC

1. In the Amazon VPC console, under Endpoints, choose Create Endpoint.

2. Under Endpoint settings, for Name, enter SecretsManagerTutorialEndpoint.

3. Under Services, enter secretsmanager to filter the list, and then select the Secrets
Manager endpoint in your AWS Region. For example, in the US East (N. Virginia), choose
com.amazonaws.us-east-1.secretsmanager.

4. For VPC, choose vpc**** (SecretsManagerTutorial).

5. For Subnets, select all Availability Zones, and then for each one, choose a Subnet ID to
include.

6. For IP address type, choose IPv4.

7. For Security groups, choose the default security group.

8. For Policy, choose Full access.

9. Choose Create endpoint.

To create an Amazon RDS endpoint within the VPC

1. In the Amazon VPC console, under Endpoints, choose Create Endpoint.

2. Under Endpoint settings, for Name, enter RDSTutorialEndpoint.

3. Under Services, enter rds to filter the list, and then select the Amazon RDS endpoint in
your AWS Region. For example, in the US East (N. Virginia), choose com.amazonaws.us-
east-1.rds.

4. For VPC, choose vpc**** (SecretsManagerTutorial).

Prerequisites 31

https://console.aws.amazon.com/vpc/

AWS Secrets Manager User Guide

5. For Subnets, select all Availability Zones, and then for each one, choose a Subnet ID to
include.

6. For IP address type, choose IPv4.

7. For Security groups, choose the default security group.

8. For Policy, choose Full access.

9. Choose Create endpoint.

Prereq B: Amazon EC2 instance

The Amazon RDS database you create in a later step will be in the VPC, so to access it, you need a
bastion host. The bastion host is also in the VPC, but in a later step, you configure a security group
to allow your local computer to connect to the bastion host with SSH.

To create an EC2 instance for a bastion host

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

2. Choose Instances and then choose Launch Instances.

3. Under Name and tags, for Name, enter SecretsManagerTutorialInstance.

4. Under Application and OS Images, keep the default Amazon Linux 2 AMI (HMV) Kernel
5.10.

5. Under Instance type, keep the default t2.micro.

6. Under Key pair, choose Create key pair.

In the Create key pair dialog box, for Key pair name, enter
SecretsManagerTutorialKeyPair, and then choose Create key pair.

The key pair is automatically downloaded.

7. Under Network settings, choose Edit, and then do the following:

a. For VPC, choose vpc-**** SecretsManagerTutorial.

b. For Auto-assign Public IP, choose Enable.

c. For Firewall, choose Select existing security group.

d. For Common security groups, choose default.

8. Choose Launch instance.

Prerequisites 32

https://console.aws.amazon.com/ec2/

AWS Secrets Manager User Guide

Prereq C: Amazon RDS database and a Secrets Manager secret for the admin
credentials

In this step, you create an Amazon RDS MySQL database and configure it so that Amazon RDS
creates a secret to contain the admin credentials. Then Amazon RDS automatically manages
rotation of the admin secret for you. For more information, see Managed rotation.

As part of creating your database, you specify the bastion host you created in the previous step.
Then Amazon RDS sets up security groups so that the database and the instance can access each
other. You add a rule to the security group attached to the instance to allow your local computer to
connect to it as well.

To create an Amazon RDS database with an Secrets Manager secret that contains the admin
credentials

1. In the Amazon RDS console, choose Create database.

2. In the Engine options section, for Engine type, choose MySQL.

3. In the Templates section, choose Free tier.

4. In the Settings section, do the following:

a. For DB instance identifier, enter SecretsManagerTutorial.

b. Under Credential settings, select Manage master credentials in AWS Secrets Manager.

5. In the Connectivity section, for Computer resource, choose Connect to an EC2 computer
resource, and then for EC2 Instance, choose SecretsManagerTutorialInstance.

6. Choose Create database.

Prereq D: Allow your local computer to connect to the EC2 instance

In this step, you configure the EC2 instance you created in Prereq B to allow your local computer
to connect to it. To do this, you edit the security group that Amazon RDS added in Prereq C to
include a rule that allows your computer's IP address to connect with SSH. The rule allows your
local computer (identified by your current IP address) to connect to the bastion host by using SSH
over the internet.

To allow your local computer to connect to the EC2 instance

1. Open the Amazon EC2 console at https://console.aws.amazon.com/ec2/.

Prerequisites 33

https://console.aws.amazon.com/ec2/

AWS Secrets Manager User Guide

2. On the EC2 instance SecretsManagerTutorialInstance, on the Security tab, under Security
groups, choose sg-*** (ec2-rds-X).

3. Under Input rules, choose Edit inbound rules.

4. Choose Add rule, and then for the rule, do the following:

a. For Type, choose SSH.

b. For Source type, choose My IP.

Step 1: Create an Amazon RDS database user

First, you need a user whose credentials will be stored in the secret. To create the user, log into the
Amazon RDS database with admin credentials. For simplicity, in the tutorial, you create a user with
full permission to a database. In a production setting, this is not typical, and we recommend that
you follow the principle of least privilege.

To connect to the database, you use a MySQL client tool. In this tutorial, you use MySQL
Workbench, a GUI-based application. To install MySQL Workbench, see Download MySQL
Workbench.

To connect to the database, create a connection configuration in MySQL Workbench. For the
configuration, you need some information from both Amazon EC2 and Amazon RDS.

To create a database connection in MySQL Workbench

1. In MySQL Workbench, next to MySQL Connections, choose the (+) button.

2. In the Setup New Connection dialog box, do the following:

a. For Connection Name, enter SecretsManagerTutorial.

b. For Connection Method, choose Standard TCP/IP over SSH.

c. On the Parameters tab, do the following:

i. For SSH Hostname, enter the public IP address of the Amazon EC2 instance.

You can find the IP address on the Amazon EC2 console by choosing the instance
SecretsManagerTutorialInstance. Copy the IP address under Public IPv4 DNS.

ii. For SSH Username, enter ec2-user.

iii. For SSH Keyfile, choose the key pair file SecretsManagerTutorialKeyPair.pem you
downloaded in the previous prerequisite.

Step 1: Create an Amazon RDS database user 34

http://dev.mysql.com/downloads/workbench/
http://dev.mysql.com/downloads/workbench/

AWS Secrets Manager User Guide

iv. For MySQL Hostname, enter the Amazon RDS endpoint address.

You can find the endpoint address on the Amazon RDS console by choosing the
database instance secretsmanagertutorialdb. Copy the address under Endpoint.

v. For Username, enter admin.

d. Choose OK.

To retrieve the admin password

1. In the Amazon RDS console, navigate to your database.

2. On the Configuration tab, under Master Credentials ARN, choose Manage in Secrets
Manager.

The Secrets Manager console opens.

3. In the secret details page, choose Retrieve secret value.

4. The password appears in the Secret value section.

To create a database user

1. In MySQL Workbench, choose the connection SecretsManagerTutorial.

2. Enter the admin password you retrieved from the secret.

3. In MySQL Workbench, in the Query window, enter the following commands (including a strong
password) and then choose Execute.

CREATE DATABASE myDB;
CREATE USER 'appuser'@'%' IDENTIFIED BY 'EXAMPLE-PASSWORD';
GRANT ALL PRIVILEGES ON myDB . * TO 'appuser'@'%';

In the Output window, you see the commands are successful.

Step 2: Create a secret for the user credentials

Next, you create a secret to store the credentials of the user you just created. This is the secret
you'll be rotating. You turn on automatic rotation, and to indicate the alternating users strategy,
you choose a separate superuser secret that has permission to change the first user's password.

Step 2: Create a secret for the user credentials 35

AWS Secrets Manager User Guide

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose Credentials for Amazon RDS database.

b. For Credentials, enter the username appuser and the password you entered for the
database user you created using MySQL Workbench.

c. For Database, choose secretsmanagertutorialdb.

d. Choose Next.

4. On the Configure secret page, for Secret name, enter SecretsManagerTutorialAppuser
and then choose Next.

5. On the Configure rotation page, do the following:

a. Turn on Automatic rotation.

b. For Rotation schedule, set a schedule of Days: 2 Days with Duration: 2h. Keep Rotate
immediately selected.

c. For Rotation function, choose Create a rotation function, and then for the function
name, enter tutorial-alternating-users-rotation.

d. For Rotation strategy, choose Alternating users, and then under Admin credential
secret, choose the secret named rds!cluster... which has a Description that includes
the name of the database you created in this tutorial secretsmanagertutorial,
for example Secret associated with primary RDS DB instance:
arn:aws:rds:Region:AccountId:db:secretsmanagertutorial.

e. Choose Next.

6. On the Review page, choose Store.

Secrets Manager returns to the the secret details page. At the top of the page, you can see
the rotation configuration status. Secrets Manager uses CloudFormation to create resources
such as the Lambda rotation function and an execution role that runs the Lambda function.
When CloudFormation finishes, the banner changes to Secret scheduled for rotation. The first
rotation is complete.

Step 2: Create a secret for the user credentials 36

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

Step 3: Test the rotated secret

Now that the secret is rotated, you can check that the secret contains valid new credentials. The
password in the secret has changed from the original credentials.

To retrieve the new password from the secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret SecretsManagerTutorialAppuser.

3. On the Secret details page, scroll down and choose Retrieve secret value.

4. In the Key/value table, copy the Secret value for password.

To test the credentials

1. In MySQL Workbench, right-click the connection SecretsManagerTutorial and then choose
Edit Connection.

2. In the Manage Server Connections dialog box, for Username, enter appuser, and then
choose Close.

3. Back in MySQL Workbench, choose the connection SecretsManagerTutorial.

4. In the Open SSH Connection dialog box, for Password, paste the password you retrieved from
the secret, and then choose OK.

If the credentials are valid, then MySQL Workbench opens to the design page for the database.

This shows that the secret rotation is successful. The credentials in the secret have been updated
and it is a valid password to connect to the database.

Step 4: Clean up resources

If you want to try another rotation strategy, single user rotation, skip cleaning up resources and go
to the section called “Single user rotation”.

Otherwise, to avoid potential charges, and to remove the EC2 instance that has access to the
internet, delete the following resources you created in this tutorial and its prerequisites:

• Amazon RDS database instance. For instructions, see Deleting a DB instance in the Amazon RDS
User Guide.

Step 3: Test the rotated secret 37

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_DeleteInstance.html

AWS Secrets Manager User Guide

• Amazon EC2 instance. For instructions, see Terminate an instance in the Amazon EC2 User Guide
for Linux Instances.

• Secrets Manager secret SecretsManagerTutorialAppuser. For instructions, see the section
called “Delete a secret”.

• Secrets Manager endpoint. For instructions, see Delete a VPC endpoint in the AWS PrivateLink
Guide.

• VPC endpoint. For instructions, see Delete your VPC in the AWS PrivateLink Guide.

Next steps

• Learn how to retrieve secrets in your applications.

• Learn about other rotation schedules.

Set up single user rotation for AWS Secrets Manager

In this tutorial, you learn how to set up single user rotation for a secret that contains database
credentials. Single user rotation is a rotation strategy where Secrets Manager updates a user's
credentials in both the secret and the database. For more information, see the section called
“Single user”.

After you finish the tutorial, we recommend that you clean up the resources from the tutorial.
Don't use them in a production setting.

Secrets Manager rotation uses an AWS Lambda function to update the secret and the database. For
information about the costs of using a Lambda function, see Pricing.

Contents

• Permissions

• Prerequisites

• Step 1: Create an Amazon RDS database user

• Step 2: Create a secret for the database user credentials

• Step 3: Test the rotated password

• Step 4: Clean up resources

• Next steps

Next steps 38

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/terminating-instances.html#terminating-instances-console
https://docs.aws.amazon.com/vpc/latest/privatelink/delete-vpc-endpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/working-with-vpcs.html#VPC_Deleting

AWS Secrets Manager User Guide

Permissions

For the tutorial prerequisites, you need administrative permissions to your AWS account. In a
production setting, it is a best practice to use different roles for each of the steps. For example,
a role with database admin permissions would create the Amazon RDS database, and a role with
network admin permissions would set up the VPC and security groups. For the tutorial steps, we
recommend you continue using the same identity.

For information about how to set up permissions in a production environment, see Authentication
and access control.

Prerequisites

The prerequisite for this tutorial is the section called “Alternating users rotation”. Don't clean up
the resources at the end of the first tutorial. After that tutorial, you have a realistic environment
with an Amazon RDS database and a Secrets Manager secret that contains admin credentials for
the database. You also have a second secret that contains credentials for a database user, but you
don't use that secret in this tutorial.

You also have a connection configured in MySQL Workbench to connect to the database with the
admin credentials.

Step 1: Create an Amazon RDS database user

First, you need a user whose credentials will be stored in the secret. To create the user, log into
the Amazon RDS database with admin credentials that are stored in a secret. For simplicity, in the
tutorial, you create a user with full permission to a database. In a production setting, this is not
typical, and we recommend that you follow the principle of least privilege.

To retrieve the admin password

1. In the Amazon RDS console, navigate to your database.

2. On the Configuration tab, under Master Credentials ARN, choose Manage in Secrets
Manager.

The Secrets Manager console opens.

3. In the secret details page, choose Retrieve secret value.

4. The password appears in the Secret value section.

Permissions 39

AWS Secrets Manager User Guide

To create a database user

1. In MySQL Workbench, right-click the connection SecretsManagerTutorial and then choose
Edit Connection.

2. In the Manage Server Connections dialog box, for Username, enter admin, and then choose
Close.

3. Back in MySQL Workbench, choose the connection SecretsManagerTutorial.

4. Enter the admin password you retrieved from the secret.

5. In MySQL Workbench, in the Query window, enter the following commands (including a strong
password) and then choose Execute.

CREATE USER 'dbuser'@'%' IDENTIFIED BY 'EXAMPLE-PASSWORD';
GRANT ALL PRIVILEGES ON myDB . * TO 'dbuser'@'%';

In the Output window, you see the commands are successful.

Step 2: Create a secret for the database user credentials

Next, you create a secret to store the credentials of the user you just created, and you turn on
automatic rotation, including an immediate rotation. Secrets Manager rotates the secret, which
means the password is programmatically generated - no human has seen this new password.
Having the rotation begin immediately can also help you determine if rotation is set up correctly.

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose Credentials for Amazon RDS database.

b. For Credentials, enter the username dbuser and the password you entered for the
database user you created using MySQL Workbench.

c. For Database, choose secretsmanagertutorialdb.

d. Choose Next.

4. On the Configure secret page, for Secret name, enter SecretsManagerTutorialDbuser
and then choose Next.

5. On the Configure rotation page, do the following:

Step 2: Create a secret for the database user credentials 40

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

a. Turn on Automatic rotation.

b. For Rotation schedule, set a schedule of Days: 2 Days with Duration: 2h. Keep Rotate
immediately selected.

c. For Rotation function, choose Create a rotation function, and then for the function
name, enter tutorial-single-user-rotation.

d. For Rotation strategy, choose Single user.

e. Choose Next.

6. On the Review page, choose Store.

Secrets Manager returns to the the secret details page. At the top of the page, you can see
the rotation configuration status. Secrets Manager uses CloudFormation to create resources
such as the Lambda rotation function and an execution role that runs the Lambda function.
When CloudFormation finishes, the banner changes to Secret scheduled for rotation. The first
rotation is complete.

Step 3: Test the rotated password

After the first secret rotation, which might take a few seconds, you can check that the secret still
contains valid credentials. The password in the secret has changed from the original credentials.

To retrieve the new password from the secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Secrets, and then choose the secret SecretsManagerTutorialDbuser.

3. On the Secret details page, scroll down and choose Retrieve secret value.

4. In the Key/value table, copy the Secret value for password.

To test the credentials

1. In MySQL Workbench, right-click the connection SecretsManagerTutorial and then choose
Edit Connection.

2. In the Manage Server Connections dialog box, for Username, enter dbuser, and then choose
Close.

3. Back in MySQL Workbench, choose the connection SecretsManagerTutorial.

Step 3: Test the rotated password 41

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

4. In the Open SSH Connection dialog box, for Password, paste the password you retrieved from
the secret, and then choose OK.

If the credentials are valid, then MySQL Workbench opens to the design page for the database.

Step 4: Clean up resources

To avoid potential charges, delete the secret you created in this tutorial. For instructions, see the
section called “Delete a secret”.

To clean up resources created in the previous tutorial, see the section called “Step 4: Clean up
resources”.

Next steps

• Learn how to retrieve secrets in your applications. See Retrieve secrets.

• Learn about other rotation schedules. See the section called “Schedule expressions”.

Step 4: Clean up resources 42

AWS Secrets Manager User Guide

Authentication and access control for AWS Secrets
Manager

Secrets Manager uses AWS Identity and Access Management (IAM) to secure access to secrets.
IAM provides authentication and access control. Authentication verifies the identity of individuals'
requests. Secrets Manager uses a sign-in process with passwords, access keys, and multi-factor
authentication (MFA) tokens to verify the identity of the users. See Signing in to AWS. Access
control ensures that only approved individuals can perform operations on AWS resources such
as secrets. Secrets Manager uses policies to define who has access to which resources, and which
actions the identity can take on those resources. See Policies and permissions in IAM.

You can use AWS Identity and Access Management Roles Anywhere to obtain temporary security
credentials in IAM for workloads such as servers, containers, and applications that run outside
of AWS. Your workloads can use the same IAM policies and IAM roles that you use with AWS
applications to access AWS resources. With IAM Roles Anywhere, you can use Secrets Manager to
store and manage credentials that can be accessed by resources in AWS as well as on-premises
devices such as application servers. For more information, see the IAM Roles Anywhere User Guide.

Secrets Manager administrator permissions

To grant Secrets Manager administrator permissions, follow the instructions at Adding and
removing IAM identity permissions, and attach the following policies:

• SecretsManagerReadWrite

• IAMFullAccess

We recommend you do not grant administrator permissions to end users. While this allows
your users to create and manage their secrets, the permission required to enable rotation
(IAMFullAccess) grants significant permissions that are not appropriate for end users.

Permissions to access secrets

By using IAM permission policies, you control which users or services have access to your secrets. A
permissions policy describes who can perform which actions on which resources. You can:

• the section called “Attach a permissions policy to an identity”

Secrets Manager administrator permissions 43

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/rolesanywhere/latest/userguide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies

AWS Secrets Manager User Guide

• the section called “Attach a permissions policy to a secret”

Permissions for Lambda rotation functions

Secrets Manager uses AWS Lambda functions to rotate secrets. The Lambda function must have
access to the secret as well as the database or service that the secret contains credentials for. See
Permissions for rotation.

Permissions for encryption keys

Secrets Manager uses AWS Key Management Service (AWS KMS) keys to encrypt secrets. The
AWS managed key aws/secretsmanager automatically has the correct permissions. If you
use a different KMS key, Secrets Manager needs permissions to that key. See the section called
“Permissions for the KMS key”.

Attach a permissions policy to an identity

You can attach permissions policies to IAM identities: users, user groups, and roles. In an identity-
based policy, you specify which secrets the identity can access and the actions the identity can
perform on the secrets. For more information, see Adding and removing IAM identity permissions.

You can grant permissions to a role that represents an application or user in another service. For
example, an application running on an Amazon EC2 instance might need access to a database. You
can create an IAM role attached to the EC2 instance profile and then use a permissions policy to
grant the role access to the secret that contains credentials for the database. For more information,
see Using an IAM role to grant permissions to applications running on Amazon EC2 instances.
Other services that you can attach roles to include Amazon Redshift, AWS Lambda, and Amazon
ECS.

You can also grant permissions to users authenticated by an identity system other than IAM. For
example, you can associate IAM roles to mobile app users who sign in with Amazon Cognito. The
role grants the app temporary credentials with the permissions in the role permission policy. Then
you can use a permissions policy to grant the role access to the secret. For more information, see
Identity providers and federation.

You can use identity-based policies to:

• Grant an identity access to multiple secrets.

Permissions for Lambda rotation functions 44

https://docs.aws.amazon.com/secretsmanager/latest/userguide/rotating-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/security-encryption.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/redshift/latest/dg/c-getting-started-using-spectrum-add-role.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-permissions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html

AWS Secrets Manager User Guide

• Control who can create new secrets, and who can access secrets that haven't been created yet.

• Grant an IAM group access to secrets.

For more information, see the section called “Permissions policy examples”.

Attach a permissions policy to an AWS Secrets Manager secret

In a resource-based policy, you specify who can access the secret and the actions they can perform
on the secret. You can use resource-based policies to:

• Grant access to a single secret to multiple users and roles.

• Grant access to users or roles in other AWS accounts.

See the section called “Permissions policy examples”.

When you attach a resource-based policy to a secret in the console, Secrets Manager uses the
automated reasoning engine Zelkova and the API ValidateResourcePolicy to prevent you
from granting a wide range of IAM principals access to your secrets. Alternatively, you can call the
PutResourcePolicy API with the BlockPublicPolicy parameter from the CLI or SDK.

To view, change, or delete the resource policy for a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, on the Overview tab, in the Resource permissions section, choose
Edit permissions.

4. In the code field, do one of the following, and then choose Save:

• To attach or modify a resource policy, enter the policy.

• To delete the policy, clear the code field.

AWS CLI

Example Retrieve a resource policy

The following get-resource-policy example retrieves the resource-based policy attached to a
secret.

Attach a permissions policy to a secret 45

https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-resource-policy.html

AWS Secrets Manager User Guide

aws secretsmanager get-resource-policy \
 --secret-id MyTestSecret

Example Delete a resource policy

The following delete-resource-policy example deletes the resource-based policy attached to
a secret.

aws secretsmanager delete-resource-policy \
 --secret-id MyTestSecret

Example Add a resource policy

The following put-resource-policy example adds a permissions policy to a secret, checking
first that the policy does not provide broad access to the secret. The policy is read from a file. For
more information, see Loading AWS CLI parameters from a file in the AWS CLI User Guide.

aws secretsmanager put-resource-policy \
 --secret-id MyTestSecret \
 --resource-policy file://mypolicy.json \
 --block-public-policy

Contents of mypolicy.json:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/MyRole"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

AWS SDK

To retrieve the policy attached to a secret, use GetResourcePolicy .

AWS SDK 46

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/delete-resource-policy.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/put-resource-policy.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html

AWS Secrets Manager User Guide

To delete a policy attached to a secret, use DeleteResourcePolicy.

To attach a policy to a secret, use PutResourcePolicy. If there is already a policy attached, the
command replaces it with the new policy. The policy must be formatted as JSON structured text.
See JSON policy document structure. Use the the section called “Permissions policy examples” to
get started writing your policy.

For more information, see the section called “AWS SDKs”.

AWS managed policy for AWS Secrets Manager

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS
managed policies are designed to provide permissions for many common use cases so that you can
start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your
specific use cases because they're available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use
cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the
permissions defined in an AWS managed policy, the update affects all principal identities (users,
groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed
policy when a new AWS service is launched or new API operations become available for existing
services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: SecretsManagerReadWrite

This policy provides read/write access to AWS Secrets Manager, including permission to describe
Amazon RDS, Amazon Redshift, and Amazon DocumentDB resources, and permission to use
AWS KMS to encrypt and decrypt secrets. This policy also provides permission to create AWS
CloudFormation change sets, get rotation templates from an Amazon S3 bucket that is managed
by AWS, list AWS Lambda functions, and describe Amazon EC2 VPCs. These permissions are
required by the console to set up rotation with existing rotation functions.

To create new rotation functions, you must also have permission to create AWS CloudFormation
stacks and AWS Lambda execution roles. You can assign the IAMFullAccess managed policy. See
Permissions for rotation.

AWS managed policies 47

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies-introduction
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#customer-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/IAMFullAccess.html

AWS Secrets Manager User Guide

Permissions details

This policy includes the following permissions.

• secretsmanager – Allows principals to perform all Secrets Manager actions.

• cloudformation – Allows principals to create AWS CloudFormation stacks. This is required
so that principals using the console to turn on rotation can create Lambda rotation functions
through AWS CloudFormation stacks. For more information, see the section called “How Secrets
Manager uses AWS CloudFormation”.

• ec2 – Allows principals to describe Amazon EC2 VPCs. This is required so that principals using
the console can create rotation functions in the same VPC as the database of the credentials they
are storing in a secret.

• kms – Allows principals to use AWS KMS keys for cryptographic operations. This is required so
that Secrets Manager can encrypt and decrypt secrets. For more information, see the section
called “Secret encryption and decryption”.

• lambda – Allows principals to list Lambda rotation functions. This is required so that principals
using the console can choose existing rotation functions.

• rds – Allows principals to describe clusters and instances in Amazon RDS. This is required so that
principals using the console can choose Amazon RDS clusters or instances.

• redshift – Allows principals to describe clusters in Amazon Redshift. This is required so that
principals using the console can choose Amazon Redshift clusters.

• redshift-serverless – Allows principals to describe namespaces in Amazon Redshift
Serverless. This is required so that principals using the console can choose Amazon Redshift
Serverless namespaces.

• docdb-elastic – Allows principals to describe elastic clusters in Amazon DocumentDB. This is
required so that principals using the console can choose Amazon DocumentDB elastic clusters.

• tag – Allows principals to get all resources in the account that are tagged.

• serverlessrepo – Allows principals to create AWS CloudFormation change sets. This is
required so that principals using the console can create Lambda rotation functions. For more
information, see the section called “How Secrets Manager uses AWS CloudFormation”.

• s3 – Allows principals to get objects from an Amazon S3 bucket that is managed by AWS.
This bucket contains Lambda Rotation function templates. This permission is required so that
principals using the console can create Lambda rotation functions based on the templates

SecretsManagerReadWrite 48

AWS Secrets Manager User Guide

in the bucket. For more information, see the section called “How Secrets Manager uses AWS
CloudFormation”.

To view the policy, see SecretsManagerReadWrite JSON policy document.

Secrets Manager updates to AWS managed policies

View details about updates to AWS managed policies for Secrets Manager.

Change Description Date

SecretsManagerReadWrite –
Update to an existing policy

This policy was updated
to allow describe access to
Amazon Redshift Serverles
s so that console users can
choose a Amazon Redshift
Serverless namespace when
they create an Amazon
Redshift secret.

March 12, 2024

SecretsManagerReadWrite –
Update to an existing policy

This policy was updated
to allow describe access to
Amazon DocumentDB elastic
clusters so that console users
can choose an elastic cluster
when they create an Amazon
DocumentDB secret.

September 12, 2023

SecretsManagerReadWrite –
Update to an existing policy

This policy was updated
to allow describe access to
Amazon Redshift so that
console users can choose
a Amazon Redshift cluster
when they create an Amazon
Redshift secret. The update
also added new permissio
ns to allow read access to an
Amazon S3 bucket managed

June 24, 2020

Policy updates 49

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/SecretsManagerReadWrite.html#SecretsManagerReadWrite-json

AWS Secrets Manager User Guide

Change Description Date

by AWS that stores the
Lambda rotation function
templates.

SecretsManagerReadWrite –
Update to an existing policy

This policy was updated
to allow describe access to
Amazon RDS clusters so that
console users can choose a
cluster when they create an
Amazon RDS secret.

May 3, 2018

SecretsManagerReadWrite –
New policy

Secrets Manager created a
policy to grant permissions
that are needed for using the
console with all read/write
access to Secrets Manager.

April 04, 2018

Secrets Manager started
tracking changes

Secrets Manager started
tracking changes for its AWS
managed policies.

April 04, 2018

Determine who has permissions to your AWS Secrets Manager
secrets

By default, IAM identities don't have permission to access secrets. When authorizing access to a
secret, Secrets Manager evaluates the resource-based policy attached to the secret and all identity-
based policies attached to the IAM user or role sending the request. To do this, Secrets Manager
uses a process similar to the one described in Determining whether a request is allowed or denied
in the IAM User Guide.

When multiple policies apply to a request, Secrets Manager uses a hierarchy to control permissions:

1. If a statement in any policy with an explicit deny matches the request action and resource:

The explicit deny overrides everything else and blocks the action.

Determine who has permissions to your secrets 50

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html#policy-eval-denyallow

AWS Secrets Manager User Guide

2. If there is no explicit deny, but a statement with an explicit allow matches the request action
and resource:

The explicit allow grants the action in the request access to the resources in the statement.

If the identity and the secret are in two different accounts, there must be an allow in both the
resource policy for the secret and the policy attached to the identity, otherwise AWS denies the
request. For more information, see Cross-account access.

3. If there is no statement with an explicit allow that matches the request action and resource:

AWS denies the request by default, which is called an implicit deny.

To view the resource-based policy for a secret

• Do one of the following:

• Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.
In the secret details page for your secret, in the Resource permissions section, choose Edit
permissions.

• Use the AWS CLI to call get-resource-policy or AWS SDK to call
GetResourcePolicy.

To determine who has access through identity-based policies

• Use the IAM policy simulator. See Testing IAM policies with the IAM policy simulator

Permissions to AWS Secrets Manager secrets for users in a
different account

To allow users in one account to access secrets in another account (cross-account access), you must
allow access both in a resource policy and in an identity policy. This is different than granting
access to identities in the same account as the secret.

You must also allow the identity to use the KMS key that the secret is encrypted with. This is
because you can't use the AWS managed key (aws/secretsmanager) for cross-account access.
Instead, you must encrypt your secret with a KMS key that you create, and then attach a key policy

Cross-account access 51

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-resource-policy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_testing-policies.html

AWS Secrets Manager User Guide

to it. There is a charge for creating KMS keys. To change the encryption key for a secret, see the
section called “Modify a secret”.

The following example policies assume you have a secret and encryption key in Account1, and an
identity in Account2 that you want to allow to access the secret value.

Step 1: Attach a resource policy to the secret in Account1

• The following policy allows ApplicationRole in Account2 to access the secret in
Account1. To use this policy, see the section called “Attach a permissions policy to a secret”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account2:role/ApplicationRole"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

Step 2: Add a statement to the key policy for the KMS key in Account1

• The following key policy statement allows ApplicationRole in Account2 to use the KMS
key in Account1 to decrypt the secret in Account1. To use this statement, add it to the key
policy for your KMS key. For more information, see Changing a key policy.

{
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::Account2:role/ApplicationRole"
 },
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey"
],
 "Resource": "*"

Cross-account access 52

https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-modifying.html

AWS Secrets Manager User Guide

}

Step 3: Attach an identity policy to the identity in Account2

• The following policy allows ApplicationRole in Account2 to access the secret in Account1
and decrypt the secret value by using the encryption key which is also in Account1. To use
this policy, see the section called “Attach a permissions policy to an identity”. You can find the
ARN for your secret in the Secrets Manager console on the secret details page under Secret
ARN. Alternatively, you can call describe-secret.

{
 "Version" : "2012-10-17",
 "Statement" : [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "SecretARN"
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "arn:aws:kms:Region:Account1:key/EncryptionKey"
 }
]
}

Lambda rotation function execution role permissions for AWS
Secrets Manager

Secrets Manager uses a Lambda function to rotate a secret. For the Lambda function to run,
Lambda assumes an IAM execution role and provides those credentials to the Lambda function
code. For instructions on how to set up automatic rotation, see:

• Automatic rotation for database secrets (console)

• Automatic rotation (console)

• Automatic rotation (AWS CLI)

Permissions for rotation 53

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Secrets Manager User Guide

The following examples show inline policies for Lambda rotation function execution roles. To
create an execution role and attach a permissions policy, see AWS Lambda execution role.

Examples:

• Policy for a Lambda rotation function execution role

• Policy statement for customer managed key

• Policy statement for alternating users strategy

Policy for a Lambda rotation function execution role

The following example policy allows the rotation function to:

• Run Secrets Manager operations for SecretARN.

• Create a new password.

• Set up the required configuration if your database or service runs in a VPC. See Configuring a
Lambda function to access resources in a VPC.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "SecretARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword"
],
 "Resource": "*"
 },
 {
 "Action": [

Policy for a Lambda rotation function execution role 54

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html

AWS Secrets Manager User Guide

 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DetachNetworkInterface"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Policy statement for customer managed key

If the secret is encrypted with a KMS key other than the AWS managed key aws/
secretsmanager, then you need to grant the Lambda execution role permission to use the
key. You can use the SecretARN encryption context to limit the use of the decrypt function, so
the rotation function role only has access to decrypt the secret it is responsible for rotating. The
following example shows a statement to add to the execution role policy to decrypt the secret
using the KMS key.

 {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey"
],
 "Resource": "KMSKeyARN"
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:SecretARN": "SecretARN"
 }
 }
 }

To use the rotation function for multiple secrets that are encrypted with a customer managed key,
add a statement like the following example to allow the execution role to decrypt the secret.

 {
 "Effect": "Allow",
 "Action": [

Policy statement for customer managed key 55

AWS Secrets Manager User Guide

 "kms:Decrypt",
 "kms:DescribeKey",
 "kms:GenerateDataKey"
],
 "Resource": "KMSKeyARN"
 "Condition": {
 "StringEquals": {
 "kms:EncryptionContext:SecretARN": [
 "arn1",
 "arn2"
]
 }
 }
 }

Policy statement for alternating users strategy

For information about the alternating users rotation strategy, see the section called “Rotation
strategy”.

For a secret that contains Amazon RDS credentials, if you are using the alternating users strategy
and the superuser secret is managed by Amazon RDS, then you must also allow the rotation
function to call read-only APIs on Amazon RDS so that it can get the connection information for
the database. We recommend you attach the AWS managed policy AmazonRDSReadOnlyAccess.

The following example policy allows the function to:

• Run Secrets Manager operations for SecretARN.

• Retrieve the credentials in the superuser secret. Secrets Manager uses the credentials in the
superuser secret to update the credentials in the rotated secret.

• Create a new password.

• Set up the required configuration if your database or service runs in a VPC. For more information,
see Configuring a Lambda function to access resources in a VPC.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Policy statement for alternating users strategy 56

https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSReadOnlyAccess.html
https://docs.aws.amazon.com/lambda/latest/dg/vpc.html

AWS Secrets Manager User Guide

 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:GetSecretValue",
 "secretsmanager:PutSecretValue",
 "secretsmanager:UpdateSecretVersionStage"
],
 "Resource": "SecretARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "SuperuserSecretARN"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetRandomPassword"
],
 "Resource": "*"
 },
 {
 "Action": [
 "ec2:CreateNetworkInterface",
 "ec2:DeleteNetworkInterface",
 "ec2:DescribeNetworkInterfaces",
 "ec2:DetachNetworkInterface"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

Permissions policy examples for AWS Secrets Manager

A permissions policy is JSON structured text. See JSON policy document structure.

Permissions policies that you attach to resources and identities are very similar. Some elements you
include in a policy for access to secrets include:

Permissions policy examples 57

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies-introduction

AWS Secrets Manager User Guide

• Principal: who to grant access to. See Specifying a principal in the IAM User Guide. When you
attach a policy to an identity, you don't include a Principal element in the policy.

• Action: what they can do. See the section called “Secrets Manager actions”.

• Resource: which secrets they can access. See the section called “Secrets Manager resources”.

The wildcard character (*) has different meaning depending on what you attach the policy to:

• In a policy attached to a secret, * means the policy applies to this secret.

• In a policy attached to an identity, * means the policy applies to all resources, including
secrets, in the account.

To attach a policy to a secret, see the section called “Attach a permissions policy to a secret”.

To attach a policy to an identity, see the section called “Attach a permissions policy to an identity”.

Topics

• Example: Permission to retrieve individual secret values

• Permission to retrieve a group of secret values in a batch

• Example: Wildcards

• Example: Permission to create secrets

• Example: Permissions and VPCs

• Example: Control access to secrets using tags

• Example: Limit access to identities with tags that match secrets' tags

• Example: Service principal

Example: Permission to retrieve individual secret values

To grant permission to retrieve secret values, you can attach policies to secrets or identities. For
help determining which type of policy to use, see Identity-based policies and resource-based
policies. For information about how to attach a policy, see the section called “Attach a permissions
policy to a secret” and the section called “Attach a permissions policy to an identity”.

The following examples show two different ways to grant access to a secret. The first example is
a resource-based policy that you can attach to a secret. This example is useful when you want to
grant access to a single secret to multiple users or roles. The second example is an identity-based
policy that you can attach to a user or role in IAM. This example is useful when you want to grant

Example: Permission to retrieve individual secret values 58

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#Principal_specifying
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

AWS Secrets Manager User Guide

access to an IAM group. To grant permission to retrieve a group of secrets in a batch API call, see
the section called “Permission to retrieve a group of secret values in a batch”.

Example Read one secret (attach to a secret)

You can grant access to a secret by attaching the following policy to the secret. To use this policy,
see the section called “Attach a permissions policy to a secret”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::AccountId:role/EC2RoleToAccessSecrets"
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
]
}

Example Read one secret (attach to an identity)

You can grant access to a secret by attaching the following policy to an identity. To use this policy,
see the section called “Attach a permissions policy to an identity”. If you attach this policy to the
role EC2RoleToAccessSecrets, it grants the same permissions as the previous policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "SecretARN"
 }
]
}

Example: Permission to retrieve individual secret values 59

AWS Secrets Manager User Guide

Example Read a secret that is encrypted using a customer managed key (attach to identity)

If a secret is encrypted using a customer managed key, you can grant access to read the secret by
attaching the following policy to an identity. To use this policy, see the section called “Attach a
permissions policy to an identity”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "SecretARN"
 },
 {
 "Effect": "Allow",
 "Action": "kms:Decrypt",
 "Resource": "KMSKeyARN"
 }
]
}

Permission to retrieve a group of secret values in a batch

Example Read a group of secrets in a batch (attach to identity)

You can grant access to retrieve a group of secrets in a batch API call by attaching the following
policy to an identity. The policy restricts the caller so that they can only retrieve the secrets
specified by SecretARN1, SecretARN2, and SecretARN3, even if the batch call includes other
secrets. If the caller also requests other secrets in the batch API call, Secrets Manager won't return
them. For more information, see the section called “Retrieve secrets in a batch”. To use this policy,
see the section called “Attach a permissions policy to an identity”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:BatchGetSecretValue",
 "secretsmanager:ListSecrets"
],

Permission to retrieve a group of secret values in a batch 60

AWS Secrets Manager User Guide

 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": [
 "SecretARN1",
 "SecretARN2",
 "SecretARN3"
]
 }
]
}

Example: Wildcards

You can use wildcards to include a set of values in a policy element.

Example Access all secrets in a path (attach to identity)

The following policy grants access to retrieve all secrets with a name beginning with "TestEnv/".
To use this policy, see the section called “Attach a permissions policy to an identity”.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "arn:aws:secretsmanager:Region:AccountId:secret:TestEnv/*"
 }
}

Example Access metadata on all secrets (attach to identity)

The following policy grants DescribeSecret and permissions beginning with List:
ListSecrets and ListSecretVersionIds. To use this policy, see the section called “Attach a
permissions policy to an identity”.

{
 "Version": "2012-10-17",

Example: Wildcards 61

AWS Secrets Manager User Guide

 "Statement": {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:DescribeSecret",
 "secretsmanager:List*"
],
 "Resource": "*"
 }
}

Example Match secret name (attach to identity)

The following policy grants all Secrets Manager permissions for a secret by name. To use this
policy, see the section called “Attach a permissions policy to an identity”.

To match a secret name, you create the ARN for the secret by putting together the Region,
Account ID, secret name, and the wildcard (?) to match individual random characters. Secrets
Manager appends six random characters to secret names as part of their ARN, so you can use this
wildcard to match those characters. If you use the syntax "another_secret_name-*", Secrets
Manager matches not only the intended secret with the 6 random characters, but also matches
"another_secret_name-<anything-here>a1b2c3".

Because you can predict all of the parts of the ARN of a secret except the 6 random characters,
using the wildcard character '??????' syntax enables you to securely grant permissions to a
secret that doesn't yet exist. Be aware, however, if you delete the secret and recreate it with the
same name, the user automatically receives permission to the new secret, even though the 6
characters changed.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "secretsmanager:*",
 "Resource": [
 "arn:aws:secretsmanager:Region:AccountId:secret:a_specific_secret_name-a1b2c3",
 "arn:aws:secretsmanager:Region:AccountId:secret:another_secret_name-??????"
]
 }
]
}

Example: Wildcards 62

AWS Secrets Manager User Guide

Example: Permission to create secrets

To grant a user permissions to create a secret, we recommend you attach a permissions policy to an
IAM group the user belongs to. See IAM user groups.

Example Create secrets (attach to identity)

The following policy grants permission to create secrets and view a list of secrets. To use this policy,
see the section called “Attach a permissions policy to an identity”.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "secretsmanager:CreateSecret",
 "secretsmanager:ListSecrets"
],
 "Resource": "*"
 }
]
}

Example: Permissions and VPCs

If you need to access Secrets Manager from within a VPC, you can make sure that requests to
Secrets Manager come from the VPC by including a condition in your permissions policies. For more
information, see VPC endpoint conditions and VPC endpoint.

Make sure that requests to access the secret from other AWS services also come from the VPC,
otherwise this policy will deny them access.

Example Require requests to come through a VPC endpoint (attach to secret)

The following policy allows a user to perform Secrets Manager operations only when the request
comes through the VPC endpoint vpce-1234a5678b9012c. To use this policy, see the section
called “Attach a permissions policy to a secret”.

{
 "Id": "example-policy-1",

Example: Permission to create secrets 63

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html

AWS Secrets Manager User Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "RestrictGetSecretValueoperation",
 "Effect": "Deny",
 "Principal": "*",
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpce": "vpce-1234a5678b9012c"
 }
 }
 }
]
}

Example Require requests to come from a VPC (attach to secret)

The following policy allows commands to create and manage secrets only when they come from
vpc-12345678. In addition, the policy allows operations that use access the secret encrypted
value only when the requests come from vpc-2b2b2b2b. You might use a policy like this one if
you run an application in one VPC, but you use a second, isolated VPC for management functions.
To use this policy, see the section called “Attach a permissions policy to a secret”.

{
 "Id": "example-policy-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "AllowAdministrativeActionsfromONLYvpc-12345678",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "secretsmanager:Create*",
 "secretsmanager:Put*",
 "secretsmanager:Update*",
 "secretsmanager:Delete*",
 "secretsmanager:Restore*",
 "secretsmanager:RotateSecret",
 "secretsmanager:CancelRotate*",
 "secretsmanager:TagResource",
 "secretsmanager:UntagResource"

Example: Permissions and VPCs 64

AWS Secrets Manager User Guide

],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpc": "vpc-12345678"
 }
 }
 },
 {
 "Sid": "AllowSecretValueAccessfromONLYvpc-2b2b2b2b",
 "Effect": "Deny",
 "Principal": "*",
 "Action": [
 "secretsmanager:GetSecretValue"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:sourceVpc": "vpc-2b2b2b2b"
 }
 }
 }
]
}

Example: Control access to secrets using tags

You can use tags to control access to your secrets. Using tags to control permissions is helpful
in environments that are growing rapidly and helps with situations where policy management
becomes cumbersome. One strategy is to attach tags to secrets and then grant permissions to an
identity when a secret has a specific tag.

Example Allow access to secrets with a specific tag (attach to an identity)

The following policy allows DescribeSecret on secrets with a tag with the key "ServerName"
and the value "ServerABC". To use this policy, see the section called “Attach a permissions policy
to an identity”.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",

Example: Control access to secrets using tags 65

AWS Secrets Manager User Guide

 "Action": "secretsmanager:DescribeSecret",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "secretsmanager:ResourceTag/ServerName": "ServerABC"
 }
 }
 }
}

Example: Limit access to identities with tags that match secrets' tags

One strategy is to attach tags to both secrets and IAM identities. Then you create permissions
policies to allow operations when the identity's tag matches the secret's tag. For a complete
tutorial, see Define permissions to access secrets based on tags.

Using tags to control permissions is helpful in environments that are growing rapidly and helps
with situations where policy management becomes cumbersome. For more information, see What
is ABAC for AWS?

Example Allow access to roles that have the same tags as secrets (attach to a secret)

The following policy grants GetSecretValue to account 123456789012 only if the tag
AccessProject has the same value for the secret and the role. To use this policy, see the section
called “Attach a permissions policy to a secret”.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Principal": {
 "AWS": "123456789012"
 },
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/AccessProject": "${ aws:PrincipalTag/AccessProject }"
 }
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*"
 }
}

Example: Limit access to identities with tags that match secrets' tags 66

https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html

AWS Secrets Manager User Guide

Example: Service principal

If the resource policy attached to your secret includes an AWS service principal, we recommend
that you use the aws:SourceArn and aws:SourceAccount global condition keys. The ARN and
account values are included in the authorization context only when a request comes to Secrets
Manager from another AWS service. This combination of conditions avoids a potential confused
deputy scenario.

If a resource ARN includes characters that are not permitted in a resource policy, you cannot
use that resource ARN in the value of the aws:SourceArn condition key. Instead, use the
aws:SourceAccount condition key. For more information, see IAM requirements.

Service principals are not typically used as principals in a policy attached to a secret, but some AWS
services require it. For information about resource policies that a service requires you to attach to a
secret, see the service's documentation.

Example Allow a service to access a secret using a service principal (attach to a secret)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "service-name.amazonaws.com"
]
 },
 "Action": "secretsmanager:GetSecretValue",
 "Resource": "*",
 "Condition": {
 "ArnLike": {
 "aws:sourceArn": "arn:aws:service-name::123456789012:*"
 },
 "StringEquals": {
 "aws:sourceAccount": "123456789012"
 }
 }

 }

Example: Service principal 67

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-quotas.html#reference_iam-quotas-names

AWS Secrets Manager User Guide

]
}

Permissions reference for AWS Secrets Manager

To see the elements that make up a permissions policy, see JSON policy document structure and
IAM JSON policy elements reference.

To get started writing your own permissions policy, see the section called “Permissions policy
examples”.

Secrets Manager actions

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* CancelRot
ateSecret

Grants permission to cancel
an in-progress secret rotation

Write

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/

Permissions reference 68

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies-introduction
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CancelRotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CancelRotateSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

 CreateSecret Grants permission to create a
secret that stores encrypted
data that can be queried and
rotated

Write Secret*

Secrets Manager actions 69

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 secretsma
nager:Nam
e

secretsma
nager:Des
cription

secretsma
nager:Kms
KeyId

aws:Reque
stTag/
${T
agKey}

aws:Resou
rceTag/
${
TagKey}

aws:TagKe
ys

secretsma
nager:Res
ourceTag/
tag-key

secretsma
nager:Add
ReplicaRe
gions

Secrets Manager actions 70

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

secretsma
nager:For
ceOverwri
teReplica
Secret

Secret* DeleteRes
ourcePolicy

Grants permission to delete
the resource policy attached
to a secret

Permissio
ns
managemen
t

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 71

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteResourcePolicy.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 DeleteSecret Grants permission to delete a
secret

Write Secret*

Secrets Manager actions 72

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Rec
overyWind
owInDays

secretsma
nager:For
ceDeleteW
ithoutRec
overy

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

Secrets Manager actions 73

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

secretsma
nager:Sec
retPrimar
yRegion

Secret* DescribeS
ecret

Grants permission to retrieve
the metadata about a secret,
but not the encrypted data

Read

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 74

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 GetRandom
Password

Grants permission to
generate a random string for
use in password creation

Read

Secret* GetResour
cePolicy

Grants permission to get the
resource policy attached to a
secret

Read

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

 GetSecret
Value

Read Secret*

Secrets Manager actions 75

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetRandomPassword.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetRandomPassword.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Grants permission to retrieve
and decrypt the encrypted
data

 secretsma
nager:Sec
retId

secretsma
nager:Ver
sionId

secretsma
nager:Ver
sionStage

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 76

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* ListSecre
tVersionIds

Grants permission to list the
available versions of a secret

Read

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

 ListSecrets Grants permission to list the
available secrets

List

Secrets Manager actions 77

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecretVersionIds.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecretVersionIds.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* PutResour
cePolicy

Grants permission to attach a
resource policy to a secret

Permissio
ns
managemen
t

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Blo
ckPublicP
olicy

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 78

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutResourcePolicy.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* PutSecret
Value

Grants permission to create a
new version of the secret with
new encrypted data

Write

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

 RemoveReg
ionsFromR
eplication

Grants permission to remove
regions from replication

Write Secret*

Secrets Manager actions 79

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RemoveRegionsFromReplication.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RemoveRegionsFromReplication.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RemoveRegionsFromReplication.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 80

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* Replicate
SecretToR
egions

Grants permission to convert
an existing secret to a multi-
Region secret and begin
replicating the secret to a list
of new regions

Write

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

secretsma
nager:Add
ReplicaRe
gions

Secrets Manager actions 81

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

secretsma
nager:For
ceOverwri
teReplica
Secret

Secret* RestoreSe
cret

Grants permission to cancel
deletion of a secret

Write

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 82

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RestoreSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RestoreSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 RotateSecret Grants permission to start
rotation of a secret

Write Secret*

Secrets Manager actions 83

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 secretsma
nager:Sec
retId

secretsma
nager:Rot
ationLamb
daARN

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

secretsma
nager:Mod

Secrets Manager actions 84

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

ifyRotati
onRules

secretsma
nager:Rot
ateImmedi
ately

Secrets Manager actions 85

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* StopRepli
cationToR
eplica

Grants permission to remove
the secret from replication
and promote the secret to a
regional secret in the replica
Region

Write

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

 TagResource Grants permission to add tags
to a secret

Tagging Secret*

Secrets Manager actions 86

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_TagResource.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 secretsma
nager:Sec
retId

aws:Reque
stTag/
${T
agKey}

aws:TagKe
ys

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 87

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* UntagReso
urce

Grants permission to remove
tags from a secret

Tagging

 secretsma
nager:Sec
retId

aws:TagKe
ys

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 88

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 UpdateSec
ret

Grants permission to update
a secret with new metadata
or with a new version of the
encrypted data

Write Secret*

Secrets Manager actions 89

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

 secretsma
nager:Sec
retId

secretsma
nager:Des
cription

secretsma
nager:Kms
KeyId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 90

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* UpdateSec
retVersio
nStage

Grants permission to move
a stage from one secret to
another

Write

 secretsma
nager:Sec
retId

secretsma
nager:Ver
sionStage

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 91

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html

AWS Secrets Manager User Guide

Actions Description Access
level

Resource
types
(*require
d)

Condition
keys

Dependent
actions

Secret* ValidateR
esourcePolicy

Grants permission to validate
a resource policy before
attaching policy

Permissio
ns
managemen
t

 secretsma
nager:Sec
retId

secretsma
nager:res
ource/All
owRotatio
nLambdaAr
n

secretsma
nager:Res
ourceTag/
tag-key

aws:Resou
rceTag/
${
TagKey}

secretsma
nager:Sec
retPrimar
yRegion

Secrets Manager actions 92

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ValidateResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ValidateResourcePolicy.html

AWS Secrets Manager User Guide

Secrets Manager resources

Resource
types

ARN Condition keys

 Secret arn:${Partition}:secretsmanager:${Re
gion}:${Account}:secret:${SecretId}

aws:RequestTag/${T
agKey}

aws:ResourceTag/${
TagKey}

aws:TagKeys

secretsmanager:Res
ourceTag/tag-key

secretsmanager:res
ource/AllowRotatio
nLambdaArn

Secrets Manager constructs the last part of the secret ARN by appending a dash and six random
alphanumeric characters at the end of the secret name. If you delete a secret and then recreate
another with the same name, this formatting helps ensure that individuals with permissions to the
original secret don't automatically get access to the new secret because Secrets Manager generates
six new random characters.

You can find the ARN for a secret in the Secrets Manager console on the secret details page or by
calling DescribeSecret.

Condition keys

If you include string conditions from the following table in your permissions policy, callers to
Secrets Manager must pass the matching parameter or they are denied access. To avoid denying
callers for a missing parameter, add IfExists to the end of the condition operator name, for
example StringLikeIfExists. For more information, see IAM JSON policy elements: Condition
operators.

Secrets Manager resources 93

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-resources
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html

AWS Secrets Manager User Guide

Condition keys Description Type

 aws:Reque
stTag/${TagKey}

Filters access by a key that is present in the request the
user makes to the Secrets Manager service

String

 aws:Resou
rceTag/${
TagKey}

Filters access by the tags associated with the resource String

 aws:TagKeys Filters access by the list of all the tag key names present
in the request the user makes to the Secrets Manager
service

ArrayOfString

 secretsma
nager:Add
ReplicaRegions

Filters access by the list of Regions in which to replicate
the secret

ArrayOfString

 secretsma
nager:Blo
ckPublicPolicy

Filters access by whether the resource policy blocks
broad AWS account access

Bool

 secretsma
nager:Des
cription

Filters access by the description text in the request String

 secretsma
nager:For
ceDeleteW
ithoutRecovery

Filters access by whether the secret is to be deleted
immediately without any recovery window

Bool

 secretsma
nager:For
ceOverwri
teReplicaSecret

Filters access by whether to overwrite a secret with the
same name in the destination Region

Bool

 secretsma
nager:KmsKeyId

Filters access by the ARN of the KMS key in the request String

Condition keys 94

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-resourcetag
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys

AWS Secrets Manager User Guide

Condition keys Description Type

 secretsma
nager:Mod
ifyRotationRules

Filters access by whether the rotation rules of the secret
are to be modified

Bool

 secretsma
nager:Name

Filters access by the friendly name of the secret in the
request

String

 secretsma
nager:Rec
overyWind
owInDays

Filters access by the number of days that Secrets
Manager waits before it can delete the secret

Numeric

 secretsma
nager:Res
ourceTag/tag-
key

Filters access by a tag key and value pair String

 secretsma
nager:Rot
ateImmediately

Filters access by whether the secret is to be rotated
immediately

Bool

 secretsma
nager:Rot
ationLamb
daARN

Filters access by the ARN of the rotation Lambda
function in the request

ARN

 secretsma
nager:SecretId

Filters access by the SecretID value in the request ARN

 secretsma
nager:Sec
retPrimar
yRegion

Filters access by primary region in which the secret is
created

String

 secretsma
nager:VersionId

Filters access by the unique identifier of the version of
the secret in the request

String

Condition keys 95

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys

AWS Secrets Manager User Guide

Condition keys Description Type

 secretsma
nager:Ver
sionStage

Filters access by the list of version stages in the request String

 secretsma
nager:resource/
AllowRotatio
nLambdaArn

Filters access by the ARN of the rotation Lambda
function associated with the secret

ARN

Block broad access to secrets with BlockPublicPolicy condition

In identity policies that allow the action PutResourcePolicy, we recommend you use
BlockPublicPolicy: true. This condition means that users can only attach a resource policy to
a secret if the policy doesn't allow broad access.

Secrets Manager uses Zelkova automated reasoning to analyze resource policies for broad access.
For more information about Zelkova, see How AWS uses automated reasoning to help you achieve
security at scale on the AWS Security Blog.

The following example shows how to use BlockPublicPolicy.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": "secretsmanager:PutResourcePolicy",
 "Resource": "SecretId",
 "Condition": {
 "Bool": {
 "secretsmanager:BlockPublicPolicy": "true"
 }
 }
 }
}

BlockPublicPolicy condition 96

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_iam-permissions.html#iam-contextkeys
https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/
https://aws.amazon.com/blogs/security/protect-sensitive-data-in-the-cloud-with-automated-reasoning-zelkova/

AWS Secrets Manager User Guide

IP address conditions

Use caution when you specify the IP address condition operators or the aws:SourceIp condition
key in a policy statement that allows or denies access to Secrets Manager. For example, if you
attach a policy that restricts AWS actions to requests from your corporate network IP address range
to a secret, then your requests as an IAM user invoking the request from the corporate network
work as expected. However, if you enable other services to access the secret on your behalf, such
as when you enable rotation with a Lambda function, that function calls the Secrets Manager
operations from an AWS-internal address space. Requests impacted by the policy with the IP
address filter fail.

Also, the aws:sourceIP condition key is less effective when the request comes from an Amazon
VPC endpoint. To restrict requests to a specific VPC endpoint, use the section called “VPC endpoint
conditions”.

VPC endpoint conditions

To allow or deny access to requests from a particular VPC or VPC endpoint, use aws:SourceVpc
to limit access to requests from the specified VPC or aws:SourceVpce to limit access to requests
from the specified VPC endpoint. See the section called “Example: Permissions and VPCs”.

• aws:SourceVpc limits access to requests from the specified VPC.

• aws:SourceVpce limits access to requests from the specified VPC endpoint.

If you use these condition keys in a resource policy statement that allows or denies access to
Secrets Manager secrets, you can inadvertently deny access to services that use Secrets Manager to
access secrets on your behalf. Only some AWS services can run with an endpoint within your VPC.
If you restrict requests for a secret to a VPC or VPC endpoint, then calls to Secrets Manager from a
service not configured for the service can fail.

See VPC endpoint.

IP address conditions 97

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_IPAddress

AWS Secrets Manager User Guide

Create and manage secrets with AWS Secrets Manager

A secret can be a password, a set of credentials such as a user name and password, an OAuth token,
or other secret information that you store in an encrypted form in Secrets Manager.

Topics

• Create an AWS Secrets Manager database secret

• JSON structure of AWS Secrets Manager secrets

• Create an AWS Secrets Manager secret

• Update the value for an AWS Secrets Manager secret

• Change the encryption key for an AWS Secrets Manager secret

• Modify an AWS Secrets Manager secret

• Find secrets in AWS Secrets Manager

• Delete an AWS Secrets Manager secret

• Restore an AWS Secrets Manager secret

• Replicate an AWS Secrets Manager secret to other AWS Regions

• Promote a replica secret to a standalone secret in AWS Secrets Manager

• Tag AWS Secrets Manager secrets

Create an AWS Secrets Manager database secret

After you create a user in Amazon RDS, Amazon Aurora, Amazon Redshift, or Amazon
DocumentDB, you can store their credentials in Secrets Manager by following these steps. When
you use the AWS CLI or one of the SDKs to store the secret, you must provide the secret in the
correct JSON structure. When you use the console to store a database secret, Secrets Manager
automatically creates it in the correct JSON structure.

Tip

For Amazon RDS and Amazon Redshift admin user credentials, we recommend you use
managed secrets. You create the managed secret through the managing servce, and then
you can use managed rotation.

Create a database secret 98

AWS Secrets Manager User Guide

When you store database credentials for a source database that is replicated to other Regions, the
secret contains connection information for the source database. If you then replicate the secret, the
replicas are copies of the source secret and contain the same connection information. You can add
additional key/value pairs to the secret for regional connection information.

To create a secret, you need the permissions granted by the SecretsManagerReadWrite AWS
managed policies.

Secrets Manager generates a CloudTrail log entry when you create a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To create a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

a. For Secret type, choose the type of database credentials to store:

• Amazon RDS database (includes Aurora)

• Amazon DocumentDB database

• Amazon Redshift data warehouse

b. For Credentials, enter the credentials for the database.

c. For Encryption key, choose the AWS KMS key that Secrets Manager uses to encrypt the
secret value. For more information, see Secret encryption and decryption.

• For most cases, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key.

• If you need to access the secret from another AWS account, or if you want to use your
own KMS key so that you can rotate it or apply a key policy to it, choose a customer
managed key from the list or choose Add new key to create one. For information
about the costs of using a customer managed key, see Pricing.

You must have the section called “Permissions for the KMS key”. For information
about cross-account access, see the section called “Cross-account access”.

d. For Database, choose your database.

e. Choose Next.

4. On the Configure secret page, do the following:

Create a database secret 99

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

a. Enter a descriptive Secret name and Description. Secret names must contain 1-512
Unicode characters.

b. (Optional) In the Tags section, add tags to your secret. For tagging strategies, see the
section called “Tag secrets”. Don't store sensitive information in tags because they aren't
encrypted.

c. (Optional) In Resource permissions, to add a resource policy to your secret, choose Edit
permissions. For more information, see the section called “Attach a permissions policy to
a secret”.

d. (Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it later. For
more information, see Replicate a secret to other Regions.

e. Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can also
keep rotation off for now and then turn it on later. For more information, see Rotate secrets.
Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.

AWS CLI

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called “Mitigate
the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

Example Create a secret from credentials in a JSON file

The following create-secret example creates a secret from credentials in a file. For more
information, see Loading AWS CLI parameters from a file in the AWS CLI User Guide.

For Secrets Manager to be able to rotate the secret, you must make sure the JSON matches the
JSON structure of a secret.

aws secretsmanager create-secret \
 --name MyTestSecret \

AWS CLI 100

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/create-secret.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html

AWS Secrets Manager User Guide

 --secret-string file://mycreds.json

Contents of mycreds.json:

{
 "engine": "mysql",
 "username": "saanvis",
 "password": "EXAMPLE-PASSWORD",
 "host": "my-database-endpoint.us-west-2.rds.amazonaws.com",
 "dbname": "myDatabase",
 "port": "3306"
}

AWS SDK

To create a secret by using one of the AWS SDKs, use the CreateSecret action. For more
information, see the section called “AWS SDKs”.

JSON structure of AWS Secrets Manager secrets

You can store any text or binary in Secrets Manager secrets. If you want to turn on automatic
rotation for a Secrets Manager secret, it must be in the correct JSON structure. During rotation,
Secrets Manager uses the information in the secret to connect to the credential source and update
the credentials there. The JSON key names are case-sensitive.

Note that when you use the console to store a database secret, Secrets Manager automatically
creates it in the correct JSON structure.

You can add more key/value pairs to a secret, for example in a database secret, to contain
connection information for replica databases in other Regions.

Topics

• Amazon RDS Db2 secret structure

• Amazon RDS MariaDB secret structure

• Amazon RDS and Amazon Aurora MySQL secret structure

• Amazon RDS Oracle secret structure

• Amazon RDS and Amazon Aurora PostgreSQL secret structure

AWS SDK 101

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html

AWS Secrets Manager User Guide

• Amazon RDS Microsoft SQLServer secret structure

• Amazon DocumentDB secret structure

• Amazon Redshift secret structure

• Amazon Redshift Serverless secret structure

• Amazon ElastiCache secret structure

Amazon RDS Db2 secret structure

For Amazon RDS Db2 instances, because users can't change their own passwords, you must provide
admin credentials in a separate secret.

{
 "engine": "db2",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 3306>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon RDS MariaDB secret structure

{
 "engine": "mariadb",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 3306>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "mariadb",
 "host": "<instance host name/resolvable DNS name>",

Amazon RDS Db2 secret structure 102

AWS Secrets Manager User Guide

 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 3306>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon RDS and Amazon Aurora MySQL secret structure

{
 "engine": "mysql",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 3306>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "mysql",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 3306>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon RDS Oracle secret structure

{
 "engine": "oracle",
 "host": "<required: instance host name/resolvable DNS name>",
 "username": "<required: username>",
 "password": "<required: password>",
 "dbname": "<required: database name>",
 "port": "<optional: TCP port number. If not specified, defaults to 1521>"
}

Amazon RDS and Amazon Aurora MySQL secret structure 103

AWS Secrets Manager User Guide

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "oracle",
 "host": "<required: instance host name/resolvable DNS name>",
 "username": "<required: username>",
 "password": "<required: password>",
 "dbname": "<required: database name>",
 "port": "<optional: TCP port number. If not specified, defaults to 1521>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon RDS and Amazon Aurora PostgreSQL secret structure

{
 "engine": "postgres",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to 'postgres'>",
 "port": "<TCP port number. If not specified, defaults to 5432>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "postgres",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to 'postgres'>",
 "port": "<TCP port number. If not specified, defaults to 5432>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon RDS Microsoft SQLServer secret structure

{
 "engine": "sqlserver",

Amazon RDS and Amazon Aurora PostgreSQL secret structure 104

AWS Secrets Manager User Guide

 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to 'master'>",
 "port": "<TCP port number. If not specified, defaults to 1433>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "sqlserver",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to 'master'>",
 "port": "<TCP port number. If not specified, defaults to 1433>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon DocumentDB secret structure

{
 "engine": "mongo",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 27017>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "mongo",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 27017>",

Amazon DocumentDB secret structure 105

AWS Secrets Manager User Guide

 "masterarn": "<the ARN of the elevated secret>"
}

Amazon Redshift secret structure

{
 "engine": "redshift",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 5439>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

{
 "engine": "redshift",
 "host": "<instance host name/resolvable DNS name>",
 "username": "<username>",
 "password": "<password>",
 "dbname": "<database name. If not specified, defaults to None>",
 "port": "<TCP port number. If not specified, defaults to 5439>",
 "masterarn": "<the ARN of the elevated secret>"
}

Amazon Redshift Serverless secret structure

{
"engine": "redshift",
"host": "<instance host name/resolvable DNS name>",
"username": "<username>",
"password": "<password>",
"dbname": "<database name. If not specified, defaults to None>",
"namespaceName": <namespace name>,
"port": "<TCP port number. If not specified, defaults to 5439>"
}

To use the the section called “Alternating users”, you include the masterarn for the secret that
contains admin or superuser credentials.

Amazon Redshift secret structure 106

AWS Secrets Manager User Guide

{
"engine": "redshift",
"host": "<instance host name/resolvable DNS name>",
"username": "<username>",
"password": "<password>",
"dbname": "<database name. If not specified, defaults to None>",
"namespaceName": <namespace name>,
"port": "<TCP port number. If not specified, defaults to 5439>",
"masterarn": "<the ARN of the elevated secret>"
}

Amazon ElastiCache secret structure

{
 "password": "<password>",
 "username": "<username>"
 "user_arn": "ARN of the Amazon EC2 user"
}

For more information, see Automatically rotating passwords for users in the Amazon ElastiCache
User Guide.

Create an AWS Secrets Manager secret

To store API keys, access tokens, credentials that aren't for databases, and other secrets in Secrets
Manager, follow these steps. For an Amazon ElastiCache secret, if you want to turn on rotation, you
must store the secret in the expected JSON structure.

To create a secret, you need the permissions granted by the SecretsManagerReadWrite AWS
managed policies.

Secrets Manager generates a CloudTrail log entry when you create a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To create a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose Store a new secret.

3. On the Choose secret type page, do the following:

Amazon ElastiCache secret structure 107

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

a. For Secret type, choose Other type of secret.

b. In Key/value pairs, either enter your secret in JSON Key/value pairs, or choose the
Plaintext tab and enter the secret in any format. You can store up to 65536 bytes in the
secret.

c. For Encryption key, choose the AWS KMS key that Secrets Manager uses to encrypt the
secret value. For more information, see Secret encryption and decryption.

• For most cases, choose aws/secretsmanager to use the AWS managed key for Secrets
Manager. There is no cost for using this key.

• If you need to access the secret from another AWS account, or if you want to use your
own KMS key so that you can rotate it or apply a key policy to it, choose a customer
managed key from the list or choose Add new key to create one. For information
about the costs of using a customer managed key, see Pricing.

You must have the section called “Permissions for the KMS key”. For information
about cross-account access, see the section called “Cross-account access”.

d. Choose Next.

4. On the Configure secret page, do the following:

a. Enter a descriptive Secret name and Description. Secret names must contain 1-512
Unicode characters.

b. (Optional) In the Tags section, add tags to your secret. For tagging strategies, see the
section called “Tag secrets”. Don't store sensitive information in tags because they aren't
encrypted.

c. (Optional) In Resource permissions, to add a resource policy to your secret, choose Edit
permissions. For more information, see the section called “Attach a permissions policy to
a secret”.

d. (Optional) In Replicate secret, to replicate your secret to another AWS Region, choose
Replicate secret. You can replicate your secret now or come back and replicate it later. For
more information, see Replicate a secret to other Regions.

e. Choose Next.

5. (Optional) On the Configure rotation page, you can turn on automatic rotation. You can also
keep rotation off for now and then turn it on later. For more information, see Rotate secrets.
Choose Next.

6. On the Review page, review your secret details, and then choose Store.

Create a secret 108

AWS Secrets Manager User Guide

Secrets Manager returns to the list of secrets. If your new secret doesn't appear, choose the
refresh button.

AWS CLI

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called “Mitigate
the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

Example Create a secret

The following create-secret example creates a secret with two key-value pairs.

aws secretsmanager create-secret \
 --name MyTestSecret \
 --description "My test secret created with the CLI." \
 --secret-string "{\"user\":\"diegor\",\"password\":\"EXAMPLE-PASSWORD\"}"

Example Create a secret from credentials in a JSON file

The following create-secret example creates a secret from credentials in a file. For more
information, see Loading AWS CLI parameters from a file in the AWS CLI User Guide.

aws secretsmanager create-secret \
 --name MyTestSecret \
 --secret-string file://mycreds.json

Contents of mycreds.json:

{
 "username": "diegor",
 "password": "EXAMPLE-PASSWORD"
}

AWS SDK

To create a secret by using one of the AWS SDKs, use the CreateSecret action. For more
information, see the section called “AWS SDKs”.

AWS CLI 109

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/create-secret.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/create-secret.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-usage-parameters-file.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html

AWS Secrets Manager User Guide

Update the value for an AWS Secrets Manager secret

To update the value of your secret, you can use the console, the CLI, or an SDK. When you update
the secret value, Secrets Manager creates a new version of the secret with the staging label
AWSCURRENT. You can still access the old version, which has the label AWSPREVIOUS. You can also
add your own labels. For more information, see Secrets Manager versioning.

To update the secret value (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, on the Overview tab, in the Secret value section, choose Retrieve
secret value and then choose Edit.

AWS CLI

To update the secret value (AWS CLI)

• When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called
“Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

The following put-secret-value creates a new version of a secret with two key-value pairs.

aws secretsmanager put-secret-value \
 --secret-id MyTestSecret \
 --secret-string "{\"user\":\"diegor\",\"password\":\"EXAMPLE-PASSWORD\"}"

The following put-secret-value creates a new version with a custom staging label. The
new version will have the labels MyLabel and AWSCURRENT.

aws secretsmanager put-secret-value \
 --secret-id MyTestSecret \
 --secret-string "{\"user\":\"diegor\",\"password\":\"EXAMPLE-PASSWORD\"}"
 --version-stages "MyLabel"

Update a secret value 110

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/put-secret-value.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/put-secret-value.html

AWS Secrets Manager User Guide

AWS SDK

We recommend you avoid calling PutSecretValue or UpdateSecret at a sustained rate of
more than once every 10 minutes. When you call PutSecretValue or UpdateSecret to update
the secret value, Secrets Manager creates a new version of the secret. Secrets Manager removes
unlabeled versions when there are more than 100, but it does not remove versions created less
than 24 hours ago. If you update the secret value more than once every 10 minutes, you create
more versions than Secrets Manager removes, and you will reach the quota for secret versions.

To update a secret value, use the following actions: UpdateSecret or PutSecretValue. For
more information, see the section called “AWS SDKs”.

Change the encryption key for an AWS Secrets Manager secret

Secrets Manager uses envelope encryption with AWS KMS keys and data keys to protect each
secret value. For each secret, you can choose which KMS key to use. You can use the AWS managed
key aws/secretsmanager, or you can use a customer managed key. For most cases, we recommend
using aws/secretsmanager, and there is no cost for using it. If you need to access the secret from
another AWS account, or if you want to use your own KMS key so that you can rotate it or apply a
key policy to it, use a customer managed key. You must have the section called “Permissions for the
KMS key”. For information about the costs of using a customer managed key, see Pricing.

You can change the encryption key for your secret. For example, if you want to access the secret
from another account, and the secret is currently encrypted using the AWS managed key aws/
secretsmanager, you can switch to a customer managed key.

Tip

If you want to rotate your customer managed key, we recommend using AWS KMS
automatic key rotation. For more information, see Rotating AWS KMS keys.

When you change the encryption key for a secret, it does not affect existing versions of the secret.
Only the new versions you create after the key change are encrypted under the new encryption
key. (The only exceptions are the AWSCURRENT, AWSPENDING, and AWSPREVIOUS versions, which
Secrets Manager re-encrypts to help ensure you are't locked out of the secret.)

If you deactivate the previous encryption key, you will not be able to decrypt any secret versions
except AWSCURRENT, AWSPENDING, and AWSPREVIOUS. If you have other labelled secret versions

AWS SDK 111

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/kms/latest/developerguide/rotate-keys.html

AWS Secrets Manager User Guide

that you want to retain access to, you need to recreate those versions with the new encryption key
using the the section called “AWS CLI”.

To change the encryption key for a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, in the Secrets details section, choose Actions, and then choose
Edit encryption key.

AWS CLI

If you change the encryption key for a secret and then deactivate the previous encryption key,
you will not be able to decrypt any secret versions except AWSCURRENT, AWSPENDING, and
AWSPREVIOUS. If you have other labelled secret versions that you want to retain access to, you
need to recreate those versions with the new encryption key using the the section called “AWS CLI”.

To change the encryption key for a secret (AWS CLI)

1. The following update-secret example updates the KMS key used to encrypt the secret
value. The KMS key must be in the same region as the secret.

aws secretsmanager update-secret \
 --secret-id MyTestSecret \
 --kms-key-id arn:aws:kms:us-west-2:123456789012:key/EXAMPLE1-90ab-cdef-fedc-
ba987EXAMPLE

2. (Optional) If you have secret versions that have custom labels, to re-encrypt them using the
new key, you must recreate those versions.

When you enter commands in a command shell, there is a risk of the command history being
accessed or utilities having access to your command parameters. See the section called
“Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets”.

a. Get the value of the secret version.

aws secretsmanager get-secret-value \
 --secret-id MyTestSecret \
 --version-stage MyCustomLabel

AWS CLI 112

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/update-secret.html

AWS Secrets Manager User Guide

Make a note of the secret value.

b. Create a new version with that value.

aws secretsmanager put-secret-value \
 --secret-id testDescriptionUpdate \
 --secret-string "SecretValue" \
 --version-stages "MyCustomLabel"

Modify an AWS Secrets Manager secret

You can modify the metadata of a secret after it is created, depending on who created the secret.
For secrets created by other services, you might need to use the other service to update or rotate it.

To determine who manages a secret, you can review the secret name. Secrets managed by other
services are prefixed with the ID of that service. Or, in the AWS CLI, call describe-secret, and then
review the field OwningService. For more information, see Secrets managed by other services.

For secrets you manage, you can modify the description, resource-based policy, the encryption
key, and tags. You can also change the encrypted secret value; however, we recommend you use
rotation to update secret values that contain credentials. Rotation updates both the secret in
Secrets Manager and the credentials on the database or service. This keeps the secret automatically
synchronized so when clients request a secret value, they always get a working set of credentials.
For more information, see Rotate secrets.

Secrets Manager generates a CloudTrail log entry when you modify a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To update a secret you manage (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, do any of the following:

Note that you can't change the name or ARN of a secret.

• To update the description, in the Secrets details section, choose Actions, and then choose
Edit description.

Modify a secret 113

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

• To update the encryption key, see the section called “Change the encryption key for a
secret”.

• To update tags, on the Tags tab, choose Edit tags. See the section called “Tag secrets”.

• To update the secret value, see the section called “Update a secret value”.

• To update permissions for your secret, on the Overview tab, choose Edit permissions. See
the section called “Attach a permissions policy to a secret”.

• To update rotation for your secret, on the Rotation tab, choose Edit rotation. See Rotate
secrets.

• To replicate your secret to other Regions, see Replicate a secret to other Regions.

• If your secret has replicas, you can change the encryption key for a replica. On the
Replication tab, select the radio button for the replica, and then on the Actions menu,
choose Edit encryption key. See the section called “Secret encryption and decryption”.

• To change a secret so that it is managed by another service, you need to recreate the secret
in that service. See Secrets managed by other services.

AWS CLI

Example Update secret description

The following update-secret example updates the description of a secret.

aws secretsmanager update-secret \
 --secret-id MyTestSecret \
 --description "This is a new description for the secret."

AWS SDK

We recommend you avoid calling PutSecretValue or UpdateSecret at a sustained rate of
more than once every 10 minutes. When you call PutSecretValue or UpdateSecret to update
the secret value, Secrets Manager creates a new version of the secret. Secrets Manager removes
unlabeled versions when there are more than 100, but it does not remove versions created less
than 24 hours ago. If you update the secret value more than once every 10 minutes, you create
more versions than Secrets Manager removes, and you will reach the quota for secret versions.

To update a secret, use the following actions: UpdateSecret or ReplicateSecretToRegions.
For more information, see the section called “AWS SDKs”.

AWS CLI 114

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/update-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html

AWS Secrets Manager User Guide

Find secrets in AWS Secrets Manager

When you search for secrets without a filter, Secrets Manager matches keywords in the secret
name, description, tag key, and tag value. Searching without filters is not case-sensitive and ignores
special characters, such as space, /, _, =, #, and only uses numbers and letters. When you search
without a filter, Secrets Manager analyzes the search string to convert it to separate words. The
words are separated by any change from uppercase to lowercase, from letter to number, or from
number/letter to punctuation. For example, entering the search term credsDatabase#892
searches for creds, Database, and 892 in name, description, and tag key and value.

Secrets Manager generates a CloudTrail log entry when you list secrets. For more information, see
the section called “Log with AWS CloudTrail ”.

You can apply the following filters to your search:

Name

Matches the beginning of secret names; case-sensitive. For example, Name: Data returns a
secret named DatabaseSecret, but not databaseSecret or MyData.

Description

Matches the words in secret descriptions, not case-sensitive. For example, Description: My
Description matches secrets with the following descriptions:

• My Description

• my description

• My basic description

• Description of my secret

Owning service

Matches the beginning of the managing service ID prefix, not case-sensitive. For example, my-
ser matches secrets managed by services with the prefix my-serv and my-service. For more
information, see Secrets managed by other services.

Replicated secrets

You can filter for primary secrets, replica secrets, or secrets that aren't replicated.

Find secrets 115

AWS Secrets Manager User Guide

Tag keys

Matches the beginning of tag keys; case-sensitive. For example, Tag key: Prod returns secrets
with the tag Production and Prod1, but not secrets with the tag prod or 1 Prod.

Tag values

Matches the beginning of tag values; case-sensitive. For example, Tag value: Prod returns
secrets with the tag Production and Prod1, but not secrets with the tag value prod or 1
Prod.

Secrets Manager is a regional service and only secrets within the selected region are returned.

AWS CLI

Example List the secrets in your account

The following list-secrets example gets a list of the secrets in your account.

aws secretsmanager list-secrets

Example Filter the list of secrets in your account

The following list-secrets example gets a list of the secrets in your account that have Test in
the name. Filtering by name is case sensitive.

aws secretsmanager list-secrets \
 --filter Key="name",Values="Test"

Example Find secrets that are managed by other AWS services

The following list-secrets example gets a list of secrets managed by a service. You specify the
service by ID. For more information, see Secrets managed by other services.

aws secretsmanager list-secrets --filter Key="owning-service",Values="<service ID
 prefix>"

AWS SDK

To find secrets by using one of the AWS SDKs, use ListSecrets. For more information, see the
section called “AWS SDKs”.

AWS CLI 116

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/list-secrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html

AWS Secrets Manager User Guide

Delete an AWS Secrets Manager secret

Because of the critical nature of secrets, AWS Secrets Manager intentionally makes deleting a
secret difficult. Secrets Manager does not immediately delete secrets. Instead, Secrets Manager
immediately makes the secrets inaccessible and scheduled for deletion after a recovery window of
a minimum of seven days. Until the recovery window ends, you can recover a secret you previously
deleted. There is no charge for secrets that you have marked for deletion.

You can't delete a primary secret if it is replicated to other Regions. First delete the replicas, then
delete the primary secret. When you delete a replica, it is deleted immediately.

You can't directly delete a version of a secret. Instead, you remove all staging labels from the
version using the AWS CLI or AWS SDK. This marks the version as deprecated, and then Secrets
Manager can automatically delete the version in the background.

If you don't know whether an application still uses a secret, you can create an Amazon CloudWatch
alarm to alert you to any attempts to access a secret during the recovery window. For more
information, see Monitor AWS Secrets Manager secrets scheduled for deletion by using Amazon
CloudWatch.

To delete a secret, you must have secretsmanager:ListSecrets and
secretsmanager:DeleteSecret permissions.

Secrets Manager generates a CloudTrail log entry when you delete a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To delete a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. In the list of secrets, choose the secret you want to delete.

3. In the Secret details section, choose Actions, and then choose Delete secret.

4. In the Disable secret and schedule deletion dialog box, in Waiting period, enter the number
of days to wait before the deletion becomes permanent. Secrets Manager attaches a field
called DeletionDate and sets the field to the current date and time, plus the number of days
specified for the recovery window.

5. Choose Schedule deletion.

Delete a secret 117

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

To view deleted secrets

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose Preferences

().

3. In the Preferences dialog box, select Show secrets scheduled for deletion, and then choose
Save.

To delete a replica secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose the primary secret.

3. In the Replicate Secret section, choose the replica secret.

4. From the Actions menu, choose Delete Replica.

AWS CLI

Example Delete a secret

The following delete-secret example deletes a secret. You can recover the secret with
restore-secret until the date and time in the DeletionDate response field. To delete a secret
that is replicated to other regions, first remove its replicas with remove-regions-from-
replication, and then call delete-secret.

aws secretsmanager delete-secret \
 --secret-id MyTestSecret \
 --recovery-window-in-days 7

Example Delete a secret immediately

The following delete-secret example deletes a secret immediately without a recovery window.
You can't recover this secret.

aws secretsmanager delete-secret \
 --secret-id MyTestSecret \
 --force-delete-without-recovery

AWS CLI 118

https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/delete-secret.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/restore-secret.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/remove-regions-from-replication.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/remove-regions-from-replication.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/delete-secret.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/delete-secret.html

AWS Secrets Manager User Guide

Example Delete a replica secret

The following remove-regions-from-replication example deletes a replica secret in eu-
west-3. To delete a primary secret that is replicated to other regions, first delete the replicas and
then call delete-secret.

aws secretsmanager remove-regions-from-replication \
 --secret-id MyTestSecret \
 --remove-replica-regions eu-west-3

AWS SDK

To delete a secret, use the DeleteSecret command. To delete a version of a secret,
use the UpdateSecretVersionStage command. To delete a replica, use the
StopReplicationToReplica command. For more information, see the section called “AWS
SDKs”.

Restore an AWS Secrets Manager secret

Secrets Manager considers a secret scheduled for deletion deprecated and you can no longer
directly access it. After the recovery window has passed, Secrets Manager deletes the secret
permanently. Once Secrets Manager deletes the secret, you can't recover it. Before the end of
the recovery window, you can recover the secret and make it accessible again. This removes the
DeletionDate field, which cancels the scheduled permanent deletion.

To restore a secret and the metadata in the console, you must have
secretsmanager:ListSecrets and secretsmanager:RestoreSecret permissions.

Secrets Manager generates a CloudTrail log entry when you restore a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

To restore a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. In the list of secrets, choose the secret you want to restore.

If deleted secrets don't appear in your list of secrets, choose Preferences

().

AWS SDK 119

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/remove-regions-from-replication.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/delete-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

In the Preferences dialog box, select Show secrets scheduled for deletion, and then choose
Save.

3. On the Secret details page, choose Cancel deletion.

4. In the Cancel secret deletion dialog box, choose Cancel deletion.

AWS CLI

Example Restore a previously deleted secret

The following restore-secret example restores a secret that was previously scheduled for
deletion.

aws secretsmanager restore-secret \
 --secret-id MyTestSecret

AWS SDK

To restore a secret marked for deletion, use the RestoreSecret command. For more information,
see the section called “AWS SDKs”.

Replicate an AWS Secrets Manager secret to other AWS Regions

You can replicate your secrets in multiple AWS Regions to support applications spread across
those Regions to meet Regional access and low latency requirements. If you later need to, you can
promote a replica secret to a standalone and then set it up for replication independently. Secrets
Manager replicates the encrypted secret data and metadata such as tags and resource policies
across the specified Regions.

The ARN for a replicated secret is the same as the primary secret except for the Region, for
example:

• Primary secret: arn:aws:secretsmanager:Region1:123456789012:secret:MySecret-
a1b2c3

• Replica secret: arn:aws:secretsmanager:Region2:123456789012:secret:MySecret-
a1b2c3

For pricing information for replica secrets, see AWS Secrets Manager Pricing.

AWS CLI 120

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/restore-secret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RestoreSecret.html
https://aws.amazon.com/secrets-manager/pricing/

AWS Secrets Manager User Guide

When you store database credentials for a source database that is replicated to other Regions, the
secret contains connection information for the source database. If you then replicate the secret, the
replicas are copies of the source secret and contain the same connection information. You can add
additional key/value pairs to the secret for regional connection information.

If you turn on rotation for your primary secret, Secrets Manager rotates the secret in the primary
Region, and the new secret value propagates to all of the associated replica secrets. You don't have
to manage rotation individually for all of the replica secrets.

You can replicate secrets across all of your enabled AWS Regions. However, if you use Secrets
Manager in special AWS Regions such as AWS GovCloud (US) or China Regions, you can only
configure secrets and the replicas within these specialized AWS Regions. You can't replicate a secret
in your enabled AWS Regions to a specialized Region or replicate secrets from a specialized region
to a commercial region.

Before you can replicate a secret to another Region, you must enable that Region. For more
information, see Managing AWS Regions.

It is possible to use a secret across multiple Regions without replicating it by calling the Secrets
Manager endpoint in the Region where the secret is stored. For a list of endpoints, see the section
called “Secrets Manager endpoints”. To use replication to improve your workload's resilience, see
Disaster Recovery (DR) Architecture on AWS, Part I: Strategies for Recovery in the Cloud.

Secrets Manager generates a CloudTrail log entry when you replicate a secret. For more
information, see the section called “Log with AWS CloudTrail ”.

To replicate a secret to other Regions (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. On the secret details page, on the Replication tab, do one of the following:

• If your secret is not replicated, choose Replicate secret.

• If your secret is replicated, in the Replicate secret section, choose Add Region.

4. In the Add replica regions dialog box, do the following:

a. For AWS Region, choose the Region you want to replicate the secret to.

b. (Optional) For Encryption key, choose a KMS key to encrypt the secret with. The key must
be in the replica Region.

Replicate a secret to other Regions 121

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable
https://aws.amazon.com/blogs/architecture/disaster-recovery-dr-architecture-on-aws-part-i-strategies-for-recovery-in-the-cloud/
https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

c. (Optional) To add another Region, choose Add more regions.

d. Choose Replicate.

You return to the secret details page. In the Replicate secret section, the Replication status
shows for each Region.

AWS CLI

Example Replicate a secret to another region

The following replicate-secret-to-regions example replicates a secret to eu-west-3. The
replica is encrypted with the AWS managed key aws/secretsmanager.

aws secretsmanager replicate-secret-to-regions \
 --secret-id MyTestSecret \
 --add-replica-regions Region=eu-west-3

AWS SDK

To replicate a secret, use the ReplicateSecretToRegions command. For more information, see
the section called “AWS SDKs”.

Troubleshooting

The following are some reasons that replication can fail.

A secret with the same name exists in the selected Region

To resolve this issue, you can overwrite the duplicate name secret in the replica Region. Retry
replication, and then in the Retry replication dialog box, choose Overwrite.

No permissions available on the KMS key to complete the replication

Secrets Manager first decrypts the secret before re-encrypting with the new KMS key in the replica
Region. If you don't have kms:Decrypt permission to the encryption key in the primary Region,
you will encounter this error. To encrypt the replicated secret with a KMS key other than aws/
secretsmanager, you need kms:GenerateDataKey and kms:Encrypt to the key. See the
section called “Permissions for the KMS key”.

AWS CLI 122

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/replicate-secret-to-regions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html

AWS Secrets Manager User Guide

The KMS key is disabled or not found

If the encryption key in the primary Region is disabled or deleted, Secrets Manager can't replicate
the secret. This error can occur even if you have changed the encryption key, if the secret has
custom labelled versions that were encrypted with the disabled or deleted encryption key. For
information about how Secrets Manager does encryption, see the section called “Secret encryption
and decryption”. To work around this issue, you can recreate the secret versions so that Secrets
Manager encrypts them with the current encryption key. For more information, see Change the
encryption key for a secret. Then retry replication.

aws secretsmanager put-secret-value \
 --secret-id testDescriptionUpdate \
 --secret-string "SecretValue" \
 --version-stages "MyCustomLabel"

You have not enabled the Region where the replication occurs

For information about how to enable a Region, see Managing AWS Regions. in the AWS Account
Management Reference Guide.

Promote a replica secret to a standalone secret in AWS Secrets
Manager

A replica secret is a secret that is replicated from a primary in another AWS Region. It has the same
secret value and metadata as the primary, but it can be encrypted with a different KMS key. A
replica secret can't be updated independently from its primary secret, except for its encryption key.
Promoting a replica secret disconnects the replica secret from the primary secret and makes the
replica secret a standalone secret. Changes to the primary secret won't replicate to the standalone
secret.

You might want to promote a replica secret to a standalone secret as a disaster recovery solution if
the primary secret becomes unavailable. Or you might want to promote a replica to a standalone
secret if you want to turn on rotation for the replica.

If you promote a replica, be sure to update the corresponding applications to use the standalone
secret.

Secrets Manager generates a CloudTrail log entry when you promote a secret. For more
information, see the section called “Log with AWS CloudTrail ”.

Promote a replica secret to a standalone secret 123

https://docs.aws.amazon.com/general/latest/gr/rande-manage.html#rande-manage-enable

AWS Secrets Manager User Guide

To promote a replica secret (console)

1. Log in to the Secrets Manager at https://console.aws.amazon.com/secretsmanager/.

2. Navigate to the replica region.

3. On the Secrets page, choose the replica secret.

4. On the replica secret details page, choose Promote to standalone secret.

5. In the Promote replica to standalone secret dialog box, enter the Region and then choose
Promote replica.

AWS CLI

Example Promote a replica secret to a primary

The following stop-replication-to-replica example removes the link between a replica
secret to the primary. The replica secret is promoted to a primary secret in the replica region. You
must call stop-replication-to-replica from within the replica region.

aws secretsmanager stop-replication-to-replica \
 --secret-id MyTestSecret

AWS SDK

To promote a replica to a standalone secret, use the StopReplicationToReplica command.
You must call this command from the replica secret Region. For more information, see the section
called “AWS SDKs”.

Tag AWS Secrets Manager secrets

Secrets Manager defines a tag as a label consisting of a key that you define and an optional value.
You can use tags to make it easy to manage, search, and filter secrets and other resources in
your AWS account. When you tag your secrets, use a standard naming scheme across all of your
resources. For more information, see the Tagging Best Practices whitepaper.

You can grant or deny access to a secret by checking the tags attached to the secret. For more
information, see the section called “Example: Control access to secrets using tags”.

You can find secrets by tags in the console, AWS CLI, and SDKs. AWS also provides the Resource
Groups tool to create a custom console that consolidates and organizes your resources based on

AWS CLI 124

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/stop-replication-to-replica.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/stop-replication-to-replica.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html
https://docs.aws.amazon.com/whitepapers/latest/tagging-best-practices/tagging-best-practices.html
https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html
https://docs.aws.amazon.com/ARG/latest/userguide/resource-groups.html

AWS Secrets Manager User Guide

their tags. To find secrets with a specific tag, see the section called “Find secrets”. Secrets Manager
doesn't support tag-based cost allocation.

Never store sensitive information for a secret in a tag.

For tag quotas and naming restrictions, see Service quotas for Tagging in the AWS General
Reference guide. Tags are case sensitive.

Secrets Manager generates a CloudTrail log entry when you tag or untag a secret. For more
information, see the section called “Log with AWS CloudTrail ”.

To change tags for your secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. From the list of secrets, choose your secret.

3. In the secret details page, on the Tags tab, choose Edit tags. Tag key names and values are
case sensitive, and tag keys must be unique.

AWS CLI

Example Add a tag to a secret

The following tag-resource example shows how to attach a tag with shorthand syntax.

aws secretsmanager tag-resource \
 --secret-id MyTestSecret \
 --tags Key=FirstTag,Value=FirstValue

Example Add multiple tags to a secret

The following tag-resource example attaches two key-value tags to a secret.

aws secretsmanager tag-resource \
 --secret-id MyTestSecret \
 --tags '[{"Key": "FirstTag", "Value": "FirstValue"}, {"Key": "SecondTag",
 "Value": "SecondValue"}]'

Example Remove tags from a secret

The following untag-resource example removes two tags from a secret. For each tag, both key
and value are removed.

AWS CLI 125

https://docs.aws.amazon.com/general/latest/gr/arg.html#taged-reference-quotas
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/tag-resource.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/untag-resource.html

AWS Secrets Manager User Guide

aws secretsmanager untag-resource \
 --secret-id MyTestSecret \
 --tag-keys '["FirstTag", "SecondTag"]'

AWS SDK

To change tags for your secret, use TagResource or UntagResource. For more information, see
the section called “AWS SDKs”.

AWS SDK 126

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html

AWS Secrets Manager User Guide

Retrieve secrets from AWS Secrets Manager

You can retrieve your secrets:

• In code

• In other services

• In the AWS CLI

• In the AWS console

Secrets Manager generates a CloudTrail log entry when you retrieve a secret. For more information,
see the section called “Log with AWS CloudTrail ”.

In code

In applications, you can retrieve your secrets by calling GetSecretValue or
BatchGetSecretValuein any of the AWS SDKs. For examples, see Get a secret value in the AWS
SDK Code Examples Library. However, we recommend that you cache your secret values by using
client-side caching. Caching secrets improves speed and reduces your costs.

• For Java applications:

• If you store database credentials in the secret, use the Secrets Manager SQL connection drivers
to connect to a database using the credentials in the secret.

• For other types of secrets, use the Secrets Manager Java-based caching component or call the
SDK directly with GetSecretValue.

• For Python applications, use the Secrets Manager Python-based caching component or call the
SDK directly with get_secret_value or batch_get_secret_value.

• For .NET applications, use the Secrets Manager .NET-based caching component or call the SDK
directly with GetSecretValue or BatchGetSecretValue.

• For Go applications, use the Secrets Manager Go-based caching component or call the SDK
directly with GetSecretValue or BatchGetSecretValue.

• For JavaScript applications, call the SDK directly with getSecretValue or
batchGetSecretValue.

• For PHP applications, call the SDK directly with GetSecretValue or BatchGetSecretValue.

In code 127

https://docs.aws.amazon.com/code-library/latest/ug/secrets-manager_example_secrets-manager_GetSecretValue_section.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/model/GetSecretValueResult.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager/client/get_secret_value.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager/client/batch_get_secret_value.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TGetSecretValueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TBatchGetSecretValueRequest.html
https://docs.aws.amazon.com/sdk-for-go/api/service/secretsmanager/#SecretsManager.GetSecretValue
https://docs.aws.amazon.com/sdk-for-go/api/service/secretsmanager/#SecretsManager.BatchGetSecretValue
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SecretsManager.html#getSecretValue-property
https://docs.aws.amazon.com/AWSJavaScriptSDK/latest/AWS/SecretsManager.html#batchGetSecretValue-property
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-secretsmanager-2017-10-17.html#getsecretvalue
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-secretsmanager-2017-10-17.html#batchGetsecretvalue

AWS Secrets Manager User Guide

• For Ruby applications, call the SDK directly with get_secret_value or
batch_get_secret_value.

• For GitHub Actions, see the section called “GitHub jobs”.

Within other systems and AWS services

You can also retrieve secrets within the following:

• For AWS Batch, you can reference secrets in a job definition.

• For AWS CloudFormation, you can create secrets and reference secrets in a CloudFormation
stack.

• For Amazon ECS, you can reference secrets in a container definition.

• For Amazon EKS, you can use AWS Secrets and Configuration Provider (ASCP) to mount secrets
as files in Amazon EKS.

• For GitHub, you can use the Secrets Manager GitHub action to add secrets as environment
variables in your GitHub jobs.

• For AWS IoT Greengrass, you can reference secrets in a Greengrass group.

• For AWS Lambda, you can reference secrets in a Lambda function.

• For Parameter Store, you can reference secrets in a parameter.

AWS CLI

Example Retrieve the encrypted secret value of a secret

The following get-secret-value example gets the current secret value.

aws secretsmanager get-secret-value \
 --secret-id MyTestSecret

Example Retrieve the previous secret value

The following get-secret-value example gets the previous secret value.

aws secretsmanager get-secret-value \

Within other systems and AWS services 128

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SecretsManager/Client.html#get_secret_value-instance_method
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/SecretsManager/Client.html#batch_get_secret_value-instance_method
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html

AWS Secrets Manager User Guide

 --secret-id MyTestSecret
 --version-stage AWSPREVIOUS

AWS console

To retrieve a secret (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. In the list of secrets, choose the secret you want to retrieve.

3. In the Secret value section, choose Retrieve secret value.

Secrets Manager displays the current version (AWSCURRENT) of the secret. To see other
versions of the secret, such as AWSPREVIOUS or custom labeled versions, use the the section
called “AWS CLI”.

Retrieve a group of secrets in a batch from AWS Secrets
Manager

Secrets Manager offers the batch API BatchGetSecretValue to retrieve a group of secrets in one
API call. To choose which secrets to retrieve, you can specify a list of secrets by name or ARN, or
you can use filters. If Secrets Manager encounters errors such as AccessDeniedException while
attempting to retrieve any of the secrets, you can see the errors in Errors in the response.

Permissions for retrieving secrets in a batch

You must have secretsmanager:GetSecretValue permission for each secret you want to
retrieve. You must also have secretsmanager:BatchGetSecretValue permission. If you use
filters, you must also have secretsmanager:ListSecrets. For an example permissions policy,
see the section called “Permission to retrieve a group of secret values in a batch”.

Important

If you have a VPCE policy that denies permission to retrieve an individual secret in the
group you are retrieving, BatchGetSecretValue will not return any secret values, and it
will return an error.

AWS console 129

https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html

AWS Secrets Manager User Guide

AWS CLI

Example Retrieve the secret value for a group of secrets listed by name

The following batch-get-secret-value example gets the secret value for three secrets.

aws secretsmanager batch-get-secret-value \
 --secret-id-list MySecret1 MySecret2 MySecret3

Example Retrieve the secret value for a group of secrets selected by filter

The following batch-get-secret-value example gets the secret value for the secrets that have
a tag named "Test".

aws secretsmanager batch-get-secret-value \
 --filters Key="tag-key",Values="Test"

Connect to a SQL database with credentials in an AWS Secrets
Manager secret

In Java applications, you can use the Secrets Manager SQL Connection drivers to connect to
MySQL, PostgreSQL, Oracle, MSSQLServer, Db2, and Redshift databases using credentials stored in
Secrets Manager. Each driver wraps the base JDBC driver, so you can use JDBC calls to access your
database. However, instead of passing a username and password for the connection, you provide
the ID of a secret. The driver calls Secrets Manager to retrieve the secret value, and then uses the
credentials in the secret to connect to the database. The driver also caches the credentials using
the Java client-side caching library, so future connections don't require a call to Secrets Manager.
By default, the cache refreshes every hour and also when the secret is rotated. To configure the
cache, see the section called “SecretCacheConfiguration”.

You can download the source code from GitHub.

To use the Secrets Manager SQL Connection drivers:

• Your application must be in Java 8 or higher.

• Your secret must be one of the following:

AWS CLI 130

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/batch-get-secret-value.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/batch-get-secret-value.html
https://github.com/aws/aws-secretsmanager-jdbc

AWS Secrets Manager User Guide

• A database secret in the expected JSON structure. To check the format, in the Secrets Manager
console, view your secret and choose Retrieve secret value. Alternatively, in the AWS CLI, call
get-secret-value.

• An Amazon RDS managed secret. For this type of secret, you must specify an endpoint and
port when you establish the connection.

• An Amazon Redshift managed secret. For this type of secret, you must specify an endpoint and
port when you establish the connection.

If your database is replicated to other Regions, to connect to a replica database in another Region,
you specify the regional endpoint and port when you create the connection. You can store regional
connection information in the secret as extra key/value pairs, in SSM Parameter Store parameters,
or in your code configuration.

To add the driver to your project, in your Maven build file pom.xml, add the following dependency
for the driver. For more information, see Secrets Manager SQL Connection Library on the Maven
Central Repository website.

<dependency>
 <groupId>com.amazonaws.secretsmanager</groupId>
 <artifactId>aws-secretsmanager-jdbc</artifactId>
 <version>1.0.12</version>
</dependency>

The driver uses the default credential provider chain. If you run the driver on Amazon EKS, it might
pick up the credentials of the node it is running on instead of the service account role. To address
this, add version 1 of com.amazonaws:aws-java-sdk-sts to your Gradle or Maven project file
as a dependency.

To set an AWS PrivateLink DNS endpoint URL and a region in the secretsmanager.properties
file:

drivers.vpcEndpointUrl = endpoint URL
drivers.vpcEndpointRegion = endpoint region

To override the primary region, set the AWS_SECRET_JDBC_REGION environment variable or make
the following change to the secretsmanager.properties file:

drivers.region = region

Connect to a SQL database 131

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://search.maven.org/artifact/com.amazonaws.secretsmanager/aws-secretsmanager-jdbc
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/credentials.html

AWS Secrets Manager User Guide

Examples:

• Establish a connection to a database

• Establish a connection by specifying the endpoint and port

• Use c3p0 connection pooling to establish a connection

• Use c3p0 connection pooling to establish a connection by specifying the endpoint and port

Establish a connection to a database

The following example shows how to establish a connection to a database using the credentials
and connection information in a secret. Once you have the connection, you can use JDBC calls to
access the database. For more information, see JDBC Basics on the Java documentation website.

MySQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

PostgreSQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

Establish a connection to a database 132

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

AWS Secrets Manager User Guide

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Oracle

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

MSSQLServer

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Db2

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

Establish a connection to a database 133

AWS Secrets Manager User Guide

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Redshift

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver").newInstance();

// Retrieve the connection info from the secret using the secret ARN
String URL = "secretId";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Establish a connection by specifying the endpoint and port

The following example shows how to establish a connection to a database using the credentials in
a secret with an endpoint and port that you specify.

Amazon RDS managed secrets don't include the endpoint and port of the database. To connect to a
database using master credentials in a secret that's managed by Amazon RDS, you specify them in
your code.

Secrets that are replicated to other Regions can improve latency for the connection to the regional
database, but they do not contain different connection information from the source secret. Each
replica is a copy of the source secret. To store regional connection information in the secret, add
more key/value pairs for the endpoint and port information for the Regions.

Once you have the connection, you can use JDBC calls to access the database. For more
information, see JDBC Basics on the Java documentation website.

Establish a connection by specifying the endpoint and port 134

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

AWS Secrets Manager User Guide

MySQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:mysql://example.com:3306";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

PostgreSQL

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:postgresql://example.com:5432/database";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Oracle

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:oracle:thin:@example.com:1521/ORCL";

Establish a connection by specifying the endpoint and port 135

AWS Secrets Manager User Guide

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

MSSQLServer

// Load the JDBC driver
Class.forName("com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:sqlserver://example.com:1433";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Db2

// Load the JDBC driver
Class.forName("com.amazonaws.com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:db2://example.com:50000";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Establish a connection by specifying the endpoint and port 136

AWS Secrets Manager User Guide

Redshift

// Load the JDBC driver
Class.forName("com.amazonaws.com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver").newInstance();

// Set the endpoint and port. You can also retrieve it from a key/value pair in the
 secret.
String URL = "jdbc-secretsmanager:redshift://example.com:5439";

// Populate the user property with the secret ARN to retrieve user and password from
 the secret
Properties info = new Properties();
info.put("user", "secretId");

// Establish the connection
conn = DriverManager.getConnection(URL, info);

Use c3p0 connection pooling to establish a connection

The following example shows how to establish a connection pool with a c3p0.properties
file that uses the driver to retrieve credentials and connection information from the secret. For
user and jdbcUrl, enter the secret ID to configure the connection pool. Then you can retrieve
connections from the pool and use them as any other database connections. For more information,
see JDBC Basics on the Java documentation website.

For more information about c3p0, see c3p0 on the Machinery For Change website.

MySQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver
c3p0.jdbcUrl=secretId

PostgreSQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver
c3p0.jdbcUrl=secretId

Use c3p0 connection pooling to establish a connection 137

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html
https://www.mchange.com/projects/c3p0/

AWS Secrets Manager User Guide

Oracle

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver
c3p0.jdbcUrl=secretId

MSSQLServer

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver
c3p0.jdbcUrl=secretId

Db2

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver
c3p0.jdbcUrl=secretId

Redshift

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver
c3p0.jdbcUrl=secretId

Use c3p0 connection pooling to establish a connection by specifying
the endpoint and port

The following example shows how to establish a connection pool with a c3p0.properties file
that uses the the driver to retrieve credentials in a secret with an endpoint and port that you
specify. Then you can retrieve connections from the pool and use them as any other database
connections. For more information, see JDBC Basics on the Java documentation website.

Amazon RDS managed secrets don't include the endpoint and port of the database. To connect to a
database using master credentials in a secret that's managed by Amazon RDS, you specify them in
your code.

Secrets that are replicated to other Regions can improve latency for the connection to the regional
database, but they do not contain different connection information from the source secret. Each

Use c3p0 connection pooling to establish a connection by specifying the endpoint and port 138

https://docs.oracle.com/javase/tutorial/jdbc/basics/index.html

AWS Secrets Manager User Guide

replica is a copy of the source secret. To store regional connection information in the secret, add
more key/value pairs for the endpoint and port information for the Regions.

MySQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMySQLDriver
c3p0.jdbcUrl=jdbc-secretsmanager:mysql://example.com:3306

PostgreSQL

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerPostgreSQLDriver
c3p0.jdbcUrl=jdbc-secretsmanager:postgresql://example.com:5432/database

Oracle

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerOracleDriver
c3p0.jdbcUrl=jdbc-secretsmanager:oracle:thin:@example.com:1521/ORCL

MSSQLServer

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerMSSQLServerDriver
c3p0.jdbcUrl=jdbc-secretsmanager:sqlserver://example.com:1433

Db2

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerDb2Driver
c3p0.jdbcUrl=jdbc-secretsmanager:db2://example.com:50000

Redshift

c3p0.user=secretId
c3p0.driverClass=com.amazonaws.secretsmanager.sql.AWSSecretsManagerRedshiftDriver
c3p0.jdbcUrl=jdbc-secretsmanager:redshift://example.com:5439

Use c3p0 connection pooling to establish a connection by specifying the endpoint and port 139

AWS Secrets Manager User Guide

Retrieve AWS Secrets Manager secrets in Java applications

When you retrieve a secret, you can use the Secrets Manager Java-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Retrieve secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

• A Java 8 or higher development environment. See Java SE Downloads on the Oracle website.

• The AWS SDK 1.x for Java. You can use both versions of the AWS SDK for Java in your projects.
For more information, see Using the SDK for Java 1.x and 2.x side-by-side.

To download the source code, see Secrets Manager Java-based caching client component on
GitHub.

To add the component to your project, in your Maven pom.xml file, include the following
dependency. For more information about Maven, see the Getting Started Guide on the Apache
Maven Project website.

<dependency>
 <groupId>com.amazonaws.secretsmanager</groupId>
 <artifactId>aws-secretsmanager-caching-java</artifactId>
 <version>1.0.2</version>
</dependency>

Required permissions:

• secretsmanager:DescribeSecret

Java applications 140

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/migration-side-by-side.html
https://github.com/aws/aws-secretsmanager-caching-java
https://maven.apache.org/guides/getting-started/index.html

AWS Secrets Manager User Guide

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• SecretCache

• SecretCacheConfiguration

• SecretCacheHook

Example Retrieve a secret

The following code example shows a Lambda function that retrieves a secret string. It follows the
best practice of instantiating the cache outside of the function handler, so it doesn't keep calling
the API if you call the Lambda function again.

package com.amazonaws.secretsmanager.caching.examples;

 import com.amazonaws.services.lambda.runtime.Context;
 import com.amazonaws.services.lambda.runtime.RequestHandler;
 import com.amazonaws.services.lambda.runtime.LambdaLogger;

 import com.amazonaws.secretsmanager.caching.SecretCache;

 public class SampleClass implements RequestHandler<String, String> {

 private final SecretCache cache = new SecretCache();

 @Override public String handleRequest(String secretId, Context context) {
 final String secret = cache.getSecretString(secretId);

 // Use the secret, return success;

 }
 }

SecretCache

An in-memory cache for secrets requested from Secrets Manager. You use the section called
“getSecretString” or the section called “getSecretBinary” to retrieve a secret from the cache. You

SecretCache 141

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html

AWS Secrets Manager User Guide

can configure the cache settings by passing in a the section called “SecretCacheConfiguration”
object in the constructor.

For more information, including examples, see the section called “Java applications”.

Constructors

public SecretCache()

Default constructor for a SecretCache object.

public SecretCache(AWSSecretsManagerClientBuilder builder)

Constructs a new cache using a Secrets Manager client created using the provided
AWSSecretsManagerClientBuilder. Use this constructor to customize the Secrets Manager
client, for example to use a specific region or endpoint.

public SecretCache(AWSSecretsManager client)

Constructs a new secret cache using the provided AWSSecretsManagerClient. Use this
constructor to customize the Secrets Manager client, for example to use a specific region or
endpoint.

public SecretCache(SecretCacheConfiguration config)

Constructs a new secret cache using the provided the section called
“SecretCacheConfiguration”.

Methods

getSecretString

public String getSecretString(final String secretId)

Retrieves a string secret from Secrets Manager. Returns a String.

getSecretBinary

public ByteBuffer getSecretBinary(final String secretId)

Retrieves a binary secret from Secrets Manager. Returns a ByteBuffer.

SecretCache 142

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClientBuilder.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html
https://docs.oracle.com/javase/7/docs/api/java/lang/String.html?is-external=true
https://docs.oracle.com/javase/7/docs/api/java/nio/ByteBuffer.html

AWS Secrets Manager User Guide

refreshNow

public boolean refreshNow(final String secretId) throws
InterruptedException

Forces the cache to refresh. Returns true if the refresh completed without error, otherwise false.

close

public void close()

Closes the cache.

SecretCacheConfiguration

Cache configuration options for a the section called “SecretCache”, such as max cache size and
Time to Live (TTL) for cached secrets.

Constructor

public SecretCacheConfiguration

Default constructor for a SecretCacheConfiguration object.

Methods

getClient

public AWSSecretsManager getClient()

Returns the AWSSecretsManagerClient that the cache retrieves secrets from.

setClient

public void setClient(AWSSecretsManager client)

Sets the AWSSecretsManagerClient client that the cache retrieves secrets from.

getCacheHook

public SecretCacheHook getCacheHook()

Returns the the section called “SecretCacheHook” interface used to hook cache updates.

SecretCacheConfiguration 143

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

setCacheHook

public void setCacheHook(SecretCacheHook cacheHook)

Sets the the section called “SecretCacheHook” interface used to hook cache updates.

getMaxCacheSize

public int getMaxCacheSize()

Returns the maximum cache size. The default is 1024 secrets.

setMaxCacheSize

public void setMaxCacheSize(int maxCacheSize)

Sets the maximum cache size. The default is 1024 secrets.

getCacheItemTTL

public long getCacheItemTTL()

Returns the TTL in milliseconds for the cached items. When a cached secret exceeds this TTL, the
cache retrieves a new copy of the secret from the AWSSecretsManagerClient. The default is 1
hour in milliseconds.

The cache refreshes the secret synchronously when the secret is requested after the TTL. If the
synchronous refresh fails, the cache returns the stale secret.

setCacheItemTTL

public void setCacheItemTTL(long cacheItemTTL)

Sets the TTL in milliseconds for the cached items. When a cached secret exceeds this TTL, the cache
retrieves a new copy of the secret from the AWSSecretsManagerClient. The default is 1 hour in
milliseconds.

getVersionStage

public String getVersionStage()

Returns the version of secrets that you want to cache. For more information, see Secret versions.
The default is "AWSCURRENT".

SecretCacheConfiguration 144

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

setVersionStage

public void setVersionStage(String versionStage)

Sets the version of secrets that you want to cache. For more information, see Secret versions. The
default is "AWSCURRENT".

SecretCacheConfiguration withClient

public SecretCacheConfiguration withClient(AWSSecretsManager client)

Sets the AWSSecretsManagerClient to retrieve secrets from. Returns the updated
SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration withCacheHook

public SecretCacheConfiguration withCacheHook(SecretCacheHook cacheHook)

Sets the interface used to hook the in-memory cache. Returns the updated
SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration withMaxCacheSize

public SecretCacheConfiguration withMaxCacheSize(int maxCacheSize)

Sets the maximum cache size. Returns the updated SecretCacheConfiguration object with the
new setting.

SecretCacheConfiguration withCacheItemTTL

public SecretCacheConfiguration withCacheItemTTL(long cacheItemTTL)

Sets the TTL in milliseconds for the cached items. When a cached secret exceeds this TTL, the cache
retrieves a new copy of the secret from the AWSSecretsManagerClient. The default is 1 hour in
milliseconds. Returns the updated SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration withVersionStage

public SecretCacheConfiguration withVersionStage(String versionStage)

Sets the version of secrets that you want to cache. For more information, see Secret versions.
Returns the updated SecretCacheConfiguration object with the new setting.

SecretCacheConfiguration 145

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html
https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerClient.html

AWS Secrets Manager User Guide

SecretCacheHook

An interface to hook into a the section called “SecretCache” to perform actions on the secrets
being stored in the cache.

put

Object put(final Object o)

Prepare the object for storing in the cache.

Returns the object to store in the cache.

get

Object get(final Object cachedObject)

Derive the object from the cached object.

Returns the object to return from the cache

Retrieve AWS Secrets Manager secrets in Python applications

When you retrieve a secret, you can use the Secrets Manager Python-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Retrieve secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

SecretCacheHook 146

AWS Secrets Manager User Guide

• Python 3.6 or later.

• botocore 1.12 or higher. See AWS SDK for Python and Botocore.

• setuptools_scm 3.2 or higher. See https://pypi.org/project/setuptools-scm/.

To download the source code, see Secrets Manager Python-based caching client component on
GitHub.

To install the component, use the following command.

$ pip install aws-secretsmanager-caching

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• SecretCache

• SecretCacheConfig

• SecretCacheHook

• @InjectSecretString

• @InjectKeywordedSecretString

Example Retrieve a secret

The following example shows how to get the secret value for a secret named mysecret.

import botocore
import botocore.session
from aws_secretsmanager_caching import SecretCache, SecretCacheConfig

client = botocore.session.get_session().create_client('secretsmanager')
cache_config = SecretCacheConfig()
cache = SecretCache(config = cache_config, client = client)

Python applications 147

https://aws.amazon.com/sdk-for-python/
https://botocore.amazonaws.com/v1/documentation/api/latest/index.html
https://pypi.org/project/setuptools-scm/
https://github.com/aws/aws-secretsmanager-caching-python

AWS Secrets Manager User Guide

secret = cache.get_secret_string('mysecret')

SecretCache

An in-memory cache for secrets retrieved from Secrets Manager. You use the section called
“get_secret_string” or the section called “get_secret_binary” to retrieve a secret from the cache.
You can configure the cache settings by passing in a the section called “SecretCacheConfig” object
in the constructor.

For more information, including examples, see the section called “Python applications”.

cache = SecretCache(
 config = the section called “SecretCacheConfig”,
 client = client
)

These are the available methods:

• get_secret_string

• get_secret_binary

get_secret_string

Retrieves the secret string value.

Request syntax

response = cache.get_secret_string(
 secret_id='string',
 version_stage='string')

Parameters

• secret_id (string) -- [Required] The name or ARN of the secret.

• version_stage (string) -- The version of secrets that you want to retrieve. For more
information, see Secret versions. The default is 'AWSCURRENT'.

Return type

string

SecretCache 148

https://botocore.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html#term_version

AWS Secrets Manager User Guide

get_secret_binary

Retrieves the secret binary value.

Request syntax

response = cache.get_secret_binary(
 secret_id='string',
 version_stage='string'
)

Parameters

• secret_id (string) -- [Required] The name or ARN of the secret.

• version_stage (string) -- The version of secrets that you want to retrieve. For more
information, see Secret versions. The default is 'AWSCURRENT'.

Return type

base64-encoded string

SecretCacheConfig

Cache configuration options for a the section called “SecretCache” such as max cache size and Time
to Live (TTL) for cached secrets.

Parameters

max_cache_size (int)

The maximum cache size. The default is 1024 secrets.

exception_retry_delay_base (int)

The number of seconds to wait after an exception is encountered before retrying the request.
The default is 1.

exception_retry_growth_factor (int)pur

The growth factor to use for calculating the wait time between retries of failed requests. The
default is 2.

exception_retry_delay_max (int)

The maximum amount of time in seconds to wait between failed requests. The default is 3600.

SecretCacheConfig 149

https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html#term_version
https://tools.ietf.org/html/rfc4648#section-4

AWS Secrets Manager User Guide

default_version_stage (str)

The version of secrets that you want to cache. For more information, see Secret versions. The
default is 'AWSCURRENT'.

secret_refresh_interval (int)

The number of seconds to wait between refreshing cached secret information. The default is
3600.

secret_cache_hook (SecretCacheHook)

An implementation of the SecretCacheHook abstract class. The default value is None.

SecretCacheHook

An interface to hook into a a the section called “SecretCache” to perform actions on the secrets
being stored in the cache.

These are the available methods:

• put

• get

put

Prepares the object for storing in the cache.

Request syntax

response = hook.put(
 obj='secret_object'
)

Parameters

• obj (object) -- [Required] The secret or object that contains the secret.

Return type

object

SecretCacheHook 150

AWS Secrets Manager User Guide

get

Derives the object from the cached object.

Request syntax

response = hook.get(
 obj='secret_object'
)

Parameters

• obj (object) -- [Required] The secret or object that contains the secret.

Return type

object

@InjectSecretString

This decorator expects a secret ID string and the section called “SecretCache” as the first and
second arguments. The decorator returns the secret string value. The secret must contain a string.

from aws_secretsmanager_caching import SecretCache
from aws_secretsmanager_caching import InjectKeywordedSecretString,
 InjectSecretString

cache = SecretCache()

@InjectSecretString ('mysecret' , cache)
def function_to_be_decorated(arg1, arg2, arg3):

@InjectKeywordedSecretString

This decorator expects a secret ID string and the section called “SecretCache” as the first and
second arguments. The remaining arguments map parameters from the wrapped function to JSON
keys in the secret. The secret must contain a string in JSON structure.

For a secret that contains this JSON:

{

@InjectSecretString 151

AWS Secrets Manager User Guide

 "username": "saanvi",
 "password": "EXAMPLE-PASSWORD"
}

The following example shows how to extract the JSON values for username and password from
the secret.

from aws_secretsmanager_caching import SecretCache
 from aws_secretsmanager_caching import InjectKeywordedSecretString,
 InjectSecretString

 cache = SecretCache()

 @InjectKeywordedSecretString (secret_id = 'mysecret' , cache = cache ,
 func_username = 'username' , func_password = 'password')
 def function_to_be_decorated(func_username, func_password):
 print('Do something with the func_username and func_password parameters')

Retrieve AWS Secrets Manager secrets in .NET applications

When you retrieve a secret, you can use the Secrets Manager .NET-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Retrieve secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

• .NET Framework 4.6.2 or higher, or .NET Standard 2.0 or higher. See Download .NET on the
Microsoft .NET website.

• The AWS SDK for .NET. See the section called “AWS SDKs”.

.NET applications 152

https://dotnet.microsoft.com/en-us/download

AWS Secrets Manager User Guide

To download the source code, see Caching client for .NET on GitHub.

To use the cache, first instantiate it, then retrieve your secret by using GetSecretString or
GetSecretBinary. On successive retrievals, the cache returns the cached copy of the secret.

To get the caching package

• Do one of the following:

• Run the following .NET CLI command in your project directory.

dotnet add package AWSSDK.SecretsManager.Caching --version 1.0.6

• Add the following package reference to your .csproj file.

<ItemGroup>
 <PackageReference Include="AWSSDK.SecretsManager.Caching" Version="1.0.6" /
>
</ItemGroup>

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Reference

• SecretsManagerCache

• SecretCacheConfiguration

• ISecretCacheHook

Example Retrieve a secret

The following code example shows a method that retrieves a secret named MySecret.

using Amazon.SecretsManager.Extensions.Caching;

namespace LambdaExample

.NET applications 153

https://github.com/aws/aws-secretsmanager-caching-net

AWS Secrets Manager User Guide

{
 public class CachingExample
 {
 private const string MySecretName ="MySecret";

 private SecretsManagerCache cache = new SecretsManagerCache();

 public async Task<Response> FunctionHandlerAsync(string input, ILambdaContext
 context)
 {
 string MySecret = await cache.GetSecretString(MySecretName);

 // Use the secret, return success

 }
 }
}

Example Configure the time to live (TTL) cache refresh duration

The following code example shows a method that retrieves a secret named MySecret and sets the
TTL cache refresh duration to 24 hours.

using Amazon.SecretsManager.Extensions.Caching;

namespace LambdaExample
{
 public class CachingExample
 {
 private const string MySecretName = "MySecret";

 private static SecretCacheConfiguration cacheConfiguration = new
 SecretCacheConfiguration
 {
 CacheItemTTL = 86400000
 };
 private SecretsManagerCache cache = new
 SecretsManagerCache(cacheConfiguration);
 public async Task<Response> FunctionHandlerAsync(string input, ILambdaContext
 context)
 {
 string mySecret = await cache.GetSecretString(MySecretName);

.NET applications 154

AWS Secrets Manager User Guide

 // Use the secret, return success
 }
 }
}

SecretsManagerCache

An in-memory cache for secrets requested from Secrets Manager. You use the section called
“GetSecretString” or the section called “GetSecretBinary” to retrieve a secret from the cache. You
can configure the cache settings by passing in a the section called “SecretCacheConfiguration”
object in the constructor.

For more information, including examples, see the section called “.NET applications”.

Constructors

public SecretsManagerCache()

Default constructor for a SecretsManagerCache object.

public SecretsManagerCache(IAmazonSecretsManager secretsManager)

Constructs a new cache using a Secrets Manager client created using the provided
AmazonSecretsManagerClient. Use this constructor to customize the Secrets Manager client, for
example to use a specific region or endpoint.

Parameters

secretsManager

The AmazonSecretsManagerClient to retrieve secrets from.

public SecretsManagerCache(SecretCacheConfiguration config)

Constructs a new secret cache using the provided the section called
“SecretCacheConfiguration”. Use this constructor to configure the cache, for example the
number of secrets to cache and how often it refreshes.

Parameters

config

A the section called “SecretCacheConfiguration” that contains configuration information for
the cache.

SecretsManagerCache 155

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html

AWS Secrets Manager User Guide

public SecretsManagerCache(IAmazonSecretsManager secretsManager,
SecretCacheConfiguration config)

Constructs a new cache using a Secrets Manager client created using the provided
AmazonSecretsManagerClient and a the section called “SecretCacheConfiguration”. Use this
constructor to customize the Secrets Manager client, for example to use a specific region or
endpoint as well as configure the cache, for example the number of secrets to cache and how
often it refreshes.

Parameters

secretsManager

The AmazonSecretsManagerClient to retrieve secrets from.

config

A the section called “SecretCacheConfiguration” that contains configuration information for
the cache.

Methods

GetSecretString

public async Task<String> GetSecretString(String secretId)

Retrieves a string secret from Secrets Manager.

Parameters

secretId

The ARN or name of the secret to retrieve.

GetSecretBinary

public async Task<byte[]> GetSecretBinary(String secretId)

Retrieves a binary secret from Secrets Manager.

SecretsManagerCache 156

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html

AWS Secrets Manager User Guide

Parameters

secretId

The ARN or name of the secret to retrieve.

RefreshNowAsync

public async Task<bool> RefreshNowAsync(String secretId)

Requests the secret value from Secrets Manager and updates the cache with any changes. If there
is no existing cache entry, creates a new one. Returns true if the refresh is successful.

Parameters

secretId

The ARN or name of the secret to retrieve.

GetCachedSecret

public SecretCacheItem GetCachedSecret(string secretId)

Returns the cache entry for the specified secret if it exists in the cache. Otherwise, retrieves the
secret from Secrets Manager and creates a new cache entry.

Parameters

secretId

The ARN or name of the secret to retrieve.

SecretCacheConfiguration

Cache configuration options for a the section called “SecretsManagerCache”, such as maximum
cache size and Time to Live (TTL) for cached secrets.

Properties

CacheItemTTL

public uint CacheItemTTL { get; set; }

SecretCacheConfiguration 157

AWS Secrets Manager User Guide

The TTL of a cache item in milliseconds. The default is 3600000 ms or 1 hour. The maximum is
4294967295 ms, which is approximately 49.7 days.

MaxCacheSize

public ushort MaxCacheSize { get; set; }

The maximum cache size. The default is 1024 secrets. The maximum is 65,535.

VersionStage

public string VersionStage { get; set; }

The version of secrets that you want to cache. For more information, see Secret versions. The
default is "AWSCURRENT".

Client

public IAmazonSecretsManager Client { get; set; }

The AmazonSecretsManagerClient to retrieve secrets from. If it is null, the cache instantiates a
new client. The default is null.

CacheHook

public ISecretCacheHook CacheHook { get; set; }

A the section called “ISecretCacheHook”.

ISecretCacheHook

An interface to hook into a the section called “SecretsManagerCache” to perform actions on the
secrets being stored in the cache.

Methods

Put

object Put(object o);

Prepare the object for storing in the cache.

Returns the object to store in the cache.

ISecretCacheHook 158

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SecretsManager/TSecretsManagerClient.html

AWS Secrets Manager User Guide

Get

object Get(object cachedObject);

Derive the object from the cached object.

Returns the object to return from the cache

Retrieve AWS Secrets Manager secrets in Go applications

When you retrieve a secret, you can use the Secrets Manager Go-based caching component to
cache it for future use. Retrieving a cached secret is faster than retrieving it from Secrets Manager.
Because there is a cost for calling Secrets Manager APIs, using a cache can reduce your costs. For all
of the ways you can retrieve secrets, see Retrieve secrets.

The cache policy is Least Recently Used (LRU), so when the cache must discard a secret, it discards
the least recently used secret. By default, the cache refreshes secrets every hour. You can configure
how often the secret is refreshed in the cache, and you can hook into the secret retrieval to add
more functionality.

The cache does not force garbage collection once cache references are freed. The cache
implementation does not include cache invalidation. The cache implementation is focused around
the cache itself, and is not security hardened or focused. If you require additional security such as
encrypting items in the cache, use the interfaces and abstract methods provided.

To use the component, you must have the following:

• AWS SDK for Go. See the section called “AWS SDKs”.

To download the source code, see Secrets Manager Go caching client on GitHub.

To set up a Go development environment, see Golang Getting Started on the Go Programming
Language website.

Required permissions:

• secretsmanager:DescribeSecret

• secretsmanager:GetSecretValue

For more information, see Permissions reference.

Go applications 159

https://github.com/aws/aws-secretsmanager-caching-go
https://golang.org/doc/install

AWS Secrets Manager User Guide

Reference

• type Cache

• type CacheConfig

• type CacheHook

Example Retrieve a secret

The following code example shows a Lambda function that retrieves a secret.

package main

import (
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-secretsmanager-caching-go/secretcache"
)

var (
 secretCache, _ = secretcache.New()
)

func HandleRequest(secretId string) string {
 result, _ := secretCache.GetSecretString(secretId)

 // Use the secret, return success
}

 func main() {
 lambda. Start(HandleRequest)
}

type Cache

An in-memory cache for secrets requested from Secrets Manager. You use the section called
“GetSecretString” or the section called “GetSecretBinary” to retrieve a secret from the cache.

The following example shows how to configure the cache settings.

// Create a custom secretsmanager client
client := getCustomClient()

type Cache 160

AWS Secrets Manager User Guide

// Create a custom CacheConfig struct
config := secretcache. CacheConfig{
 MaxCacheSize: secretcache.DefaultMaxCacheSize + 10,
 VersionStage: secretcache.DefaultVersionStage,
 CacheItemTTL: secretcache.DefaultCacheItemTTL,
}

// Instantiate the cache
cache, _ := secretcache.New(
 func(c *secretcache.Cache) { c. CacheConfig = config },
 func(c *secretcache.Cache) { c. Client = client },
)

For more information, including examples, see the section called “Go applications”.

Methods

New

func New(optFns ...func(*Cache)) (*Cache, error)

New constructs a secret cache using functional options, uses defaults otherwise. Initializes a
SecretsManager Client from a new session. Initializes CacheConfig to default values. Initialises LRU
cache with a default max size.

GetSecretString

func (c *Cache) GetSecretString(secretId string) (string, error)

GetSecretString gets the secret string value from the cache for given secret ID. Returns the secret
sting and an error if operation failed.

GetSecretStringWithStage

func (c *Cache) GetSecretStringWithStage(secretId string, versionStage
string) (string, error)

GetSecretStringWithStage gets the secret string value from the cache for given secret ID and
version stage. Returns the secret sting and an error if operation failed.

GetSecretBinary

func (c *Cache) GetSecretBinary(secretId string) ([]byte, error) {

type Cache 161

AWS Secrets Manager User Guide

GetSecretBinary gets the secret binary value from the cache for given secret ID. Returns the secret
binary and an error if operation failed.

GetSecretBinaryWithStage

func (c *Cache) GetSecretBinaryWithStage(secretId string, versionStage
string) ([]byte, error)

GetSecretBinaryWithStage gets the secret binary value from the cache for given secret ID and
version stage. Returns the secret binary and an error if operation failed.

type CacheConfig

Cache configuration options for a Cache, such as maximum cache size, default version stage, and
Time to Live (TTL) for cached secrets.

type CacheConfig struct {

 // The maximum cache size. The default is 1024 secrets.
 MaxCacheSize int

 // The TTL of a cache item in nanoseconds. The default is
 // 3.6e10^12 ns or 1 hour.
 CacheItemTTL int64

 // The version of secrets that you want to cache. The default
 // is "AWSCURRENT".
 VersionStage string

 // Used to hook in-memory cache updates.
 Hook CacheHook
}

type CacheHook

An interface to hook into a Cache to perform actions on the secret being stored in the cache.

Methods

Put

Put(data interface{}) interface{}

type CacheConfig 162

AWS Secrets Manager User Guide

Prepares the object for storing in the cache.

Get

Get(data interface{}) interface{}

Derives the object from the cached object.

Use AWS Secrets Manager secrets in AWS Batch

AWS Batch helps you to run batch computing workloads on the AWS Cloud. With AWS Batch, you
can inject sensitive data into your jobs by storing your sensitive data in AWS Secrets Manager
secrets and then referencing them in your job definition. For more information, see Specifying
sensitive data using Secrets Manager.

Retrieve an AWS Secrets Manager secret in an AWS
CloudFormation resource

With AWS CloudFormation, you can retrieve a secret to use in another AWS CloudFormation
resource. A common scenario is to first create a secret with a password generated by Secrets
Manager, and then retrieve the username and password from the secret to use as credentials
for a new database. For information about creating secrets with AWS CloudFormation, see AWS
CloudFormation.

To retrieve a secret in a AWS CloudFormation template, you use a dynamic reference. When you
create the stack, the dynamic reference pulls the secret value into the AWS CloudFormation
resource, so you don't have to hardcode the secret information. Instead, you refer to the secret by
name or ARN. You can use a dynamic reference for a secret in any resource property. You can't use
a dynamic reference for a secret in resource metadata such as AWS::CloudFormation::Init
because that would make the secret value visible in the console.

A dynamic reference for a secret has the following pattern:

{{resolve:secretsmanager:secret-id:SecretString:json-key:version-stage:version-id}}

secret-id

The name or ARN of the secret. To access a secret in your AWS account, you can use the secret
name. To access a secret in a different AWS account, use the ARN of the secret.

AWS Batch 163

https://docs.aws.amazon.com/batch/latest/userguide/specifying-sensitive-data-secrets.html
https://docs.aws.amazon.com/batch/latest/userguide/specifying-sensitive-data-secrets.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html

AWS Secrets Manager User Guide

json-key (Optional)

The key name of the key-value pair whose value you want to retrieve. If you don't specify a
json-key, AWS CloudFormation retrieves the entire secret text. This segment may not include
the colon character (:).

version-stage (Optional)

The version of the secret to use. Secrets Manager uses staging labels to keep track of different
versions during the rotation process. If you use version-stage then don't specify version-
id. If you don't specify either version-stage or version-id, then the default is the
AWSCURRENT version. This segment may not include the colon character (:).

version-id (Optional)

The unique identifier of the version of the secret to use. If you specify version-id, then don't
specify version-stage. If you don't specify either version-stage or version-id, then the
default is the AWSCURRENT version. This segment may not include the colon character (:).

For more information, see Using dynamic references to specify Secrets Manager secrets.

Note

Do not create a dynamic reference using a backslash (\) as the final value. AWS
CloudFormation can't resolve those references, which causes a resource failure.

Use AWS Secrets Manager secrets in Amazon Elastic Container
Service

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service
that helps you easily deploy, manage, and scale containerized applications. You can inject sensitive
data into your containers by referencing Secrets Manager secrets. For more information, see the
following pages in the Amazon Elastic Container Service Developer Guide:

• Tutorial: Specifying sensitive data using Secrets Manager secrets

• Retrieve secrets programmatically through your application

• Retrieve secrets through environment variables

• Retrieve secrets for logging configuration

Amazon Elastic Container Service 164

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/dynamic-references.html#dynamic-references-secretsmanager
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/specifying-sensitive-data-tutorial.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-app-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-envvar-secrets-manager.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/secrets-logconfig.html

AWS Secrets Manager User Guide

Use AWS Secrets Manager secrets in Amazon Elastic Kubernetes
Service

To show secrets from Secrets Manager as files mounted in Amazon EKS pods, you can use the
AWS Secrets and Configuration Provider (ASCP) for the Kubernetes Secrets Store CSI Driver. The
ASCP works with Amazon Elastic Kubernetes Service (Amazon EKS) 1.17+ running an Amazon
EC2 node group. AWS Fargate node groups are not supported. With the ASCP, you can store and
manage your secrets in Secrets Manager and then retrieve them through your workloads running
on Amazon EKS. If your secret contains multiple key/value pairs in JSON format, you can choose
which ones to mount in Amazon EKS. The ASCP uses JMESPath syntax to query the key/value pairs
in your secret. The ASCP also works with Parameter Store parameters.

You use IAM roles and policies to grant access to your secrets to specific Amazon EKS pods in a
cluster.

To describe which files to create in the Amazon EKS pod and which secrets to put in them, you
create a the section called “SecretProviderClass” YAML file. The SecretProviderClass
must be in the same namespace as the Amazon EKS pod it references.

If you use a private Amazon EKS cluster, ensure that the VPC that the cluster is in has a Secrets
Manager endpoint. The Secrets Store CSI Driver uses the endpoint to make calls to Secrets
Manager. For information about creating an endpoint in a VPC, see VPC endpoint.

If you use Secrets Manager automatic rotation for your secrets, you can also use the Secrets Store
CSI Driver rotation reconciler feature to ensure you are retrieving the latest secret from Secrets
Manager. For more information, see Auto rotation of mounted contents and synced Kubernetes
Secrets.

For a tutorial about how to use the ASCP, see the section called “Tutorial”.

Install the ASCP

The ASCP is available on GitHub in the secrets-store-csi-provider-aws repository. The repo also
contains example YAML files for creating and mounting a secret.

To install the ASCP

• To install the Secrets Store CSI Driver and ASCP by using Helm, use the following commands.
To ensure the repo is pointing to the latest chart, use helm repo update.

Amazon EKS 165

https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://secrets-store-csi-driver.sigs.k8s.io/
http://jmespath.org/
https://docs.aws.amazon.com/systems-manager/latest/userguide/integrating_csi_driver.html
https://secrets-store-csi-driver.sigs.k8s.io/topics/secret-auto-rotation.html
https://secrets-store-csi-driver.sigs.k8s.io/topics/secret-auto-rotation.html
https://github.com/aws/secrets-store-csi-driver-provider-aws

AWS Secrets Manager User Guide

helm repo add secrets-store-csi-driver https://kubernetes-sigs.github.io/secrets-
store-csi-driver/charts
helm install -n kube-system csi-secrets-store secrets-store-csi-driver/secrets-
store-csi-driver

helm repo add aws-secrets-manager https://aws.github.io/secrets-store-csi-driver-
provider-aws
helm install -n kube-system secrets-provider-aws aws-secrets-manager/secrets-store-
csi-driver-provider-aws

Alternatively, to install by using the YAML file in the deployment directory, use the following
commands.

helm repo add secrets-store-csi-driver https://kubernetes-sigs.github.io/secrets-
store-csi-driver/charts
helm install -n kube-system csi-secrets-store secrets-store-csi-driver/secrets-
store-csi-driver
kubectl apply -f https://raw.githubusercontent.com/aws/secrets-store-csi-driver-
provider-aws/main/deployment/aws-provider-installer.yaml

Step 1: Set up access control

To grant your Amazon EKS pod access to secrets in Secrets Manager, you first
create a permissions policy that grants secretsmanager:GetSecretValue and
secretsmanager:DescribeSecret permission to the secrets that the pod needs to access. For
example policies, see Permissions policy examples.

Then you create an IAM role for service account and attach the policy to it. For more information,
see IAM role for service accounts.

The ASCP retrieves the pod identity and exchanges it for the IAM role. ASCP assumes the IAM role
of the pod, which gives it access to the secrets you authorized. Other containers can't access the
secrets unless you also associate them with the IAM role.

If you use a private Amazon EKS cluster, ensure that the VPC that the cluster is in has an AWS STS
endpoint. For information about creating an endpoint, see Interface VPC endpoints in the AWS
Identity and Access Management User Guide.

Set up access control 166

https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_interface_vpc_endpoints.html

AWS Secrets Manager User Guide

Step 2: Identify which secrets to mount

To determine which secrets the ASCP mounts in Amazon EKS as files on the filesystem, you create a
SecretProviderClass YAML file. The SecretProviderClass YAML lists the secrets to mount
and the file name to mount them as. The SecretProviderClass must be in the same namespace
as the Amazon EKS pod it references.

The following examples show how to use SecretProviderClass to describe the secrets you
want to mount and what to name the files mounted in the Amazon EKS pod. For more information,
see the section called “SecretProviderClass”.

Examples:

• Example: Mount secrets by name or ARN

• Example: Mount key/value pairs from a secret

• Example: Define a failover Region for a multi-Region secret

• Example: Choose a failover secret to mount

Example: Mount secrets by name or ARN

The following example shows a SecretProviderClass that mounts three files in Amazon EKS:

1. A secret specified by full ARN.

2. A secret specified by name.

3. A specific version of a secret.

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: aws-secrets
spec:
 provider: aws
 parameters:
 objects: |
 - objectName: "arn:aws:secretsmanager:us-east-2:111122223333:secret:MySecret2-
d4e5f6"
 - objectName: "MySecret3"
 objectType: "secretsmanager"
 - objectName: "MySecret4"

Identify which secrets to mount 167

AWS Secrets Manager User Guide

 objectType: "secretsmanager"
 objectVersionLabel: "AWSCURRENT"

Example: Mount key/value pairs from a secret

The following example shows a SecretProviderClass that mounts three files in Amazon EKS:

1. A secret specified by full ARN.

2. The username key/value pair from the same secret.

3. The password key/value pair from the same secret.

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: aws-secrets
spec:
 provider: aws
 parameters:
 objects: |
 - objectName: "arn:aws:secretsmanager:us-east-2:111122223333:secret:MySecret-
a1b2c3"
 jmesPath:
 - path: username
 objectAlias: dbusername
 - path: password
 objectAlias: dbpassword

Example: Define a failover Region for a multi-Region secret

To provide availability during connectivity outages or for disaster recovery configurations, the ASCP
supports an automated failover feature to retrieve secrets from a secondary region.

The following example shows a SecretProviderClass that retrieves a secret that is replicated
to multiple Regions. In this example, the ASCP tries to retrieve the secret from both us-east-1
and us-east-2. If either Region returns a 4xx error, for example for an authentication issue, the
ASCP does not mount either secret. If the secret is retrieved successfully from us-east-1, then the
ASCP mounts that secret value. If the secret is not retrieved successfully from us-east-1, but it is
retrieved successfully from us-east-2, then the ASCP mounts that secret value.

apiVersion: secrets-store.csi.x-k8s.io/v1

Identify which secrets to mount 168

AWS Secrets Manager User Guide

kind: SecretProviderClass
metadata:
 name: aws-secrets
spec:
 provider: aws
 parameters:
 region: us-east-1
 failoverRegion: us-east-2
 objects: |
 - objectName: "MySecret"

Example: Choose a failover secret to mount

The following example shows a SecretProviderClass that specifies which secret to mount in
case of failover. The failover secret isn't a replica. In this example, the ASCP tries to retrieve the two
secrets specified by objectName. If either returns a 4xx error, for example for an authentication
issue, the ASCP does not mount either secret. If the secret is retrieved successfully from us-
east-1, then the ASCP mounts that secret value. If the secret is not retrieved successfully from
us-east-1, but it is retrieved successfully from us-east-2, then the ASCP mounts that secret
value. The mounted file in Amazon EKS is named MyMountedSecret.

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: aws-secrets
spec:
 provider: aws
 parameters:
 region: us-east-1
 failoverRegion: us-east-2
 objects: |
 - objectName: "arn:aws:secretsmanager:us-east-1:111122223333:secret:MySecret-
a1b2c3"
 objectAlias: "MyMountedSecret"
 failoverObject:
 - objectName: "arn:aws:secretsmanager:us-
east-2:111122223333:secret:MyFailoverSecret-d4e5f6"

Troubleshoot

You can view most errors by describing the pod deployment.

Troubleshoot 169

AWS Secrets Manager User Guide

To see error messages for your container

1. Get a list of pod names with the following command. If you aren't using the default
namespace, use -n <NAMESPACE>.

kubectl get pods

2. To describe the pod, in the following command, for <PODID> use the pod ID from the
pods you found in the previous step. If you aren't using the default namespace, use -n
<NAMESPACE>.

kubectl describe pod/<PODID>

To see errors for the ASCP

• To find more information in the provider logs, in the following command, for <PODID> use the
ID of the csi-secrets-store-provider-aws pod.

kubectl -n kube-system get pods
kubectl -n kube-system logs pod/<PODID>

Tutorial: Create and mount an AWS Secrets Manager secret in an
Amazon EKS pod

In this tutorial, you create an example secret in Secrets Manager, and then you mount the secret in
an Amazon EKS pod and deploy it.

Before you begin, install the ASCP: the section called “Install the ASCP”.

To create and mount a secret

1. Set the AWS Region and the name of your cluster as shell variables so you can use them in
bash commands. For <REGION>, enter the AWS Region where your Amazon EKS cluster runs.
For <CLUSTERNAME>, enter the name of your cluster.

REGION=<REGION>
CLUSTERNAME=<CLUSTERNAME>

Tutorial 170

AWS Secrets Manager User Guide

2. Create a test secret. For more information, see Create and manage secrets.

aws --region "$REGION" secretsmanager create-secret --name MySecret --secret-
string '{"username":"lijuan", "password":"hunter2"}'

3. Create a resource policy for the pod that limits its access to the secret you created in the
previous step. For <SECRETARN>, use the ARN of the secret. Save the policy ARN in a shell
variable.

POLICY_ARN=$(aws --region "$REGION" --query Policy.Arn --output text iam create-
policy --policy-name nginx-deployment-policy --policy-document '{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": ["secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"],
 "Resource": ["<SECRETARN>"]
 }]
}')

4. Create an IAM OIDC provider for the cluster if you don't already have one. For more
information, see Create an IAM OIDC provider for your cluster.

eksctl utils associate-iam-oidc-provider --region="$REGION" --
cluster="$CLUSTERNAME" --approve # Only run this once

5. Create the service account the pod uses and associate the resource policy you created in step
3 with that service account. For this tutorial, for the service account name, you use nginx-
deployment-sa. For more information, see Create an IAM role for a service account.

eksctl create iamserviceaccount --name nginx-deployment-sa --region="$REGION" --
cluster "$CLUSTERNAME" --attach-policy-arn "$POLICY_ARN" --approve --override-
existing-serviceaccounts

6. Create the SecretProviderClass to specify which secret to mount in the pod. The
following command uses ExampleSecretProviderClass.yaml in the ASCP GitHub repo
examples directory to mount the secret you created in step 2. For information about creating
your own SecretProviderClass, see the section called “SecretProviderClass”.

Tutorial 171

https://docs.aws.amazon.com/eks/latest/userguide/enable-iam-roles-for-service-accounts.html
https://docs.aws.amazon.com/eks/latest/userguide/create-service-account-iam-policy-and-role.html#create-service-account-iam-role
https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/examples
https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/examples

AWS Secrets Manager User Guide

kubectl apply -f https://raw.githubusercontent.com/aws/secrets-store-csi-driver-
provider-aws/main/examples/ExampleSecretProviderClass.yaml

7. Deploy your pod. The following command uses ExampleDeployment.yaml in the ASCP
GitHub repo examples directory to mount the secret in /mnt/secrets-store in the pod.

kubectl apply -f https://raw.githubusercontent.com/aws/secrets-store-csi-driver-
provider-aws/main/examples/ExampleDeployment.yaml

8. To verify the secret has been mounted properly, use the following command and confirm that
your secret value appears.

kubectl exec -it $(kubectl get pods | awk '/nginx-deployment/{print $1}' | head -1)
 cat /mnt/secrets-store/MySecret; echo

The secret value appears.

{"username":"lijuan", "password":"hunter2"}

SecretProviderClass

You use YAML to describe which secrets to mount in Amazon EKS using the ASCP. For examples, see
Identify which secrets to mount.

apiVersion: secrets-store.csi.x-k8s.io/v1
kind: SecretProviderClass
metadata:
 name: <NAME>
spec:
 provider: aws
 parameters:
 region:
 failoverRegion:
 pathTranslation:
 objects:

The field parameters contains the details of the mount request:

SecretProviderClass 172

https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/examples
https://github.com/aws/secrets-store-csi-driver-provider-aws/blob/main/examples

AWS Secrets Manager User Guide

region

(Optional) The AWS Region of the secret. If you don't use this field, the ASCP looks up the
Region from the annotation on the node. This lookup adds overhead to mount requests, so we
recommend that you provide the Region for clusters that use large numbers of pods.

If you also specify failoverRegion, the ASCP tries to retrieve the secret from both Regions.
If either Region returns a 4xx error, for example for an authentication issue, the ASCP does not
mount either secret. If the secret is retrieved successfully from region, then the ASCP mounts
that secret value. If the secret is not retrieved successfully from region, but it is retrieved
successfully from failoverRegion, then the ASCP mounts that secret value.

failoverRegion

(Optional) If you include this field, the ASCP tries to retrieve the secret from the Regions
defined in region and this field. If either Region returns a 4xx error, for example for an
authentication issue, the ASCP does not mount either secret. If the secret is retrieved
successfully from region, then the ASCP mounts that secret value. If the secret is not retrieved
successfully from region, but it is retrieved successfully from failoverRegion, then the
ASCP mounts that secret value. For an example of how to use this field, see Define a failover
Region for a multi-Region secret.

pathTranslation

(Optional) A single substitution character to use if the file name in Amazon EKS will contain the
path separator character, such as slash (/) on Linux. The ASCP can't create a mounted file that
contains a path separator character. Instead, the ASCP replaces the path separator character
with a different character. If you don't use this field, the replacement character is underscore (_),
so for example, My/Path/Secret mounts as My_Path_Secret.

To prevent character substitution, enter the string False.

objects

A string containing a YAML declaration of the secrets to be mounted. We recommend using a
YAML multi-line string or pipe (|) character.

objectName

The name or full ARN of the secret. If you use the ARN, you can omit objectType. This
field becomes the file name of the secret in the Amazon EKS pod unless you specify

SecretProviderClass 173

AWS Secrets Manager User Guide

objectAlias. If you use an ARN, the Region in the ARN must match the field region. If
you include a failoverRegion, this field represents the primary objectName.

objectType

Required if you don't use a Secrets Manager ARN for objectName. Can be either
secretsmanager or ssmparameter.

objectAlias

(Optional) The file name of the secret in the Amazon EKS pod. If you don't specify this field,
the objectName appears as the file name.

objectVersion

(Optional) The version ID of the secret. Not recommended because you must update the
version ID every time you update the secret. By default the most recent version is used. If
you include a failoverRegion, this field represents the primary objectVersion.

objectVersionLabel

(Optional) The alias for the version. The default is the most recent version AWSCURRENT. For
more information, see the section called “Version”. If you include a failoverRegion, this
field represents the primary objectVersionLabel.

jmesPath

(Optional) A map of the keys in the secret to the files to be mounted in Amazon EKS. To use
this field, your secret value must be in JSON format. If you use this field, you must include
the subfields path and objectAlias.

path

A key from a key/value pair in the JSON of the secret value. If the field contains a
hyphen, use single quotes to escape it, for example: path: '"hyphenated-path"'

objectAlias

The file name to be mounted in the Amazon EKS pod. If the field contains a hyphen, use
single quotes to escape it, for example: objectAlias: '"hyphenated-alias"'

failoverObject

(Optional) If you specify this field, the ASCP tries to retrieve both the secret specified in the
primary objectName and the secret specified in the failoverObject objectName sub-

SecretProviderClass 174

AWS Secrets Manager User Guide

field. If either returns a 4xx error, for example for an authentication issue, the ASCP does not
mount either secret. If the secret is retrieved successfully from the primary objectName,
then the ASCP mounts that secret value. If the secret is not retrieved successfully from
the primary objectName, but it is retrieved successfully from the failover objectName,
then the ASCP mounts that secret value. If you include this field, you must include the field
objectAlias. For an example of how to use this field, see Choose a failover secret to
mount.

You typically use this field when the failover secret isn't a replica. For an example of how to
specify a replica, see Define a failover Region for a multi-Region secret.

objectName

The name or full ARN of the failover secret. If you use an ARN, the Region in the ARN
must match the field failoverRegion.

objectVersion

(Optional) The version ID of the secret. Must match the primary objectVersion. Not
recommended because you must update the version ID every time you update the secret.
By default the most recent version is used.

objectVersionLabel

(Optional) The alias for the version. The default is the most recent version AWSCURRENT.
For more information, see the section called “Version”.

Use AWS Secrets Manager secrets in GitHub jobs

To use a secret in a GitHub job, you can use a GitHub action to retrieve secrets from AWS Secrets
Manager and add them as masked Environment variables in your GitHub workflow. For more
information about GitHub Actions, see Understanding GitHub Actions in the GitHub Docs.

When you add a secret to your GitHub environment, it is available to all other steps in your GitHub
job. Follow the guidance in Security hardening for GitHub Actions to help prevent secrets in your
environment from being misused.

You can set the entire string in the secret value as the environment variable value, or if the string
is JSON, you can parse the JSON to set individual environment variables for each JSON key-value
pair. If the secret value is a binary, the action converts it to a string.

GitHub jobs 175

https://docs.github.com/en/actions/learn-github-actions/environment-variables
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/security-guides/security-hardening-for-github-actions

AWS Secrets Manager User Guide

To view the environment variables created from your secrets, turn on debug logging. For more
information, see Enabling debug logging in the GitHub Docs.

To use the environment variables created from your secrets, see Environment variables in the
GitHub Docs.

Prerequisites

To use this action, you first need to configure AWS credentials and set the AWS Region in your
GitHub environment by using the configure-aws-credentials step. Follow the instructions in
Configure AWS Credentials Action For GitHub Actions to Assume role directly using GitHub OIDC
provider. This allows you to use short-lived credentials and avoid storing additional access keys
outside of Secrets Manager.

The IAM role the action assumes must have the following permissions:

• GetSecretValue on the secrets you want to retrieve.

• ListSecrets on all secrets.

• (Optional) Decrypt on the KMS key if the secrets are encrypted with a customer managed key.

For more information, see Authentication and access control.

Usage

To use the action, add a step to your workflow that uses the following syntax.

- name: Step name
 uses: aws-actions/aws-secretsmanager-get-secrets@v1
 with:
 secret-ids: |
 secretId1
 ENV_VAR_NAME, secretId2
 parse-json-secrets: (Optional) true|false

Parameters

secret-ids

Secret ARNS, names, and name prefixes.

Prerequisites 176

https://docs.github.com/en/actions/monitoring-and-troubleshooting-workflows/enabling-debug-logging
https://docs.github.com/en/actions/learn-github-actions/environment-variables
https://github.com/aws-actions/configure-aws-credentials

AWS Secrets Manager User Guide

By default, the step creates each environment variable name from the secret name,
transformed to include only uppercase letters, numbers, and underscores, and so that it doesn't
begin with a number.

To set the environment variable name, enter it before the secret ID, followed by a comma.
For example ENV_VAR_1, secretId creates an environment variable named ENV_VAR_1
from the secret secretId. The environment variable name can consist of uppercase letters,
numbers, and underscores.

To use a prefix, enter at least three characters followed by an asterisk. For example dev*
matches all secrets with a name beginning in dev. The maximum number of matching secrets
that can be retrieved is 100. If you set the variable name, and the prefix matches multiple
secrets, then the action fails.

parse-json-secrets

(Optional) By default, the action sets the environment variable value to the entire JSON string
in the secret value. Set parse-json-secrets to true to create environment variables for
each key/value pair in the JSON.

Note that if the JSON uses case-sensitive keys such as "name" and "Name", the action will have
duplicate name conflicts. In this case, set parse-json-secrets to false and parse the JSON
secret value separately.

Environment variable naming

The environment variables created by the action are named the same as the secrets they
comes from. Environment variables have stricter naming requirements than secrets, so
the action transforms secret names to meet those requirements. For example, the action
transforms lowercase letters to uppercase letters. If you parse the JSON of the secret, then the
environment variable name includes both the secret name and the JSON key name, for example
MYSECRET_KEYNAME.

If two environment variables would end up with the same name, the action fails. In this case, you
must specify the names you want to use for the environment variables as aliases.

Examples of when the names might conflict:

• A secret named "MySecret" and a secret named "mysecret" would both become environment
variables named "MYSECRET".

Environment variable naming 177

AWS Secrets Manager User Guide

• A secret named "Secret_keyname" and a JSON-parsed secret named "Secret" with a key named
"keyname" would both become environment variables named "SECRET_KEYNAME".

You can set the environment variable name by specifying an alias, as shown in the following
example which creates a variable named ENV_VAR_NAME.

secret-ids: |
 ENV_VAR_NAME, secretId2

Blank aliases

• If you set parse-json-secrets: true and enter a blank alias, followed by a comma and then
the secret ID, the action names the environment variable the same as the parsed JSON keys. The
variable names do not include the secret name.

If the secret doesn't contain valid JSON, then the action creates one environment variable and
names it the same as the secret name.

• If you set parse-json-secrets: false and enter a blank alias, followed by a comma and the
secret ID, the action names the environment variables as if you did not specify an alias.

The following example shows a blank alias.

,secret2

Examples

Example 1 Get secrets by name and by ARN

The following example creates environment variables for secrets identified by name and by ARN.

- name: Get secrets by name and by ARN
 uses: aws-actions/aws-secretsmanager-get-secrets@v1
 with:
 secret-ids: |
 exampleSecretName
 arn:aws:secretsmanager:us-east-2:123456789012:secret:test1-a1b2c3
 0/test/secret
 /prod/example/secret

Examples 178

AWS Secrets Manager User Guide

 SECRET_ALIAS_1,test/secret
 SECRET_ALIAS_2,arn:aws:secretsmanager:us-east-2:123456789012:secret:test2-a1b2c3
 ,secret2

Environment variables created:

EXAMPLESECRETNAME: secretValue1
TEST1: secretValue2
_0_TEST_SECRET: secretValue3
_PROD_EXAMPLE_SECRET: secretValue4
SECRET_ALIAS_1: secretValue5
SECRET_ALIAS_2: secretValue6
SECRET2: secretValue7

Example 2 Get all secrets that begin with a prefix

The following example creates environment variables for all secrets with names that begin with
beta.

- name: Get Secret Names by Prefix
 uses: aws-actions/aws-secretsmanager-get-secrets@v1
 with:
 secret-ids: |
 beta* # Retrieves all secrets that start with 'beta'

Environment variables created:

BETASECRETNAME: secretValue1
BETATEST: secretValue2
BETA_NEWSECRET: secretValue3

Example 3 Parse JSON in secret

The following example creates environment variables by parsing the JSON in the secret.

- name: Get Secrets by Name and by ARN
 uses: aws-actions/aws-secretsmanager-get-secrets@v1
 with:
 secret-ids: |
 test/secret

Examples 179

AWS Secrets Manager User Guide

 ,secret2
 parse-json-secrets: true

The secret test/secret has the following secret value.

{
 "api_user": "user",
 "api_key": "key",
 "config": {
 "active": "true"
 }
}

The secret secret2 has the following secret value.

{
 "myusername": "alejandro_rosalez",
 "mypassword": "EXAMPLE_PASSWORD"
}

Environment variables created:

TEST_SECRET_API_USER: "user"
TEST_SECRET_API_KEY: "key"
TEST_SECRET_CONFIG_ACTIVE: "true"
MYUSERNAME: "alejandro_rosalez"
MYPASSWORD: "EXAMPLE_PASSWORD"

Use AWS Secrets Manager secrets in AWS IoT Greengrass

AWS IoT Greengrass is software that extends cloud capabilities to local devices. This enables
devices to collect and analyze data closer to the source of information, react autonomously to local
events, and communicate securely with each other on local networks.

AWS IoT Greengrass lets you authenticate with services and applications from Greengrass devices
without hard-coding passwords, tokens, or other secrets. You can use AWS Secrets Manager to
securely store and manage your secrets in the cloud. AWS IoT Greengrass extends Secrets Manager
to Greengrass core devices, so your connectors and Lambda functions can use local secrets to
interact with services and applications.

AWS IoT Greengrass 180

AWS Secrets Manager User Guide

To integrate a secret into a Greengrass group, you create a group resource that references the
Secrets Manager secret. This secret resource references the cloud secret by using the associated
ARN. To learn how to create, manage, and use secret resources, see Working with Secret Resources
in the AWS IoT Developer Guide.

To deploy secrets to the AWS IoT Greengrass Core, see Deploy secrets to the AWS IoT Greengrass
core.

Use AWS Secrets Manager secrets in AWS Lambda functions

You can use the AWS Parameters and Secrets Lambda Extension to retrieve and cache AWS Secrets
Manager secrets in Lambda functions without using an SDK. Retrieving a cached secret is faster
than retrieving it from Secrets Manager. Because there is a cost for calling Secrets Manager APIs,
using a cache can reduce your costs. The extension can retrieve both Secrets Manager secrets
and Parameter Store parameters. For information about Parameter Store, see Parameter Store
integration with Lambda extensions in the AWS Systems Manager User Guide.

A Lambda extension is a companion process that adds to the capabilities of a Lambda function.
For more information, see Lambda extensions in the Lambda Developer Guide. For information
about using the extension in a container image, see Working with Lambda layers and extensions
in container images . Lambda logs execution information about the extension along with
the function by using Amazon CloudWatch Logs. By default, the extension logs a minimal
amount of information to CloudWatch. To log more details, set the environment variable
PARAMETERS_SECRETS_EXTENSION_LOG_LEVEL to debug.

To provide the in-memory cache for parameters and secrets, the extension exposes a local HTTP
endpoint, localhost port 2773, to the Lambda environment. You can configure the port by setting
the environment variable PARAMETERS_SECRETS_EXTENSION_HTTP_PORT.

Lambda instantiates separate instances corresponding to the concurrency level that your function
requires. Each instance is isolated and maintains its own local cache of your configuration data.
For more information about Lambda instances and concurrency, see Managing concurrency for a
Lambda function in the Lambda Developer Guide.

To add the extension for ARM, you must use the arm64 architecture for your Lambda function.
For more information, see Lambda instruction set architectures in the Lambda Developer Guide.
The extension supports ARM in the following Regions: Asia Pacific (Mumbai), US East (Ohio),
Europe (Ireland), Europe (Frankfurt), Europe (Zurich), US East (N. Virginia), Europe (London), Europe

AWS Lambda 181

https://docs.aws.amazon.com/greengrass/latest/developerguide/secrets-using.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/secrets.html
https://docs.aws.amazon.com/greengrass/latest/developerguide/secrets.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ps-integration-lambda-extensions.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/ps-integration-lambda-extensions.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-extensions-api.html
https://aws.amazon.com/blogs/compute/working-with-lambda-layers-and-extensions-in-container-images/
https://aws.amazon.com/blogs/compute/working-with-lambda-layers-and-extensions-in-container-images/
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html

AWS Secrets Manager User Guide

(Spain), Asia Pacific (Tokyo), US West (Oregon), Asia Pacific (Singapore), Asia Pacific (Hyderabad),
and Asia Pacific (Sydney).

The extension uses an AWS client. For information about configuring the AWS client, see Settings
reference in the AWS SDK and Tools Reference Guide. If your Lambda function runs in a VPC, you
need to create a VPC endpoint so that the extension can make calls to Secrets Manager. For more
information, see VPC endpoint.

To use the AWS Parameters and Secrets Lambda Extension

1. Add the layer to your function by doing one of the following:

• Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

a. Choose your function, choose Layers, and then choose Add a layer.

b. On the Add layer page, for AWS layers, choose AWS Parameters and Secrets
Lambda Extension, and then choose Add.

• Use the following AWS CLI command with the appropriate ARN for your Region. For a list
of ARNs, see AWS Parameters and Secrets Lambda Extension ARNs in the AWS Systems
Manager User Guide.

aws lambda update-function-configuration \
 --function-name my-function \
 --layers LayerARN

2. Grant permissions to the Lambda execution role to be able to access secrets:

• secretsmanager:GetSecretValue permission for the secret. See the section called
“Example: Permission to retrieve individual secret values”.

• (Optional) If the secret is encrypted with a customer managed key instead of the AWS
managed key aws/secretsmanager, the execution role also needs kms:Decrypt
permission for the KMS key.

• You can use Attribute Based Access Control (ABAC) with the Lambda role to allow for more
granular access to secrets in the account. For more information, see the section called
“Example: Control access to secrets using tags” and the section called “Example: Limit
access to identities with tags that match secrets' tags”.

3. Configure the cache with Lambda environment variables.

4. To retrieve secrets from the extension cache, you first need to add the X-AWS-Parameters-
Secrets-Token to the request header. Set the token to AWS_SESSION_TOKEN, which is

AWS Lambda 182

https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html
https://docs.aws.amazon.com/sdkref/latest/guide/settings-reference.html
https://console.aws.amazon.com/lambda/
https://docs.aws.amazon.com/systems-manager/latest/userguide/ps-integration-lambda-extensions.html#ps-integration-lambda-extensions-add
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html

AWS Secrets Manager User Guide

provided by Lambda for all running functions. Using this header indicates that the caller is
within the Lambda environment.

The following Python example shows how to add the header.

import os
headers = {"X-Aws-Parameters-Secrets-Token": os.environ.get('AWS_SESSION_TOKEN')}

5. To retrieve a secret within the Lambda function, use one of the following HTTP GET requests:

• To retrieve a secret, for secretId, use the ARN or name of the secret.

GET: /secretsmanager/get?secretId=secretId

• To retrieve the previous secret value or a specific version by staging label, for secretId, use
the ARN or name of the secret, and for versionStage, use the staging label.

GET: /secretsmanager/get?secretId=secretId&versionStage=AWSPREVIOUS

• To retrieve a specific secret version by ID, for secretId, use the ARN or name of the secret,
and for versionId, use the version ID.

GET: /secretsmanager/get?secretId=secretId&versionId=versionId

Example Retrieve a secret (Python)

The following Python example shows how to retrieve a secret and parse the result using
json.loads.

secrets_extension_endpoint = "http://localhost:" + \
 secrets_extension_http_port + \
 "/secretsmanager/get?secretId=" + \
 <secret_name>

 r = requests.get(secrets_extension_endpoint, headers=headers)

 secret = json.loads(r.text)["SecretString"] # load the Secrets Manager response
 into a Python dictionary, access the secret

AWS Lambda 183

https://docs.python.org/3/library/json.html

AWS Secrets Manager User Guide

AWS Parameters and Secrets Lambda Extension environment variables

You can configure the extension with the following environment variables.

For information about how to use environment variables, see Using Lambda environment variables
in the Lambda Developer Guide.

PARAMETERS_SECRETS_EXTENSION_CACHE_ENABLED

Set to true to cache parameters and secrets. Set to false for no caching. Default is true.

PARAMETERS_SECRETS_EXTENSION_CACHE_SIZE

The maximum number of secrets and parameters to cache. Must be a value from 0 to 1000. A
value of 0 means there is no caching. This variable is ignored if both SSM_PARAMETER_STORE
_TTL and SECRETS_MANAGER_TTL are 0. Default is 1000.

PARAMETERS_SECRETS_EXTENSION_HTTP_PORT

The port for the local HTTP server. Default is 2773.

PARAMETERS_SECRETS_EXTENSION_LOG_LEVEL

The level of logging the extension provides: debug, info, warn, error, or none. Set to debug
to see the cache configuration. Default is info.

PARAMETERS_SECRETS_EXTENSION_MAX_CONNECTIONS

Maximum number of connections for HTTP clients that the extension uses to make requests to
Parameter Store or Secrets Manager. This is a per-client configuration. Default is 3.

SECRETS_MANAGER_TIMEOUT_MILLIS

Timeout for requests to Secrets Manager in milliseconds. A value of 0 means there is no
timeout. Default is 0.

SECRETS_MANAGER_TTL

TTL of a secret in the cache in seconds. A value of 0 means there is no caching. The maximum
is 300 seconds. This variable is ignored if PARAMETERS_SECRETS_CACHE_SIZE is 0. Default is
300 seconds.

SSM_PARAMETER_STORE_TIMEOUT_MILLIS

Timeout for requests to Parameter Store in milliseconds. A value of 0 means there is no
timeout. Default is 0.

Environment variables 184

https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html

AWS Secrets Manager User Guide

SSM_PARAMETER_STORE_TTL

TTL of a parameter in the cache in seconds. A value of 0 means there is no caching. The
maximum is 300 seconds. This variable is ignored if PARAMETERS_SECRETS_CACHE_SIZE is 0.
Default is 300 seconds.

Use AWS Secrets Manager secrets in Parameter Store

AWS Systems Manager Parameter Store provides secure, hierarchical storage for configuration data
management and secrets management. You can store data such as passwords, database strings,
and license codes as parameter values. However, Parameter Store doesn't provide automatic
rotation services for stored secrets. Instead, Parameter Store enables you to store your secret in
Secrets Manager, and then reference the secret as a Parameter Store parameter.

When you configure Parameter Store with Secrets Manager, the secret-id Parameter Store
requires a forward slash (/) before the name-string.

For more information, see Referencing AWS Secrets Manager Secrets from Parameter Store
Parameters in the AWS Systems Manager User Guide.

Parameter Store 185

https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/integration-ps-secretsmanager.html

AWS Secrets Manager User Guide

Rotate AWS Secrets Manager secrets

Rotation is the process of periodically updating a secret. When you rotate a secret, you update
the credentials in both the secret and the database or service. In Secrets Manager, you can set up
automatic rotation for your secrets.

Topics

• How rotation works

• Managed rotation for AWS Secrets Manager secrets

• Set up automatic rotation for Amazon RDS, Amazon Aurora, Amazon Redshift, or Amazon
DocumentDB secrets using the console

• Set up automatic rotation for AWS Secrets Manager secrets using the console

• Set up automatic rotation for AWS Secrets Manager secrets using the AWS CLI

• Rotate an AWS Secrets Manager secret immediately

• AWS Secrets Manager rotation function templates

• Schedule expressions in Secrets Manager rotation

• Troubleshoot AWS Secrets Manager rotation

How rotation works

Tip

For some Secrets managed by other services, you use managed rotation. To use Managed
rotation, you first create the secret through the managing service.

Secrets Manager rotation uses an AWS Lambda function to update the secret and the database or
service. For information about the costs of using a Lambda function, see Pricing.

To rotate a secret, Secrets Manager calls a Lambda function according to the schedule you set
up. You can set a schedule to rotate after a period of time, for example every 30 days, or you can
create a cron expression. See Schedule expressions. If you also manually update your secret value
while automatic rotation is set up, then Secrets Manager considers that a valid rotation when it
calculates the next rotation date.

How rotation works 186

AWS Secrets Manager User Guide

For security, Secrets Manager only permits a Lambda rotation function to rotate the secret directly.
The rotation function can't call a second Lambda function to rotate the secret.

Secrets Manager uses staging labels to label secret versions during rotation. During rotation,
Secrets Manager calls the same function several times, each time with different parameters.
Secrets Manager invokes the function with the following JSON request structure of parameters:

{
 "Step" : "request.type",
 "SecretId" : "string",
 "ClientRequestToken" : "string"
}

The rotation function does the work of rotating the secret. There are four steps to rotating a secret,
which correspond to the following four steps in the Lambda rotation function:

1. Create a new version of the secret (createSecret)

The first step of rotation is to create a new version of the secret. In the database rotation
templates provided by Secrets Manager, the Lambda rotation function generates a 32 character
password for the new version. The new version can contain a new password, a new username
and password, or more secret information. The Lambda rotation function labels the new version
AWSPENDING.

2. Change the credentials in the database or service (setSecret)

Next, the Lambda rotation function changes the credentials in the database or service to match
the new credentials in the AWSPENDING version of the secret. Depending on your rotation
strategy, this step can create a new user with the same permissions as the existing user.

Rotation functions for Amazon RDS (except Oracle and Db2) and Amazon DocumentDB
automatically use Secure Socket Layer (SSL) or Transport Layer Security (TLS) to connect to your
database, if it is available. Otherwise they use an unencrypted connection.

Note

If you set up automatic secret rotation before December 20, 2021, your rotation function
might be based on an older template that did not support SSL/TLS. See Determine
when your rotation function was created. If it was created before December 20, 2021, to
support connections that use SSL/TLS, you need to recreate your rotation function.

How rotation works 187

https://docs.aws.amazon.com/secretsmanager/latest/userguide/getting-started.html#term_version

AWS Secrets Manager User Guide

3. Test the new secret version (testSecret)

Next, the Lambda rotation function tests the AWSPENDING version of the secret by using it to
access the database or service. Rotation functions based on Rotation function templates test the
new secret by using read access. Depending on the type of access your applications need, you
can update the function to include other access such as write access.

4. Finish the rotation (finishSecret)

Finally, the Lambda rotation function moves the label AWSCURRENT from the previous secret
version to this version, which also removes the AWSPENDING label in the same API call. You
shouldn't remove AWSPENDING before this point, and you shouldn't remove it by using a
a separate API call, because that can indicate to Secrets Manager that the rotation did not
complete successfully. Secrets Manager adds the AWSPREVIOUS staging label to the previous
version, so that you retain the last known good version of the secret.

During rotation, Secrets Manager logs events that indicate the state of rotation. For more
information, see the section called “Log with AWS CloudTrail ”.

If any rotation step fails, Secrets Manager retries the entire rotation process multiple times.

When rotation is successful, the AWSPENDING staging label might be attached to the same version
as the AWSCURRENT version, or it might not be attached to any version. If the AWSPENDING staging
label is present but not attached to the same version as AWSCURRENT, then any later invocation
of rotation assumes that a previous rotation request is still in progress and returns an error. When
rotation is unsuccessful, the AWSPENDING staging label might be attached to an empty secret
version. For more information, see Troubleshoot rotation.

After rotation is successful, applications that Retrieve secrets from AWS Secrets Manager from
Secrets Manager automatically get the updated credentials. For more details about how each step
of rotation works, see the the section called “Rotation function templates”.

Managed rotation for AWS Secrets Manager secrets

Some services offer managed rotation, where the service configures and manages rotation for
you. With managed rotation, you don't use an AWS Lambda function to update the secret and the
credentials in the database. The following services offer managed rotation:

Managed rotation 188

AWS Secrets Manager User Guide

• Amazon ECS Service Connect offers managed rotation for AWS Private Certificate Authority TLS
certificates. For more information, see TLS with Service Connect in the Amazon Elastic Container
Service Developer Guide.

• Amazon RDS offers managed rotation for master user credentials. For more information, see
Password management with Amazon RDS and AWS Secrets Manager in the Amazon RDS User
Guide.

• Amazon Aurora offers managed rotation for master user credentials. For more information, see
Password management with Amazon Aurora and AWS Secrets Manager in the Amazon Aurora
User Guide.

• Amazon Redshift offers managed rotation for admin passwords. For more information, see
Managing Amazon Redshift admin passwords using AWS Secrets Manager in the Amazon
Redshift Management Guide.

For all other types of secrets, see Rotate secrets.

Rotation for managed secrets typically completes within one minute. During rotation, new
connections that retrieve the secret may get the previous version of the credentials. In applications,
we strongly recommend that you follow the best practice of using a database user created with the
minimal privileges required for your application, rather than using the master user. For application
users, for highest availability, you can use the Alternating users rotation strategy.

To change the schedule for managed rotation (console)

1. Open the managed secret in the Secrets Manager console. You can follow a link from the
managing service, or search for the secret in the Secrets Manager console.

2. Under Rotation schedule, enter your schedule in UTC time zone in either the Schedule
expression builder or as a Schedule expression. Secrets Manager stores your schedule as a
rate() or cron() expression. The rotation window automatically starts at midnight unless
you specify a Start time. You can rotate a secret as often as every four hours. For more
information, see Schedule expressions.

3. (Optional) For Window duration, choose the length of the window during which you want
Secrets Manager to rotate your secret, for example 3h for a three hour window. The window
must not extend into the next rotation window. If you don't specify Window duration, for
a rotation schedule in hours, the window automatically closes after one hour. For a rotation
schedule in days, the window automatically closes at the end of the day.

4. Choose Save.

Managed rotation 189

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-tls.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html

AWS Secrets Manager User Guide

To change the schedule for managed rotation (AWS CLI)

• Call rotate-secret. The following example rotates the secret between 16:00 and 18:00 UTC
on the 1st and 15th day of the month. For more information, see Schedule expressions.

aws secretsmanager rotate-secret \
 --secret-id MySecret \
 --rotation-rules "{\"ScheduleExpression\": \"cron(0 16 1,15 * ? *)\",
 \"Duration\": \"2h\"}"

Set up automatic rotation for Amazon RDS, Amazon Aurora,
Amazon Redshift, or Amazon DocumentDB secrets using the
console

Rotation is the process of periodically updating a secret. When you rotate a secret, you update
the credentials in both the secret and the database. In Secrets Manager, you can set up automatic
rotation for your database secrets.

Secrets Manager uses Lambda functions to rotate secrets. For an overview, see the section called
“How rotation works”.

Tip

For some Secrets managed by other services, you use managed rotation. To use Managed
rotation, you first create the secret through the managing service.

To set up rotation using the console, you need to first choose a rotation strategy. Then you
configure the secret for rotation, which creates a Lambda rotation function if you don't already
have one. The console also sets permissions for the Lambda function execution role. The last step
is to make sure that the Lambda rotation function can access both Secrets Manager and your
database through the network.

To turn on automatic rotation, you must have permission to create the IAM execution role and
attach a permission policy to it. You need both iam:CreateRole and iam:AttachRolePolicy
permissions.

Automatic rotation for database secrets (console) 190

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/rotate-secret.html

AWS Secrets Manager User Guide

Warning

Granting an identity both iam:CreateRole and iam:AttachRolePolicy permissions
allows the identity to grant themselves any permissions.

Steps:

• Step 1: Choose a rotation strategy and (optionally) create a superuser secret

• Step 2: Configure rotation and create a rotation function

• Step 3: (Optional) Set additional permissions conditions on the rotation function

• Step 4: Set up network access for the rotation function

• Step 5: (Optional) Customize the rotation function

• Next steps

Step 1: Choose a rotation strategy and (optionally) create a superuser
secret

For Amazon RDS, Amazon Redshift, and Amazon DocumentDB, Secrets Manager offers two
rotation strategies:

Single user rotation strategy

This strategy updates credentials for one user in one secret. For Amazon RDS Db2 instances,
because users can't change their own passwords, you must provide admin credentials in a
separate secret. This is the simplest rotation strategy, and it is appropriate for most use
cases. In particular, we recommend you use this strategy for credentials for one-time (ad hoc) or
interactive users.

When the secret rotates, open database connections are not dropped. While rotation is
happening, there is a short period of time between when the password in the database changes
and when the secret is updated. During this time, there is a low risk of the database denying
calls that use the rotated credentials. You can mitigate this risk with an appropriate retry
strategy. After rotation, new connections use the new credentials.

Step 1: Choose a rotation strategy and (optionally) create a superuser secret 191

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS Secrets Manager User Guide

Alternating users rotation strategy

This strategy updates credentials for two users in one secret. You create the first user, and
during the first rotation, the rotation function clones it to create the second user. Every time
the secret rotates, the rotation function alternates which user's password it updates. Because
most users don't have permission to clone themselves, you must provide the credentials for
a superuser in another secret. We recommend using the single-user rotation strategy when
cloned users in your database don't have the same permissions as the original user, and for
credentials for one-time (ad hoc) or interactive users.

This strategy is appropriate for databases with permission models where one role owns the
database tables and a second role has permission to access the database tables. It is also
appropriate for applications that require high availability. If an application retrieves the secret
during rotation, the application still gets a valid set of credentials. After rotation, both user
and user_clone credentials are valid. There is even less chance of applications getting a
deny during this type of rotation than single user rotation. If the database is hosted on a
server farm where the password change takes time to propagate to all servers, there is a risk
of the database denying calls that use the new credentials. You can mitigate this risk with an
appropriate retry strategy.

Secrets Manager creates the cloned user with the same permissions as the original user. If you
change the original user's permissions after the clone is created, you must also change the
cloned user's permissions.

Important

If you choose the alternating users strategy, you must Create a database secret and
store database superuser credentials in it. You need a secret with superuser credentials
because rotation clones the first user, and most users do not have that permission.

Step 2: Configure rotation and create a rotation function

Rotation functions for Amazon RDS (except Oracle and Db2) and Amazon DocumentDB
automatically use Secure Socket Layer (SSL) or Transport Layer Security (TLS) to connect to your
database, if it is available. Otherwise they use an unencrypted connection.

Step 2: Configure rotation and create a rotation function 192

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS Secrets Manager User Guide

To turn on rotation for an Amazon RDS, Amazon DocumentDB, or Amazon Redshift secret

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. On the Secret details page, in the Rotation configuration section, choose Edit rotation.

4. In the Edit rotation configuration dialog box, do the following:

a. Turn on Automatic rotation.

b. Under Rotation schedule, enter your schedule in UTC time zone in either the Schedule
expression builder or as a Schedule expression. Secrets Manager stores your schedule as
a rate() or cron() expression. The rotation window automatically starts at midnight
unless you specify a Start time. You can rotate a secret as often as every four hours. For
more information, see Schedule expressions.

c. (Optional) For Window duration, choose the length of the window during which you
want Secrets Manager to rotate your secret, for example 3h for a three hour window.
The window must not extend into the next rotation window. If you don't specify Window
duration, for a rotation schedule in hours, the window automatically closes after one
hour. For a rotation schedule in days, the window automatically closes at the end of the
day.

d. (Optional) Choose Rotate immediately when the secret is stored to rotate your secret
when you save your changes. If you clear the checkbox, then the first rotation will begin
on the schedule you set.

If rotation fails, for example because Steps 3 and 4 are not yet completed, Secrets
Manager retries the rotation process multiple times.

e. Under Rotation function, do one of the following:

• Choose Create a new Lambda function and enter a name for your new function.
Secrets Manager adds SecretsManager to the beginning of the function name.
Secrets Manager creates the function based on the appropriate template and sets the
necessary permissions for the Lambda execution role.

• Choose Use an existing Lambda function to reuse a rotation function you used
for another secret. The rotation functions listed under Recommended VPC
configurations have the same VPC and security group as the database, which helps
the function access the database.

Step 2: Configure rotation and create a rotation function 193

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

f. For Rotation strategy, choose the Single user or Alternating users strategy. For more
information, see the section called “Step 1: Choose a rotation strategy and (optionally)
create a superuser secret”.

5. Choose Save.

Step 3: (Optional) Set additional permissions conditions on the rotation
function

In the resource policy for your rotation function, we recommend that you include the context key
aws:SourceAccount to help prevent Lambda from being used as a confused deputy. For some
AWS services, to avoid the confused deputy scenario, AWS recommends that you use both the
aws:SourceArn and aws:SourceAccount global condition keys. However, if you include the
aws:SourceArn condition in your rotation function policy, the rotation function can only be used
to rotate the secret specified by that ARN. We recommend that you include only the context key
aws:SourceAccount so that you can use the rotation function for multiple secrets.

To update your rotation function resource policy

1. In the Secrets Manager console, choose your secret, and then on the details page, under
Rotation configuration, choose the Lambda rotation function. The Lambda console opens.

2. Follow the instructions at Using resource-based policies for Lambda to add a
aws:sourceAccount condition.

"Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "123456789012"
 }
},

If the secret is encrypted with a KMS key other than the AWS managed key aws/
secretsmanager, Secrets Manager grants the Lambda execution role permission to use the key.
You can use the SecretARN encryption context to limit the use of the decrypt function, so the
rotation function role only has access to decrypt the secret it is responsible for rotating.

Step 3: (Optional) Set additional permissions conditions on the rotation function 194

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Secrets Manager User Guide

To update your rotation function execution role

1. From the Lambda rotation function, choose Configuration, and then under Execution role,
choose the Role name.

2. Follow the instructions at Modifying a role permissions policy to add a
kms:EncryptionContext:SecretARN condition.

"Condition": {
 "StringEquals": {
 "kms:EncryptionContext:SecretARN": "SecretARN"
 }
},

Step 4: Set up network access for the rotation function

To be able to rotate a secret, the Lambda rotation function must be able to access both the secret
and the database or service.

To access a secret

Your Lambda rotation function must be able to access a Secrets Manager endpoint. If your
Lambda function can access the internet, then you can use a public endpoint. To find an
endpoint, see the section called “Secrets Manager endpoints”.

If your Lambda function runs in a VPC that doesn't have internet access, we recommend you
configure Secrets Manager service private endpoints within your VPC. Your VPC can then
intercept requests addressed to the public regional endpoint and redirect them to the private
endpoint. For more information, see VPC endpoint.

Alternatively, you can enable your Lambda function to access a Secrets Manager public
endpoint by adding a NAT gateway or an internet gateway to your VPC, which allows traffic
from your VPC to reach the public endpoint. This exposes your VPC to more risk because an IP
address for the gateway can be attacked from the public Internet.

To access the database or service

If your database or service is running on an Amazon EC2 instance in a VPC, we recommend that
you configure your Lambda function to run in the same VPC. Then the rotation function can
communicate directly with your service. For more information, see Configuring VPC access.

Step 4: Set up network access for the rotation function 195

https://docs.aws.amazon.com/IAM/latest/UserGuide/roles-managingrole-editing-console.html#roles-modify_permissions-policy
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-configuring

AWS Secrets Manager User Guide

To allow the Lambda function to access the database or service, you must make sure that the
security groups attached to your Lambda rotation function allow outbound connections to
the database or service. You must also make sure that the security groups attached to your
database or service allow inbound connections from the Lambda rotation function.

For alternating users rotation where the superuser secret is managed by another AWS service,
the Lambda rotation function must be able to call the service endpoint to get the database
connection information. We recommend that you configure a VPC endpoint for the database
service. For more information, see:

• Amazon RDS API and interface VPC endpoints in the Amazon RDS User Guide.

• Working with VPC endpoints in the Amazon Redshift Management Guide.

Step 5: (Optional) Customize the rotation function

In rare cases, you might want to customize the rotation function. For example, with alternating
users rotation, Secrets Manager creates the cloned user by copying the runtime configuration
parameters of the first user. If you want to include more attributes, or change which ones are
granted to the cloned user, you need to update the code in the set_secret function.

For another example, for Amazon RDS MySQL, in alternating users rotation, Secrets Manager
creates a cloned user with a name no longer than 16 characters. You can modify the rotation
function to allow longer usernames. MySQL version 5.7 and higher supports usernames up to 32
characters, however Secrets Manager appends "_clone" (six characters) to the end of the username,
so you must keep the username to a maximum of 26 characters.

To open your Lambda rotation function for editing

1. In the Secrets Manager console, choose your secret.

2. In the Rotation configuration section, under Lambda rotation function, choose your rotation
function.

The Lambda console opens.

• To change the code in the function, scroll down to the Code source section.

• For MySQL version 5.7 and higher, for alternating users rotation, to change the maximum
username length, under Environment variables, change USERNAME_CHARACTER_LIMIT.

Step 5: (Optional) Customize the rotation function 196

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-working-with-endpoints.html
https://www.postgresql.org/docs/8.0/runtime-config.html
https://www.postgresql.org/docs/8.0/runtime-config.html

AWS Secrets Manager User Guide

Next steps

See the section called “Troubleshoot rotation”.

Set up automatic rotation for AWS Secrets Manager secrets
using the console

Rotation is the process of periodically updating a secret. When you rotate a secret, you update the
credentials in both the secret and the database or service that the secret is for.

Secrets Manager uses Lambda functions to rotate secrets. For an overview, see the section called
“How rotation works”.

You can also use the AWS CLI to set up rotation. For more information, see Automatic rotation
(AWS CLI).

To set up rotation using the console, you first configure the secret for rotation. During that step,
you also create an empty Lambda rotation function. Next, you set permissions for the rotation
function and for the Lambda execution role. Then you write the rotation function code. The last
step is to make sure that the Lambda rotation function can access both Secrets Manager and your
database or service through the network.

For database secrets, see the section called “Automatic rotation for database secrets (console)”.

To turn on automatic rotation, you must have permission to create the IAM execution role and
attach a permission policy to it. You need both iam:CreateRole and iam:AttachRolePolicy
permissions.

Warning

Granting an identity both iam:CreateRole and iam:AttachRolePolicy permissions
allows the identity to grant themselves any permissions.

Steps:

• Step 1: Configure the secret for rotation

• Step 2: Set permissions for the rotation function

• Step 3: (Optional) Set an additional permissions condition on the rotation function

Next steps 197

AWS Secrets Manager User Guide

• Step 4: Set up network access for the rotation function

• Step 5: Write the rotation function code

• Next steps

Step 1: Configure the secret for rotation

In this step, you set a rotation schedule for your secret and create an empty rotation function. Your
secret will not be rotated until you finish writing the rotation function. If you schedule rotation
before the rotation function is written, or if it fails for any reason, Secrets Manager will retry the
rotation function multiple times.

To configure rotation and create an empty rotation function

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. On the Secrets page, choose your secret.

3. On the Secret details page, in the Rotation configuration section, choose Edit rotation. In the
Edit rotation configuration dialog box, do the following:

a. Turn on Automatic rotation.

b. Under Rotation schedule, enter your schedule in UTC time zone in either the Schedule
expression builder or as a Schedule expression. Secrets Manager stores your schedule as
a rate() or cron() expression. The rotation window automatically starts at midnight
unless you specify a Start time. You can rotate a secret as often as every four hours. For
more information, see Schedule expressions.

c. (Optional) For Window duration, choose the length of the window during which you
want Secrets Manager to rotate your secret, for example 3h for a three hour window.
The window must not extend into the next rotation window. If you don't specify Window
duration, for a rotation schedule in hours, the window automatically closes after one
hour. For a rotation schedule in days, the window automatically closes at the end of the
day.

d. (Optional) Choose Rotate immediately when the secret is stored to rotate your secret
when you save your changes. If you clear the checkbox, then the first rotation will begin
on the schedule you set.

e. Under Rotation function, choose Create function. The Lambda console opens in a new
window.

Step 1: Configure the secret for rotation 198

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

• In the Lambda console, on the Create function page, do one of the following:

• If you see Browse serverless app repository, choose it.

A. Under Public applications, in the search box, enter
SecretsManagerRotationTemplate.

B. Choose Show apps that create custom IAM roles or resource policies.

C. Choose the SecretsManagerRotationTemplate tile.

D. On the Review, configure and deploy page, in the Application settings tile,
fill in the required fields, and then choose Deploy. For a list of endpoints, see
the section called “Secrets Manager endpoints”.

• If you don't see Browse serverless app repository, your AWS Region might not
support the AWS Serverless Application Repository. Choose Author from scratch.

A. For Function name, enter a name for your rotation function.

B. For Runtime, choose Python 3.9.

C. When the new Lambda function opens, scroll down to choose Configuration,
and then on the left choose Permissions.

D. Scroll down to Resource-based policy and choose Add permissions to grant
permission for Secrets Manager to invoke the function. To attach a resource
policy to a Lambda function, see Using resource-based policies for Lambda.

The following policy shows how to allow Secrets Manager to invoke the
Lambda function.

{
 "Version": "2012-10-17",
 "Id": "default",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "secretsmanager.amazonaws.com"
 },
 "Action": "lambda:InvokeFunction",
 "Resource": "LambdaRotationFunctionARN"
 }
]

Step 1: Configure the secret for rotation 199

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Secrets Manager User Guide

}

f. Switch back to the Secrets Manager console to attach the new rotation function to your
secret.

g. For Lambda rotation function, choose the refresh button. Then in the list of functions,
choose your new function.

h. Choose Save.

Step 2: Set permissions for the rotation function

The Lambda rotation function needs permission to access the secret in Secrets Manager, and it
needs permission to access your database or service. In this step, you grant these permissions to
the Lambda execution role. If the secret is encrypted with a KMS key other than the AWS managed
key aws/secretsmanager, then you need to grant the Lambda execution role permission to use
the key. You can use the SecretARN encryption context to limit the use of the decrypt function, so
the rotation function role only has access to decrypt the secret it is responsible for rotating. For
policy examples, see Permissions for rotation.

For instructions, see Lambda execution role in the AWS Lambda Developer Guide.

Step 3: (Optional) Set an additional permissions condition on the
rotation function

In the resource policy for your rotation function, we recommend that you include the context key
aws:SourceAccount to help prevent Lambda from being used as a confused deputy. For some
AWS services, to avoid the confused deputy scenario, AWS recommends that you use both the
aws:SourceArn and aws:SourceAccount global condition keys. However, if you include the
aws:SourceArn condition in your rotation function policy, the rotation function can only be used
to rotate the secret specified by that ARN. We recommend that you include only the context key
aws:SourceAccount so that you can use the rotation function for multiple secrets.

To update your rotation function resource policy

1. In the Secrets Manager console, choose your secret, and then on the details page, under
Rotation configuration, choose the Lambda rotation function. The Lambda console opens.

2. Follow the instructions at Using resource-based policies for Lambda to add a
aws:sourceAccount condition.

Step 2: Set permissions for the rotation function 200

https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

AWS Secrets Manager User Guide

"Condition": {
 "StringEquals": {
 "AWS:SourceAccount": "123456789012"
 }
},

Step 4: Set up network access for the rotation function

To be able to rotate a secret, the Lambda rotation function must be able to access the secret. If
your secret contains credentials, then the Lambda function must also be able to access the source
of those credentials, such as a database or service.

To access a secret

Your Lambda rotation function must be able to access a Secrets Manager endpoint. If your
Lambda function can access the internet, then you can use a public endpoint. To find an
endpoint, see the section called “Secrets Manager endpoints”.

If your Lambda function runs in a VPC that doesn't have internet access, we recommend you
configure Secrets Manager service private endpoints within your VPC. Your VPC can then
intercept requests addressed to the public regional endpoint and redirect them to the private
endpoint. For more information, see VPC endpoint.

Alternatively, you can enable your Lambda function to access a Secrets Manager public
endpoint by adding a NAT gateway or an internet gateway to your VPC, which allows traffic
from your VPC to reach the public endpoint. This exposes your VPC to more risk because an IP
address for the gateway can be attacked from the public Internet.

(Optional) To access the database or service

For secrets such as API keys, there is no source database or service that you need to update
along with the secret.

If your database or service is running on an Amazon EC2 instance in a VPC, we recommend that
you configure your Lambda function to run in the same VPC. Then the rotation function can
communicate directly with your service. For more information, see Configuring VPC access.

To allow the Lambda function to access the database or service, you must make sure that the
security groups attached to your Lambda rotation function allow outbound connections to

Step 4: Set up network access for the rotation function 201

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-configuring

AWS Secrets Manager User Guide

the database or service. You must also make sure that the security groups attached to your
database or service allow inbound connections from the Lambda rotation function.

Step 5: Write the rotation function code

The rotation function you created in Step 1 is a starting point for your function. You write the code
for your specific use case. For a function that can rotate an Amazon ElastiCache secret, you can
copy the code from the appropriate template supplied by Secrets Manager.

As you write your function, be cautious about including debugging or logging statements. These
statements can cause information in your function to be written to Amazon CloudWatch, so you
need to make sure the log doesn't include any sensitive information collected during development.

For security, Secrets Manager only permits a Lambda rotation function to rotate the secret directly.
The rotation function can't call a second Lambda function to rotate the secret.

For examples of log statements, see the the section called “Rotation function templates” source
code.

If you use external binaries and libraries, for example to connect to a resource, you need to manage
patching them and keeping them up-to-date.

For debugging suggestions, see Testing and debugging serverless applications.

To open your Lambda rotation function for editing

1. In the Secrets Manager console, choose your secret.

2. In the Rotation configuration section, under Lambda rotation function, choose your rotation
function.

The Lambda console opens.

• To change the code in the function, scroll down to the Code source section.

• For MySQL version 5.7 and higher, for alternating users rotation, to change the maximum
username length, under Environment variables, change USERNAME_CHARACTER_LIMIT.

If your function doesn't already have it, copy the code from the SecretsManagerRotationTemplate.

There are four steps to rotating a secret, which correspond to the following four methods of a
Lambda rotation function.

Step 5: Write the rotation function code 202

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html

AWS Secrets Manager User Guide

Methods

• create_secret

• set_secret

• test_secret

• finish_secret

create_secret

In create_secret, you first check if a secret exists by calling get_secret_value with
the passed-in ClientRequestToken. If there's no secret, you create a new secret with
create_secret and the token as the VersionId. Then you can generate a new secret value with
get_random_password. You must ensure the new secret value only includes characters that are
valid for the database or service. Exclude characters by using the ExcludeCharacters parameter.
Call put_secret_value to store it with the staging label AWSPENDING. Storing the new secret
value in AWSPENDING helps ensure idempotency. If rotation fails for any reason, you can refer to
that secret value in subsequent calls. See How do I make my Lambda function idempotent.

As you test your function, use the AWS CLI to see version stages: call describe-secret and look
at VersionIdsToStages.

set_secret

In set_secret, you change the credential in the database or service to match the new secret
value in the AWSPENDING version of the secret.

If you pass statements to a service that interprets statements, like a database, use query
parameterization For more information, see Query Parameterization Cheat Sheet on the OWASP
web site.

The rotation function is a privileged deputy that has the authorization to access and modify
customer credentials in both the Secrets Manager secret and the target resource. To prevent a
potential confused deputy attack, you need to make sure that an attacker cannot use the function
to access other resources. Before you update the credential:

• Check that the credential in the AWSCURRENT version of the secret is valid. If the AWSCURRENT
credential isn't valid, abandon the rotation attempt.

• Check that the AWSCURRENT and AWSPENDING secret values are for the same resource. For a
username and password, check that the AWSCURRENT and AWSPENDING usernames are the same.

Step 5: Write the rotation function code 203

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_secret_value
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.create_secret
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_random_password
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.put_secret_value
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

AWS Secrets Manager User Guide

• Check that the destination service resource is the same. For a database, check that the
AWSCURRENT and AWSPENDING host names are the same.

test_secret

In test_secret, you test the AWSPENDING version of the secret by using it to access the database
or service.

finish_secret

In finish_secret, you use update_secret_version_stage to move the staging label
AWSCURRENT from the previous secret version to the new secret version. Secrets Manager
automatically adds the AWSPREVIOUS staging label to the previous version, so that you retain the
last known good version of the secret.

Next steps

See the section called “Troubleshoot rotation”.

Set up automatic rotation for AWS Secrets Manager secrets
using the AWS CLI

Rotation is the process of periodically updating a secret. When you rotate a secret, you update the
credentials in both the secret and the database or service that the secret is for.

Secrets Manager uses Lambda functions to rotate secrets. For an overview, see the section called
“How rotation works”.

You can also use the console to set up rotation. For more information, see Automatic rotation
(console).

To set up rotation using the AWS CLI, if you are rotating an Amazon RDS, Amazon Redshift, or
Amazon DocumentDB secret, you first need to choose a the section called “Rotation strategy”.
If you choose the alternating users strategy, you must store a separate secret with credentials
for a database superuser. Next, you write the rotation function code. Secrets Manager provides
templates you can base your function on. Then you create a Lambda function with your code and
set permissions for both the Lambda function and the Lambda execution role. The next step is to
make sure that the Lambda rotation function can access both Secrets Manager and your database
or service through the network. Finally, you configure the secret for rotation.

Next steps 204

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.update_secret_version_stage

AWS Secrets Manager User Guide

To turn on automatic rotation, you must have permission to create the IAM execution role and
attach a permission policy to it. You need both iam:CreateRole and iam:AttachRolePolicy
permissions.

Warning

Granting an identity both iam:CreateRole and iam:AttachRolePolicy permissions
allows the identity to grant themselves any permissions.

Steps:

• (Optional) Step 1: Create a superuser secret

• Step 2: Write the rotation function code

• Step 3: Create the Lambda function and execution role

• Step 4: Set up network access

• Step 5: Configure the secret for rotation

• Next steps

(Optional) Step 1: Create a superuser secret

For Amazon RDS, Amazon Redshift, and Amazon DocumentDB, Secrets Manager offers two
rotation strategies:

Single user rotation strategy

This strategy updates credentials for one user in one secret. For Amazon RDS Db2 instances,
because users can't change their own passwords, you must provide admin credentials in a
separate secret. This is the simplest rotation strategy, and it is appropriate for most use
cases. In particular, we recommend you use this strategy for credentials for one-time (ad hoc) or
interactive users.

When the secret rotates, open database connections are not dropped. While rotation is
happening, there is a short period of time between when the password in the database changes
and when the secret is updated. During this time, there is a low risk of the database denying
calls that use the rotated credentials. You can mitigate this risk with an appropriate retry
strategy. After rotation, new connections use the new credentials.

(Optional) Step 1: Create a superuser secret 205

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS Secrets Manager User Guide

Alternating users rotation strategy

This strategy updates credentials for two users in one secret. You create the first user, and
during the first rotation, the rotation function clones it to create the second user. Every time
the secret rotates, the rotation function alternates which user's password it updates. Because
most users don't have permission to clone themselves, you must provide the credentials for
a superuser in another secret. We recommend using the single-user rotation strategy when
cloned users in your database don't have the same permissions as the original user, and for
credentials for one-time (ad hoc) or interactive users.

This strategy is appropriate for databases with permission models where one role owns the
database tables and a second role has permission to access the database tables. It is also
appropriate for applications that require high availability. If an application retrieves the secret
during rotation, the application still gets a valid set of credentials. After rotation, both user
and user_clone credentials are valid. There is even less chance of applications getting a
deny during this type of rotation than single user rotation. If the database is hosted on a
server farm where the password change takes time to propagate to all servers, there is a risk
of the database denying calls that use the new credentials. You can mitigate this risk with an
appropriate retry strategy.

Secrets Manager creates the cloned user with the same permissions as the original user. If you
change the original user's permissions after the clone is created, you must also change the
cloned user's permissions.

Important

If you choose the alternating users strategy, you must Create a database secret and
store database superuser credentials in it. You need a secret with superuser credentials
because rotation clones the first user, and most users do not have that permission.

Step 2: Write the rotation function code

To rotate a secret, you need a rotation function. A rotation function is a Lambda function that
Secrets Manager calls to rotate your secret.

For a function that can rotate an Amazon RDS, Amazon Aurora, Amazon Redshift, Amazon
DocumentDB, or Amazon ElastiCache secret, you can copy the code from the appropriate template
supplied by Secrets Manager.

Step 2: Write the rotation function code 206

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/

AWS Secrets Manager User Guide

For all other types of secrets, use the generic rotation template as a starting point to write your
own rotation function.

Save your rotation function in a ZIP file my-function.zip along with any required dependencies.

As you write your function, be cautious about including debugging or logging statements. These
statements can cause information in your function to be written to Amazon CloudWatch, so you
need to make sure the log doesn't include any sensitive information collected during development.

For security, Secrets Manager only permits a Lambda rotation function to rotate the secret directly.
The rotation function can't call a second Lambda function to rotate the secret.

For examples of log statements, see the the section called “Rotation function templates” source
code.

If you use external binaries and libraries, for example to connect to a resource, you need to manage
patching them and keeping them up-to-date.

For debugging suggestions, see Testing and debugging serverless applications.

To open your Lambda rotation function for editing

1. In the Secrets Manager console, choose your secret.

2. In the Rotation configuration section, under Lambda rotation function, choose your rotation
function.

The Lambda console opens.

• To change the code in the function, scroll down to the Code source section.

• For MySQL version 5.7 and higher, for alternating users rotation, to change the maximum
username length, under Environment variables, change USERNAME_CHARACTER_LIMIT.

If your function doesn't already have it, copy the code from the SecretsManagerRotationTemplate.

There are four steps to rotating a secret, which correspond to the following four methods of a
Lambda rotation function.

Methods

• create_secret

• set_secret

Step 2: Write the rotation function code 207

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html

AWS Secrets Manager User Guide

• test_secret

• finish_secret

create_secret

In create_secret, you first check if a secret exists by calling get_secret_value with
the passed-in ClientRequestToken. If there's no secret, you create a new secret with
create_secret and the token as the VersionId. Then you can generate a new secret value with
get_random_password. You must ensure the new secret value only includes characters that are
valid for the database or service. Exclude characters by using the ExcludeCharacters parameter.
Call put_secret_value to store it with the staging label AWSPENDING. Storing the new secret
value in AWSPENDING helps ensure idempotency. If rotation fails for any reason, you can refer to
that secret value in subsequent calls. See How do I make my Lambda function idempotent.

As you test your function, use the AWS CLI to see version stages: call describe-secret and look
at VersionIdsToStages.

set_secret

In set_secret, you change the credential in the database or service to match the new secret
value in the AWSPENDING version of the secret.

If you pass statements to a service that interprets statements, like a database, use query
parameterization For more information, see Query Parameterization Cheat Sheet on the OWASP
web site.

The rotation function is a privileged deputy that has the authorization to access and modify
customer credentials in both the Secrets Manager secret and the target resource. To prevent a
potential confused deputy attack, you need to make sure that an attacker cannot use the function
to access other resources. Before you update the credential:

• Check that the credential in the AWSCURRENT version of the secret is valid. If the AWSCURRENT
credential isn't valid, abandon the rotation attempt.

• Check that the AWSCURRENT and AWSPENDING secret values are for the same resource. For a
username and password, check that the AWSCURRENT and AWSPENDING usernames are the same.

• Check that the destination service resource is the same. For a database, check that the
AWSCURRENT and AWSPENDING host names are the same.

Step 2: Write the rotation function code 208

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_secret_value
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.create_secret
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_random_password
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.put_secret_value
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html

AWS Secrets Manager User Guide

test_secret

In test_secret, you test the AWSPENDING version of the secret by using it to access the database
or service.

finish_secret

In finish_secret, you use update_secret_version_stage to move the staging label
AWSCURRENT from the previous secret version to the new secret version. Secrets Manager
automatically adds the AWSPREVIOUS staging label to the previous version, so that you retain the
last known good version of the secret.

Step 3: Create the Lambda function and execution role

A Lambda execution role is a role that Lambda assumes when the function is invoked.

To create a Lambda rotation function and execution role

1. Create a trust policy for the Lambda execution role and save it as a JSON file. For examples,
see Permissions for rotation. The policy must:

• Allow the role to call Secrets Manager operations on the secret.

• Allow the role to use the KMS key if the secret is encrypted with a key other than aws/
secretsmanager.

• Allow the role to call the service that the secret is for.

2. Create the Lambda execution role and apply the trust policy by calling iam create-role.

aws iam create-role \
 --role-name rotation-lambda-role \
 --assume-role-policy-document file://trust-policy.json

3. (Optional) For a secret that contains Amazon RDS or Aurora credentials, if you are using the
alternating users strategy and the superuser secret is managed by Amazon RDS, then you
must allow the rotation function to call read-only APIs on Amazon RDS so that it can get
the connection information for the database. To do this, attach the AWS managed policy
AmazonRDSReadOnlyAccess to the Lambda function execution role by calling iam attach-
role-policy.

aws iam attach-role-policy \
 --policy-arn arn:aws:iam::aws:policy/AmazonRDSReadOnlyAccess \

Step 3: Create the Lambda function and execution role 209

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.update_secret_version_stage
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/cli/latest/reference/iam/create-role.html
https://docs.aws.amazon.com/aws-managed-policy/latest/reference/AmazonRDSReadOnlyAccess.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html
https://docs.aws.amazon.com/cli/latest/reference/iam/attach-role-policy.html

AWS Secrets Manager User Guide

 --role-name rotation-lambda-role

4. Create the Lambda function from the ZIP file by calling lambda create-function.

aws lambda create-function \
 --function-name my-rotation-function \
 --runtime python3.9 \
 --zip-file fileb://my-function.zip \
 --handler my-handler \
 --role arn:aws:iam::123456789012:role/service-role/rotation-lambda-role

5. Set a resource policy on the Lambda function to allow Secrets Manager to invoke it by calling
lambda add-permission. The example command includes source-account to help
prevent Lambda from being used as a confused deputy.

aws lambda add-permission \
 --function-name my-rotation-function \
 --action lambda:InvokeFunction \
 --statement-id SecretsManager \
 --principal secretsmanager.amazonaws.com \
 --source-account 123456789012

Step 4: Set up network access

To be able to rotate a secret, the Lambda rotation function must be able to access both the secret
and the database or service.

To access a secret

Your Lambda rotation function must be able to access a Secrets Manager endpoint. If your
Lambda function can access the internet, then you can use a public endpoint. To find an
endpoint, see the section called “Secrets Manager endpoints”.

If your Lambda function runs in a VPC that doesn't have internet access, we recommend you
configure Secrets Manager service private endpoints within your VPC. Your VPC can then
intercept requests addressed to the public regional endpoint and redirect them to the private
endpoint. For more information, see VPC endpoint.

Alternatively, you can enable your Lambda function to access a Secrets Manager public
endpoint by adding a NAT gateway or an internet gateway to your VPC, which allows traffic

Step 4: Set up network access 210

https://docs.aws.amazon.com/cli/latest/reference/lambda/create-function.html
https://docs.aws.amazon.com/cli/latest/reference/lambda/add-permission.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

AWS Secrets Manager User Guide

from your VPC to reach the public endpoint. This exposes your VPC to more risk because an IP
address for the gateway can be attacked from the public Internet.

To access the database or service

If your database or service is running on an Amazon EC2 instance in a VPC, we recommend that
you configure your Lambda function to run in the same VPC. Then the rotation function can
communicate directly with your service. For more information, see Configuring VPC access.

To allow the Lambda function to access the database or service, you must make sure that the
security groups attached to your Lambda rotation function allow outbound connections to
the database or service. You must also make sure that the security groups attached to your
database or service allow inbound connections from the Lambda rotation function.

For alternating users rotation where the superuser secret is managed by another AWS service,
the Lambda rotation function must be able to call the service endpoint to get the database
connection information. We recommend that you configure a VPC endpoint for the database
service. For more information, see:

• Amazon RDS API and interface VPC endpoints in the Amazon RDS User Guide.

• Working with VPC endpoints in the Amazon Redshift Management Guide.

Step 5: Configure the secret for rotation

To turn on automatic rotation for your secret, call rotate-secret. You can set a rotation
schedule with a cron() or rate() schedule expression, and you can set a rotation window
duration. You can rotate a secret as often as every four hours. For more information, see Schedule
expressions.

aws secretsmanager rotate-secret \
 --secret-id MySecret \
 --rotation-lambda-arn arn:aws:lambda:Region:123456789012:function:my-rotation-
function \
 --rotation-rules "{\"ScheduleExpression\": \"cron(0 16 1,15 * ? *)\", \"Duration\":
 \"2h\"}"

Next steps

See the section called “Troubleshoot rotation”.

Step 5: Configure the secret for rotation 211

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-configuring
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-working-with-endpoints.html
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/rotate-secret.html

AWS Secrets Manager User Guide

Rotate an AWS Secrets Manager secret immediately

You can only rotate a secret that has rotation configured. To determine whether a secret has
been configured for rotation, in the console, view the secret and scroll down to the Rotation
configuration section. If Rotation status is Enabled, then the secret is configured for rotation.
Or in the AWS CLI, call describe-secret. If the response has a RotationLambdaARN and
RotationRules, then the secret is configured for rotation. If not, you can set up automatic
rotation:

• Automatic rotation for database secrets (console)

• Automatic rotation (console)

• Automatic rotation (AWS CLI)

To rotate a secret immediately (console)

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose your secret.

3. On the secret details page, under Rotation configuration, choose Rotate secret immediately.

4. In the Rotate secret dialog box, choose Rotate.

AWS CLI

Example Rotate a secret immediately

The following rotate-secret example starts an immediate rotation. The output shows the
VersionId of the new secret version created by rotation. The secret must already have rotation
configured.

aws secretsmanager rotate-secret \
 --secret-id MyTestSecret

AWS Secrets Manager rotation function templates

Secrets Manager provides rotation function templates for:

• Amazon RDS and Amazon Aurora

• Amazon DocumentDB (with MongoDB compatibility)

Rotate a secret immediately 212

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://console.aws.amazon.com/secretsmanager/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/rotate-secret.html

AWS Secrets Manager User Guide

• Amazon Redshift

• Amazon ElastiCache

• Other types of secrets

To use the templates, see:

• Rotate Amazon RDS, Amazon Aurora Amazon Redshift, and Amazon DocumentDB credentials

• Other types of credentials (console instructions)

• Other types of credentials (AWS CLI instructions)

The templates support Python 3.9.

To write your own rotation function, see Write a rotation function.

Amazon RDS and Amazon Aurora

Topics

• Amazon RDS Db2 single user

• Amazon RDS Db2 alternating users

• Amazon RDS MariaDB single user

• Amazon RDS MariaDB alternating users

• Amazon RDS and Amazon Aurora MySQL single user

• Amazon RDS and Amazon Aurora MySQL alternating users

• Amazon RDS Oracle single user

• Amazon RDS Oracle alternating users

• Amazon RDS and Amazon Aurora PostgreSQL single user

• Amazon RDS and Amazon Aurora PostgreSQL alternating users

• Amazon RDS Microsoft SQLServer single user

• Amazon RDS Microsoft SQLServer alternating users

Amazon RDS Db2 single user

• Template name: SecretsManagerRDSDb2RotationSingleUser

Amazon RDS and Amazon Aurora 213

AWS Secrets Manager User Guide

• Rotation strategy: Rotation strategy: single user.

• SecretString structure: the section called “Amazon RDS Db2 secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSDb2RotationSingleUser/lambda_function.py

• Dependency: python-ibmdb

Amazon RDS Db2 alternating users

• Template name: SecretsManagerRDSDb2RotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• SecretString structure: the section called “Amazon RDS Db2 secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSDb2RotationMultiUser/lambda_function.py

• Dependency: python-ibmdb

Amazon RDS MariaDB single user

• Template name: SecretsManagerRDSMariaDBRotationSingleUser

• Rotation strategy: Rotation strategy: single user.

• SecretString structure: the section called “Amazon RDS MariaDB secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSMariaDBRotationSingleUser/lambda_function.py

• Dependency: PyMySQL 1.0.2

Amazon RDS MariaDB alternating users

• Template name: SecretsManagerRDSMariaDBRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• SecretString structure: the section called “Amazon RDS MariaDB secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSMariaDBRotationMultiUser/lambda_function.py

• Dependency: PyMySQL 1.0.2

Amazon RDS and Amazon Aurora 214

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationSingleUser/lambda_function.py
https://github.com/ibmdb/python-ibmdb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSDb2RotationMultiUser/lambda_function.py
https://github.com/ibmdb/python-ibmdb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMariaDBRotationMultiUser/lambda_function.py

AWS Secrets Manager User Guide

Amazon RDS and Amazon Aurora MySQL single user

• Template name: SecretsManagerRDSMySQLRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon RDS and Amazon Aurora MySQL
secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py

• Dependency: PyMySQL 1.0.2

Amazon RDS and Amazon Aurora MySQL alternating users

• Template name: SecretsManagerRDSMySQLRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon RDS and Amazon Aurora MySQL
secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSMySQLRotationMultiUser/lambda_function.py

• Dependency: PyMySQL 1.0.2

Amazon RDS Oracle single user

• Template name: SecretsManagerRDSOracleRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon RDS Oracle secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSOracleRotationSingleUser/lambda_function.py

• Dependency: python-oracledb 2.0.1

Amazon RDS Oracle alternating users

• Template name: SecretsManagerRDSOracleRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

Amazon RDS and Amazon Aurora 215

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSMySQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationSingleUser/lambda_function.py
https://github.com/oracle/python-oracledb

AWS Secrets Manager User Guide

• Expected SecretString structure: the section called “Amazon RDS Oracle secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSOracleRotationMultiUser/lambda_function.py

• Dependency: python-oracledb 2.0.1

Amazon RDS and Amazon Aurora PostgreSQL single user

• Template name: SecretsManagerRDSPostgreSQLRotationSingleUser

• Rotation strategy: Rotation strategy: single user.

• Expected SecretString structure: the section called “Amazon RDS and Amazon Aurora
PostgreSQL secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSPostgreSQLRotationSingleUser/lambda_function.py

• Dependency: PyGreSQL 5.0.7

Amazon RDS and Amazon Aurora PostgreSQL alternating users

• Template name: SecretsManagerRDSPostgreSQLRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon RDS and Amazon Aurora
PostgreSQL secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSPostgreSQLRotationMultiUser/lambda_function.py

• Dependency: PyGreSQL 5.0.7

Amazon RDS Microsoft SQLServer single user

• Template name: SecretsManagerRDSSQLServerRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon RDS Microsoft SQLServer secret
structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSSQLServerRotationSingleUser/lambda_function.py

Amazon RDS and Amazon Aurora 216

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSOracleRotationMultiUser/lambda_function.py
https://github.com/oracle/python-oracledb
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSPostgreSQLRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationSingleUser/lambda_function.py

AWS Secrets Manager User Guide

• Dependency: Pymssql 2.2.2

Amazon RDS Microsoft SQLServer alternating users

• Template name: SecretsManagerRDSSQLServerRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon RDS Microsoft SQLServer secret
structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRDSSQLServerRotationMultiUser/lambda_function.py

• Dependency: Pymssql 2.2.2

Amazon DocumentDB (with MongoDB compatibility)

Amazon DocumentDB single user

• Template name: SecretsManagerMongoDBRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon DocumentDB secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerMongoDBRotationSingleUser/lambda_function.py

• Dependency: Pymongo 3.2

Amazon DocumentDB alternating users

• Template name: SecretsManagerMongoDBRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon DocumentDB secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerMongoDBRotationMultiUser/lambda_function.py

• Dependency: Pymongo 3.2

Amazon DocumentDB 217

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRDSSQLServerRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerMongoDBRotationMultiUser/lambda_function.py

AWS Secrets Manager User Guide

Amazon Redshift

Amazon Redshift single user

• Template name: SecretsManagerRedshiftRotationSingleUser

• Rotation strategy: the section called “Single user”.

• Expected SecretString structure: the section called “Amazon Redshift secret structure” or the
section called “Amazon Redshift Serverless secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRedshiftRotationSingleUser/lambda_function.py

• Dependency: PyGreSQL 5.0.7

Amazon Redshift alternating users

• Template name: SecretsManagerRedshiftRotationMultiUser

• Rotation strategy: the section called “Alternating users”.

• Expected SecretString structure: the section called “Amazon Redshift secret structure” or the
section called “Amazon Redshift Serverless secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRedshiftRotationMultiUser/lambda_function.py

• Dependency: PyGreSQL 5.0.7

Amazon ElastiCache

To use this template, see Automatically rotating passwords for users in the Amazon ElastiCache
User Guide.

• Template name: SecretsManagerElasticacheUserRotation

• Expected SecretString structure: the section called “Amazon ElastiCache secret structure”.

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerElasticacheUserRotation/lambda_function.py

Amazon Redshift 218

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationSingleUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationMultiUser/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRedshiftRotationMultiUser/lambda_function.py
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/User-Secrets-Manager.html
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerElasticacheUserRotation/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerElasticacheUserRotation/lambda_function.py

AWS Secrets Manager User Guide

Other types of secrets

Secrets Manager provides this template as a starting point for you to create a rotation function for
any type of secret.

• Template name: SecretsManagerRotationTemplate

• Source code: https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/
master/SecretsManagerRotationTemplate/lambda_function.py

As you write your function, be cautious about including debugging or logging statements. These
statements can cause information in your function to be written to Amazon CloudWatch, so you
need to make sure the log doesn't include any sensitive information collected during development.

For security, Secrets Manager only permits a Lambda rotation function to rotate the secret directly.
The rotation function can't call a second Lambda function to rotate the secret.

For examples of log statements, see the the section called “Rotation function templates” source
code.

If you use external binaries and libraries, for example to connect to a resource, you need to manage
patching them and keeping them up-to-date.

For debugging suggestions, see Testing and debugging serverless applications.

There are four steps to rotating a secret, which correspond to the following four methods of a
Lambda rotation function.

Methods

• create_secret

• set_secret

• test_secret

• finish_secret

create_secret

In create_secret, you first check if a secret exists by calling get_secret_value with
the passed-in ClientRequestToken. If there's no secret, you create a new secret with
create_secret and the token as the VersionId. Then you can generate a new secret value with

Other types of secrets 219

https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRotationTemplate/lambda_function.py
https://github.com/aws-samples/aws-secrets-manager-rotation-lambdas/tree/master/SecretsManagerRotationTemplate/lambda_function.py
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-test-and-debug.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_secret_value
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.create_secret

AWS Secrets Manager User Guide

get_random_password. You must ensure the new secret value only includes characters that are
valid for the database or service. Exclude characters by using the ExcludeCharacters parameter.
Call put_secret_value to store it with the staging label AWSPENDING. Storing the new secret
value in AWSPENDING helps ensure idempotency. If rotation fails for any reason, you can refer to
that secret value in subsequent calls. See How do I make my Lambda function idempotent.

As you test your function, use the AWS CLI to see version stages: call describe-secret and look
at VersionIdsToStages.

set_secret

In set_secret, you change the credential in the database or service to match the new secret
value in the AWSPENDING version of the secret.

If you pass statements to a service that interprets statements, like a database, use query
parameterization For more information, see Query Parameterization Cheat Sheet on the OWASP
web site.

The rotation function is a privileged deputy that has the authorization to access and modify
customer credentials in both the Secrets Manager secret and the target resource. To prevent a
potential confused deputy attack, you need to make sure that an attacker cannot use the function
to access other resources. Before you update the credential:

• Check that the credential in the AWSCURRENT version of the secret is valid. If the AWSCURRENT
credential isn't valid, abandon the rotation attempt.

• Check that the AWSCURRENT and AWSPENDING secret values are for the same resource. For a
username and password, check that the AWSCURRENT and AWSPENDING usernames are the same.

• Check that the destination service resource is the same. For a database, check that the
AWSCURRENT and AWSPENDING host names are the same.

test_secret

In test_secret, you test the AWSPENDING version of the secret by using it to access the database
or service.

finish_secret

In finish_secret, you use update_secret_version_stage to move the staging label
AWSCURRENT from the previous secret version to the new secret version. Secrets Manager

Other types of secrets 220

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.get_random_password
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.put_secret_value
https://aws.amazon.com/premiumsupport/knowledge-center/lambda-function-idempotent/
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html
https://cheatsheetseries.owasp.org/cheatsheets/Query_Parameterization_Cheat_Sheet.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/secretsmanager.html#SecretsManager.Client.update_secret_version_stage

AWS Secrets Manager User Guide

automatically adds the AWSPREVIOUS staging label to the previous version, so that you retain the
last known good version of the secret.

Schedule expressions in Secrets Manager rotation

When you turn on automatic rotation, you can use a cron() or rate() expression to set the schedule
for rotating your secret. With a rate expression, you can create a rotation schedule that repeats
on an interval of hours or days. With a cron expression, you can create rotation schedules that are
more detailed than a rotation interval. Secrets Manager rotation schedules use UTC time zone. You
can rotate a secret as often as every four hours. Secrets Manager rotates your secret at any time
during the rotation window.

To turn on rotation, see:

• the section called “Automatic rotation for database secrets (console)”

• the section called “Automatic rotation (console)”

• the section called “Automatic rotation (AWS CLI)”

Rate expressions

Secrets Manager rate expressions have the following format, where Value is a positive integer and
Unit can be hour, hours, day, or days:

rate(Value Unit)

You can rotate a secret as often as every four hours. Examples:

• rate(4 hours) means the secret is rotated every four hours.

• rate(1 day) means the secret is rotated every day.

• rate(10 days) means the secret is rotated every 10 days.

For a rate in hours, the default rotation window starts at midnight and closes after one hour. You
can set the Window duration to change the rotation window. The rotation window must not
extend into the next rotation window. One way to check this is to confirm that the rotation window
is less than or equal to the number of hours between rotations.

Schedule expressions 221

AWS Secrets Manager User Guide

For a rate in days, the default rotation window starts at midnight and closes at the end of the
day. You can set the Window duration to change the rotation window. The rotation window must
not extend into the next UTC day. One way to check this is to confirm that the start hour plus the
window duration is less than or equal to 24 hours.

Cron expressions

Cron expressions have the following format:

cron(Minutes Hours Day-of-month Month Day-of-week Year)

A cron expression that includes increments of hours resets each day. For example, cron(0 4/12
* * ? *) means 4:00 AM, 4:00 PM, and then the next day 4:00 AM, 4:00 PM. Secrets Manager
rotation schedules use UTC time zone.

For a schedule in hours, the default rotation window closes after one hour. You can set the Window
duration to change the rotation window. The rotation window must not go into the next rotation
window. You can rotate a secret as often as every four hours.

Example schedule Expression

Every eight hours starting at midnight. cron(0 /8 * * ? *)

Every eight hours starting at 8:00 AM. cron(0 8/8 * * ? *)

Every ten hours, starting at 2:00 AM.

The rotation windows will start at 2:00, 12:00,
and 22:00, and then the next day at 2:00,
12:00, and 22:00.

cron(0 2/10 * * ? *)

Every day at 10:00 AM. cron(0 10 * * ? *)

Every Saturday at 6:00 PM. cron(0 18 ? * SAT *)

The first day of every month at 8:00 AM. cron(0 8 1 * ? *)

Every three months on the first Sunday at 1:00
AM.

cron(0 1 ? 1/3 SUN#1 *)

Cron expressions 222

AWS Secrets Manager User Guide

Example schedule Expression

The last day of every month at 5:00 PM. cron(0 17 L * ? *)

Monday through Friday at 8:00 AM. cron(0 8 ? * MON-FRI *)

First and 15th day of every month at 4:00 PM. cron(0 16 1,15 * ? *)

First Sunday of every month at midnight. cron(0 0 ? * SUN#1 *)

Cron expression requirements in Secrets Manager

Secrets Manager has some restrictions on what you can use for cron expressions. A cron expression
for Secrets Manager must have 0 in the minutes field because Secrets Manager rotation windows
start on the hour. It must have * in the year field, because Secrets Manager does not support
rotation schedules that are more than a year apart. The following table shows the options you can
use.

Fields Values Wildcards

Minutes Must be 0 None

Hours 0–23 Use / (forward slash) to
specify increments. For
example 2/10 means every
10 hours beginning at 2:00
AM. You can rotate a secret as
often as every four hours.

Day-of-month 1–31 Use , (comma) to include
additional values. For
example 1,15 means the first
and 15th day of the month.

Use - (dash) to specify a
range. For example 1–15
means days 1 through 15 of
the month.

Cron expressions 223

AWS Secrets Manager User Guide

Fields Values Wildcards

Use * (asterisk) to includes
all values in the field. For
example * means every day
of the month.

The ? (question mark)
wildcard specifies one or
another. You can't specify the
Day-of-month and Day-
of-week fields in the same
cron expression. If you specify
a value in one of the fields,
you must use a ? (question
mark) in the other.

Use / (forward slash) to
specify increments. For
example, 1/2 means every
two days starting on day 1, in
other words, day 1, 3, 5, and
so on.

Use L to specify the last day
of the month.

Use DAYL to specify the last
named day of the month. For
example SUNL means the last
Sunday of the month.

Cron expressions 224

AWS Secrets Manager User Guide

Fields Values Wildcards

Month 1–12 or JAN–DEC Use , (comma) to include
additional values. For
example, JAN,APR,J
UL,OCT means January,
April, July, and October.

Use - (dash) to specify a
range. For example 1–3
means months 1 through 3 of
the year.

Use * (asterisk) to includes
all values in the field. For
example * means every
month.

Use / (forward slash) to
specify increments. For
example, 1/3 means every
third month, starting on
month 1, in other words
month 1, 4, 7, and 10.

Cron expressions 225

AWS Secrets Manager User Guide

Fields Values Wildcards

Day-of-week 1–7 or SUN–SAT Use # to specify the day of
the week within a month. For
example, TUE#3 means the
third Tuesday of the month.

Use , (comma) to include
additional values. For
example 1,4 means the first
and fourth day of the week.

Use - (dash) to specify a
range. For example 1–4
means days 1 through 4 of
the week.

Use * (asterisk) to includes
all values in the field. For
example * means every day
of the week.

The ? (question mark)
wildcard specifies one or
another. You can't specify the
Day-of-month and Day-
of-week fields in the same
cron expression. If you specify
a value in one of the fields,
you must use a ? (question
mark) in the other.

Use / (forward slash) to
specify increments. For
example, 1/2 means every
second day of the week,
starting on the first day, so
day 1, 3, 5, and 7.

Cron expressions 226

AWS Secrets Manager User Guide

Fields Values Wildcards

Use L to specify the last day
of the week.

Year Must be * None

Troubleshoot AWS Secrets Manager rotation

For many services, Secrets Manager uses a Lambda function to rotate secrets. For more
information, see the section called “How rotation works”. The Lambda rotation function interacts
with the database or service the secret is for as well as Secrets Manager. When rotation doesn't
work the way you expect, you should first check the CloudWatch logs.

Note

Some services can manage secrets for you, including managing automatic rotation. For
more information, see the section called “Managed rotation”.

To view the CloudWatch logs for your Lambda function

1. Open the Secrets Manager console at https://console.aws.amazon.com/secretsmanager/.

2. Choose your secret, and then on the details page, under Rotation configuration, choose the
Lambda rotation function. The Lambda console opens.

3. On the Monitor tab, choose Logs, and then choose View logs in CloudWatch.

The CloudWatch console opens and displays the logs for your function.

To interpret the logs

• No activity after "Found credentials in environment variables"

• No activity after "createSecret"

• Error: "Access to KMS is not allowed"

• Error: "Key is missing from secret JSON"

• Error: "setSecret: Unable to log into database"

• Error: "Unable to import module 'lambda_function'"

Troubleshoot rotation 227

https://console.aws.amazon.com/secretsmanager/

AWS Secrets Manager User Guide

• Upgrade an existing rotation function from Python 3.7 to 3.9

No activity after "Found credentials in environment variables"

If there is no activity after "Found credentials in environment variables", and the task duration is
long, for example the default Lambda timeout of 30000ms, then the Lambda function may be
timing out while trying to reach the Secrets Manager endpoint.

Your Lambda rotation function must be able to access a Secrets Manager endpoint. If your Lambda
function can access the internet, then you can use a public endpoint. To find an endpoint, see the
section called “Secrets Manager endpoints”.

If your Lambda function runs in a VPC that doesn't have internet access, we recommend you
configure Secrets Manager service private endpoints within your VPC. Your VPC can then intercept
requests addressed to the public regional endpoint and redirect them to the private endpoint. For
more information, see VPC endpoint.

Alternatively, you can enable your Lambda function to access a Secrets Manager public endpoint
by adding a NAT gateway or an internet gateway to your VPC, which allows traffic from your VPC
to reach the public endpoint. This exposes your VPC to more risk because an IP address for the
gateway can be attacked from the public Internet.

No activity after "createSecret"

The following are issues that can cause rotation to stop after createSecret:

The VPC Network ACLs do not allow HTTPS traffic in and out.

For more information, see Control traffic to subnets using Network ACLs in the Amazon VPC
User Guide.

Lambda function timeout configuration is too short to perform the task.

For more information, see Configuring Lambda function options in the AWS Lambda Developer
Guide.

The Secrets Manager VPC endpoint does not allow the VPC CIDRs on ingress in the assigned
security groups.

For more information, see Control traffic to resources using security groups in the Amazon VPC
User Guide.

No activity after "Found credentials in environment variables" 228

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-nat-gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-network-acls.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html

AWS Secrets Manager User Guide

The Secrets Manager VPC endpoint policy does not allow Lambda to use the VPC endpoint.

For more information, see VPC endpoint.

The secret uses alternating users rotation, the superuser secret is managed by Amazon RDS,
and the Lambda function can't access the RDS API.

For alternating users rotation where the superuser secret is managed by another AWS service,
the Lambda rotation function must be able to call the service endpoint to get the database
connection information. We recommend that you configure a VPC endpoint for the database
service. For more information, see:

• Amazon RDS API and interface VPC endpoints in the Amazon RDS User Guide.

• Working with VPC endpoints in the Amazon Redshift Management Guide.

Error: "Access to KMS is not allowed"

If you see ClientError: An error occurred (AccessDeniedException) when calling
the GetSecretValue operation: Access to KMS is not allowed, the rotation function
does not have permission to decrypt the secret using the KMS key that was used to encrypt the
secret. There might be a condition in the permissions policy that limits the encryption context
to a specific secret. For information about the required permission, see the section called “Policy
statement for customer managed key”.

Error: "Key is missing from secret JSON"

A Lambda rotation function requires the secret value to be in a specific JSON structure. If you
see this error, then the JSON might be missing a key that the rotation function tried to access.
For information about the JSON structure for each type of secret, see the section called “JSON
structure of a secret”.

Error: "setSecret: Unable to log into database"

The following are issues that can cause this error:

The rotation function can't access the database.

If the task duration is long, for example over 5000ms, then the Lambda rotation function might
not be able to access the database over the network.

Error: "Access to KMS is not allowed" 229

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/vpc-interface-endpoints.html
https://docs.aws.amazon.com/redshift/latest/mgmt/enhanced-vpc-working-with-endpoints.html

AWS Secrets Manager User Guide

If your database or service is running on an Amazon EC2 instance in a VPC, we recommend that
you configure your Lambda function to run in the same VPC. Then the rotation function can
communicate directly with your service. For more information, see Configuring VPC access.

To allow the Lambda function to access the database or service, you must make sure that the
security groups attached to your Lambda rotation function allow outbound connections to
the database or service. You must also make sure that the security groups attached to your
database or service allow inbound connections from the Lambda rotation function.

The credentials in the secret are incorrect.

If the task duration is short, then the Lambda rotation function might not be able to
authenticate with the credentials in the secret. Check the credentials by logging in manually
with the information in the AWSCURRENT and AWSPREVIOUS versions of the secret using the
AWS CLI command get-secret-value.

The database uses scram-sha-256 to encrypt passwords.

If your database is Aurora PostgreSQL version 13 or later and uses scram-sha-256 to encrypt
passwords, but the rotation function uses libpq version 9 or older which does not support
scram-sha-256, then the rotation function can't connect to the database.

To determine which database users use scram-sha-256 encryption

• See Checking for users with non-SCRAM passwords in the blog SCRAM Authentication in
RDS for PostgreSQL 13.

To determine which version of libpq your rotation function uses

1. On a Linux-based computer, on the Lambda console, navigate to your rotation function and
download the deployment bundle. Uncompress the zip file into a work directory.

2. At a command line, in the work directory, run:

readelf -a libpq.so.5 | grep RUNPATH

3. If you see the string PostgreSQL-9.4.x, or any major version less than 10, then the
rotation function doesn't support scram-sha-256.

• Output for a rotation function that doesn't support scram-sha-256:

0x000000000000001d (RUNPATH) Library runpath: [/
local/p4clients/pkgbuild-a1b2c/workspace/build/

Error: "setSecret: Unable to log into database" 230

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-configuring
https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/get-secret-value.html
https://aws.amazon.com/blogs/database/scram-authentication-in-rds-for-postgresql-13/
https://aws.amazon.com/blogs/database/scram-authentication-in-rds-for-postgresql-13/

AWS Secrets Manager User Guide

PostgreSQL/PostgreSQL-9.4.x_client_only.123456.0/AL2_x86_64/
DEV.STD.PTHREAD/build/private/tmp/brazil-path/build.libfarm/lib:/
local/p4clients/pkgbuild-a1b2c/workspace/src/PostgreSQL/build/
private/install/lib]

• Output for a rotation function that supports scram-sha-256:

0x000000000000001d (RUNPATH) Library runpath: [/
local/p4clients/pkgbuild-a1b2c/workspace/build/
PostgreSQL/PostgreSQL-10.x_client_only.123456.0/AL2_x86_64/
DEV.STD.PTHREAD/build/private/tmp/brazil-path/build.libfarm/lib:/
local/p4clients/pkgbuild-a1b2c/workspace/src/PostgreSQL/build/
private/install/lib]

Note

If you set up automatic secret rotation before December 30, 2021, your rotation
function bundled an older version of libpq that doesn't support scram-sha-256. To
support scram-sha-256, you need to recreate your rotation function.

The database requires SSL/TLS access.

If your database requires an SSL/TLS connection, but the rotation function uses an unencrypted
connection, then the rotation function can't connect to the database. Rotation functions for
Amazon RDS (except Oracle and Db2) and Amazon DocumentDB automatically use Secure
Socket Layer (SSL) or Transport Layer Security (TLS) to connect to your database, if it is
available. Otherwise they use an unencrypted connection.

Note

If you set up automatic secret rotation before December 20, 2021, your rotation
function might be based on an older template that did not support SSL/TLS. To support
connections that use SSL/TLS, you need to recreate your rotation function.

Error: "setSecret: Unable to log into database" 231

AWS Secrets Manager User Guide

To determine when your rotation function was created

1. In the Secrets Manager console https://console.aws.amazon.com/secretsmanager/,
open your secret. In the Rotation configuration section, under Lambda rotation
function, you see the Lambda function ARN, for example, arn:aws:lambda:aws-
region:123456789012:function:SecretsManagerMyRotationFunction
. Copy the function name from the end of the ARN, in this example
SecretsManagerMyRotationFunction .

2. In the AWS Lambda console https://console.aws.amazon.com/lambda/, under Functions,
paste your Lambda function name in the search box, choose Enter, and then choose the
Lambda function.

3. In the function details page, on the Configuration tab, under Tags, copy the value next to
the key aws:cloudformation:stack-name.

4. In the AWS CloudFormation console https://console.aws.amazon.com/cloudformation,
under Stacks, paste the key value in the search box, and then choose Enter.

5. The list of stacks filters so that only the stack that created the Lambda rotation function
appears. In the Created date column, view the date the stack was created. This is the date
the Lambda rotation function was created.

Error: "Unable to import module 'lambda_function'"

You might receive this error if you're running an earlier Lambda function that was automatically
upgraded from Python 3.7 to a newer version of Python. To resolve the error, you can change the
Lambda function version back to Python 3.7, and then the section called “Upgrade an existing
rotation function from Python 3.7 to 3.9”. For more information, see Why did my Secrets Manager
Lambda function rotation fail with a “pg module not found“ error? in AWS re:Post.

Upgrade an existing rotation function from Python 3.7 to 3.9

Some rotation functions created before November 2022 used Python 3.7. The AWS SDK for Python
stopped supporting Python 3.7 in December 2023. For more information, see Python support
policy updates for AWS SDKs and Tools. To switch to a new rotation function that uses Python 3.9,
you can add a runtime property to an existing rotation function or recreate the rotation function.

Error: "Unable to import module 'lambda_function'" 232

https://console.aws.amazon.com/secretsmanager/
https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/cloudformation/
https://repost.aws/knowledge-center/secrets-manager-lambda-rotation
https://repost.aws/knowledge-center/secrets-manager-lambda-rotation
https://aws.amazon.com/blogs/developer/python-support-policy-updates-for-aws-sdks-and-tools/
https://aws.amazon.com/blogs/developer/python-support-policy-updates-for-aws-sdks-and-tools/

AWS Secrets Manager User Guide

To find which Lambda rotation functions use Python 3.7

1. Sign in to the AWS Management Console and open the AWS Lambda console at https://
console.aws.amazon.com/lambda/.

2. In the list of Functions, filter for SecretsManager.

3. In the filtered list of functions, under Runtime, look for Python 3.7.

To upgrade to Python 3.9:

• Option 1: Recreate the rotation function using AWS CloudFormation

• Option 2: Update the runtime for the existing rotation function using AWS CloudFormation

• Option 3: For AWS CDK users, upgrade the CDK library

Option 1: Recreate the rotation function using AWS CloudFormation

When you use the Secrets Manager console to turn on rotation, Secrets Manager uses AWS
CloudFormation to create the necessary resources, including the Lambda rotation function.
If you used the console to turn on rotation, or you created the rotation function using a AWS
CloudFormation stack, you can use the same AWS CloudFormation stack to recreate the rotation
function with a new name. The new function uses the more recent version of Python.

To find the AWS CloudFormation stack that created the rotation function

• On the Lambda function details page, on the Configuration tab, choose Tags. View the ARN
next to aws:cloudformation:stack-id.

The stack name is embedded in the ARN, as shown in the following example.

• ARN: arn:aws:cloudformation:us-
west-2:408736277230:stack/SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda-3CUDHZMDMBO8/79fc9050-2eef-11ed-80f0-021fb13c0537

• Stack name: SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda

To recreate a rotation function (AWS CloudFormation)

1. In AWS CloudFormation, search for the stack by name, and then choose Update.

Upgrade an existing rotation function from Python 3.7 to 3.9 233

https://console.aws.amazon.com/lambda/
https://console.aws.amazon.com/lambda/

AWS Secrets Manager User Guide

If a dialog box appears recommending you update the root stack, choose Go to root stack, and
then choose Update.

2. On the Update stack page, choose Edit template in designer, and then choose View in
Designer.

3. In the designer, in the template code, in
SecretRotationScheduleHostedRotationLambda, replace the value for
"functionName": "SecretsManagerTestRotationRDS" with a new function name, for
example in JSON, "functionName": "SecretsManagerTestRotationRDSupdated"

4. Continue through the AWS CloudFormation stack workflow and then choose Submit.

Option 2: Update the runtime for the existing rotation function using AWS
CloudFormation

When you use the Secrets Manager console to turn on rotation, Secrets Manager uses AWS
CloudFormation to create the necessary resources, including the Lambda rotation function.
If you used the console to turn on rotation, or you created the rotation function using a AWS
CloudFormation stack, you can use the same AWS CloudFormation stack to update the runtime for
the rotation function.

To find the AWS CloudFormation stack that created the rotation function

• On the Lambda function details page, on the Configuration tab, choose Tags. View the ARN
next to aws:cloudformation:stack-id.

The stack name is embedded in the ARN, as shown in the following example.

• ARN: arn:aws:cloudformation:us-
west-2:408736277230:stack/SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda-3CUDHZMDMBO8/79fc9050-2eef-11ed-80f0-021fb13c0537

• Stack name: SecretsManagerRDSMySQLRotationSingleUser5c2-
SecretRotationScheduleHostedRotationLambda

To update the runtime for a rotation function (AWS CloudFormation)

1. In AWS CloudFormation, search for the stack by name, and then choose Update.

Upgrade an existing rotation function from Python 3.7 to 3.9 234

AWS Secrets Manager User Guide

If a dialog box appears recommending you update the root stack, choose Go to root stack, and
then choose Update.

2. On the Update stack page, choose Edit template in designer, and then choose View in
Designer.

3. In the designer, in the template JSON, for the
SecretRotationScheduleHostedRotationLambda, under Properties, under
Parameters, add "runtime": "python3.9"

4. Continue through the AWS CloudFormation stack workflow and then choose Submit.

Option 3: For AWS CDK users, upgrade the CDK library

If you used the AWS CDK prior to version v2.94.0 to set up rotation for your secret, you can update
the Lambda function by upgrading to v2.94.0 or later. For more information, see the AWS Cloud
Development Kit (AWS CDK) v2 Developer Guide.

Upgrade an existing rotation function from Python 3.7 to 3.9 235

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html

AWS Secrets Manager User Guide

AWS Secrets Manager secrets managed by other AWS
services

Many AWS services store and use secrets in AWS Secrets Manager. In some cases, these secrets
are managed secrets, which means that the service that created them helps manage them. For
example, some managed secrets include managed rotation, so you don't have to configure rotation
yourself. The managing service might also restrict you from updating secrets or deleting them
without a recovery period, which helps prevent outages because the managing service depends on
the secret.

Managed secrets use a naming convention that includes the managing service ID to help identify
them.

Secret name: ServiceID!MySecret
Secret ARN : arn:aws:us-east-1:ServiceID!MySecret-a1b2c3

IDs for services that manage secrets

• appflow – the section called “Amazon AppFlow”

• databrew – the section called “AWS Glue DataBrew”

• datasync – the section called “AWS DataSync”

• directconnect – the section called “AWS Direct Connect”

• ecs-sc – the section called “Amazon Elastic Container Service”

• events – the section called “Amazon EventBridge”

• marketplace-deployment – the section called “AWS Marketplace”

• opsworks-cm – the section called “AWS OpsWorks for Chef Automate”

• rds – the section called “Amazon RDS and Aurora”

• redshift – the section called “Amazon Redshift”

• sqlworkbench – the section called “Amazon Redshift query editor v2”

To find secrets that are managed by other AWS services, see Find managed secrets.

For a full list of services that use secrets, see the section called “AWS services that use AWS Secrets
Manager secrets”.

236

AWS Secrets Manager User Guide

Amazon AppFlow

In Amazon AppFlow, when you configure an SaaS application as a source or destination, you create
a connection. This includes information required for connecting to the SaaS applications, such
as authentication tokens, user names, and passwords. Amazon AppFlow stores your connection
data in a Secrets Manager managed secret with the prefix appflow. The cost of storing the secret
is included with the charge for Amazon AppFlow. For more information, see Data protection in
Amazon AppFlow in the Amazon AppFlow User Guide.

AWS Glue DataBrew

AWS Glue DataBrew provides the DETERMINISTIC_DECRYPT, DETERMINISTIC_ENCRYPT,
and CRYPTOGRAPHIC_HASH recipe steps to perform transformations on personally identifiable
information (PII) in a dataset, which use an encryption key stored in a Secrets Manager secret. If
you use the DataBrew default secret to store the encryption key, DataBrew creates a managed
secret with the prefix databrew. The cost of storing the secret is included with the charge for
using DataBrew.

AWS DataSync

To collect information about an on-premises storage system, AWS DataSync Discovery uses the
credentials for the storage system's management interface. DataSync stores those credentials in
a Secrets Manager managed secret with the prefix datasync. You are charged for that secret. For
more information, see Adding your on-premises storage system to DataSync Discovery in the AWS
DataSync User Guide.

AWS Direct Connect

AWS Direct Connect stores a connectivity association key name and connectivity association key
pair (CKN/CAK pair) in a managed secret with the prefix directconnect. The cost of the secret is
included with the charge for AWS Direct Connect. To update the secret, you must use AWS Direct
Connect rather than Secrets Manager. For more information, see Associate a MACsec CKN/CAK with
a LAG in the AWS Direct Connect User Guide.

Amazon AppFlow 237

https://docs.aws.amazon.com/appflow/latest/userguide/data-protection.html#encryption-rest
https://docs.aws.amazon.com/appflow/latest/userguide/data-protection.html#encryption-rest
https://docs.aws.amazon.com/databrew/latest/dg/recipe-actions.DETERMINISTIC_DECRYPT.html
https://docs.aws.amazon.com/databrew/latest/dg/recipe-actions.DETERMINISTIC_ENCRYPT.html
https://docs.aws.amazon.com/databrew/latest/dg/recipe-actions.CRYPTOGRAPHIC_HASH.html
https://docs.aws.amazon.com/datasync/latest/userguide/discovery-configure-storage.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/associate-key-lag.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/associate-key-lag.html

AWS Secrets Manager User Guide

Amazon Elastic Container Service

When you use Amazon ECS Service Connect, Amazon ECS uses Secrets Manager secrets to store
AWS Private Certificate Authority TLS certificates. The cost of storing the secret is included with
the charges for Amazon ECS. To update the secret, you must use Amazon ECS rather than Secrets
Manager. For more information, see TLS with Service Connect in the Amazon Elastic Container
Service Developer Guide.

Amazon EventBridge

When you create an Amazon EventBridge API destination, EventBridge stores the connection for
it in a Secrets Manager managed secret with the prefix events. The cost of storing the secret
is included with the charge for using an API destination. To update the secret, you must use
EventBridge rather than Secrets Manager. For more information, see API destinations in the
Amazon EventBridge User Guide.

AWS Marketplace

When you use AWS Marketplace Quick Launch, AWS Marketplace distributes your software along
with the license key. AWS Marketplace stores the license key in your account as a Secrets Manager
managed secret. The cost of storing the secret is included with the charges for AWS Marketplace.
To update the secret, you must use AWS Marketplace rather than Secrets Manager. For more
information, see Configure Quick Launch in the AWS Marketplace Seller Guide.

AWS OpsWorks for Chef Automate

When you create a new server in AWS OpsWorks CM, OpsWorks CM stores information for the
server in a Secrets Manager managed secret with the prefix opsworks-cm. The cost of the secret is
included in the charge for AWS OpsWorks. For more information, see Integration with AWS Secrets
Manager in the AWS OpsWorks User Guide.

Amazon RDS and Aurora

To manage master user credentials for Amazon Relational Database Service (Amazon RDS),
including Aurora, Amazon RDS can create a managed secret for you. You are charged for that
secret. Amazon RDS also manages rotation for these credentials. For more information, see

Amazon Elastic Container Service 238

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-connect-tls.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destinations.html
https://docs.aws.amazon.com/marketplace/latest/userguide/saas-product-settings.html#saas-quick-launch
https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager
https://docs.aws.amazon.com/opsworks/latest/userguide/data-protection.html#data-protection-secrets-manager

AWS Secrets Manager User Guide

Password management with Amazon RDS and AWS Secrets Manager in the Amazon RDS User Guide
and Password management with Amazon Aurora and AWS Secrets Manager in the Amazon Aurora
User Guide.

For other Amazon RDS credentials, see the section called “Create a database secret”.

Amazon Redshift

To manage admin credentials for Amazon Redshift, Amazon Redshift can create a managed
secret for you. You are charged for that secret. Amazon Redshift also manages rotation for these
credentials. For more information, see Managing Amazon Redshift admin passwords using AWS
Secrets Manager in the Amazon Redshift Management Guide.

For other Amazon Redshift credentials, see the section called “Create a database secret”. To use a
secret for credentials when you call the Data API, see Using the Amazon Redshift Data API. To use
a secret when you use the Amazon Redshift query editor to connect to a database, see Querying a
database using the query editor in the Amazon Redshift Management Guide and the section called
“Amazon Redshift query editor v2”.

Amazon Redshift query editor v2

When you use the Amazon Redshift query editor v2 to connect to a database, Amazon Redshift
can store your credentials in a Secrets Manager managed secret with the prefix sqlworkbench.
The cost of storing the secret is included with the charge for using Amazon Redshift. To update
the secret, you must use Amazon Redshift rather than Secrets Manager. For more information, see
Working with query editor v2 in the Amazon Redshift Management Guide.

Amazon Redshift 239

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/rds-secrets-manager.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/redshift-secrets-manager-integration.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor.html
https://docs.aws.amazon.com/redshift/latest/mgmt/query-editor-v2-using.html

AWS Secrets Manager User Guide

Using an AWS Secrets Manager VPC endpoint

We recommend that you run as much of your infrastructure as possible on private networks that
are not accessible from the public internet. You can establish a private connection between your
VPC and Secrets Manager by creating an interface VPC endpoint. Interface endpoints are powered
by AWS PrivateLink, a technology that enables you to privately access Secrets Manager APIs
without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection.
Instances in your VPC don't need public IP addresses to communicate with Secrets Manager
APIs. Traffic between your VPC and Secrets Manager does not leave the AWS network. For more
information, see Interface VPC endpoints (AWS PrivateLink) in the Amazon VPC User Guide.

When Secrets Manager rotates a secret by using a Lambda rotation function, for example a secret
that contains database credentials, the Lambda function makes requests to both the database
and Secrets Manager. When you turn on automatic rotation by using the console, Secrets Manager
creates the Lambda function in the same VPC as your database. We recommend that you create a
Secrets Manager endpoint in the same VPC so that requests from the Lambda rotation function to
Secrets Manager don't leave the Amazon network.

If you enable private DNS for the endpoint, you can make API requests to Secrets Manager using its
default DNS name for the Region, for example, secretsmanager.us-east-1.amazonaws.com.
For more information, see Accessing a service through an interface endpoint in the Amazon VPC
User Guide.

You can make sure that requests to Secrets Manager come from the VPC access by including a
condition in your permissions policies. For more information, see the section called “Example:
Permissions and VPCs”.

You can use AWS CloudTrail logs to audit your use of secrets through the VPC endpoint.

To create a VPC endpoint for Secrets Manager

1. See Creating an interface endpoint in the Amazon VPC User Guide. Use the service name:
com.amazonaws.region.secretsmanager

2. To control access to the endpoint, see Control access to VPC endpoints using endpoint policies.

240

https://aws.amazon.com/privatelink
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html

AWS Secrets Manager User Guide

Shared subnets

You can't create, describe, modify, or delete VPC endpoints in subnets that are shared with you.
However, you can use the VPC endpoints in subnets that are shared with you. For information
about VPC sharing, see Share your VPC with other accounts in the Amazon Virtual Private Cloud
User Guide.

Shared subnets 241

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-sharing.html

AWS Secrets Manager User Guide

Create AWS Secrets Manager secrets in AWS
CloudFormation

You can create secrets in a CloudFormation stack by using the AWS::SecretsManager::Secret
resource in a CloudFormation template, as shown in Create a secret.

To create an admin secret for Amazon RDS or Aurora, we recommend you use
ManageMasterUserPassword in AWS::RDS::DBCluster. Then Amazon RDS creates the secret
and manages rotation for you. For more information, see Managed rotation.

For Amazon Redshift and Amazon DocumentDB credentials, first create a secret with a
password generated by Secrets Manager, and then use a dynamic reference to retrieve the
username and password from the secret to use as credentials for a new database. Next, use
the AWS::SecretsManager::SecretTargetAttachment resource to add details about
the database to the secret that Secrets Manager needs to rotate the secret. Finally, to turn on
automatic rotation, use the AWS::SecretsManager::RotationSchedule resource and
provide a rotation function and a schedule. See the following examples:

• Create a secret with Amazon Redshift credentials

• Create a secret with Amazon DocumentDB credentials

To attach a resource policy to your secret, use the AWS::SecretsManager::ResourcePolicy
resource.

For information about creating resources with AWS CloudFormation, see Learn template basics in
the AWS CloudFormation User Guide. You can also use the AWS Cloud Development Kit (AWS CDK).
For more information, see AWS Secrets Manager Construct Library.

Create an AWS Secrets Manager secret with AWS
CloudFormation

This example creates a secret named CloudFormationCreatedSecret-a1b2c3d4e5f6. The
secret value is the following JSON, with a 32-character password that is generated when the secret
is created.

{

Create a secret 242

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secret.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secrettargetattachment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-rotationschedule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-resourcepolicy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html
https://docs.aws.amazon.com/cdk/api/latest/docs/aws-secretsmanager-readme.html

AWS Secrets Manager User Guide

 "password": "EXAMPLE-PASSWORD",
 "username": "saanvi"
}

This example uses the following CloudFormation resource:

• AWS::SecretsManager::Secret

For information about creating resources with AWS CloudFormation, see Learn template basics in
the AWS CloudFormation User Guide.

JSON

{
 "Resources": {
 "CloudFormationCreatedSecret": {
 "Type": "AWS::SecretsManager::Secret",
 "Properties": {
 "Description": "Simple secret created by AWS CloudFormation.",
 "GenerateSecretString": {
 "SecretStringTemplate": "{\"username\": \"saanvi\"}",
 "GenerateStringKey": "password",
 "PasswordLength": 32
 }
 }
 }
 }
}

YAML

Resources:
 CloudFormationCreatedSecret:
 Type: 'AWS::SecretsManager::Secret'
 Properties:
 Description: Simple secret created by AWS CloudFormation.
 GenerateSecretString:
 SecretStringTemplate: '{"username": "saanvi"}'
 GenerateStringKey: password
 PasswordLength: 32

JSON 243

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secret.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html

AWS Secrets Manager User Guide

Create an AWS Secrets Manager secret with automatic
rotation and an Amazon RDS MySQL DB instance with AWS
CloudFormation

To create an admin secret for Amazon RDS or Aurora, we recommend you use
ManageMasterUserPassword, as shown in the example Create a Secrets Manager secret for a
master password in AWS::RDS::DBCluster. Then Amazon RDS creates the secret and manages
rotation for you. For more information, see Managed rotation.

Create an AWS Secrets Manager secret and an Amazon Redshift
cluster with AWS CloudFormation

To create an admin secret for Amazon Redshift, we recommend you use the examples on
AWS::Redshift::Cluster and AWS::RedshiftServerless::Namespace.

Create an AWS Secrets Manager secret and an Amazon
DocumentDB instance with AWS CloudFormation

This example creates a secret and an Amazon DocumentDB instance using the credentials in the
secret as the user and password. The secret has a resource-based policy attached that defines who
can access the secret. The template also creates a Lambda rotation function from the Rotation
function templates and configures the secret to automatically rotate between 8:00 AM and 10:00
AM UTC on the first day of every month. As a security best practice, the instance is in an Amazon
VPC.

This example uses the following CloudFormation resources for Secrets Manager:

• AWS::SecretsManager::Secret

• AWS::SecretsManager::SecretTargetAttachment

• AWS::SecretsManager::RotationSchedule

For information about creating resources with AWS CloudFormation, see Learn template basics in
the AWS CloudFormation User Guide.

Create a secret with Amazon RDS credentials with automatic rotation 244

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-rds-dbcluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-redshift-cluster.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-redshiftserverless-namespace.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secret.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-secrettargetattachment.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-rotationschedule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/gettingstarted.templatebasics.html

AWS Secrets Manager User Guide

JSON

{
 "AWSTemplateFormatVersion":"2010-09-09",
 "Transform":"AWS::SecretsManager-2020-07-23",
 "Resources":{
 "TestVPC":{
 "Type":"AWS::EC2::VPC",
 "Properties":{
 "CidrBlock":"10.0.0.0/16",
 "EnableDnsHostnames":true,
 "EnableDnsSupport":true
 }
 },
 "TestSubnet01":{
 "Type":"AWS::EC2::Subnet",
 "Properties":{
 "CidrBlock":"10.0.96.0/19",
 "AvailabilityZone":{
 "Fn::Select":[
 "0",
 {
 "Fn::GetAZs":{
 "Ref":"AWS::Region"
 }
 }
]
 },
 "VpcId":{
 "Ref":"TestVPC"
 }
 }
 },
 "TestSubnet02":{
 "Type":"AWS::EC2::Subnet",
 "Properties":{
 "CidrBlock":"10.0.128.0/19",
 "AvailabilityZone":{
 "Fn::Select":[
 "1",
 {
 "Fn::GetAZs":{
 "Ref":"AWS::Region"

JSON 245

AWS Secrets Manager User Guide

 }
 }
]
 },
 "VpcId":{
 "Ref":"TestVPC"
 }
 }
 },
 "SecretsManagerVPCEndpoint":{
 "Type":"AWS::EC2::VPCEndpoint",
 "Properties":{
 "SubnetIds":[
 {
 "Ref":"TestSubnet01"
 },
 {
 "Ref":"TestSubnet02"
 }
],
 "SecurityGroupIds":[
 {
 "Fn::GetAtt":[
 "TestVPC",
 "DefaultSecurityGroup"
]
 }
],
 "VpcEndpointType":"Interface",
 "ServiceName":{
 "Fn::Sub":"com.amazonaws.${AWS::Region}.secretsmanager"
 },
 "PrivateDnsEnabled":true,
 "VpcId":{
 "Ref":"TestVPC"
 }
 }
 },
 "MyDocDBClusterRotationSecret":{
 "Type":"AWS::SecretsManager::Secret",
 "Properties":{
 "GenerateSecretString":{
 "SecretStringTemplate":"{\"username\": \"someadmin\",\"ssl\": true}",
 "GenerateStringKey":"password",

JSON 246

AWS Secrets Manager User Guide

 "PasswordLength":16,
 "ExcludeCharacters":"\"@/\\"
 },
 "Tags":[
 {
 "Key":"AppName",
 "Value":"MyApp"
 }
]
 }
 },
 "MyDocDBCluster":{
 "Type":"AWS::DocDB::DBCluster",
 "Properties":{
 "DBSubnetGroupName":{
 "Ref":"MyDBSubnetGroup"
 },
 "MasterUsername":{
 "Fn::Sub":"{{resolve:secretsmanager:
${MyDocDBClusterRotationSecret}::username}}"
 },
 "MasterUserPassword":{
 "Fn::Sub":"{{resolve:secretsmanager:
${MyDocDBClusterRotationSecret}::password}}"
 },
 "VpcSecurityGroupIds":[
 {
 "Fn::GetAtt":[
 "TestVPC",
 "DefaultSecurityGroup"
]
 }
]
 }
 },
 "DocDBInstance":{
 "Type":"AWS::DocDB::DBInstance",
 "Properties":{
 "DBClusterIdentifier":{
 "Ref":"MyDocDBCluster"
 },
 "DBInstanceClass":"db.r5.large"
 }
 },

JSON 247

AWS Secrets Manager User Guide

 "MyDBSubnetGroup":{
 "Type":"AWS::DocDB::DBSubnetGroup",
 "Properties":{
 "DBSubnetGroupDescription":"",
 "SubnetIds":[
 {
 "Ref":"TestSubnet01"
 },
 {
 "Ref":"TestSubnet02"
 }
]
 }
 },
 "SecretDocDBClusterAttachment":{
 "Type":"AWS::SecretsManager::SecretTargetAttachment",
 "Properties":{
 "SecretId":{
 "Ref":"MyDocDBClusterRotationSecret"
 },
 "TargetId":{
 "Ref":"MyDocDBCluster"
 },
 "TargetType":"AWS::DocDB::DBCluster"
 }
 },
 "MySecretRotationSchedule":{
 "Type":"AWS::SecretsManager::RotationSchedule",
 "DependsOn":"SecretDocDBClusterAttachment",
 "Properties":{
 "SecretId":{
 "Ref":"MyDocDBClusterRotationSecret"
 },
 "HostedRotationLambda":{
 "RotationType":"MongoDBSingleUser",
 "RotationLambdaName":"MongoDBSingleUser",
 "VpcSecurityGroupIds":{
 "Fn::GetAtt":[
 "TestVPC",
 "DefaultSecurityGroup"
]
 },
 "VpcSubnetIds":{
 "Fn::Join":[

JSON 248

AWS Secrets Manager User Guide

 ",",
 [
 {
 "Ref":"TestSubnet01"
 },
 {
 "Ref":"TestSubnet02"
 }
]
]
 }
 },
 "RotationRules":{
 "Duration": "2h",
 "ScheduleExpression": "cron(0 8 1 * ? *)"
 }
 }
 }
 }
}

YAML

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::SecretsManager-2020-07-23
Resources:
 TestVPC:
 Type: AWS::EC2::VPC
 Properties:
 CidrBlock: 10.0.0.0/16
 EnableDnsHostnames: true
 EnableDnsSupport: true
 TestSubnet01:
 Type: AWS::EC2::Subnet
 Properties:
 CidrBlock: 10.0.96.0/19
 AvailabilityZone:
 Fn::Select:
 - '0'
 - Fn::GetAZs:
 Ref: AWS::Region
 VpcId:
 Ref: TestVPC

YAML 249

AWS Secrets Manager User Guide

 TestSubnet02:
 Type: AWS::EC2::Subnet
 Properties:
 CidrBlock: 10.0.128.0/19
 AvailabilityZone:
 Fn::Select:
 - '1'
 - Fn::GetAZs:
 Ref: AWS::Region
 VpcId:
 Ref: TestVPC
 SecretsManagerVPCEndpoint:
 Type: AWS::EC2::VPCEndpoint
 Properties:
 SubnetIds:
 - Ref: TestSubnet01
 - Ref: TestSubnet02
 SecurityGroupIds:
 - Fn::GetAtt:
 - TestVPC
 - DefaultSecurityGroup
 VpcEndpointType: Interface
 ServiceName:
 Fn::Sub: com.amazonaws.${AWS::Region}.secretsmanager
 PrivateDnsEnabled: true
 VpcId:
 Ref: TestVPC
 MyDocDBClusterRotationSecret:
 Type: AWS::SecretsManager::Secret
 Properties:
 GenerateSecretString:
 SecretStringTemplate: '{\"username\": \"someadmin\",\"ssl\": true}'
 GenerateStringKey: password
 PasswordLength: 16
 ExcludeCharacters: "\"@/\\"
 Tags:
 - Key: AppName
 Value: MyApp
 MyDocDBCluster:
 Type: AWS::DocDB::DBCluster
 Properties:
 DBSubnetGroupName:
 Ref: MyDBSubnetGroup
 MasterUsername:

YAML 250

AWS Secrets Manager User Guide

 Fn::Sub: "{{resolve:secretsmanager:${MyDocDBClusterRotationSecret}::username}}"
 MasterUserPassword:
 Fn::Sub: "{{resolve:secretsmanager:${MyDocDBClusterRotationSecret}::password}}"
 VpcSecurityGroupIds:
 - Fn::GetAtt:
 - TestVPC
 - DefaultSecurityGroup
 DocDBInstance:
 Type: AWS::DocDB::DBInstance
 Properties:
 DBClusterIdentifier:
 Ref: MyDocDBCluster
 DBInstanceClass: db.r5.large
 MyDBSubnetGroup:
 Type: AWS::DocDB::DBSubnetGroup
 Properties:
 DBSubnetGroupDescription: ''
 SubnetIds:
 - Ref: TestSubnet01
 - Ref: TestSubnet02
 SecretDocDBClusterAttachment:
 Type: AWS::SecretsManager::SecretTargetAttachment
 Properties:
 SecretId:
 Ref: MyDocDBClusterRotationSecret
 TargetId:
 Ref: MyDocDBCluster
 TargetType: AWS::DocDB::DBCluster
 MySecretRotationSchedule:
 Type: AWS::SecretsManager::RotationSchedule
 DependsOn: SecretDocDBClusterAttachment
 Properties:
 SecretId:
 Ref: MyDocDBClusterRotationSecret
 HostedRotationLambda:
 RotationType: MongoDBSingleUser
 RotationLambdaName: MongoDBSingleUser
 VpcSecurityGroupIds:
 Fn::GetAtt:
 - TestVPC
 - DefaultSecurityGroup
 VpcSubnetIds:
 Fn::Join:
 - ","

YAML 251

AWS Secrets Manager User Guide

 - - Ref: TestSubnet01
 - Ref: TestSubnet02
 RotationRules:
 Duration: 2h
 ScheduleExpression: 'cron(0 8 1 * ? *)'

How Secrets Manager uses AWS CloudFormation

When you use the console to turn on rotation, Secrets Manager uses AWS CloudFormation to
create resources for rotation. If you create a new rotation function during that process, AWS
CloudFormation creates an AWS::Serverless::Function based on the appropriate Rotation
function templates. Then AWS CloudFormation sets the RotationSchedule, which sets the
rotation function and rotation rules for the secret. You can view the AWS CloudFormation stack by
choosing View stack in the banner after you turn on automatic rotation.

For information about turning on automatic rotation, see Rotate secrets.

How Secrets Manager uses AWS CloudFormation 252

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-secretsmanager-rotationschedule.html

AWS Secrets Manager User Guide

Create AWS Secrets Manager secrets in AWS Cloud
Development Kit (AWS CDK)

To create, manage, and retrieve secrets in a CDK app, you can use the AWS Secrets Manager
Construct Library, which contains ResourcePolicy, RotationSchedule, Secret,
SecretRotation, and SecretTargetAttachment constructs.

For examples, see:

• Create a secret

• Import a secret

• Retrieve a secret

• Grant permission to use the secret

• Rotate a secret

• Rotate a database secret

• Replicate a secret to other Regions

For more information about the CDK, see the AWS Cloud Development Kit (AWS CDK) v2 Developer
Guide.

253

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.ResourcePolicy.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.RotationSchedule.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.Secret.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.SecretRotation.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager.SecretTargetAttachment.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#creating-json-secrets
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#importing-secrets
https://docs.aws.amazon.com/cdk/v2/guide/get_secrets_manager_value.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#grant-permission-to-use-the-secret-to-a-role
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#rotating-a-secret
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#rotating-database-credentials
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_secretsmanager-readme.html#replicating-secrets
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html

AWS Secrets Manager User Guide

Monitor AWS Secrets Manager secrets

AWS provides monitoring tools to watch Secrets Manager secrets, report when something is wrong,
and take automatic actions when appropriate. You can use the logs if you need to investigate
any unexpected usage or change, and then you can roll back unwanted changes. You can also set
automated checks for inappropriate usage of secrets and any attempts to delete secrets.

Topics

• Log AWS Secrets Manager events with AWS CloudTrail

• Match AWS Secrets Manager events with Amazon EventBridge

• Monitor AWS Secrets Manager with Amazon CloudWatch

• Monitor AWS Secrets Manager secrets scheduled for deletion by using Amazon CloudWatch

Log AWS Secrets Manager events with AWS CloudTrail

AWS CloudTrail records all API calls for Secrets Manager as events, including calls from the Secrets
Manager console, as well as several other events for rotation and secret version deletion. For a list
of the log entries Secrets Manager records, see CloudTrail entries.

You can use the CloudTrail console to view the last 90 days of recorded events. For an ongoing
record of events in your AWS account, including events for Secrets Manager, create a trail so that
CloudTrail delivers log files to an Amazon S3 bucket. See Creating a trail for your AWS account. You
can also configure CloudTrail to receive CloudTrail log files from multiple AWS accounts and AWS
Regions.

You can configure other AWS services to further analyze and act upon the data collected in
CloudTrail logs. See AWS service integrations with CloudTrail logs. You can also get notifications
when CloudTrail publishes new log files to your Amazon S3 bucket. See Configuring Amazon SNS
notifications for CloudTrail.

To retrieve Secrets Manager events from CloudTrail logs (console)

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. Ensure that the console points to the region where your events occurred. The console shows
only those events that occurred in the selected region. Choose the region from the drop-down
list in the upper-right corner of the console.

Log with AWS CloudTrail 254

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html
https://console.aws.amazon.com/cloudtrail/

AWS Secrets Manager User Guide

3. In the left-hand navigation pane, choose Event history.

4. Choose Filter criteria and/or a Time range to help you find the event that you're looking for.
For example, to see all Secrets Manager events, for Select attribute, choose Event source.
Then, for Enter event source, choose secretsmanager.amazonaws.com.

5. To see additional details, choose the expand arrow next to event. To see all of the information
available, choose View event.

AWS CLI

Example Retrieve Secrets Manager events from CloudTrail logs

The following lookup-events example looks up Secrets Manager events.

aws cloudtrail lookup-events \
 --region us-east-1 \
 --lookup-attributes
 AttributeKey=EventSource,AttributeValue=secretsmanager.amazonaws.com

AWS CloudTrail entries for Secrets Manager

AWS Secrets Manager writes entries to your AWS CloudTrail log for all Secrets Manager operations
and for other events related to rotation and deletion. For information about taking action on these
events, see Match Secrets Manager events with EventBridge.

Log entry types

• Log entries for Secrets Manager operations

• Log entries for deletion

• Log entries for replication

• Log entries for rotation

Log entries for Secrets Manager operations

Events that are generated by calls to Secrets Manager operations have "detail-type": ["AWS
API Call via CloudTrail"].

AWS CLI 255

https://docs.aws.amazon.com/cli/latest/reference/cloudtrail/lookup-events.html

AWS Secrets Manager User Guide

Note

Before February 2024, some Secrets Manager operations reported events that contained
"aRN" instead of "arn" for the secret ARN. For more information, see AWS re:Post.

The following are CloudTrail entries generated when you or a service call Secrets Manager
operations through the API, SDK, or CLI.

BatchGetSecretValue

Generated by the BatchGetSecretValue operation. For information about retrieving secrets, see
Retrieve secrets.

CancelRotateSecret

Generated by the CancelRotateSecret operation. For information about rotation, see Rotate
secrets.

CreateSecret

Generated by the CreateSecret operation. For information about creating secrets, see Create
and manage secrets.

DeleteResourcePolicy

Generated by the DeleteResourcePolicy operation. For information about permissions, see
Authentication and access control.

DeleteSecret

Generated by the DeleteSecret operation. For information about deleting secrets, see the
section called “Delete a secret”.

DescribeSecret

Generated by the DescribeSecret operation.

GetRandomPassword

Generated by the GetRandomPassword operation.

GetResourcePolicy

Generated by the GetResourcePolicy operation. For information about permissions, see
Authentication and access control.

CloudTrail entries 256

https://repost.aws/knowledge-center/secrets-manager-arn
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CancelRotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DeleteSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetRandomPassword.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetResourcePolicy.html

AWS Secrets Manager User Guide

GetSecretValue

Generated by the GetSecretValue and BatchGetSecretValue operations. For information about
retrieving secrets, see Retrieve secrets.

ListSecrets

Generated by the ListSecrets operation. For information about listing secrets, see the section
called “Find secrets”.

ListSecretVersionIds

Generated by the ListSecretVersionIds operation.

PutResourcePolicy

Generated by the PutResourcePolicy operation. For information about permissions, see
Authentication and access control.

PutSecretValue

Generated by the PutSecretValue operation. For information about updating a secret, see the
section called “Modify a secret”.

RemoveRegionsFromReplication

Generated by the RemoveRegionsFromReplication operation. For information about replicating
a secret, see the section called “Replicate a secret to other Regions”.

ReplicateSecretToRegions

Generated by the ReplicateSecretToRegions operation. For information about replicating a
secret, see the section called “Replicate a secret to other Regions”.

RestoreSecret

Generated by the RestoreSecret operation. For information about restoring a deleted secret, see
the section called “Restore a secret”.

RotateSecret

Generated by the RotateSecret operation. For information about rotation, see Rotate secrets.

StopReplicationToReplica

Generated by the StopReplicationToReplica operation. For information about replicating a
secret, see the section called “Replicate a secret to other Regions”.

CloudTrail entries 257

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecretVersionIds.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutResourcePolicy.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RemoveRegionsFromReplication.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RestoreSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_StopReplicationToReplica.html

AWS Secrets Manager User Guide

TagResource

Generated by the TagResource operation. For information about tagging a secret, see the
section called “Tag secrets”.

UntagResource

Generated by the UntagResource operation. For information about untagging a secret, see the
section called “Tag secrets”.

UpdateSecret

Generated by the UpdateSecret operation. For information about updating a secret, see the
section called “Modify a secret”.

UpdateSecretVersionStage

Generated by the UpdateSecretVersionStage operation. For information about version stages,
see the section called “Version”.

ValidateResourcePolicy

Generated by the ValidateResourcePolicy operation. For information about permissions, see
Authentication and access control.

Log entries for deletion

In addition to events for Secrets Manager operations, Secrets Manager generates the following
events related to deletion. These events have "detail-type": ["AWS Service Event via
CloudTrail"].

CancelSecretVersionDelete

Generated by the Secrets Manager service. If you call DeleteSecret on a secret that has
versions, and then later call RestoreSecret, Secrets Manager logs this event for each secret
version that was restored. For information about restoring a deleted secret, see the section
called “Restore a secret”.

EndSecretVersionDelete

Generated by the Secrets Manager service when a secret version is deleted. For more
information, see the section called “Delete a secret”.

CloudTrail entries 258

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecretVersionStage.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ValidateResourcePolicy.html

AWS Secrets Manager User Guide

StartSecretVersionDelete

Generated by the Secrets Manager service when Secrets Manager starts deletion for a secret
version. For information about deleting secrets, see the section called “Delete a secret”.

SecretVersionDeletion

Generated by the Secrets Manager service when Secrets Manager deletes a deprecated secret
version. For more information, see Secret versions.

Log entries for replication

In addition to events for Secrets Manager operations, Secrets Manager generates the following
events related to replication. These events have "detail-type": ["AWS Service Event via
CloudTrail"].

ReplicationFailed

Generated by the Secrets Manager service when replication fails. For information about
replicating a secret, see the section called “Replicate a secret to other Regions”.

ReplicationStarted

Generated by the Secrets Manager service when Secrets Manager starts replicating a secret.
For information about replicating a secret, see the section called “Replicate a secret to other
Regions”.

ReplicationSucceeded

Generated by the Secrets Manager service when a secret is successfully replicated. For
information about replicating a secret, see the section called “Replicate a secret to other
Regions”.

Log entries for rotation

In addition to events for Secrets Manager operations, Secrets Manager generates the following
events related to rotation. These events have "detail-type": ["AWS Service Event via
CloudTrail"].

CloudTrail entries 259

AWS Secrets Manager User Guide

RotationStarted

Generated by the Secrets Manager service when Secrets Manager starts rotating a secret. For
information about rotation, see Rotate secrets.

RotationAbandoned

Generated by the Secrets Manager service when Secrets Manager abandons a rotation attempt
and removes the AWSPENDING label from an existing version of a secret. Secrets Manager
abandons rotation when you create a new version of a secret during rotation. For information
about rotation, see Rotate secrets.

RotationFailed

Generated by the Secrets Manager service when rotation fails. For information about rotation,
see the section called “Troubleshoot rotation”.

RotationSucceeded

Generated by the Secrets Manager service when a secret is successfully rotated. For information
about rotation, see Rotate secrets.

TestRotationStarted

Generated by the Secrets Manager service when Secrets Manager starts testing rotation for a
secret that is not scheduled for immediate rotation. For information about rotation, see Rotate
secrets.

TestRotationSucceeded

Generated by the Secrets Manager service when Secrets Manager successfully tests rotation
for a secret that is not scheduled for immediate rotation. For information about rotation, see
Rotate secrets.

TestRotationFailed

Generated by the Secrets Manager service when Secrets Manager tests rotation for a secret that
is not scheduled for immediate rotation and rotation failed. For information about rotation, see
the section called “Troubleshoot rotation”.

Match AWS Secrets Manager events with Amazon EventBridge

In Amazon EventBridge, you can match Secrets Manager events from CloudTrail log entries.
You can configure EventBridge rules that look for these events and then send new generated

Match Secrets Manager events with EventBridge 260

AWS Secrets Manager User Guide

events to a target to take action. For a list of CloudTrail entries that Secrets Manager logs, see
CloudTrail entries. For instructions to set up EventBridge, see Getting started with EventBridge in
the EventBridge User Guide.

Match all changes to a specified secret

The following example shows an EventBridge event pattern that matches log entries for changes
to a secret.

{
 "source": ["aws.secretsmanager"],
 "detail-type": ["AWS API Call via CloudTrail"],
 "detail": {
 "eventSource": ["secretsmanager.amazonaws.com"],
 "eventName": ["DeleteResourcePolicy", "PutResourcePolicy", "RotateSecret",
 "TagResource", "UntagResource", "UpdateSecret"],
 "responseElements": {
 "arn": ["arn:aws:secretsmanager:us-west-2:012345678901:secret:mySecret-
a1b2c3"]
 }
 }
}

Match events when a secret value rotates

The following example shows an EventBridge event pattern that matches CloudTrail log entries
for secret value changes that occur from manual updates or automatic rotation. Because some of
these events are from Secrets Manager operations and some are generated by the Secrets Manager
service, you must include the detail-type for both.

{
 "source": ["aws.secretsmanager"],
 "$or": [
 { "detail-type": ["AWS API Call via CloudTrail"] },
 { "detail-type": ["AWS Service Event via CloudTrail"] }
],
 "detail": {
 "eventSource": ["secretsmanager.amazonaws.com"],
 "eventName": ["PutSecretValue", "UpdateSecret", "RotationSucceeded"]
 }
}

Match all changes to a specified secret 261

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-get-started.html

AWS Secrets Manager User Guide

Monitor AWS Secrets Manager with Amazon CloudWatch

You can monitor AWS Secrets Manager using Amazon CloudWatch, which collects raw data and
processes it into readable, near real-time metrics. These statistics are kept for 15 months, so that
you can access historical information and gain a better perspective on how your web application
or service is performing. You can also set alarms that watch for certain thresholds, and send
notifications or take actions when those thresholds are met. For more information, see the Amazon
CloudWatch User Guide.

For Secrets Manager, you can use CloudWatch to alert you when your request rate for APIs or the
number of secrets in your account reaches a specific threshold. You can also use CloudWatch to
monitor estimated Secrets Manager charges. For more information, see Creating a billing alarm to
monitor your estimated AWS charges.

Topics

• Secrets Manager metrics and dimensions

• Create alarms to monitor Secrets Manager metrics

• Amazon CloudWatch Synthetics canaries

Secrets Manager metrics and dimensions

The AWS/SecretsManager namespace includes the following metrics.

Metric Description

ResourceCount The number of secrets in your account, including secrets that are
marked for deletion. The metric is published hourly.

Units: Count

Dimensions for the Secrets Manager metrics.

Monitor with CloudWatch 262

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/monitor_estimated_charges_with_cloudwatch.html

AWS Secrets Manager User Guide

Dimension Description

Service The name of the AWS service containing the resource. For
Secrets Manager, the value for this dimension is Secrets
Manager.

Type The type of entity that is being reported. For Secrets Manager,
the value for this dimension is Resource.

Resource The type of resource that is running. For Secrets Manager, the
value for this dimension is SecretCount .

Class None.

Secrets Manager API requests that you can monitor using CloudWatch metrics include
GetSecretValue, DescribeSecret, ListSecrets, and others. To find metrics, in the
CloudWatch console, choose All metrics, and then in the search box, enter your search term, for
example secrets.

Create alarms to monitor Secrets Manager metrics

You can create a CloudWatch alarm that sends an Amazon SNS message when the value of the
metric changes and causes the alarm to change state. An alarm watches a metric over a time period
you specify, and performs actions based on the value of the metric relative to a given threshold
over a number of time periods. Alarms invoke actions for sustained state changes only. CloudWatch
alarms do not invoke actions simply because they are in a particular state; the state must have
changed and been maintained for a specified number of periods.

For more information, see Using Amazon CloudWatch alarms and Create a CloudWatch alarm
based on anomaly detection.

Amazon CloudWatch Synthetics canaries

Amazon CloudWatch Synthetics canaries are configurable scripts that run on a schedule to monitor
your endpoints and APIs. Canaries follow the same routes and perform the same actions as a
customer, which makes it possible for you to continually verify your customer experience even
when you don't have any customer traffic on your applications.

Create alarms to monitor Secrets Manager metrics 263

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_Anomaly_Detection_Alarm.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_Anomaly_Detection_Alarm.html

AWS Secrets Manager User Guide

For an example of how to integrate Secrets Manager, see Integrating your canary with other AWS
services.

Monitor AWS Secrets Manager secrets scheduled for deletion by
using Amazon CloudWatch

You can use a combination of AWS CloudTrail, Amazon CloudWatch Logs, and Amazon Simple
Notification Service (Amazon SNS) to create an alarm that notifies you of any attempts to access
a secret pending deletion. If you receive a notification from an alarm, you might want to cancel
deletion of the secret to give yourself more time to determine if you really want to delete it.
Your investigation might result in the secret being restored because you still need the secret.
Alternatively, you might need to update the user with details of the new secret to use.

The following procedures explain how to receive a notification when a request for the
GetSecretValue operation that results in a specific error message written to your CloudTrail
log files. Other API operations can be performed on the secret without triggering the alarm. This
CloudWatch alarm detects usage that might indicate a person or application using outdated
credentials.

Before you begin these procedures, you must turn on CloudTrail in the AWS Region and account
where you intend to monitor AWS Secrets ManagerAPI requests. For instructions, go to Creating a
trail for the first time in the AWS CloudTrail User Guide.

Step 1: Configure CloudTrail log file delivery to CloudWatch logs

You must configure delivery of your CloudTrail log files to CloudWatch Logs. You do this so
CloudWatch Logs can monitor them for Secrets Manager API requests to retrieve a secret pending
deletion.

To configure CloudTrail log file delivery to CloudWatch Logs

1. Open the CloudTrail console at https://console.aws.amazon.com/cloudtrail/.

2. On the top navigation bar, choose the AWS Region to monitor secrets.

3. In the left navigation pane, choose Trails, and then choose the name of the trail to configure
for CloudWatch.

4. On the Trails Configuration page, scroll down to the CloudWatch Logs section, and then
choose the edit icon

().

Monitor secrets scheduled for deletion 264

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries_WritingCanary_Nodejs.html#CloudWatch_Synthetics_Canaries_AWS_integrate
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries_WritingCanary_Nodejs.html#CloudWatch_Synthetics_Canaries_AWS_integrate
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-a-trail-using-the-console-first-time.html
https://console.aws.amazon.com/cloudtrail/

AWS Secrets Manager User Guide

5. For New or existing log group, type a name for the log group, such as CloudTrail/
MyCloudWatchLogGroup.

6. For IAM role, you can use the default role named CloudTrail_CloudWatchLogs_Role. This role
has a default role policy with the required permissions to deliver CloudTrail events to the log
group.

7. Choose Continue to save your configuration.

8. On the AWS CloudTrail will deliver CloudTrail events associated with API activity in your
account to your CloudWatch Logs log group page, choose Allow.

Step 2: Create the CloudWatch alarm

To receive a notification when a Secrets Manager GetSecretValue API operation requests to
access a secret pending deletion, you must create a CloudWatch alarm and configure notification.

To create a CloudWatch alarm

1. Sign in to the CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

2. On the top navigation bar, choose the AWS Region where you want to monitor secrets.

3. In the left navigation pane, choose Logs.

4. In the list of Log Groups, select the check box next to the log group you created in the
previous procedure, such as CloudTrail/MyCloudWatchLogGroup. Then choose Create Metric
Filter.

5. For Filter Pattern, type or paste the following:

{ $.eventName = "GetSecretValue" && $.errorMessage = "*secret because it was marked
 for deletion*" }

Choose Assign Metric.

6. On the Create Metric Filter and Assign a Metric page, do the following:

a. For Metric Namespace, type CloudTrailLogMetrics.

b. For Metric Name, type AttemptsToAccessDeletedSecrets.

c. Choose Show advanced metric settings, and then if necessary for Metric Value, type 1.

d. Choose Create Filter.

7. In the filter box, choose Create Alarm.

Step 2: Create the CloudWatch alarm 265

https://console.aws.amazon.com/cloudwatch/

AWS Secrets Manager User Guide

8. In the Create Alarm window, do the following:

a. For Name, type AttemptsToAccessDeletedSecretsAlarm.

b. Whenever:, for is:, choose >=, and then type 1.

c. Next to Send notification to:, do one of the following:

• To create and use a new Amazon SNS topic, choose New list, and then type a new topic
name. For Email list:, type at least one email address. You can type more than one
email address by separating them with commas.

• To use an existing Amazon SNS topic, choose the name of the topic to use. If a list
doesn't exist, choose Select list.

d. Choose Create Alarm.

Step 3: Test the CloudWatch alarm

To test your alarm, create a secret and then schedule it for deletion. Then, try to retrieve the secret
value. You shortly receive an email at the address you configured in the alarm. It alerts you to the
use of a secret scheduled for deletion.

Step 3: Test the CloudWatch alarm 266

AWS Secrets Manager User Guide

Compliance validation for AWS Secrets Manager

Your compliance responsibility when using Secrets Manager is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – This whitepaper describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Config assesses how well your resource configurations comply with internal practices,
industry guidelines, and regulations. For more information, see the section called “Audit secrets
for compliance”.

• AWS Security Hub provides a comprehensive view of your security state within AWS that helps
you check your compliance with security industry standards and best practices. For information
about using Security Hub to evaluate Secrets Manager resources, see AWS Secrets Manager
controls in the AWS Security Hub User Guide.

• IAM Access Analyzer analyzes policies, including condition statements in a policy, that allow
an external entity to access a secret. For more information, see Previewing access with Access
Analyzer.

• AWS Systems Manager provides predefined runbooks for Secrets Manager. For more information,
see Systems Manager Automation runbook reference for Secrets Manager.

AWS Secrets Manager has undergone auditing for the following standards and can be part of your
solution when you need to obtain compliance certification.

AWS has expanded its Health Insurance Portability and Accountability Act (HIPAA)
compliance program to include AWS Secrets Manager as a HIPAA-eligible service.
If you have an executed Business Associate Agreement (BAA) with AWS, you can
use Secrets Manager to help build your HIPAA-compliant applications. AWS offers a
HIPAA-focused whitepaper for customers who are interested in learning more about

267

https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/secretsmanager-controls.html
https://docs.aws.amazon.com/securityhub/latest/userguide/secretsmanager-controls.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-preview-access-apis.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-preview-access-apis.html
https://docs.aws.amazon.com/systems-manager-automation-runbooks/latest/userguide/automation-ref-asm.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/architecting-hipaa-security-and-compliance-on-aws.html

AWS Secrets Manager User Guide

how they can leverage AWS for the processing and storage of health information. For
more information, see HIPAA Compliance.

AWS Secrets Manager has an Attestation of Compliance for Payment Card Industry
(PCI) Data Security Standard (DSS) version 3.2 at Service Provider Level 1. Customers
who use AWS products and services to store, process, or transmit cardholder data can
use AWS Secrets Manager as they manage their own PCI DSS compliance certification.
For more information about PCI DSS, including how to request a copy of the AWS PCI
Compliance Package, see PCI DSS Level 1.

AWS Secrets Manager has successfully completed compliance certification for ISO/IEC
27001, ISO/IEC 27017, ISO/IEC 27018, and ISO 9001. For more information, see ISO
27001, ISO 27017, ISO 27018, ISO 9001.

System and Organization Control (SOC) reports are independent third-party
examination reports that demonstrate how Secrets Manager achieves key complianc
e controls and objectives. The purpose of these reports is to help you and your
auditors understand the AWS controls that are established to support operations and
compliance. For more information, see SOC Compliance.

The Federal Risk and Authorization Management Program (FedRAMP) is a governmen
t-wide program that provides a standardized approach to security assessment,
authorization, and continuous monitoring for cloud products and services. The
FedRAMP Program also provides provisional authorizations for services and regions
for East/West and GovCloud to consume government or regulated data. For more
information, see FedRAMP Compliance.

The Department of Defense (DoD) Cloud Computing Security Requirements Guide
(SRG) provides a standardized assessment and authorization process for cloud service
providers (CSPs) to gain a DoD provisional authorization, so that they can serve DoD
customers. For more information, see DoD SRG Resources

The Information Security Registered Assessors Program (IRAP) enables Australia
n government customers to validate that appropriate controls are in place and
determine the appropriate responsibility model for addressing the requirements
of the Australian government Information Security Manual (ISM) produced by the
Australian Cyber Security Centre (ACSC). For more information, see IRAP Resources

268

https://aws.amazon.com/compliance/hipaa-compliance/
https://aws.amazon.com/compliance/pci-dss-level-1-faqs/
https://aws.amazon.com/compliance/iso-27001-faqs/
https://aws.amazon.com/compliance/iso-27001-faqs/
https://aws.amazon.com/compliance/iso-27017-faqs/
https://aws.amazon.com/compliance/iso-27018-faqs/
https://aws.amazon.com/compliance/iso-9001-faqs/
https://aws.amazon.com/compliance/soc-faqs/
https://aws.amazon.com/compliance/fedramp/
https://aws.amazon.com/compliance/dod/
https://aws.amazon.com/compliance/irap/

AWS Secrets Manager User Guide

Amazon Web Services (AWS) achieved the Outsourced Service Provider’s Audit Report
(OSPAR) attestation. AWS alignment with the Association of Banks in Singapore (ABS)
Guidelines on Control Objectives and Procedures for Outsourced Service Providers
(ABS Guidelines) demonstrates to customers AWS commitment to meeting the high
expectations for cloud service providers set by the financial services industry in
Singapore. For more information, see OSPAR Resources

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Audit AWS Secrets Manager secrets for compliance by using
AWS Config

You can use AWS Config to evaluate your secrets and assess how well they comply with your
internal practices, industry guidelines, and regulations. You define your internal security and
compliance requirements for secrets using AWS Config rules. Then AWS Config can identify
secrets that don't conform to your rules. You can also track changes to secret metadata, rotation
configuration, the KMS key used for secret encryption, the Lambda rotation function, and tags
associated with a secret.

You can receive notifications from Amazon SNS about your secret configurations. For example, you
can receive Amazon SNS notifications for a list of secrets not configured for rotation which enables
you to drive security best practices for rotating secrets.

If you have secrets in multiple AWS accounts and AWS Regions in your organization, you can
aggregate that configuration and compliance data.

To add a new rule for your secrets

• Follow the instructions on Working with AWS Config managed rules, and choose one of the
following rules:

• secretsmanager-rotation-enabled-check — Checks whether rotation is configured
for secrets stored in Secrets Manager.

• secretsmanager-scheduled-rotation-success-check— Checks whether the last
successful rotation is within the configured rotation frequency. The minimum frequency
for the check is daily.

Audit secrets for compliance 269

https://aws.amazon.com/compliance/OSPAR/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://docs.aws.amazon.com/config/latest/developerguide/managing-aws-managed-rules.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-rotation-enabled-check.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-scheduled-rotation-success-check.html

AWS Secrets Manager User Guide

• secretsmanager-secret-periodic-rotation— Checks whether secrets were
rotated within the specified number of days.

• secretsmanager-secret-unused— Checks whether secrets were accessed within the
specified number of days.

• secretsmanager-using-cmk — Checks whether secrets are encrypted using the AWS
managed key aws/secretsmanager or a customer managed key you created in AWS
KMS.

After you save the rule, AWS Config evaluates your secrets every time the metadata of a secret
changes. You can configure AWS Config to notify you of changes. For more information, see
Notifications that AWS Config sends to an Amazon SNS topic.

Aggregate secrets from your AWS accounts and AWS Regions

You can configure AWS Config Multi-Account Multi-Region Data Aggregator to review
configurations of your secrets across all accounts and regions in your organization, and then review
your secret configurations and compare to secrets management best practices.

You must enable AWS Config and the AWS Config managed rules specific to secrets across
all accounts and regions before you create an aggregator. For more information, see Use
CloudFormation StackSets to provision resources across multiple AWS accounts and Regions.

For more information about AWS Config Aggregator, see Multi-Account Multi-Region Data
Aggregation and Setting Up an Aggregator Using the Console in the AWS Config Developer Guide.

Aggregate secrets from your AWS accounts and AWS Regions 270

https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-secret-periodic-rotation.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-secret-unused.html
https://docs.aws.amazon.com/config/latest/developerguide/secretsmanager-using-cmk.html
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://docs.aws.amazon.com/config/latest/developerguide/notifications-for-AWS-Config.html
https://aws.amazon.com/blogs/aws/use-cloudformation-stacksets-to-provision-resources-across-multiple-aws-accounts-and-regions
https://aws.amazon.com/blogs/aws/use-cloudformation-stacksets-to-provision-resources-across-multiple-aws-accounts-and-regions
https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html
https://docs.aws.amazon.com/config/latest/developerguide/aggregate-data.html
https://docs.aws.amazon.com/config/latest/developerguide/setup-aggregator-console.html

AWS Secrets Manager User Guide

Security in AWS Secrets Manager

Security at AWS is the highest priority. As an AWS customer, you benefit from a data center and
network architecture built to meet the requirements of the most security-sensitive organizations.

You and AWS share the responsibility for security. The shared responsibility model describes this as
security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services you can use securely. Third-party
auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance
Programs. To learn about the compliance programs that apply to AWS Secrets Manager, see AWS
Services in Scope by Compliance Program.

• Security in the cloud – Your AWS service determines your responsibility. You are also responsible
for other factors including the sensitivity of your data, your company’s requirements, and
applicable laws and regulations.

For more resources, see Security Pillar - AWS Well-Architected Framework.

Topics

• Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets

• Data protection in AWS Secrets Manager

• Secret encryption and decryption in AWS Secrets Manager

• Infrastructure security in AWS Secrets Manager

• Resiliency in AWS Secrets Manager

• Post-quantum TLS

Mitigate the risks of using the AWS CLI to store your AWS
Secrets Manager secrets

When you use the AWS Command Line Interface (AWS CLI) to invoke AWS operations, you enter
those commands in a command shell. For example, you can use the Windows command prompt or
Windows PowerShell, or the Bash or Z shell, among others. Many of these command shells include
functionality designed to increase productivity. But this functionality can be used to compromise

Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 271

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html

AWS Secrets Manager User Guide

your secrets. For example, in most shells, you can use the up arrow key to see the last entered
command. The command history feature can be exploited by anyone who accesses your unsecured
session. Also, other utilities that work in the background might have access to your command
parameters, with the intended goal of helping you perform your tasks more efficiently. To mitigate
such risks, ensure you take the following steps:

• Always lock your computer when you walk away from your console.

• Uninstall or disable console utilities you don't need or no longer use.

• Ensure the shell or the remote access program, if you are using one or the other, don't log typed
commands .

• Use techniques to pass parameters not captured by the shell command history. The following
example shows how you can type the secret text into a text file, and then pass the file to the
AWS Secrets Manager command and immediately destroy the file. This means the typical shell
history doesn't capture the secret text.

The following example shows typical Linux commands but your shell might require slightly
different commands:

$ touch secret.txt
 # Creates an empty text file
$ chmod go-rx secret.txt
 # Restricts access to the file to only the user
$ cat > secret.txt
 # Redirects standard input (STDIN) to the text file
ThisIsMyTopSecretPassword^D
 # Everything the user types from this point up to the CTRL-D (^D) is saved in
 the file
$ aws secretsmanager create-secret --name TestSecret --secret-string file://
secret.txt # The Secrets Manager command takes the --secret-string parameter
 from the contents of the file
$ shred -u secret.txt
 # The file is destroyed so it can no longer be accessed.

After you run these commands, you should be able to use the up and down arrows to scroll
through the command history and see that the secret text isn't displayed on any line.

Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 272

AWS Secrets Manager User Guide

Important

By default, you can't perform an equivalent technique in Windows unless you first reduce
the size of the command history buffer to 1.

To configure the Windows Command Prompt to have only 1 command history buffer of 1
command

1. Open an Administrator command prompt (Run as administrator).

2. Choose the icon in the upper left , and then choose Properties.

3. On the Options tab, set Buffer Size and Number of Buffers both to 1, and then choose OK.

4. Whenever you have to type a command you don't want in the history, immediately follow it
with one other command, such as:

echo.

This ensures you flush the sensitive command.

For the Windows Command Prompt shell, you can download the SysInternals SDelete tool, and
then use commands similar to the following:

C:\> echo. 2> secret.txt
 # Creates an empty file
C:\> icacls secret.txt /remove "BUILTIN\Administrators" "NT AUTHORITY/SYSTEM" /
inheritance:r # Restricts access to the file to only the owner
C:\> copy con secret.txt /y
 # Redirects the keyboard to text file, suppressing prompt to overwrite
THIS IS MY TOP SECRET PASSWORD^Z
 # Everything the user types from this point up to the CTRL-Z (^Z) is saved in the
 file
C:\> aws secretsmanager create-secret --name TestSecret --secret-string file://
secret.txt # The Secrets Manager command takes the --secret-string parameter from
 the contents of the file
C:\> sdelete secret.txt
 # The file is destroyed so it can no longer be accessed.

Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets 273

https://docs.microsoft.com/en-us/sysinternals/downloads/sdelete

AWS Secrets Manager User Guide

Data protection in AWS Secrets Manager

The AWS shared responsibility model applies to data protection in AWS Secrets Manager. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is
given only the permissions necessary to fulfill their job duties. We also recommend that you secure
your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. Secrets Manager supports TLS 1.2 and 1.3 in
all Regions. Secrets Manager also supports a hybrid post-quantum key exchange option for TLS
(PQTLS) network encryption protocol.

• Sign your programmatic requests to Secrets Manager by using an access key ID and a secret
access key associated with an IAM principal. Or you can use AWS Security Token Service (AWS
STS) to generate temporary security credentials to sign requests.

• Set up API and user activity logging with AWS CloudTrail. See the section called “Log with AWS
CloudTrail ”.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. See the section called “Secrets Manager
endpoints”.

• If you use the AWS CLI to access Secrets Manager, the section called “Mitigate the risks of using
the AWS CLI to store your AWS Secrets Manager secrets”.

Encryption at rest

Secrets Manager uses encryption via AWS Key Management Service (AWS KMS) to protect the
confidentiality of data at rest. AWS KMS provides a key storage and encryption service used by
many AWS services. Every secret in Secrets Manager is encrypted with a unique data key. Each data
key is protected by a KMS key. You can choose to use default encryption with the Secrets Manager

Data protection in Secrets Manager 274

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#enable-mfa-for-privileged-users
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html

AWS Secrets Manager User Guide

AWS managed key for the account, or you can create your own customer managed key in AWS
KMS. Using a customer managed key gives you more granular authorization controls over your KMS
key activities. For more information, see the section called “Secret encryption and decryption”.

Encryption in transit

Secrets Manager provides secure and private endpoints for encrypting data in transit. The secure
and private endpoints allows AWS to protect the integrity of API requests to Secrets Manager. AWS
requires API calls be signed by the caller using X.509 certificates and/or a Secrets Manager Secret
Access Key. This requirement is stated in the Signature Version 4 Signing Process (Sigv4).

If you use the AWS Command Line Interface (AWS CLI) or any of the AWS SDKs to make calls to
AWS, you configure the access key to use. Then those tools automatically use the access key to sign
the requests for you. See the section called “Mitigate the risks of using the AWS CLI to store your
AWS Secrets Manager secrets”.

Inter-network traffic privacy

AWS offers options for maintaining privacy when routing traffic through known and private
network routes.

Traffic between service and on-premises clients and applications

You have two connectivity options between your private network and AWS Secrets Manager:

• An AWS Site-to-Site VPN connection. For more information, see What is AWS Site-to-Site
VPN?

• An AWS Direct Connect connection. For more information, see What is AWS Direct Connect?

Traffic between AWS resources in the same Region

If you want to secure traffic between Secrets Manager and API clients in AWS, set up an AWS
PrivateLink to privately access Secrets Manager API endpoints.

Encryption key management

When Secrets Manager needs to encrypt a new version of the protected secret data, Secrets
Manager sends a request to AWS KMS to generate a new data key from the KMS key. Secrets
Manager uses this data key for envelope encryption. Secrets Manager stores the encrypted data
key with the encrypted secret. When the secret needs to be decrypted, Secrets Manager asks AWS
KMS to decrypt the data key. Secrets Manager then uses the decrypted data key to decrypt the

Encryption in transit 275

https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/vpn/latest/s2svpn/VPC_VPN.html
https://docs.aws.amazon.com/directconnect/latest/UserGuide/Welcome.html
https://aws.amazon.com/privatelink/
https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping

AWS Secrets Manager User Guide

encrypted secret. Secrets Manager never stores the data key in unencrypted form and removes
the key from memory as soon as possible. For more information, see the section called “Secret
encryption and decryption”.

Secret encryption and decryption in AWS Secrets Manager

Secrets Manager uses envelope encryption with AWS KMS keys and data keys to protect each
secret value. Whenever the secret value in a secret changes, Secrets Manager requests a new data
key from AWS KMS to protect it. The data key is encrypted under a KMS key and stored in the
metadata of the secret. To decrypt the secret, Secrets Manager first decrypts the encrypted data
key using the KMS key in AWS KMS.

Secrets Manager does not use the KMS key to encrypt the secret value directly. Instead, it uses the
KMS key to generate and encrypt a 256-bit Advanced Encryption Standard (AES) symmetric data
key, and uses the data key to encrypt the secret value. Secrets Manager uses the plaintext data key
to encrypt the secret value outside of AWS KMS, and then removes it from memory. It stores the
encrypted copy of the data key in the metadata of the secret.

When you create a secret, you can choose any symmetric encryption customer managed key in
the AWS account and Region, or you can use the AWS managed key for Secrets Manager (aws/
secretsmanager). If you choose the AWS managed key aws/secretsmanager and it doesn't
already exist yet, Secrets Manager creates it and associates it with the secret. You can use the same
KMS key or different KMS keys for each secret in your account. You might want to use different
KMS keys to set custom permissions on the keys for a group of secrets, or if you want to audit
particular operations for those keys. Secrets Manager supports only symmetric encryption KMS
keys. If you use a KMS key in an external key store, cryptographic operations on the KMS key might
take longer and be less reliable and durable because the request has to travel outside of AWS.

For information about changing the encryption key for a secret, see the section called “Change the
encryption key for a secret”.

When you change the encryption key for a secret, it does not affect existing versions of the secret.
Only the new versions you create after the key change are encrypted under the new encryption
key. (The only exceptions are the AWSCURRENT, AWSPENDING, and AWSPREVIOUS versions, which
Secrets Manager re-encrypts to help ensure you are't locked out of the secret.)

To find the KMS key associated with a secret, view the secret in the console or call ListSecrets or
DescribeSecret. When the secret is associated with the AWS managed key for Secrets Manager
(aws/secretsmanager), these operations do not return a KMS key identifier.

Secret encryption and decryption 276

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#enveloping
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#data-keys
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/keystore-external.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ListSecrets.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_DescribeSecret.html

AWS Secrets Manager User Guide

Topics

• What is encrypted?

• Encryption and decryption processes

• Permissions for the KMS key

• How Secrets Manager uses your KMS key

• Key policy of the AWS managed key (aws/secretsmanager)

• Secrets Manager encryption context

• Monitor Secrets Manager interaction with AWS KMS

What is encrypted?

Secrets Manager encrypts the secret value, but it does not encrypt the following:

• Secret name and description

• Rotation settings

• ARN of the KMS key associated with the secret

• Any attached AWS tags

Encryption and decryption processes

To encrypt the secret value in a secret, Secrets Manager uses the following process.

1. Secrets Manager calls the AWS KMS GenerateDataKey operation with the ID of the KMS key for
the secret and a request for a 256-bit AES symmetric key. AWS KMS returns a plaintext data key
and a copy of that data key encrypted under the KMS key.

2. Secrets Manager uses the plaintext data key and the Advanced Encryption Standard (AES)
algorithm to encrypt the secret value outside of AWS KMS. It removes the plaintext key from
memory as soon as possible after using it.

3. Secrets Manager stores the encrypted data key in the metadata of the secret so it is available to
decrypt the secret value. However, none of the Secrets Manager APIs return the encrypted secret
or the encrypted data key.

To decrypt an encrypted secret value:

What is encrypted? 277

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html

AWS Secrets Manager User Guide

1. Secrets Manager calls the AWS KMS Decrypt operation and passes in the encrypted data key.

2. AWS KMS uses the KMS key for the secret to decrypt the data key. It returns the plaintext data
key.

3. Secrets Manager uses the plaintext data key to decrypt the secret value. Then it removes the
data key from memory as soon as possible.

Permissions for the KMS key

When Secrets Manager uses a KMS key in cryptographic operations, it acts on behalf of the user
who is accessing or updating the secret value. You can grant permissions in an IAM policy or a key
policy. The following Secrets Manager operations require AWS KMS permissions.

• CreateSecret

• GetSecretValue

• PutSecretValue

• UpdateSecret

• ReplicateSecretToRegions

To allow the KMS key to be used only for requests that originate in Secrets Manager,
in the permissions policy, you can use the kms:ViaService condition key with the
secretsmanager.<Region>.amazonaws.com value.

You can also use the keys or values in the encryption context as a condition for using the KMS key
for cryptographic operations. For example, you can use a string condition operator in an IAM or key
policy document, or use a grant constraint in a grant. KMS key grant propagation can take up to
five minutes. For more information, see CreateGrant.

How Secrets Manager uses your KMS key

Secrets Manager calls the following AWS KMS operations with your KMS key.

GenerateDataKey

Secrets Manager calls the AWS KMS GenerateDataKey operation in response to the following
Secrets Manager operations.

• CreateSecret – If the new secret includes a secret value, Secrets Manager requests a new data
key to encrypt it.

Permissions for the KMS key 278

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/kms/latest/developerguide/policy-conditions.html#conditions-kms-via-service
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html#asm-encryption-context
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html#Conditions_String
https://docs.aws.amazon.com/kms/latest/APIReference/API_GrantConstraints.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_CreateGrant.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_CreateSecret.html

AWS Secrets Manager User Guide

• PutSecretValue – Secrets Manager requests a new data key to encrypt the specified secret
value.

• ReplicateSecretToRegions – To encrypt the replicated secret, Secrets Manager requests a data
key for the KMS key in the replica Region.

• UpdateSecret – If you change the secret value or the KMS key, Secrets Manager requests a
new data key to encrypt the new secret value.

The RotateSecret operation does not call GenerateDataKey, because it does not change the
secret value. However, if RotateSecret invokes a Lambda rotation function that changes the
secret value, its call to the PutSecretValue operation triggers a GenerateDataKey request.

Decrypt

Secrets Manager calls the Decrypt operation in response to the following Secrets Manager
operations.

• GetSecretValue and BatchGetSecretValue – Secrets Manager decrypts the secret value before
returning it to the caller. To decrypt an encrypted secret value, Secrets Manager calls the
AWS KMS Decrypt operation to decrypt the encrypted data key in the secret. Then, it uses
the plaintext data key to decrypt the encrypted secret value. For batch commands, Secrets
Manager can reuse the decrypted key, so not all calls result in a Decrypt request.

• PutSecretValue and UpdateSecret – Most PutSecretValue and UpdateSecret requests
do not trigger a Decrypt operation. However, when a PutSecretValue or UpdateSecret
request attempts to change the secret value in an existing version of a secret, Secrets
Manager decrypts the existing secret value and compares it to the secret value in the request
to confirm that they are the same. This action ensures the that Secrets Manager operations
are idempotent. To decrypt an encrypted secret value, Secrets Manager calls the AWS KMS
Decrypt operation to decrypt the encrypted data key in the secret. Then, it uses the plaintext
data key to decrypt the encrypted secret value.

• ReplicateSecretToRegions – Secrets Manager first decrypts the secret value in the primary
Region before re-encrypting the secret value with the KMS key in the replica Region.

Encrypt

Secrets Manager calls the Encrypt operation in response to the following Secrets Manager
operations:

• UpdateSecret – If you change the KMS key, Secrets Manager re-encrypts the data key that
protects the AWSCURRENT, AWSPREVIOUS, and AWSPENDING secret versions with the new key.

How Secrets Manager uses your KMS key 279

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_RotateSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_GetSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_BatchGetSecretValue.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_PutSecretValue.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_UpdateSecret.html

AWS Secrets Manager User Guide

• ReplicateSecretToRegions – Secrets Manager re-encrypts the data key during replication using
the KMS key in the replica Region.

DescribeKey

Secrets Manager calls the DescribeKey operation to determine whether to list the KMS key
when you create or edit a secret in the Secrets Manager console.

Validating access to the KMS key

When you establish or change the KMS key that is associated with secret, Secrets Manager
calls the GenerateDataKey and Decrypt operations with the specified KMS key. These calls
confirm that the caller has permission to use the KMS key for these operation. Secrets Manager
discards the results of these operations; it does not use them in any cryptographic operation.

You can identify these validation calls because the value of the SecretVersionId key
encryption context in these requests is RequestToValidateKeyAccess.

Note

In the past, Secrets Manager validation calls did not include an encryption context. You
might find calls with no encryption context in older AWS CloudTrail logs.

Key policy of the AWS managed key (aws/secretsmanager)

The key policy for the AWS managed key for Secrets Manager (aws/secretsmanager) gives users
permission to use the KMS key for specified operations only when Secrets Manager makes the
request on the user's behalf. The key policy does not allow any user to use the KMS key directly.

This key policy, like the policies of all AWS managed keys, is established by the service. You cannot
change the key policy, but you can view it at any time. For details, see Viewing a key policy.

The policy statements in the key policy have the following effect:

• Allow users in the account to use the KMS key for cryptographic operations only when the
request comes from Secrets Manager on their behalf. The kms:ViaService condition key
enforces this restriction.

• Allows the AWS account to create IAM policies that allow users to view KMS key properties and
revoke grants.

Key policy of the AWS managed key (aws/secretsmanager) 280

https://docs.aws.amazon.com/secretsmanager/latest/apireference/API_ReplicateSecretToRegions.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_DescribeKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/services-secrets-manager.html#asm-encryption-context
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#master_keys
https://docs.aws.amazon.com/kms/latest/developerguide/key-policy-viewing.html

AWS Secrets Manager User Guide

• Although Secrets Manager does not use grants to gain access to the KMS key, the policy also
allows Secrets Manager to create grants for the KMS key on the user's behalf and allows the
account to revoke any grant that allows Secrets Manager to use the KMS key. These are standard
elements of policy document for an AWS managed key.

The following is a key policy for an example AWS managed key for Secrets Manager.

{
 "Id": "auto-secretsmanager-2",
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Allow access through AWS Secrets Manager for all principals in the
 account that are authorized to use AWS Secrets Manager",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "*"
]
 },
 "Action": [
 "kms:Encrypt",
 "kms:Decrypt",
 "kms:ReEncrypt*",
 "kms:CreateGrant",
 "kms:DescribeKey"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "111122223333",
 "kms:ViaService": "secretsmanager.us-west-2.amazonaws.com"
 }
 }
 },
 {
 "Sid": "Allow access through AWS Secrets Manager for all principals in the
 account that are authorized to use AWS Secrets Manager",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "*"

Key policy of the AWS managed key (aws/secretsmanager) 281

https://docs.aws.amazon.com/kms/latest/developerguide/grants.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_RevokeGrant.html

AWS Secrets Manager User Guide

]
 },
 "Action": "kms:GenerateDataKey*",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "kms:CallerAccount": "111122223333"
 },
 "StringLike": {
 "kms:ViaService": "secretsmanager.us-west-2.amazonaws.com"
 }
 }
 },
 {
 "Sid": "Allow direct access to key metadata to the account",
 "Effect": "Allow",
 "Principal": {
 "AWS": [
 "arn:aws:iam::111122223333:root"
]
 },
 "Action": [
 "kms:Describe*",
 "kms:Get*",
 "kms:List*",
 "kms:RevokeGrant"
],
 "Resource": "*"
 }
]
}

Secrets Manager encryption context

An encryption context is a set of key–value pairs that contain arbitrary nonsecret data. When you
include an encryption context in a request to encrypt data, AWS KMS cryptographically binds
the encryption context to the encrypted data. To decrypt the data, you must pass in the same
encryption context.

In its GenerateDataKey and Decrypt requests to AWS KMS, Secrets Manager uses an encryption
context with two name–value pairs that identify the secret and its version, as shown in the

Secrets Manager encryption context 282

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html

AWS Secrets Manager User Guide

following example. The names do not vary, but combined encryption context values will be
different for each secret value.

"encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-secret-
a1b2c3",
 "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
}

You can use the encryption context to identify these cryptographic operation in audit records and
logs, such as AWS CloudTrail and Amazon CloudWatch Logs, and as a condition for authorization in
policies and grants.

The Secrets Manager encryption context consists of two name-value pairs.

• SecretARN – The first name–value pair identifies the secret. The key is SecretARN. The value is
the Amazon Resource Name (ARN) of the secret.

"SecretARN": "ARN of an Secrets Manager secret"

For example, if the ARN of the secret is arn:aws:secretsmanager:us-
east-2:111122223333:secret:test-secret-a1b2c3, the encryption context would
include the following pair.

"SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-secret-
a1b2c3"

• SecretVersionId – The second name–value pair identifies the version of the secret. The key is
SecretVersionId. The value is the version ID.

"SecretVersionId": "<version-id>"

For example, if the version ID of the secret is EXAMPLE1-90ab-cdef-fedc-ba987SECRET1, the
encryption context would include the following pair.

"SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"

Secrets Manager encryption context 283

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html

AWS Secrets Manager User Guide

When you establish or change the KMS key for a secret, Secrets Manager sends GenerateDataKey
and Decrypt requests to AWS KMS to validate that the caller has permission to use the KMS key for
these operations. It discards the responses; it does not use them on the secret value.

In these validation requests, the value of the SecretARN is the actual ARN of the secret, but the
SecretVersionId value is RequestToValidateKeyAccess, as shown in the following example
encryption context. This special value helps you to identify validation requests in logs and audit
trails.

"encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-secret-
a1b2c3",
 "SecretVersionId": "RequestToValidateKeyAccess"
}

Note

In the past, Secrets Manager validation requests did not include an encryption context. You
might find calls with no encryption context in older AWS CloudTrail logs.

Monitor Secrets Manager interaction with AWS KMS

You can use AWS CloudTrail and Amazon CloudWatch Logs to track the requests that Secrets
Manager sends to AWS KMS on your behalf. For information about monitoring the use of secrets,
see Monitor secrets.

GenerateDataKey

When you create or change the secret value in a secret, Secrets Manager sends a
GenerateDataKey request to AWS KMS that specifies the KMS key for the secret.

The event that records the GenerateDataKey operation is similar to the following example
event. The request is invoked by secretsmanager.amazonaws.com. The parameters include
the Amazon Resource Name (ARN) of the KMS key for the secret, a key specifier that requires a
256-bit key, and the encryption context that identifies the secret and version.

{
 "eventVersion": "1.05",
 "userIdentity": {

Monitor Secrets Manager interaction with AWS KMS 284

https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_GenerateDataKey.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS Secrets Manager User Guide

 "type": "IAMUser",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-05-31T23:23:41Z"
 }
 },
 "invokedBy": "secretsmanager.amazonaws.com"
 },
 "eventTime": "2018-05-31T23:23:41Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "GenerateDataKey",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "secretsmanager.amazonaws.com",
 "userAgent": "secretsmanager.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "keySpec": "AES_256",
 "encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-
secret-a1b2c3",
 "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
 }
 },
 "responseElements": null,
 "requestID": "a7d4dd6f-6529-11e8-9881-67744a270888",
 "eventID": "af7476b6-62d7-42c2-bc02-5ce86c21ed36",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"

Monitor Secrets Manager interaction with AWS KMS 285

AWS Secrets Manager User Guide

}

Decrypt

When you get or change the secret value of a secret, Secrets Manager sends a Decrypt request
to AWS KMS to decrypt the encrypted data key. For batch commands, Secrets Manager can
reuse the decrypted key, so not all calls result in a Decrypt request.

The event that records the Decrypt operation is similar to the following example event. The
user is the principal in your AWS account who is accessing the table. The parameters include the
encrypted table key (as a ciphertext blob) and the encryption context that identifies the table
and the AWS account. AWS KMS derives the ID of the KMS key from the ciphertext.

{
 "eventVersion": "1.05",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "mfaAuthenticated": "false",
 "creationDate": "2018-05-31T23:36:09Z"
 }
 },
 "invokedBy": "secretsmanager.amazonaws.com"
 },
 "eventTime": "2018-05-31T23:36:09Z",
 "eventSource": "kms.amazonaws.com",
 "eventName": "Decrypt",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "secretsmanager.amazonaws.com",
 "userAgent": "secretsmanager.amazonaws.com",
 "requestParameters": {
 "encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-east-2:111122223333:secret:test-
secret-a1b2c3",
 "SecretVersionId": "EXAMPLE1-90ab-cdef-fedc-ba987SECRET1"
 }
 },
 "responseElements": null,

Monitor Secrets Manager interaction with AWS KMS 286

https://docs.aws.amazon.com/kms/latest/APIReference/API_Decrypt.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#encrypt_context

AWS Secrets Manager User Guide

 "requestID": "658c6a08-652b-11e8-a6d4-ffee2046048a",
 "eventID": "f333ec5c-7fc1-46b1-b985-cbda13719611",
 "readOnly": true,
 "resources": [
 {
 "ARN": "arn:aws:kms:us-
east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
 "accountId": "111122223333",
 "type": "AWS::KMS::Key"
 }
],
 "eventType": "AwsApiCall",
 "recipientAccountId": "111122223333"
}

Encrypt

When you change the KMS key associated with a secret, Secrets Manager sends an Encrypt
request to AWS KMS to re-encrypt the AWSCURRENT, AWSPREVIOUS, and AWSPENDING secret
versions with the new key. When you replicate a secret to another Region, Secrets Manager also
sends an Encrypt request to AWS KMS.

The event that records the Encrypt operation is similar to the following example event. The
user is the principal in your AWS account who is accessing the table.

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AROAIGDTESTANDEXAMPLE:user01",
 "arn": "arn:aws:sts::111122223333:assumed-role/Admin/user01",
 "accountId": "111122223333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "attributes": {
 "creationDate": "2023-06-09T18:11:34Z",
 "mfaAuthenticated": "false"
 }
 },
 "invokedBy": "secretsmanager.amazonaws.com"
 },
 "eventTime": "2023-06-09T18:11:34Z",
 "eventSource": "kms.amazonaws.com",

Monitor Secrets Manager interaction with AWS KMS 287

https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html
https://docs.aws.amazon.com/kms/latest/APIReference/API_Encrypt.html

AWS Secrets Manager User Guide

 "eventName": "Encrypt",
 "awsRegion": "us-east-2",
 "sourceIPAddress": "secretsmanager.amazonaws.com",
 "userAgent": "secretsmanager.amazonaws.com",
 "requestParameters": {
 "keyId": "arn:aws:kms:us-east-2:111122223333:key/EXAMPLE1-f1c8-4dce-8777-
aa071ddefdcc",
 "encryptionAlgorithm": "SYMMETRIC_DEFAULT",
 "encryptionContext": {
 "SecretARN": "arn:aws:secretsmanager:us-
east-2:111122223333:secret:ChangeKeyTest-5yKnKS",
 "SecretVersionId": "EXAMPLE1-5c55-4d7c-9277-1b79a5e8bc50"
 }
 },
 "responseElements": null,
 "requestID": "129bd54c-1975-4c00-9b03-f79f90e61d60",
 "eventID": "f7d9ff39-15ab-47d8-b94c-56586de4ab68",
 "readOnly": true,
 "resources": [
 {
 "accountId": "AWS Internal",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/EXAMPLE1-f1c8-4dce-8777-
aa071ddefdcc"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "111122223333",
 "eventCategory": "Management"
}

Infrastructure security in AWS Secrets Manager

As a managed service, AWS Secrets Manager is protected by the AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

Access to Secrets Manager via the network is through AWS published APIs using TLS. Secrets
Manager APIs are callable from any network location. However, Secrets Manager supports

Infrastructure security 288

https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS Secrets Manager User Guide

resource-based access policies, which can include restrictions based on the source IP address. You
can also use Secrets Manager resource policies to control access to secrets from specific virtual
private cloud (VPC) endpoints, or specific VPCs. Effectively, this isolates network access to a given
secret from only the specific VPC within the AWS network. For more information, see VPC endpoint.

Resiliency in AWS Secrets Manager

AWS builds the global infrastructure around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which connect with low-
latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between zones without
interruption. Availability Zones allow you to be more highly available, fault tolerant, and scalable
than traditional single or multiple data center infrastructures.

For more information on resiliency and disaster recovery, refer to Reliability Pillar - AWS Well-
Architected Framework.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Post-quantum TLS

Secrets Manager supports a hybrid post-quantum key exchange option for the Transport Layer
Security (TLS) network encryption protocol. You can use this TLS option when you connect to
Secrets Manager API endpoints. We're offering this feature before post-quantum algorithms
are standardized so you can begin testing the effect of these key exchange protocols on Secrets
Manager calls. These optional hybrid post-quantum key exchange features are at least as secure
as the TLS encryption we use today and are likely to provide additional security benefits. However,
they affect latency and throughput compared to the classic key exchange protocols in use today.

To protect data encrypted today against potential future attacks, AWS is participating with the
cryptographic community in the development of quantum-resistant or post-quantum algorithms.
We've implemented hybrid post-quantum key exchange cipher suites in Secrets Manager
endpoints. These hybrid cipher suites, which combine classic and post-quantum elements, ensure
that your TLS connection is at least as strong as it would be with classic cipher suites. However,
because the performance characteristics and bandwidth requirements of hybrid cipher suites are
different from those of classic key exchange mechanisms, we recommend that you test them on
your API calls.

Resilience 289

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://aws.amazon.com/about-aws/global-infrastructure/

AWS Secrets Manager User Guide

Secrets Manager supports PQTLS in all Regions except China Regions.

To configure hybrid post-quantum TLS

1. Add the AWS Common Runtime client to your Maven dependencies. We recommend using the
latest available version. For example, this statement adds version 2.20.0.

<dependency>
 <groupId>software.amazon.awssdk</groupId>
 <artifactId>aws-crt-client</artifactId>
 <version>2.20.0</version>
</dependency>

2. Add the AWS SDK for Java 2.x to your project and initialize it. Enable the hybrid post-quantum
cipher suites on your HTTP client.

SdkAsyncHttpClient awsCrtHttpClient = AwsCrtAsyncHttpClient.builder()
 .postQuantumTlsEnabled(true)
 .build();

3. Create the Secrets Manager asynchronous client.

SecretsManagerAsyncClient SecretsManagerAsync = SecretsManagerAsyncClient.builder()
 .httpClient(awsCrtHttpClient)
 .build();

Now when you call Secrets Manager API operations, your calls are transmitted to the Secrets
Manager endpoint using hybrid post-quantum TLS.

For more information about using hybrid post-quantum TLS, see:

• AWS SDK for Java 2.x Developer Guide and the AWS SDK for Java 2.x released blog post.

• Introducing s2n-tls, a New Open Source TLS Implementation and Using s2n-tls.

• Post-Quantum Cryptography at the National Institute for Standards and Technology (NIST).

• Hybrid Post-Quantum Key Encapsulation Methods (PQ KEM) for Transport Layer Security 1.2
(TLS).

Post-quantum TLS for Secrets Manager is available in all AWS Regions except China.

Post-quantum TLS 290

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/services/secretsmanager/AWSSecretsManagerAsyncClient.html
https://docs.aws.amazon.com/sdk-for-java/latest/developer-guide/
https://aws.amazon.com/blogs/developer/aws-sdk-for-java-2-x-released/
https://aws.amazon.com/blogs/security/introducing-s2n-a-new-open-source-tls-implementation/
https://aws.github.io/s2n-tls/usage-guide/
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid-01
https://tools.ietf.org/html/draft-campagna-tls-bike-sike-hybrid-01

AWS Secrets Manager User Guide

Troubleshooting AWS Secrets Manager

Use the information here to help you diagnose and fix issues that you might encounter when you're
working with Secrets Manager.

For issues related to rotation, see the section called “Troubleshoot rotation”.

Topics

• "Access denied" messages when sending requests to Secrets Manager

• "Access denied" for temporary security credentials

• Changes I make aren't always immediately visible.

• “Cannot generate a data key with an asymmetric KMS key” when creating a secret

• An AWS CLI or AWS SDK operation can't find my secret from a partial ARN

• This secret is managed by an AWS service, and you must use that service to update it.

"Access denied" messages when sending requests to Secrets
Manager

Verify that you have permissions to call the operation and resource you requested. An
administrator must grant permissions by attaching an IAM policy to your IAM user, or to a group
that you're a member of. If the policy statements that grant those permissions include any
conditions, such as time-of-day or IP address restrictions, you also must meet those requirements
when you send the request. For information about viewing or modifying policies for an IAM user,
group, or role, see Working with Policies in the IAM User Guide. For information about permissions
required for Secrets Manager, see Authentication and access control.

If you're signing API requests manually, without using the AWS SDKs, verify you correctly signed
the request.

"Access denied" for temporary security credentials

Verify the IAM user or role you're using to make the request has the correct permissions.
Permissions for temporary security credentials derive from an IAM user or role. This means the
permissions are limited to those granted to the IAM user or role. For more information about how

"Access denied" messages when sending requests to Secrets Manager 291

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage.html
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html

AWS Secrets Manager User Guide

permissions for temporary security credentials are determined, see Controlling Permissions for
Temporary Security Credentials in the IAM User Guide.

Verify that your requests are signed correctly and that the request is well-formed. For details,
see the toolkit documentation for your chosen SDK, or Using Temporary Security Credentials to
Request Access to AWS Resources in the IAM User Guide.

Verify that your temporary security credentials haven't expired. For more information, see
Requesting Temporary Security Credentials in the IAM User Guide.

For information about permissions required for Secrets Manager, see Authentication and access
control.

Changes I make aren't always immediately visible.

Secrets Manager uses a distributed computing model called eventual consistency. Any change
that you make in Secrets Manager (or other AWS services) takes time to become visible from all
possible endpoints. Some of the delay results from the time it takes to send the data from server
to server, from replication zone to replication zone, and from region to region around the world.
Secrets Manager also uses caching to improve performance, but in some cases this can add time.
The change might not be visible until the previously cached data times out.

Design your global applications to account for these potential delays. Also, ensure that they work
as expected, even when a change made in one location isn't instantly visible at another.

For more information about how some other AWS services are affected by eventual consistency,
see:

• Managing data consistency in the Amazon Redshift Database Developer Guide

• Amazon S3 Data Consistency Model in the Amazon Simple Storage Service User Guide

• Ensuring Consistency When Using Amazon S3 and Amazon EMR for ETL Workflows in the AWS
Big Data Blog

• Amazon EC2 Eventual Consistency in the Amazon EC2 API Reference

Changes I make aren't always immediately visible. 292

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_control-access.html
http://aws.amazon.com/tools/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_request.html
https://wikipedia.org/wiki/Eventual_consistency
https://docs.aws.amazon.com/redshift/latest/dg/managing-data-consistency.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel
https://aws.amazon.com/blogs/big-data/ensuring-consistency-when-using-amazon-s3-and-amazon-elastic-mapreduce-for-etl-workflows/
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/query-api-troubleshooting.html#eventual-consistency

AWS Secrets Manager User Guide

“Cannot generate a data key with an asymmetric KMS key”
when creating a secret

Secrets Manager uses a symmetric encryption KMS key associated with a secret to generate a data
key for each secret value. You can't use an asymmetric KMS key. Verify you are using a symmetric
encryption KMS key instead of an asymmetric KMS key. For instructions, see Identifying asymmetric
KMS keys.

An AWS CLI or AWS SDK operation can't find my secret from a
partial ARN

In many cases, Secrets Manager can find your secret from part of an ARN rather than the full ARN.
However, if your secret's name ends in a hyphen followed by six characters, Secrets Manager might
not be able to find the secret from only part of an ARN. Instead, we recommend that you use the
complete ARN or the name of the secret.

More details

Secrets Manager includes six random characters at the end of the secret name to help ensure that
the secret ARN is unique. If the original secret is deleted, and then a new secret is created with the
same name, the two secrets have different ARNs because of these characters. Users with access to
the old secret don't automatically get access to the new secret because the ARNs are different.

Secrets Manager constructs an ARN for a secret with Region, account, secret name, and then a
hyphen and six more characters, as follows:

arn:aws:secretsmanager:us-east-2:111122223333:secret:SecretName-abcdef

If your secret name ends with a hyphen and six characters, using only part of the ARN can appear
to Secrets Manager as though you are specifying a full ARN. For example, you might have a secret
named MySecret-abcdef with the ARN

arn:aws:secretsmanager:us-east-2:111122223333:secret:MySecret-abcdef-nutBrk

If you call the following operation, which only uses part of the secret ARN, then Secrets Manager
might not find the secret.

“Cannot generate a data key with an asymmetric KMS key” when creating a secret 293

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#symmetric-cmks
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html
https://docs.aws.amazon.com/kms/latest/developerguide/find-symm-asymm.html

AWS Secrets Manager User Guide

$ aws secretsmanager describe-secret --secret-id arn:aws:secretsmanager:us-
east-2:111122223333:secret:MySecret-abcdef

This secret is managed by an AWS service, and you must use
that service to update it.

If you encounter this message while trying to modify a secret, the secret can only be updated by
using the managing service listed in the message. For more information, see Secrets managed by
other services.

To determine who manages a secret, you can review the secret name. Secrets managed by other
services are prefixed with the ID of that service. Or, in the AWS CLI, call describe-secret, and then
review the field OwningService.

This secret is managed by an AWS service, and you must use that service to update it. 294

https://docs.aws.amazon.com/cli/latest/reference/secretsmanager/describe-secret.html

AWS Secrets Manager User Guide

AWS Secrets Manager quotas

Secrets Manager read APIs have high TPS quotas, and control plane APIs that are less
frequently called have lower TPS quotas. We recommend you avoid calling PutSecretValue
or UpdateSecret at a sustained rate of more than once every 10 minutes. When you call
PutSecretValue or UpdateSecret to update the secret value, Secrets Manager creates a new
version of the secret. Secrets Manager removes unlabeled versions when there are more than 100,
but it does not remove versions created less than 24 hours ago. If you update the secret value more
than once every 10 minutes, you create more versions than Secrets Manager removes, and you will
reach the quota for secret versions.

You may operate multiple regions in your account, and each quota is specific to each region.

When an application in one AWS account uses a secret owned by a different account, it's known as
a cross-account request. For cross-account requests, Secrets Manager throttles the account of the
identity that makes the requests, not the account that owns the secret. For example, if an identity
from account A uses a secret in account B, the secret use applies only to the quotas in account A.

Secrets Manager quotas

Name Default Adjustabl
e

Description

Combined rate of DeleteResourcePoli
cy, GetResourcePolicy, PutResour
cePolicy, and ValidateResourcePolicy
API requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
DeleteResourcePoli
cy, GetResourcePolicy,
PutResourcePolicy, and
ValidateResourcePolicy
API requests combined.

Combined rate of DescribeSecret and
GetSecretValue API requests

Each supported
Region: 10,000
per second

No The maximum transacti
ons per second for
DescribeSecret and
GetSecretValue API
requests combined.

Secrets Manager quotas 295

AWS Secrets Manager User Guide

Name Default Adjustabl
e

Description

Combined rate of PutSecretValue,
RemoveRegionsFromReplication,
ReplicateSecretToRegion, StopRepli
cationToReplica, UpdateSecret, and
UpdateSecretVersionStage API requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
PutSecretValue,
RemoveRegionsFromR
eplication, Replicate
SecretToRegion,
StopReplicationToR
eplica, UpdateSecret,
and UpdateSecretVersio
nStage API requests
combined.

Combined rate of RestoreSecret API
requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
RestoreSecret API
requests.

Combined rate of RotateSecret and
CancelRotateSecret API requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
RotateSecret and
CancelRotateSecret API
requests combined.

Combined rate of TagResource and
UntagResource API requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
TagResource and
UntagResource API
requests combined.

Rate of BatchGetSecretValue API
requests

Each supported
Region: 100 per
second

No The maximum transacti
ons per second for
BatchGetSecretValue API
requests.

Secrets Manager quotas 296

AWS Secrets Manager User Guide

Name Default Adjustabl
e

Description

Rate of CreateSecret API requests Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
CreateSecret API
requests.

Rate of DeleteSecret API requests Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
DeleteSecret API
requests.

Rate of GetRandomPassword API
requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
GetRandomPassword API
requests.

Rate of ListSecretVersionIds API
requests

Each supported
Region: 50 per
second

No The maximum transacti
ons per second for
ListSecretVersionIds API
requests.

Rate of ListSecrets API requests Each supported
Region: 100 per
second

No The maximum transacti
ons per second for
ListSecrets API requests.

Resource-based policy length Each supported
Region: 20,480

No The maximum number of
characters in a resource-
based permissions policy
attached to a secret.

Secrets Manager quotas 297

AWS Secrets Manager User Guide

Name Default Adjustabl
e

Description

Secret value size Each supported
Region: 65,536
Bytes

No The maximum size of an
encrypted secret value.
If the secret value is a
string, then this is the
number of characters
permitted in the secret
value.

Secrets Each supported
Region: 500,000

No The maximum number
of secrets in each AWS
Region of this AWS
account.

Staging labels attached across all
versions of a secret

Each supported
Region: 20

No The maximum number of
staging labels attached
across all versions of a
secret.

Versions per secret Each supported
Region: 100

No The maximum number of
versions of a secret.

Add retries to your application

Your AWS client might see calls to Secrets Manager fail due to unexpected issues on the client side.
Or calls might fail due to rate limiting from Secrets Manager. When you exceed an API request
quota, Secrets Manager throttles the request. It rejects an otherwise valid request and returns a
throttling error. For both kinds of failures, we recommend you retry the call after a brief waiting
period. This is called a backoff and retry strategy.

If you experience the following errors, you might want to add retries to your application code:

Transient errors and exceptions

• RequestTimeout

• RequestTimeoutException

Add retries to your application 298

https://docs.aws.amazon.com/general/latest/gr/api-retries.html

AWS Secrets Manager User Guide

• PriorRequestNotComplete

• ConnectionError

• HTTPClientError

Service-side throttling and limit errors and exceptions

• Throttling

• ThrottlingException

• ThrottledException

• RequestThrottledException

• TooManyRequestsException

• ProvisionedThroughputExceededException

• TransactionInProgressException

• RequestLimitExceeded

• BandwidthLimitExceeded

• LimitExceededException

• RequestThrottled

• SlowDown

For more information, as well as example code, on retries, exponential backoff, and jitter, see the
following resources:

• Exponential Backoff and Jitter

• Timeouts, retries and backoff with jitter

• Error retries and exponential backoff in AWS.

Add retries to your application 299

https://aws.amazon.com/blogs/architecture/exponential-backoff-and-jitter/
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

AWS Secrets Manager User Guide

Document history

The following table describes the important changes to the documentation since the last release of
AWS Secrets Manager. For notification about updates to this documentation, you can subscribe to
an RSS feed.

Change Description Date

Secrets Manager change to
AWS managed policy

The SecretsManagerRead
Write managed policy
now includes redshift-
serverless permissio
n. For more information, see
AWS managed policy for AWS
Secrets Manager

March 12, 2024

Earlier updates

The following table describes important changes in each release of the AWS Secrets Manager User
Guide before February 2024.

Change Description Date

General availability This is the initial public
release of Secrets Manager.

Apr 4, 2018

Earlier updates 300

https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-policies.html
https://docs.aws.amazon.com/secretsmanager/latest/userguide/reference_available-policies.html

	AWS Secrets Manager
	Table of Contents
	What is AWS Secrets Manager?
	Get started with Secrets Manager
	Compliance with standards
	Pricing
	AWS services that use AWS Secrets Manager secrets

	Access AWS Secrets Manager
	Secrets Manager console
	Command line tools
	AWS SDKs
	HTTPS Query API
	AWS Secrets Manager endpoints

	AWS Secrets Manager concepts
	Secret
	Version
	Rotation
	Rotation strategy
	Rotation strategy: single user
	Rotation strategy: alternating users

	AWS Secrets Manager tutorials
	Find unprotected secrets in your code with Amazon CodeGuru Reviewer
	Move hardcoded secrets to AWS Secrets Manager
	Step 1: Create the secret
	Step 2: Update your code
	Step 3: Update the secret
	Next steps

	Move hardcoded database credentials to AWS Secrets Manager
	Step 1: Create the secret
	Step 2: Update your code
	Step 3: Rotate the secret
	Next steps

	Set up alternating users rotation for AWS Secrets Manager
	Permissions
	Prerequisites
	Prereq A: Amazon VPC
	Prereq B: Amazon EC2 instance
	Prereq C: Amazon RDS database and a Secrets Manager secret for the admin credentials
	Prereq D: Allow your local computer to connect to the EC2 instance

	Step 1: Create an Amazon RDS database user
	Step 2: Create a secret for the user credentials
	Step 3: Test the rotated secret
	Step 4: Clean up resources
	Next steps

	Set up single user rotation for AWS Secrets Manager
	Permissions
	Prerequisites
	Step 1: Create an Amazon RDS database user
	Step 2: Create a secret for the database user credentials
	Step 3: Test the rotated password
	Step 4: Clean up resources
	Next steps

	Authentication and access control for AWS Secrets Manager
	Secrets Manager administrator permissions
	Permissions to access secrets
	Permissions for Lambda rotation functions
	Permissions for encryption keys
	Attach a permissions policy to an identity
	Attach a permissions policy to an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	AWS managed policy for AWS Secrets Manager
	AWS managed policy: SecretsManagerReadWrite
	Secrets Manager updates to AWS managed policies

	Determine who has permissions to your AWS Secrets Manager secrets
	Permissions to AWS Secrets Manager secrets for users in a different account
	Lambda rotation function execution role permissions for AWS Secrets Manager
	Policy for a Lambda rotation function execution role
	Policy statement for customer managed key
	Policy statement for alternating users strategy

	Permissions policy examples for AWS Secrets Manager
	Example: Permission to retrieve individual secret values
	Permission to retrieve a group of secret values in a batch
	Example: Wildcards
	Example: Permission to create secrets
	Example: Permissions and VPCs
	Example: Control access to secrets using tags
	Example: Limit access to identities with tags that match secrets' tags
	Example: Service principal

	Permissions reference for AWS Secrets Manager
	Secrets Manager actions
	Secrets Manager resources
	Condition keys
	Block broad access to secrets with BlockPublicPolicy condition
	IP address conditions
	VPC endpoint conditions

	Create and manage secrets with AWS Secrets Manager
	Create an AWS Secrets Manager database secret
	AWS CLI
	AWS SDK

	JSON structure of AWS Secrets Manager secrets
	Amazon RDS Db2 secret structure
	Amazon RDS MariaDB secret structure
	Amazon RDS and Amazon Aurora MySQL secret structure
	Amazon RDS Oracle secret structure
	Amazon RDS and Amazon Aurora PostgreSQL secret structure
	Amazon RDS Microsoft SQLServer secret structure
	Amazon DocumentDB secret structure
	Amazon Redshift secret structure
	Amazon Redshift Serverless secret structure
	Amazon ElastiCache secret structure

	Create an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Update the value for an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Change the encryption key for an AWS Secrets Manager secret
	AWS CLI

	Modify an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Find secrets in AWS Secrets Manager
	AWS CLI
	AWS SDK

	Delete an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Restore an AWS Secrets Manager secret
	AWS CLI
	AWS SDK

	Replicate an AWS Secrets Manager secret to other AWS Regions
	AWS CLI
	AWS SDK
	Troubleshooting
	A secret with the same name exists in the selected Region
	No permissions available on the KMS key to complete the replication
	The KMS key is disabled or not found
	You have not enabled the Region where the replication occurs

	Promote a replica secret to a standalone secret in AWS Secrets Manager
	AWS CLI
	AWS SDK

	Tag AWS Secrets Manager secrets
	AWS CLI
	AWS SDK

	Retrieve secrets from AWS Secrets Manager
	In code
	Within other systems and AWS services
	AWS CLI
	AWS console
	Retrieve a group of secrets in a batch from AWS Secrets Manager
	Permissions for retrieving secrets in a batch
	AWS CLI

	Connect to a SQL database with credentials in an AWS Secrets Manager secret
	Establish a connection to a database
	Establish a connection by specifying the endpoint and port
	Use c3p0 connection pooling to establish a connection
	Use c3p0 connection pooling to establish a connection by specifying the endpoint and port

	Retrieve AWS Secrets Manager secrets in Java applications
	SecretCache
	Constructors
	Methods
	getSecretString
	getSecretBinary
	refreshNow
	close

	SecretCacheConfiguration
	Constructor
	Methods
	getClient
	setClient
	getCacheHook
	setCacheHook
	getMaxCacheSize
	setMaxCacheSize
	getCacheItemTTL
	setCacheItemTTL
	getVersionStage
	setVersionStage
	SecretCacheConfiguration withClient
	SecretCacheConfiguration withCacheHook
	SecretCacheConfiguration withMaxCacheSize
	SecretCacheConfiguration withCacheItemTTL
	SecretCacheConfiguration withVersionStage

	SecretCacheHook
	put
	get

	Retrieve AWS Secrets Manager secrets in Python applications
	SecretCache
	get_secret_string
	get_secret_binary

	SecretCacheConfig
	SecretCacheHook
	put
	get

	@InjectSecretString
	@InjectKeywordedSecretString

	Retrieve AWS Secrets Manager secrets in .NET applications
	SecretsManagerCache
	Constructors
	Methods
	GetSecretString
	GetSecretBinary
	RefreshNowAsync
	GetCachedSecret

	SecretCacheConfiguration
	Properties
	CacheItemTTL
	MaxCacheSize
	VersionStage
	Client
	CacheHook

	ISecretCacheHook
	Methods
	Put
	Get

	Retrieve AWS Secrets Manager secrets in Go applications
	type Cache
	Methods
	New
	GetSecretString
	GetSecretStringWithStage
	GetSecretBinary
	GetSecretBinaryWithStage

	type CacheConfig
	type CacheHook
	Methods
	Put
	Get

	Use AWS Secrets Manager secrets in AWS Batch
	Retrieve an AWS Secrets Manager secret in an AWS CloudFormation resource
	Use AWS Secrets Manager secrets in Amazon Elastic Container Service
	Use AWS Secrets Manager secrets in Amazon Elastic Kubernetes Service
	Install the ASCP
	Step 1: Set up access control
	Step 2: Identify which secrets to mount
	Example: Mount secrets by name or ARN
	Example: Mount key/value pairs from a secret
	Example: Define a failover Region for a multi-Region secret
	Example: Choose a failover secret to mount

	Troubleshoot
	Tutorial: Create and mount an AWS Secrets Manager secret in an Amazon EKS pod
	SecretProviderClass

	Use AWS Secrets Manager secrets in GitHub jobs
	Prerequisites
	Usage
	Environment variable naming
	Examples

	Use AWS Secrets Manager secrets in AWS IoT Greengrass
	Use AWS Secrets Manager secrets in AWS Lambda functions
	AWS Parameters and Secrets Lambda Extension environment variables

	Use AWS Secrets Manager secrets in Parameter Store

	Rotate AWS Secrets Manager secrets
	How rotation works
	Managed rotation for AWS Secrets Manager secrets
	Set up automatic rotation for Amazon RDS, Amazon Aurora, Amazon Redshift, or Amazon DocumentDB secrets using the console
	Step 1: Choose a rotation strategy and (optionally) create a superuser secret
	Step 2: Configure rotation and create a rotation function
	Step 3: (Optional) Set additional permissions conditions on the rotation function
	Step 4: Set up network access for the rotation function
	Step 5: (Optional) Customize the rotation function
	Next steps

	Set up automatic rotation for AWS Secrets Manager secrets using the console
	Step 1: Configure the secret for rotation
	Step 2: Set permissions for the rotation function
	Step 3: (Optional) Set an additional permissions condition on the rotation function
	Step 4: Set up network access for the rotation function
	Step 5: Write the rotation function code
	create_secret
	set_secret
	test_secret
	finish_secret

	Next steps

	Set up automatic rotation for AWS Secrets Manager secrets using the AWS CLI
	(Optional) Step 1: Create a superuser secret
	Step 2: Write the rotation function code
	create_secret
	set_secret
	test_secret
	finish_secret

	Step 3: Create the Lambda function and execution role
	Step 4: Set up network access
	Step 5: Configure the secret for rotation
	Next steps

	Rotate an AWS Secrets Manager secret immediately
	AWS CLI

	AWS Secrets Manager rotation function templates
	Amazon RDS and Amazon Aurora
	Amazon RDS Db2 single user
	Amazon RDS Db2 alternating users
	Amazon RDS MariaDB single user
	Amazon RDS MariaDB alternating users
	Amazon RDS and Amazon Aurora MySQL single user
	Amazon RDS and Amazon Aurora MySQL alternating users
	Amazon RDS Oracle single user
	Amazon RDS Oracle alternating users
	Amazon RDS and Amazon Aurora PostgreSQL single user
	Amazon RDS and Amazon Aurora PostgreSQL alternating users
	Amazon RDS Microsoft SQLServer single user
	Amazon RDS Microsoft SQLServer alternating users

	Amazon DocumentDB (with MongoDB compatibility)
	Amazon DocumentDB single user
	Amazon DocumentDB alternating users

	Amazon Redshift
	Amazon Redshift single user
	Amazon Redshift alternating users

	Amazon ElastiCache
	Other types of secrets
	create_secret
	set_secret
	test_secret
	finish_secret

	Schedule expressions in Secrets Manager rotation
	Rate expressions
	Cron expressions
	Cron expression requirements in Secrets Manager

	Troubleshoot AWS Secrets Manager rotation
	No activity after "Found credentials in environment variables"
	No activity after "createSecret"
	Error: "Access to KMS is not allowed"
	Error: "Key is missing from secret JSON"
	Error: "setSecret: Unable to log into database"
	Error: "Unable to import module 'lambda_function'"
	Upgrade an existing rotation function from Python 3.7 to 3.9
	Option 1: Recreate the rotation function using AWS CloudFormation
	Option 2: Update the runtime for the existing rotation function using AWS CloudFormation
	Option 3: For AWS CDK users, upgrade the CDK library

	AWS Secrets Manager secrets managed by other AWS services
	Amazon AppFlow
	AWS Glue DataBrew
	AWS DataSync
	AWS Direct Connect
	Amazon Elastic Container Service
	Amazon EventBridge
	AWS Marketplace
	AWS OpsWorks for Chef Automate
	Amazon RDS and Aurora
	Amazon Redshift
	Amazon Redshift query editor v2

	Using an AWS Secrets Manager VPC endpoint
	Shared subnets

	Create AWS Secrets Manager secrets in AWS CloudFormation
	Create an AWS Secrets Manager secret with AWS CloudFormation
	JSON
	YAML

	Create an AWS Secrets Manager secret with automatic rotation and an Amazon RDS MySQL DB instance with AWS CloudFormation
	Create an AWS Secrets Manager secret and an Amazon Redshift cluster with AWS CloudFormation
	Create an AWS Secrets Manager secret and an Amazon DocumentDB instance with AWS CloudFormation
	JSON
	YAML

	How Secrets Manager uses AWS CloudFormation

	Create AWS Secrets Manager secrets in AWS Cloud Development Kit (AWS CDK)
	Monitor AWS Secrets Manager secrets
	Log AWS Secrets Manager events with AWS CloudTrail
	AWS CLI
	AWS CloudTrail entries for Secrets Manager
	Log entries for Secrets Manager operations
	Log entries for deletion
	Log entries for replication
	Log entries for rotation

	Match AWS Secrets Manager events with Amazon EventBridge
	Match all changes to a specified secret
	Match events when a secret value rotates

	Monitor AWS Secrets Manager with Amazon CloudWatch
	Secrets Manager metrics and dimensions
	Create alarms to monitor Secrets Manager metrics
	Amazon CloudWatch Synthetics canaries

	Monitor AWS Secrets Manager secrets scheduled for deletion by using Amazon CloudWatch
	Step 1: Configure CloudTrail log file delivery to CloudWatch logs
	Step 2: Create the CloudWatch alarm
	Step 3: Test the CloudWatch alarm

	Compliance validation for AWS Secrets Manager
	Audit AWS Secrets Manager secrets for compliance by using AWS Config
	
	Aggregate secrets from your AWS accounts and AWS Regions

	Security in AWS Secrets Manager
	Mitigate the risks of using the AWS CLI to store your AWS Secrets Manager secrets
	Data protection in AWS Secrets Manager
	Encryption at rest
	Encryption in transit
	Inter-network traffic privacy
	Encryption key management

	Secret encryption and decryption in AWS Secrets Manager
	What is encrypted?
	Encryption and decryption processes
	Permissions for the KMS key
	How Secrets Manager uses your KMS key
	Key policy of the AWS managed key (aws/secretsmanager)
	Secrets Manager encryption context
	Monitor Secrets Manager interaction with AWS KMS

	Infrastructure security in AWS Secrets Manager
	Resiliency in AWS Secrets Manager
	Post-quantum TLS

	Troubleshooting AWS Secrets Manager
	"Access denied" messages when sending requests to Secrets Manager
	"Access denied" for temporary security credentials
	Changes I make aren't always immediately visible.
	“Cannot generate a data key with an asymmetric KMS key” when creating a secret
	An AWS CLI or AWS SDK operation can't find my secret from a partial ARN
	This secret is managed by an AWS service, and you must use that service to update it.

	AWS Secrets Manager quotas
	Secrets Manager quotas
	Add retries to your application

	Document history
	Earlier updates

