MLOps Workload Orchestrator
Implementation Guide
Table of Contents

Solution overview .. 1
Features and benefits .. 2
Use cases ... 3
Concepts and definitions .. 4
Architecture overview .. 5
Architecture diagram .. 5
Template option 1: Single-account deployment ... 5
Template option 2: Multi-account deployment .. 6
Shared resources and data between accounts .. 8
AWS Well-Architected design considerations ... 9
- Operational excellence ... 9
- Security .. 9
- Reliability ... 9
- Performance efficiency ... 10
- Cost optimization ... 10
- Sustainability ... 10
Pipeline descriptions ... 11
- Model training pipelines .. 11
- BYOM real-time inference pipelines .. 11
- BYOM batch transform pipelines .. 11
- Custom algorithm image builder pipeline .. 11
- Model monitor pipeline ... 12
- AWS services in this solution ... 12
Plan your deployment .. 14
Cost ... 14
- Sample cost table ... 14
Security ... 15
- IAM roles .. 16
- AWS KMS keys .. 16
Data retention ... 16
Bring Your Own Model pipeline ... 16
Custom blueprints/pipelines .. 16
- Create your custom AWS CloudFormation template or Lambda functions 16
- Update the Orchestrator Lambda function to add your custom blueprint’s logic 17
Supported AWS Regions .. 17
Quotas ... 18
- Quotas for AWS services in this solution .. 18
- AWS CloudFormation quotas ... 18
- AWS CodePipeline quotas .. 18
Deploy the solution .. 19
Prerequisites ... 19
Choose your deployment option ... 19
AWS CloudFormation templates ... 19
Template option 1: Single-account deployment ... 20
- Deployment process overview ... 20
 - Step 1: Launch the stack .. 20
 - Step 2: Provision the pipeline and train or deploy the ML model 23
 - Step 3: Provision the model monitor pipeline (optional) 23
Template option 2: Multi-account deployment ... 24
- Deployment process overview ... 24
 - Step 1: Launch the stack .. 25
 - Step 2: Provision the pipeline and train or deploy the ML model 28
 - Step 3: Provision the model monitor pipeline (optional) 29
Monitoring the solution with Service Catalog AppRegistry 30
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activate CloudWatch Application Insights</td>
<td>30</td>
</tr>
<tr>
<td>Activate AWS Cost Explorer</td>
<td>31</td>
</tr>
<tr>
<td>Activate cost allocation tags associated with the solution</td>
<td>32</td>
</tr>
<tr>
<td>Update the solution</td>
<td>33</td>
</tr>
<tr>
<td>Uninstall the solution</td>
<td>34</td>
</tr>
<tr>
<td>Using the AWS Management Console</td>
<td>34</td>
</tr>
<tr>
<td>Using AWS Command Line Interface</td>
<td>34</td>
</tr>
<tr>
<td>Deleting the Amazon S3 buckets</td>
<td>34</td>
</tr>
<tr>
<td>Deleting SageMaker Model Registry</td>
<td>35</td>
</tr>
<tr>
<td>Deleting Amazon ECR repository</td>
<td>35</td>
</tr>
<tr>
<td>Developer guide</td>
<td>36</td>
</tr>
<tr>
<td>Source code</td>
<td>36</td>
</tr>
<tr>
<td>API operations</td>
<td>36</td>
</tr>
<tr>
<td>Template option 1: Single account deployment</td>
<td>36</td>
</tr>
<tr>
<td>Template option 2: Multi-account deployment</td>
<td>50</td>
</tr>
<tr>
<td>Reference</td>
<td>54</td>
</tr>
<tr>
<td>Anonymized data collection</td>
<td>54</td>
</tr>
<tr>
<td>Related resources</td>
<td>55</td>
</tr>
<tr>
<td>Contributors</td>
<td>55</td>
</tr>
<tr>
<td>Revisions</td>
<td>56</td>
</tr>
<tr>
<td>Notices</td>
<td>59</td>
</tr>
</tbody>
</table>
Deploy a robust pipeline that uses managed automation tools and machine learning (ML) services to simplify ML model development and production

Publication date: November 2020 (last update (p. 56): August 2023)

The ML lifecycle is an iterative and repetitive process that involves changing models over time and learning from new data. As ML applications gain popularity, organizations are building new and better applications for a wide range of use cases including optimized email campaigns, forecasting tools, recommendation engines, self-driving vehicles, virtual personal assistants, and more. While operational and pipelining processes vary across projects and organizations, the processes contain commonalities across use cases.

The MLOps Workload Orchstrator solution helps you streamline and enforce architecture best practices by providing an extendable framework for managing ML pipelines for Amazon Web Services (AWS) ML services and third-party services. The solution's template allows you to train models, upload trained models, configure the pipeline orchestration, initiate the start of the deployment process, move models through different stages of deployment, and monitor the successes and failures of the operations. The solution also provides a pipeline for building and registering Docker images for custom algorithms that can be used for model deployment on an Amazon SageMaker endpoint.

You can use batch and real-time data inferences to configure the pipelines for your business context. This solution increases your team's agility and efficiency by allowing them to repeat successful processes at scale.

The MLOps Workload Orchstrator solution currently offers 12 pipelines:

- One pipeline to train ML models using Amazon SageMaker built-in algorithms and Amazon SageMaker training job
- One pipeline to train ML models using Amazon SageMaker built-in algorithms and Amazon SageMaker hyperparameter tuning job
- One pipeline to train ML models using Amazon SageMaker built-in algorithms and Amazon SageMaker autopilot job
- Two BYOM real-time inference pipelines for ML models trained using both Amazon SageMaker built-in algorithms and custom algorithms
- Two BYOM batch transform pipelines for ML models trained using both Amazon SageMaker built-in algorithms and custom algorithms
- One custom algorithm image builder pipeline that you can use to build and register Docker images in Amazon Elastic Container Registry (Amazon ECR) for custom algorithms
- Four model monitor pipelines to continuously monitor the quality of deployed machine learning models by the real-time inference pipeline and alerts for deviations in data quality, model quality, model bias, and/or model explainability
To support multiple use cases and business needs, this solution provides two AWS CloudFormation templates for single-account and multi-account deployments:

- **Template option 1 – Single account** – Use the single-account template to deploy all of the solution’s pipelines in the same AWS account. This option is suitable for experimentation, development, and/or small-scale production workloads.
- **Template option 2 – Multi-account** – Use the multi-account template to provision multiple environments (for example, development, staging, and production) across different AWS accounts, which improves governance and increases security and control of the ML pipeline’s deployment, provides safe experimentation and faster innovation, and keeps production data and workloads secure and available to ensure business continuity.

This implementation guide provides an overview of the MLOps Workload Orchestrator solution, its reference architecture and components, considerations for planning the deployment, configuration steps for deploying the solution to the AWS Cloud.

The intended audience for using this solution’s features and capabilities in their environment includes IT infrastructure architects, ML engineers, data scientists, developers, DevOps, data analysts, and marketing technology professionals who have practical experience architecting in the AWS Cloud.

Use this navigation table to quickly find answers to these questions:

<table>
<thead>
<tr>
<th>If you want to . . .</th>
<th>Read . . .</th>
</tr>
</thead>
<tbody>
<tr>
<td>Know the cost for running this solution.</td>
<td>Cost (p. 14)</td>
</tr>
<tr>
<td>The estimated cost for running this solution in the US East (N. Virginia) Region is USD $374.57 per month for AWS resources.</td>
<td></td>
</tr>
<tr>
<td>Understand the security considerations for this solution.</td>
<td>Security (p. 15)</td>
</tr>
<tr>
<td>Know how to plan for quotas for this solution.</td>
<td>Quotas (p. 18)</td>
</tr>
<tr>
<td>Know which AWS Regions support this solution.</td>
<td>Supported AWS Regions (p. 17)</td>
</tr>
<tr>
<td>View or download the AWS CloudFormation templates included in this solution to automatically deploy the infrastructure resources (the “stack”) for this solution.</td>
<td>AWS CloudFormation templates (p. 19)</td>
</tr>
</tbody>
</table>

Features and benefits

The MLOps Workload Orchestrator solution provides the following features:

Pre-built ML workloads

The solution deploys with AWS CloudFormation templates to provision common ML workloads for Amazon SageMaker, such as model training, batch transform, real-time inference, and model monitoring.

Automatically deploy one or more ML workloads

Use the solution-provided API endpoint or Git commit mechanisms to automatically deploy ML workloads at scale.
Multi-account support
Easily deploy and promote ML workloads across different AWS accounts, such as development, staging, and production accounts. Multi-account support is for bring-your-own-model (BYOM) and model monitor pipelines.

Model monitoring
Monitor for deployed ML models and detect deviation in data quality, model quality, model bias, and model explainability.

Track Amazon SageMaker resources in a dashboard
Amazon SageMaker resources created by the solution, such as models, inference endpoints, models cards, and batch transform jobs, are automatically integrated with Amazon SageMaker Model Dashboard.

Notifications
Receive user notifications of pipeline outcomes through SMS or email.

Integration testing
You can run your own integration tests to ensure that the deployed model meets expectations.

Amazon SageMaker model registry
The solution provides an option to use Amazon SageMaker model registry to deploy versioned models. The model registry allows you to catalog models for production, manage model versions, associate metadata with models, and more.

Extend the solution with custom ML workloads
We designed the solution to be extensible and customizable. You can customize the pre-built CloudFormation templates or provide your own ML workloads templates.

Integration with Service Catalog AppRegistry and AWS Systems Manager Application Manager
This solution includes a Service Catalog AppRegistry resource to register the solution’s CloudFormation template and its underlying resources as an application in both Service Catalog AppRegistry and AWS Systems Manager Application Manager. With this integration, you can centrally manage the solution’s resources and enable application search, reporting, and management actions.

Use cases

Model training
Automatically provision Amazon SageMaker model training, hyperparameters tuning, and autopilot workloads to train ML models at scale.

Real-time inference
Deploy ML models, trained using the training workloads provided by the solution or outside the solution (BYOM), to a SageMaker endpoint for real-time inference.

Batch inference workloads
Deploy batch inference workloads to perform inference on a large batch of data in one run, instead of having a long-running real-time inference endpoint.
Model quality monitoring

Continuously monitor the quality of a deployed ML model on a SageMaker real-time inference endpoint, and alert for any deviations in data quality, model quality, model bias, and model explainability.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

application
A logical group of AWS resources that you want to operate as a unit.

batch prediction
An operation that processes multiple input data observations at one time (asynchronously). Unlike real-time predictions, batch predictions aren't available until all predictions have been processed.

ML model
In machine learning (ML), a mathematical model that generates predictions by finding patterns in data. Amazon Machine Learning supports three types of ML models: binary classification, multiclass classification, and regression. Also known as a predictive model.

real-time prediction
Synchronously generated predictions for individual data observations.

For a general reference of AWS terms, see the [AWS glossary](#) in the AWS General Reference:
Architecture overview

This section provides a reference implementation architecture diagram for the components deployed with this solution.

Architecture diagram

This solution is built with two primary components:

1. The Orchestrator component, created by deploying the solution's AWS CloudFormation template.
2. The AWS CodePipeline instance deployed from either calling the solution's Amazon API Gateway, or by committing a configuration file into an AWS CodeCommit repository. The solution's pipelines are implemented as AWS CloudFormation templates, which allows you to extend the solution and add custom pipelines.

To support multiple use cases and business needs, the solution provides two AWS CloudFormation templates: option 1 for single account deployment, and option 2 for multi-account deployment. In both templates, the solution provides the option to use Amazon SageMaker model registry to deploy versioned models. The model registry allows you to catalog models for production, manage model versions, associate metadata with models, manage the approval status of a model, deploy models to production, and automate model deployment with continuous integration and continuous delivery (CI/CD).

Template option 1: Single-account deployment

The solution's single-account architecture provides the following components and workflows, which are shown as numbered steps in the following diagram.
MLOps Workload Orchestrator solution architecture (single account)

This solution's single-account template provides the following components and workflows:

1. The orchestrator (solution owner or DevOps engineer) launches the solution in the AWS account and selects the preferred options, for example, using Amazon SageMaker registry or providing an existing Amazon Simple Storage Service (Amazon S3) bucket.

2. The orchestrator uploads the required assets for the target pipeline (for example, model artifact, training data, or custom algorithm zip file) into the Amazon S3 assets bucket. If using Amazon SageMaker model registry, the orchestrator (or an automated pipeline) must register the model with the model registry.

3. A single account AWS CodePipeline instance is provisioned by either sending an API call to the API Gateway, or by committing the mlops-config.json file to the Git repository. Depending on the pipeline type, the Orchestrator AWS Lambda function packages the target AWS CloudFormation template and its parameter and configurations using the body of the API call or the mlops-config.json file, and uses it as the source stage for the AWS CodePipeline instance.

 Note
 If you are provisioning the model monitor pipeline, the orchestrator must first provision the real-time inference pipeline, and then provision the model monitor pipeline.
 If a custom algorithm (for example, not a built-in Amazon SageMaker algorithm) was used to train the model, the orchestrator must provide the Amazon ECR custom algorithm's image URI, or build and register the Docker image using the custom algorithm image builder pipeline.

4. The DeployPipeline stage takes the packaged CloudFormation template and its parameters/configurations and deploys the target pipeline into the same account.

5. After the target pipeline is provisioned, users can access its functionalities. An Amazon Simple Notification Service (Amazon SNS) notification is sent to the email provided in the solution's launch parameters.

 Note
 The single-account AWS CodePipeline's AWS CloudFormation action is granted admin permissions to deploy different resources by different MLOps pipelines. Roles are defined by the pipelines' CloudFormation templates. This makes it easy to add new pipelines. To restrict the types of resources a template can deploy, customers can create an AWS Identity and Access Management (IAM) role, with limited permissions, and pass it to the CloudFormation action as the deployment role.

Template option 2: Multi-account deployment

This solution uses AWS Organizations and AWS CloudFormation StackSets to allow you to provision or update ML pipelines across AWS accounts and Regions. Using an AWS Organizations delegated administrator account (also referred to as the orchestrator account in this guide) allows you to deploy ML pipelines implemented as AWS CloudFormation templates into selected target accounts (for example, development, staging, and production accounts).

We recommend using AWS Organizations to govern across account deployments with the following structure:

- Orchestrator account (the AWS Organizations delegated administrator account) - The MLOps Workload Orchestrator solution is deployed into this account.
- Development Organizational Unit - Contains development account(s).
- Staging Organizational Unit - Contains staging account(s).
- Production Organizational Unit - Contains production account(s).
This solution uses the AWS Organizations service-managed permissions model to allow the orchestrator account to deploy pipelines into the target accounts (for example, development, staging, and production account).

Note
You must set up the recommended AWS Organizations structure, enable trusted access with AWS Organizations, and register a delegated administrator account before implementing the solution’s multi-account deployment option into the orchestrator account.

Important
By default, the solution expects the orchestrator account to be an AWS Organizations delegated administrator account. This follows best practices to limit the access to the AWS Organizations management account. However, if you want to use your management account as the orchestrator account, the solution allows you to switch to the management account by modifying the AWS CloudFormation template parameter: Are you using a delegated administrator account (AWS Organizations)? to No.

MLOps Workload Orchestrator solution architecture (multi-account)

This solution’s multi-account template provides the following components and workflows:

1. The orchestrator (solution owner or DevOps engineer with admin access to the orchestrator account) provides the AWS Organizations information (for example, development, staging, and production organizational unit IDs and account numbers). They also specify the desired options (for example, using Amazon SageMaker Registry, or providing an existing S3 bucket), and then launch the solution in their AWS account.

2. The orchestrator uploads the required assets for the target pipeline (for example, model artifact, training data, and/or custom algorithm zip file) into the S3 assets bucket in the AWS orchestrator account. If Amazon SageMaker model registry is used, the orchestrator (or an automated pipeline) must register the model with the model registry.
3. A multi-account AWS CodePipeline instance is provisioned by either sending an API call to the API Gateway, or by committing the `mlops-config.json` file to the Git repository. Depending on the pipeline type, the Orchestrator Lambda function packages the target AWS CloudFormation template and its parameters/configurations for each stage using the body of the API call or the `mlops-config.json` file, and uses it as the source stage for the AWS CodePipeline instance.

4. The DeployDev stage takes the packaged CloudFormation template and its parameters/configurations and deploys the target pipeline into the development account.

5. After the target pipeline is provisioned into the development account, the developer can then iterate on the pipeline.

6. After the development is finished, the orchestrator (or another authorized account) manually approves the DeployStaging action to move to the DeployStaging Stage.

7. The DeployStaging stage deploys the target pipeline into the staging account, using the staging configuration.

8. Testers perform different tests on the deployed pipeline.

9. After the pipeline passes quality tests, the orchestrator can approve the DeployProd action.

10. The DeployProd stage deploys the target pipeline (with production configurations) into the production account.

11. Finally, the target pipeline is live in production. An Amazon SNS notification is sent to the email provided in the solution’s launch parameters.

Note
This solution uses the model's name (provided in the API call or `mlops-config.json` file) as part of the provisioned AWS CloudFormation stack name, which creates the multi-account CodePipeline instance. When a request is made to provision a pipeline, the Orchestrator Lambda function first checks to determine whether a stack exists with the specified name. If the stack does not exist, the Lambda function provisions a new stack. If a stack with the same name already exists, the function assumes that you want to update the existing pipeline using the new parameters.

Shared resources and data between accounts

In the multi-account template option, the development, staging, and production accounts each have access to the S3 assets bucket, blueprint bucket, Amazon ECR repository, and Amazon SageMaker model registry in the orchestrator account. If the S3 assets bucket, Amazon ECR repository, and Amazon SageMaker model registry are created by the solution (for example, if the customer did not provide existing resources when installing the solution), the solution will grant permissions to the development, staging, and production accounts access to these resources. If you provided an existing S3 assets bucket and Amazon ECR repository, or are using an Amazon SageMaker model registry that was not created by the solution, then you must set up permissions to allow other accounts to access these resources.

The following data is shared across accounts:

- Model artifact
- Baseline datasets used to create baselines for Amazon SageMaker data quality, model quality, model bias, and model explainability monitors
- Custom algorithm Amazon ECR image's URL, used to train the model

To allow data separation and security, the following data is not shared between accounts:

- **Location of captured data** - You must provide the full S3 path for each account to store data captured by the real-time inference Amazon SageMaker endpoint.
• **Batch inference data** - You must provide the full S3 path to the inference data for each account.
• **Location of the batch transform's output** - You must provide the full S3 path for each account where the output of the batch transform job will be stored.
• **Location of baseline job's output** - You must provide the full S3 path for each account where the output of the baseline job for model monitor will be stored.
• **Location of monitoring schedule job's output** - You must provide the full S3 path for each account where the output of the monitoring schedule will be stored.

AWS Well-Architected design considerations

This solution uses the best practices from the [AWS Well-Architected Framework](https://aws.amazon.com/wellarchitected), which helps customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

This section describes how the design principles and best practices of the Well-Architected Framework benefit this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of the operational excellence pillar.

- The MLOps Workload Orchestrator is implemented using [AWS Cloud Development Kit (AWS CDK)](https://docs.aws.amazon.com/cdk) (AWS CDK) and deployed as CloudFormation templates, so you can deploy the solution and its pre-built ML workloads at scale in any of the [supported AWS Regions](https://aws.amazon.com/about-aws/global-infrastructure/regions-and-zones/).
- The solution pushes metrics to [Amazon CloudWatch](https://aws.amazon.com/cloudwatch) at various stages to provide observability into infrastructure, AWS Lambda functions, Amazon SageMaker, Amazon S3 buckets, and the rest of the solution components.

Security

This section describes how we architected this solution using the principles and best practices of the security pillar.

- All inter-service communications use IAM roles.
- Multi-account option leverages [AWS Organizations](https://aws.amazon.com/organizations) and IAM roles.
- All roles used by the solution follow least-privileged access. That is, they only contain the minimum permissions required so that the service can function properly.
- Communication between end-user and solution API Gateway uses API key authorization over TLS v1.3 HTTPS.
- All data storage, including Amazon S3 buckets, have encryption at rest.

Reliability

This section describes how we architected this solution using the principles and best practices of the reliability pillar.

- This solution uses AWS serverless services (such as Lambda, CodePipeline, API Gateway, Amazon S3, and SageMaker) to ensure high availability and recovery from service failure.
- End-users can determine which type of resource SageMaker will use. This approach sets the expectation for the user to receive results in relation to the chosen resource's capacity.
• We perform automated tests on this solution to protect against breaking changes in services or libraries used by the solution.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of the performance efficiency pillar.

• This solution uses a serverless architecture throughout the solution.
• You can launch the solution in any Region that supports the AWS services used by the solution. For details, see AWS services in this solution (p. 12).
• This solution is automatically tested and deployed every day. Solution architects and subject matter experts also regularly review the solution for areas to experiment and improve.

Cost optimization

This section describes how we architected this solution using the principles and best practices of the cost optimization pillar.

• This solution uses serverless architecture when possible, so customers only get charged for what they use.
• This solution uses Amazon EC2 Spot Instances for model training workloads to reduce the cost, with the ability to switch to On-Demand Amazon EC2 instances if needed.
• You can use batch inference in SageMaker, which helps reduce the cost, compared to having an instance running.

Sustainability

This section describes how we architected this solution using the principles and best practices of the sustainability pillar.

• This solution uses AWS serverless and managed services to scale up or down as needed, and minimize the environmental impact of the backend services.
Pipeline descriptions

Model training pipelines

This solution provides three pipelines to train ML models using Amazon SageMaker built-in algorithms. Deploying a training pipeline creates the following AWS resources:

- An AWS Lambda function to initiate the creation of Amazon SageMaker training, tuning, or autopilot jobs
- A Lambda function to automatically initiate the training Lambda function once the pipeline’s CloudFormation template is deployed
- Amazon EventBridge rules to monitor the status of the training jobs
- An Amazon SNS topic, to notify the solution’s administrators about pipelines changes via email
- All required IAM roles

BYOM real-time inference pipelines

This solution allows you to deploy machine learning models trained using Amazon SageMaker built-in algorithms, or custom algorithms on Amazon SageMaker endpoints that provide real-time inferences. Deploying a real-time inference pipeline creates the following AWS resources:

- An Amazon SageMaker model, endpoint configuration, and endpoint
- An AWS Lambda function that invokes the Amazon SageMaker endpoint and returns inferences on the passed data
- An Amazon API Gateway connected to the Lambda that provides authentication and authorization to securely access the Amazon SageMaker endpoint
- All required IAM roles

BYOM batch transform pipelines

The batch transform pipelines create transform jobs using machine learning models trained using Amazon SageMaker built-in algorithms (or custom algorithms) to perform batch inferences on a batch of data. Deploying a batch transform pipeline creates the following AWS resources:

- An Amazon SageMaker model
- An AWS Lambda function that initiates the creation of the Amazon SageMaker Transform job
- All required IAM roles

Custom algorithm image builder pipeline

The custom algorithm image builder pipeline allows you to use custom algorithms, and build and register Docker images in Amazon ECR. This pipeline is deployed in the orchestrator account, where the Amazon ECR repository is located. Deploying this pipeline creates the following AWS resources:

- An AWS CodePipeline with the source stage and build stage
• The build stage uses AWS CodeBuild to build and register the custom images
• All required IAM roles

Model monitor pipeline

This solution uses Amazon SageMaker model monitor to continuously monitor the quality of deployed machine learning models. The solution supports Amazon SageMaker data quality, model quality, model bias, and model explainability (feature attribution) monitoring. The data from model monitor reports can be used to set alerts for violations generated by these monitors. This solution uses the following process to activate continuous model monitoring:

1. The deployed Amazon SageMaker endpoint captures data from incoming requests to the deployed model and the resulting model predictions. The data captured for each deployed model is stored in the S3 bucket location specified by data_capture_location in the API call under the prefix `<endpoint-name>/<model-variant-name>/<year>/<month>/<day>/<hour>/`.

2. For data quality, model bias, and model explainability monitoring, the solution creates baselines from the dataset that was used to train the deployed model. For model quality monitoring, the baseline dataset contains the predictions of the model and ground truth labels. The baseline datasets must be uploaded to the solution's Amazon S3 assets bucket. The datasets S3 keys and the baseline output Amazon S3 path must be provided in the API call, or mlops-config.json file.

3. For data quality and model quality, the baseline jobs computes metrics and suggests constraints for the metrics and produces two files: constraints.json and statistics.json. For model bias and model explainability, analysis_config.json and analysis.json files are generated.

4. The generated JSON files by baseline jobs are stored in the Amazon S3 bucket specified by baseline_job_output_location under the prefix `<baseline-job-name>/`. These files are passed as input to the Amazon SageMaker monitors.

5. The solution creates a monitoring schedule job based on your configurations via the API call or mlops-config.json file. The monitoring job compares real-time predictions data (captured in the first step) with the baseline created in the previous step (step 2). The job reports for each deployed model monitor pipeline are stored in the S3 bucket location specified by monitoring_output_location under the prefix `<endpoint-name>/<monitoring-job-name>/<year>/<month>/<day>/<hour>/`.

Note
For more information, refer to Amazon SageMaker data quality, model quality, model bias, and model explainability (feature attribution) monitoring.

AWS services in this solution

The following AWS services are included in this solution:

<table>
<thead>
<tr>
<th>AWS service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Lambda</td>
<td>Core. Provides logic for the orchestration component of the solution and different ML workload tasks, such as triggering model training jobs, creating baseline jobs, and deploying StackSets.</td>
</tr>
<tr>
<td>Amazon API Gateway</td>
<td>Core. Provides the interface with the solution orchestration component and SageMaker real-time inference endpoint.</td>
</tr>
</tbody>
</table>
AWS services in this solution

<table>
<thead>
<tr>
<th>AWS service</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon SageMaker</td>
<td>Core. Provides model training, batch inference, real-time inference, and model monitoring.</td>
</tr>
<tr>
<td>AWS CodePipeline</td>
<td>Core. Provides the ability to automatically deploy different ML workloads offered by the solution.</td>
</tr>
<tr>
<td>AWS CloudFormation</td>
<td>Core. Used to deploy the main solution orchestrator and different ML workloads, built as CloudFormation templates.</td>
</tr>
<tr>
<td>AWS Identity and Access Management</td>
<td>Core. Provides required scoped permissions to provision different ML workloads.</td>
</tr>
<tr>
<td>AWS CodeBuild</td>
<td>Supporting. Provides support to build custom SageMaker algorithms.</td>
</tr>
<tr>
<td>Amazon Simple Notification Service</td>
<td>Supporting. Provides notifications to the admin user about ML workload status.</td>
</tr>
<tr>
<td>AWS Systems Manager</td>
<td>Supporting. Provides application-level resource monitoring and visualization of resource operations and cost data.</td>
</tr>
<tr>
<td>Amazon ECR</td>
<td>Optional. Hosts custom SageMaker algorithms images for use by ML workloads. Required only for use with custom algorithms.</td>
</tr>
<tr>
<td>AWS Key Management Service</td>
<td>Optional. Stores customer’s encryption keys if they want to use their own keys to encrypt model artifact, and outputs of ML workloads.</td>
</tr>
</tbody>
</table>
Plan your deployment

This section describes the cost (p. 14), security (p. 15), Regions (p. 17), and other considerations prior to deploying the solution.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of this revision, the cost for running this solution with the default settings in the US East (N. Virginia) is approximately $374.57 per month. These costs are for the resources shown in the Sample cost table.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are subject to change. For full details, see the pricing webpage for each AWS service used in this solution (p. 11).

Sample cost table

The following table provides a sample cost breakdown for deploying this solution with the default parameters in the US East (N. Virginia) Region for one month.

The majority of the monthly cost is dependent on AWS Lambda and real-time inferences in Amazon SageMaker. This estimate uses an ml.m5.large instance. However, instance type and actual performance is highly dependent on factors like model complexity, algorithm, input size, concurrency, and various other factors.

For cost-efficient performance, you must load test for proper instance size selection and use batch transform instead of real-time inference when possible.

<table>
<thead>
<tr>
<th>AWS service</th>
<th>Dimensions</th>
<th>Cost [USD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon API Gateway</td>
<td>333 million requests (pipelines provisioning and real-time inference requests)</td>
<td>$ 3.50</td>
</tr>
<tr>
<td>AWS Lambda</td>
<td>Requests cost: 333 million requests x $0.20 (per one million requests)</td>
<td>$66.60</td>
</tr>
<tr>
<td></td>
<td>Compute cost: 333,000,000 (runs) x 128/1024 (GB) x 0.1 seconds (run duration) x $0.00001667 (per GB-s)</td>
<td>$69.39</td>
</tr>
<tr>
<td>Amazon SageMaker (training job)</td>
<td>One instance (ml.m5.large) x $0.115/hour x 1 (hours, job duration) x 20 (jobs per month)</td>
<td>$2.30</td>
</tr>
<tr>
<td>Amazon SageMaker (hyperparameter tuning job)</td>
<td>One instance (ml.m5.large) x $0.115/hour x 1 (hours, job duration) x 10 (number)</td>
<td>$23.00</td>
</tr>
</tbody>
</table>
Security

When you build systems on AWS infrastructure, security responsibilities are shared between you and AWS. This [shared responsibility model](https://aws.amazon.com/security/sharedresponsibility/) reduces your operational burden because AWS operates, manages, and controls the components including the host operating system, the virtualization layer, and the physical security of the facilities in which the services operate. For more information about AWS security, visit [AWS Cloud Security](https://aws.amazon.com/security/).

<table>
<thead>
<tr>
<th>AWS service</th>
<th>Dimensions</th>
<th>Cost [USD]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon SageMaker (autopilot job)</td>
<td>One instance (ml.m5.4xlarge) x $0.922/hour x 1 (hours, job duration) x 10 (number of candidates) x 10 (jobs per month)</td>
<td>$92.20</td>
</tr>
<tr>
<td>Amazon SageMaker (hosting: real-time inference)</td>
<td>One instance (ml.m5.large) x $0.115/hour x 24 (hours) x 31 (days)</td>
<td>$85.56</td>
</tr>
<tr>
<td>Amazon SageMaker (baseline jobs)</td>
<td>One instance (ml.m5.large) x $0.115/hour x 10/60 (hours, job duration) x 2 (jobs per month)</td>
<td>$0.04</td>
</tr>
<tr>
<td>Amazon SageMaker (model monitor)</td>
<td>One instance (ml.m5.large) x $0.115/hour x 2 (jobs per day) x 10/60 (hours, job duration) x 31 (days)</td>
<td>$1.19</td>
</tr>
<tr>
<td>Amazon SageMaker (batch transform)</td>
<td>One instance (ml.m5.large) x $0.115 (per hour) x 2 (hours, job duration) x 30 (days)</td>
<td>$6.90</td>
</tr>
<tr>
<td>Amazon S3</td>
<td>S3 Standard storage: 100GB x $0.023 (per GB) PUT requests: 10,000 requests x $0.000005 (per request) GET requests: 10,000 requests x $0.0000004 (per request)</td>
<td>$2.30 $0.05 $0.004</td>
</tr>
<tr>
<td>AWS CodePipeline</td>
<td>20 active pipelines x $1.00 (per month)</td>
<td>$20.00</td>
</tr>
<tr>
<td>Amazon ECR</td>
<td>Storage: 10 GB x $0.10 (per GB) Data transfer: 10 GB x $0.02 (per GB)</td>
<td>$1.00 $0.20</td>
</tr>
<tr>
<td>AWS CodeBuild</td>
<td>10 builds per month x 10 minutes (build duration) x $0.0034 (per minute)</td>
<td>$0.34</td>
</tr>
<tr>
<td>Total:</td>
<td></td>
<td>$374.57/month</td>
</tr>
</tbody>
</table>
IAM roles

IAM roles allow customers to assign granular access policies and permissions to services and users on the AWS Cloud. This solution creates IAM roles that grant the solution’s AWS Lambda functions access to create Regional resources.

AWS KMS keys

The MLOps Workload Orchestrator solution allows you to provide your own AWS KMS keys to encrypt captured data by the inference endpoint, model monitor baselines and violations reports, and instances’ volumes used by different pipelines. We recommend referring to Security best practices for AWS Key Management Service to enhance the protection of your encryption keys.

Data retention

Depending on the business’s requirements and data classification policies, it is advisable to setup S3 Lifecycle Configuration to manage the retention of data captured by the Amazon SageMaker real-time endpoints, such as moving the data to Amazon S3 Glacier for long term archiving.

Bring Your Own Model pipeline

MLOps Workload Orchestrator provisions a pipeline based on the inputs received from either an API call or a Git repository. The provisioned pipeline supports building, deploying, and sharing a machine learning model. However, it does not support training the model. You can customize this solution and bring your own training model pipeline.

Custom blueprints/pipelines

This solution supports adding custom blueprints implemented as AWS CloudFormation templates. You can add a custom blueprint with two steps:

1. Create your custom AWS CloudFormation template or AWS Lambda functions.
2. Update the Orchestrator Lambda function to add your custom blueprint’s logic.

Create your custom AWS CloudFormation template or Lambda functions

The MLOps Workload Orchestrator uses AWS Cloud Development Kit (AWS CDK) (CDK) to generate all its AWS CloudFormation templates and supporting resources such as Lambda functions.

Use the following steps to integrate a custom template:

1. Add your template’s CDK code under source/infrastructure/lib/blueprints/pipeline_definitions.
2. Make sure your template creates any required roles or permissions. You can reuse existing IAM policies defined in source/infrastructure/lib/blueprints/pipeline_definitions/iam_policies.py, or create your own.
3. If your template has Lambda functions, add them under source/infrastructure/lib/blueprints/lambdaas. Lambda functions are uploaded to the Blueprints S3 bucket, under the prefix blueprints/
byom/lambdas. The name of the Lambda function's folder must be used in your template's CDK code. For example, if your Lambda function folder's name is myfunction, you must refer to it as blueprints/byom/lambdas/myfunction.zip in your CDK code.

4. Add your template stack to the CDK's application at source/infrastructure/app.py.

5. Add your code to generate the template in deployment/build-s3-dist.sh. Follow the documented steps in the build script. Your custom template and any Lambda functions, are packaged with the solution's templates or Lambda functions in the blueprints.zip file. The zip file is uploaded to the Blueprints Amazon S3 bucket when the solution is deployed.

Update the Orchestrator Lambda function to add your custom blueprint's logic

The Orchestrator Lambda function provisions all the solution's blueprints. You must update the Orchestrator Lambda function code at: source/lambdas/pipeline_orchestration/lambda_helpers.py to add your custom blueprint's template logic.

Use the following steps to update the Orchestrator Lambda function:

1. Update the template_url function to add your custom template URL. You must create your own pipeline_type, which is used to identify the custom template. For example, byom_realtime builtin is used for the real-time inference with built-in SageMaker algorithms pipeline.

2. Update the get_stack_name function to add a stack name for your template.

3. Update the get_template_parameters function to get your template's parameters. You can follow the same approach to create a function to get your template's parameters from the API call payload, similar to the functions get_realtime_specific_params, get_batch_specific_params, get_model_monitor_params, and others.

4. Add required APIs call keys to get_required_keys. This function is used by the validate function to validate that the API call payload contains the required keys (parameters) used by your template.

5. Add any additional IAM permissions to the create_orchestrator_policy function in source/infrastructure/lib/blueprints/pipeline_definitions/iam_policies.py.

Supported AWS Regions

This solution uses the AWS CodePipeline and Amazon SageMaker services, which are not currently available in all AWS Regions. For the most current availability of AWS services by Region, see the AWS Regional Services List.

MLOps Workload Orchestrator is available in the following AWS Regions:

<table>
<thead>
<tr>
<th>Region name</th>
<th>Region name</th>
</tr>
</thead>
<tbody>
<tr>
<td>US East (Ohio)</td>
<td>Asia Pacific (Tokyo)</td>
</tr>
<tr>
<td>US East (N. Virginia)</td>
<td>Canada (Central)</td>
</tr>
<tr>
<td>US West (Northern California)</td>
<td>Europe (Frankfurt)</td>
</tr>
<tr>
<td>US West (Oregon)</td>
<td>Europe (Ireland)</td>
</tr>
<tr>
<td>Africa (Cape Town)</td>
<td>Europe (London)</td>
</tr>
</tbody>
</table>
Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or operations for your AWS account.

Quotas for AWS services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution (p. 11). For more information, see AWS service quotas.

Use the following links to go to the page for that service. To view the service quotas for all AWS services in the documentation without switching pages, view the information in the Service endpoints and quotas page in the PDF instead.

AWS CloudFormation quotas

Your AWS account has AWS CloudFormation quotas that you should be aware of when launching the stack (p. 20) in this solution. By understanding these quotas, you can avoid limitation errors that would prevent you from deploying this solution successfully. For more information, see AWS CloudFormation quotas in the AWS CloudFormation User's Guide.

AWS CodePipeline quotas

Your AWS account has AWS CodePipeline quotas that you should be aware of when provisioning different ML workloads using this solution. By understanding these quotas, you can avoid limitation errors that would prevent you from deploying ML workloads successfully. For more information, see AWS CodePipeline endpoints and quotas.
Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment. The CloudFormation templates specify the AWS resources included in this solution and their properties. The CloudFormation stack provisions the resources that are described in the templates.

Prerequisites

Before you can deploy this solution, ensure that you have access to the following resources:

- A pre-built machine learning model artifact
- A Docker file for building a container image for the model artifact if using a custom algorithm. This is not required if you are using prebuilt SageMaker Docker images.
- A tool to call HTTP API operations (for example, cURL or Postman), or a tool to commit files to a Git repository.

Choose your deployment option

Follow the steps to deploy your chosen deployment option. There are two options:

- Template option 1: Single-account deployment
- Template option 2: Multi-account deployment

AWS CloudFormation templates

You can download the CloudFormation templates for this solution before deploying it.

This solution uses AWS CloudFormation to automate deployment. It includes the following two templates—a single account deployment option, and a multi-account deployment option.

mllops-workload-orchestrator-single-account.template - Use this template to launch the solution with the single-account deployment option. The default configuration deploys two Amazon S3 buckets, an AWS Lambda function, an Amazon API Gateway API, an AWS CodeBuild project, and an Amazon ECR repository, but you can customize the template to meet your specific needs.
mlops-workload-orchestrator-multi-account.template - Use this template to launch the solution with the multi-account deployment option. The default configuration deploys two Amazon S3 buckets, an AWS Lambda function, an Amazon API Gateway API, an AWS CodeBuild project, and an Amazon ECR repository, but you can customize the template to meet your specific needs.

Note
If you have previously deployed this solution, see Update the solution (p. 33) for update instructions.

Template option 1: Single-account deployment

Deployment process overview

Follow the step-by-step instructions in this section to configure and deploy the solution into your account.

Before you launch the solution, review the cost (p. 14), architecture (p. 5), security (p. 15), and other considerations discussed earlier in this guide.

Step 1: Launch the Stack (p. 20)
Step 2: Provision the pipeline and train or deploy the ML model (p. 23)
Step 3: Provision the model monitor pipeline (optional) (p. 23)

Important
This solution includes an option to send anonymized operational metrics to AWS. We use this data to better understand how customers use this solution and related services and products. AWS owns the data gathered though this survey. Data collection is subject to the AWS Privacy Notice.

To opt out of this feature, download the template, modify the AWS CloudFormation mapping section, and then use the AWS CloudFormation console to upload your updated template and deploy the solution. For more information, see the Anonymized data collection (p. 54) section of this guide.

Step 1: Launch the stack

Follow the step-by-step instructions in this section to configure and deploy the solution into your account.

Time to deploy: Approximately three minutes

1. Sign in to the AWS Management Console and select the button to launch the mlops-workload-orchestrator-single-account.template AWS CloudFormation template.

 ![Launch solution](image)

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a different AWS Region, use the Region selector in the console navigation bar.

 Note
 This solution uses the AWS CodePipeline and Amazon SageMaker services, which are not currently available in all AWS Regions. You must launch this solution in an AWS Region where
Step 1: Launch the stack

AWS CodePipeline and Amazon SageMaker are available. For the most current availability by Region, see the [Supported AWS Regions (p. 17)](https://aws.amazon.com/about-aws/whats-new/) table.

3. On the **Create stack** page, verify that the correct template URL is in the **Amazon S3 URL** text box and choose **Next**.

4. On the **Specify stack details** page, assign a name to your solution stack. For information about naming character limitations, see [IAM and AWS STS quotas, name requirements, and character limits](https://docs.aws.amazon.com/iam/latest/userguide/idpolicies-chars.html) in the **AWS Identity and Access Management User Guide**.

5. Under **Parameters**, review the parameters for this solution template and modify them as necessary. This solution uses the following default values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Email</td>
<td><Requires input></td>
<td>Specify an email to receive Amazon SNS notifications about pipeline outcomes.</td>
</tr>
<tr>
<td>CodeCommit Repo URL Address</td>
<td><Optional input></td>
<td>Only provide value if you want to provision a pipeline from a CodeCommit repository. For example: https://git-codecommit.us-east-1.amazonaws.com/v1/repos/<repository-name></td>
</tr>
<tr>
<td>Name of an Existing S3 Bucket</td>
<td><Optional Input></td>
<td>Optionally, provide the name of an existing S3 bucket to be used as the S3 assets bucket. If an existing bucket is not provided, the solution creates a new S3 bucket. Note if you use an existing S3 bucket for the bucket must meet the following requirements: 1) the bucket must be in the same Region as the MLOps Workload Orchestrator stack, 2) the bucket must allow reading/writing objects to/from the bucket, and 3) versioning must be allowed on the bucket. We recommended blocking public access, enabling S3 server-side encryption, access logging, and secure transport (for example, HTTPS only bucket).</td>
</tr>
</tbody>
</table>
Step 1: Launch the stack

#### Parameter	Default	Description
Name of an Existing Amazon ECR repository | Optional input | Optionally, provide the name of an existing Amazon ECR repository name to be used for custom algorithms images. If you do not specify an existing repository, the solution creates a new Amazon ECR repository.

Note
The Amazon ECR repository must be in the same Region where the solution is deployed.

Do you want to use SageMaker Model Registry? | No | By default, this value is No. You must provide the algorithm and model artifact location. If you want to use Amazon SageMaker model registry, you must set the value to Yes, and provide the model version ARN in the API call. For more details, refer to API operations (p. 36).

The solution expects that the model artifact is stored in the S3 assets bucket.

Do you want the solution to create a SageMaker's model package group? | No | By default, this value is No. If you are using Amazon SageMaker Model Registry, you can set this value to Yes to instruct the solution to create a Model Registry (for example, model package group). Otherwise, you can use your own model registry created outside the solution.

Do you want to allow detailed error message in the APIs response? | Yes | By default, this value is Yes. If allowed, the API's response returns a detailed message for any server-side error/exception. If you set this parameter to No, the API's response returns a general error message.

For more information about creating Amazon SageMaker model registry, setting permissions, and registering models, refer to Register and deploy models with model registry in the Amazon SageMaker Developer Guide.
Step 2: Provision the pipeline and train or deploy the ML model

Use the following procedure to provision the pipeline and train/deploy your ML model. If you are using API provisioning, the body of the API call must have the information specified in API operations. API endpoints require authentication with IAM. For more information, refer to the How do I enable IAM authentication for API Gateway APIs? support topic, and the Signing AWS requests with Signature Version 4 topic in the AWS General Reference Guide.

Note
If you are using API provisioning to launch the stack, you must make a POST request to the API Gateway endpoint specified in the stack's output. The path will be structured as <apigateway_endpoint>/provisionpipeline.
If you are using Git provisioning to launch the stack, you must create a file named mlops-config.json and commit the file to the repository's main branch.

1. Monitor the progress of the pipeline by calling the <apigateway_endpoint>/pipelinestatus. The pipeline_id is displayed in the response of the initial /provisionpipeline API call.
2. Run the provisioned pipeline by uploading the model artifacts to the Amazon S3 bucket specified in the output of the CloudFormation stack of the pipeline.

When the pipeline provisioning is complete, you will receive another apigateway_endpoint as the inference endpoint of the deployed model.

Step 3: Provision the model monitor pipeline (optional)

Use the following procedure to provision the pipeline and deploy Amazon SageMaker data quality, model quality, model bias, and/or model explainability monitors. If you use API provisioning, the body of the API call must have the information specified in API operations (p. 36).
Note
If you use API provisioning to launch the stack, you must make a POST request to the API Gateway endpoint specified in the stack's output. The path will be structured as `<apigateway_endpoint>/provisionpipeline`.
If you are using Git provisioning to launch the stack, you must create a file named `mlops-config.json` and commit the file to the repository's main branch.

1. Monitor the progress of the pipeline by calling the `<apigateway_endpoint>/pipelinestatus`. The `pipeline_id` is displayed in the response of the initial /provisionpipeline API call.
2. Run the provisioned pipeline by uploading the training data to the Amazon S3 assets bucket specified in the output of the CloudFormation stack of the pipeline.
3. After the pipeline stack is provisioned, you can monitor the deployment of the model monitor via the AWS CodePipeline instance link listed in the output of the pipeline's CloudFormation template.

You can use the following AWS CLI commands to monitor and manage the lifecycle of the monitoring schedule job: `describe-monitoring-schedule`, `list-monitoring-executions`, and `stop-monitoring-schedule`.

Note
You must deploy a real-time inference pipeline first, and then deploy a model monitor pipeline to monitor the deployed Amazon SageMaker ML model. You must specify the name of the deployed Amazon SageMaker endpoint in the data quality, model quality, model bias, or model explainability monitor’s API call.

Template option 2: Multi-account deployment

Deployment process overview

Follow the step-by-step instructions in this section to configure and deploy the solution into your account.

Before you launch the solution, review the cost (p. 14), architecture (p. 5), security (p. 15), and other considerations discussed earlier in this guide.

Important
You must set up the recommended AWS Organizations structure and enable trusted access with AWS Organizations before deploying the solution's multi-account deployment template option into the orchestrator account.

Step 1: Launch the Stack (p. 25)

Step 2: Provision the pipeline and train or deploy the ML model (p. 28)

Step 3: Provision the model monitor pipeline (optional) (p. 29)

Important
This solution includes an option to send anonymized operational metrics to AWS. We use this data to better understand how customers use this solution and related services and products. AWS owns the data gathered though this survey. Data collection is subject to the AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation mapping section, and then use the AWS CloudFormation console to upload your updated template and deploy the solution. For more information, see the Anonymized data collection (p. 54) section of this guide.
Step 1: Launch the stack

Follow the step-by-step instructions in this section to configure and deploy the solution into your account.

Time to deploy: Approximately three minutes

1. Sign in to the AWS Management Console and select the button to launch the mlops-workload-orchestrator-multi-account.template AWS CloudFormation template.

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a different AWS Region, use the Region selector in the console navigation bar.

 Note
 This solution uses the AWS CodePipeline and Amazon SageMaker services, which are not currently available in all AWS Regions. You must launch this solution in an AWS Region where AWS CodePipeline and Amazon SageMaker are available. For the most current availability by Region, see the [Supported AWS Regions](p. 17) table.

3. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack. For information about naming character limitations, see IAM and AWS STS quotas, name requirements, and character limits in the [AWS Identity and Access Management User Guide](#).

5. Under Parameters, review the parameters for this solution template and modify them as necessary. This solution uses the following default values.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Email</td>
<td><Requires input></td>
<td>Specify an email to receive Amazon SNS notifications about pipeline outcomes.</td>
</tr>
<tr>
<td>CodeCommit Repo URL Address</td>
<td><Optional input></td>
<td>Only provide value if you want to provision a pipeline from a CodeCommit repository. For example: https://git-codecommit.us-east-1.amazonaws.com/v1/repos/<repository-name></td>
</tr>
<tr>
<td>Name of an Existing S3 Bucket</td>
<td><Optional input></td>
<td>Optionally, provide the name of an existing S3 bucket to be used as the S3 assets bucket. If an existing bucket is not provided, the solution creates a new S3 bucket.</td>
</tr>
</tbody>
</table>
Step 1: Launch the stack

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Note</td>
</tr>
<tr>
<td></td>
<td></td>
<td>If you use an existing S3 bucket for the bucket must meet the following requirements: 1) the bucket must be in the same Region as the MLOps Workload Orchestrator stack, 2) the bucket must allow reading/writing objects to/from the bucket, and 3) versioning must be allowed on the bucket. We recommended blocking public access, enabling S3 server-side encryption, access logging, and secure transport (for example, HTTPS only bucket policy) on your existing S3 bucket.</td>
</tr>
</tbody>
</table>
| Name of an Existing Amazon ECR repository | <Optional input> | Optionally, provide the name of an existing Amazon ECR repository name to be used for custom algorithms images. If you do not specify an existing repository, the solution creates a new Amazon ECR repository.

Note
The Amazon ECR repository must be in the same Region where the solution is deployed. |
| Do you want to use SageMaker Model Registry? | No | By default, this value is No. You must provide the algorithm and model artifact location. If you want to use Amazon SageMaker model registry, you must set the value to Yes, and provide the model version ARN in the API call. For more details, refer to [API operations](p. 36). The solution expects that the model artifact is stored in the S3 assets bucket. |
Step 1: Launch the stack

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you want the solution to create a SageMaker’s model package group?</td>
<td>No</td>
<td>By default, this value is No. If you are using Amazon SageMaker Model Registry, you can set this value to Yes to instruct the solution to create a Model Registry (for example, model package group). Otherwise, you can use your own model registry created outside the solution.</td>
</tr>
<tr>
<td>Note</td>
<td></td>
<td>If you choose to use a model registry that was not created by this solution, you must set up access permissions for other accounts to access the model registry. For more information refer to Deploy a Model Version from a Different Account in the Amazon SageMaker Developer Guide.</td>
</tr>
<tr>
<td>Do you want to allow detailed error message in the APIs response?</td>
<td>Yes</td>
<td>By default, this value is Yes. If allowed, the API’s response returns a detailed message for any server-side error/exception. If you set this parameter to No, the API’s response returns a general error message.</td>
</tr>
<tr>
<td>Are you using a delegated administrator account (AWS Organizations)?</td>
<td>Yes</td>
<td>By default, this value is Yes. The solution expects that the orchestrator account is an AWS Organizations delegated administrator account. This follows best practices to limit the access to the AWS Organizations management account. However, if you want to use the management account as the orchestrator account, you can change this value to No.</td>
</tr>
<tr>
<td>Development Account ID</td>
<td><Requires input></td>
<td>The development account’s number.</td>
</tr>
<tr>
<td>Development Account Organizational Unit ID</td>
<td><Requires input></td>
<td>The AWS Organizations unit ID for the development account (for example, o-a1ss2d3g4).</td>
</tr>
</tbody>
</table>
Step 2: Provision the pipeline and train or deploy the ML model

Use the following procedure to provision the pipeline and train or deploy your ML model. If you are using API provisioning, the body of the API call must have the information specified in API operations (p. 36). API endpoints require authentication with IAM. For more information, refer to the How do I enable IAM authentication for API Gateway APIs? support topic, and the Signing AWS requests with Signature Version 4 topic in the AWS General Reference Guide.

Note
If you are using API provisioning to launch the stack, you must make a POST request to the API Gateway endpoint specified in the stack's output. The path will be structured as \<apigateway_endpoint>/provisionpipeline.
If you are using Git provisioning to launch the stack, you must create a file named mlops-config.json and commit the file to the repository's main branch.
1. Monitor the progress of the pipeline by calling the `<apigateway_endpoint>/pipelinestatus`. The pipeline_id is displayed in the response of the initial `/provisionpipeline` API call.

2. Run the provisioned pipeline by uploading the model artifacts to the Amazon S3 bucket specified in the output of the CloudFormation stack of the pipeline.

When the pipeline provisioning is complete, you will receive another apigateway_endpoint as the inference endpoint of the deployed model.

Step 3: Provision the model monitor pipeline (optional)

Use the following procedure to provision the pipeline and deploy data quality, model quality, model bias, or model explainability monitor. If you use API provisioning, the body of the API call must have the information specified in API operations (p. 36).

Note
If you use API provisioning to launch the stack, you must make a POST request to the API Gateway endpoint specified in the stack's output. The path will be structured as `<apigateway_endpoint>/provisionpipeline`.

If you are using Git provisioning to launch the stack, you must create a file named `mlops-config.json` and commit the file to the repository's main branch.

1. Monitor the progress of the pipeline by calling the `<apigateway_endpoint>/pipelinestatus`. The pipeline_id is displayed in the response of the initial `/provisionpipeline` API call.

2. Run the provisioned pipeline by uploading the training data to the S3 assets bucket specified in the output of the CloudFormation stack of the pipeline.

3. After the pipeline stack is provisioned, you can monitor the deployment of the model monitor via the AWS CodePipeline instance link listed in the output of the pipeline's CloudFormation template.

You can use the following AWS CLI commands to monitor and manage the lifecycle of the monitoring schedule job: `describe-monitoring-schedule`, `list-monitoring-executions`, and `stop-monitoring-schedule`.

Note
You must deploy a real-time inference pipeline first, and then deploy a model monitor pipeline to monitor the deployed Amazon SageMaker ML model. You must specify the name of the deployed Amazon SageMaker endpoint in the model monitor's API call.
Monitoring the solution with Service Catalog AppRegistry

The solution includes a Service Catalog AppRegistry resource to register the main solution template and ML workloads templates, and underlying resources as applications in both Service Catalog AppRegistry and Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution and its resources so that you can:

- Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs associated with this solution from a central location.
- View operations data for the solution's AWS resources (such as deployment status, Amazon CloudWatch alarms, resource configurations, and operational issues) in the context of an application.

The following figure depicts an example of the application view for this solution's main stack in Application Manager.

MLOps Workload Orchestrator stack in Application Manager

Note
You must activate CloudWatch Application Insights, AWS Cost Explorer, and cost allocation tags associated with this solution. They are not activated by default.

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.
2. In the navigation pane, choose Application Manager.
3. In Applications, choose AppRegistry applications.
4. In AppRegistry applications, search for the application name for this solution and select it.
 The next time you open Application Manager, you can find the new application for your solution in the AppRegistry application category.
5. In the Components tree, choose the application stack you want to activate.

Monitoring for your applications is now activated and the following status box appears:

Activate AWS Cost Explorer

You can see the overview of the costs associated with the application and application components within the Application Manager console through integration with AWS Cost Explorer which must be first activated. Cost Explorer helps you manage costs by providing a view of your AWS resource costs and usage over time. To activate Cost Explorer for the solution:

1. Sign in to the AWS Cost Management console.
2. In the navigation pane, select **Cost Explorer**.
3. On the **Welcome to Cost Explorer** page, choose **Launch Cost Explorer**.

The activation process can take up to 24 hours to complete. Once activated, you can open the Cost Explorer user interface to further analyze cost data for the solution.

Activate cost allocation tags associated with the solution

After you activate Cost Explorer, you must activate the cost allocation tags associated with this solution to see the costs for this solution. The cost allocation tags can only be activated from the management account for the organization. To activate cost allocation tags:

2. In the navigation pane, select **Cost Allocation Tags**.
3. On the **Cost allocation tags** page, filter for the AppManagerCFNStackKey tag, then select the tag from the results shown.
4. Choose **Activate**.

The activation process can take up to 24 hours to complete and the tag data to appear.
Update the solution

If you have previously deployed the solution, follow this procedure to update the solution's CloudFormation stack to get the latest version of the solution's framework.

1. Sign in to the CloudFormation console, select your existing MLOps Workload Orchestrator CloudFormation stack, and select Update.
2. Select Replace current template.
3. Under Specify template:
 a. Select Amazon S3 URL.
 b. Copy the link of the latest template (p. 19).
 c. Paste the link in the Amazon S3 URL box.
 d. Verify that the correct template URL shows in the Amazon S3 URL text box, and choose Next. Choose Next again.
4. Under Parameters, review the parameters for the template and modify them as necessary. For details about the parameters, see Step 1. Launch the Stack for the relevant deployment option.
5. Choose Next.
6. On the Configure stack options page, choose Next.
7. On the Review page, review and confirm the settings. Check the box acknowledging that the template will create AWS Identity and Access Management (IAM) resources.
8. Choose View change set and verify the changes.
9. Choose Update stack to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column. You should receive a UPDATE_COMPLETE status in approximately three minutes.
Uninstall the solution

To uninstall this solution, you must delete the AWS CloudFormation stack and any other stacks that were created as a result of the MLOps Workload Orchestrator. Because some AWS CloudFormation stacks use IAM roles created by previous stacks, you must delete AWS CloudFormation stacks in the reverse order they were created (delete the most recent stack first, wait for the stack deletion to be completed, and then delete the next stack).

Note
You must first delete any deployed model monitoring pipelines for a specific endpoint to delete that endpoint and its real-time inference pipeline.

The solution does not automatically delete the S3 assets bucket, Amazon SageMaker model registry, or Amazon Elastic Container Registry (ECR) repository. You must manually delete the retained resources.

We recommend that you use tags to ensure that all resources associated with MLOps Workload Orchestrator are deleted. For example, all resources created by the CloudFormation should have the same tag. Then you can use Resources Groups & Tag Editor to confirm that all resources with the specified tag are deleted.

Using the AWS Management Console

1. Sign in to the CloudFormation console.
2. On the Stacks page, select this solution’s installation stack.
3. Choose Delete.

Using AWS Command Line Interface

Determine whether the AWS Command Line Interface (AWS CLI) is available in your environment. For installation instructions, see What Is the AWS Command Line Interface in the AWS CLI User Guide. After confirming that the AWS CLI is available, run the following command.

```
$ aws cloudformation delete-stack --stack-name <installation-stack-name>
```

Note
When using the multi-account deployment option, deleting the AWS CloudFormation stacks created in the orchestrator account will not automatically delete the stacks deployed in the dev, staging, and prod accounts. You must manually delete the stacks from within those accounts.

Deleting the Amazon S3 buckets

To help prevent accidental data loss, we configured this solution to retain the solution-created Amazon S3 bucket (for deploying in an opt-in Region) if you delete the AWS CloudFormation stack. After uninstalling the solution, you can manually delete this S3 bucket if you do not need to retain the data. Follow these steps to delete the Amazon S3 bucket.

1. Sign in to the Amazon S3 console.
2. Choose **Buckets** from the left navigation pane.
3. Locate the `<stack-name>` S3 bucket.
4. Select the S3 bucket and choose **Delete**.

To delete the S3 bucket using AWS CLI, run the following command:

```bash
$ aws s3 rb s3://<bucket-name> --force
```

Deleting SageMaker Model Registry

Currently, deleting SageMaker Model Registry is not available via the SageMaker console. To delete SageMaker model registry using AWS CLI, run the following command:

```bash
$ aws sagemaker delete-model-package-group --model-package-group-name <model-registry-name> --region <region-id>
```

Deleting Amazon ECR repository

To delete the Amazon ECR repository using the console:

1. Sign in to the [Amazon ECR console](https://aws.amazon.com/ecr/).
2. From the navigation bar, choose the Region that contains the repository to delete.
3. In the navigation pane, choose **Repositories**.
4. On the **Repositories** page, choose the **Private** tab and then select the repository to delete. Choose **Delete**.
5. In the **Delete <repository-name>** window, verify that the selected repositories should be deleted and choose **Delete**.

To delete the Amazon ECR repository using AWS CLI, run the following command:

```bash
$ aws ecr delete-repository --repository-name <repository-name> --force --region <region-id>
```
Developer guide

This section provides the source code (p. 36) for the solution and API operations (p. 36) reference.

Source code

Visit our GitHub repository to download the source files for this solution and to share your customizations with others.

API operations

You can use the following API operations to control the solution's pipelines. The following is a description of all attributes, and examples of required attributes per pipeline type for both template options: single account deployment (p. 36) and multi-account deployment (p. 50).

Template option 1: Single account deployment

The MLOps Workload Orchestrator solution's AWS API Gateway has two main API endpoints, /provisionpipeline, used to provision a pipeline, and /pipelinestatus, used to get the status of a provisioned pipeline.

- /provisionpipeline
 - Method: POST
 - Body:
 - pipeline_type: Type of the pipeline to provision. The solution currently supports byom_realtime builtin (real-time inference with Amazon SageMaker built-in algorithms pipeline), model_training builtin (model training using Amazon SageMaker training pipeline), model_tuner_builtin (Amazon hyperparameter tuning pipeline), model_autopilot_training (Amazon SageMaker autopilot pipeline), byom_realtime_custom (real-time inference with custom algorithms pipeline), byom_batch_builtin (batch transform with built-in algorithms pipeline), byom_batch_custom (batch transform with custom algorithms pipeline), byom_data_quality_monitor pipeline (data quality monitor), byom_model_quality_monitor pipeline (model quality monitor), byom_model_bias_monitor pipeline (model bias monitor), byom_model_explainability_monitor pipeline (model explainability monitor), and byom_image_builder (custom algorithm Docker image builder pipeline), and model card operations (create_model_card, describe_model_card, update_model_card, delete_model_card, list_model_cards, and export_model_cards).
 - custom_algorithm_docker: Path to a zip file inside the S3 assets bucket, containing the necessary files (for example, Dockerfile, assets, etc.) to create a Docker image that can be used by Amazon SageMaker to deploy a model trained using the custom algorithm. For more information, refer to the Example Notebooks: Use Your Own Algorithm or Model in the Amazon SageMaker Developer Guide.
 - custom_image_uri: URI of a custom algorithm image in an Amazon ECR repository.
 - ecr_repo_name: Name of an Amazon ECR repository where the custom algorithm image, created by the byom_image_builder pipeline, will be stored.
 - image_tag: custom algorithm's image tag to assign to the created image using the byom_image_builder pipeline.
 - model_framework: Name of the built-in algorithm used to train the model.
• model_framework_version: Version number of the built-in algorithm used to train the model.

• model_name: Arbitrary model name for the deploying model. The solution uses this parameter to create an Amazon SageMaker model, endpoint configuration, and endpoint with extensions on model name, such as <model_name>-endpoint-config and <model_name>-endpoint. The model_name is also used in the name of the deployed AWS CloudFormation stack for all pipelines.

• model_artifact_location: Path to a file in S3 assets bucket containing the model artifact file (the output file after training a model).

• model_package_name: Amazon SageMaker model package name (for example, "arn:aws:sagemaker:<region>:<account_id>:model-package/<model_package_group_name>/<model_version>").

• baseline_data: Path to a csv file in S3 assets bucket containing the data with features names used for training the model (for data quality, model bias, and model explainability monitors), or model predictions and ground truth labels (for model quality monitor), for example a csv file with the header “prediction, probability, label” for a BinaryClassification problem.

• inference_instance: Instance type for inference (real-time or batch). Refer to Amazon SageMaker Pricing for a complete list of machine learning instance types.

• data_capture_location: Path to a prefix in an S3 Bucket (including the bucket's name, for example <bucket-name>/<prefix>) to store the data captured by the real-time Amazon SageMaker inference endpoint.

• batch_inference_data: Path to a file in an S3 Bucket (including the bucket's name, for example <bucket-name>/<path-to-file>) containing the data for batch inference. This parameter is not required if your inference type is set to real-time.

• batch_job_output_location: Path to a prefix in an S3 bucket (including the bucket's name, for example <bucket-name>/<prefix>) to store the output of the batch transform job. This parameter is not required if your inference type is set to real-time.

• instance_type: Instance type used by the data baseline and model monitoring jobs.

• instance_volume_size: Size of the EC2 volume in GB to use for the baseline and monitoring job. The size must be enough to hold your training data and create the data baseline.

• instance_count: the number of EC2 instances used by the training job.

• endpoint_name: The name of the deployed Amazon SageMaker endpoint to monitor when deploying data and model quality monitor pipelines. Optionally, provide the endpoint_name when creating a real-time inference pipeline which will be used to name the created Amazon SageMaker endpoint. If you do not provide endpoint_name, it will be automatically generated.

• baseline_job_output_location: Path to a prefix in an S3 bucket (including the bucket's name, for example <bucket-name>/<prefix>) to store the output of the data baseline job.

• monitoring_output_location: Path to a prefix in an S3 bucket (including the bucket's name, for example <bucket-name>/<prefix>) to store the output of the monitoring job.

• schedule_expression: Cron job expression to run the monitoring job. For example, cron(0 * ? * * *) will run the monitoring job hourly, cron(0 0 ? * * *) daily, etc.

• baseline_max_runtime_seconds: Specifies the maximum time, in seconds, the baseline job is allowed to run. If the attribute is not provided, the job will run until it finishes.

• monitor_max_runtime_seconds: Specifies the maximum time, in seconds, the monitoring job is allowed to run. For data quality and model explainability monitors, the value can be up to 3300 seconds for an hourly schedule. For model quality and model bias hourly schedules, this can be up to 1800 seconds.

• kms_key_arn: Optional customer managed AWS Key Management Service (AWS KMS) key to encrypt captured data from the real-time Amazon SageMaker endpoint, output of batch transform and data baseline jobs, output of model monitor, and Amazon Elastic Compute Cloud (Amazon EC2) instance's volume used by Amazon SageMaker to run the solution's pipelines. This attribute may be included in the API calls of byom_realtime_builtin, byom_realtime_custom, byom_batch_builtin, byom_batch_custom, and byom_<monitor-type>_monitor pipelines.
• **baseline_inference_attribute**: Index or JSON path to locate predicted label(s) required for Regression or MulticlassClassification problems. The attribute is used by the model quality baseline. If baseline_probability_attribute and probability_threshold_attribute are provided, baseline_inference_attribute is not required for a BinaryClassification problem.

• **baseline_probability_attribute**: Index or JSON path to locate predicted label(s) required for Regression or MulticlassClassification problems. The attribute is used by the model quality baseline. If baseline_probability_attribute and probability_threshold_attribute are provided, baseline_inference_attribute is not required for a BinaryClassification problem.

• **baseline_ground_truth_attribute**: Index or JSON path to locate actual label(s). Used by the model quality baseline.

• **problem_type**: Type of Machine learning problem. Valid values are "Regression", "BinaryClassification", or "MulticlassClassification". Used by the model quality, model bias, and model explainability monitoring schedules. It is an optional attribute for the model_autopilot_training pipeline. If not provided, the autopilot job will infer the problem type from the target_attribute. If provided, the job_objective attribute must be provided too.

• **job_objective**: (optional) Metric to optimize, used by the model_autopilot_training pipeline. If provided, the problem_type must be provided. Valid values "Accuracy", "MSE", "F1", "F1macro", "AUC".

• **job_name**: (optional) The name of the training job. If not provided, a name will be automatically generated by the solution. Used by all training pipelines. Note: The given name must be unique (no previous jobs created by the same name).

• **training_data**: The S3 file key/prefix of the training data in the solution's S3 assets bucket. This attribute is required by all training pipelines. Note: For model_training_builtin and model_tuner_builtin pipelines, the csv should not have a header. The target attribute should be the first column. For model_autopilot_training pipeline, the file should have a header.

• **validation_data**: (optional) The S3 file key/prefix of the training data in the solution's S3 assets bucket. This attribute is used by the model_training_builtin and model_tuner_builtin pipelines.

• **target_attribute**: Target attribute name in the training data. Required by the model_autopilot_training pipeline.

• **compression_type**: (optional) Compression type used with the training/validation data. Valid values “Gzip”.

• **content_type**: (optional) The MIME type of the training data. Default: “csv”.

• **s3_data_type**: (optional) Training S3 data type. Valid values “S3Prefix”, “ManifestFile”, or “AugmentedManifestFile”. Used by the model_training_builtin and model_tuner_builtin pipelines. Default: “S3Prefix”.

• **data_distribution**: (optional) Data distribution. Valid values “FullyReplicated” or “ShardedByS3Key”. Used by the model_training_builtin and model_tuner_builtin pipelines. Default: “FullyReplicated”.

• **data_record_wrapping**: (optional) Training data record wrapping, if any. Valid values “RecordIO”. Used by the model_training_builtin and model_tuner_builtin pipelines.

• **attribute_names**: (optional) List of one or more attribute names to use that are found in a specified AugmentedManifestFile (if s3_data_type = “AugmentedManifestFile”). Used by the model_training_builtin and model_tuner_builtin pipelines.

• **job_output_location**: S3 prefix in the solution’s S3 assets bucket, where the output of the training jobs will be saved.
• **job_max_candidates**: (optional) Maximum number of candidates to be tried by the autopilot job. Default: 10.

• **max_runtime_per_job**: (optional) Maximum runtime in seconds the training job is allowed to run. Default: 86400.

• **total_max_runtime**: (optional) Autopilot total runtime in seconds allowed for the job. Default: 2592000.

• **generate_definition_only**: (optional) Generate candidate definitions only by the autopilot job. Used by the `model_autopilot_training` pipeline. Default: “False”.

• **encrypt_inner_traffic**: (optional) Encrypt inner-container traffic for the job. Used by training pipelines. Default: “True”.

• **use_spot_instances**: (optional) Use managed spot instances with the training job. Used by the `model_training_builtin` and `model_tuner_builtin` pipelines. Default: “True”.

• **Max_wait_time_spot_instances**: (optional) Maximum wait time in seconds for Spot instances (required if `use_spot_instances = True`). Must be greater than `max_runtime_per_job`. Default: 172800.

• **algo_hyperparameters**: Amazon SageMaker built-in Algorithm hyperparameters provided as a JSON object. Used by the `model_training_builtin` and `model_tuner_builtin` pipelines. Example: `{"eval_metric": "auc","objective": "binary:logistic","num_round": 400,"rate_drop": 0.3}`.

• **tuner_configs**: `sagemaker.tuner.HyperparameterTuner` configs (objective_metric_name, metric_definitions, strategy, objective_type, max_jobs, max_parallel_jobs, base_tuning_job_name=None, early_stopping_type) provided as a JSON object. Required by the `model_tuner_builtin` pipeline.

 Note

 Note: Some have default values and are not required to be specified. Example:

  ```json
  {"early_stopping_type": "Auto","objective_metric_name": "validation:auc","max_jobs": 10,"max_parallel_jobs": 2}.
  ```

• **hyperparameters_ranges**: Algorithm hyperparameters range used by the Hyperparameters job provided as a JSON object, where the key is hyperparameter name, and the value is list with the first item the type (“continuous”|”integer”|”categorical”) and the second item is a list of [min_value, max_value] for “continuous”|”integer” and a list of values for ”categorical”. Required by the `model_tuner_builtin` pipeline.

 Example: `{"min_child_weight": [“continuous”,[0, 120]],"max_depth": [“integer”,[1, 15]],"optimizer": [“categorical”,”sgd”,”Adam”]}`

• **monitor_inference_attribute**: Index or JSON path to locate predicted label(s). Required for Regression or MulticlassClassification problems, and not required for a BinaryClassification problem. Used by the model quality, model bias, and model explainability monitoring schedules.

• **monitor_probability_attribute**: Index or JSON path to locate probabilities. Used only with a BinaryClassification problem. Used by the model quality monitoring schedule. Required by the `model_tuner_builtin` pipeline.

• **probability_threshold_attribute**: Threshold to convert probabilities to binaries. Used by the model quality monitoring schedule, and only with a BinaryClassification problem.

• **monitor_ground_truth_input**: Used by the model quality and model bias monitoring schedules to locate the ground truth labels. The solution expects you to use eventId to label the captured data by the Amazon SageMaker endpoint. For more information, refer to the Amazon SageMaker developer guide on how to Ingest Ground Truth Labels and Merge Them with Predictions.

• **bias_config**: a JSON object representing the attributes of `sagemaker.clarify.BiasConfig`. Required only for model bias monitor pipeline.
• **model_predicted_label_config**: a JSON object representing the attributes of `sagemaker.clarify.ModelPredictedLabelConfig`. Required only for model bias monitor pipeline and `problem_type` is `BinaryClassification`, or `MulticlassClassification`.

• **shap_config**: a JSON object representing the attributes of `sagemaker.clarify.SHAPConfig`. Required only for model explainability monitor. For the “baseline” attribute, you can provide a list of lists or as S3 CSV file's key (representing features values to be used as the baseline dataset in the Kernel SHAP algorithm). If a file key is provided, the file must be uploaded to the solution's S3 assets bucket before making the API call.

• **name**: A unique name of the model card.

• **Status**: (optional) The status of model card. Possible values include: Approved, Archived, Draft (default), and PendingReview.

• **Version**: (optional) The model card version (integer).

• **created_by**: (optional) A JSON object, the group or individual that created the model card.

• **last_modified_by**: (optional) A JSON object, the group or individual that last modified the model card.

• **model_overview**: (optional) A JSON object, an overview of the model (used with model card operations) with the following attributes:
 - **model_name**: (optional) The name of an existing SageMaker model. If provided, the model overview will be automatically extracted from the model.
 - **model_id**: (optional) A SageMaker model ARN or non-SageMaker model ID.
 - **model_description**: (optional) A description of the model.
 - **model_version**: (optional) The model version (integer or float).
 - **problem_type**: (optional) The type of problem that the model solves. For example, Binary Classification, Multiclass Classification, Linear Regression, Computer Vision, or Natural Language Processing.
 - **algorithm_type**: (optional) The algorithm used to solve the problem type.
 - **model_creator**: (optional) The organization, research group, or authors that created the model.
 - **model_owner**: (optional) The individual or group that maintains the model in your organization.
 - **model_artifact**: (optional) A list of model artifact location URIs. The maximum list size is 15.
 - **inference_environment**: (optional) A list of a model's inference docker image(s).
 - **intended_uses**: (optional) A JSON object (used with model card operations) with the following attributes:
 - **purpose_of_model**: (optional) The general purpose of this model.
 - **intended_uses**: (optional) The intended use cases for this model.
 - **factors_affecting_model_efficiency**: (optional) Factors affecting model efficacy.
 - **risk_rating**: (optional) Your organization's risk rating for this model. Possible values include: High, Low, Medium, or Unknown.
 - **explanations_for_risk_rating**: (optional) An explanation of why your organization categorizes this model with this risk rating.
 - **training_details**: (optional) A JSON object (used with model card operations) with the following attributes:
 - **model_name**: (optional) An existing SageMaker model name. If provided, training details are auto-discovered from `model_overview`.
 - **training_job_name**: (optional) SageMaker training job name used to train the model. If provided, training details are be auto-discovered.
 - **objective_function**: (optional) A JSON object with the following attributes:
• **function**: (optional) The optimization direction of the model's objective function. Possible values include Maximize or Minimize.

• **facet**: (optional) The metric of the model's objective function. Possible values include Accuracy, AUC, Loss, MAE, or RMSE.

• **condition**: (optional) Description of your objective function metric conditions.

• **notes**: (optional) Additional notes about the objective function.

• **training_observations**: (optional) Observations about training.

• **training_job_details**: (optional) A JSON object with the following attributes:
 - **training_arn**: (optional) The SageMaker training job ARN.
 - **training_datasets**: (optional) A list of Amazon S3 bucket URLs for the datasets used to train the model. The maximum list size is 15.
 - **training_environment**: (optional) a list of SageMaker training image URL.
 - **training_metrics**: (optional) A JSON object with the following attributes:
 - **name**: The metric name.
 - **value**: The metric value (integer or float).
 - **notes**: (optional) Notes on the metric.
 - **user_provided_training_metrics**: (optional) A list of training_metrics JSON objects. The maximum list length is 50.

• **evaluation_details**: (optional) A list of JSON object(s) (used with model card operations). Each JSON object has the following attributes:
 - **name**: The evaluation job name.
 - **metric_file_s3_url**: (optional) The metric file's Amazon S3 bucket URL, which the solution uses to auto-discover evaluation metrics. The file must be uploaded to the solution's Amazon S3 Assets bucket. If provided, evaluation metrics are extracted from the file.
 - **metric_type**: (required if metric_file_s3_url is provided) The type of evaluation. Possible values include model_card_metric_schema, clarify_bias, clarify_explainability, regression, binary_classification, or multiclass_classification.
 - **evaluation_observation**: (optional) Observations made during model evaluation.
 - **evaluation_job_arn**: (optional) The ARN of the evaluation job.
 - **datasets**: (optional) A list of valuation dataset Amazon S3 bucket URLs. Maximum list length is 10.
 - **metadata**: (optional) A JSON object with additional attributes associated with the evaluation results.
 - **metric_groups**: (optional) A JSON object with the following attributes:
 - **name**: The metric group name.
 - **metric_data**: A list of JSON object(s) with the following attributes:
 - **name**: The name of the metric.
 - **type**: Metric type. Possible values include: bar_char, boolean, linear_graph, matrix, number, or string.
 - **value**: The data type of the metric (integer, float, string, boolean, or list).
 - **notes**: (optional) Notes to add to the metric.
 - **x_axis_name**: The name of the x axis.
 - **y_axis_name**: The name of the y axis.
 - **additional_information**: (optional) A JSON object (used with model card operations). The JSON object has the following attributes:
 - **ethical_considerations**: (optional) Ethical considerations to document about the model.
 - **caveats_and_recommendations**: (optional) Caveats and recommendations for users who might use this model in their applications.
• custom_details: (optional) A JSON object of any additional custom information to document about the model.

• Required attributes per pipeline type (Amazon SageMaker model registry is not used):
 • Model training using Amazon SageMaker training job (with required attributes):

```
{
    "pipeline_type": "model_training_builtin",
    "model_name": "<my-model-name>",
    "model_framework": "xgboost",
    "model_framework_version": "1",
    "job_output_location": "<s3-prefix-in-assets-bucket>",
    "training_data": "<path/to/training_data.csv>",
    "validation_data": "<path/to/validation_data.csv>",
    "algo_hyperparamaters": "<algo-hyperparameters-json-object>",
}
```

• Model training using Amazon SageMaker hyperparameter tuning Job (with required attributes):

```
{
    "pipeline_type": "model_tuner_builtin",
    "model_name": "<my-model-name>",
    "model_framework": "xgboost",
    "model_framework_version": "1",
    "job_output_location": "<s3-prefix-in-assets-bucket>",
    "training_data": "<path/to/training_data.csv>",
    "validation_data": "<path/to/validation_data.csv>",
    "algo_hyperparamaters": "<algo-hyperparameters-json-object>",
    "tuner_configs": "<tuner-configs-json-object>",
    "hyperparamaters_ranges": "<hyperparamaters-ranges-json-object>",
}
```

• Model training using Amazon SageMaker autopilot job (with required attributes):

```
{
    "pipeline_type": "model_autopilot_training",
    "model_name": "<my-model-name>",
    "job_output_location": "<s3-prefix-in-assets-bucket>",
    "training_data": "<path/to/training_data.csv>",
    "target_attribute": "<target-attribute-name>",
}
```

• Real-time inference with a custom algorithm for a machine learning model:

```
{
    "pipeline_type": "byom_realtime_custom",
    "custom_image_uri": "<docker-image-uri-in-Amazon-ECR-repo>",
    "model_name": "<my-model-name>",
    "model_artifact_location": "<path/to/model.tar.gz>",
    "data_capture_location": "<bucket-name>/<prefix>",
    "inference_instance": "ml.m5.large",
    "endpoint_name": "<custom-endpoint-name>",
}
```

• Real-time inference with an Amazon SageMaker built-in model:

```
{
    "pipeline_type": "byom_realtime_builtin",
    "model_framework": "xgboost",
    "model_framework_version": "1",
    "model_name": "<my-model-name>",
    "job_output_location": "<s3-prefix-in-assets-bucket>",
    "training_data": "<path/to/training_data.csv>",
    "validation_data": "<path/to/validation_data.csv>",
    "algo_hyperparamaters": "<algo-hyperparameters-json-object>",
    "tuner_configs": "<tuner-configs-json-object>",
    "hyperparamaters_ranges": "<hyperparamaters-ranges-json-object>",
}
```
• Batch inference with a custom algorithm for a machine learning model:

{
 "pipeline_type": "byom_batch_custom",
 "custom_image_uri": "<docker-image-uri-in-Amazon-ECR-repo>",
 "model_name": "<my-model-name>",
 "model_artifact_location": "<path/to/model.tar.gz>",
 "inference_instance": "ml.m5.large",
 "batch_inference_data": "<bucket-name>/<prefix>/inference_data.csv",
 "batch_job_output_location": "<bucket-name>/<prefix>",
}

• Batch inference with an Amazon SageMaker built-in model:

{
 "pipeline_type": "byom_batch_builtin",
 "model_framework": "xgboost",
 "model_framework_version": "1",
 "model_name": "<my-model-name>",
 "model_artifact_location": "<path/to/model.tar.gz>",
 "inference_instance": "ml.m5.large",
 "batch_inference_data": "<bucket-name>/<prefix>/inference_data.csv",
 "batch_job_output_location": "<bucket-name>/<prefix>",
}

• Data quality monitor pipeline:

{
 "pipeline_type": "byom_data_quality_monitor",
 "model_name": "<my-model-name>",
 "endpoint_name": "xgb-churn-prediction-endpoint",
 "baseline_data": "<path/to/training_data_with_header.csv>",
 "baseline_job_output_location": "<bucket-name>/<prefix>",
 "data_capture_location": "<bucket-name>/<prefix>",
 "monitoring_output_location": "<bucket-name>/<prefix>",
 "schedule_expression": "cron(0 * * * *)",
 "instance_type": "ml.m5.large",
 "instance_volume_size": "20",
 "baseline_max_runtime_seconds": "3300",
 "monitor_max_runtime_seconds": "3300"
}

• Model quality monitor pipeline (BinaryClassification problem):

{
 "pipeline_type": "byom_model_quality_monitor",
 "model_name": "<my-model-name>",
 "endpoint_name": "xgb-churn-prediction-endpoint",
 "baseline_data": "<path/to/baseline_dataset.csv>",
 "baseline_job_output_location": "<bucket-name>/<prefix>",
 "data_capture_location": "<bucket-name>/<prefix>",
 "monitoring_output_location": "<bucket-name>/<prefix>",
 "schedule_expression": "cron(0 0 * * *)",
 "instance_type": "ml.m5.large",
 "instance_volume_size": "20",
}
Template option 1: Single account deployment

- Model quality monitor pipeline (Regression or MulticlassClassification problem):

```
{
    "pipeline_type": "byom_model_quality_monitor",
    "model_name": "<my-model-name>",
    "endpoint_name": "xgb-churn-prediction-endpoint",
    "baseline_data": "<path/to/baseline_data.csv>",
    "baseline_job_output_location": "<bucket-name>/<prefix>",
    "data_capture_location": "<bucket-name>/<prefix>",
    "monitoring_output_location": "<bucket-name>/<prefix>",
    "schedule_expression": "cron(0 0 ? * * *)",
    "instance_type": "ml.m5.large",
    "instance_volume_size": "20",
    "baseline_max_runtime_seconds": "3300",
    "monitor_max_runtime_seconds": "1800",
    "baseline_inference_attribute": "prediction",
    "baseline_probability_attribute": "probability",
    "baseline_ground_truth_attribute": "label",
    "problem_type": "Regression",
    "monitor_inference_attribute": "0",
    "monitor_ground_truth_input": "<bucket-name>/<prefix>/<yyyy>/<mm>/<dd>/<hh>",
    "probability_threshold_attribute": "0.5",
    "problem_type": "Regression",
    "monitor_probability_attribute": "0",
    "monitor_ground_truth_input": "<bucket-name>/<prefix>/<yyyy>/<mm>/<dd>/<hh>",
    "baseline_data": "path/to/traing_data_with_header.csv",
    "baseline_job_output_location": "<bucket-name>/<prefix>",
    "data_capture_location": "<bucket-name>/<prefix>",
    "monitoring_output_location": "<bucket-name>/<prefix>",
    "schedule_expression": "cron(0 0 ? * * *)",
    "instance_type": "ml.m5.large",
    "instance_volume_size": "20",
    "baseline_max_runtime_seconds": "3300",
    "monitor_max_runtime_seconds": "1800",
    "baseline_inference_attribute": "prediction",
    "baseline_probability_attribute": "probability",
    "baseline_ground_truth_attribute": "label",
    "problem_type": "Regression",
    "monitor_inference_attribute": "0",
    "monitor_ground_truth_input": "<bucket-name>/<prefix>/<yyyy>/<mm>/<dd>/<hh>",
    "probability_threshold_attribute": "0.5",
    "problem_type": "Regression",
    "monitor_probability_attribute": "0",
    "monitor_ground_truth_input": "<bucket-name>/<prefix>/<yyyy>/<mm>/<dd>/<hh>",
    "bias_config": {
        "label_values_or_threshold": "<value>",
        "facet_name": "<value>",
        "facet_values_or_threshold": "<value>
    },
    "model_predicted_label_config": {
        "probability": 0,
        "monitor_ground_truth_input": "<bucket-name>/<prefix>/<yyyy>/<mm>/<dd>/<hh>""}
```

- Model bias monitor pipeline (BinaryClassification problem):

```
{
    "pipeline_type": "byom_model_bias_monitor",
    "model_name": "<my-model-name>",
    "endpoint_name": "xgb-churn-prediction-endpoint",
    "baseline_data": "path/to/training_data_with_header.csv",
    "baseline_job_output_location": "<bucket-name>/<prefix>",
    "data_capture_location": "<bucket-name>/<prefix>",
    "monitoring_output_location": "<bucket-name>/<prefix>",
    "schedule_expression": "cron(0 0 ? * * *)",
    "instance_type": "ml.m5.large",
    "instance_volume_size": "20",
    "baseline_max_runtime_seconds": "3300",
    "monitor_max_runtime_seconds": "1800",
    "probability_threshold_attribute": "0.5",
    "problem_type": "BinaryClassification",
    "monitor_probability_attribute": "0",
    "bias_config": {
        "label_values_or_threshold": "<value>",
        "facet_name": "<value>",
        "facet_values_or_threshold": "<value>
    },
    "model_predicted_label_config": {
        "probability": 0,
        "monitor_ground_truth_input": "<bucket-name>/<prefix>/<yyyy>/<mm>/<dd>/<hh>""}
```

- Model bias monitor pipeline (Regression problem):

```
{}
"pipeline_type": "byom_model_bias_monitor",
"model_name": "<my-model-name>",
"endpoint_name": "xgb-churn-prediction-endpoint",
"baseline_data": "<path/to/training_data_with_header.csv>",
"baseline_job_output_location": "<bucket-name>/<prefix>",
"data_capture_location": "<bucket-name>/<prefix>",
"monitoring_output_location": "<bucket-name>/<prefix>",
"schedule_expression": "cron(0 0 ? * * *)",
"instance_type": "ml.m5.large",
"instance_volume_size": "20",
"baseline_max_runtime_seconds": "3300",
"monitor_max_runtime_seconds": "1800",
"problem_type": "Regression",
"monitor_inference_attribute": "0",
"bias_config": {
  "label_values_or_threshold": "<value>",
  "facet_name": "<value>",
  "facet_values_or_threshold": "<value>",
},
"monitor_ground_truth_input": "<bucket-name>/<yyyy>/<mm>/<dd>/<hh>"
}

• Model explainability monitor pipeline (BinaryClassification problem):

{ 
  "pipeline_type": "byom_model_explainability_monitor",
  "model_name": "<my-model-name>",
  "endpoint_name": "xgb-churn-prediction-endpoint",
  "baseline_data": "<path/to/training_data_with_header.csv>",
  "baseline_job_output_location": "<bucket-name>/<prefix>",
  "data_capture_location": "<bucket-name>/<prefix>",
  "monitoring_output_location": "<bucket-name>/<prefix>",
  "schedule_expression": "cron(0 0 ? * * *)",
  "instance_type": "ml.m5.large",
  "instance_volume_size": "20",
  "baseline_max_runtime_seconds": "3300",
  "monitor_max_runtime_seconds": "1800",
  "problem_type": "BinaryClassification",
  "monitor_probability_attribute": "0",
  "shap_config": {
    "baseline": "<path/to/shap_baseline_dataset.csv>",
    "num_samples": "<value>",
    "agg_method": "mean_abs|mean_sq|median"
  }
}

• Custom algorithm image builder pipeline:

{ 
  "pipeline_type": "byom_image_builder",
  "custom_algorithm_docker": "<path/to/custom_image.zip>",
  "ecr_repo_name": "<name-of-Amazon-ECR-repository>",
  "image_tag": "<image-tag>"
}

• Model card's create operation:

{ 
  "pipeline_type": "create_model_card",
  "name": "<model-card-name>",
  "model_overview": {
    "model_name": "<name-of-existing-model>",
    "model_description": "<model description>"
  }
}
"model_version": "<version number>",
"problem_type": "<type of problem the model solves>",
"algorithm_type": "<algorithm name>",
"model_creator": "<name of the model creator>",
"model_owner": "<model owner>",
"model_artifact": [<"model artifact"],
"inference_environment": [<"image used for inference"]
},
"intended_uses": {
"purpose_of_model": "<description of purpose of model>",
"intended_uses": "<description of intended uses>",
"factors_affecting_model_efficiency": "<any factors>",
"risk_rating": "Low",
"explanations_for_risk_rating": "<risk rating>",
},
"training_details":{
"training_job_name": "<training job name>",
"objective_function": {
"function": "<one of Maximize|Minimize>",
"facet": "<one of Accuracy|AUC|Loss|MAE|RMSE>",
"condition": "<description of any conditions>",
"notes": "<any notes>"
},
"training_observations": "<any observations>",
"training_job_details": {
"user_provided_training_metrics": [["name": "<metric-name>", "value": "<metric value>", "notes": "<metric notes>"],
},
"evaluation_details": [
{
"name": "<evaluation name>",
"metric_file_s3_url": "<s3 url for the JSON evaluation file in the solution's asset S3 bucket>",
"metric_type": "<one of model_card_metric_schema|clarify_bias|clarify_explainability|regression|binary_classification|multiclass_classification>"
},
{
"name": "<evaluation name>",
"evaluation_observation": "<any-observation>",
"evaluation_job_arn": "<job-arn>",
"datasets": [<"s3 url for training data"],
"metadata": {"key": "value"},
"metric_groups": [["name": "<group-name>", "metric_data": [["name": "<metric-name>", "type": "<one of bar_char|boolean|linear_graph|matrix|number|string>", "value": "<value>", "notes": "<metric notes>"]],
"additional_information": {
"ethical_considerations": "make sure data is representative",
"caveats_and_recommendations": "some recommendations",
"custom_details": {
"key": "value"
}
}]
},
"Model card's describe operation:
[
"pipeline_type": "describe_model_card",
"name": "<model card name>"
]

Model card's delete operation:
• Model card's update operation:

```json
{
 "pipeline_type": "update_model_card",
 "name": "<model card name>",
 "status": "<status>",
 "training_details":{
 "training_job_name": "<training job name>"
 }
}
```

• Model card's export operation:

```json
{
 "pipeline_type": "export_model_card",
 "name": "<model card name>
```  

• Model card's list cards:

```json
{
 "pipeline_type": "list_model_cards"
}
```

Required attributes per pipeline type when the Amazon SageMaker model registry is used. When the model registry is used, the following attributes must be modified:

- Real-time inference and batch pipelines with custom algorithms:
  - Remove `custom_image_uri` and `model_artifact_location`
  - Add `model_package_name`

- Real-time inference and batch pipelines with Amazon SageMaker built-in algorithms:
  - Remove `model_framework`, `model_framework_version`, and `model_artifact_location`
  - Add `model_package_name`

Expected responses of API requests to `/provisonpipeline`:

- If the pipeline is provisioned for the first time (that is, if no existing pipeline with the same name), the response is:

```json
{
 "message": "success: stack creation started",
 "pipeline_id": "arn:aws:cloudformation:<region>:<account-id>:stack/<stack-id>"
}
```

- If the pipeline is already provisioned, the response is:

```json
{
 "message": "Pipeline <stack-name> is already provisioned. Updating template parameters.",
 "pipeline_id": "arn:aws:cloudformation:<region>:<account-id>:stack/<stack-id>"
}
```
• If the pipeline is already provisioned, the pipeline_type is byom_image_builder, and there are updates to be performed, the response is:

```
{
 "message": "Pipeline <stack-name> is being updated.",
 "pipeline_id": "arn:aws:cloudformation:<region>:<account-id>:stack/<stack-id>"
}
```

• If the pipeline is already provisioned, the pipeline_type is byom_image_builder, and there are no updates to be performed, the response is:

```
{
 "message": "Pipeline <stack-name> is already provisioned. No updates are to be performed.
 "pipeline_id": "arn:aws:cloudformation:<region>:<account-id>:stack/<stack-id>"
}
```

• If the pipeline type is one of the model card operations (create, describe, update, delete, export, and list model cards), the response is:

```
{
 "message": "<message based on the model card operation>"
}
```

//pipelinestatus
• Method: POST
• Body
  - pipeline_id: The ARN of the created CloudFormation stack after provisioning a pipeline. (This information can be retrieved from /provisionpipeline.)
• Example structure:

```
{
 "pipeline_id": "arn:aws:cloudformation:us-west-1:123456789123:stack/my-mlops-pipeline/12abcdef-abcd-1234-ab12-abcdef123456"
}
```

• Expected responses of APIs requests to /pipelinestatus:
  • The returned response depends on the solution’s option (single- or multi-account deployment).

Example response for the single-account option:

```
{
 "pipelineName": "<pipeline-name>",
 "pipelineVersion": 1,
 "stageStates": [
 {
 "stageName": "Source",
 "inboundTransitionState": {
 "enabled": true
 },
 "actionStates": [
 {
 "actionName": "S3Source",
 "currentRevision": {
 "revisionId": "<version-id>"
 },
 "latestExecution": {
```

48
You can use the following API method for inference of the deployed real-time inference pipeline. The AWS Gateway API URL can be found in the outputs of the pipeline's AWS CloudFormation stack.

- /inference
  - Method: POST
  - Body
  - payload: The data to be sent for inference.
  - content_type: MIME content type for the payload.
Expected responses of APIs requests to /inference:
- The request returns a single prediction value, if one data point was in the request, and returns multiple prediction values (separated by a ","), if several data points were sent in the APIs request.

API responses with error messages:
- If an API request to any one of the solution's API endpoints results in an exception/error, the expected body of the API response is:

```json
{
 "message": "<general error message>",
 "detailedMessage": "<detailed error message>"
}
```
- The detailedMessage attribute in the body of the API response is only included if the solution was configured to allow detailed error messages. Refer to the template's parameters table for more details.

## Template option 2: Multi-account deployment

The same API calls used for single account development are used for multi-account deployment, with the exception of the following changes:

- For training pipelines, the API calls to provision the pipelines are similar to the single-account deployment. All training pipelines are deployed in the delegated admin account, where the solution is deployed.

For BYOM real-time built-in and custom pipelines, you must provide the inference_instance and data_capture_location, endpoint_name (optional), and kms_key_arn (optional) for the development, staging, and production deployments. For example:

- Real-time inference with an Amazon SageMaker built-in model:

```json
{
 "pipeline_type": "byom_realtime_builtin",
 "model_framework": "xgboost",
 "model_framework_version": "1",
 "model_name": "<my-model-name>",
 "model_artifact_location": "<path/to/model.tar.gz>",
 "data_capture_location": {"dev": "<bucket-name>/<prefix>", "staging": "<bucket-name>/<prefix>", "prod": "<bucket-name>/<prefix>"},
 "inference_instance": {"dev": "ml.t3.2xlarge", "staging": "ml.m5.large", "prod": "ml.m5.4xlarge"},
 "endpoint_name": {"dev": "<dev-endpoint-name>",
 "staging": "<staging-endpoint-name>",
 "prod": "<prod-endpoint-name>"}
}
```

- For BYOM batch built-in and custom pipelines, you must provide the batch_inference_data, inference_instance, batch_job_output_location, and kms_key_arn (optional) for the development, staging, and production deployments. For example:

  - Batch transform with a custom algorithm:
• For the model monitor pipeline, you should provide instance_type and instance_volume_size, endpoint_name, date_capture_location, baseline_job_output_location, monitoring_output_location, and kms_key_arn (optional). The kms_key_arn must be the same key used for the real-time inference pipeline. Additionally, for Model Quality monitor pipeline, monitor_ground_truth_input is needed for each account. For example:

- Data quality monitor pipeline:

```json
{
 "pipeline_type": "byom_data_quality_monitor",
 "endpoint_name": {
 "dev": "<dev_endpoint_name>",
 "staging": "staging_endpoint_name",
 "prod": "<prod_endpoint_name>",
 },
 "training_data": "<path/to/training_data_with_header.csv>",
 "baseline_job_output_location": {
 "dev": "<bucket-name>/<prefix>",
 "staging": "<bucket-name>/<prefix>",
 "prod": "<bucket-name>/<prefix>",
 },
 "data_capture_location": {
 "dev": "<bucket-name>/<prefix>",
 "staging": "<bucket-name>/<prefix>",
 "prod": "<bucket-name>/<prefix>",
 },
 "monitoring_output_location": {
 "dev": "<bucket-name>/<prefix>",
 "staging": "<bucket-name>/<prefix>",
 "prod": "<bucket-name>/<prefix>",
 },
 "schedule_expression": "cron(0 * ? * * *)",
 "instance_type": {
 "dev": "ml.t3.2xlarge",
 "staging": "ml.m5.large",
 "prod": "ml.m5.4xlarge"
 },
 "instance_volume_size": {
 "dev": "20",
 "staging": "20",
 "prod": "100"
 },
 "baseline_max_runtime_seconds": "3300",
 "monitor_max_runtime_seconds": "3300"
}
```

- Model quality monitor pipeline:

```json
{
 "pipeline_type": "byom_model_quality_monitor",
 "endpoint_name": {
 "dev": "<dev_endpoint_name>",
 "staging": "staging_endpoint_name",
 "prod": "<prod_endpoint_name>",
 },
 "baseline_data": "<path/to/baseline_data.csv>",
 "baseline_job_output_location": {
 "dev": "<bucket-name>/<prefix>",
 "staging": "<bucket-name>/<prefix>",
 "prod": "<bucket-name>/<prefix>",
 },
 "data_capture_location": {
 "dev": "<bucket-name>/<prefix>",
 "staging": "<bucket-name>/<prefix>",
 "prod": "<bucket-name>/<prefix>",
 },
 "monitoring_output_location": {
 "dev": "<bucket-name>/<prefix>",
 "staging": "<bucket-name>/<prefix>",
 "prod": "<bucket-name>/<prefix>",
 },
 "schedule_expression": "cron(0 * ? * * *)",
 "instance_type": {
 "dev": "ml.t3.2xlarge",
 "staging": "ml.m5.large",
 "prod": "ml.m5.4xlarge"
 },
 "instance_volume_size": {
 "dev": "20",
 "staging": "20",
 "prod": "100"
 },
 "baseline_max_runtime_seconds": "3300",
 "monitor_max_runtime_seconds": "3300",
 "baseline_inference_attribute": "prediction",
 "baseline_ground_truth_attribute": "label",
 "problem_type": "Regression"
}
```
Model bias monitor pipeline:

```json
{
 "pipeline_type": "byom_model_bias_monitor",
 "endpoint_name": {
 "dev": "<dev_endpoint_name>",
 "staging": "<staging_endpoint_name>",
 "prod": "<prod_endpoint_name>",
 },
 "baseline_data": "path/to/training_data_with_header.csv",
 "baseline_job_output_location": {
 "dev": "<bucket-name>/prefix",
 "staging": "<bucket-name>/prefix",
 "prod": "<bucket-name>/prefix",
 },
 "data_capture_location": {
 "dev": "<bucket-name>/prefix",
 "staging": "<bucket-name>/prefix",
 "prod": "<bucket-name>/prefix",
 },
 "monitoring_output_location": {
 "dev": "<bucket-name>/prefix",
 "staging": "<bucket-name>/prefix",
 "prod": "<bucket-name>/prefix",
 },
 "schedule_expression": "cron(0 * ? * * *)",
 "instance_type": {
 "dev": "ml.t3.2xlarge",
 "staging": "ml.m5.large",
 "prod": "ml.m5.4xlarge",
 },
 "instance_volume_size": {
 "dev": "20",
 "staging": "20",
 "prod": "100",
 },
 "baseline_max_runtime_seconds": "3300",
 "monitor_max_runtime_seconds": "3300",
 "problem_type": "Regression",
 "monitor_inference_attribute": "0",
 "bias_config": {
 "label_values_or_threshold": "<value>",
 "facet_name": "<value>",
 "facet_values_or_threshold": "<value>",
 },
 "monitor_ground_truth_input": {
 "dev": "<dev-bucket-name>/prefix/<yyy>/<mm>/<dd>/<hh>",
 "staging": "<staging-bucket-name>/prefix/<yyy>/<mm>/<dd>/<hh>",
 "prod": "<prod-bucket-name>/prefix/<yyy>/<mm>/<dd>/<hh>",
 }
}
```

Model explainability monitor pipeline:

```json
{
 "pipeline_type": "byom_model_explainability_monitor",
 "endpoint_name": {
 "dev": "<dev_endpoint_name>",
 "staging": "<staging_endpoint_name>",
 "prod": "<prod_endpoint_name>",
 },
 "baseline_data": "path/to/training_data_with_header.csv",
 "baseline_job_output_location": {
 "dev": "<bucket-name>/prefix",
 "staging": "<bucket-name>/prefix",
 "prod": "<bucket-name>/prefix",
 },
 "data_capture_location": {
 "dev": "<bucket-name>/prefix",
 "staging": "<bucket-name>/prefix",
 "prod": "<bucket-name>/prefix",
 },
 "monitoring_output_location": {
 "dev": "<bucket-name>/prefix",
 "staging": "<bucket-name>/prefix",
 "prod": "<bucket-name>/prefix",
 },
 "schedule_expression": "cron(0 * ? * * *)",
 "instance_type": {
 "dev": "ml.t3.2xlarge",
 "staging": "ml.m5.large",
 "prod": "ml.m5.4xlarge",
 },
 "instance_volume_size": {
 "dev": "20",
 "staging": "20",
 "prod": "100",
 },
 "baseline_max_runtime_seconds": "3300",
 "monitor_max_runtime_seconds": "3300",
 "problem_type": "Regression",
 "monitor_inference_attribute": "0",
 "shap_config": {
 "baseline": "<path/to/shap_baseline_dataset.csv>",
 "num_samples": "<value>",
 }
}
```
When the model registry is used, the following attributes must be modified:

- Real-time inference and batch pipelines with custom algorithms:
  - Remove custom_image_uri and model_artifact_location
  - Add model_package_name
- Real-time inference and batch pipelines with Amazon SageMaker built-in algorithms:
  - Remove model_framework, model_framework_version, and model_artifact_location
  - Add model_package_name
Reference

This section includes information about an optional feature for collecting unique metrics for this solution, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data to better understand how customers use this solution and related services and products. When invoked, the following information is collected and sent to AWS:

- **Solution ID** - The AWS solution identifier
- **Version** - The AWS solution version
- **Unique ID (UUID)** - Randomly generated, unique identifier for each MLOps Workload Orchestrator deployment
- **Timestamp** - Data-collection timestamp
- **gitSelected** - Whether or not an AWS CodeCommit repository is provided
- **Region** - The AWS Region where the solution was deployed
- **IsMultiAccount** - Which template option was deployed (multi-account or single account)
- **IsDelegatedAccount** - Whether an AWS Organization delegated administrator account, or a management account, is used to deploy the solution’s multi-account deployment option
- **UseModelRegistry** - Whether Amazon SageMaker model registry is used or not

AWS owns the data gathered though this survey. Data collection is subject to the Privacy Notice. To opt out of this feature, complete the following steps before launching the AWS CloudFormation template.

1. Download the AWS CloudFormation template to your local hard drive.
2. Open the AWS CloudFormation template with a text editor.
3. Modify the AWS CloudFormation template mapping section from:

   AnonymizedData:
   SendAnonymizedData:
       Data: Yes

   to:

   AnonymizedData:
   SendAnonymizedData:
       Data: No

4. Sign in to the AWS CloudFormation console.
5. Select Create stack.
6. On the Create stack page, Specify template section, select Upload a template file.
7. Under **Upload a template file**, choose **Choose file** and select the edited template from your local drive.
8. Choose **Next** and follow the steps in Launch the stack for the relevant deployment option in the Deploy the solution (p. 19) section of this guide.
Related resources

- The Cognizant Case study describes how Cognizant built its MLOps Model Lifecycle Orchestrator on top of the MLOps Workload Orchestrator solution to speed deployment of machine learning models from weeks to hours.

Contributors

- Tarek Abdunabi
- Mohsen Ansari
- Zain Kabani
- Dylan Tong
## Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2020</td>
<td>Initial release</td>
</tr>
<tr>
<td>January 2021</td>
<td>Release v1.1.0: Model monitor pipeline to monitor the quality of deployed machine learning models. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>March 2021</td>
<td>Release v1.1.1: Updated the Amazon ECR scan on push property and repository names. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>May 2021</td>
<td>Release v1.2.0: Added an option for multi-account deployments, and added the Custom Algorithm Image Builder pipeline. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>June 2021</td>
<td>Release v1.3.0: Added the option to use Amazon SageMaker model registry, and the option to use AWS Organizations delegated administrator account (default option) to orchestrate the deployment of Machine Learning (ML) workloads across the AWS Organizations accounts. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>September 2021</td>
<td>Release v1.4.0: Added Amazon SageMaker model quality monitor pipeline to monitor the performance of a deployed model by comparing the predictions that the model makes with the actual ground truth labels that the model attempts to predict. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>December 2021</td>
<td>Release v1.4.1: Added documentation about how customers can integrate custom blueprints into the solution. Added a configurable flag to start/stop server-side error propagation. Updated APIs responses. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>January 2022</td>
<td>Release v1.5.0: The solution name was changed from “AWS MLOps Framework” to “MLOps Workload Orchestrator”. Added Amazon SageMaker model bias monitor pipeline to monitor predictions for bias on a regular basis, and generate alerts if bias beyond a certain threshold is detected. Added Amazon SageMaker</td>
</tr>
<tr>
<td>Date</td>
<td>Change</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>May 2022</td>
<td>Release v2.0.0: Added three training pipelines to train ML models using Amazon SageMaker built-in algorithms and training job, hyperparameter tuning job, and autopilot job. Added Amazon EventBridge rules to monitor the state change of the training jobs. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>August 2022</td>
<td>Release v2.0.1: Updated IAM Role permissions with the new naming convention for temporary Amazon SageMaker endpoints used by the Amazon SageMaker Clarify Model Bias Monitor and Amazon SageMaker Clarify Model Explainability Monitor pipelines. Fixed breaking changes in “protobuf” library in versions greater than 3.20.1. Fixed empty image URL for the model training pipelines when using Amazon SageMaker Model Registry option. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>November 2022</td>
<td>Added integration with Amazon SageMaker Model Card and Amazon SageMaker Model Dashboard features to allow customers to perform model card operations. All Amazon SageMaker resources (models, endpoints, training jobs, and model monitors) created by the solution will show up on the SageMaker Model Dashboard. Fixed missing IAM Role permissions used by the Amazon SageMaker Clarify Model Bias Monitor and Amazon SageMaker Clarify Model Explainability Monitor scheduling jobs. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>January 2023</td>
<td>Release v2.1.1: Updated Python libraries. Upgraded Python runtime to 3.10. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
<tr>
<td>April 2023</td>
<td>Release v2.1.2: Mitigated impact caused by new default settings for S3 Object Ownership (ACLs disabled) for all new S3 buckets. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.</td>
</tr>
</tbody>
</table>
Release v2.2.0: This release includes integration of this solution with AppRegistry and AWS Systems Manager Application Manager, migrating to AWS CDK v2, and upgrading to Python runtime 3.10. For more information about the changes, refer to the CHANGELOG.md file in the GitHub repository.
Notices

Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents AWS current product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. AWS responsibilities and liabilities to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

MLOps Workload Orchestrator is licensed under the terms of the Apache License Version 2.0 available at The Apache Software Foundation.