
Implementation Guide

Connected Mobility Solution on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Connected Mobility Solution on AWS Implementation Guide

Connected Mobility Solution on AWS: Implementation Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Connected Mobility Solution on AWS Implementation Guide

Table of Contents

Solution overview .. 1
Features and benefits .. 3
Use cases .. 5
Concepts and definitions .. 6

Architecture overview ... 9
Automotive Cloud Developer Portal deployment ... 9
Deploying CMS on AWS modules via Backstage ... 10
CMS on AWS modules and services ... 12

Amazon VPC .. 12
Auth Setup ... 12
Config .. 13
Automotive Cloud Developer Portal (ACDP) and Backstage .. 13
Auth ... 13
AWS IoT Core and MQTT .. 13
Vehicle Provisioning ... 14
Connect and Store .. 14
FleetWise Connector .. 14
API .. 14
Alerts ... 15
EV Battery Health ... 15
Vehicle Simulator .. 15

AWS Well-Architected design considerations ... 15
Operational excellence .. 15
Security ... 16
Reliability .. 16
Performance efficiency .. 16
Cost optimization .. 17
Sustainability .. 17

Architecture details ... 18
Config .. 18
Virtual Private Cloud (VPC) .. 19
Auth Setup ... 21
Automotive Cloud Developer Portal .. 23
Backstage module .. 24

iii

Connected Mobility Solution on AWS Implementation Guide

Auth module ... 26
Vehicle Provisioning module .. 28
CMS Connect and Store module ... 30
API module .. 32
Alerts module ... 33
EV Battery Health module ... 35
Vehicle Simulator module .. 38
FleetWise Connector module .. 40
AWS services in this solution ... 41

Plan your deployment ... 45
Cost ... 45

CMS on AWS static cost tables .. 45
Example costs .. 49

Security ... 56
Authentication and authorization ... 56
Amazon CloudFront .. 57
Amazon API Gateway ... 57
Security groups ... 57
PII data .. 57
Customer managed AWS KMS keys .. 57
AWS WAF .. 58

Supported AWS Regions ... 58
Quotas .. 58

Quotas for AWS Services in this solution .. 58
AWS CloudFormation quotas ... 59

Deploy the solution ... 60
Deployment process overview ... 60
AWS CloudFormation templates ... 60
Prerequisites .. 63

Clone the repository .. 63
Required tools ... 63
Install required tools .. 64
Install solution dependencies ... 66
Create an Amazon Route 53 hosted zone ... 66
Set up environment variables .. 66

Step 1: Build the Solution's modules ... 67

iv

Connected Mobility Solution on AWS Implementation Guide

Step 2: Upload Assets to S3 .. 67
Step 3: Deploy on AWS .. 67
Step 4: Monitor the ACDP deployment ... 67
Step 5: Deploy CMS Modules via Backstage .. 68

CMS Module Deployment Order .. 68
Example module deployment via Backstage .. 70

Step 6: Secure the solution with network access control .. 73
Monitoring the solution with Service Catalog AppRegistry .. 74

Activate CloudWatch Application Insights .. 75
Activate AWS Cost Explorer ... 76
Confirm cost tags associated with the solution .. 76
Activate cost allocation tags associated with the solution .. 77

Update the solution .. 78
Troubleshooting ... 79

Problem: Lambda Runtime not supported ... 79
Resolution ... 79

Problem: Multiple ProvisionedVehicles active certificates ... 79
Resolution ... 79

Contact AWS Support ... 80
Create case ... 80
How can we help? .. 80
Additional information .. 80
Help us resolve your case faster ... 80
Solve now or contact us .. 81

Uninstall the solution ... 82
Capture the deployment UUID .. 82
Delete CMS on AWS modules in order .. 82

Delete the Backstage ACM certificate (optional) .. 83
Manually clean up resources ... 83

Deleting the Amazon S3 buckets .. 84
Deleting the Amazon DynamoDB tables ... 85
Deleting the Amazon CloudWatch logs ... 85
Deleting the AWS KMS customer managed keys ... 86
Deleting the Amazon Cognito user pools .. 86
Deleting the Amazon Relational Database Service snapshots .. 87

Developer guide ... 88

v

Connected Mobility Solution on AWS Implementation Guide

Source code ... 88
Integrating custom modules .. 88

Reference .. 89
Anonymized data collection .. 89
Contributors ... 89

Revisions ... 90
Notices .. 93

vi

Connected Mobility Solution on AWS Implementation Guide

Accelerate development and deployment of connected
vehicle assets

Publication date: October 2023 (last update: April 2024)

Amazon Web Services (AWS) automotive customers have asked for ways to manage fleets with
increased efficiency and reduced vehicle downtime through preventative maintenance, location
tracking, improved fleet safety and security, and new software driven vehicle experiences.

The Connected Mobility Solution (CMS) on AWS addresses these needs, and provides various
capabilities for vehicles and customers to interact with the AWS Cloud. This solution allows you
to take advantage of provided features as modules, deploy and manage these modules from a
centralized platform, and implement and integrate your own custom modules into the solution.

Provided features allow you to:

• Communicate between vehicles and the AWS Cloud.

• Manage and orchestrate CMS on AWS deployments from a centralized developer platform.

• Securely authenticate and authorize users and services.

• Onboard vehicles into AWS IoT Core, creating profiles for provisioned vehicles.

• Capture, store, and query telemetry data emitted from provisioned vehicles.

• Create alerts for this data, and subscribe to notifications based on data thresholds.

• Visualize vehicle telemetry data through an Amazon Managed Grafana dashboard.

• Simulate connected vehicle data emission.

• Add additional modules for your unique use cases.

CMS on AWS implements an opinionated deployment mechanism for managing a connected
vehicle platform. Original equipment manufacturers (OEMs), tier one suppliers, and fleet operators
can manage and configure all or a subset of these capabilities for an end-to-end connected vehicle
solution, as well as integrate custom module implementations.

Vehicle telemetry data, such as speed, oil temperature, tire pressure, and geolocation generated
from car sensors can provide near real-time data ingestion for analytics and machine learning (ML)
use cases. CMS on AWS makes this data available for external consumption to third parties. You

1

https://aws.amazon.com/iot-core
https://aws.amazon.com/grafana

Connected Mobility Solution on AWS Implementation Guide

can leverage charging mechanisms and role-based authorization for usage-based insurance scores,
connected accident advisor, and package delivery services.

CMS on AWS provides a modular catalog approach that lets you independently enable workloads
specific to your use cases. You can deploy and configure workloads independently or as a whole
system to begin securely and economically deriving insights from your connected vehicle data.

This implementation guide provides an overview of CMS on AWS, its reference architecture and
components, considerations for planning the deployment, and configuration steps for deploying
CMS on AWS to the AWS Cloud.

The intended audience for using this solution's features and capabilities in their environment
includes solution architects, business decision makers, DevOps engineers, data scientists, and cloud
professionals.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution.

The estimated cost for running this solution
in the us-east-1 Region is USD $352.80 per
month.

Cost

Understand the security considerations for this
solution.

Security

Know how to plan for quotas for this solution. Quotas

Know which AWS Regions are supported for
this solution.

Supported AWS Regions

View or download the AWS CloudForm
ation template included in this solution
to automatically deploy the infrastructure
resources (the "stack") for this solution.

AWS CloudFormation templates

2

Connected Mobility Solution on AWS Implementation Guide

If you want to . . . Read . . .

Access the source code and optionally use the
AWS Cloud Development Kit (AWS CDK) (AWS
CDK) to deploy the solution.

GitHub repository

Features and benefits

The solution provides the following features:

Modularity

CMS on AWS simplifies maintaining and implementing the solution by utilizing a modular design.
The first of two significant benefits of modularity is separating concerns and outlining clear
boundaries between functional sets so that the solution flexibly meets connected vehicle system
demands. The second benefit is allowing interchanging CMS on AWS modules with bespoke
implementations, which meet the boundary definitions defined by CMS on AWS standards, as
well as implementing additional modules into the solution. These custom modules can then be
deployed from the same portal (ACDP / Backstage) as CMS on AWS provided modules.

Automotive Cloud Developer Portal

Deploying a complex modular system demands a well-defined and streamlined method for
selecting, configuring, and deploying each module. This component uses Backstage, AWS
CodeBuild, and AWS CloudFormation to deploy and manage CMS on AWS modules. It uses well-
defined templates to allow for implementations of custom modules to be integrated into the
solution and deployed from the same portal.

Configuration

CMS on AWS provides a mechanism to associate deployments of CMS on AWS modules with a
unique ID. Modules sharing the same unique ID also share infrastructure such as VPC and identity
provider (IdP). Other CMS on AWS modules deployed with the unique ID can use the configuration
module to lookup VPC and IdP configurations. Anonymized metrics collection is handled by the
configuration module which reports metrics based on Amazon Simple Storage Service (Amazon S3)
and AWS Timestream usage.

Features and benefits 3

https://github.com/aws-solutions/connected-mobility-solution-on-aws
https://backstage.io/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/s3
https://aws.amazon.com/timestream/

Connected Mobility Solution on AWS Implementation Guide

OpenID Connect authentication

CMS on AWS provides a default deployment of authentication infrastructure through Amazon
Cognito or the ability to integrate with customer's own IdP services. The IdP chosen can be used
for both users and CMS on AWS services to authenticate by retrieving access tokens and JSON Web
Tokens (JWTs). CMS on AWS then provides the means to validate the integrity of access tokens with
the chosen IdP.

Network security

CMS on AWS provides a default VPC or the ability to bring your own VPC to secure the AWS
resources deployed in your account. The default VPC provides public, private and isolated subnets
in two Availability Zones (AZs). This enables a highly available and secure cloud network. Modules
then use these subnets to manage security accordingly.

Vehicle provisioning

CMS on AWS registers vehicles as AWS IoT Core things to help you securely monitor vehicles, their
certificates, and their policies. Vehicle provisioning begins by registering with a claim certificate
that the solution generates during deployment. The claim certificate includes a provisioning
template that configures AWS IoT Core thing, certificate, and policy creation. After the certificate
is registered, the solution provides provisioned vehicles an individual certificate and public/private
key pair, which you can use to connect repeatedly in the future. This is the process defined by fleet
provisioning.

Storage

This solution provides a simple storage mechanism for simulated and provisioned vehicle data with
Amazon S3. The solution ingests data from pre-defined Message Queuing Telemetry Transport
(MQTT) topics, and stores it in both JSON and Parquet data formats. The storage is integrated with
an alerts mechanism which utilizes Amazon Simple Notification Service (Amazon SNS).

API

CMS on AWS provides the ability to query vehicle data stored within the solution for use in other
CMS and customer-built modules. CMS on AWS uses an AWS AppSync GraphQL application
programming interface (API) that builds and runs Amazon Athena queries to provide near real-time
data directly from the CMS on AWS data lake (an Amazon S3 bucket).

Alerts

Features and benefits 4

https://aws.amazon.com/cognito/
https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html
https://mqtt.org/
https://cwiki.apache.org/confluence/display/Hive/Parquet
https://aws.amazon.com/sns/
https://aws.amazon.com/appsync/
https://graphql.org/learn/
https://aws.amazon.com/athena/

Connected Mobility Solution on AWS Implementation Guide

CMS on AWS provides the ability to send alerts based on customizable user subscriptions through
AWS AppSync GraphQL API operations and Amazon SNS. These alerts can be triggered from other
CMS on AWS modules, and sent to the user through configurable notification settings.

Electric Vehicle battery health

CMS on AWS provides the ability to visualize Electric Vehicle (EV) battery telemetry data and
configure alerts based on data thresholds. This is done through an Amazon Managed Grafana.
EV battery telemetry data is obtained by running Amazon Athena queries through the CMS API
module.

Simulation

For both developers and customers, it is important to have a method for generating simulated
vehicle telemetry data. This allows for testing the solution in real time, while also generating
datasets. CMS on AWS provides a method for simulating up to 10 vehicles at once, with
configurations for how the data is generated (interval, amount, and duration) and a customizable
schema to define the payload that is generated.

Integration with Service Catalog AppRegistry and Application Manager, a capability of AWS
Systems Manager

This solution includes a Service Catalog AppRegistry resource to register the solution's
CloudFormation template and its underlying resources as an application in both Service Catalog
AppRegistry and Application Manager. With this integration, you can centrally manage the
solution's resources and enable application search, reporting, and management actions.

Use cases

Deployment and management

Fleet owners and deployment managers can select, configure, and deploy CMS on AWS modules
through the centralized Automotive Cloud Developer Portal (ACDP). From here, deployments
can also be monitored and tore down. Custom module implementations can be integrated into
Backstage, the front-end component of the ACDP, and managed in the same manner. A centralized
platform allows for managing and monitoring your deployment easily and effectively, as well as
separate ownership and permissions between members of your organization.

Vehicle connection

Use cases 5

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Connected Mobility Solution on AWS Implementation Guide

Vehicle manufacturers, fleet owners, and vehicle owners can securely register and receive unique
credentials by using the fleet provisioning by claim process. You can use these credentials for
future connections of the vehicle and securely manage them with AWS IoT Core. This facilitates
disabling and replacing vehicle credentials at any time. Connected vehicles can then emit data to
AWS IoT Core MQTT topics for the solution to ingest and store.

Query data

Vehicle manufacturers, fleet owners, and vehicle owners can leverage flexible queries using
GraphQL for data analysis and visualization, ML applications, and stateful representation of
individual vehicles. Data is available in near real-time as it is emitted from connected vehicles.
Future modules and customer applications can use this feature to realize value from the collected
data.

Monitor vehicles

Vehicle manufacturers, owners, and fleet managers can monitor vehicle data through visualizations
and alerts available through a configured Amazon Managed Grafana dashboard. Alerts can query
vehicle data periodically and send notifications to users when alert thresholds are breached.
Visualization is updated in near real-time and you can configure alerts to be evaluated at a desired
interval. Furthermore, users can monitor data with Amazon SNS by using the CMS Alerts module,
which you can configure with custom alert conditions and functionality from pre-built or custom
CMS on AWS modules.

Vehicle simulation

Data and entity simulation is a valuable feature for the development and use of connectivity
solutions. The CMS Vehicle Simulator module allows simulating vehicle provisioning and
registration (onboarding), data generation, and data ingestion by publishing to MQTT topics.
Connected vehicle engineers can use the CMS Vehicle Simulator module to test the solution in a
variety of usage scenarios, as well as generate datasets. Fleet managers can use simulations to
showcase functionality and ensure the effectiveness of their solution's configuration.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

alert

Concepts and definitions 6

https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html
https://docs.aws.amazon.com/iot/latest/developerguide/mqtt.html

Connected Mobility Solution on AWS Implementation Guide

Alerts refer to any notification sent to a user because of rules set up on stored telemetry data, or
triggers from CMS on AWS modules. Alert functionality is currently provided through both the
CMS Alerts module (Amazon SNS alerts), and CMS EV Battery Health module (Amazon Managed
Grafana alerts).

Backstage

Backstage is an open-source project used by CMS on AWS. It provides a portal for managing
deployments of CMS on AWS modules via the ACDP. It also allows for integration with bespoke
customer modules for a centralized deployment mechanism.

fleet provisioning by claim

Fleet provisioning by claim is a provisioning method that is used to authenticate and register
vehicles the first time they connect to AWS IoT Core.

Grafana

Grafana is a popular open-source visualization and dashboarding platform that allows users to
query, visualize, alert on, and understand data. Amazon Managed Grafana is a fully managed
service for Grafana. CMS on AWS uses Amazon Managed Grafana to provide a visualization and
alert dashboard for vehicle telemetry data.

identity provider

CMS on AWS provides the ability to integrate the authentication system with any third-party
identity provider which is OAuth2.0 OpenID Connect compliant. This identity provider should
provide some concept of users, a resource server (audience), domain (issuer), and clients for users
and services.

Message Queuing Telemetry Transport (MQTT)

MQTT is an OASIS standard messaging protocol used by AWS IoT Core. It is designed as an
extremely lightweight publish-subscribe messaging transport.

provisioning

Provisioning refers to the process of registering a vehicle in AWS IoT Core by using a recognized
claim certificate. Registered vehicles receive a unique certificate and credentials to connect again in
the future.

simulation

Concepts and definitions 7

https://docs.aws.amazon.com/iot/latest/developerguide/provision-wo-cert.html
https://mqtt.org/
https://aws.amazon.com/what-is/pub-sub-messaging/

Connected Mobility Solution on AWS Implementation Guide

Simulation refers to the capability of the CMS Vehicle Simulator module to simulate vehicles
emitting telemetry data. A single simulation can produce randomized data for multiple simulated
vehicles at a time, and emit data at regular intervals for a specified duration.

tier one supplier

A tier one supplier manufactures and supplies original equipment manufacturer (OEM) companies
with components. They supply parts and devices that an OEM needs in order to complete a
product.

Vehicle Signal Specification

Vehicle Signal Specification (VSS) is a common data schema for standardizing vehicle data formats.

VPC / CMS on AWS VPC

A virtual private cloud (VPC) is an AWS service. Within the context of our solution, VPC is often
referring to the specific VPC instance chosen to be deployed with the solution. This is either the
default CMS on AWS VPC, a preconfigured VPC provided by CMS on AWS, or a customer provided
VPC. Any of these can then be attached to this solution's configuration. In all cases, the VPC is
deployed prior to CMS on AWS and is provided to subsequent module deployments for network
security. All modules which can use a VPC utilize the same configured VPC.

Note

For a general reference of AWS terms, see the AWS Glossary.

Concepts and definitions 8

https://wiki.covesa.global/display/WIK4/VSS+-+Vehicle+Signal+Specification
https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

Connected Mobility Solution on AWS Implementation Guide

Architecture overview

This section provides a high-level description of all CMS on AWS provided modules. It also includes
architecture diagrams for the deployment of the Automotive Cloud Developer Portal and the
deployment of subsequent CMS on AWS modules.

Outside of deployment resources and necessary configuration modules, each installation of CMS
on AWS is unique based on which provided modules you deploy, and which bespoke module
implementations you integrate. The deployment architecture described in this section is consistent
across deployments of CMS on AWS.

Automotive Cloud Developer Portal deployment

Deploying this solution with the default parameters deploys the following components of ACDP
and Backstage.

Automotive Cloud Developer Portal deployment architecture

Note

CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

Automotive Cloud Developer Portal deployment 9

https://aws.amazon.com/cdk/

Connected Mobility Solution on AWS Implementation Guide

The high-level process flow for the solution components deployed with AWS CDK is as follows
(from left to right in the diagram):

1. Automotive Cloud Developer Portal – To aid in orchestrating deployments of CMS on AWS
modules, you first deploy the ACDP. This deployment is handled with CloudFormation templates
created by AWS CDK. The ACDP creates a Backstage deployment pipeline. The pipeline then
deploys the Backstage module.

2. Backstage Deployment Pipeline – The ACDP deploys a CI/CD pipeline through AWS
CodePipeline that configures all the steps necessary to deploy the Backstage module. This is
accomplished with AWS CodeBuild pipeline projects, which use build specification files to define
their actions. Amazon Elastic Container Registry (Amazon ECR) is used to store the Backstage
Docker image. For details on the structure of the pipeline and each build step, see the Backstage
module.

3. Backstage – The Backstage module is the presentation layer for the ACDP. An Elastic Load
Balancing (ELB) Application Load Balancer connects with Amazon Route 53 and an Amazon
Elastic Container Service (Amazon ECS) cluster group setup with AWS Fargate tasks. The
Backstage module allows deploying CMS on AWS modules through a graphical user interface.
For more information, see Backstage module.

4. Deploying CMS on AWS modules via Backstage – When the ACDP is configured, there are two
ways to deploy CMS on AWS modules (see Deploy the solution for details):

• Backstage – By using ACDP and Backstage, you can deploy CMS on AWS modules using
module templates configured for Backstage, powered by AWS CodeBuild.

• AWS CDK CLI – Without Backstage, you can individually deploy the CMS on AWS modules
directly from the repository by utilizing the make deploy target.

Deploying CMS on AWS modules via Backstage

The AWS CodePipeline deployment of Backstage initiates from the ACDP deployment described
above allowing for Backstage to deploy additional CMS on AWS modules. Deploying CMS on AWS
modules using Backstage is represented by the following diagram:

Deploying CMS on AWS modules via Backstage 10

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/ecr/
https://www.docker.com/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/route53/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/

Connected Mobility Solution on AWS Implementation Guide

Deploying CMS on AWS modules via Backstage

All CMS on AWS Modules are deployable via Backstage templates. These deployments are powered
by AWS CodeBuild. Some modules have deploy-time dependency on other modules and therefore
should be deployed in the order of those relationships (shown below).

Deploying CMS on AWS modules via Backstage 11

https://backstage.io/docs/features/software-templates/

Connected Mobility Solution on AWS Implementation Guide

CMS on AWS module deployment order

CMS on AWS modules and services

The high-level architectural descriptions for the CMS on AWS modules and services are as follows:

Amazon Virtual Private Cloud (Amazon VPC)

Amazon Virtual Private Cloud (Amazon VPC) is an AWS service that allows you to launch AWS
resources inside a logically isolated virtual network. CMS on AWS provides a VPC module that
deploys an opinionated network configuration. For more details, see Virtual Private Cloud and
Amazon VPC.

Auth Setup

The Auth Setup module provides the means to configure a third-party OpenID Connect (OIDC)
compliant IdP of your choice for use with CMS on AWS. A default deployment of AWS Cognito
infrastructure to serve as the IdP is also provided. The Auth Setup module will either deploy
configurations with an expected JSON structure with the required IdP values, or the option is given

CMS on AWS modules and services 12

https://aws.amazon.com/vpc

Connected Mobility Solution on AWS Implementation Guide

to use existing Secrets Manager secrets. Either will fully configure the authentication parameters
required for CMS on AWS deployment's authentication. For more information, see Auth Setup.

Config

The CMS Config module uses the AWS Systems Manager Parameter Store to register a unique ID
which serves as a namespace to deploy other CMS on AWS modules. The CMS Config module takes
the VPC name and Identity Provider ID as additional inputs which are shared with the other CMS on
AWS modules deployed with the same unique ID as the CMS Config module. The module uses an
AWS Lambda function to send anonymized metrics about AWS S3 and AWS Timestream resource
usage. The module also implements an AWS Lambda function for AWS SSM Parameter resource
lookup based on the unique ID.

Automotive Cloud Developer Portal (ACDP) and Backstage

The Automotive Cloud Developer Portal (ACDP) is the centralized platform for deploying
subsequent CMS on AWS modules. The ACDP uses the Backstage module as its presentation layer
to provide a configurable developer platform for managing and monitoring the deployment of
CMS on AWS modules and customer provided modules. For more details, see Automotive Cloud
Developer Portal and Backstage module.

Auth

The CMS Auth module allows for the authentication and authorization of users and services
throughout the solution. The module provides two AWS Lambda functions which can integrate
with any third-party identity provider (IdP) that is OAuth2.0 OIDC compliant. This is done by
communicating with the Auth Setup module's IdP configurations, exposed as Secrets Manager
secrets. Of these two lambda functions, one facilitates exchanging an authorization code for an
access token via the authorization code flow, and the other validates and authorizes access tokens.
For more details, see Auth module.

AWS IoT Core and MQTT

AWS IoT Core MQTT topics are the primary method for communicating events between the CMS on
AWS modules. Messages published to MQTT from CMS on AWS modules can be consumed by, and
invoke rules configured by, other modules. AWS IoT Core is also used as the primary management
and storage system for provisioned vehicles. For more details on the usage of AWS IoT Core, see
Vehicle Provisioning module.

Config 13

https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/lambda/
https://auth0.com/docs/get-started/authentication-and-authorization-flow/authorization-code-flow
https://aws.amazon.com/iot/

Connected Mobility Solution on AWS Implementation Guide

Vehicle Provisioning

The CMS Vehicle Provisioning module provides means to onboard and register vehicles with AWS
IoT Core. Deploying the module checks for the existence of, and if not found creates, a claim
certificate and private key pair for use with fleet provisioning by claim. This claim certificate is
linked to a well-defined provisioning template, which controls how vehicles are provisioned and
informs the AWS IoT policy that is given to newly provisioned vehicles.

Using the claim certificate, a vehicle can retrieve a unique certificate to allow for further
communication with AWS IoT Core. Registering invokes AWS IoT rules linked to Lambda functions.
These functions check for vehicle authorization and create and manage vehicle records in Amazon
DynamoDB. At the end of the process, the solution registers an AWS IoT Core thing for the vehicle
that is linked to credentials safely stored in AWS Secrets Manager. For more details, see Vehicle
Provisioning module.

Connect and Store

A centralized Amazon S3 bucket deployed within the CMS Connect and Store module serves as
the reservoir for all CMS on AWS data. Centralized data storage allows for querying of vehicle
telemetry data and enabling alerts based on data insertion and thresholds. For more details, see
Connect and Store module.

FleetWise Connector

The CMS FleetWise Connector module allows you to consume data that is captured by AWS IoT
FleetWise campaigns. This is done by querying Amazon Timestream to migrate data into the CMS
on AWS Connect & Store module's telemetry bucket. The data is then indexed using AWS Glue, and
made accessible via Amazon Athena.

API

CMS on AWS users can interact with vehicle telemetry data stored in the CMS on AWS data lake
through the CMS API module. API endpoints are provided through AWS AppSync, which expects
GraphQL requests. AWS AppSync endpoints use Lambda functions to build and run Amazon
Athena queries on vehicle data stored in Amazon S3.

Vehicle Provisioning 14

https://docs.aws.amazon.com/iot/latest/developerguide/provision-template.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-policies.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/secretsmanager/latest/userguide/intro.html
https://aws.amazon.com/s3/
https://aws.amazon.com/iot-fleetwise/
https://aws.amazon.com/iot-fleetwise/
https://aws.amazon.com/glue/
https://aws.amazon.com/athena/
https://aws.amazon.com/appsync/
https://aws.amazon.com/athena/
https://aws.amazon.com/athena/

Connected Mobility Solution on AWS Implementation Guide

Alerts

The CMS Alerts module allows you to receive notifications invoked by data stored in the CMS on
AWS data lake. CMS modules can publish to Amazon SNS topics defined by the CMS Alerts module
by utilizing an API provided through AWS AppSync. You can subscribe to these same topics to
receive email notifications. For more details, see Alerts module.

EV Battery Health

For monitoring stored data, CMS on AWS users can use the CMS EV Battery Health module. This
module provides a dashboard through Amazon Managed Grafana, which is authenticated by
AWS IAM Identity Center. From the dashboard, users can visualize data and setup alerts based on
configurable data thresholds. For more details, see EV Battery Health module.

Vehicle Simulator

The CMS Vehicle Simulator module provides a user interface (UI) and backend engine for creating,
operating, and monitoring simulations of vehicle data emissions. Simulations are configurable
by interval, number of vehicles, and overall durations. They also support either a custom payload
schema, or the provided default VSS schema.

This solution runs simulations by using AWS Step Functions, backed by a series of AWS Lambda
functions. The simulator handles scaling, AWS IoT Core provisioning and registration, telemetry
data generation, generation intervals, and total emission quantity. For more details, see Vehicle
Simulator module.

AWS Well-Architected design considerations

This solution uses the best practices from the AWS Well-Architected Framework, which helps
customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

This section describes how the design principles and best practices of the Well-Architected
Framework were applied when building this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

Alerts 15

https://aws.amazon.com/sns/
https://aws.amazon.com/grafana/
https://aws.amazon.com/iam/identity-center/
https://covesa.github.io/vehicle_signal_specification/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html

Connected Mobility Solution on AWS Implementation Guide

The built-in CI/CD pipeline enables a standardized deployment strategy for the ACDP and
Backstage module, as well as supporting the further managed deployment of CMS on AWS
modules via AWS CodeBuild. CMS on AWS sends logging and metrics to Amazon CloudWatch
throughout the entire solution. A default log retention of three months is used in most places; this
can be customized by altering the CDK (look for aws_logs.RetentionDays) and rebuilding the
solution. The infrastructure is managed and operated by AWS CDK, with deployment assets stored
in Amazon S3 for use with Backstage.

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

To ensure network security, CMS on AWS network traffic only flows through the internet when
necessary. The traffic flows between AWS services via the VPC network and VPC endpoints
when possible. Simultaneously, all internet accessible endpoints are protected by authentication
(OAuth2.0) via the customer chosen identity provider, expecting the configured issuer, audience,
clients, and scopes via access tokens. All databases are closed off from anything external to the
AWS account where they are deployed and have rotating credentials where applicable. CMS on
AWS data is encrypted at rest and in transit with rotating encryption keys. Permissions are locked
down to zero-trust principles or least-privilege; the most restrictive choice is made where possible.
Parameters that contain sensitive information are stored in AWS Secrets Manager and rotated,
while remaining parameters are kept in Parameter Store, a capability of AWS Systems Manager.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

CMS on AWS uses primarily serverless AWS services (a notable exception being Backstage), which
provides resiliency, uptime, and automatic scaling. All appropriate Amazon S3 buckets have
versioning enabled and are backup protected. All DynamoDB tables have point-in-time recovery,
and customer data is not deleted when you uninstall the solution.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

Security 16

https://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://auth0.com/intro-to-iam/what-is-oauth-2
https://docs.aws.amazon.com/prescriptive-guidance/latest/strategy-zero-trust-architecture/zero-trust-principles.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/systems-manager/
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html

Connected Mobility Solution on AWS Implementation Guide

All compute and performance efficiency relates to usage and not a base cost. Complex tasks are
delegated to appropriate AWS services that provide built-in, efficient functionality to minimize
needed compute resources and prevent bottlenecks. You can deploy in supported AWS Regions to
keep your data closer to where it's being used and processed, minimizing delays.

Cost optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization pillar.

AWS Billing and Cost Management provide cost observation and analysis. CMS on AWS follows a
consumption model, so costs are driven by usage.

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

This solution uses primarily managed and serverless services to minimize the environmental impact
of the backend services.

Cost optimization 17

https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/billing-what-is.html
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Connected Mobility Solution on AWS Implementation Guide

Architecture details

This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

Config

Config module architecture

The Config module is a prerequisite deployment required for the deployment of any CMS on
AWS module (all modules except ACDP, VPC, and Auth Setup). The Config module introduces the
concept of an App Unique ID, which serves as a unique namespace for all CMS on AWS modules.
This module enables sharing the same VPC and IdP among multiple CMS on AWS modules without
requiring input of the VPC and IdP configuration in each module's deployment. The App Unique ID
serves the following purposes:

Config 18

Connected Mobility Solution on AWS Implementation Guide

• A unique naming prefix for all AWS CloudFormation resources that avoids conflicts when
deploying multiple instances of the same CMS on AWS module in the same region and account

• A unique naming prefix for easy lookup of AWS SSM Parameters

• Registering deployment of CMS on AWS modules associated with the App Unique ID, preventing
multiple deployments of the same module within the same CMS on AWS deployment

The CMS Config module also provides AWS Lambda functions that perform the following
functions:

• Create a deployment UUID which is used to tag all CloudFormation resources created by CMS on
AWS modules

• Send anonymized metrics related to Amazon S3 and AWS Timestream

• Lookup VPC name and Identity Provider ID using the App Unique ID

Virtual Private Cloud (VPC)

VPC module architecture

CMS on AWS requires a VPC to deploy other modules including ACDP. Users can bring their own
VPC or deploy the CMS on AWS VPC module. The VPC module provides a preconfigured VPC with
the architecture shown in the diagram. It has the following configuration:

Virtual Private Cloud (VPC) 19

Connected Mobility Solution on AWS Implementation Guide

• Two Availability Zones (AZ)

• VPC endpoints for most of the AWS services that support AWS PrivateLink

• One NAT gateway in each AZ

• Public, private, and isolated subnets in each AZ

• One internet gateway

Having two AZs and two NAT Gateways ensures that all the services are still functioning in case
there is a failure in one of the two AZs. The three subnets in each AZ are meant to be used by
modules to allocate resources as needed.

• Public subnet for resources that require inbound and outbound connection to the internet via
internet gateway

• Private subnet for resources that require an outbound only connection to the internet via NAT
gateway

• Isolated subnet for resources that do not require any inbound or outbound connection to the
internet

Resources should be assigned a security group at the module level depending on their needs.

Virtual Private Cloud (VPC) 20

https://docs.aws.amazon.com/vpc/latest/privatelink/aws-services-privatelink-support.html

Connected Mobility Solution on AWS Implementation Guide

Auth Setup

Auth Setup module architecture

The Auth Setup module creates Secrets Manager secrets, which provide the configuration
information necessary for the CMS Auth module to communicate with any OIDC compliant IdP.

Auth Setup 21

Connected Mobility Solution on AWS Implementation Guide

This provides the ability to deploy CMS on AWS using your IdP. The IdP must be configured with
users, clients, a domain (issuer), and a resource server (audience).

This module also provides an optional deployment of Amazon Cognito infrastructure that is pre-
configured to serve as the IdP for the CMS on AWS deployment.

Each configuration secret is a known JSON structure with consistent key/value pairs expected
by CMS on AWS modules. The key structure is consistent regardless of deployment path, but the
values are populated dynamically. The three deployment paths are as follows:

• Deploy Amazon Cognito infrastructure – If choosing to deploy Amazon Cognito infrastructure,
the configuration JSONs will be pre-configured with values from the newly deployed Amazon
Cognito resources.

• Provide existing configs – During deployment, you are given the option to provide ARNs for zero
to all of the configuration secrets. If providing an existing secret ARN, a new secret will not be
created and no validation of the secret value's structure will be performed. The existing secret
will be configured to be used by the CMS on AWS deployment.

• Deploy config structure – During deployment, you are given the option to provide ARNs for
zero to all of the configuration secrets. If not providing an existing secret ARN, a new secret will
be created with the expected JSON structure. The values of this JSON structure will be empty
however and will need to be manually set for the CMS on AWS deployment's authentication to
function properly.

Since the choice to provide an existing secret ARN is individual to each config, the latter two
deployment paths can be combined in a single deployment for differing secrets.

Auth Setup 22

Connected Mobility Solution on AWS Implementation Guide

Automotive Cloud Developer Portal

Automotive Cloud Developer Portal architecture

The initial deployment of CMS on AWS includes the ACDP and Backstage, which assist in managing
the deployment of CMS on AWS modules. The ACDP provides a presentation layer through
the Backstage module, which you can use to select, configure, and deploy individual modules.
Backstage also allows for monitoring and teardown of these modules, as well as viewing of module
documentation. Backstage integrates with AWS CodeBuild for deployment execution. The ACDP is
a powerful platform that enables flexibility and quick insights into deployed infrastructure.

Deploying the ACDP creates and configures an AWS CodePipeline for deploying the Backstage
module. The pipeline is configured with the necessary environment to carry out the Backstage
deployment. Values for this configuration are taken from the local environment of the ACDP
deploy, which is configured via Make. An Amazon ECR repository is created and permissions are
shared between it and the Backstage pipeline.

The pipeline then handles the deployment of the Backstage module in three stages. These stages
are abstracted from the previous diagram:

1. Source - Sources the Backstage source code from an Amazon S3 bucket.

2. Build – Builds the Backstage docker image and pushes it to the private Amazon ECR repository.

3. Deploy - Deploys the Backstage module stack.

Automotive Cloud Developer Portal 23

https://www.gnu.org/software/make/

Connected Mobility Solution on AWS Implementation Guide

Once deployed, you can then use the Backstage module to deploy CMS on AWS modules.

Backstage module

Backstage module architecture

CMS on AWS uses Backstage as the preferred approach for deploying its modules. The Backstage
module is deployed and configured to deploy within the provided VPC and requires an Amazon
Route 53 hosted zone. This hosted zone is specified in the deployment parameters as the host for
the Backstage portal (see Create an Amazon Route 53 Hosted Zone). CMS on AWS modules can
then be deployed directly from the Backstage portal (see Deploy CMS Modules via Backstage).
When deploying the Backstage module, an Amazon Cognito user pool is created with an initial user
to enable authorization to the Backstage console supported by the Amazon Route 53 hosted zone.

The ACDP module contains two main parts: the AWS Infrastructure required by the Backstage
deployment pipeline, and a Pipeline to build and deploy a copy of Backstage in the specified
account. The infrastructure deployed by the pipeline includes an Amazon ECS Fargate job to run

Backstage module 24

Connected Mobility Solution on AWS Implementation Guide

Backstage's Docker image and Aurora PostgreSQL-Compatible Edition database, an Amazon S3
bucket that acts as the Backstage catalog, the Amazon Route 53 domain setup, and an Amazon
Cognito authentication setup. This infrastructure makes up the Backstage module.

Backstage uses an Amazon VPC (Virtual Private Cloud) to create a private network to help protect
some of its resources. Specifically, Backstage uses the following resources within its VPC:

• ELB – The Application Load Balancer connects with the Amazon Route 53 domain, as well as the
Backstage Fargate service, to help orchestrate and balance tasks.

• Amazon ECS – Creates a cluster, combined with AWS Fargate, to group task definitions and
provide the container image through Amazon ECR.

• Amazon ECR – Stores the Backstage image to be supplied to the docker container associated
with the AWS Fargate task definitions.

• AWS Fargate – Combined with Amazon ECS, allows for defining task definitions with associated
containers, and running those containers without needing to manage Amazon EC2 instances.

• Amazon Aurora PostgreSQL – The relational database used by Backstage.

The Backstage module is integrated with AWS CodeBuild to enable its deployment functionality.
The module deploys with pre-registered Backstage templates for each of the CMS on AWS
modules. Deploying a CMS on AWS module through the Backstage UI requires providing required
parameters, and in some cases, deploying the modules in the right order as shown in the
deployment diagram. When a Backstage component is deployed, it uses the template.yaml file
to instruct the process and performs the following steps:

1. Copy required deployment assets and docs to the Amazon S3 catalog bucket.

2. Write the module's catalog info to the Amazon S3 catalog bucket.

3. Register the module within the Backstage module's catalog.

4. Configure the ACDP deployment backend to be able to deploy the module.

After creating the catalog-info.yaml, deployment progress can be monitored on the CI/CD tab
of the Backstage Catalog Item.

Lastly, the Backstage module can be used to view documentation related to each module directly
from within the portal. These docs are included in the assets that are built and uploaded to
Amazon S3 for use by Backstage.

Backstage module 25

Connected Mobility Solution on AWS Implementation Guide

Auth module

Auth module 26

Connected Mobility Solution on AWS Implementation Guide

Auth module architecture

The Auth module provides the means for CMS on AWS users and services to authenticate and
authorize themselves for use with CMS on AWS APIs and portals. Users signed up with the identity
provider can request authorization codes or access tokens from the authorization server via
authorization code flow, or implicit flow. Services can request access tokens from the authorization
server via client-credentials flow. In either case, the access token will then be validated by the
identity provider resource server to grant access to CMS on AWS APIs. Access tokens can also be
used to grant access to bespoke implementations of CMS on AWS front-end portals.

These authentication flows and functionality are supported via two Lambda functions deployed by
the Auth module: the token validation and token exchange Lambda functions.

The token validation Lambda function implements a JWT validation flow that is defined by
the standard OAuth2.0 protocol This validation can be done for both user and service access tokens
and is performed as follows:

1. Validate the integrity of the JWT signature.

2. Check the token expiration.

3. Authorize the token's claims and scope against the identity provider configuration provided by
the Auth Setup module.

Note

The details of this process are abstracted from the diagram above.

The token exchange Lambda function implements an authorization code exchange, defined by
the authorization code flow, to retrieve an access token from the /token endpoint. The access
tokens can then be used to authenticate and authorize users against CMS on AWS APIs. The token
exchange Lambda function communicates with the authorization server, specified in the identity
provider config secret, to verify the integrity of the authorization code against the associated
identity provider.

The token exchange Lambda function allows for usage of an optional Proof Key for Code
Exchange (PKCE) code verifier to protect against injection attacks, which could intercept the access
token.

Auth module 27

https://docs.oracle.com/cd/E55956_01/doc.11123/oauth_guide/content/oauth_validate_token.html
https://oauth.net/2/pkce/
https://oauth.net/2/pkce/

Connected Mobility Solution on AWS Implementation Guide

Vehicle Provisioning module

Vehicle Provisioning module architecture

The Vehicle Provisioning module defines, creates, and manages the certificates, policies, and
vehicle profiles for registered vehicles. This module allows vehicles to register with AWS IoT Core
using a secure communication system encrypted with the TLS v1.2 protocol. On deployment,
the module generates a unique claim certificate to allow vehicle registration. Registered vehicles
receive credentials to allow connections to AWS IoT Core.

This module uses the fleet provisioning by claim workflow which is supported by AWS IoT Core.
When the CloudFormation stack is created or updated, a custom resource Lambda function
initiates, configuring AWS IoT Core to enable AWS IoT Core thing events for detecting vehicle
registrations. The custom resource function retrieves an existing claim certificate and private
key from AWS Secrets Manager. If not found, the claim certificate and private key are created,
activated, and stored in AWS Secrets Manager. The claim certificate has an attached provisioning
template that configures AWS IoT Core thing, certificate, and policy creation.

Vehicle Provisioning module 28

https://docs.aws.amazon.com/iot/latest/developerguide/transport-security.html

Connected Mobility Solution on AWS Implementation Guide

After setup, a user can connect to AWS IoT Core using the claim certificate, private key, and
Amazon Root CA, which is used to sign the claim certificate. After connecting, the user can retrieve
a new unique certificate and private key for registering the vehicle.

To register the vehicle, the solution calls the AWS IoT Core RegisterThing endpoint with
credentials. Starting the registration process invokes the pre-provision Lambda function, which
completes the following:

1. Finds existing certificates for this vehicle in the ProvisionedVehicles DynamoDB table. If
certificates are found and not already INACTIVE, the function deactivates them and updates
the ProvisionedVehicles records to reflect the change.

2. Creates a record in the ProvisionedVehicles DynamoDB table for the new combination of
Vehicle Identification Number (VIN) and certificate in the PENDING_ACTIVATION status.

3. Searches for the vehicle in the AuthorizedVehicles DynamoDB table. If the vehicle is not
found, the solution prevents registration by deleting the certificate.

4. Returns a registration-allowed Boolean.

If provisioning was allowed for this vehicle, AWS IoT Core creates or updates the thing for this
vehicle. The certificate for this vehicle is activated, and a policy is created and attached to the
certificate. This policy is defined in the provisioning template.

Continuing the registration process creates an AWS IoT Core thing that invokes a post-provision
Lambda function, which completes the following:

1. Updates the new certificate's status to ACTIVE in the ProvisionedVehicles DynamoDB
table.

2. Deletes this vehicle's INACTIVE certificates from AWS IoT Core.

3. Deletes certificates' record in the ProvisionedVehicles DynamoDB table.

After a registered vehicle connects to AWS IoT Core, the vehicle can then publish to the
vehicleactive AWS IoT MQTT topic to signal a successful connection to the solution. Messages
to this topic invoke the initial-connection Lambda function, which flips a Boolean for the
vehicle record to indicate that the vehicle has successfully connected with their certificate at least
one time.

Vehicle Provisioning module 29

https://www.amazontrust.com/repository/
https://docs.aws.amazon.com/iot/latest/developerguide/pre-provisioning-hook.html

Connected Mobility Solution on AWS Implementation Guide

Note

Publishing to the vehicleactive topic is not an automatic part of registration, and is not
implemented as a part of the solution.

CMS Connect and Store module

CMS Connect and Store module 30

Connected Mobility Solution on AWS Implementation Guide

CMS Connect and Store module architecture

The CMS Connect and Store module is the primary data lake for the solution. This module provides
the collection of telemetry data payloads from well-defined AWS IoT MQTT topics. Data is stored
in an Amazon S3 bucket in both JSON and Apache Parquet format. Centralizing all CMS on AWS
telemetry data into a single data lake enables CMS on AWS modules to retrieve data without
needing to interface with AWS IoT Core directly.

A single Amazon S3 bucket acts as the data lake within the module. The Amazon S3 objects are
prefixed with the timestamp, data format, and vehicle identifier.

This module uses three AWS IoT rules. Two of those rules subscribe to a broad AWS IoT MQTT
topic invoked on vehicle data ingestion. The first rule invokes an action property that writes the
JSON payload to the appropriate Amazon S3 bucket. The second rule invokes an action property
which passes the payload to Amazon Data Firehose. A delivery stream validates and transforms the
payload using AWS Glue. The stream then writes the Parquet-formatted payload to the appropriate
Amazon S3 bucket. Using Firehose allows the CMS Connect and Store module to handle a high
throughput of telemetry data payloads. The third rule subscribes to a broad MQTT topic, which
can be invoked by vehicle emission. This rule delivers the received notification to the intended CMS
Alerts API, which forwards the notification to the appropriate destination.

CMS Connect and Store module 31

https://aws.amazon.com/firehose/
https://aws.amazon.com/glue/

Connected Mobility Solution on AWS Implementation Guide

API module

API module architecture

The API module provides the ability for users and services to query data stored by the solution.
This is done by leveraging an AWS AppSync GraphQL API that integrates with the default CMS
on AWS data lake deployed from the CMS Connect and Store module. You can integrate it with
a data lake or resources external to the solution or pre-built modules by changing the module's
configuration.

The AWS AppSync API uses Amazon Athena with a Lambda resolver data source, allowing the data
to be queried the moment it is stored in the solution. This provides a near real-time representation
of the state of vehicles.

By default, the CMS API module integrates with the CMS Connect and Store module's Amazon S3
bucket as its data source and the CMS Auth module's IdP for authorization on API requests.

API module 32

Connected Mobility Solution on AWS Implementation Guide

The following steps explain how a request to the API is handled:

1. The client makes a valid GraphQL request to the API endpoint with a bearer token provided in
the authorization header. The bearer token should be an access token obtained from the token
endpoint of the configured IdP.

2. The token must be validated and authorized against the chosen IdP's user pool (this
functionality is available via the CMS Auth module). Further authorization logic can determine
whether the user has permission for the operations and fields selected.

3. Once authorized, the context of the GraphQL query is sent to a Lambda resolver. The resolver
builds and invokes an Amazon Athena query using the selected fields and provided arguments.

4. Amazon Athena uses the configured AWS Glue table to query the vehicle data from the data
lake, and store the results in a separate Amazon S3 bucket.

5. The Lambda resolver parses the results into JSON format and returns them to AWS AppSync.

6. The AWS AppSync API receives the results and returns them to the client.

Alerts module

Alerts module architecture

The Alerts module enables CMS on AWS and customer implemented modules to send alerts to
subscribed users, and allows users to manage their alert subscriptions. This is done by leveraging
two AWS AppSync GraphQL API operations; one for user subscription management and another for

Alerts module 33

https://aws.amazon.com/appsync/
https://graphql.org/learn/

Connected Mobility Solution on AWS Implementation Guide

publishing messages to user subscribed Amazon SNS topics. The CMS Alerts module requires the
CMS Auth module as a prerequisite to authenticate API requests.

The user subscription AWS AppSync API uses Amazon DynamoDB with a Lambda resolver data
source. This Lambda function stores user subscription information in a DynamoDB table as well as
subscribes and unsubscribes users from an Amazon SNS topic.

The following steps explain how a request to the user subscription API is handled (left to right in
diagram):

1. The client makes a valid GraphQL request to the API endpoint with a bearer token provided in
the authorization header. The bearer token should be an access token obtained from the token
endpoint of the configured IdP.

2. The token must be validated and authorized against the chosen IdP's user pool (this
functionality is available via the CMS Auth module). Further authorization logic can determine
whether the user has permission for the operations and fields selected.

3. Once authorized, the context of the GraphQL query is sent to a Lambda resolver. The resolver
updates the user's subscription preferences on Amazon SNS and makes a corresponding update
to the DynamoDB table.

4. The Lambda resolver parses the results into JSON format and returns them to AWS AppSync.

5. The AWS AppSync API receives the results and returns them to the client.

The publish API endpoint uses a Lambda function as its data source. When a CMS on AWS module
sends a request, the Lambda function relays the message through the system.

The following steps explain how a request to the publish API is handled (left to right in diagram):

1. The client makes a valid GraphQL request to the API endpoint with a bearer token provided in
the authorization header. The bearer token should be an access token obtained from the token
endpoint of the configured IdP.

2. The token must be validated and authorized against the chosen IdP's user pool (this
functionality is available via the CMS Auth module). Further authorization logic can determine
whether the user has permission for the operations and fields selected.

3. Once authorized, the context of the GraphQL query is sent to a Lambda resolver. The Lambda
resolver publishes this message to the central Amazon SNS topic, which notifies the central
Amazon Simple Queue Service (Amazon SQS) queue.

Alerts module 34

https://docs.aws.amazon.com/sns/latest/dg/sns-create-topic.html
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/sqs/

Connected Mobility Solution on AWS Implementation Guide

4. This queue triggers the create-alerts Lambda function, which stores this message in a
notifications DynamoDB table.

5. This DynamoDB table has a DynamoDB stream enabled, which notifies a send-notifications
Lambda function about the changes in the DynamoDB table.

6. The send-notifications Lambda function publishes all the notifications in the stream to
their corresponding Amazon SNS topics.

7. The users subscribed to these Amazon SNS topics receive an email notification.

EV Battery Health module

EV Battery Health module 35

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html

Connected Mobility Solution on AWS Implementation Guide

EV Battery Health module architecture

The EV Battery Health module implements an Amazon Managed Grafana workspace to facilitate
visualizing and alerting based on vehicle telemetry data. The workspace is created with AWS IAM
Identity Center authentication. The workspace uses Amazon Athena as its query engine for panels
and alerts, with queries written in ANSI SQL. The Amazon Managed Grafana console is used to add
users to the workspace and assign users to Admin, Editor, or Viewer roles.

After deployment, the solution creates an Admin API key for the workspace, which allows creating
and updating the dashboard panels and alert rules. Amazon Managed Grafana API keys expire in
30 days, so the API key is stored in Secrets Manager and rotated every 29 days. The workspace is
provisioned with unified alerting to leverage the alerting capabilities of Amazon Managed Grafana.

The EV battery health dashboard contains gauge panels for Remaining Useful Life (%), Remaining
Charge (%), Average Temperature (C°), and Current Voltage (V). The solution creates stat panels
to visualize the remaining driving range from battery and hybrid energy sources. The solution also
creates a time series graph panel, which shows the historical data for the Remaining Useful Life
(%) of the battery. The dashboard can be parameterized by VIN, allowing data to be visualized for
each vehicle by selecting its corresponding VIN from the dropdown at the top of the dashboard.
The dashboard data model is stored in a versioned and encrypted Amazon S3 bucket, which uses
an event-driven approach to invoke a Lambda function if the data model object is modified. This
facilitates modifying the dashboard data model post deployment without having to update the
deployment itself.

The solution creates alert rules to send an alert message whenever the remaining charge or
remaining useful life of the battery drops below a configurable threshold. A time series query is
run, and the results of the query are reduced to a single value by a reducer function. The reduced
value is then compared with a threshold and evaluated for whether the queried data violates the
alert rule.

You can configure alert rules as to how often they evaluate queries, and how long they should
wait before firing an alert. If the alert rule is breached, the solution sends an alert message to an
Amazon SNS topic. The Amazon SNS topic has a Lambda function subscriber that processes the
alert messages. The solution sends messages to the alerts endpoint exposed by the CMS Alerts
module. The API call to the CMS Alerts module is authenticated by an access token obtained
through the client credentials flow, using the service app client provided by the CMS Auth module.

The deployment of the CMS EV Battery Health module uses the AWS CDK library to create
the CloudFormation template. CDK support for Amazon Managed Grafana is limited as it is a

EV Battery Health module 36

https://blog.ansi.org/sql-standard-iso-iec-9075-2023-ansi-x3-135/
https://grafana.com/blog/2021/06/14/the-new-unified-alerting-system-for-grafana-everything-you-need-to-know/

Connected Mobility Solution on AWS Implementation Guide

relatively new service offering, which has a heavy reliance on custom resources during deployment.
Resource dependencies created outside the scope of the module are managed by Systems Manager
parameters. These parameters are then used in IAM Identity Center policies to give appropriate
permissions to other resources. The following steps are performed in the deployment:

• Create Amazon Managed Grafana workspace - An Amazon Managed Grafana workspace is
created with the authentication provider set to AWS IAM Identity Center.

• Create Amazon Managed Grafana API key - An Admin API key is created for the Amazon
Managed Grafana workspace and is stored in Secrets Manager.

• Create Amazon Athena data source – Amazon Athena is added as a data source to the
workspace with the Amazon S3, AWS Glue, and Amazon Athena resources used for storing and
indexing telemetry data taken as input to the module.

• Create dashboard – An Amazon S3 bucket to store Amazon Managed Grafana assets is created.
A custom resource creates the dashboard JSON data model and uploads it to the bucket. The
PutObject action in the bucket invokes a Lambda function, which calls the Amazon Managed
Grafana HTTP API to create the dashboard in the workspace.

• Provision alerting – The Amazon Managed Grafana workspace does not have alerting
capabilities by default. To support alerting, additional updates to the workspace configuration
are made with custom resources post-deploy.

• Create alert rules - A custom resource creates the alert rules JSON data model and uploads it
to the Amazon Managed Grafana assets bucket. The PutObject action in the bucket triggers a
Lambda function, which calls the Amazon Managed Grafana HTTP API to create the alert rules in
the workspace.

• Create alert contact points and notification policy – Alert rules must be configured with a
contact point (where the alert messages are routed to) and a notification policy (which alert rules
are routed to which contact points). The CMS EV Battery Health module uses Amazon SNS as the
contact point for alerts.

EV Battery Health module 37

Connected Mobility Solution on AWS Implementation Guide

Vehicle Simulator module

Vehicle Simulator module architecture

The Vehicle Simulator module helps customers test vehicle communication with AWS IoT Core
without the need for physical vehicles. This module provides a web-based GUI (Graphical user
interface) that allows customers to create and simulate fleets of connected vehicles.

Simulated fleets emit data payloads at configured intervals from either a user-defined template or
the default provided VSS schema. Simulated vehicles also onboard themselves with AWS IoT Core.
You can monitor the simulation and observe how CMS on AWS services are processing the data.

Vehicle Simulator module 38

Connected Mobility Solution on AWS Implementation Guide

The GUI for the CMS Vehicle Simulator module is hosted as a static webpage in Amazon S3 and
distributed through Amazon CloudFront. When deploying the module, an Amazon Cognito user
pool is created with an initial user to enable authorization.

A REST API is implemented through Amazon API Gateway and backed by Lambda functions. This
API provides functionality to create and store devices and simulations into DynamoDB tables.

Invoking the simulation API invokes the start of an AWS Step Functions workflow, which does the
following:

1. Maps device types to their corresponding payload configuration.

2. Retrieves payload configurations from a DynamoDB table.

3. Maps the total device count to Lambda function invocations.

4. For each Lambda function invocation, publishes the simulated payload to an AWS IoT MQTT
topic.

5. Checks the overall duration and if elapsed, goes to step 7. If not elapsed, goes to step 6.

6. Waits the configured delay interval, then repeats steps 4 and 5.

7. Updates the DynamoDB table to represent the finished simulation state.

Important

This module is designed to simulate data for testing. It is not recommended for production
environments.

Vehicle Simulator module 39

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/step-functions/

Connected Mobility Solution on AWS Implementation Guide

FleetWise Connector module

FleetWise Connector module architecture

The FleetWise Connector module provides the required resources and roles to consume data that
is captured by AWS IoT FleetWise campaigns. This is done by leveraging the Amazon Timestream's
Unload to S3 feature to migrate data to the CMS Connect & Store module's telemetry bucket on
a recurring interval, orchestrated by AWS Step Functions. The data is then indexed using an AWS
Glue Crawler job and made accessible via Amazon Athena.

In order for the CMS FleetWise Connector module to function, AWS IoT FleetWise must be
configured and running. When configuring an AWS IoT FleetWise Campaign, the data store must be
configured to the Timestream database, table, and role created by the CMS FleetWise Connector
module during deploy. This Timestream database and table are used by default for the Unload to
S3 operation. SSM parameters are created with the Timestream database, table, and role that can
be used in conjunction with automated scripting of AWS IoT FleetWise Campaign creation.

FleetWise Connector module 40

https://aws.amazon.com/iot-fleetwise/
https://aws.amazon.com/iot-fleetwise/

Connected Mobility Solution on AWS Implementation Guide

AWS services in this solution

AWS service Description

Amazon API Gateway Core. Hosts REST API endpoints in the
solution.

AWS AppSync Core. Provides GraphQL API endpoints in the
solution.

Amazon Athena Core. Performs queries on vehicle data stored
in Amazon S3.

AWS Certificate Manager (ACM) Core. Generates certificates used for validatio
n of HTTPS requests.

AWS Chalice Core. Framework used to define and deploy
the Vehicle Simulator module's API.

AWS CDK Core. Enables infrastructure as code for the
entirety of CMS on AWS.

AWS CloudFormation Core. Manages deployments for the solution
infrastructure.

Amazon CloudWatch Core. The solution's code and infrastructure
emit logs to Amazon CloudWatch.

AWS CodeBuild Core. Defines build steps to aid in deploying
and managing the solution.

AWS CodePipeline Core. Runs collections of AWS CodeBuild steps
for deploying and managing the solution.

Amazon DynamoDB Core. Primary non-relational data storage
used for vehicle and user records.

AWS services in this solution 41

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/appsync/
https://aws.amazon.com/athena/
https://aws.amazon.com/certificate-manager/
https://aws.github.io/chalice/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/dynamodb/

Connected Mobility Solution on AWS Implementation Guide

AWS service Description

AWS Glue Core. Validates and transforms JSON
formatted payloads of a specified schema into
Parquet format.

AWS IAM Core. Authorizes CMS on AWS resources and
users throughout solution via associated least-
privilege roles and policies.

AWS IoT Core Core. Primary service for onboarding and
connecting vehicles, as well as management of
those vehicles (things), their certificates, and
policies. Also used for data ingestion through
MQTT topics for communication between
modules.

AWS KMS Core. Encrypts data in transit and at rest
throughout the solution.

Amazon Data Firehose Core. High throughput writing and transform
ation of MQTT topic payloads to Amazon S3.

AWS Lambda Core. A variety of runtime logic with serverless
code throughout the solution.

Amazon Managed Grafana Core. Build dashboards and configure alerts
based on vehicle data stored in Amazon S3.

Parameter Store, a capability of AWS Systems
Manager

Core. Stores configuration level information
used throughout the solution.

AWS Secrets Manager Core. Stores and rotates secrets used
throughout the solution.

Amazon S3 Core. General purpose shared data storage
used throughout CMS on AWS.

AWS services in this solution 42

https://aws.amazon.com/glue/
https://aws.amazon.com/iam/
https://aws.amazon.com/iot-core/
https://aws.amazon.com/kms/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/lambda/
https://aws.amazon.com/grafana/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/s3/

Connected Mobility Solution on AWS Implementation Guide

AWS service Description

Amazon SNS Core. Used to publish and subscribe to
messages.

Amazon SQS Core. Used to deliver messages between
modules.

AWS Step Functions Core. Orchestrates and manages Lambda
functions throughout solution.

Amazon Timestream Core. Timestream database used within the
FleetWise Connector module.

Amazon VPC Core. Networking boundary used throughout
the solution.

Aurora PostgreSQL-Compatible Supporting. Database used to aid with
deployment.

Amazon CloudFront Supporting. Provides a domain name to serve
static web content and reduce latency of API
endpoints.

Amazon ECS Supporting. Simplifies the deployment,
management, and scaling of the Backstage
 module.

Amazon ECR Supporting. Image repository for Dockerized
containers used by the Backstage module.

ELB Supporting. Provides network connections to
Amazon ECS tasks running Backstage to aid
with deployment.

Amazon EventBridge Supporting. Used within the FleetWise
Connector module for scheduled execution of
the Step Functions flow.

AWS services in this solution 43

https://aws.amazon.com/sns/
https://aws.amazon.com/sqs/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/timestream/
https://aws.amazon.com/vpc/
https://aws.amazon.com/rds/aurora/serverless/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ecr/
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/eventbridge/

Connected Mobility Solution on AWS Implementation Guide

AWS service Description

AWS IoT Fleetwise Supporting. Used by the FleetWise Connector
module.

AWS Fargate Supporting. Combined with ECS, aids in
management of EC2 instances within the
Backstage module.

Amazon IAM Identity Center Supporting. Service that provides authentic
ation for the Amazon Managed Grafana
workspace.

Amazon Route 53 Supporting. Domain hosting integration used
by the Backstage module.

AWS X-Ray Supporting. Traces runs of the AWS Step
Functions.

Amazon Cognito Optional. Authenticates users and internal
services across the solution.

Amazon Location Service Optional. Geographical functionality for the
Vehicle Simulator module.

AWS services in this solution 44

https://aws.amazon.com/iot-fleetwise/
https://aws.amazon.com/fargate/
https://aws.amazon.com/iam/identity-center/
https://aws.amazon.com/route53/
https://aws.amazon.com/xray/
https://aws.amazon.com/cognito/
https://aws.amazon.com/location/

Connected Mobility Solution on AWS Implementation Guide

Plan your deployment

This section describes the cost, security, Regions, and other considerations prior to deploying the
solution.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of this
revision, the cost for running this solution with the default settings in the US East (N. Virginia) is
approximately $352.80 a month.

See the pricing webpage for each AWS service used in this solution.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, see the pricing webpage for each AWS service used in this
solution.

CMS on AWS static cost tables

CMS on AWS total

AWS service Amount Dimensions Cost [USD]

Amazon VPC 17 Endpoints in 2 AZs

2 NAT gateways $314.00

AWS KMS 27 Customer managed
keys

$27.00

AWS Secrets Manager 7 Sensitive data stored
in secrets

$2.80

Amazon Managed
Grafana

1 1 Workspace × API
license

$9.00

Total $352.80 / month

Cost 45

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-create.html
aws-services-in-this-solution
aws-services-in-this-solution

Connected Mobility Solution on AWS Implementation Guide

Config module

AWS service Amount Dimensions Cost [USD]

Total $0.00 / month

VPC module

AWS service Amount Dimensions Cost [USD]

Amazon VPC 17 Endpoints in 2 AZs

2 NAT gateways $314.00

Total $314.00 / month

Auth Setup module

AWS service Amount Dimensions Cost [USD]

AWS Secrets Manager 3 PostgreSQL secret $1.20

Total $1.20 / month

Automotive Cloud Developer Portal

AWS service Amount Dimensions Cost [USD]

AWS KMS 5 Customer managed
keys

$5.00

Total $5.00 / month

Backstage module

CMS on AWS static cost tables 46

Connected Mobility Solution on AWS Implementation Guide

AWS service Amount Dimensions Cost [USD]

AWS KMS 1 Customer managed
keys

$1.00

AWS Secrets Manager 2 PostgreSQL secret $0.80

Total $1.80 / month

Auth module

AWS service Amount Dimensions Cost [USD]

Total $0.00 / month

Vehicle Provisioning module

AWS service Amount Dimensions Cost [USD]

AWS KMS 2 Customer managed
keys

$2.00

AWS Secrets Manager 1 Claim certificate
created on deploy

$0.40

Total $2.40 / month

CMS Connect and Store module

AWS service Amount Dimensions Cost [USD]

AWS KMS 3 Customer managed
keys

$3.00

Total $3.00 / month

CMS on AWS static cost tables 47

Connected Mobility Solution on AWS Implementation Guide

API module

AWS service Amount Dimensions Cost [USD]

AWS KMS 1 Customer managed
keys

$1.00

Total $1.00 / month

Alerts module

AWS service Amount Dimensions Cost [USD]

AWS KMS 7 Customer managed
keys

$7.00

Total $7.00 / month

EV Battery Health module

AWS service Amount Dimensions Cost [USD]

AWS KMS 3 Customer managed
keys

$3.00

AWS Secrets Manager 1 Amazon Managed
Grafana API key
secret

$0.40

AWS Grafana 1 1 Workspace x API
license

$9.00

Total $12.40 / month

Vehicle Simulator module

CMS on AWS static cost tables 48

Connected Mobility Solution on AWS Implementation Guide

AWS service Amount Dimensions Cost [USD]

AWS KMS 2 Customer managed
keys

$2.00

Total $2.00 / month

FleetWise Connector module

AWS service Amount Dimensions Cost [USD]

AWS KMS 3 Customer managed
keys

$3.00

Total $3.00 / month

Example costs

This solution provides zero-cost-on-no-use. Consider the following use cases:

Use case 1 - Solution deployed for 100 devices connected with little to no analytics run.

Service Configuration summary Monthly Cost [USD]

MQTT Number of devices (MQTT)
(100), Average size of each
message (5 KB), Average
size of each record (1 KB),
Average size of each record
(1 KB), Average number of
actions applied per rule (2),
Average size of each message
(5 KB), Average number of
connection minutes for a
device (24000), Number

$ 2.59

Example costs 49

Connected Mobility Solution on AWS Implementation Guide

Service Configuration summary Monthly Cost [USD]

of messages for a device
(24000), Number of rules
initiated (5).

S3 Standard S3 Standard storage (1 GB
per month), PUT, COPY,
POST, LIST requests to S3
Standard (720), GET, SELECT,
and all other requests from
S3 Standard (720), Data
returned by S3 Select (1 GB
per month), Data scanned by
S3 Select (4 GB per month).

$ 0.04

Amazon Data Firehose Source Type (Direct PUT
or Kinesis Data Stream),
Data records units (exact
number), Record size (5
KB), Dynamic Partitioning
(Add On) (Enabled), Data
format conversion (optional
) (Enabled), Average ratio
of data processed to VPC vs
data ingested (1.3), Number
of records for data ingestion
(1200 per day), Number of
subnets for VPC delivery (0),
Average size objects delivered
(64 MB), JQ Processing
(optional) (Enabled), Average
JQ expected processing hours
(70).

$ 4.91

Example costs 50

Connected Mobility Solution on AWS Implementation Guide

Service Configuration summary Monthly Cost [USD]

Amazon Athena Amount of data scanned per
query (1 GB), Total number of
queries (100 per day)

$ 14.85

DynamoDB on-demand
capacity

Table class (Standard
), Average item size (all
attributes) (3 KB), Data
storage size (0.1 GB)

$ 0.05

Amazon CloudFront Data transfer out to internet
(1 GB per month), Number of
requests (HTTPS) (1000 per
month).

$ 0.09

Amazon CloudWatch Standard Logs: Data Ingested
(0.1 GB), Logs Delivered
to CloudWatch Logs: Data
Ingested (0.1 GB), Logs
Delivered to Amazon S3: Data
Ingested (0.1 GB), Number
of Lambda functions (20),
Number of requests per
function (10 per day).

$ 48.13

Amazon Cognito Number of monthly active
users (MAU) (100), Advanced
security features (Enabled)

$ 5.00

Amazon Managed Grafana Number of active editors/
administrators (1 per
workspace per month),
Number of active viewers (5
per workspace per month).

$ 34.00

Example costs 51

Connected Mobility Solution on AWS Implementation Guide

Service Configuration summary Monthly Cost [USD]

Standard topics DT Inbound: Not selected (0
TB per month), DT Outbound:
 Not selected (0 TB per
month), Requests (10000 per
month), EMAIL/EMAIL-JSON
Notifications (10000 per
month), Mobile Push Notificat
ions (20000 per month).

$ 0.19

AWS AppSync API Request Number of API Requests (10
thousand per month).

$ 0.04

Total $ 109.89

Use case 2 - Solution deployed with the following parameters.

1. Cost estimated for 1 million vehicles.

2. Certificates are rotated annually. Consider exploring non-AWS options to host your own
Certificate Authority (CA).

3. A baseline of 10 alerts per vehicle per day.

4. Data ingestion to the cloud, approximately 10MB per vehicle per day.

5. 50 signals per second (2,000) per vehicle for 5x20 hours a month – 5KB of data per minute;
maintaining the message size at or below 5KB is recommended to save costs.

6. Monitoring of 100 Diagnostic Trouble Codes (DTC) per vehicle per month for vehicle health
monitoring.

7. 10-15 trips per vehicle per day, with 1MB of vehicle data stored in DynamoDB storage. Historical
data will be exported to Amazon S3. Vehicle profile data will reside in DynamoDB, while all
vehicle-generated data will be stored in Amazon S3.

8. 100 Simple Notification Service (Amazon SNS) notification requests per vehicle per day,
alongside 20 mobile push notifications per vehicle per day.

9. Five Dashboard editors and 50 viewers for Grafana.

Example costs 52

Connected Mobility Solution on AWS Implementation Guide

10.In the context of DevSecOps, we anticipate retaining logs for a period of three months. Please
be aware that the cost of CloudWatch will increase because we are obligated to retain logs for
more than one month, with a minimum retention period of three months.

11.The cost of Amazon S3 includes the monthly cost of Standard S3, which amounts to $4,000.00
every month.

AWS service Dimensions Monthly Cost [USD]

MQTT Number of devices (MQTT)
(1200000), Average size of
each message (5 KB), Average
size of each record (1 KB),
Average size of each record
(1 KB), Average number of
actions taken per rule (2),
Average size of each message
(5 KB), Average number of
connection minutes for a
device (28000), Number
of messages for a device
(28000), Number of rules
triggered (5)

$ 26,910.7

S3 Standard S3 Standard storage (10 TB
per month), PUT, COPY, POST,
LIST requests to S3 Standard
(920000000), GET, SELECT,
and all other requests from
S3 Standard (920000000),
Data returned by S3 Select (5
TB per month), Data scanned
by S3 Select (8 TB per month)

$ 5,249.09

Amazon Data Firehose Source Type (Direct PUT
or Kinesis Data Stream),
Data records units (exact

$ 11,679.87

Example costs 53

Connected Mobility Solution on AWS Implementation Guide

AWS service Dimensions Monthly Cost [USD]

number), Record size (5
KB), Dynamic Partitioning
(Add On) (Enabled), Data
format conversion (optional
) (Enabled), Average ratio
of data processed to VPC vs
data ingested (1.3), Number
of records for data ingestion
(1200000000 per day),
Number of subnets for VPC
delivery (0), Average size
objects delivered (64 MB),
JQ Processing (optional
) (Enabled), Average JQ
expected processing hours
(70)

Amazon Athena Amount of data scanned
per query (100 GB), Total
number of queries (110000
per month)

$ 53,710.94

DynamoDB on-demand
capacity

Table class (Standard
), Average item size (all
attributes) (3 KB), Data
storage size (10 GB)

$ 185.00

Amazon CloudFront Data transfer out to internet
(1 TB per month), Number of
requests (HTTPS) (60000 per
month), Data transfer out to
origin (1 TB per month)

$ 107.58

Example costs 54

Connected Mobility Solution on AWS Implementation Guide

AWS service Dimensions Monthly Cost [USD]

Amazon CloudWatch Standard Logs: Data Ingested
(1 TB), Logs Delivered to
CloudWatch Logs: Data
Ingested (10 GB), Logs
Delivered to S3: Data
Ingested (10 GB), Number
of Lambda functions (20),
Number of requests per
function (10000 per day)

$ 575.64

Amazon Cognito Number of monthly active
users (MAU) (100), Advanced
security features (Enabled)

$ 5.00

Amazon Managed Grafana Number of active editors/
administrators (5 per
workspace per month),
Number of active viewers (50
per workspace per month)

$ 295.00

Standard topics Requests (200 million per
month), EMAIL/EMAIL-JSON
Notifications (200 million per
month), Mobile Push Notificat
ions (20 million per month)

$ 4,109.48

AWS AppSync API Request Number of API Requests (300
million per month)

$ 1,200.00

Amazon Elastic Container
Registry

DT Inbound: All other
regions (1 TB per month), DT
Outbound: Not selected (0 TB
per month), Amount of data
stored (280 GB per month)

$ 28.00

Total $ 104,056.30

Example costs 55

Connected Mobility Solution on AWS Implementation Guide

Note

The price is based on public pricing as displayed in the AWS Price Calculator. Customers
may have a special pricing agreement based on reserve capacity and negotiated rates with
AWS.

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

Important

This solution is not designed to handle personally identifiable information (PII). See PII data
for more information.

Authentication and authorization

All CMS on AWS API operations are protected through authentication requirements for both users
and services. Both users and services must provide a valid access token associated with the IdP
configured within the solution. By allowing customers to use their own identity provider, they have
full control over the configuration of their authentication system.

All JWTs used for authentication and authorization are validated through protocol defined by
OAuth2.0 standards. For more details, see Auth module.

The authentication flow is protected against security risks and attacks by implementing a variety of
safety procedures. These include the use of client secrets for both the user and service app client,
an optional PKCE code verifier for user authentication, and the use of the authorization code flow
for user authentication.

Security 56

https://calculator.aws/#/estimate?id=00fc0acf41e884b8cd5677634790f9ccd33e4945
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/security/
https://auth0.com/docs/secure/tokens/access-tokens/validate-access-tokens
https://oauth.net/2/pkce/

Connected Mobility Solution on AWS Implementation Guide

Amazon CloudFront

This solution deploys a web console hosted in an Amazon S3 bucket. To help reduce latency and
improve security, this solution includes a CloudFront distribution with an origin access identity,
which is a CloudFront user that provides public access to the solution's website bucket contents.
For more information, see Restricting access to an Amazon S3 origin in the Amazon CloudFront
Developer Guide.

Amazon CloudFront is deployed using the default CloudFront domain name and TLS certificate.
The default CloudFront SSL certificate only supports TLSv1. To use a later TLS version, use your
own custom domain name and custom SSL certificate. For more information, refer to Using
alternate domain names and HTTPS in the Amazon CloudFront Developer Guide.

Amazon API Gateway

This solution deploys an Amazon API Gateway REST API and uses the default API endpoint and SSL
certificate. The default API endpoint only supports TLSv1. To use a later version of TLS, use your
own domain name and custom SSL certificate. For more information, refer to Choosing a minimum
TLS version for a custom domain in API Gateway in the Amazon API Gateway Developer Guide.

Security groups

The security groups created in this solution are designed to control and isolate network traffic
between the Amazon ECS tasks, an Amazon Aurora PostgreSQL database, and client requests. We
recommend that you review the security groups and further restrict access as needed after the
deployment is complete.

PII data

This solution is not designed with the advanced security protocols necessary to store, process, or
handle PII. All data is encrypted in-transit and at rest; however, this solution doesn't vet or filter
incoming data for PII elements. As a result, you must ensure that no PII is included in the data
transmitted.

Customer managed AWS KMS keys

This solution uses encryption at rest for securing data and employs customer managed keys for
customer data and AWS managed keys for AWS service data. These keys are used to automatically

Amazon CloudFront 57

https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteHosting.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/private-content-restricting-access-to-s3.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-alternate-domain-names.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-alternate-domain-names.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-custom-domain-tls-version.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-mgmt

Connected Mobility Solution on AWS Implementation Guide

and transparently encrypt your data before it is written to storage layers. Some users might prefer
to have more control over their data encryption processes. This approach allows you to administer
your own security credentials, offering a greater level of control and visibility.

AWS WAF

This solution's default configuration doesn't deploy a web application firewall (WAF) in front of the
API endpoints. To enhance your API security by setting up a WAF, you must do so manually. AWS
provides an in-depth guide on how you can control access to your API Gateway with AWS WAF. For
instructions on how to implement AWS WAF in front of your API and increase distributed denial of
service (DDoS) protection for your web applications, see Using AWS WAF to protect your APIs.

Supported AWS Regions

For the most current availability of AWS services by Region, see the AWS Regional Services List.

Connected Mobility Solution on AWS is supported in the following AWS Regions:

Region name

US East (Ohio) Asia Pacific (Tokyo)

US East (N. Virginia) Asia Pacific (Sydney)

US West (Oregon) Europe (Frankfurt)

Europe (Ireland)

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Quotas for AWS Services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution. For more
information, see AWS service quotas.

AWS WAF 58

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

Connected Mobility Solution on AWS Implementation Guide

Use the following links to go to the page for that service. To view the Service Quotas for all AWS
services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

AWS CloudFormation quotas

Your AWS account has CloudFormation quotas that you should be aware of when deploying this
solution. By understanding these quotas, you can avoid limitation errors that would prevent you
from deploying this solution successfully. For more information, see AWS CloudFormation quotas
in the AWS CloudFormation User's Guide.

AWS CloudFormation quotas 59

https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

Connected Mobility Solution on AWS Implementation Guide

Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment. The
CloudFormation templates specify the AWS resources included in this solution and their properties.
The CloudFormation stack provisions the resources that are described in the templates.

Deployment process overview

Follow the instructions in this section to configure and deploy CMS on AWS into your account, and
learn how to deploy CMS on AWS modules through Backstage.

Before you launch the solution, review the cost, architecture, network security, and other
considerations discussed earlier in this guide.

Time to deploy: Approximately 30–45 minutes

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and
products. AWS owns the data gathered through this survey. Data collection is subject to the
AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the Anonymized data
collection section of this guide.

AWS CloudFormation templates

You can download the CloudFormation template for this solution before deploying it.

acdp.template - Use this template to deploy the module and all associated components. The
default configuration deploys the services found in the Automative Cloud Developer Portal
section, but you can customize the template to meet your specific needs.

Deployment process overview 60

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://aws.amazon.com/privacy/
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/acdp/acdp.template

Connected Mobility Solution on AWS Implementation Guide

auth.setup.template - Use this template to deploy the module and all associated components. The
default configuration deploys the services found in the Auth Setup module section, but you can
customize the template to meet your specific needs.

cms-api.template - Use this template to deploy the module and all associated components. The
default configuration deploys the services found in the API module section, but you can customize
the template to meet your specific needs.

cms-ev-battery-health.template - Use this template to deploy the module and all associated
components. The default configuration deploys the services found in the EV Battery Health module
section, but you can customize the template to meet your specific needs.

cms-auth.template - Use this template to deploy the module and all associated components.
The default configuration deploys the services found in the Auth module section, but you can
customize the template to meet your specific needs.

cms-sample.template - Use this template for integrating custom modules.

cms-vehicle-simulator.template - Use this template to deploy the module and all associated
components. The default configuration deploys the services found in the Vehicle Simulator module
section, but you can customize the template to meet your specific needs.

AWS CloudFormation templates 61

https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/auth-setup/auth-setup.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-api/cms-api.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-ev-battery-health.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-auth/cms-auth.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-sample/cms-sample.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-vehicle-simulator/cms-vehicle-simulator.template

Connected Mobility Solution on AWS Implementation Guide

cms-alerts.template - Use this template to deploy the module and all associated components.
The default configuration deploys the services found in the Alerts module section, but you can
customize the template to meet your specific needs.

cms-fleetwise-connector.template - Use this template to deploy the module and all associated
components. The default configuration deploys the services found in the FleetWise Connector
module section, but you can customize the template to meet your specific needs.

vpc.template - Use this template to deploy the module and all associated components. The
default configuration deploys the services found in the VPC module section, but you can customize
the template to meet your specific needs.

cms-provisioning.template - Use this template to deploy the module and all associated
components. The default configuration deploys the services found in the Vehicle Provisioning
module section, but you can customize the template to meet your specific needs.

cms-connect-store.template - Use this template to deploy the module and all associated
components. The default configuration deploys the services found in the CMS Connect and Store
module section, but you can customize the template to meet your specific needs.

cms-config.template - Use this template to deploy the module and all associated components.

AWS CloudFormation templates 62

https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-alerts.template/cms-alerts/cms-alerts.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-fleetwise-connector/cms-fleetwise-connector.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/vpc/vpc.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-provisioning/cms-provisioning.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-connect-store/cms-connect-store.template
https://s3.amazonaws.com/solutions-reference/connected-mobility-solution-on-aws/latest/cms-config/cms-config.template

Connected Mobility Solution on AWS Implementation Guide

The default configuration deploys the services found in the Config module section, but you can
customize the template to meet your specific needs.

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.
If you deployed a previous version of this solution, you must first uninstall your previous
deployment and then deploy the new version.

Prerequisites

This solution uses AWS CDK to produce AWS CloudFormation templates for consistent provisioning
and configuration of deployments. You must meet the following prerequisites before launching the
solution.

Clone the repository

Use the following command to clone the repository:

git clone https://github.com/aws-solutions/connected-mobility-solution-on-aws.git
cd connected-mobility-solution-on-aws

Required tools

To deploy CMS on AWS, a variety of tools are required. These deploy instructions will install the
following to your machine.

1. NVM

2. Node

3. NPM

4. Yarn

5. Pyenv

6. Python

7. Pip

Prerequisites 63

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://github.com/nvm-sh/nvm
https://nodejs.org/en
https://www.npmjs.com/
https://yarnpkg.com/
https://github.com/pyenv/pyenv
https://www.python.org/
https://pypi.org/project/pip/

Connected Mobility Solution on AWS Implementation Guide

8. Pipenv

9. AWS CLI

10.AWS CDK Toolkit

Required tool versions

Certain tools also require specific versions. See the table below for the appropriate versions.
Following the provided install instructions will install the correct versions.

For tools not listed here, stable versions should work appropriately.

NodeJS 18.17.*

Python 3.10.*

Install required tools

Note

If after a successful installation, a command is not found, you may need to restart your
terminal.

NVM

Follow the nvm installation guide to install NVM. Ensure your installation properly set your path by
running the script below.

nvm --version
Expected Output: x.xx.x

Node / NPM

nvm install
nvm use

Install required tools 64

https://pipenv.pypa.io/en/latest/
https://aws.amazon.com/cli/
https://aws.amazon.com/cdk/
https://github.com/nvm-sh/nvm#installing-and-updating

Connected Mobility Solution on AWS Implementation Guide

For more information, see the nvm usage guide for installing the correction version of Node.
Manually installing Node without the user of nvm is not recommended.

Yarn

Follow the yarn installation guide to install yarn. Ensure your installation properly set your path by
running the script below.

yarn –-version
Expected Output: x.xx.xx

Pyenv

Follow the pyenv installation guide to install Pyenv. You will likely need to manually add Pyenv to
your PATH by following the provided instructions. Ensure your installation properly set your path
by running the script below.

pyenv –-version
Expected Output: pyenv x.x.xx

Python / Pip

pyenv --install -s

For more information see the pyenv usage guide for installing the correct version of Python.
Manually installing Python without the use of pyenv is not recommended.

Pipenv

Follow the pipenv installation guide to install Pipenv. You will likely need to manually add Pipenv
to your PATH by following the provided instructions. Ensure your installation properly set your
PATH by running the script below.

pipenv --version
Expected Output: pipenv, version xxxx.xx.x

AWS CLI

Follow the installation instructions laid out in the AWS CLI install page. This install is OS specific,
and includes multiple options for both a system wide, and user specific install. Follow the install

Install required tools 65

https://github.com/nvm-sh/nvm#usage
https://classic.yarnpkg.com/lang/en/docs/install/#mac-stable
https://github.com/pyenv/pyenv#automatic-installer
https://github.com/pyenv/pyenv#usage
https://pipenv.pypa.io/en/latest/installation/
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html

Connected Mobility Solution on AWS Implementation Guide

instructions most appropriate to you. Ensure your installation properly set your PATH by running
the script below.

aws --version
Expected Output: aws-cli/x.xx.xx ...

AWS CDK Toolkit

Follow the installation guide to install the AWS CDK toolkit. Ensure your installation properly set
your PATH by running the script below.

cdk --version
Expected Output: x.xxx.x (build ...)

Verify required tool installations

Run the following command to verify the proper installation of all of the tools listed above. If any
errors are displayed, attempt to reinstall that tool.

make verify-required-tools

Install solution dependencies

Now that you have the correct tools, you can install the dependencies used by the solution using
make. After installing activate the environment which contains the dependencies.

make install

Create an Amazon Route 53 hosted zone

To deploy the solution, an Amazon Route 53 hosted zone is required in your account. You will
provide the domain for this hosted zone in the following step when you setup your environment
variables. This is a manual step. For more details, see Working with hosted zones.

Set up environment variables

To deploy the solution, a variety of environment variables are required. These environment
variables will be used to provide the values to your deployment. To generate the file which will
store these environment variables and provide their values, run the following command:

Install solution dependencies 66

https://docs.aws.amazon.com/cdk/v2/guide/cli.html
https://docs.aws.amazon.com/Route%C2%A053/latest/DeveloperGuide/hosted-zones-working-with.html

Connected Mobility Solution on AWS Implementation Guide

make deploy-variables

Note

The ROUTE53_ZONE_NAME can be found from the Amazon Route 53 hosted zone you set
up in the previous step. Use the AWS Management Console to find this domain.

Step 1: Build the Solution's modules

The build target manages dependencies, builds required assets (e.g. packaged lambdas), and
creates the AWS CloudFormation templates for all modules.

make build

Step 2: Upload Assets to S3

The upload target creates the necessary buckets for, and uploads, the global and regional assets. It
also uploads the Backstage .zip asset.

make upload

Step 3: Deploy on AWS

The deploy target deploys all CMS modules, including the ACDP, in an enforced order.

make deploy

Step 4: Monitor the ACDP deployment

After the CDK deployment is completed, navigate to AWS CodePipeline in the AWS Management
Console and verify that Backstage-Pipeline completes successfully.

Step 1: Build the Solution's modules 67

https://console.aws.amazon.com/codesuite/codepipeline/pipelines

Connected Mobility Solution on AWS Implementation Guide

Backstage-Pipeline Succeeded in CodePipeline

After the pipeline has completed, the deployment can be considered successfully complete and
Backstage is ready for us.

Step 5: Deploy CMS Modules via Backstage

CMS Module Deployment Order

All CMS on AWS modules have dependencies on the initial three deployments for configuring CMS
on AWS.

Some CMS on AWS modules have secondary dependencies on other modules and must be
deployed in order.

The rest of the modules do not have dependencies on other modules and can be deployed in any
order after CMS Config.

The deployment order that must be observed is as follows:

Deployment Order of Required CMS Config

1. VPC

2. Auth Setup

3. CMS Config

Step 5: Deploy CMS Modules via Backstage 68

Connected Mobility Solution on AWS Implementation Guide

Note

At this point, ACDP and Backstage should be deployed to assist with the further module
deployments.

Deployment Order of Modules with Dependencies

1. Auth

2. CMS Connect and Store

3. Alerts

4. API

5. EV Battery Health

6. FleetWise Connector

Modules Without Dependencies

• Vehicle Provisioning

• Vehicle Simulator

This order is represented by the diagram below:

CMS Module Deployment Order 69

Connected Mobility Solution on AWS Implementation Guide

CMS module deployment order

Example module deployment via Backstage

The following instructions detail how to deploy the CMS Vehicle Simulator module. The same steps
can be applied to other modules by replacing the URLs and names.

1. Navigate to the Backstage URL in a web browser (ROUTE53_BASE_DOMAIN that was specified
during deployment).

2. Sign in to Backstage using the credentials that were emailed to the user email specified during
deployment.

3. Follow the prompts to create a new password and set up multi-factor authentication (MFA).

4. On Backstage, navigate to the Create page available from the Catalog menu in the side bar.
Select CHOOSE on the CMS Vehicle Simulator card.

Example module deployment via Backstage 70

Connected Mobility Solution on AWS Implementation Guide

5. Fill in the form as required by the CMS Vehicle Simulator module's template and choose Next.

Example module deployment via Backstage 71

Connected Mobility Solution on AWS Implementation Guide

6. Choose Review.

7. Choose Create.

Example module deployment via Backstage 72

Connected Mobility Solution on AWS Implementation Guide

8. Monitor the deployment and ensure that the CMS Vehicle Simulator module deploys
successfully.

Step 6: Secure the solution with network access control

To configure network access control for the Amazon Managed Grafana workspace deployed when
using the EV Battery Health module, follow the instructions provided in Managing network access
to your workspace.

Step 6: Secure the solution with network access control 73

https://docs.aws.amazon.com/grafana/latest/userguide/AMG-configure-nac.html
https://docs.aws.amazon.com/grafana/latest/userguide/AMG-configure-nac.html

Connected Mobility Solution on AWS Implementation Guide

Monitoring the solution with Service Catalog
AppRegistry

The solution includes a Service Catalog AppRegistry resource to register the CloudFormation
template and underlying resources as an application in both Service Catalog AppRegistry and AWS
Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the resources of this solution in the context of an application. For
example, deployment status, CloudWatch alarms, resource configurations, and operational
issues.

The following figure depicts an example of the application view for this solution stack in
Application Manager.

74

Connected Mobility Solution on AWS Implementation Guide

CMS on AWS stack in Application Manager

Note

Activate CloudWatch Application Insights, AWS Cost Explorer, and cost allocation tags
associated with this solution. They are not activated by default.

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose AppRegistry applications.

4. In AppRegistry applications, search for the application name for this solution and select it.

The next time you open Application Manager, you can find the new application for your solution
in the AppRegistry application category.

5. In the Components tree, choose the application stack you want to activate.

6. In the Monitoring tab, in Application Insights, select Auto-configure Application Monitoring.

Monitoring for your applications is now activated and the following status box appears:

Activate CloudWatch Application Insights 75

https://console.aws.amazon.com/systems-manager

Connected Mobility Solution on AWS Implementation Guide

Activate AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer which must
be first activated. Cost Explorer helps you manage costs by providing a view of your AWS resource
costs and usage over time. To activate Cost Explorer for the solution:

1. Sign in to the AWS Cost Management console.

2. In the navigation pane, select Cost Explorer.

3. On the Welcome to Cost Explorer page, choose Launch Cost Explorer.

The activation process can take up to 24 hours to complete. Once activated, you can open the Cost
Explorer user interface to further analyze cost data for the solution.

Confirm cost tags associated with the solution

After you activate cost allocation tags associated with the solution, you must confirm the cost
allocation tags to see the costs for this solution. To confirm cost allocation tags:

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose the application name for this solution and select it.

Activate AWS Cost Explorer 76

https://console.aws.amazon.com/cost-management/home
https://console.aws.amazon.com/systems-manager

Connected Mobility Solution on AWS Implementation Guide

4. In the Overview tab, in Cost, select Add user tag.

5. On the Add user tag page, enter confirm, then select Add user tag.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution

After you activate Cost Explorer, you must activate the cost allocation tags associated with this
solution to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization. To activate cost allocation tags:

1. Sign in to the AWS Billing and Cost Management and Cost Management console.

2. In the navigation pane, select Cost Allocation Tags.

3. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

4. Choose Activate.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution 77

https://console.aws.amazon.com/billing/home

Connected Mobility Solution on AWS Implementation Guide

Update the solution

If you deployed a previous version of this solution, you must first uninstall your previous
deployment and then deploy the new version.

78

Connected Mobility Solution on AWS Implementation Guide

Troubleshooting

This section provides known issue resolution when deploying the solution.

Problem: Lambda Runtime not supported

Occasionally, an error could appear similar to Lambda Runtime (...) not supported.
Supported list [...]. This is due to AWS CDK or third-party library updates that might
create Lambda functions with non-supported runtime versions. To resolve this issue, you must add
the necessary runtime version to the Lambda function's configuration and Lambda function aspect
supported list.

Resolution

Add the necessary runtime version to the Lambda functions supported list:

1. Explicitly define the runtimes for a Lambda function in its configuration.

2. Find the Lambda function aspect for the appropriate module, typically located in source/
infrastructure/spects/ validations.py, and add the new runtime version to the
supported runtime list.

Problem: Multiple ProvisionedVehicles active certificates

Attempting to concurrently provision multiple vehicles of the same VIN can lead to a non-valid
database step for the ProvisionedVehicles DynamoDB table. Specifically, the table will have
multiple ActiveCertificates for a single VIN, meaning multiple records exist in the table. To resolve
this issue, delete all records for that VIN and reprovision.

Resolution

Delete all ProvisionedVehicles table records for the invalid VIN, and reprovision the vehicle.

1. Delete all entries for the ProvisionedVehicles DynamoDB table with the specified VIN,
either through the console or the AWS Command Line Interface (AWS CLI).

2. Reprovision the vehicle with one request. Reprovisioning the vehicle generates a new valid
certificate, registers the vehicle with the new certificate, and creates a new record for the
vehicle.

Problem: Lambda Runtime not supported 79

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20lib.aws_lambda.Function.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/dynamodb/index.html

Connected Mobility Solution on AWS Implementation Guide

Contact AWS Support

If you have AWS Developer Support, AWS Business Support, or AWS Enterprise Support, you can
use the Support Center to get expert assistance with this solution. The following sections provide
instructions.

Create case

1. Sign in to Support Center.

2. Choose Create case.

How can we help?

1. Choose Technical.

2. For Service, select Solutions.

3. For Category, select Other Solutions.

4. For Severity, select the option that best matches your use case.

5. When you enter the Service, Category, and Severity, the interface populates links to common
troubleshooting questions. If you can't resolve your question with these links, choose Next step:
Additional information.

Additional information

1. For Subject, enter text summarizing your question or issue.

2. For Description, describe the issue in detail.

3. Choose Attach files.

4. Attach the information that AWS Support needs to process the request.

Help us resolve your case faster

1. Enter the requested information.

2. Choose Next step: Solve now or contact us.

Contact AWS Support 80

https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://support.console.aws.amazon.com/support/home#/

Connected Mobility Solution on AWS Implementation Guide

Solve now or contact us

1. Review the Solve now solutions.

2. If you can't resolve your issue with these solutions, choose Contact us, enter the requested
information, and choose Submit.

Solve now or contact us 81

Connected Mobility Solution on AWS Implementation Guide

Uninstall the solution

This solution creates multiple CloudFormation deployments. Some resources cannot be uninstalled
directly with CloudFormation and must be deleted by using the AWS Management Console or the
AWS CLI.

Capture the deployment UUID

Capture and store the deployment UUIDs (Universally Unique ID) of the solution. This is used to
look for any resources not destroyed by CloudFormation after teardown completes.

make get-acdp-deployment-uuid
make get-cms-deployment-uuid

The output will be uuidv4 strings, capture and store both:

XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX

Delete CMS on AWS modules in order

make destroy

Note

Backstage might fail to delete due to the ACM certificate creation custom resource. After
delete fails, select DELETE again and select retain on the custom resource. This will not
leave any resources in the account.

Capture the deployment UUID 82

Connected Mobility Solution on AWS Implementation Guide

Backstage stack delete fails. Redelete with retention.

Delete the Backstage ACM certificate (optional)

Navigate to Amazon Certificate Manager, and delete the Backstage certificate.

Manually clean up resources

You must manually clean up the following resources:

• S3 buckets

• DynamoDB tables

• Cognito user pool

• KMS keys

Locate leftover resources using the following command, which first requires you to export the
DEPLOYMENT_UUID variable using each of the values previously acquired from AWS Systems
Manager.

Delete the Backstage ACM certificate (optional) 83

Connected Mobility Solution on AWS Implementation Guide

If you tore down the ACDP stack without capturing the UUID, you can run the following command
by removing the Solutions:DeploymentUUID Key filter, however the results will include other
CMS on AWS stacks if they exist, so use this method with caution.

export DEPLOYMENT_UUID=<DEPLOYMENT_UUID_VALUE_FROM_SSM>

aws resourcegroupstaggingapi get-resources --tag-filters \
Key=Solutions:SolutionID,Values=SO0241 \
Key=Solutions:DeploymentUUID,Values=$DEPLOYMENT_UUID \
--query "ResourceTagMappingList[*].ResourceARN"

This query results in a list of ARNs to assist you with locating the resources in the AWS
Management Console. Resources can then be manually deleted, or deleted via a script, utilizing the
resource ARNs where appropriate.

Important

Some resources may take some time to clean up after CloudFormation finishes tearing
down, and could show in the output even if they no longer exist. For example, Amazon
VPC, Fargate, and Amazon ECS resources can remain queryable for up to 30 minutes after
deletion.

Deleting the Amazon S3 buckets

This solution is configured to retain the solution-created Amazon S3 buckets if you decide to delete
the AWS CloudFormation stack to prevent accidental data loss. After uninstalling the solution, you
can manually delete these Amazon S3 buckets if you don't need to retain the data. Follow these
steps to delete an Amazon S3 bucket.

1. Sign in to the Amazon S3 console.

2. Choose Buckets from the left navigation pane.

3. Locate the S3 buckets created by the solution.

4. Select an S3 bucket.

5. Choose Delete.

To delete the Amazon S3 bucket using AWS CLI, run the following command:

Deleting the Amazon S3 buckets 84

https://console.aws.amazon.com/s3/home

Connected Mobility Solution on AWS Implementation Guide

$ aws s3 rb s3://<bucket-name> --force

Deleting the Amazon DynamoDB tables

This solution is configured to retain the DynamoDB tables if you decide to delete the
CloudFormation stack to prevent accidental data loss. After uninstalling the solution, you can
manually delete the DynamoDB tables if you do not need to retain the data. Follow these steps:

1. Sign in to the Amazon DynamoDB console.

2. Choose Tables from the left navigation pane.

3. Locate the tables created by the solution.

4. Select a CMS on AWS table.

5. Choose Delete.

6. Repeat the steps until you have deleted all of the solution's tables.

To delete the DynamoDB tables using AWS CLI, run the following command:

$ aws dynamodb delete-table <table-name>

Deleting the Amazon CloudWatch logs

This solution retains the CloudWatch Logs if you decide to delete the CloudFormation stack to
prevent against accidental data loss. After uninstalling the solution, you can manually delete the
logs if you do not need to retain the data. Follow these steps to delete the CloudWatch Logs.

1. Sign in to the Amazon CloudWatch console.

2. Choose Log Groups from the left navigation pane.

3. Locate the log groups created by the solution.

4. Select one of the log groups.

5. Choose Actions - Delete.

Repeat the steps until you have deleted all the solution's log groups.

To delete the CloudWatch log groups using AWS CLI, run the following command:

Deleting the Amazon DynamoDB tables 85

https://console.aws.amazon.com/dynamodb/home?
https://console.aws.amazon.com/cloudwatch/home?

Connected Mobility Solution on AWS Implementation Guide

$ aws logs delete-log-group --log-group-name <log-group-name>

Deleting the AWS KMS customer managed keys

This solution retains the AWS KMS customer managed keys if you decide to delete the
CloudFormation stack to prevent against accidental encrypted data loss. After uninstalling the
solution, you can manually delete the keys if you do not need to use them again. Follow these
steps to delete the AWS KMS keys.

1. Sign in to the AWS KMS console.

2. Choose Customer managed keys from the left navigation pane.

3. Locate the keys created by the solution.

4. Select one of the keys.

5. Choose Key actions - Schedule key deletion.

6. Optionally edit the Waiting period (in days) value.

7. Select Confirmation.

8. Choose Schedule deletion.

Repeat the steps until you have deleted all the solution's customer managed keys.

To delete the AWS KMS customer managed keys using AWS CLI, run the following command:

$ aws kms schedule-key-deletion –-key-id <key-id-or-arn>

Deleting the Amazon Cognito user pools

This solution retains the Amazon Cognito user pools if you decide to delete the CloudFormation
stack to prevent against accidental user data loss. After uninstalling the solution, you can manually
delete the user pools if you do not need to retain the users. Follow these steps to delete the user
pools.

1. Sign in to the Amazon Cognito console.

2. Choose User pools from the left navigation pane.

3. Locate the user pools created by the solution.

4. Select one of the user pools.

Deleting the AWS KMS customer managed keys 86

https://console.aws.amazon.com/kms/home?
https://console.aws.amazon.com/cognito/home?

Connected Mobility Solution on AWS Implementation Guide

5. Choose Delete.

6. Select Deactivate deletion protection.

7. Enter the user pool name in the second field.

8. Choose Delete.

Repeat the steps until you have deleted all the solution's user pools.

To delete the Amazon Cognito user pool using AWS CLI, run the following command:

$ aws cognito-idp delete-user-pool –-user-pool-id <user-pool-id>

Deleting the Amazon Relational Database Service snapshots

This solution retains the Amazon Relational Database Service (Amazon RDS) snapshots if you
decide to delete the AWS CloudFormation stack to prevent against accidental data loss. After
uninstalling the solution, you can manually delete the snapshots if you do not need to retain the
data. Follow these steps to delete the snapshots.

1. Sign in to the Amazon RDS console.

2. Choose Snapshots from the left navigation pane.

3. Locate the snapshots created by the solution.

4. Select one of the snapshots.

5. Choose Actions – Delete snapshot.

6. Choose Delete.

Repeat the steps until you have deleted all the solution's snapshots.

To delete the Amazon RDS snapshot using AWS CLI, run the following command:

$ aws rds delete-db-snapshot –-db-snapshot-identifier <db-snapshot-identifier>

Deleting the Amazon Relational Database Service snapshots 87

https://aws.amazon.com/rds/
https://console.aws.amazon.com/rds/home?

Connected Mobility Solution on AWS Implementation Guide

Developer guide

This section provides the source code for the solution and additional customizations.

Source code

Visit our GitHub repository to download the source files for this solution and to share your
customizations with others.

The AWS Cloud Development Kit (AWS CDK) (AWS CDK) generates the Connected Mobility Solution
on AWS templates. See the README.md file for additional information.

Integrating custom modules

We have provided a CMS Sample module which serves as a template for existing and future CMS
on AWS modules. See the code and README.md in the GitHub repository for more information on
development.

For more information on integrating a CMS on AWS module with the Backstage deployment, see
the Backstage documentation.

Source code 88

https://github.com/aws-solutions/connected-mobility-solution-on-aws
https://aws.amazon.com/cdk/
https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/README.md
https://github.com/aws-solutions/connected-mobility-solution-on-aws/tree/main/source/modules/cms_sample
https://backstage.io/docs/overview/what-is-backstage

Connected Mobility Solution on AWS Implementation Guide

Reference

This section includes a list of builders and managers who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
activated, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each deployment

• Resource Utilization - Total storage utilized by the solution

• API Usage - Usage amount of API calls to the solution's public facing API

AWS owns the data gathered through this survey. Data collection is subject to the Privacy Notice.
To opt out of this feature, complete the following steps before launching the AWS CloudFormation
template.

1. In the source/modules/cms_config/source/infrastructure/constructs/metrics.py file, replace the
send_anonymous_usage_condition value with No.

2. Continue with the deployment as specified in the Deploy the solution section.

Contributors

• Narmeen Ali

• Kevin Hargita

• Guru Koushik Senthil Kumar

• Anthony McIntosh

• Harshit Patel

• Alex Sansone

• Saif Shaikh

• Matt Wise

Anonymized data collection 89

https://aws.amazon.com/privacy/
https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/source/modules/cms_config/source/infrastructure/constructs/metrics.py

Connected Mobility Solution on AWS Implementation Guide

Revisions

Date Change

October 2023 Initial release

December 2023 v1.0.1:

• Resolved an issue where the Amazon Aurora
PostgreSQL cluster's version defaulted to 11
instead of 13 in some Regions.

• Pinned Node and Python versions in the
Proton manifest.yml file for every
module.

• Updated cost table for Use case 2.

• Corrected URLs in the README.md file.

For more information, refer to the
CHANGELOG.md file in the GitHub repository.

January 2024 v1.0.2:

• Updated Grafana workspace in EV
Battery Health module to include plugin
management and install Amazon Athena
plugin.

• Removed yarn tsc:full from backstage
image build.

• Added octokit and resolution for follow-re
directs to mitigate vulnerabilities.

• Added ignore pattern for Axios in vehicle
simulator.

For more information, refer to the
CHANGELOG.md file in the GitHub repository.

90

https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/CHANGELOG.md

Connected Mobility Solution on AWS Implementation Guide

Date Change

February 2024 v1.0.3:

• Added resolutions to ECDSA, cryptography,
and node-ip packages to mitigate vulnerabi
lities.

For more information, refer to the
CHANGELOG.md file in the GitHub repository.

February 2024 v1.0.4:

• Upgraded Backstage to 1.23.3 to mitigate
vulnerability.

• Fixed a bug that could occur if the Amazon
S3 version of the Backstage source was
prefixed with a special character.

For more information, refer to the
CHANGELOG.md file in the GitHub repository.

91

https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/CHANGELOG.md
https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/CHANGELOG.md

Connected Mobility Solution on AWS Implementation Guide

Date Change

April 2024 v 1.1.0:

• Created a VPC module to provide a
reference VPC implementation for ACDP
and CMS and AWS modules.

• Created a Config module to define common
configurations within the solution.

• Created an Auth Setup module to support
choosing between Amazon Cognito or a
compatible OAuth 2.0 compliant IdP.

• Updated the ACDP module and improved
support for Backstage.

• Added one-click deployment support
through CloudFormation templates.

For more information, refer to the
CHANGELOG.md file in the GitHub repository.

April 2024 v 1.1.1:

• Upgraded mysql2 to resolve CVE.

• Upgraded requests library with idna peer
dependency to resolve pip-audit.

• Upgraded @backstage/cli to resolve Jest
errors.

• Pin moto version in Alerts module to avoid
moto Athena bug introduced in moto 5.0.3

92

https://github.com/aws-solutions/connected-mobility-solution-on-aws/blob/main/CHANGELOG.md

Connected Mobility Solution on AWS Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products
or services are provided "as is" without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

Connected Mobility Solution on AWS is licensed under the terms of the Apache License Version 2.0
available at The Apache Software Foundation.

93

https://www.apache.org/licenses/LICENSE-2.0

	Connected Mobility Solution on AWS
	Table of Contents
	Accelerate development and deployment of connected vehicle assets
	Features and benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Automotive Cloud Developer Portal deployment
	Deploying CMS on AWS modules via Backstage
	CMS on AWS modules and services
	Amazon Virtual Private Cloud (Amazon VPC)
	Auth Setup
	Config
	Automotive Cloud Developer Portal (ACDP) and Backstage
	Auth
	AWS IoT Core and MQTT
	Vehicle Provisioning
	Connect and Store
	FleetWise Connector
	API
	Alerts
	EV Battery Health
	Vehicle Simulator

	AWS Well-Architected design considerations
	Operational excellence
	Security
	Reliability
	Performance efficiency
	Cost optimization
	Sustainability

	Architecture details
	Config
	Virtual Private Cloud (VPC)
	Auth Setup
	Automotive Cloud Developer Portal
	Backstage module
	Auth module
	Vehicle Provisioning module
	CMS Connect and Store module
	API module
	Alerts module
	EV Battery Health module
	Vehicle Simulator module
	FleetWise Connector module
	AWS services in this solution

	Plan your deployment
	Cost
	CMS on AWS static cost tables
	Example costs

	Security
	Authentication and authorization
	Amazon CloudFront
	Amazon API Gateway
	Security groups
	PII data
	Customer managed AWS KMS keys
	AWS WAF

	Supported AWS Regions
	Quotas
	Quotas for AWS Services in this solution
	AWS CloudFormation quotas

	Deploy the solution
	Deployment process overview
	AWS CloudFormation templates
	Prerequisites
	Clone the repository
	Required tools
	Required tool versions

	Install required tools
	NVM
	Node / NPM
	Yarn
	Pyenv
	Python / Pip
	Pipenv
	AWS CLI
	AWS CDK Toolkit
	Verify required tool installations

	Install solution dependencies
	Create an Amazon Route 53 hosted zone
	Set up environment variables

	Step 1: Build the Solution's modules
	Step 2: Upload Assets to S3
	Step 3: Deploy on AWS
	Step 4: Monitor the ACDP deployment
	Step 5: Deploy CMS Modules via Backstage
	CMS Module Deployment Order
	Example module deployment via Backstage

	Step 6: Secure the solution with network access control

	Monitoring the solution with Service Catalog AppRegistry
	Activate CloudWatch Application Insights
	Activate AWS Cost Explorer
	Confirm cost tags associated with the solution
	Activate cost allocation tags associated with the solution

	Update the solution
	Troubleshooting
	Problem: Lambda Runtime not supported
	Resolution

	Problem: Multiple ProvisionedVehicles active certificates
	Resolution

	Contact AWS Support
	Create case
	How can we help?
	Additional information
	Help us resolve your case faster
	Solve now or contact us

	Uninstall the solution
	Capture the deployment UUID
	Delete CMS on AWS modules in order
	Delete the Backstage ACM certificate (optional)

	Manually clean up resources
	Deleting the Amazon S3 buckets
	Deleting the Amazon DynamoDB tables
	Deleting the Amazon CloudWatch logs
	Deleting the AWS KMS customer managed keys
	Deleting the Amazon Cognito user pools
	Deleting the Amazon Relational Database Service snapshots

	Developer guide
	Source code
	Integrating custom modules

	Reference
	Anonymized data collection
	Contributors

	Revisions
	Notices

