
Implementation Guide

Migration Assistant for Amazon
OpenSearch Service

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Migration Assistant for Amazon OpenSearch Service: Implementation
Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Table of Contents

Solution overview .. 1
Features and benefits .. 3
Use cases .. 4
Concepts and definitions .. 4

Architecture overview ... 6
Architecture diagram ... 6
AWS Well-Architected design considerations ... 7

Operational excellence ... 7
Security .. 8
Reliability ... 8
Performance efficiency ... 8
Cost optimization .. 8
Sustainability .. 9

Architecture details ... 10
Self-service Elasticsearch/OpenSearch source cluster .. 10
Capture Proxy .. 10
Traffic Replayer ... 10
OpenTelemetry Collector container ... 10
Historical Data Migration container ... 10
Migration Management Console ... 11
AWS services in this solution ... 11

How this solution works ... 14
Capture Proxy .. 14
Traffic Replayer ... 18
Historical Data Migration .. 23

Plan your deployment ... 27
Cost ... 27

Sample cost table ... 27
Security ... 37

IAM roles ... 37
Security groups ... 38
AWS Secrets Manager .. 38

Supported AWS Regions ... 38
Quotas .. 38

iii

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Quotas for AWS services in this solution .. 39
AWS CloudFormation quotas ... 39

Deploy the solution ... 40
Deployment process overview ... 40
AWS CloudFormation template ... 40
Step 1: Launch the bootstrap stack ... 41
Step 2: Setup the bootstrap instance .. 42
Step 3: Customize the migration options ... 44
Step 4: Deploy the migration stacks .. 44

Monitoring the solution with Service Catalog AppRegistry .. 46
Activate CloudWatch Application Insights .. 47
Activate AWS Cost Explorer ... 48
Confirm cost tags associated with the solution .. 48
Activate cost allocation tags associated with the solution .. 49

Uninstall the solution ... 50
Using the AWS Management Console ... 50
Using AWS Command Line Interface ... 50

Use the solution .. 52
Developer guide ... 53

Source code ... 53
Reference .. 54

Anonymized data collection .. 54
Contributors ... 55

Revisions ... 56
Notices .. 57

iv

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Build an environment to upgrade, migrate, and compare
OpenSearch clusters

Publication date: November 2023

OpenSearch is widely adopted for log analytics and search functionalities. However, self-
managing OpenSearch can be operationally demanding. Amazon OpenSearch Service and Amazon
OpenSearch Service Serverless offer more manageable alternatives, but transitioning to these
services or updating to the latest OpenSearch version has historically been complex. Also, it can be
difficult for a customer to predict the outcome of a migration. The Migration Assistant for Amazon
OpenSearch Service solution addresses these challenges - it simplifies the migration process,
ensures integrity, and validates performance post-migration.

The Migration Assistant for Amazon OpenSearch Service solution is a toolkit designed to ease
the transition to OpenSearch, facilitate upgrades to the latest OpenSearch versions, and refine
cluster configurations based on observed traffic patterns. Whether you're looking to set up a proof-
of-concept in AWS, transition production workloads with confidence, or enhance your current
OpenSearch clusters, this guide provides references to step-by-step instructions, best practices, and
insights to leverage the full potential of the OpenSearch migrations package.

Benefits of using this solution:

• Migrate historical data from legacy clusters to OpenSearch clusters, including Amazon
OpenSearch Service (AOS) Domains and Amazon OpenSearch Service Serverless (AOSS)
collections.

• Intercept and redirect live traffic from self-managed Elasticsearch or OpenSearch clusters to
Amazon OpenSearch Service domains and Amazon OpenSearch Service Serverless collections
with minimal latency.

• Replicate production traffic on target clusters to validate and ensure accuracy.

• Simulate real-world traffic by capturing and replaying request patterns to fine-tune system
performance.

• Deploy across the most common AWS Regions for global reach and scalability.

• Provides a recommended path for migration while continuing to maintain service availability.

1

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Note

Currently, the Migration Assistant for Amazon OpenSearch Service solution supports
migrating from Elasticsearch versions 7.0 to 7.10.2 to OpenSearch and Serverless versions
1.x and 2.x.

This implementation guide provides an overview of the Migration Assistant for Amazon
OpenSearch Service solution, its reference architecture and components, considerations for
planning the deployment, and configuration steps for deploying the solution to the Amazon Web
Services (AWS) Cloud. It also references the solution's open-source documentation on GitHub,
which includes a User guide, developer documentation, and tips to enhance and contribute to the
solution.

The intended audience for using this solution's features and capabilities in their environment
includes solution architects, business decision makers, DevOps engineers, data scientists, and cloud
professionals.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution.

The estimated cost for running this solution in
the US East (N. Virginia) Region is USD $2754
for a 1 TB migration in 1 week.

Cost

Understand the security considerations for this
solution.

Security

Know how to plan for quotas for this solution. Quotas

Know which AWS Regions support this
solution.

Supported AWS Regions

View or download the AWS CloudForm
ation template included in this solution

AWS CloudFormation template

2

https://github.com/opensearch-project/opensearch-migrations

Migration Assistant for Amazon OpenSearch Service Implementation Guide

If you want to . . . Read . . .

to automatically deploy the infrastructure
resources (the "stack") for this solution.

Features and benefits

The solution provides the following features:

Historical backfill with capture and restore

This solution guides users through the process of transferring data from an originating (source)
cluster to a designated (target) cluster.

Live traffic capture and replay

The solution offers guidance and tools to intercept traffic intended for an original cluster and
archive it for future replay on a destination cluster. Typically, the replay occurs at the same rate
and concurrency as the original traffic to precisely mimic the workload experienced by the source
cluster. Users can choose to replay the recorded traffic subsequently or adjust the replay speed.
This flexibility enables users to fine-tune the target cluster, enhancing its performance to suit their
requirements.

Traffic verification

The solution records requests and responses between the source and destination clusters for
comparison. It then forwards the latency metrics and response codes to an analytics platform,
enabling users to analyze the data essential for transitioning their traffic from a legacy system to a
new Amazon OpenSearch Service destination.

Integration with AWS Service Catalog AppRegistry and Application Manager, a capability of
AWS Systems Manager

This solution includes a Service Catalog AppRegistry resource to register the solution's
CloudFormation template and its underlying resources as an application in both Service Catalog
AppRegistry and Application Manager. With this integration, you can centrally manage the
solution's resources and enable application search, reporting, and management actions.

Features and benefits 3

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Use cases

Migrating historical data

Migration Assistant for Amazon OpenSearch Service offers various options for migrating historical
data, including detailed guidance on running a historical migration applicable across all supported
migration routes, such as from Elasticsearch 7.10.2 to OpenSearch 1.0.

Near real-time migration of HTTP traffic between clusters

The solution offers you the option to capture data destined for a source cluster and store this data
for reuse. A user can replay this data to a target cluster in near real-time to migrate as soon as
possible, or replay at a later time.

Replay traffic to multiple targets

The solution allows you to capture traffic for replay through multiple instances or in sequential
runs, facilitating the validation of diverse cluster workloads and configurations.

Precise simulation of your cluster workloads

The solution allows users to capture and replay traffic either simultaneously with multiple
instances, or in separate sequential runs. This feature aids in validating different cluster workloads
and configurations. By default, the Replayer preserves the original concurrency and request rate to
accurately simulate production loads, ensuring a fair like-for-like comparison.

Verify target cluster results

The solution facilitates user comparisons of source and target traffic in terms of accuracy and
performance. It captures metrics and logs for analysis, providing users with the necessary
confidence to migrate their production traffic to a new target.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

source cluster

The originating cluster on a specific version of Elasticsearch or OpenSearch that the user is
attempting to either upgrade or decommission.

Use cases 4

Migration Assistant for Amazon OpenSearch Service Implementation Guide

target cluster

The destination cluster that the user is trying upgrade, migrate to, or optimize.

capture proxy

A pass-through HTTP proxy designed to capture and log all of the request and response traffic to a
durable source for later reuse.

replayer

A tool designed to simulate original traffic workloads by retrieving recorded request traffic and
sending it to a target cluster. The Replayer correlates the request and response traffic of the
originating request with the request and response traffic to the target, and stores the traffic
persistently.

historical data

Documents that were on the source cluster before the Capture Proxy received traffic.

live/continuous data

Data intercepted by the Capture Proxy and subsequently processed through a Replayer. Initially,
this information is transmitted from clients to the source cluster, where it is intercepted by the
Capture Proxy. Subsequently, the data is relayed back to the designated target cluster.

For a general reference of AWS terms, see the AWS glossary.

Concepts and definitions 5

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Architecture overview

This section provides a reference implementation architecture diagram for the components
deployed with this solution.

Architecture diagram

Deploying this solution with the default parameters deploys the following components in your
AWS account.

Migration Assistant for Amazon OpenSearch Service architecture on AWS

Architecture diagram 6

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

The high-level process flow for the solution components deployed with the AWS CloudFormation
template is as follows:

1. Traffic is directed to the existing cluster, reaching each coordinator node.

2. A Capture Proxy is added before each coordinator node in the cluster, allowing for traffic capture
and storage in Amazon MSK.

3. Once continuous traffic capture is in place, the user initiates a historical backfill.

4. Following the backfill, the user replays the captured traffic using a Traffic Replayer.

5. The user evaluates the outcomes from routing traffic to both the original and the new cluster.

6. After confirming the new cluster's functionality meets expectations, the user dismantles all
related stacks, retaining only the new cluster's setup. Additionally, the user can retire and discard
the old cluster's legacy infrastructure and all of the solution's stacks, keeping only the new
cluster.

AWS Well-Architected design considerations

This solution uses the best practices from the AWS Well-Architected Framework, which helps
customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

This section describes how the design principles and best practices of the Well-Architected
Framework benefit this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

• The solution enables users to transition from legacy, self-managed OpenSearch and OpenSearch
clusters to AWS OpenSearch, a managed service that significantly reduces the operational
burden associated with maintaining outdated systems.

AWS Well-Architected design considerations 7

https://aws.amazon.com/msk/
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

• The solution facilitates user migration to Amazon OpenSearch Service, which is regularly
updated to uphold a strong security posture.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

• The solution introduces a lightweight proxy layer between the client and the source cluster
to capture data reliably using Kafka. This ensures that requests can be replayed on the target
cluster, with the flexibility to modify or resend any failed requests.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

• The tools within the solution have been optimized for efficiently capturing and replaying traffic,
mitigating the need for horizontal scaling.

Cost optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization pillar.

• The solution provisions CloudFormation stacks designed to operate specifically during migration
processes, which can be safely decommissioned post-migration.

• The solution operates on AWS Fargate within Elastic Container Service, ensuring cost-
effectiveness as charges are incurred only for the duration that the containers are active.

• For those interested in a preliminary local trial, a local version of the solution can be built and
deployed in a user's own environment before cloud implementation. Detailed instructions

Security 8

https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

and resources for this are available at the OpenSearch Migrations GitHub repository: https://
github.com/opensearch-project/opensearch-migrations.

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

• The solution allows customers to migrate their workloads to more environmentally friendly
hardware, for example Graviton instance types.

Sustainability 9

https://github.com/opensearch-project/opensearch-migrations
https://github.com/opensearch-project/opensearch-migrations
https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Architecture details

This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

Self-service Elasticsearch/OpenSearch source cluster

The source cluster for this solution is based on Elasticsearch or OpenSearch, operating on EC2
instances or alternative computing infrastructure. Configure a proxy to interface with the source
cluster, positioning the proxy in front of, or on each of the cluster coordinating nodes.

Capture Proxy

Capture Proxy is designed for HTTP RESTful traffic. It functions by relaying traffic to a source
cluster and concurrently dividing the traffic, channeling it towards a robust stream-processing
service for subsequent playback.

Traffic Replayer

Traffic Replayer functions as a traffic simulation utility, replicating real-world workloads
by retrieving recorded request traffic and dispatching it to a designated target cluster. It
systematically associates the original requests and their responses with those directed to the target
cluster, ensuring that this correlated data is available for further analysis.

OpenTelemetry Collector container

OpenTelemetry Collector is a component of the OpenTelemetry project, which is an observability
framework built for the cloud and is a Cloud Native Computing Foundation (CNCF) sandbox project.
It provides a unified way to receive, process, and export telemetry data like metrics, logs, and
traces.

Historical Data Migration container

The Historical Data Migration container runs as a one-time task to copy index metadata and
historical data from the source cluster to the target cluster. It compares the indices between the

Self-service Elasticsearch/OpenSearch source cluster 10

Migration Assistant for Amazon OpenSearch Service Implementation Guide

two clusters to identify non-conflicting indices that must be migrated, and then leverages the
open-source Data Prepper data collector to duplicate index data to the target cluster.

Migration Management Console

The Migration Management Console is a containerized portal that operates on Fargate within the
Elastic Container Service (ECS) ecosystem. Its primary role is to facilitate the deployment of the
Migration Assistant for Amazon OpenSearch Service solution, along with providing a suite of tools
designed to aid in the migration process.

AWS services in this solution

AWS service Description

AWS CloudFormation Core. Infrastructure as Code (IaC) templates
used to deploy and configure Migration
Assistant.

Amazon OpenSearch Service (AOS) Core. A Search, Logging, and Analytics Engine
that users can upgrade to, migrate to, and use
to compare the results of a source and target
cluster.

Amazon Managed Streaming Service for
Apache Kafka (MSK)

Core. Stream-processor that is fully managed.
It is used a a durable way to store and reuse
HTTP traffic.

Amazon Elastic Container Service (ECS) Core. Runs highly secure, reliable, and scalable
containers. The Migration Console, Replayer,
and OpenTelemetry Collector run in ECS.

Amazon Elastic File System Core. Scalable persistent storage utilized for
retaining the request and response data from
both the source and target clusters.

Amazon S3 Core. Storage allocated for Historical Backfill
tasks, which involves exporting a snapshot

Migration Management Console 11

https://opensearch.org/docs/latest/data-prepper/index/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/msk/
https://aws.amazon.com/msk/
https://aws.amazon.com/ecs/
https://aws.amazon.com/efs/
https://aws.amazon.com/s3/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Description

from the source to be restored by the target
cluster. S3 is also used to store IaC content.

AWS Systems Manager Supporting. Provides you visibility and control
of your infrastructure on AWS. Systems
Manager provides a unified user interface so
you can view operational data from multiple
AWS services and enables you to automate
operational tasks across your AWS resources.

AWS Secrets Manager Supporting. A secure way for storing sensitive
data, such as cluster credentials, that is
required for Migration Assistant.

Amazon EC2 Supporting. Provides networking and security
infrastructure for Migration Assitant including
securing groups, and Virtual Private Networks.

AWS Lambda Supporting. Lambda facilitates the execution
of serverless functions and is employed by
Migration Assistant to operate its suite of
tools.

Amazon CloudWatch Optional. Observe and monitor resources and
applications on AWS or in the local Docker
solution.

Additionally, the following tools are used in this solution:

Service Description

Amazon OpenSearch Serverless Supporting. A serverless version of OpenSearc
h, which functions as a search, logging, and
analytics engine, offers users the flexibility to
migrate to and compare as the target cluster.

AWS services in this solution 12

https://aws.amazon.com/systems-manager/
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/pm/ec2/
https://aws.amazon.com/lambda/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/opensearch-service/features/serverless/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Service Description

Configuration of this target is at the user's
discretion.

Amazon OpenSearch Dashboards Optional. A visualization tool designed for
analyzing the status and outcomes of Traffic
Replay by comparing data between source and
target clusters.

AWS services in this solution 13

https://docs.aws.amazon.com/opensearch-service/latest/developerguide/dashboards.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

How this solution works

The Migration Assistant for Amazon OpenSearch Service solution combines custom services
and tools with established ones. Those custom services include a Capture Proxy and Traffic
Replayer that can replay HTTP/1.1 traffic to additional target servers. The Capture Proxy intercepts
production traffic and offloads it to a durable store so that the replayer can reconstruct and replay
requests to a target web service.

Request and responses are captured for the proxy and are preserved from the target interactions so
that users can compare the differences between the two clusters. Since Capture Proxy is handling
data on the critical path, the proxy is designed to offload data as simply as possible to minimize
the proxy's impact on overall performance (latency, load, and so on). Independently, you can start a
Historical Data Migration container via the Migration Console to backfill data already present in the
source cluster.

Capture Proxy

The Capture Proxy is designed to be able to supplant the original source cluster port so that clients
can continue to operate without any changes. A simple way to accomplish that is to install a proxy
alongside the source cluster web services that service client traffic. Assign the port of the Capture
Proxy to the port that clients were already using and rebind the existing web service to a new port.
The new port can be bound to the loopback address to restrict connections from outside the host,
requiring all traffic to flow through the Capture Proxy. The Capture Proxy is then configured to
connect to the source cluster via localhost on an unused network port.

Capture Proxy uses the OpenSearch Security Plugin to parse its own TLS configuration, making it
familiar and convenient to pull existing TLS settings from an Elasticsearch or OpenSearch cluster
configuration.

Capture Proxy 14

https://opensearch.org/docs/2.11/security/index/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Capture Proxy installation workflow (loopback bound port is set to 19200)

The Capture Proxy can also be deployed on standalone hardware with the following two caveats:

1. The Capture Proxy is only designed to proxy traffic for one destination. If that destination is
a large number of nodes with a load balancer, any number of proxies that are necessary to
support the traffic load can be setup to send traffic though the nodes that the load balancer is
using.

2. The second caveat to installing the Capture Proxy on separate hardware is that the infrastructure
will need to change. The clients might also need to change if it isn't feasible for the Proxy to
replace the original web services (for example, fixed IP addresses are being used by clients
and servers). In addition to the increased complexity and induced latency, it's harder to scope
down access to the source cluster such that all traffic must flow through Capture Proxy. In the
co-located scenario, binding the source web service to the loopback address ensures that all
traffic services by the source will be captured. If there are ingress points other than through
Capture Proxy, some requests may not be logged and will therefore, not be migrated to the
target cluster.

For all the issues with a standalone proxy installation, it can still be quite manageable if the client
traffic is routed through Load Balancer via a hostname that can provide a level of indirection. In
that case, the hostname can be remapped to a new Capture Proxy or, more likely, a new Load
Balancer that is situated in front of a fleet of Capture Proxies. Enabling that without disruption
would require adding a second DNS entry for the existing Load Balancer that the new fleet of
Capture Proxies would connect to.

TLS

Capture Proxy 15

Migration Assistant for Amazon OpenSearch Service Implementation Guide

In order for the proxy to write data that can be later replayed, the request and response data
must be readable as HTTP traffic streams. If an existing client and server (cluster) are using TLS
to transfer data, that data must be decrypted before being offloaded. The data is transmitted to
Kafka using TLS, AWS IAM authentication, and that data is stored using encryption at rest. That
encrypted data is able to be read in unencrypted form by the authenticated Traffic Replayer with
the MSK client, even though the data is stored and transferred with some form of encryption
throughout the process.

Terminating TLS is a necessary operation for any service, including the Capture Proxy. When
the Capture Proxy is deployed on the same hardware as the source clusters (web services) AND
users that are confident that there are no other ingress points to the source cluster other than
the Capture Proxy, the source web service can bind only to the loopback address and forgo TLS.
That configuration will reduce the number of TLS operations so that the webtraffic is decrypted
only once and the Kafka traffic is encrypted once. When TLS must be used to connect to a source
cluster, additional measures, such as the –destinationConnectionPoolSize argument are
being developed to reduce the cost of negotiating new connections.

Additional impact

In addition to the impact incurred from TLS decrypting and encrypting, there will be a significant
impact to network load. This solution assumes that the network has enough spare capacity to send
out up to double the amount of network traffic, albeit to different destinations.

Note

Both requests AND responses are captured, so the amount of traffic offloaded will be
proportional to their sum. The proxy doesn't compress traffic so that the computational
burden can be minimized. Many requests and responses may already be compressed,
diminishing the impacts of such efforts.

Migration Assistant for Amazon OpenSearch Service has two related, but distinct tasks concerning
data migration:

1. Provide a consistent environment on the target that mimics the source at each point in time,
including the end of the migration, when the pair should be equivalent.

2. Compare the responses for every request that went through the source.

Capture Proxy 16

Migration Assistant for Amazon OpenSearch Service Implementation Guide

These tasks have different degrees of importance for the overall migration. If a PUT (or any other
mutating call) is dropped from the replay, it could have a long-lasting and irreversible impact on
all future results. Because of that, the Capture Proxy parses HTTP messages as they are received.
With one exception, all read data is immediately forwarded to the source cluster while data is
asynchronously offloaded to Kafka.

The Capture Proxy ensures that all mutating requests have been committed to Kafka so that there
are strong guarantees about the durability of those records. The Capture Proxy does that before
allowing the entire request to be sent to the source service. This behavior means that GET traffic
must flow through the system without being impacted by the latency of calls to Kafka. However,
mutating requests (PUT, POST, DELETE, PATCH) will be impacted. Clients that have made those
requests will not receive a response or will not be able to make another request until all of the
prior offloaded traffic has been committed (which could include prior requests and responses from
the same connection). That ensures that no mutating request was sent to the source without first
being committed to Kafka. However, it also means that a request could be committed to Kafka
without ever being sent and handled by the source web service.

Requests that are suspected of not being processed (or fully processed) by the source clusters
are detectable by the Capture Proxy. Those requests will be missing a response. Currently, the
Capture Proxy doesn't reconcile which of these requests have likely succeeded or failed. However,
in practice, many real-world examples would have retried the failed request, resulting in a received
response.

Design

Data is organized into TrafficObservations (Read, Write, Close, and so on) that have
timestamps and are organized into larger TrafficStream objects. These objects observations
are Protobuf wrappers to the raw bytes as they were received by the Proxy after TLS decryption
or raw bytes to be sent just before TLS encryption. Those TrafficStream objects are organized
by connection. Each socket connection will have a stream of TrafficObservations, which are
flushed to Kafka as TrafficStream objects for the next sequence of observations for a given
connection. Concurrent connections will have concurrent TrafficStream objects, each with their
respective connectionId. The connectionId is a globally unique id for that connection, though a
unique nodeId is also included for diagnostics and future partitioning.

All network activity is asynchronously data-driven, using the same framework (Netty) that
Elasticsearch, OpenSearch, and numerous other projects use. Using the same framework also
mitigates some risk that HTTP could be parsed differently by the source and the proxy. While this is
always possible, it is greatly diminished by both using the same mature HTTP framework.

Capture Proxy 17

https://netty.io/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Traffic Replayer

Traffic Replayer consumes network traffic that has been packaged into a stream of Protobuf
encoded objects; reconstructs that stream into HTTP requests; sends the stream to a target
cluster; and records the responses alongside the request and the traffic from the original source
interaction.

Traffic Replayer is a long-running Kafka stream processor. While it leverages Kafka's ordering
guarantees for sequencing TrafficObservations, it must still group TrafficStreams by
their connectionIds. As TrafficStream objects are reassembled by connection, individual
requests and their responses are sent through a pipeline. That pipeline includes rewriting the
request as necessary, scheduling, and sending the requests to match the source time intervals,
and aggregating the response along with all of the context for the current request. After that
information has been logged for future analysis, the TrafficStream objects that have been
fully handled are committed from Kafka so that they are not processed again if the Replayer is
restarted.

Traffic Replayer 18

https://protobuf.dev/programming-guides/encoding/
https://protobuf.dev/programming-guides/encoding/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Traffic Replayer pipeline overview

Message transformation

The reassembly process is careful to preserve timestamps of individual pieces (or packets) of the
traffic stream and the unique id from the TrafficCaptureSource. Once all of the bytes for a
request have been accumulated, the bytes are sent through a netty pipeline for further processing.
This processing includes rewriting headers, such as the host value, changing user-authentication,
and transforming the contents of the payload.

The Traffic Replayer provides a wrapper to a Map object that represents the headers and payload in
a nested JSON-like key-value structure. That Map object is passed through an IJsonTransformer
object that may rewrite the request by altering headers or the body. To minimize unnecessary and
expensive operations, the netty pipeline parses the HTTP headers first and runs the transformation

Traffic Replayer 19

Migration Assistant for Amazon OpenSearch Service Implementation Guide

before the pipeline has been fully configured. If the transformation did not attempt to access the
payload, the pipeline won't be configured to parse the JSON from the body from the message.

Likewise, the pipeline attempts to setup as few handlers as possible to eliminate unnecessary
(de)compression and repackaging. The configuration of what processing must be done is
determined after the initial transformation. When the entire message must be transformed, it is
done so with netty handlers that generally work with minimal data as is necessary. At the end of
this pipeline, a new sequence of buffers is ready to be sent to the target server. The shape of the
sequence of buffers attempts to match that of the original sequence to more closely match the
traffic patterns that the source was receiving. For example, if the source got 120 bytes with one
byte per second, the target request will also get 120 bytes over 120 seconds.

This message transformation also includes rewriting authorization headers. In the Basic-Auth case,
that rewrite only involves the headers. If there were no other transformations, the body of the
content does not need to be parsed. However, if the authorization scheme being used is AWS Auth
(SigV4), a handler to parse the body will be added to the pipeline alongside mechanisms to fully
consume the contents so that the signature can be accurately computed.

In some cases, the pipeline may be unable to parse a message, or the message might not require
any rewrite. In those cases, the parsing of the current request is unwound and the request is sent
exactly as sent to the source to the target cluster. The response will be handled like any response
for a fully transformed message, though the final metadata will show whether the request had
transformation skipped or if it was due to an error.

There are a number of optimizations in the pipeline that may seem to make processing more
complicated. Rather, some paths will require a considerable amount of complexity. Some
of the complexity is inherent to HTTP (for example, SigV4 signing) and other complexity
is to provide a simple API for developers and users to provide their own transformations.
Managing these complexities efficiently is done via RequestPipelineOrchestrator and
NettyDecodedHttpRequestPreliminaryConvertHandler. These preserve as much
performance as possible by reducing the amount of work that needs to be done and reducing the
amount of logs to describe that work.

User transformations

Users may specify what Transformation to run by providing a .jar file that can load an
implementation of the IJsonTransformer class via Java's ServiceLoader. As described in
the Message transformation section, most of the complexities in parsing HTTP messages are
abstracted away. The transformer itself can determine paths, headers, and run sophisticated JSON

Traffic Replayer 20

Migration Assistant for Amazon OpenSearch Service Implementation Guide

remapping by pulling in libraries such as Jackson, GSON, or JSON manipulation packages like Jolt
or JMESPath.

Sending requests and timing

The Traffic Replayer manages its own sense of time. Every observation that is received has a
timestamp that it was recorded by the proxy. This timestamp could be weeks or milliseconds in
the past depending on the gap between when the replay has begun and when capture recording
started. Currently, a replay always starts at the beginning of the captured stream and it fixes the
current time to the time of the first interaction. For users that would like to catch-up or stress
test the system, the Replayer's time mapping function can include a speedup factor (F) so that
something that happened (N) seconds after the initially recorded interaction will happen N/F
seconds after the transformed version of the initial interaction was sent to the target service.
This functionality is managed by a TimeShifter class that is effectively just a function that
maps scalar values after some initialization. Timing values can be controlled via command line
parameters.

That timing drives much of the rest of the Traffic Replayer. When a request is fully reconstructed,
the message transformation work is scheduled to be done just before it would be scheduled to
be sent. That's to guarantee that temporally sensitive values like SigV4 signatures won't go stale.
It also keeps more data within one thread, making for less contention (cache invalidations) and
allows for simpler code.

Like the Capture Proxy and the transformation pipelines described above, requests are sent via
netty. Netty's architecture allows for a very large number of requests to be handled concurrently
through cooperative, rather than preemptive, multitasking. While that requires code to be data-
driven and to never block, it also affords the use of very simple data structures that must be
threadsafe across multiple threads. Several classes are designed to run from one netty thread.
Those will be initialized for each worker thread that netty spins up (which can be specified on the
command line).

Netty manages each connection, as defined initially by the clients that were sending traffic to the
Capture Proxy, within its own EventLoop. The EventLoop within the Traffic Replayer will have a
connection to the target service, which may break and must be reestablished. However, that same
EventLoop (and its Thread) will be affiliated with its connection for the lifetime of the connection.
That lifetime will be shut down either when the connection's TrafficStream has encountered
a close observation OR if no observations have been encountered in a period of time and they
are expired by the accumulation phase. That means that everything happening within processing,
sending, and receiving the messages for a given connection will be thread-safe.

Traffic Replayer 21

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Each connection's EventLoop and Channel are grouped within a ConnectionReplaySession.
This session also includes data to schedule the interactions for transforming requests, sending
them, and closing connections. The schedules are maintained as a key-value map from the time
that an operation should happen, post time shifting (so in real-time, not source time). As work
items are completed, the next item is pulled from the schedule if it is ready to run or a timer is set
on the EventLoop to rerun it when appropriate. Because there are many interactions scheduled
within one connection's session, the actual times that interactions occur could drift. For example,
assume the source service took 5 seconds to service six requests sequentially on one socket
connection that was kept alive. If the target service takes 10 seconds to service each request, the
target will take 60 seconds to run those six interactions instead of 30 from the source cluster.

However, if a source cluster had the same interactions and latencies but sent them via different
connections, the total time to send the requests to the target service could be 35 seconds, since
requests would overlap by 5 seconds. The schedules are isolated to a given connection. Since a
connection is defined by a sequence of requests, we must wait for the previous requests to finish
before proceeding. Without the connection isolation though, requests will be sent without those
constraints.

Note

If the target cluster cannot keep up with the pacing of the source cluster, it won't be able to
match the timing patterns that the source cluster experienced.

Throttling

The Traffic Replayer has a TrafficCaptureSource that it uses as an abstraction over a Kafka
topic. If the Kafka topic has days of data and the replayer needs to replay that traffic over many
hours, it's critical that the Traffic Replayer consume only what is necessary to keep its memory
footprint manageable. However, it also must consume enough so that it can reconstruct the
TrafficStreams into requests. To accommodate the guarantee that we can reconstruct
TrafficStreams, the code takes advantage of expiration of streams. Within a user-specified
number of seconds, we're guaranteed to either observe progress on a TrafficStream or expire
it and give up. Setting the backpressure limit to a multiple of the expiration window provides
backpressure to limit memory. However, it doesn't put a total bound on the peak amount of
memory required. Such a bound would be problematic as there could be an unlimited number of
simultaneous connections with ongoing traffic. Right-sizing in these cases will be an exercise in

Traffic Replayer 22

Migration Assistant for Amazon OpenSearch Service Implementation Guide

understanding peak load to the source cluster and/or trial and error for provisioning the Traffic
Replayer.

Likewise, the Traffic Replayer may be asked to send too many requests simultaneously. This can
happen if one replayer cannot handle the load, such as if the time speedup factor was extremely
high on a modestly sized cluster. In these cases, an additional throttling mechanism is required
to restrict how many simultaneous connections can be made. A command line option is available
to limit how many requests can be in-progress at any point in time. When a request has been
reconstructed, if the Replayer has already saturated the total number of requests that it can
handle, the new request will be blocked from sending until other requests have finished. Notice
that this is currently bound to the number of requests, not connections.

You can add additional throttling measures in the future to account for message sizes or the
number of connections.

Outputting results

The Traffic Replayer uses Log4j2 for its application logs. It also uses Log4J2 to output some of its
other output, including logs destined for metrics and the results of the source and target traffic
interactions. Be careful when adjusting the log4j2.properties files.

The results, which are logged not just through Log4j2 but also to a file, which is provided by a
command-line parameter. This result output will be a stream of JSON-formatted objects with the
source/target requests/responses. Those will include headers, timestamps, and the full bodies
base64 encoded.

Historical Data Migration

Historical Data Migration

If the Historical Data Migration option was enabled at deployment time, users can initiate historical
data migration from the Migration Console by using a pre-populated environment variable
($FETCH_MIGRATION_COMMAND) whose value is specified in an AWS CLI command.

This command spins up a new ECS task in the same cluster that houses the services described
previously. The Historical Data Migration task is modeled as a workflow, with each step run in turn
to replicate indices and data already present in the source cluster to the target cluster.

Historical Data Migration 23

https://logging.apache.org/log4j/2.x/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Historical Data Migration task workflow

Metadata migration

The first step in the workflow compares the indices present on the source and target clusters to
identify which indices must be migrated. The indices are grouped into three buckets:

1. New indices – Indices that are present on the source cluster but not on the target cluster.

2. Identical indices – Indices with the same name that are present in both clusters and whose
metadata (index settings and index mappings) are identical.

3. Conflicting indices – Indices with the same name that are present in both clusters but whose
index metadata does not match.

All new indices are selected for Historical Data Migration, and API calls are made to the target
cluster to create these indices with metadata (index settings and index mappings) matching that of
the source cluster.

Additionally, identical indices that do not have any documents in the target cluster (that is,
document count is zero) are also considered eligible for data migration. Conflicting indices and
identical indices with existing documents in the target cluster are not migrated. Indices that are
present on the target cluster but not on the source cluster are left as is.

The list of indices selected for migration are merged with the pipeline configuration file uploaded
at the time of deployment to form the final Data Prepper pipeline definition.

Historical Data Migration 24

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Data migration using Data Prepper

The next step of the workflow initiates a Data Prepper process within the task to perform data
migration. The Data Prepper process creates a pipeline based on the configuration file produced by
the previous step and begins the data transfer process.

Internally, Data Prepper reads index documents using scroll queries, or point-in-time APIs if
supported. These documents are buffered in-memory and then written to the target cluster by
worker threads using the bulk API. You can fine tune these parameters by changing the uploaded
Data Prepper pipeline file. Refer to Configuring Data Prepper for more details.

Important

Data Prepper (and therefore the Historical Data migration process) relies on the presence
of the _source field to transfer documents from indices on the source cluster to the target
cluster. Further, the migration process involves continuous API queries to both the source
and target clusters, which will increase traffic and resource usage. This may impact cluster
clients or operations running on each cluster (such as merges and snapshots).

Once the Data Prepper process has been kicked off, the workflow immediately moves to the next
step.

Migration Monitor

The Migration Monitor polls the Data Prepper metrics endpoint to determine progress metrics for
the migration. This is computed by comparing the number of documents processed by the pipeline
to the total target document count set by the Metadata migration step. Once the target document
count is achieved, the migration is considered complete. The Migration Monitor emits progress
information (as a percentage) to the ECS task logs for user visibility.

Additionally, the Migration Monitor also tracks activity metrics for the Data Prepper pipeline to
stop it. Once the target document count has been reached, the Migration Monitor validates that
the pipeline is idle and no other data is flowing through it. Once this is verified, the Migration
Monitor shuts down the Data Prepper process via its /shutdown API and concludes the Historical
Data Migration workflow. This finally shuts down the ECS task.

Limitations

Historical Data Migration 25

https://opensearch.org/docs/latest/data-prepper/getting-started/
https://opensearch.org/docs/latest/api-reference/scroll/
https://opensearch.org/docs/2.4/opensearch/point-in-time/
https://opensearch.org/docs/2.4/opensearch/point-in-time/
https://opensearch.org/docs/latest/data-prepper/managing-data-prepper/configuring-data-prepper/
https://opensearch.org/docs/latest/api-reference/search/
https://opensearch.org/docs/latest/api-reference/search/
https://opensearch.org/docs/latest/data-prepper/managing-data-prepper/core-apis/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

The Historical Data Migration container is only designed to scale vertically – this can be achieved
by increasing the CPU and memory values in the ECS task definition and by updating the worker
threads in the pipeline configuration file. Running multiple instances of the container is not
supported.

Historical Data Migration also does not implement a rollback mechanism for changes made to the
target cluster. In the event of an incomplete migration (due to cluster connectivity loss, throttling, or
termination of the ECS migration task), the user must delete partially migrated indices on the target
cluster before re-launching the container to achieve accurate Historical Data Migration.

Historical Data Migration 26

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Plan your deployment

This section describes the cost, security, Region, and quota considerations for planning your
deployment.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of this
revision, the cost for running this solution with the default settings in the US East (N. Virginia)
Region is approximately $2754.00 for a 1 TB migration. These costs are for the resources shown in
the sample cost table.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, refer to the pricing webpage for each AWS service used in this
solution.

Sample cost table

The following table provides a sample cost breakdown for deploying this solution with the default
parameters in the US East (N. Virginia) Region and assumes a 1 TB migration with Migration
Assistant running for one week.

AWS service Dimensions Cost [USD] / month

Amazon Managed Streaming
for Apache Kafka (MSK)

Amazon Managed Streaming
for Apache Kafka RunBroker
- $0.21 per kafka.m5.large
broker hour in the US East
Region

Amazon Managed Streaming
for Apache Kafka RunVolume
- $0.1 per GB per month for
storage in the US East Region

2 instance(s) x 0.21 USD
hourly x 730 hours in a month

$367.56

Cost 27

https://aws.amazon.com/aws-cost-management/aws-cost-explorer/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

= $306.60 (MSK cost) MSK
broker instance charges
(monthly): $306.60

2 broker nodes x 100 GB
x 0.10 USD = $20.00 USD
(storage cost)

Storage pricing (monthly):
$20.00

All other Regions: 2 GB x 0
USD per GB = 0.00

Intra Region: (2048 GB x 0.01
USD per GB outbound) +
(2048 GB x 0.01 USD per GB
inbound) = $40.96

Data transfer cost (monthly):
$40.96

Sample cost table 28

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Amazon OpenSearch Service
(AOS)

Amazon OpenSearch Service
ESDomain

2 instance(s) x 0.743 USD
hourly x (100 / 100 utilized/
month) x 730 hours in
a month = $1084.7800
(Amazon OpenSearch Service
data instance cost)

Amazon OpenSearch Service
data instance cost (monthly):
$1,084.78

1 instance(s) x 0.743 USD
hourly x (100 / 100 utilized/
month) x 730 hours in a
month = $542.3900 USD
(Amazon OpenSearch Service
dedicated master instance
cost)

Amazon OpenSearch Service
dedicated master instance
cost (monthly): $542.39

Amazon OpenSearch Service
dedicated master instance
cost (upfront): $0.00

Amazon OpenSearch Service
data instance cost (upfront):
$0.00

1,000 GB x 0.122 USD x 1
instances = $122.00 EBS
Storage Cost (gp3)

$1749.17

Sample cost table 29

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

General Purpose SSD (gp3)
- Storage monthly cost:
$122.00

1,000 GB x 3 IOPS = 3,000.00
calculated gp3 IOPs

Max (3000 IOPS, 3000.00
IOPS) = 3,000.00 minimum
gp3 IOPS

Min (16000 IOPS, 3000.00
IOPS) = 3,000.00 minimum
IOPS for free

1,000 GB / 3000 GB =
0.333333 Throughput
incremental factor

RoundUp (0.333333) = 1

1 throughput incremental
factor x 250 MB/s = 250.00
MB/s

Min (1000 MB/s, 250.00 MB/
s) = 250.00 MB/s minimum
throughput for free

Amazon OpenSearch Service
EBS storage cost (monthly):
$122.00

Sample cost table 30

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Amazon Elastic Container
Service (ECS)

Migration Console:

Number of tasks or pods:
1 per day * (730 hours in a
month / 24 hours in a day) =
30.42 per month

Average duration: 7 days =
168 hours

Pricing calculations

30.42 tasks x 0.50 vCPU x 168
hours x 0.04048 USD per hour
= $103.44 for vCPU hours

30.42 tasks x 1.00 GB x 168
hours x 0.004445 USD per
GB per hour = $22.72 for GB
hours

20 GB - 20 GB (no additiona
l charge) = 0.00 GB billable
ephemeral storage per task

103.44 USD for vCPU hours
+ 22.72 USD for GB hours =
$126.16 total

Fargate cost (monthly):
$126.16
Replayer:

Number of tasks or pods:
1 per day * (730 hours in a
month / 24 hours in a day) =
$30.42 per month

$532.04

Sample cost table 31

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Average duration: 7 days =
168 hours

Pricing calculations

30.42 tasks x 1 vCPU x 168
hours x 0.04048 USD per hour
= $206.88 for vCPU hours

30.42 tasks x 4.00 GB x 168
hours x 0.004445 USD per
GB per hour = $90.87 for GB
hours

20 GB - 20 GB (no additiona
l charge) = 0.00 GB billable
ephemeral storage per task

206.88 USD for vCPU hours
+ 90.87 USD for GB hours =
$297.75 total

Fargate cost (monthly):
$297.75

Historical Backfill:

Number of tasks or pods:
1 per day * (730 hours in a
month / 24 hours in a day) =
30.42 per month

Average duration: 3 days = 72
hours

Pricing calculations

Sample cost table 32

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

30.42 tasks x 1 vCPU x 72
hours x 0.04048 USD per hour
= 88.66 USD for vCPU hours

30.42 tasks x 2.00 GB x 72
hours x 0.004445 USD per
GB per hour = $19.47 for GB
hours

20 GB - 20 GB (no additiona
l charge) = 0.00 GB billable
ephemeral storage per task

88.66 USD for vCPU hours
+ 19.47 USD for GB hours =
$108.13 total

Fargate cost (monthly):
$108.13

Sample cost table 33

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Amazon Elastic File System
(EFS)

Percentage of data that is
frequently accessed: 10 / 100
= 0.1

Pricing calculations

GB (Storage capacity): 2,000

2,000 GB per month x 0.10
= 200.00 Data stored in
Standard storage

2,000 GB per month - 200.00
GB per month (Standard
 storage) = 1,800.00 Data
stored in Standard-Infrequent
Access storage

200.00 GB per month
(Standard storage) x 0.30
USD = 60.00 USD (Standard
Storage monthly cost)

1,800.00 GB per month
(Infrequent Access) x 0.025
USD = 45.00 USD (Standard
-Infrequent Access Storage
monthly cost)

60.00 USD + 45.00 USD =
$105.00 (Total data storage
monthly cost)

105.00 USD / 2,000 GB per
month = $0.0525 (Effective
rate per GB for data storage)

$105.00

Sample cost table 34

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Effective rate per GB for data
storage (monthly): $0.0525

60.00 USD + 45.00 USD =
$105.00

Storage (monthly): $105.00

200.00 GB per month
(Standard) x 730 hours in
a month = 146,000.00 GB-
Hours (storage monthly)

146,000.00 GB-Hours / 20
GB-Hours = 7,300.00 GB-
Hours

7,300.00 GB-Hours x 1 MB/s-
Hour = 7,300.00 MB/s-Hours
(default throughput)

10 MB/s per month x 730
hours in a month = 7,300.00
MB/s-Hours (total provisioned
throughput)

7,300.00 MB/s-Hours -
7,300.00 MB/s-Hours = 0.00
MB/s-Hours (total billable
provisioned throughput)

Max (0 USD, 0 USD) = $0.00

Throughput cost (monthly):
$0.00

Sample cost table 35

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Amazon EC2 Amazon Elastic Compute
Cloud NAT Gateway

$0.045 per GB Data Processed
by NAT Gateways

$0.045 per NAT Gateway
Hour

$0.00

Amazon S3 Amazon Simple Storage
Service Requests-Tier1

$0.00 per request - PUT,
COPY, POST, or LIST requests
under the monthly global free
tier

$0.005 per 1,000 PUT, COPY,
POST, or LIST requests

$0.00

AWS Lambda AWS Lambda USW2-Lambda-
GB-Second

AWS Lambda - Compute Free
Tier - 400,000 GB-Seconds -
US West (Oregon)

AWS Lambda - Requests Free
Tier - 1,000,000 Requests -
US West (Oregon)

$0.00

AWS Secrets Manager AWS Secrets Manager USW2-
AWS Secrets Manager-Secrets

$0 per Secret

$0 per 10000 API Requests

$0.00

Sample cost table 36

Migration Assistant for Amazon OpenSearch Service Implementation Guide

AWS service Dimensions Cost [USD] / month

Amazon Route 53 Amazon Route 53 HostedZon
e

$0.50 per Hosted Zone for
the first 25 Hosted Zones

$0.50

Amazon EC2 Container
Registry (ECR)

Amazon EC2 Container
Registry (ECR) USW2-Time
dStorage-ByteHrs

500MB-month Free Tier

$0.00

Virtual Private Cloud $0.005 per Idle public IPv4
address per hour

$0.005 per In-use public IPv4
address per hour

$0.00

Total: $2754.27 [USD] / month

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

IAM roles

AWS Identity and Access Management (IAM) roles allow customers to assign granular access
policies and permissions to services and users on the AWS Cloud. This solution aims to create
IAM roles with least privilege where resource access is required. This includes allowing some
required Migration ECS services to produce/consume from MSK, make requests to the target
cluster, and access provided secrets stored within AWS Secrets Manager needed for target cluster
authentication and authorization.

Security 37

https://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/security/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Security groups

The solution creates security groups designed to control and isolate network traffic between
Migration ECS containers, as well as between certain Migration ECS containers and associated
services such as Amazon MSK, Amazon OpenSearch Service, and Amazon EFS. We recommend that
you review the security groups and further restrict access as needed once the deployment is up and
running.

AWS Secrets Manager

Migration Assistant for Amazon OpenSearch Service allows accessing stored secrets from AWS
Secrets Manager in the Replayer Migration container to construct a proper auth header when
replaying captured traffic to the target cluster, if it is required.

Supported AWS Regions

This solution uses Amazon OpenSearch Service, which is not currently available in all AWS Regions.
For the most current availability of AWS services by Region, see the AWS Regional Services List.

Migration Assistant for Amazon OpenSearch Service is available in the following AWS Regions:

Region name

US East (Ohio) Asia Pacific (Sydney)

US East (N. Virginia) Asia Pacific (Tokyo)

US West (Oregon) Europe (Frankfurt)

US West (N. California) Europe (Ireland)

Asia Pacific (Singapore) Europe (London)

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Security groups 38

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Quotas for AWS services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution. For more
information, refer to AWS service quotas.

Use the following links to go to the page for that service. To view the service quotas for all AWS
services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

AWS CloudFormation quotas

Your AWS account has CloudFormation quotas that you should be aware of when launching
the stack for this solution. By understanding these quotas, you can avoid limitation errors that
would prevent you from deploying this solution successfully. For more information, refer to AWS
CloudFormation quotas in the AWS CloudFormation Users Guide.

Quotas for AWS services in this solution 39

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment.
The CloudFormation template specifies the AWS resources included in this solution and their
properties. The CloudFormation stack provisions the resources that are described in the template.

Deployment process overview

Follow the step-by-step instructions in this section to configure and deploy the solution into your
account.

Before you launch the solution, review the cost, architecture, network security, and other
considerations discussed earlier in this guide.

Time to deploy: Approximately 45-60 minutes (with MSK requiring the bulk of time)

Step 1: Launch the bootstrap stack

Step 2: Setup the bootstrap instance

Step 3: Customize the migration options

Step 4: Deploy the migration stacks

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and
products. AWS owns the data gathered though this survey. Data collection is subject to the
AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the Anonymized data
collection section of this guide.

AWS CloudFormation template

You can download the CloudFormation template for this solution before deploying it.

Deployment process overview 40

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://aws.amazon.com/privacy/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

migration-assistant-for-amazon-opensearch-service.template - Use this template to launch the
solution and all associated components. The default configuration deploys the minimum resources
needed for a bootstrap ECS container, which will be accessed for customizing and deploying the
needed migration resources for the solution.

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

Step 1: Launch the bootstrap stack

Follow the step-by-step instructions in this section to configure and deploy the bootstrap stack
into your account.

Time to deploy: Approximately 5 minutes

1.

Sign
in to the AWS Management Console and select the button to launch the migration-
assistant-for-amazon-opensearch-service.template CloudFormation template.

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a
different AWS Region, use the Region selector in the console navigation bar.

3. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text
box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack. For information about
naming character limitations, see IAM and AWS STS quotas, name requirements, and character
limits in the AWS Identity and Access Management User Guide.

5. Under Parameters, review the parameters for this solution template and modify them as
necessary. This solution uses the following default value.

Step 1: Launch the bootstrap stack 41

https://solutions-reference.s3.amazonaws.com/migration-assistant-for-amazon-opensearch-service/latest/migration-assistant-for-amazon-opensearch-service.template
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?templateURL=https://solutions-reference.s3.amazonaws.com/migration-assistant-for-amazon-opensearch-service/latest/migration-assistant-for-amazon-opensearch-service.template
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Parameter Default Description

Stage dev Specify the stage identifier
which will be used in naming
resources, for example, dev,
gamma, wave1.

6. Select Next.

7. On the Configure stack options page, choose Next.

8. On the Review page, review and confirm the settings. Select the box acknowledging that the
template will create IAM resources.

9. Choose Create stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column.
You should receive a CREATE_COMPLETE status in approximately 5 minutes.

Step 2: Setup the bootstrap instance

1. From the local environment where you will access the bootstrap instance, configure the
required AWS credentials to allow access to the bootstrap instance. The identity used must
have permissions that allow ssm:StartSession on the deployed bootstrap instance and SSM
document resource.

Note

We recommend being restrictive as to who has access to this bootstrap instance. Ideally,
a deployment or admin role needs to have access to the bootstrap instance, as the
bootstrap instance deploys resources into the given account.

Example policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {

Step 2: Setup the bootstrap instance 42

Migration Assistant for Amazon OpenSearch Service Implementation Guide

 "Effect": "Allow",
 "Action": "ssm:StartSession",
 "Resource": [
 "arn:aws:ec2:us-west-2:12345678912:instance/<instance-id>",
 "arn:aws:ssm:us-west-2:12345678912:document/SSM-<stage>-
BootstrapShell"
]
 }
]
}

2. To output the instance id of the bootstrap instance that was deployed, run the following
command:

Note

If a Stage other than dev was used, the name value in this command must be updated
accordingly. Alternatively, the instance id could also be retrieved from the EC2 dashboard
in the AWS Management Console.

aws ec2 describe-instances --filters "Name=instance-state-name,Values=running" --
query 'Reservations[].Instances[].[InstanceId]' --output text

3. Using the instance id obtained from the previous step, run the following command to access the
bootstrap instance:

Note

Update the Stage if it isn't dev.

aws ssm start-session --document-name SSM-dev-BootstrapShell --target <instance-id>
 --region (AWS Region where target is deployed, that is, us-east-1)

4. To prepare the bootstrap instance for deploying the migration pieces, run:

Step 2: Setup the bootstrap instance 43

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Note

The initial setup can take approximately 10-15 minutes.

./initBootstrap.sh && cd deployment/cdk/opensearch-service-migration

Step 3: Customize the migration options

1. From the same shell on the bootstrap instance, find the cdk.context.json file in the current,
/opensearch-migrations/deployment/cdk/opensearch-service-migration,
directory. The cdk.context.json file contains a context block with the label demo-deploy,
which includes options to setup an end-to-end sample for testing. Refer to Configuration
options for more details.

2. For a demo setup, these options can be deployed as is. Alternatively, define a custom context
block in the cdk.context.json file with a required label, such as cit-deploy, and specify its
own context options.

3. For Historical Data Migration, find a template Data Prepper pipeline configuration file
(dp_pipeline_template.yaml) in the same /opensearch-migrations/deployment/
cdk/opensearch-service-migration directory. You can modify the configuration file as
needed before deployment to fine-tune the migration process.

Step 4: Deploy the migration stacks

Follow the step-by-step instructions in this section to deploy the migration stacks into your
account.

Time to deploy: Approximately 45-60 minutes

1. Specify the Region in which you want to deploy the migration stacks by setting the
AWS_DEFAULT_REGION environment variable, for example:

export AWS_DEFAULT_REGION=us-east-1

Step 3: Customize the migration options 44

https://github.com/opensearch-project/opensearch-migrations/blob/main/deployment/cdk/opensearch-service-migration/options.md
https://github.com/opensearch-project/opensearch-migrations/blob/main/deployment/cdk/opensearch-service-migration/options.md
https://opensearch.org/docs/latest/data-prepper/pipelines/pipelines/

Migration Assistant for Amazon OpenSearch Service Implementation Guide

2. If this is the first time you're deploying CDK in this Region of your account, you must bootstrap
the account to work with CDK. In the cdk.context.json file, run the following command with
any existing context block label:

cdk bootstrap --c contextId=demo-deploy

3. If this is the first time you're deploying Amazon OpenSearch Service or an ECS cluster with CDK
in this account, create the service linked role initially by running:

aws iam create-service-linked-role --aws-service-name opensearchservice.amazonaws.com

aws iam create-service-linked-role --aws-service-name ecs.amazonaws.com

4. To deploy the demo setup, run the CDK command:

cdk deploy "*" --c contextId=demo-deploy --require-approval never --concurrency 3

Alternatively, you can deploy any context block you've setup in the cdk.context.json file
using this command:

cdk deploy "*" --c contextId=<context_block_label> --require-approval never --
concurrency 3

Note

If providing your own context file, values may be dependent on your currently configured
infrastructure. For example, if you have a source cluster that is provisioned behind a
VPC and you want to deploy Migration Assistant within this VPC, the number of MSK
brokers (mskBrokerNodeCount), and OpenSearch data nodes (dataNodeCount) must be
modified so that there is at least one of each for each availability zone.

For additional help and tips, see the README.md file in the GitHub repository.

Step 4: Deploy the migration stacks 45

https://github.com/opensearch-project/opensearch-migrations/blob/main/deployment/cdk/opensearch-service-migration/README.md

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Monitoring the solution with Service Catalog
AppRegistry

The solution includes a Service Catalog AppRegistry resource to register the CloudFormation
template and underlying resources as an application in both Service Catalog AppRegistry and AWS
Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the solution's AWS resources (such as deployment status, Amazon
CloudWatch alarms, resource configurations, and operational issues) in the context of an
application.

Migration Assistant Replayer stack in Application Manager

46

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Note

Activate CloudWatch Application Insights, AWS Cost Explorer, and cost allocation tags
associated with this solution. They are not activated by default.

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose AppRegistry applications.

4. In AppRegistry applications, search for the application name for this solution and select it.

The next time you open Application Manager, you can find the new application for your solution
in the AppRegistry application category.

5. In the Components tree, choose the application stack you want to activate.

6. In the Monitoring tab, in Application Insights, select Auto-configure Application Monitoring.

Monitoring for your applications is now activated and the following status box appears:

Activate CloudWatch Application Insights 47

https://console.aws.amazon.com/systems-manager

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Activate AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer which must
be first activated. Cost Explorer helps you manage costs by providing a view of your AWS resource
costs and usage over time. To activate Cost Explorer for the solution:

1. Sign in to the AWS Cost Management console.

2. In the navigation pane, select Cost Explorer.

3. On the Welcome to Cost Explorer page, choose Launch Cost Explorer.

The activation process can take up to 24 hours to complete. Once activated, you can open the Cost
Explorer user interface to further analyze cost data for the solution.

Confirm cost tags associated with the solution

After you activate cost allocation tags associated with the solution, you must confirm the cost
allocation tags to see the costs for this solution. To confirm cost allocation tags:

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose the application name for this solution and select it.

Activate AWS Cost Explorer 48

https://console.aws.amazon.com/cost-management/home
https://console.aws.amazon.com/systems-manager

Migration Assistant for Amazon OpenSearch Service Implementation Guide

4. In the Overview tab, in Cost, select Add user tag.

5. On the Add user tag page, enter confirm, then select Add user tag.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution

After you activate Cost Explorer, you must activate the cost allocation tags associated with this
solution to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization. To activate cost allocation tags:

1. Sign in to the AWS Billing and Cost Management and Cost Management console.

2. In the navigation pane, select Cost Allocation Tags.

3. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

4. Choose Activate.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution 49

https://console.aws.amazon.com/billing/home

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Uninstall the solution

You can uninstall the Migration Assistant for Amazon OpenSearch Service solution from the AWS
Management Console or by using the AWS Command Line Interface. Manually remove the contents
of the bucket that matches cdk-<unique id>-assets-<account id>-<region> created by this
solution. Migration Assistant for Amazon OpenSearch Service does not automatically delete S3
buckets and the target AWS OpenSearch cluster in case you have stored data to retain.

Using the AWS Management Console

1. Sign in to the CloudFormation console.

2. On the Stacks page, select this solution's installation stack. The stacks must be deleted in the
following order:

a. migration-console

b. traffic-replayer-default

c. capture-proxy-es (only available for demo install)

d. fetchMigrationStack

e. mskUtilityStack

f. migrationInfraStack

g. openSearchDomainStack-default

h. networkStack-default

3. On the Stacks page, delete the bootstrap stack Migration-Assistant-Bootstrap.

4. Choose Delete for each of the above.

Using AWS Command Line Interface

Log in to the migration-<stage>-deployment-box container and run the following command:

$ cdk destroy "*" --c contextId=<context id>

Using the AWS Management Console 50

https://console.aws.amazon.com/cloudformation/home?

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Note

The default retention policy for the OpenSearch domain is to RETAIN the
resource when the stack is deleted. To delete the domain on stack deletion,
the domainRemovalPolicy must be set to DESTROY.

Alternatively, the domain can be manually deleted through the AWS Management console or AWS
CLI.

After the Migration Assistant for Amazon OpenSearch Service solution stacks (see step 2. in
the Using the AWS Management Console section) have been removed, remove the bootstrap
CloudFormation template.

$ cdk destroy "Migration-Assistant-Bootstrap"

Determine whether the AWS Command Line Interface (AWS CLI) is available in your environment.
For installation instructions, see What Is the AWS Command Line Interface in the AWS CLI User
Guide. After confirming that the AWS CLI is available, run the following command.

$ aws cloudformation delete-stack --stack-name <stack
names as listed in step 2 (a-h) above>

Using AWS Command Line Interface 51

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Use the solution

For information on how to use this solution, refer to the User Guide on the OpenSearch Migrations
GitHub page.

52

https://github.com/opensearch-project/opensearch-migrations/wiki/User-Guide

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Developer guide

Source code

Visit our GitHub repository to download the source files for this solution and to share your
customizations with others.

Note

Report technical issues with the solution on the Issues page of the GitHub repository.

AWS CDK generates the solution's bootstrap template. See the README.md file for additional
information.

After the Migration Assistant for Amazon OpenSearch Service bootstrap is installed, install
additional resources using CDK templates. For more information, refer to the opensearch-
migrations GitHub repository.

Source code 53

https://github.com/opensearch-project/opensearch-migrations/issues
https://github.com/aws-solutions/migration-assistant-for-amazon-opensearch/blob/main/README.md
https://github.com/opensearch-project/opensearch-migrations/blob/main/deployment/cdk/opensearch-service-migration/README.md
https://github.com/opensearch-project/opensearch-migrations/blob/main/deployment/cdk/opensearch-service-migration/README.md

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Reference

This section includes information about an optional feature for collecting unique metrics for this
solution, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each Migration Assistant for
Amazon OpenSearch Service deployment

• Timestamp - Data-collection timestamp

AWS owns the data gathered though this survey. Data collection is subject to the Privacy Notice.
To opt out of this feature, complete the following steps before launching the AWS CloudFormation
template.

1. Download the AWS CloudFormation template to your local hard drive.

2. Open the AWS CloudFormation template with a text editor.

3. Modify the AWS CloudFormation template mapping section from:

AnonymizedData:
 SendAnonymizedData:
 Data: Yes

to:

AnonymizedData:
 SendAnonymizedData:
 Data: No

4. Sign in to the AWS CloudFormation console.

5. Select Create stack.

Anonymized data collection 54

https://aws.amazon.com/privacy/
https://console.aws.amazon.com/cloudformation/home

Migration Assistant for Amazon OpenSearch Service Implementation Guide

6. On the Create stack page, specify template section, then select Upload a template file.

7. Under Upload a template file, choose Choose file and select the edited template from your
local drive.

8. Choose Next and follow the steps in Launch the stack in the Deploy the solution section of this
guide.

Contributors

• Kartik Ganesh

• Chris Helma

• Omar Khasawneh

• Tanner Lewis

• Brian Presley

• Greg Schohn

• Himanshu Setia

• Mikayla Thompson

Contributors 55

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Revisions

Date Change

November 2023 Initial release

56

Migration Assistant for Amazon OpenSearch Service Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products
or services are provided "as is" without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

Migration Assistant for Amazon OpenSearch Service is licensed under the terms of the Apache
License Version 2.0 available at The Apache Software Foundation.

57

https://www.apache.org/licenses/LICENSE-2.0

	Migration Assistant for Amazon OpenSearch Service
	Table of Contents
	Build an environment to upgrade, migrate, and compare OpenSearch clusters
	Features and benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Architecture diagram
	AWS Well-Architected design considerations
	Operational excellence
	Security
	Reliability
	Performance efficiency
	Cost optimization
	Sustainability

	Architecture details
	Self-service Elasticsearch/OpenSearch source cluster
	Capture Proxy
	Traffic Replayer
	OpenTelemetry Collector container
	Historical Data Migration container
	Migration Management Console
	AWS services in this solution

	How this solution works
	Capture Proxy
	Traffic Replayer
	Historical Data Migration

	Plan your deployment
	Cost
	Sample cost table

	Security
	IAM roles
	Security groups
	AWS Secrets Manager

	Supported AWS Regions
	Quotas
	Quotas for AWS services in this solution
	AWS CloudFormation quotas

	Deploy the solution
	Deployment process overview
	AWS CloudFormation template
	Step 1: Launch the bootstrap stack
	Step 2: Setup the bootstrap instance
	Step 3: Customize the migration options
	Step 4: Deploy the migration stacks

	Monitoring the solution with Service Catalog AppRegistry
	Activate CloudWatch Application Insights
	Activate AWS Cost Explorer
	Confirm cost tags associated with the solution
	Activate cost allocation tags associated with the solution

	Uninstall the solution
	Using the AWS Management Console
	Using AWS Command Line Interface

	Use the solution
	Developer guide
	Source code

	Reference
	Anonymized data collection
	Contributors

	Revisions
	Notices

