
Implementation Guide

Prebid Server Deployment on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Prebid Server Deployment on AWS Implementation Guide

Prebid Server Deployment on AWS: Implementation Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Prebid Server Deployment on AWS Implementation Guide

Table of Contents

Solution overview .. 1
Features and benefits .. 2
Use cases .. 3
Concepts and definitions .. 3

Architecture overview ... 5
Architecture diagram ... 5
AWS Well-Architected design considerations ... 7

Operational excellence ... 7
Security .. 8
Reliability ... 8
Performance efficiency ... 9
Cost optimization .. 9
Sustainability .. 10

Regulatory compliance .. 10
Architecture details ... 11

CloudFront distribution ... 11
AWS WAF ... 11
Application Load Balancer (ALB) ... 11
Amazon VPC .. 12
Amazon ECS .. 12
Prebid Server container .. 12
Amazon EFS ... 12
DataSync (EFS to S3) ... 13
Glue ETL (Metrics processing) .. 13
AWS AWS Glue Data Catalog .. 13
CloudWatch ... 13
How the solution works .. 14

Workflow of banner ads .. 14
Amazon CloudFront, AWS WAF, and ALB .. 14
Prebid Server container ... 15
ECS Fargate containers automatic scaling ... 17
AWS Fargate Spot compared to Reserved Instances ... 18
AWS Fargate container health check .. 18
Prebid Server metrics ... 18

iii

Prebid Server Deployment on AWS Implementation Guide

Operational and metrics Logs .. 19
Transfer of log files .. 19
Metrics processing .. 20

Logging ... 20
Prebid Server operation and metrics logs ... 21

AWS services in this solution ... 22
Plan your deployment ... 25

Cost ... 25
Sample cost table ... 25
Sample cost from distributed load tests ... 25
Sample costs from AWS Pricing Calculator ... 29

Configurations for Elastic Container Service (ECS) Auto Scaling ... 30
Static cluster size configurations ... 31
Auto Scaling cluster configurations .. 32
Fargate Spot instances ratio configurations ... 34
Example cluster size, Auto-scaling policy, and Fargate Spot instances ratio
configurations .. 34

Security ... 35
IAM roles ... 36
Amazon CloudFront .. 36
Application Load Balancer (ALB) ... 36
Amazon VPC .. 36
AWS Fargate ... 37
Security groups ... 37
AWS WAF .. 37
Customer managed AWS KMS keys .. 37
Audit trails .. 38

Supported AWS Regions ... 38
Quotas .. 38

Quotas for AWS services in this solution .. 39
AWS CloudFormation quotas ... 39

Deploy the solution ... 40
Prerequisties .. 40
Deployment process overview ... 40
AWS CloudFormation template ... 40
Launch the stack .. 41

iv

Prebid Server Deployment on AWS Implementation Guide

Tune the solution .. 42
CloudFront distribution domain name .. 42
Guidance on how to enable TLS ... 42
Opt out ... 43
Firewall rules ... 44
Container tuning .. 44

Monitor the solution ... 46
Monitor the solution with Service Catalog AppRegistry ... 47

Activate CloudWatch Application Insights .. 48
Confirm cost tags associated with the solution .. 49
Activate cost allocation tags associated with the solution .. 50
AWS Cost Explorer ... 51

Traffic monitoring .. 52
Amazon CloudWatch alarms .. 52
AWS WAF ... 54

Blocked requests ... 54
HTTP flood detected .. 54
Allowed requests ... 54

CloudFront ... 55
Alarm: 5xx error rate .. 55
Alarm: 4xx error rate .. 55
Alarm: Requests ... 55

Application Load Balancer (ALB) ... 56
Target HTTP 4xx error rate .. 56
Target HTTP 5xx error rate .. 56
ALB HTTP 4xx error rate ... 56
ALB HTTP 5xx error rate ... 57
Target reponse time (Latency) ... 57
Unhealthy host count .. 57

NAT gateway ... 57
Port allocation errors ... 57
Packets dropped count .. 58

Elastic Container Service (ECS) .. 58
CPU and memory utilization .. 58

Elastic File System (EFS) ... 58
Percent of I/O utilization .. 58

v

Prebid Server Deployment on AWS Implementation Guide

AWS Lake Formation permission errors .. 59
Contact AWS Support ... 59

Create case ... 59
How can we help? .. 60
Additional information .. 60
Help us resolve your case faster ... 60
Solve now or contact us .. 60

Uninstall the solution ... 61
Using the AWS Management Console ... 61
Using AWS Command Line Interface ... 61
Deleting the Amazon S3 buckets ... 61

Use the solution .. 63
Querying metrics with Athena .. 63
Metric definitions ... 63
Glue table schemas .. 63
Example queries ... 63

Create views ... 63
Queries .. 64
General auction metrics .. 67

Developer guide ... 69
Source code ... 69
Patches to Prebid Server .. 69

Metrics ... 69
AMT bid adapter ... 69

Testing .. 71
Functional tests ... 71
Distributed Load Testing (DLT) .. 71

Accessing Prebid Server logs from EFS ... 73
Reference .. 75

Anonymized data collection .. 75
Related resources ... 76
Contributors ... 76

Revisions ... 77
Notices .. 78

vi

Prebid Server Deployment on AWS Implementation Guide

Deploy a Prebid Server to manage ad auction requests
with AWS infrastructure

Publication date: May 2024

Prebid Server Deployment on AWS helps customers deploy and operate Prebid Server, an
open source solution for real-time ad monetization, in their own Amazon Web Services (AWS)
environment. The solution enables customers with ad-supported websites to achieve scaled access
to advertising revenue through a community of more than 180+ advertising platforms. Customers
achieve full control over decision logic and access to transaction data, and realize AWS benefits like
global scalability and pay-as-you-go economics. This solution hosts the Prebid Server executable
program in a cost-effective way for a variety of request loads—5,000-100,000 requests per second
(RPS)—and captures operational and transaction logs from each Prebid Server container for
analysis and reporting.

This implementation guide provides an overview of Prebid Server Deployment on AWS, its
reference architecture and components, considerations for planning the deployment, configuration
steps for deploying the solution to the AWS Cloud.

This guide is intended for solution architects, business decision makers, DevOps engineers, data
scientists, and cloud professionals who want to implement Prebid Server Deployment on AWS in
their environment.

Use this navigation table to quickly find answers to these questions:

If you want to . . . Read . . .

Know the cost for running this solution.

The baseline estimated cost for running this
solution in the US East (N. Virginia) Region
is approximately $756.00 a month when no
load is running on the solution. See the Cost
section for several impression-per-second and
RPS scenarios.

Cost

1

Prebid Server Deployment on AWS Implementation Guide

If you want to . . . Read . . .

Understand the security considerations for this
solution.

Security

Know how to plan for quotas for this solution. Quotas

Know which AWS Regions are supported for
this solution.

Supported AWS Regions

View or download the AWS CloudForm
ation template included in this solution
to automatically deploy the infrastructure
resources (the “stack”) for this solution.

AWS CloudFormation template

Access the source code and optionally use the
AWS Cloud Development Kit (AWS CDK) to
deploy the solution.

GitHub repository

Access the Prebid Server open source project. GitHub repository

Features and benefits

Prebid Server Deployment on AWS provides the following features:

Prebid Server purpose built for AWS infrastructure

Deploy Prebid Server in a scalable and cost-efficient manner. It provides the end-to-end
infrastructure to host a Prebid Server with production-grade availability, scalability, and low-
latency for a variety of request loads (documented up to 100,000 RPS).

Built-in observability

Observability is available throughout the infrastructure. This includes operational resource metrics,
alarms, runtime logs, and business metrics, visualized with the Cost and Usage Dashboard powered
by Amazon QuickSight and Service Catalog AppRegistry.

Decrease time to market

Features and benefits 2

https://github.com/aws-solutions/prebid-server-deployment-on-aws
https://github.com/prebid/prebid-server-java
https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html

Prebid Server Deployment on AWS Implementation Guide

This solution uses a deployment template to establish the necessary infrastructure to get
customers running within days instead of months or weeks.

Ownership of all operational and business data

All data from Prebid Server metrics extract, transform, and load (ETL) to AWS AWS Glue Data
Catalog for seamless integration with various clients, such as Amazon Athena, Amazon Redshift,
and Amazon SageMaker.

Integration with Service Catalog AppRegistry and Application Manager, a capability of AWS
Systems Manager

This solution includes a Service Catalog AppRegistry resource to register the solution’s
CloudFormation template and its underlying resources as an application in both Service Catalog
AppRegistry and Application Manager. With this integration, centrally manage the solution’s
resources and enable application search, reporting, and management actions.

Use cases

Move ad-supported workflows to a dedicated, server-to-server (S2S) architecture

S2S header bidding moves auction processing and decisioning to dedicated servers, which
improves page performance and protects advertising revenue.

Reduce operational complexity

Focus more on business insights and less on operating geographically distributed, high-volume,
low-latency architectures—a challenging task even for well-resourced organizations.

Create complete infrastructure

This solution uses a deployment template to establish the necessary infrastructure, including load
balancing, distribution, VPC resources, firewalls, data pipelines, and a container with the latest
version of Prebid Server to get customers running within days instead of months or weeks.

Concepts and definitions

This section describes key concepts and defines terminology specific to this solution:

Use cases 3

https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Prebid Server Deployment on AWS Implementation Guide

custom headers

Amazon CloudFront can be configured to add custom headers, which enable you to send and
gather information from your origin that you don’t get with typical viewer requests.

header bidding

Header bidding is a process that enables publishers to capture bids for ad units from demand
sources that might otherwise have been missed. By implementing header bidding, a publisher can
gather bids from multiple sources that will then compete directly with bids from the ad server

Prebid Server

Prebid Server is an open source solution for server-to-server header bidding.

wrapper

A wrapper is a type of Software Development Kit (SDK) for advertising. A wrapper provides browser
code to consolidate multiple header bidding partners into a unified framework. It simplifies the
management of ad placements and real-time bidding across different ad networks, optimizing ad
revenues by allowing simultaneous bids on inventory.

For a general reference of AWS terms, see the AWS Glossary.

Concepts and definitions 4

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

Prebid Server Deployment on AWS Implementation Guide

Architecture overview

This section provides a reference implementation architecture diagram for the components
deployed with this solution and a summary of AWS Well-Architected design considerations.

Architecture diagram

Deploying this solution with the default parameters deploys the following components in your
AWS account.

Prebid Server Deployment on AWS architecture

Architecture diagram 5

Prebid Server Deployment on AWS Implementation Guide

Note

AWS CloudFormation resources are created from AWS Cloud Development Kit (AWS CDK)
constructs.

The high-level process flow for the solution, including the components deployed with the AWS
CloudFormation template, is as follows:

1. A user browses to a page on a website that hosts ads.

2. The publisher site returns the page source to the browser with resources, and one or more script
modules (also called wrappers) that enable real-time bid requests and responses for ads of given
dimensions, types, topics, and other criteria.

3. The bid requests are received from the browser at the Amazon CloudFront endpoint integrated
with AWS Web Application Firewall (AWS WAF) for entry into the solution. This step helps
validate legitimate traffic from malicious requests, such as penetration or denial-of-service
attempts. Traffic can be received here as HTTP or HTTPS.

4. The request is forwarded to Application Load Balancer (ALB). ALB determines which container
running Prebid Server in the cluster is at a utilization level that can accept more requests. ALB
has a network interface on the public internet and one in each private subnet where containers
are hosted within Amazon Virtual Private Cloud (Amazon VPC).

5. The request arrives at an Amazon Elastic Container Service (Amazon ECS) container, is parsed
and validated, and requests to different bidding services are sent concurrently to the internet
through the default internet gateway.

6. The NAT gateway and internet gateway allow containers to initiate outbound requests to the
internet and receive responses. These resources are primarily used for Prebid Server containers
to request and gather bids for ad auctions.

7. Bidders receive one or more bid requests over the internet from a Prebid Server container.
Bidders respond with zero or more bids for the various requests. The response, including the
body of the winning creative(s), is sent back to the browser.

8. During normal operation, Amazon CloudWatch metrics are collected from various resources
involved in handling requests and responses through the solution. As the load changes
throughout the cluster, CloudWatch alarms are used to determine when to scale-out or scale-in
the container cluster.

Architecture diagram 6

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cloudfront/
https://aws.amazon.com/waf/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/application-load-balancers.html
https://aws.amazon.com/vpc/
https://aws.amazon.com/ecs/

Prebid Server Deployment on AWS Implementation Guide

9. An ECS service definition (Prebid ECS service) is responsible for tracking the health of the
cluster, performing scale-out and scale-in operations, and managing the collection of containers
available for ALB. The Prebid ECS service uses AWS Fargate instances.

10.Runtime and metrics log files for each container are stored to a shared Amazon Elastic File
System (Amazon EFS) using NFS protocol. This file system is mounted to each Prebid Server
container during start-up. A single runtime and metrics log file is written for a limited time and
then closed and rotated, so that it can be included in the next stage of processing. EFS is treated
as a temporary location as log data is generated and moved to longer-term storage on Amazon
Simple Storage Service (Amazon S3) and into AWS Glue.

11.AWS DataSync replicates rotated log files from EFS to S3 on a recurring schedule. DataSync
verifies each transferred file and provides a report of the completed work to an AWS Lambda
function.

12.The DataSyncLogsBucket S3 bucket receives the replicated log files from EFS using the same
folder structure. Log files arrive in this bucket as a result of the DataSync process.

13.The delete_efs_files Lambda function runs after the DataSync process completes in step
12 and removes transferred and verified log file data from EFS.

14.An AWS Glue job performs an ETL operation on the metrics data in the DataSyncLogsBucket
S3 bucket. The ETL operation structures the metric data into a single database with several
tables, partitions the physical data, and writes it to an S3 bucket.

15.The MetricsEtlBucket S3 bucket contains the metric log data transformed and partitioned
through ETL. The data in this bucket is made available to AWS Glue clients for queries.

16.Many different types of clients use AWSAWS Glue Data Catalog to access the Prebid Server
metric data.

AWS Well-Architected design considerations

This solution uses the best practices from the AWS Well-Architected Framework, which helps
customers design and operate reliable, secure, efficient, and cost-effective workloads in the cloud.

This section describes how the design principles and best practices of the Well-Architected
Framework benefit this solution.

Operational excellence

This section describes how we architected this solution using the principles and best practices of
the operational excellence pillar.

AWS Well-Architected design considerations 7

https://aws.amazon.com/fargate/
https://aws.amazon.com/efs/
https://aws.amazon.com/efs/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/glue/
https://aws.amazon.com/datasync/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/operational-excellence-pillar/welcome.html

Prebid Server Deployment on AWS Implementation Guide

Perform operations as code – This solution’s infrastructure is entirely specified using CDK v2.0 in
Python 3.x and deployed as a CloudFormation template. Application logging and metric workflows
are automated with Amazon EventBridge and Lambda.

Make frequent, small, reversible changes – This solution is designed to be customized by the end
user, if desired. The solution can be forked from the GitHub repository into a customer's account,
customized, rebuilt, hosted in a customer’s Amazon S3 buckets, and deployed via CloudFormation.
This process can be repeated iteratively to test changes to the default solution.

Use managed services - Operational burden is reduced through the use of Amazon ECS to
automatically manage and scale application containers in response to client request traffic.

Security

This section describes how we architected this solution using the principles and best practices of
the security pillar.

Implement a strong identity foundation – All interactions among resources created by the
solution are secured using AWS Identity and Access Management (IAM) roles, policies, and
signature V4 request signing. All credentials used to interact among resources are temporary, and
typically have a lifetime of less than one hour.

Maintain traceability – Runtime logging by Lambda functions installed by the solution is sent to
Amazon CloudWatch Logs and preserved with the default retention settings.

Apply security at all layers – Interactions among resources require permissions defined in the
related resource’s IAM role. AWS WAF protects public application endpoints from common web
exploits. Security groups restrict inbound and outbound traffic at the resource level within the
customers Amazon VPC.

Protect data in transit and at rest – All data is encrypted in transit via TLS-protected API requests.
All persistent resources are configured for encryption at rest. Application-level data is encrypted
with AWS Key Management Service using customer managed keys.

Reliability

This section describes how we architected this solution using the principles and best practices of
the reliability pillar.

Security 8

https://aws.amazon.com/eventbridge/
https://github.com/aws-solutions/aws-solution-for-prebid-server
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/welcome.html
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://aws.amazon.com/kms/
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/welcome.html

Prebid Server Deployment on AWS Implementation Guide

Automatically recover from failure – The solution uses Amazon CloudWatch metrics and alarms
are used to monitor the operation of the solution with the ability to notify users or other systems
when thresholds are breached.

Scale horizontally to increase aggregate workload availability - Client traffic is horizontally
scaled with Amazon Elastic Container Service, distributed across containers using Elastic Load
Balancing.

Stop guessing capacity - Resource demand is automatically monitored with Amazon ECS,
maintaining optimal resource levels to satisfy demand without over- or under-provisioning.

Performance efficiency

This section describes how we architected this solution using the principles and best practices of
the performance efficiency pillar.

Go global in minutes – The CloudFormation template can be used to create a stack in any
compatible Region, with the ability to deploy multiple stacks in the same Region for testing and
production.

Use serverless architectures – Amazon ECS uses AWS Fargate serverless deployment to manage
container resources at cloud scale without the operational burden of managing physical servers.

Consider mechanical sympathy – Application metrics data is transformed, partitioned, and stored
in Amazon S3 and AWS Glue in accordance with common data access patterns to improve query
performance.

Cost optimization

This section describes how we architected this solution using the principles and best practices of
the cost optimization pillar.

Analyze and attribute expenditure – This solution is configured with Service Catalog AppRegistry,
which supports accumulating cost data for each instance of the stack. Over time, you can see the
impact of each stack deployment on your monthly account charges.

Adopt a consumption model – Serverless computing is used to only pay for consumed compute
resources on Amazon ECS.

Performance efficiency 9

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/elasticloadbalancing/
https://docs.aws.amazon.com/wellarchitected/latest/performance-efficiency-pillar/welcome.html
https://aws.amazon.com/fargate/
https://docs.aws.amazon.com/glue/
https://docs.aws.amazon.com/wellarchitected/latest/cost-optimization-pillar/welcome.html
https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html

Prebid Server Deployment on AWS Implementation Guide

Sustainability

This section describes how we architected this solution using the principles and best practices of
the sustainability pillar.

Maximize utilization – Managed services allow for optimal resource provisioning to ensure high
utilization while minimizing idle resources to maximize the energy efficiency of the underlying
hardware.

Use managed services – This solution uses managed services such as Fargate and Lambda, which
share resources across a broad customer base and reduces the amount of infrastructure needed to
support cloud workloads.

Regulatory compliance

Prebid Server (Java) is packaged in this solution without any pre-configured settings that affect the
treatment of consumer preferences for data privacy. When you run Prebid Server with this solution
you must configure it to work how you want it to. Settings, such as privacy and consent controls,
jurisdiction of operation, and data enrichment functions are all determined by configurations that
you set. We advise you to follow the guidance provided on docs.prebid.org.

Sustainability 10

https://docs.aws.amazon.com/wellarchitected/latest/sustainability-pillar/sustainability-pillar.html
https://docs.prebid.org/prebid-server/versions/pbs-versions-java.html

Prebid Server Deployment on AWS Implementation Guide

Architecture details

This section describes the components and AWS services that make up this solution and the
architecture details on how these components work together.

CloudFront distribution

The solution uses Amazon CloudFront as the unified network entry point. It receives the incoming
auction requests and handles outgoing responses. CloudFront speeds up the distribution of your
content by routing each user request through the AWS backbone network to the edge location
that can best serve your content. CloudFront provides a TLS endpoint for privacy of requests and
responses in transit with the pubic internet. ALB is the configured origin for CloudFront. Direct
access to ALB is restricted by using a custom header, enhancing security.

AWS WAF

AWS Web Application Firewall (AWS WAF) and AWS Shield Standard are used as a protection
mechanism from Distributed Denial of Service (DDoS) attacks against the Prebid Server cluster.
AWS WAF can activate one or more managed rule groups by default after extended testing
including rules in the Baseline Rule Group and the IP Reputation Rule Group. You have the option
to activate, purchase, or use existing rule subscriptions, or add regular expression or CIDR matching
rules as needed.

Note

If you want to opt out of using CloudFront and AWS WAF and directly send requests to the
ALB, see the section called “Opt out”.

Application Load Balancer (ALB)

ALB distributes incoming request traffic for Prebid Server through the cluster of containers.
It provides a single entry point into the cluster and is the primary origin for the CloudFront
distribution.

CloudFront distribution 11

Prebid Server Deployment on AWS Implementation Guide

Amazon VPC

The Amazon Virtual Private Cloud (Amazon VPC) is configured with redundant subnets, routes, and
NAT gateways. Security groups permit traffic to and from the subnets. The Amazon VPC contains
the network interfaces for the Prebid Server container cluster nodes. It is configured for private IP
addresses only and container networks configured within the Amazon VPC use the NAT gateway as
a default route to the internet for communication.

Amazon ECS

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration
service that helps you easily deploy, manage, and scale containerized Prebid Server application.
These resources define the configuration, count, and thresholds to scale-out and scale-in the
total container count in the ECS cluster. The ECS task and service resource define the operating
environment for the cluster and thresholds for scaling and health. Scaling changes are based on
CPU, process load, and network traffic (requests per target). For cost optimization, ECS uses a
weighted combination of Fargate and Fargate Spot instances. There's a cost benefit to using more
Fargate Spot instances, but the risk of unavailability goes up. You might find that after running the
solution for a while that a different ratio is better for you.

Prebid Server container

This is a docker container that runs the open source Prebid Server and is hosted in Amazon Elastic
Container Registry (Amazon ECR). The container differs from the open source project’s default
container in configuration settings for areas including log output to the Console and bidding
adapter configuration settings.

Amazon EFS

The EFS file system is mounted and shared among all container instances in the ECS cluster. This
file system is used for log capture (operational and metrics), and has the potential to be expanded
to include shared configuration and storage related to more advertisement types (for example,
video and mobile).

Amazon VPC 12

https://docs.aws.amazon.com/AmazonECS/latest/bestpracticesguide/ec2-and-fargate-spot.html
https://aws.amazon.com/ecr/
https://aws.amazon.com/ecr/

Prebid Server Deployment on AWS Implementation Guide

DataSync (EFS to S3)

DataSync is configurated to periodically move rotated log files from each Prebid Server container’s
EFS location to an equivalent location in the DataSyncLogsBucket S3 bucket. After each file
is copied to S3 and verified, it is removed from the EFS file system through a clean-up Lambda
function. Essentially, only actively written log files are retained on the EFS file system until the
Prebid Server process closes it, rotates it, and starts a new file. Rotated log files are migrated with
DataSync. Runtime logs are rotated every 24 hours or when reaching 100 MB. Metrics logs are
rotated every one hour or when reaching 100 MB.

Glue ETL (Metrics processing)

AWS Glue is a serverless data integration service that makes it easy for analytics users to discover,
prepare, move, and integrate data from multiple sources. You can use it for analytics, machine
learning, and application development. It also includes additional productivity and data ops tooling
for authoring, running jobs, and implementing business workflows. This resource is responsible
for periodically processing new metrics log files in the DataSyncLogsBucket S3 bucket. The
CSV-formatted metrics are transformed into several tables and partitioned. After ETL processing
completes, the new data is available to clients through AWS Glue Data Catalog.

AWS Glue Data Catalog

AWS AWS Glue Data Catalog provides access for clients to the Prebid Server metric data through
Athena or other compatible clients, such as Amazon SageMaker, Amazon QuickSight, and JDBC
clients. Clients can query and view the Prebid Server metrics data, generate graphs, summaries or
inferences using AI/ML.

Amazon CloudWatch

CloudWatch alarms monitor specific metrics in real-time and proactively notify AWS Management
Console users when predefined conditions are met. This solution has several CloudWatch alarms
to help monitor its health and performance. These alarms are enabled automatically when the
CloudFormation stack is deployed. For details, see the CloudWatch Alarms section.

DataSync (EFS to S3) 13

Prebid Server Deployment on AWS Implementation Guide

Note

All resources are created in a single Region specified by the user except for CloudFront and
AWS WAF. CloudFront is considered a global resource, and AWS WAF is always created in
the us-east-1 (N.Virginia) Region for configuration with CloudFront.

How Prebid Server Deployment on AWS works

Workflow of banner ads

From docs.prebid.org.

Banner ad workflow

1. Prebid.js is set up to run auctions for one or more bidders through s2sConfig.

2. Prebid Server parses the request and holds the auction.

3. The response, including the body of the winning creative(s), is sent back to the browser.

4. Prebid.js passes ad server targeting variables to the page, which forwards it to the ad server.

5. When a header bidding ad wins, the ad server responds to the page with the Prebid Universal
Creative, which calls the render function in Prebid.js.

6. The render function displays the creative.

Amazon CloudFront, AWS WAF, and ALB

CloudFront is used as the entry point into the solution where the bid requests are received.
CloudFront speeds up distribution of content through a worldwide network of data centers called

How the solution works 14

https://docs.prebid.org/prebid-server/use-cases/pbs-pbjs.html
https://github.com/prebid/prebid-universal-creative
https://github.com/prebid/prebid-universal-creative

Prebid Server Deployment on AWS Implementation Guide

edge locations. CloudFront ensures that end-user requests are served by the closest edge location.
To prevent requests from bypassing the CDN and accessing the origin (ALB) directly, the solution
uses CloudFront custom headers.

AWS WAF is a web application firewall that helps protect the application from common web
exploits that could affect application availability, compromise security, or consume excessive
resources. It is preconfigured with a set of standard AWS managed rules. AWS WAF is tightly
integrated with CloudFront at the edge. Traffic can be received here as HTTP or HTTPS.

Note

If you want to opt out of using CloudFront and AWS WAF and directly send requests to the
ALB, see the section called “Opt out”.

Prebid Server container

This container hosted in Amazon ECR runs the open source Prebid Server. The solution’s default
container image is a customized build of the Prebid Server implementation in Java. The Dockerfile
for building this container image is located at deployment/ecr/prebid-server/Dockerfile
and an accompanying configuration file is at deployment/ecr/prebid-server/config.json.
This configuration file provides the version of the prebid server through the GIT_TAG_VERSION
parameter.

The container differs from the open source project’s default container in configuration settings
for areas including file output and bidding adapter configuration settings. Alternatively, you can
use the Go implementation of Prebid Server, or any build hosted in a container repository, such
as Docker Hub or ECR Public Gallery. You will have the option of overriding the solution’s default
container.

Note

• If using a custom image, ensure it is compatible with the logging configuration of the
container supplied with the solution to make use of the Prebid Metrics ETL.

• Make changes to the Dockerfile as needed.

Prebid Server container 15

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/add-origin-custom-headers.html
https://docs.aws.amazon.com/waf/latest/developerguide/aws-managed-rule-groups.html
https://docs.prebid.org/prebid-server/versions/pbs-versions-go.html
https://hub.docker.com/
https://gallery.ecr.aws/

Prebid Server Deployment on AWS Implementation Guide

The following diagram shows a detailed view of the container contents, and the resources the
container interacts with directly. Additionally, the container image supplied with the solution is
stored in the ECR Public Gallery for AWS Solutions.

Prebid Server container diagram

Prebid Server container 16

https://gallery.ecr.aws/aws-solutions/

Prebid Server Deployment on AWS Implementation Guide

1. Amazon ECR is a fully managed container registry for developers to store, manage, and deploy
container images for public or private access.

2. Inbound auction requests come through Application Load Balancer. ALB distributes incoming
application traffic across multiple ECS containers.

3. The Prebid Server Deployment on AWS container instances run in a defined environment.

4. The Java-based version of Prebid Server is configured to run with Amazon Corretto.

5. NAT gateway enables instances in a private subnet to connect to the internet but prevents the
internet from initiating a connection with those instances. It is the default gateway for outgoing
network packets from the private subnet within Amazon VPC.

6. The internet gateway connects a VPC with the public internet, allowing instances such as NAT
gateways to send and receive traffic.

7. Auction requests are sent to bidders over the internet.

8. EFS Standard is a managed file storage service that provides a scalable file system for use
with AWS Cloud services and on-premises resources. The EFS filesystem is used for capturing
transaction and operational log data from each container via an NFS network connection.

9. DataSync is used as the ETL mechanism for moving data captured in raw log files on EFS to a
structured and normalized layout in AWS Glue Data Catalog.

10.The DataSyncLogsBucket S3 bucket receives the migrated log data from the EFS filesystem.
The Glue ETL process uses the contents of this bucket as source data.

ECS Fargate containers automatic scaling

Automatic scaling is the ability to increase or decrease the desired count of tasks in your Amazon
ECS service automatically. The service is configured to use target tracking scaling policies,
which increase or decrease the number of tasks that your service runs. These are based on a
target value for a specific metric provided by Application Auto Scaling, such as average CPU
utilization, memory utilization, and average request count per target. These values are set in the
source/infrastructure/prebid_server/stack_constants.py file with default values
of CPU_TARGET_UTILIZATION_PCT = 66, MEMORY_TARGET_UTILIZATION_PCT = 50, and
REQUESTS_PER_TARGET = 5000.

The default minimum and maximum task counts are also set in the file as
AUTOSCALE_TASK_COUNT_MIN = 10 and AUTOSCALE_TASK_COUNT_MAX = 300 respectively.

ECS Fargate containers automatic scaling 17

https://aws.amazon.com/corretto/

Prebid Server Deployment on AWS Implementation Guide

AWS Fargate Spot compared to Reserved Instances

With Amazon ECS on AWS Fargate capacity providers, you can use both Fargate and Fargate Spot
capacity with your Amazon ECS tasks. With Fargate Spot, you can run interruption tolerant Amazon
ECS tasks at a rate that's discounted compared to the Fargate price. When AWS needs the capacity
back, tasks are interrupted with a 2-minute warning. When the Spot instances are terminated, ECS
requests new Spot capacity, possibly from a different AZ to replace the reclaimed instances.

The default weights used for Reserved compared to Spot instances are defined through parameters
in the solution source code FARGATE_RESERVED_WEIGHT = 1 and FARGATE_SPOT_WEIGHT = 1
respectively.

AWS Fargate container health check

Health check parameters that are specified in a container definition override any Docker
health checks that exist in the container image. The following endpoint is used to check
the health of the Prebid Server running containers: HEALTH_ENDPOINT = "/status".
The default interval and timeout parameters HEALTH_CHECK_INTERVAL_SECS = 60 and
HEALTH_CHECK_TIMEOUT_SECS = 5 are used to set the time period in seconds between each
health check run, and the time period in seconds to wait for a health check to succeed before it is
considered a failure, respectively.

Prebid Server metrics

The Prebid Server collects various application metrics, which are submitted to configured backends.
These metrics can be used for monitoring and optimizing the performance of the server. The
metrics include information such as bid requests, bid responses, and other relevant statistics. For
more detailed information on the specific metrics collected and how to integrate custom analytics
adapters, refer to the official Prebid Server documentation and the metrics.md file in the GitHub
repository for the Prebid Server Java implementation.

In this solution, metrics that are emitted by the Prebid Server containers are captured via log files.
This is achieved by hooking the operational monitoring system to the Java file logger by modifying
the original source file on the GitHub repository - src/main/java/org/prebid/server/spring/config/
metrics/MetricsConfiguration.java. Refer to the patch file - deployment/ecr/prebid-server/prebid-
server-java-patches.diff.

AWS Fargate Spot compared to Reserved Instances 18

https://docs.prebid.org/prebid-server/developers/pbs-build-an-analytics-adapter.html#prebid-server---building-an-analytics-adapter
https://github.com/prebid/prebid-server-java/blob/master/docs/metrics.md
https://github.com/prebid/prebid-server-java/blob/master/src/main/java/org/prebid/server/spring/config/metrics/MetricsConfiguration.java
https://github.com/prebid/prebid-server-java/blob/master/src/main/java/org/prebid/server/spring/config/metrics/MetricsConfiguration.java
https://github.com/aws-solutions/prebid-server-deployment-on-aws/blob/main/deploymentecr/prebid-server/prebid-server-java-patches.diff
https://github.com/aws-solutions/prebid-server-deployment-on-aws/blob/main/deploymentecr/prebid-server/prebid-server-java-patches.diff

Prebid Server Deployment on AWS Implementation Guide

Operational and metrics Logs

Amazon EFS is mounted to the ECS cluster using NFS protocol and is shared among all container
instances. Prebid Server writes two log files while running - one for stdout/stderr operational
logging and one for auction metrics. They are both located on the EFS with a unique path based
on the container instance to prevent collision. The operational log files generated by the Prebid
Service container are located at /mnt/efs/logs/<CONTAINER_ID>/prebid-server.log.
These files are rotated periodically, every day at midnight and placed in the archived folder located
at /mnt/efs/logs/<CONTAINER_ID>/archived/prebid-server.%d{yyyy-MM-dd}.
%i.log.gz.

If the generated log file exceeds a size limit of 100 MB, this rotation happens earlier. In a similar
fashion, the metrics logs are located at /mnt/efs/metrics/<CONTAINER_ID>/prebid-
metrics.log and archieved at /mnt/efs/metrics/<CONTAINER_ID>/archived/prebid-
metrics.%d{yyyy-MM-dd_HH}.%i.log.gz. These files are rotated at the top of each
hour (period of one hour). The logging configurations are available through settings in the
deployment/ecr/prebid-server/prebid-logging.xml file in the Prebid Server source code.

Note

If a container task receives a termination signal from ECS, for reasons such as scale-in or
Spot interruptions, then the solution automatically compresses and transfers the current
active log files to their respective archived folders to ensure no discontinuity or loss of log
data. The transferred logs will be picked up along with any other log files in the archived
directory when the DataSync task runs.

Transfer of log files

DataSync is configured to periodically (every hour on the half hour mark) to move the
rotated and archived metric log files from EFS to an equivalent location in S3. For details,
see the the section called “Logging” section. This period is set through Cron schedule by
DATASYNC_METRICS_SCHEDULE = "cron(30 * * * ? *)" and DATASYNC_LOGS_SCHEDULE
= "cron(30 * * * ? *)". These parameters are available through the source/
infrastructure/prebid_server/stack_constants.py file in the solution source code.

After each file is copied to S3 and verified, it is removed from the EFS file system through a
Lambda function. Only actively written log files are retained on the EFS.

Operational and metrics Logs 19

https://github.com/aws-solutions/prebid-server-deployment-on-aws

Prebid Server Deployment on AWS Implementation Guide

Metrics processing

An AWS Glue job is configured to perform ETL operation on the metrics log data present in the
S3 bucket containing the raw logs. The ETL operation structures the metric data present in the
log files into a single database with several tables. For details, see the section called “Glue table
schemas” in the Querying metrics with Athena section. The processed data is written into the
MetricsEtl S3 bucket, which contains the metric log data transformed and partitioned through
ETL in the previous steps. The data is made available via AWS AWS Glue Data Catalog, a persistent
technical metadata store for analytics users to discover and prepare the data. Also, you can
immediately search and query cataloged data using Amazon Athena, Amazon EMR, and Amazon
Redshift Spectrum.

Logging

The log files generated by this solution are stored in four separate buckets depending on their
context. Logs containing operational data, such as CloudFront access logs, are stored in one bucket,
while logs containing business intelligence, such as Prebid Server performance metrics, are stored
in another bucket. This organization is intended to facilitate data pipelines for context-specific log
analysis.

The following S3 buckets are used for log storage.

CloudFront access logs bucket

Contains detailed information about every request received by the CloudFront distribution.

ALB access logs bucket

Contains detailed information about every request received by the CloudFront distribution. Elastic
Load Balancing provides access logs that capture detailed information about requests sent to your
load balancer. Each log contains information such as the time the request was received, the client's
IP address, latencies, request paths, and server responses. You can use these access logs to analyze
traffic patterns and troubleshoot issues. For more information, see Access logs for your Application
Load Balancer in Elastic Load Balancing.

DataSync logs bucket

• Contains stdout and stderr log streams from the Prebid Server processes running in the ECS
cluster.

Metrics processing 20

https://aws.amazon.com/emr/
https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html
https://docs.aws.amazon.com/redshift/latest/dg/c-using-spectrum.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-access-logs.html

Prebid Server Deployment on AWS Implementation Guide

• Each log stream is saved in a unique directory named according to its container identifier in ECS.

To learn more about these logs, see the the section called “Prebid Server operation and metrics
logs” section.

DataSync metrics bucket

• Contains metric streams for Prebid Server transactions running in the ECS cluster.

• Each metric stream is saved in a unique directory named according to its container identifier in
ECS.

To learn more about these logs, see the the section called “Prebid Server operation and metrics
logs” section.

Prebid Server containers in Amazon ECS send log information to CloudWatch Logs. These logs can
be found within the AWS::Logs::LogGroup resource shown in the CloudFormation stack. The
log group includes output from the commands specified in the Dockerfile that is used to assemble
Prebid Server containers. Since the Prebid Server process redirects both stdout and stderr to
EFS, the CloudWatch logs will be empty unless ECS encountered a problem running the Prebid
Server process.

Prebid Server operation and metrics logs

This solution uses EFS to store logs from every Prebid Server task running in ECS. Each task
writes runtime logs to /mnt/efs/logs/<CONTAINER_ID>and metrics logs to /mnt/efs/
metrics/<CONTAINER_ID>. The container identifier in the path ensures that each Prebid Server
instance stores logs without interfering with the logs from other instances.

The logging policy for the prebid process is defined in the prebid-logging.xml file. It includes the
following customizations:

• Info level logging of stdout/stderr output.

• Rolling policy to archive logs when they exceed 100 MB or at a predetermined frequency of once
per hour.

• Asynchronous logging to minimize the computational overhead of logging. For more
information, see Benchmarking synchronous and asynchronous logging.

Prebid Server operation and metrics logs 21

https://logback.qos.ch/performance.html

Prebid Server Deployment on AWS Implementation Guide

The log files are archived periodically (every 60 minutes) and moved to the corresponding
archive folders /mnt/efs/logs/<CONTAINER_ID>/archived and /mnt/efs/
metrics/<CONTAINER_ID>/archived.

DataSync moves the archived log files from EFS to S3 every 60 minutes. Runtime logs are saved
to s3://<STACK_NAME>-datasynclogsbucket-<RANDOM_STRING>/<CONTAINER_ID>/
archived. Metrics logs are saved to s3://<STACK_NAME>-
datasyncmetricsbucket-<RANDOM_STRING>/<CONTAINER_ID>/archived.

If you need to access the Prebid Server logs before they are copied by AWS DataSync, then mount
the EFS filesystem directly using the procedure described in the section called “Accessing Prebid
Server logs from EFS”.

AWS services in this solution

AWS service Description

Amazon CloudFront Core. Serve client requests to Prebid Server
application.

AWS DataSync Core. Automate transfer of Prebid Server
application logs and metrics from Amazon EFS
to Amazon S3.

Amazon ECS Core. Host and manage containerized Prebid
Server application.

Amazon EFS Core. Centralize storage of Prebid Server
application logs and metrics across containers.

Elastic Load Balancing Core. Provide high availability and automate
scaling of Prebid Server application containers
hosted on Amazon ECS.

Amazon EventBridge Core. Send and receive messages between
solution resources handling Prebid Server
application metrics and logs.

AWS services in this solution 22

https://aws.amazon.com/cloudfront/?gclid=Cj0KCQiA2KitBhCIARIsAPPMEhIQmTlbutSikh-8dgCIRLQpcTQ5eZYsKjhudJKdAZvyefFAM7_YPbsaAg2dEALw_wcB&trk=16a2aedd-176e-4181-8eb7-130b80669e78&sc_channel=ps&ef_id=Cj0KCQiA2KitBhCIARIsAPPMEhIQmTlbutSikh-8dgCIRLQpcTQ5eZYsKjhudJKdAZvyefFAM7_YPbsaAg2dEALw_wcB:G:s&s_kwcid=AL!4422!3!651784491298!p!!g!!cdn!19852661717!145019254257
https://aws.amazon.com/datasync/
https://aws.amazon.com/pm/ecs/?gclid=Cj0KCQiA2KitBhCIARIsAPPMEhJrBRLwaqcwvIdvdIMqHcW4ZLPujqaLGyaNFy-LFSKzVPy_k3i1yHwaAhcBEALw_wcB&trk=10f8fde9-cf6b-402f-9bbf-ec35f2ed0cfa&sc_channel=ps&ef_id=Cj0KCQiA2KitBhCIARIsAPPMEhJrBRLwaqcwvIdvdIMqHcW4ZLPujqaLGyaNFy-LFSKzVPy_k3i1yHwaAhcBEALw_wcB:G:s&s_kwcid=AL!4422!3!651751059567!e!!g!!amazon%20elastic%20container%20service!19852662185!145019193337
https://aws.amazon.com/efs/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/eventbridge/

Prebid Server Deployment on AWS Implementation Guide

AWS service Description

AWS Glue Core. Transform, catalog, and partition
metrics data into Amazon S3 and AWS Glue
Data Catalog.

AWS Identity and Access Management (IAM) Core. Restricts solution resource permissions
to least privilege access for security.

AWS KMS Core. Encrypt and decrypt the data in Amazon
S3.

AWS Lambda Core. Facilitate deployment and deletion of
the solution through Lambda-backed custom
resources, cleaning archived log and metrics
files from Amazon EFS after being moved
to Amazon S3 for long term storage, and
triggering AWS Glue.

Amazon S3 Core. Provide long term storage of Prebid
Server application logs and metrics from
Amazon EFS.

AWS Systems Manager Core. Provide application-level resource
monitoring and visualization of resource
operations and cost data.

Amazon VPC Core. Control network permissions between
solution resources.

AWS WAF Core. Provide layer of security around Amazon
CloudFront.

AWS CloudTrail Supporting. Track activity across solution S3
buckets and Lambda functions.

Amazon CloudWatch Supporting. View logs and subscribe to
alarms for AWS Lambda and AWS Glue.

AWS services in this solution 23

https://aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://docs.aws.amazon.com/glue/latest/dg/catalog-and-crawler.html
https://aws.amazon.com/iam/
https://aws.amazon.com/kms/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources-lambda.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-custom-resources-lambda.html
https://aws.amazon.com/s3/
https://aws.amazon.com/systems-manager/
https://aws.amazon.com/vpc/
https://aws.amazon.com/waf/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudwatch/

Prebid Server Deployment on AWS Implementation Guide

AWS service Description

Amazon Athena Optional. Access AWS Glue Data Catalog and
query the Prebid Server application metrics in
Amazon S3.

AWS services in this solution 24

https://aws.amazon.com/athena/

Prebid Server Deployment on AWS Implementation Guide

Plan your deployment

This section describes the cost, configurations for ECS Auto Scaling, security, Region, and quota
considerations for planning your deployment.

Cost

You are responsible for the cost of the AWS services used while running this solution. As of this
revision, the cost for running this solution with the default settings with no traffic made to the
solution in the US East (N. Virginia) Region is approximately $756.00 a month.

We recommend creating a budget through AWS Cost Explorer to help manage costs. Prices are
subject to change. For full details, see the pricing webpage for each AWS service used in this
solution.

Note

If you want to opt out of using CloudFront and AWS WAF and directly send requests to the
ALB, see the section called “Opt out”.

Cost tables

The total cost of this solution consists of two parts, a cost for deploying the solution without
making requests to the Prebid Server cluster and a cost for the traffic made to Prebid Server.

The cost breakdowns are assumed to have three impressions per HTTP request. Fargate Spot
instances allows customers to run interrupt-tolerant Amazon ECS tasks on spare capacity at up to a
70% discount off the regular Fargate instance price.

Costs from fixed load testing

The following table provides a sample cost breakdown per month for deploying this solution with
the default parameters in the US East (N. Virginia) Region, with no traffic to the solution.

Cost 25

https://docs.aws.amazon.com/cost-management/latest/userguide/budgets-create.html

Prebid Server Deployment on AWS Implementation Guide

AWS service Dimensions Monthly cost [USD]

Amazon ECS Operating system (Linux),
CPU architecture (x86),
Average duration (30 days),
Number of tasks or pods
(10 per month), Amount of
memory allocated (4 GB),
Amount of ephemeral storage
allocated for Amazon ECS (20
GB)

$280.00

AWS WAF Number of Web Access
Control Lists (Web ACLs)
utilized (1 per month),
Number of Managed Rule
Groups per Web ACL (12 per
month)

$17.00

Elastic Load Balancing Number of Application Load
Balancers (1)

$17.00

Amazon EC2 - other Number of NAT gateways (2)
DT inbound: Not selected (0
TB per month), DT outbound:
Internet (<50 GB per month),
DT Intra-Region: (0 TB per
month)

$67.00

Amazon EFS Desired storage capacity (1 TB
per month), Infrequent access
requests (<2 GB per month)

$125.00

Amazon S3 S3 Standard storage $38.00

Amazon CloudWatch Number of Standard
Resolution Alarm Metrics (20),

$73.00

Sample cost from distributed load tests 26

Prebid Server Deployment on AWS Implementation Guide

AWS service Dimensions Monthly cost [USD]

Standard logs: Data ingested
(<20 GB)

AWS Glue Data Processing Unit-Hour
for AWS Glue ETL job, approx.
200 DPU-Hour

$92.00

Other servicess Amazon CloudFront, AWS
CloudTrail DataSync, IAM,
AWS KMS, AWS Lambda, and
Amazon VPC

$47.00

Total: $756.00

The following table provides a breakdown of total cost for approximately 1,500 banner ad
impressions per second, per month, which is almost 4 billion impressions per month.

AWS service Dimensions Monthly Cost [USD]

Amazon CloudFront Data transfer out to origin
(1.5 TB per month), Data
transfer out to internet (.75
TB per month), Number of
requests (HTTPS) (1.3 billion
per month)

$1,392.00

Amazon ECS Operating system (Linux),
CPU architecture (x86),
Average duration (30 days),
Number of tasks or pods
(10 per month), Amount of
memory allocated (4 GB),
Amount of ephemeral storage
allocated for Amazon ECS (20
GB)

$273.00 (Fargate Spot Pricing
with 1:1 ratio)

Sample cost from distributed load tests 27

Prebid Server Deployment on AWS Implementation Guide

AWS service Dimensions Monthly Cost [USD]

AWS WAF Number of Web Access
Control Lists (Web ACLs)
utilized (1 per month),
Number of Managed Rule
Groups per Web ACL (12 per
month)

$211.00

Elastic Load Balancing Number of Application Load
Balancers (1)

$133.00

Amazon EC2 - other Number of NAT Gateways (2)
DT inbound: Not selected (0
TB per month), DT outbound:
Internet (150 GB per month),
DT Intra-Region: (0 TB per
month), Data transfer cost
(13.5)

$133.00

Amazon EFS Desired storage capacity (1 TB
per month), Infrequent access
requests (2 GB per month)

$96.00

Amazon S3 S3 Standard storage (2.5 TB
per month)

$59.00

Amazon CloudWatch Number of Standard
Resolution Alarm Metrics (20),
Standard logs: Data ingested
(41 GB)

$23.00

AWS Glue Data processing unit-hour for
AWS Glue ETL job, approx.
200 DPU-hour

$92.00

Total: $2,412.00

Sample cost from distributed load tests 28

Prebid Server Deployment on AWS Implementation Guide

Sample costs from AWS Pricing Calculator

The following table provides a breakdown of total cost for approximately 9,000 banner ad
impressions per second per month, which is just over 23 billion impressions per month.

AWS service Dimensions Monthly cost [USD]

Amazon CloudFront Data transfer out to origin
(30 TB per month), Data
transfer out to internet (5
TB per month), Number of
requests (HTTPS) (7.8 billion
per month)

$8,416.00

Amazon ECS Operating system (Linux),
CPU architecture (x86),
Average duration (30 days),
Number of tasks or pods
(300 per month), Amount
of memory allocated (4 GB),
Amount of ephemeral storage
allocated for Amazon ECS (20
GB)

$2,727.00 (Fargate Spot
Pricing with 1:1 ratio)

AWS WAF Number of Web Access
Control Lists (Web ACLs)
utilized (1 per month),
Number of Managed Rule
Groups per Web ACL (12 per
month)

$1,217.00

Elastic Load Balancing Number of Application Load
Balancers (1)

$717.00

Amazon EC2 - other Number of NAT Gateways (2)
DT inbound: Not selected (0
TB per month), DT outbound:
Internet (150 GB per month),

$448.00

Sample costs from AWS Pricing Calculator 29

Prebid Server Deployment on AWS Implementation Guide

AWS service Dimensions Monthly cost [USD]

DT Intra-Region: (0 TB per
month), Data transfer cost
(13.5)

Amazon EFS Desired Storage Capacity (1
TB per month), Infrequen
t access requests (5 GB per
month)

$96.00

Amazon S3 S3 Standard storage (5 TB per
month)

$118.00

Amazon CloudWatch Number of Standard
Resolution Alarm Metrics (20),
Standard logs: Data ingested
(41 GB)

$23.00

AWS Glue Data processing unit-hour for
AWS Glue ETL job, approx.
200 DPU-hour

$92.00

Total: $13,854.00

Configurations for Elastic Container Service (ECS) Auto Scaling

The recommended configurations for the deployed solution’s automatic scaling are dependent on
the approximate maximum requests per second (RPS) and maximum number of users the solution
is expected to support.

In this context, RPS means HTTP or HTTPS requests per second. A single request can contain
multiple bid requests that can result in multiple bid responses inside the HTTP response. The
request and response might both contain a payload. The average response time refers to the
amount of time it takes to receive winning bids, measured in seconds, and the timer starts when
the requests for advertisement bids are sent out and stops when the winning bids are received.

The recommendations in this section were determined via load testing with Distributed Load
Testing on AWS. In the load tests, 10,000 users with 16.7 new users being added per second were

Configurations for Elastic Container Service (ECS) Auto Scaling 30

https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/

Prebid Server Deployment on AWS Implementation Guide

spawned across us-east-1, us-west-1, us-east-2, and us-west-2 Regions to generate traffic to the
Prebid server cluster.

In the context of load testing, a user continuously makes an auction request to the auction API.
80% of the total RPS are auction API requests. The user infrequently sends requests to the non-
auction APIs. This includes information and status check requests. The approximate average
payload sizes for an API request and response is 123 KB and 331 KB respectively.

The statistics in the tables below were calculated by the data collected from us-east-1, us-west-1,
us-east-2, and us-west-2 Regions.

Static cluster size configurations

The following table lists the recommended static cluster sizes and their associated maximum stable
RPS limits, average response time, and success rate if ECS Auto Scaling is turned off.

ECS number of tasks
with no Auto Scaling

Transactions per
second

Average response
time in seconds

Success rate

1 800.79 9.56630 87.70%

10 4145.95 1.84996 97.38%

25 11074.86 0.69569 98.93%

50 75912 0.35765 99.60%

100 75411 0.17981 99.89%

200 64621.02 0.13120 99.86%

400 128793.61 0.07452 99.97%

Significant latency and failed requests were observed when the traffic was exceeded for each
number of tasks tested. Further increases to the number of tasks were able to handle the 10,000-
user test load with better success rate, average response time, and RPS.

Static cluster size configurations 31

Prebid Server Deployment on AWS Implementation Guide

Auto Scaling cluster configurations

Turning on Auto Scaling in ECS increases the performance of the solution’s maximum RPS. The
following recommended ECS Auto Scaling policies and parameters were used in the load tests.

Parameters:

• Minimum number of tasks: 10

• Maximum number of tasks: 100

Policies:

• ALBRequestCountPerTarget

• Target value: 5000

• Scale-out cooldown period: 300

• Scale-in cooldown period: 300

• ECSServiceAverageCPUUtilization

• Target value: 66%

• Scale-out cooldown period: 300

• Scale-in cooldown period: 300

• ECSServiceAverageMemoryUtilization

• Target value: 50%

• Scale-out cooldown period: 300

• Scale-in cooldown period: 300

The following table lists the auto-scaling policies and their associated maximum stable RPS limits,
average response time, and success rate.

Auto Scaling cluster configurations 32

Prebid Server Deployment on AWS Implementation Guide

Auto-scaling
policies

Min number
of tasks
scaled

Max number
of tasks
scaled

Transactions
per second

Average
response
time in
seconds

Success rate

ALBReques
tCountPer
Target (ALB)

10 100 17367.6 0.44486 99.51%

ECSServic
eAverageC
PUUtilization
(CPU)

10 13 4708.65 1.85956 96.41%

ECSServic
eAverageM
emoryUtil
ization
(Mem)

10 12 5820.56 1.31274 98.59%

ALB & CPU 10 100 14948.84 0.51504 99.48%

ALB & Mem 10 100 15208.86 0.50105 99.50%

CPU & Mem 10 13 4747.65 1.60875 97.08%

ALB & CPU &
Mem

10 100 16211.21 0.49361 99.42%

The ALBRequestCountPerTarget policy is the most important auto-scaling policy and plays the
biggest influence on the performance. However, we recommend that you use all three of the Auto
Scaling policies above. Removing them will decrease the maximum RPS and increase response time
because then the containers are more prone to becoming overloaded. The policies also make the
deployed solution more resilient to cases where there is a burst of users.

The maximum number of tasks and minimum number of tasks can be adjusted depending on the
solution’s usage. We recommend to at least have 50 tasks and have Auto Scaling turned on for the
deployed solution to reduce response times and the chance of errors occurring.

Auto Scaling cluster configurations 33

Prebid Server Deployment on AWS Implementation Guide

Fargate Spot instances ratio configurations

We recommend that you keep the solution’s default 50:50 ratio of the Fargate Spot instances to
Fargate instances at least. This is because during testing, the Fargate instances were found to help
the system scale and react more quickly to user traffic and support higher RPS more quickly with
higher success rate.

The following table lists the Fargate Spot instances ratio and their associated maximum stable RPS
limits, average response time, and success rate.

Fargate: Fargate
Spot

Transactions per
second

Average response
time in seconds

Success rate

50:50 17789.75 0.43171 99.60%

100:0 134244.83 0.07305 100%

Example cluster size, Auto-scaling policy, and Fargate Spot instances
ratio configurations

You can use the following specifications for Prebid Server, based upon the testing conducted in this
document.

Parameters:

• Minimum number of tasks: 50

• Maximum number of tasks: 400

Policies:

• ALBRequestCountPerTarget

• Target value: 5000

• Scale-out cooldown period: 300

• Scale-in cooldown period: 300

• ECSServiceAverageCPUUtilization

Fargate Spot instances ratio configurations 34

Prebid Server Deployment on AWS Implementation Guide

• Target value: 66%

• Scale-out cooldown period: 300

• Scale-in cooldown period: 300

• ECSServiceAverageMemoryUtilization

• Target value: 50%

• Scale-out cooldown period: 300

• Scale-in cooldown period: 300

Fargate Spot instances ratio:

• Fargate instances: 80

• Fargate Spot instances: 20

The metrics achieved in testing with the above configurations are in the following table.

Results from recommended configurations

Maximum transaction per second 190881.19

Average response time in seconds 0.05533

Success rate 100%

Security

When you build systems on AWS infrastructure, security responsibilities are shared between you
and AWS. This shared responsibility model reduces your operational burden because AWS operates,
manages, and controls the components including the host operating system, the virtualization
layer, and the physical security of the facilities in which the services operate. For more information
about AWS security, visit AWS Cloud Security.

Security 35

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/security/

Prebid Server Deployment on AWS Implementation Guide

IAM roles

AWS Identity and Access Management (IAM) roles allow customers to assign granular access
policies and permissions to services and users on the AWS Cloud. This solution creates IAM roles
and policies with minimal permission that grant access to the solution’s resources.

Amazon CloudFront

This solution deploys an Amazon CloudFront distribution and uses the default CloudFront domain
name and SSL certificate. The default CloudFront SSL certificate only supports TLSv1. To use a
later TLS version (TLS1.2 and above), use your own domain name and custom SSL certificate. For
more information, refer to Using alternate domain names and HTTPS in the Amazon CloudFront
Developer Guide.

The Amazon CloudFront distribution is the unified network entry point. It helps to reduce latency
by delivering data through globally dispersed points of presence (PoPs) with automated network
mapping and intelligent routing. The inbound traffic to the CloudFront can be either HTTP or
HTTPS for compatibility with various clients. As the Prebid Server hosted by ECS only supports
HTTP, HTTPS proxy design is used in this solution to improve security. The CloudFront distribution
acts as a TLS proxy, where APIs can be delivered over HTTPS using the latest version Transport
Layer Security (TLSv1.3) to encrypt and secure communication between viewer clients and the
CloudFront.

Application Load Balancer (ALB)

ALB distributes incoming request traffic for Prebid Server through the cluster of containers.
ALB provides a single entry point into the cluster, and it is the primary origin for the CloudFront
distribution. CloudFront and the ALB use a shared secret header to prevent external traffic from
bypassing the CloudFront distribution and accessing ALB directly. For more information, see
Restricting access to Application Load Balancers in the Amazon CloudFront Developer Guide.

Amazon VPC

Amazon VPC is configured with multiple subnets, routes, security groups, and NAT gateways.
Security groups permit traffic to and from the subnets. The VPC contains the network interfaces
for the Prebid Server cluster nodes. ALB has an interface in each private subnet of the VPC. Each
container instance (or node) has an interface in its private subnet of the VPC. The actual number
of interfaces varies based on the number of containers running. The VPC is configured for private

IAM roles 36

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-https-alternate-domain-names.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/restrict-access-to-load-balancer.html

Prebid Server Deployment on AWS Implementation Guide

IP addresses only, and container networks configured within the VPC use the NAT gateway as a
default route to the internet for communication.

AWS Fargate

This solution uses Amazon ECS to containerize the Prebid Server. The container runs the open
source Prebid Server and is hosted by the Elastic Container Repository for AWS Solutions. A custom
build is applied to the open source project’s default container in configuration settings for areas
including file output and bidder adapter. For details of the patches, refer to the section called
“Patches to Prebid Server” in the Developer Guide section. To see how the ECS containers are
constructed, refer to the Dockerfile. If you need to access these containers while they are running in
Fargate, see Using Amazon ECS Exec to access your containers on AWS Fargate and Amazon EC2 on
the AWS Blog.

Security groups

This solution creates an Amazon EC2 security group within an Amazon VPC and associates it with
ALB to act as a virtual firewall for the EC2 instances to control incoming and outgoing traffic. A
rule with prefix list is added to the security group that allows ingress only from the CloudFront
distribution.

AWS WAF

This solution deploys AWS WAF and Shield Standard as a protection mechanism from DDoS attacks
against the Prebid Server cluster. One or more managed rule groups can be activated in AWS WAF
by default after extended testing including rules in the Baseline Rule Group and the IP Reputation
Rule Group. AWS WAF allows the securement of web applications’ API from attacks before reaching
to the servers. The customer has the option to activate, purchase, or use existing rule subscriptions,
or add regular expression or CIDR matching rules as needed.

Customer managed AWS KMS keys

AWS Key Management Service (KMS) lets customers create and manage cryptographic keys to
activate server-side encryption. This solution creates six KMS keys and uses them in the S3 buckets
storing artifacts, CloudFront access log data, CloudTrail events, DataSync log and metric files, and
metadata of AWS AWS Glue Data Catalog to secure data at rest.

AWS Fargate 37

https://github.com/aws-solutions/aws-solution-for-prebid-server/blob/main/deployment/ecr/prebid-server/Dockerfile
https://aws.amazon.com/blogs/containers/new-using-amazon-ecs-exec-access-your-containers-fargate-ec2/

Prebid Server Deployment on AWS Implementation Guide

Audit trails

CloudTrail is configured in this solution for auditing API calls against resources and used for
problem analysis and remediation. CloudWatch alarms are used by compute resources for software
failures. All compute resources send logging output to CloudWatch logs. CloudFront standard logs
are configured to create log files that contain information about the user requests initiated to the
solution’s CloudFront distribution.

Supported AWS Regions

Prebid Server on AWS is supported in the following AWS Regions:

Region name

US East (Ohio) Asia Pacific (Tokyo)

US East (N. Virginia) Canada (Central)

US West (Northern California) Europe (Frankfurt)

US West (Oregon) Europe (Ireland)

Asia Pacific (Mumbai) Europe (London)

Asia Pacific (Osaka) Europe (Paris)

Asia Pacific (Seoul) Europe (Stockholm)

Asia Pacific (Singapore) South America (São Paul)

Asia Pacific (Sydney)

Quotas

Service quotas, also referred to as limits, are the maximum number of service resources or
operations for your AWS account.

Audit trails 38

Prebid Server Deployment on AWS Implementation Guide

Quotas for AWS services in this solution

Make sure you have sufficient quota for each of the services implemented in this solution. For more
information, see AWS service quotas.

Use the following links to go to the page for that service. To view the service quotas for all AWS
services in the documentation without switching pages, view the information in the Service
endpoints and quotas page in the PDF instead.

AWS CloudFormation quotas

Your AWS account has AWS CloudFormation quotas that you should be aware of when launching
the stack in this solution. By understanding these quotas, you can avoid limitation errors that
would prevent you from deploying this solution successfully. For more information, see AWS
CloudFormation quotas in the in the AWS CloudFormation User’s Guide.

Quotas for AWS services in this solution 39

https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/general/latest/gr/aws-general.pdf#aws-service-information
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cloudformation-limits.html

Prebid Server Deployment on AWS Implementation Guide

Deploy the solution

This solution uses AWS CloudFormation templates and stacks to automate its deployment.
The CloudFormation template specifies the AWS resources included in this solution and their
properties. The CloudFormation stack provisions the resources that are described in the template.

Important

This solution includes an option to send anonymized operational metrics to AWS. We use
this data to better understand how customers use this solution and related services and
products. AWS owns the data gathered though this survey. Data collection is subject to the
AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation
mapping section, and then use the AWS CloudFormation console to upload your updated
template and deploy the solution. For more information, see the the section called
“Anonymized data collection” section of this guide.

Prerequisites

You need an AWS account with permissions to deploy CloudFormation templates and all the
resources defined within the template for this solution. The AdministratorAccess IAM policy,
which provides full access to AWS services and resources is sufficient to deploy this solution.

Deployment process overview

Follow the step-by-step instructions in this section to configure and deploy the solution into your
account.

Before you launch the solution, review the cost, architecture, network security, and other
considerations discussed earlier in this guide.

Time to deploy: Approximately 10 minutes

AWS CloudFormation template

You can download the CloudFormation template for this solution before deploying it.

Prerequisties 40

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-whatis-concepts.html
https://aws.amazon.com/privacy/

Prebid Server Deployment on AWS Implementation Guide

prebid-server-deployment-on-aws.template - Use this template to launch the solution and all
associated components. The default configuration deploys the core and supporting services found
in the AWS services in this solution section, but you can customize the template to meet your
specific needs.

Launch the stack

Follow the step-by-step instructions in this section to configure and deploy the solution into your
account.

Time to deploy: Approximately 10 minutes

1. Sign in to the AWS Management Console and select the button to launch the prebid-server-
deployment-on-aws.template AWS CloudFormation template.

2. The template launches in the US East (N. Virginia) Region by default. To launch the solution in a
different AWS Region, use the Region selector in the console navigation bar.

3. On the Create stack page, verify that the correct template URL is in the Amazon S3 URL text
box and choose Next.

4. On the Specify stack details page, assign a name to your solution stack. The chosen name must
be all lowercase or the stack will fail to deploy when creating certain resources. For information
about naming character limitations, see IAM and STS Limits in the AWS Identity and Access
Management User Guide.

5. Choose Next.

6. On the Configure stack options page, choose Next after reviewing the settings.

7. On the Review and create page, review and confirm the settings. Check the box acknowledging
that the template will create AWS Identity and Access Management (IAM) resources.

8. Choose Submit to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the Status column.
You should receive a CREATE_COMPLETE status in approximately 10 minutes.

Launch the stack 41

https://solutions-reference.s3.amazonaws.com/prebid-server-deployment-on-aws/latest/prebid-server-deployment-on-aws.template
https://aws.amazon.com/console/
https://console.aws.amazon.com/cloudformation/home?region=us-east-1#/stacks/new?templateURL=https://solutions-reference.s3.amazonaws.com/prebid-server-deployment-on-aws/latest/prebid-server-deployment-on-aws.template
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_iam-limits.html

Prebid Server Deployment on AWS Implementation Guide

Tune the solution

CloudFront distribution domain name

The CloudFront distribution in this solution uses the default CloudFront domain name
(xxxxxxxxxxxxxx.cloudfront.net) and certificate (*.cloudfront.net). To use a custom
domain name and HTTPS between viewers and CloudFront, see Configuring alternate domain
names and HTTPS in the Amazon CloudFront Developer Guide after stack deployment.

Guidance on how to implement/enable TLS between
CloudFront and ALB

You can configure your CloudFront distribution to always use HTTPS when sending requests to
your Application Load Balancer. Remember, this only works if you keep the custom header name
and value secret. Using HTTPS can help prevent an eavesdropper from discovering the header
name and value. We also recommend rotating the header name and value periodically.

Use HTTPS for origin requests

To configure CloudFront to use HTTPS for origin requests, set the origin protocol policy setting
to HTTPS Only. This setting is available in the CloudFront console, AWS CloudFormation, and the
CloudFront API. For more information, see Protocol (custom origins only) in the Amazon CloudFront
Developer Guide.

The following also applies when you configure CloudFront to use HTTPS for origin requests:

• You must configure CloudFront to forward the host header to the origin with the managed origin
request policy. For details, see AllViewer managed origin request policy.

• Make sure that your Application Load Balancer has an HTTPS listener. For more information, see
Create an HTTPS listener for your Application Load Balancer in Elastic Load Balancing. Using an
HTTPS listener requires you to have an SSL/TLS certificate that matches the domain name that's
routed to your ALB.

• SSL/TLS certificates for CloudFront can only be requested (or imported) in the us-east-1 Region
in AWS Certificate Manager (ACM). Because CloudFront is a global service, it automatically
distributes the certificate from the us-east-1 Region to all Regions associated with your
CloudFront distribution.

CloudFront distribution domain name 42

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-and-https-procedures.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-and-https-procedures.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesOriginProtocolPolicy
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/using-managed-origin-request-policies.html#managed-origin-request-policy-all-viewer
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/restrict-access-to-load-balancer.html#restrict-alb-route-based-on-header
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html

Prebid Server Deployment on AWS Implementation Guide

• For example, if you have an ALB in the ap-southeast-2 Region, you must configure SSL/TLS
certificates in both the ap-southeast-2 Region (for using HTTPS between CloudFront and ALB
origin) and the us-east-1 Region (for using HTTPS between viewers and CloudFront). Both
certificates should match the domain name that is routed to your Application Load Balancer.
For more information, see AWS Region for AWS Certificate Manager in the Amazon CloudFront
Developer Guide.

• If the end users of your web application can use HTTPS, you can also configure CloudFront
to prefer (or even require) HTTPS connections from the end users. To do this, use the Viewer
Protocol Policy setting. You can set it to redirect end users from HTTP to HTTPS, or to reject
requests that use HTTP. This setting is available in the CloudFront console, AWS CloudFormation,
and the CloudFront API. For more information, see Viewer protocol policy in the Amazon
CloudFront Developer Guide.

Opt out of using CloudFront and AWS WAF

CloudFront helps reduce latency by delivering data through globally dispersed Points of Presence
(PoPs) with automated network mapping and intelligent routing. It cuts costs with consolidated
requests, customizable pricing options, and zero fees for data transfer out from AWS origins.
CloudFront can cache objects and serve them directly to users (viewers), reducing the load on your
Application Load Balancer.

AWS WAF provides additional security by preventing distributed denial of service (DDoS) and
helps more easily monitor, block, or rate-limit common and pervasive bots. It improves web traffic
visibility with granular control over how metrics are emitted.

For users who decide to opt of using CloudFront and AWS WAF included with the stack installation,
consider the following:

• The ALB is configured to forward requests that contain a custom secret header value to enhance
security. CloudFront automatically adds this custom HTTP header to the requests. Without
CloudFront, other clients must include this secret header in their requests they send directly to
the ALB. This secret value is unique and is generated at the time of deploying the stack. Access
the secret value from the CloudFormation console, on the Outputs tab, from the value for
Prebid-CloudFrontHeaderSecretValue.

• In this solution, CloudFront is also used for SSL/TLS termination. We highly recommend that you
use HTTPS if you are opting out of using CloudFront and directly sending requests to your ALB

Opt out 43

https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/cnames-and-https-requirements.html#https-requirements-aws-region
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/distribution-web-values-specify.html#DownloadDistValuesViewerProtocolPolicy

Prebid Server Deployment on AWS Implementation Guide

without using another CDN. For details, see Create an HTTPS listener for your Application Load
Balancer in the Application Load Balancers guide.

• You must deploy at least one SSL server certificate on your ALB. It uses a server certificate
to terminate the frontend connection and then decrypt requests from clients before sending
them to the targets. You must also specify a security policy, which is used to negotiate secure
connections between clients and the ALB. Using HTTPS helps prevent any eavesdroppers from
discovering the secret header name and value. Users can also rotate the secret header name
and value periodically. Alternatively, you can Create an HTTP listener for your Application Load
Balancer.

Firewall rules

This solution uses AWS WAF as a protection mechanism from DDoS attacks against the Prebid
Server cluster. The web access control list (web ACL) gives customers fine-grained control over
the web requests that the Amazon CloudFront distribution responds to. This solution adds
AWS Managed Rules in the web ACL but users must add more web ACLs according to their
own environment, such as a referrer rule to reject requests when referrer headers don’t match
supported websites. For more information, see AWS WAF rules in the AWS WAF, Firewall Manager,
and AWS Shield Advanced Developer Guide.

To add new rules, open the web ACL corresponding to the PrebidWAFWebACL resource listed in
the CloudFormation stack outputs. For more information, see Web access control lists (web ACLs) in
the AWS WAF, Firewall Manager, and AWS Shield Advanced Developer Guide.

Container tuning

The performance and cost of running this solution are dominated by utilization of the ECS cluster.
The largest user-configurable factors that users can customize to affect performance, cost, and
efficiency are ECS Service Auto Scaling, min and max container size, and Fargate / Fargate Spot
capacity providers. For the effect of ECS service configuration on performance and cost, refer to
the Cost and Configurations for Elastic Container Service (ECS) Auto Scaling sections in this guide.

This solution has Service Auto Scaling in place to add or remove service tasks based on metric and
target value. For more information about automatic scaling in ECS, refer to Automatically scale
your Amazon ECS service and Scale your Amazon ECS service using a target metric value in the
Amazon ECS Developer Guide.

Firewall rules 44

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-https-listener.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-listener.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/create-listener.html
https://docs.aws.amazon.com/waf/latest/developerguide/waf-rules.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/service-autoscaling-targettracking.html

Prebid Server Deployment on AWS Implementation Guide

This solution uses a weighted combination of Fargate and Fargate Spot instances with defaults
to 50/50. For information about Fargate Spot tasks. see AWS Fargate capacity providers in the
Amazon ECS Developer Guide and Deep dive into Fargate Spot to run your ECS Tasks for up to 70%
less on the AWS Blog. You can perform the procedures in Updating a service using the console in
the Amazon ECS Developer Guide, to edit Service Auto Scaling policies, Fargate Spot instances ratio.
To adjust how much CPU and memory to use with each task, see Updating the task definition using
the console in the Amazon ECS Developer Guide. Also, see Amazon ECS task definitions.

Container tuning 45

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/fargate-capacity-providers.html
https://aws.amazon.com/blogs/compute/deep-dive-into-fargate-spot-to-run-your-ecs-tasks-for-up-to-70-less/
https://aws.amazon.com/blogs/compute/deep-dive-into-fargate-spot-to-run-your-ecs-tasks-for-up-to-70-less/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service-console-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/update-task-definition-console-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/userguide/update-task-definition-console-v2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html

Prebid Server Deployment on AWS Implementation Guide

Monitor the solution

This solution defines several CloudWatch alarms to monitor its health and performance. Each
alarm has a fixed threshold or an anomaly-based threshold that causes state to transit between OK
and ALARM. Review the full list of alarms with details in the Amazon CloudWatch Alarms section.
You can view the alarms in the Amazon CloudWatch console and configure alarm notifications
as needed after stack deployment. For general information about CloudWatch alarms and alarm
actions, see Using Amazon CloudWatch alarms in the Amazon CloudWatch User Guide.

All compute resources in this solution send log information to CloudWatch Logs. These logs are
available in CloudWatch for querying and searching in real time. This solution uses CloudTrail to
track S3 and Lambda API activities with data events. The CloudTrail log files are stored in an S3
bucket, and the event history can be viewed in CloudTrail.

CloudFront access logs are configured to create log files containing information about user
requests initiated to the solution’s CloudFront distribution. To analyze the access logs in Amazon
Athena, see Querying Amazon CloudFront logs in the Amazon Athena User Guide.

Prebid Server tasks running in the ECS cluster output the runtime logs into the mounted Amazon
Elastic File System which is shared across containers, and store the log data long-term in S3. For
more information about Prebid Server logs, see the Logging section.

You can monitor how the ECS resources in this solution are performing using the cluster and
service metrics that are available in the Amazon ECS console. To view these metrics, follow the
steps in Viewing Amazon ECS metrics in the Amazon ECS Developer Guide.

This solution associates a web ACL with the CloudFront distribution to prevent DDoS attacks
against the Prebid Server cluster. Users can access near real-time summaries of the traffic that the
web ACL evaluates in the web ACL’s Traffic overview tab on the AWS WAF console. For details,
see Web ACL traffic overview dashboards in the AWS WAF, AWS Firewall Manager, and AWS Shield
Advanced Developer Guide.

For application-level monitoring of resources operation and cost, refer to the Monitor the solution
with Service Catalog AppRegistry section.

46

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/AccessLogs.html
https://docs.aws.amazon.com/athena/latest/ug/cloudfront-logs.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/viewing_cloudwatch_metrics.html
https://docs.aws.amazon.com/waf/latest/developerguide/web-acl-dashboards.html

Prebid Server Deployment on AWS Implementation Guide

Monitor the solution with Service Catalog AppRegistry

The AWS Solution for Prebid Sever solution includes a Service Catalog AppRegistry resource to
register the CloudFormation template and underlying resources as an application in both Service
Catalog AppRegistry and AWS Systems Manager Application Manager.

AWS Systems Manager Application Manager gives you an application-level view into this solution
and its resources so that you can:

• Monitor its resources, costs for the deployed resources across stacks and AWS accounts, and logs
associated with this solution from a central location.

• View operations data for the resources of this solution in the context of an application. For
example, deployment status, CloudWatch alarms, resource configurations, and operational
issues.

The following figure depicts an example of the application view for the solution stack in
Application Manager.

Solution stack in Application Manager

47

https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/servicecatalog/latest/arguide/intro-app-registry.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/application-manager.html

Prebid Server Deployment on AWS Implementation Guide

Note

You must activate CloudWatch Application Insights, AWS Cost Explorer, and cost allocation
tags associated with this solution. They are not activated by default.

Activate CloudWatch Application Insights

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, search for the application name for this solution and select it.

The application name will have App Registry in the Application Source column, and will have a
combination of the solution name, Region, account ID, or stack name.

4. In the Components tree, choose the application stack you want to activate.

5. In the Monitoring tab, in Application Insights, select Auto-configure Application Insights.

Monitoring for your applications is now activated and the following status box appears:

Activate CloudWatch Application Insights 48

https://console.aws.amazon.com/systems-manager/appmanager

Prebid Server Deployment on AWS Implementation Guide

Confirm cost tags associated with the solution

After enabling Application Insights associated with the solution, you must confirm the cost
allocation tags to see the costs for this solution. To confirm cost allocation tags:

1. Sign in to the Systems Manager console.

2. In the navigation pane, choose Application Manager.

3. In Applications, choose the application name for this solution and select it.

4. In the Overview tab, in Cost, select Add user tag.

Confirm cost tags associated with the solution 49

https://console.aws.amazon.com/systems-manager

Prebid Server Deployment on AWS Implementation Guide

5. On the Add user tag page, enter confirm, then select Add user tag.

The activation process can take up to 24 hours to complete and the tag data to appear.

Activate cost allocation tags associated with the solution

After you confirm the cost tags associated with this solution, you must activate the cost allocation
tags to see the costs for this solution. The cost allocation tags can only be activated from the
management account for the organization. To activate cost allocation tags:

1. Sign in to the AWS Billing and Cost Management and Cost Management console.

2. In the navigation pane, select Cost Allocation Tags.

3. On the Cost allocation tags page, filter for the AppManagerCFNStackKey tag, then select the
tag from the results shown.

4. Choose Activate.

Activate cost allocation tags associated with the solution 50

https://console.aws.amazon.com/billing/home

Prebid Server Deployment on AWS Implementation Guide

AWS Cost Explorer

You can see the overview of the costs associated with the application and application components
within the Application Manager console through integration with AWS Cost Explorer. Cost Explorer
helps you manage costs by providing a view of your AWS resource costs and usage over time.

1. Sign in to the AWS Cost Management console.

2. In the navigation pane, select Cost Explorer to view the solution's costs and usage over time.

AWS Cost Explorer 51

https://console.aws.amazon.com/cost-management/home

Prebid Server Deployment on AWS Implementation Guide

Traffic monitoring and troubleshooting

This section provides traffic monitoring and troubleshooting instructions for deploying and using
the solution. If this information don’t help address your issue, the section called “Contact AWS
Support” provides instructions for opening an AWS Support case for this solution.

Amazon CloudWatch alarms

Amazon CloudWatch alarms monitor specific metrics in real time and proactively notify AWS
Management Console users when predefined conditions are met. This solution has several
CloudWatch alarms to help monitor its health and performance. In this section, each of the
solution’s alarms are listed with details on what metrics they track and what can invoke the alarms.

These alarms are enabled automatically when the CloudFormation stack is deployed. There are no
further actions required to review the alarms.

Note

There are no subscriptions to alarm notifications by default. Add your team’s email alias,
paging address, or connection to an operational dashboard to be notified when an alarm
changes state.

The following diagram shows the conceptual relationship between cloud resources created by this
solution and pre-configured CloudWatch monitoring alarms.

Amazon CloudWatch alarms 52

Prebid Server Deployment on AWS Implementation Guide

Overview of resources and their related CloudWatch alarms

Amazon CloudWatch alarms 53

Prebid Server Deployment on AWS Implementation Guide

Network traffic flow is monitored by ALB, CloudFront, NAT gateway, and AWS WAF alarms. ECS
alarms focus on problems related to creating new instances. EFS alarms monitor throughput
problems. Glue alarms change state on failures of the periodic AWS Glue job. The customer is
responsible for subscribing to these alarms to a notification mechanism, such as email or text
message.

AWS WAF

Blocked requests

• The alarm changes state if there is a large amount of blocked requests (greater than 75% of
requests are blocked) within 1 minute.

• This alarm indicates that there is something wrong with the requests passing through the WAF or
there could be malicious requests in the traffic.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• Metric: BlockedRequests > 75%

HTTP flood detected

• The alarm changes state if there is an HTTP flood attack detected within a 1-minute period.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• If detailed WAF logging is enabled, it will log the HTTP flood requests in the chosen destination.
A datapoint will be logged in the CloudWatch metrics for the rule.

• Metric: HttpFloodDetected > 0

Allowed requests

• The alarm changes state if there is an anomaly in traffic with a high number of allowed requests
within 1 minute.

• This alarm indicates a spike or burst in traffic.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• The alarm is an anomaly alarm and will form the threshold based on the previous history of the
metric.

AWS WAF 54

Prebid Server Deployment on AWS Implementation Guide

• Metric: AllowedRequests anomaly

CloudFront

Alarm: 5xx error rate

• The alarm changes state if there are any 500 type status codes. Reported as a percentage of total
requests within a 1-minute period.

• This indicates a server failure. Check the CloudWatch logs to get further detail on the cause of
the error.

• The alarm returns to the OK state if the error rate is within the acceptable threshold for 5
minutes.

• Metric: 5xxErrorRate > 0%

Alarm: 4xx error rate

• The alarm changes state if greater than or equal to 1% of requests are 400 type status codes.
Reported a percentage of total requests within a 1-minute period.

• This indicates a bad request or a possible configuration error. Check the CloudWatch logs to get
further detail on the cause of the error.

• The alarm returns to the OK state if the error rate is within the acceptable threshold for 5
minutes.

• Metric: 4xxErrorRate > 1%

Alarm: Requests

• The alarm changes state if there is an anomaly in traffic with a high number of requests within 1
minute.

• This indicates a spike or burst in traffic.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• The alarm is an anomaly alarm and will form the threshold based on the previous history of the
metric.

• Metric: Requests anomaly

CloudFront 55

Prebid Server Deployment on AWS Implementation Guide

Application Load Balancer (ALB)

Target HTTP 4xx error rate

• The alarm changes state if there are 400 type status codes originating from the target (ECS).
Reported as a percentage.

• This indicates a bad request or a possible configuration error. Check the CloudWatch logs to get
further detail on the cause of the error.

• The alarm returns to the OK state if the error rate is within the acceptable threshold for 5
minutes.

• Metric: HTTPCode_Target_4xxErrorRate > 1%

Target HTTP 5xx error rate

• The alarm changes state if there are 500 type status codes originating from the target (ECS).
Reported as a percentage.

• This indicates a server failure. Check the CloudWatch logs to get further detail on the cause of
the error.

• The alarm returns to the OK state if the error rate is within the acceptable threshold for 5
minutes.

• Metric: HTTPCode_Target_5xxErrorRate > 0%

ALB HTTP 4xx error rate

• The alarm changes state if there are 400 type status codes originating from ALB. Reported as a
percentage.

• This indicates a bad request or a possible configuration error. Check the CloudWatch logs to get
further detail on the cause of the error.

• The alarm returns to the OK state if the error rate is within the acceptable threshold for 5
minutes.

• Metric: HTTPCode_ELB_4xxErrorRate > 1%

Application Load Balancer (ALB) 56

Prebid Server Deployment on AWS Implementation Guide

ALB HTTP 5xx error rate

• The alarm changes state if there are 500 type status codes originating from the target ALB.
Reported as a percentage.

• This indicates a server failure. Check the CloudWatch logs to get further detail on the cause of
the error.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• Metric: HTTPCode_ELB_5xxErrorRate > 0%

Target response time (Latency)

• The alarm changes state if there is a large amount of latency (greater than 100ms) reported
within a 1-minute period.

• This could indicate a performance issue or scaling failure from ECS. Check the CloudWatch logs
to get further detail on the cause of the error.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• Metric: TargetResponseTime average > 100 ms

Unhealthy host count

• The alarm changes state if there is a target that is considered unhealthy within a 1-minute
period.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• Check the CloudWatch logs to get further detail on the cause of the error.

• Metric: UnhealthyHotCount > 0

NAT gateway

Port allocation errors

• The alarm changes state if there is a port allocation error in the NAT gateway.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

ALB HTTP 5xx error rate 57

Prebid Server Deployment on AWS Implementation Guide

• This can mean that too many concurrent connections are open through the NAT gateway and it
caused a port allocation error.

• Metric: ErrorPortAllocation > 0

Packets dropped count

• The alarm changes state if a value greater than 0.01% is reached within a 1-minute period.

• This might indicate an ongoing transient issue with the NAT gateway.

• The alarm returns to the OK state if the data is within the acceptable threshold for 5 minutes.

• If this value exceeds 0.01 percent of the total traffic on the NAT gateway, check the AWS Service
Health dashboard.

• Metric: PacketsDropCount > 0.01%

Elastic Container Service (ECS)

CPU and memory utilization

• The alarm changes state if the container CPU utilization or memory utilization exceed 70%
within 1 minute.

• Our scaling policies’ target is 50%. If these alarms change state, it means the solution’s Auto
Scaling is not working.

• You might need to check if Auto Scaling is turned on or adjust the Auto Scaling settings.

• The alarm returns to the OK state if the CPU utilization and memory utilization are within the
acceptable threshold for 5 minutes.

• Metric: CPUUtilization > 70%, MemoryUtilization > 70%

Elastic File System (EFS)

Percent of I/O utilization

• The alarm changes state if the I/O utilization is consistently equal to or greater than 100% for 1
minute, indicating the need for additional capacity.

Packets dropped count 58

Prebid Server Deployment on AWS Implementation Guide

• The alarm returns to the OK state if the I/O utilization is within the acceptable threshold for 5
minutes.

• If this metric is at 100% often, then consider moving the application to an EFS using the Max I/O
performance mode.

• Metric: PercentIOLimit > 100%

AWS Lake Formation permission errors

This solution is configured to use IAM permissions for all AWS AWS Glue Data Catalog resources. If
you had previously configured your AWS account to use Lake Formation for all new database and
tables prior to deploying the solution you might see the following error when the Metric ETL Glue
Job attempts to run for the first time:

AccessDeniedException: An error occurred (AccessDeniedException) when calling the
 GetTable operation: Insufficient Lake Formation permission(s)

To fix this error without reverting your account-wide permissions back to the default settings, you
must grant the Glue Job IAM role permission to access the solution database and table resources.

1. To grant the MetricsEtlJobRole Super permissions to all tables within the solution database,
see Granting table permissions using the named resource method in the AWS Lake Formation
Developer Guide.

2. Re-run any failed Glue jobs, making sure to pass in the --object_keys parameter with the
failed parameter values from previous runs.

Contact AWS Support

If you have AWS Developer Support, AWS Business Support, or AWS Enterprise Support, you can
use the Support Center to get expert assistance with this solution. The following sections provide
instructions.

Create case

1. Sign in to Support Center.

2. Choose Create case.

AWS Lake Formation permission errors 59

https://docs.aws.amazon.com/lake-formation/latest/dg/granting-table-permissions.html
https://aws.amazon.com/premiumsupport/plans/developers/
https://aws.amazon.com/premiumsupport/plans/business/
https://aws.amazon.com/premiumsupport/plans/enterprise/
https://support.console.aws.amazon.com/support/home#/

Prebid Server Deployment on AWS Implementation Guide

How can we help?

1. Choose Technical.

2. For Service, select Solutions.

3. For Category, select Other Solutions.

4. For Severity, select the option that best matches your use case.

5. When you enter the Service, Category, and Severity, the interface populates links to common
troubleshooting questions. If you can’t resolve your question with these links, choose Next step:
Additional information.

Additional information

1. For Subject, enter text summarizing your question or issue.

2. For Description, describe the issue in detail.

3. Choose Attach files.

4. Attach the information that AWS Support needs to process the request.

Help us resolve your case faster

1. Enter the requested information.

2. Choose Next step: Solve now or contact us.

Solve now or contact us

1. Review the Solve now solutions.

2. If you can’t resolve your issue with these solutions, choose Contact us, enter the requested
information, and choose Submit.

How can we help? 60

Prebid Server Deployment on AWS Implementation Guide

Uninstall the solution

You can uninstall the Prebid Server Deployment on AWS solution from the AWS Management
Console or by using the AWS Command Line Interface.

Using the AWS Management Console

1. Sign in to the AWS CloudFormation console.

2. On the Stacks page, select this solution’s installation stack.

3. Choose Delete.

Using AWS Command Line Interface

Determine whether the AWS Command Line Interface (AWS CLI) is available in your environment.
For installation instructions, see What Is the AWS Command Line Interface in the AWS CLI User
Guide. After confirming that the AWS CLI is available, run the following command.

$ aws cloudformation delete-stack --stack-name <installation-stack-name> --region <aws-
region>

Deleting the Amazon S3 buckets

To prevent accidental data loss, this solution is configured to retain the solution-created Amazon
S3 buckets when you delete its AWS CloudFormation stack. After uninstalling the solution, you
can manually delete the S3 buckets if you do not need to retain their data. Each stack contains the
following seven S3 buckets:

• ALBAccessLogsBucket

• ArtifactsBucket

• CloudFrontAccessLogsBucket

• DataSyncLogsBucket

• DataSyncMetricsBucket

• MetricsEtlBucket

• CloudTrailLoggingBucket

Using the AWS Management Console 61

https://console.aws.amazon.com/cloudformation/home?
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-welcome.html

Prebid Server Deployment on AWS Implementation Guide

Follow these steps to delete each Amazon S3 bucket.

1. Sign in to the Amazon S3 console.

2. Choose Buckets from the left navigation pane.

3. Locate the S3 buckets whose name begins with prefix, <stack-name>.

4. For each S3 bucket, select the bucket then choose Empty then Delete.

To delete the S3 bucket using AWS CLI, run the following command:

$ aws s3 rb s3://<bucket-name> --force

Deleting the Amazon S3 buckets 62

https://console.aws.amazon.com/s3/home

Prebid Server Deployment on AWS Implementation Guide

Use the solution

Querying metrics with Athena

Metrics collected from the Prebid Server application running on ECS are stored in the MetricsEtl
S3 bucket for querying with Athena.

This section details information on the metric definitions, Glue table schemas, and example queries
to get started.

Metric definitions

System metrics are captured using the Vert.x Metrics Service Provider Interface (SPI).

Auction metrics are captured both in general auction metrics as well as per-adapter metrics for bid-
adapters that have been configured.

The full list of metrics with definitions can be viewed in the prebid-server-java GitHub repository.

Glue table schemas

Schemas for each table can be viewed in the Data Catalog in the AWS Glue console.

Example queries

The behavior of metric collection depends on the metric type. counter type metrics are flushed
each time they are reported on and must be calculated across an entire time range for each
container. For histogram, timer, and meter type metrics, the values are a snapshot of the
container’s lifetime at that particular timestamp. Athena views can be created to simplify pulling
these tables in order to get the most up-to-date metrics across all containers. For more information
about the various metrics types, see the Metrics project.

Create views

Create views for the various metrics types. Set up the following views for the histogram, timer,
and meter tables. Replace the <table-name> variable for each table.

CREATE VIEW <table-name>_current_data AS

Querying metrics with Athena 63

https://vertx.io/docs/vertx-dropwizard-metrics/java/#_the_metrics
https://github.com/prebid/prebid-server-java/blob/master/docs/metrics.md
https://metrics.dropwizard.io/4.2.0/manual/core.html

Prebid Server Deployment on AWS Implementation Guide

WITH timestamp_ranking AS (
SELECT
*,
RANK() OVER(PARTITION BY "container_id", "name" ORDER BY "timestamp" DESC) AS
 "timestamp_rank"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."<table-name>"
)
SELECT *
FROM timestamp_ranking
WHERE "timestamp_rank" = 1

Queries

Bid-Adapter metrics

1. Total number of bids received:

SELECT
"name",
SUM("count") AS "total_bids_received"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE "name" LIKE 'adapter.%.bids_received'
GROUP BY "name"

2. Average bid price:

WITH timestamp_ranking AS (
SELECT
*,
RANK() OVER(PARTITION BY "container_id", "name" ORDER BY "timestamp" DESC) AS
 "timestamp_rank"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."histogram"
), current_data AS (
SELECT
"name",
"count",
"mean"
FROM timestamp_ranking
WHERE
"name" LIKE 'adapter.%.prices'
AND "timestamp_rank" = 1
), total_count AS (
SELECT

Queries 64

Prebid Server Deployment on AWS Implementation Guide

"name",
SUM("count") AS "total"
FROM current_data
GROUP BY "name"
), weighted_values AS (
SELECT
current_data."name",
current_data."mean" * (CAST(current_data."count" AS double) /
 total_count."total") AS "weighted_value"
FROM current_data
LEFT JOIN total_count
ON current_data."name" = total_count."name"
)
SELECT
"name",
SUM("weighted_value") AS "average_bid_price"
FROM weighted_values
GROUP BY "name"

3. Win rate:

WITH total_impressions AS (
 SELECT SUM("count") AS "total_impressions"
 FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
 WHERE "name" IN ('imps_banner', 'imps_video', 'imps_audio', 'imps_native')
), adaptor_bids_received AS (
 SELECT
 "name",
 SUM("count") AS "total_bids_received"
 FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
 WHERE "name" LIKE 'adapter.%.bids_received'
 GROUP BY "name"
)
SELECT
 adaptor_bids_received."name",
 CAST(total_impressions."total_impressions" AS double) /
 CAST(adaptor_bids_received."total_bids_received" AS double) AS "win_rate"
FROM adaptor_bids_received
 CROSS JOIN total_impressions

4. Bid rate:

WITH request_per_adapter AS (

Queries 65

Prebid Server Deployment on AWS Implementation Guide

SELECT
SPLIT("name", '.')[2] AS "bid_adapter",
SUM("count") AS "count"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE
"name" LIKE 'adapter.%.requests.gotbids'
OR "name" LIKE 'adapter.%.requests.nobid'
OR "name" LIKE 'adapter.%.requests.badinput'
OR "name" LIKE 'adapter.%.requests.badserverresponse'
OR "name" LIKE 'adapter.%.requests.timeout'
OR "name" LIKE 'adapter.%.requests.unknown_error'
GROUP BY SPLIT("name", '.')[2]
), gotbid_per_request AS (
SELECT
SPLIT("name", '.')[2] AS "bid_adapter",
SUM("count") AS "gotbid_requests"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE
"name" LIKE 'adapter.%.requests.gotbids'
GROUP BY SPLIT("name", '.')[2]
)
SELECT
request_per_adapter."bid_adapter",
CAST(gotbid_per_request."gotbid_requests" AS double) /
 CAST(request_per_adapter."count" AS double) AS "bid_rate"
FROM request_per_adapter
LEFT JOIN gotbid_per_request
ON request_per_adapter."bid_adapter" = gotbid_per_request."bid_adapter"

5. Bid request responses:

WITH request_per_adapter AS (
SELECT
SPLIT("name", '.')[2] AS "bid_adapter",
SPLIT("name", '.')[4] AS "response",
SUM("count") AS "count"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE
"name" LIKE 'adapter.%.requests.gotbids'
OR "name" LIKE 'adapter.%.requests.nobid'
OR "name" LIKE 'adapter.%.requests.badinput'
OR "name" LIKE 'adapter.%.requests.badserverresponse'
OR "name" LIKE 'adapter.%.requests.timeout'
OR "name" LIKE 'adapter.%.requests.unknown_error'

Queries 66

Prebid Server Deployment on AWS Implementation Guide

GROUP BY SPLIT("name", '.')[2], SPLIT("name", '.')[4]
)
SELECT
request_per_adapter."bid_adapter",
"response",
"count"
FROM request_per_adapter

General auction metrics

1. Fill rate:

WITH total_impressions AS (
SELECT SUM("count") AS "total_impressions"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE "name" IN ('imps_banner', 'imps_video', 'imps_audio', 'imps_native')
), total_requests AS (
SELECT SUM("count") AS "total_requests"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE "name" = 'imps_requested'
)
SELECT CAST(total_impressions."total_impressions" AS double) /
 CAST(total_requests."total_requests" AS double) AS "fill_rate"
FROM total_requests
CROSS JOIN total_impressions

2. Average request time:

WITH timestamp_ranking AS (
SELECT
*,
RANK() OVER(PARTITION BY "container_id", "name" ORDER BY "timestamp" DESC) AS
 "timestamp_rank"
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."timer"
), current_data AS (
SELECT
"name",
"count",
"mean"
FROM timestamp_ranking
WHERE
"name" LIKE 'request_time'

General auction metrics 67

Prebid Server Deployment on AWS Implementation Guide

AND "timestamp_rank" = 1
), total_count AS (
SELECT SUM("count") AS "total"
FROM current_data
), weighted_values AS (
SELECT current_data."mean" * (
CAST(current_data."count" AS double)/ total_count."total") AS "weighted_value"
FROM current_data
CROSS JOIN total_count
)
SELECT SUM("weighted_value") AS "average_request_time"
FROM weighted_values

3. Sum of all impression types:

SELECT
"name",
SUM("count")
FROM "aws-solution-for-prebid-server-us-east-1-metricsetl-database"."counter"
WHERE "name" IN ('imps_banner', 'imps_video', 'imps_audio', 'imps_native')
GROUP BY "name"

General auction metrics 68

Prebid Server Deployment on AWS Implementation Guide

Developer guide

This section provides the source code for the solution and additional details for customizations and
testing.

Source code

Visit our GitHub repository to download the source files for this solution and to share your
customizations with others.

The Prebid Server Deployment on AWS templates are generated using the AWS CDK. See the
README.md file for additional information.

Patches to Prebid Server

This solution customizes the Prebid Server source code (Java) by applying a patch file to make
modifications to the logger output and the bidder adapter configurations, in addition to the
default options. See the prebid-server-java-patches.diff file on the GitHub repository.

Metrics

This solution currently writes Prebid Server metrics log data to the mounted EFS, which is shared
across containers, and ingests and archives the data using a variety of data management tools
continuously or as a batch process. The patch file registers a new logger stream to periodically
write metrics data from Prebid Server to files using the standard Java logging mechanism.

AMT bid adapter

A bid adapter creates the bid requests for the bidder’s server and parses and registers the bid
responses. For more information, see docs.prebid.org.

This solution provides a sample bid adapter named AMT as a patch to the Prebid Server source
code, so users are able to build customized Java container with the patch. The patch file includes
the adapter code, configuration, and unit and integration tests for the AMT adapter. With the
AMT bid adapter and backend bidder server simulator described in the Testing section, users can
simulate and measure end-to-end traffic through the entire solution stack for distributed load
tests, cost estimate, and performance evaluation.

Source code 69

https://github.com/aws-solutions/prebid-server-deployment-on-aws
https://aws.amazon.com/cdk/
https://github.com/aws-solutions/prebid-server-deployment-on-aws/blob/main/README.md
https://github.com/aws-solutions/aws-solution-for-prebid-server/blob/main/deployment/ecr/prebid-server/prebid-server-java-patches.diff
https://docs.prebid.org/prebid-server/developers/add-new-bidder-java.html

Prebid Server Deployment on AWS Implementation Guide

The AMT bid adapter parses and validates incoming bid requests, and connects to the bidder server
simulator for bids. The extension of bid requests for the AMT bidders includes placementId,
bidFloor, and bidCeiling. The adapter parses the bidder server’s response and forwards the
bids within the floor and ceiling prices to the Prebid Server core framework.

Refer to the following example auction request for the AMT adapter. Make sure to include the
placementId, bidFloor, and bidCeiling in the requests.

{
 "id": "request_id",
 "imp": [
 {
 "id": "imp_id",
 "banner": {
 "w": 300,
 "h": 250
 },
 "ext": {
 "amt": {
 "placementId": "placementId",
 "bidFloor": 1,
 "bidCeiling": 50
 }
 }
 }
],
 "tmax": 5000,
 "regs": {
 "ext": {
 "gdpr": 0
 }
 }
}

The AMT bid adapter is disabled by default in this solution. To get started using the AMT bid
adapter, follow these steps:

1. Deploy this solution. If you have previously deployed this solution, skip this step.

2. Deploy backend bidder server simulator.

3. Create a new revision for the task definition of Prebid Server deployed in step 1 under Task
definitions in the ECS console.

AMT bid adapter 70

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html

Prebid Server Deployment on AWS Implementation Guide

a. Update environment variable AMT_ADAPTER_ENABLED to true.

b. Add environment variable AMT_BIDDING_SERVER_SIMULATOR_ENDPOINT in the ECS task
definition and assign the endpoint of bidder server deployed in step 2 as its value.

4. Update the revision of service of Prebid Server cluster with the revision created in step 3.

Testing

Functional tests

This solution includes a set of functional tests against the deployed solution to verify the basic
operations of this solution. Users can run these tests by using the following steps:

1. Deploy this solution. If you have previously deployed this solution, skip this step.

2. Clone the solution's repository.

3. Open a new terminal session and navigate to the source/tests/functional_tests
directory.

4. Run the following command. Replace the <stack-name> and <profile-name> variables
with name of the stack deployed in step 1 and profile name of AWS CLI credentials, respectively.
Replace the <in-venv-flag> with 1 if the tests are running in an existing Python virtual
environment or with 0 if not. See the README.md file of functional tests on the GitHub
repository for further details.

$ sh run-functional-tests.sh [-h] [-v] [--test-file-name] [--extras] [--region] --
stack-name <stack-name> --profile <profile-name> --in-venv <in-venv-flag>

Distributed Load Testing (DLT)

The load testing tools based on JMeter and Distributed Load Testing on AWS are an optional part
of the solution, and can be used to verify basic operations and the configuration installed can scale
to the capacity required for successful operation.

Two JMeter test plans are included with the solution source code and can be used standalone with
JMeter or used for large-scale, multi-Region load testing with Distributed Load Testing on AWS.

Testing 71

https://github.com/aws-solutions/prebid-server-deployment-on-aws/tree/main
https://github.com/aws-solutions/prebid-server-deployment-on-aws/blob/main/source/tests/functional_tests/README.md
https://jmeter.apache.org/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/

Prebid Server Deployment on AWS Implementation Guide

Prebid Server test plan

This test plan is placed in source/loadtest/jmx/prebid_server_test_plan.jmx. It uses
several commercial bidding adapters in Prebid Server configured to respond in test mode. The
bidding adapters do not make connections over the Internet when invoked this way and respond
with fixed data. This test plan is suitable for verifying basic operations of the deployed stack are
working.

To use this test plan, follow these steps:

1. Deploy this solution. If you have previously deployed this solution, skip this step.

2. Open the test plan source/loadtest/jmx/prebid_server_test_plan.jmx in JMeter.

3. Update the URL under User Defined Variables in JMeter console with the CloudFront endpoint
of Prebid Server deployed in step 1.

4. Install the Distributed Load Testing on AWS solution.

5. Open the Distributed Load Testing on AWS console.

6. Upload the updated test plan in step 3 and start the tests.

Prebid Server test plan using AMT bid adapter

To support isolated load testing, the solution development team has created a sample bid adapter
and simulator bidder server to help simulate and measure end-to-end traffic through the entire
solution stack. The bid adapter is disabled by default. For details of the AMT bid adapter, refer to
the AMT Bid Adapter section in this guide. The bidder server will be provided on request to deploy
with the customer and help test solution deployments.

The following test plan uses the AMT bid adapter and bidder server created
by the solution team, and it is located at source/loadtest/jmx/
prebid_server_test_plan_using_amt_adapter.jmx. To get started with the test plan, you
must configure the bid adapter using the endpoint of the bidder server simulator. The backend
bidder server also provides options to simulate slow traffic and losing bids caused by timeout.

To use this test plan, follow these steps:

1. Deploy this solution. If you have previously deployed this solution, skip this step.

2. Request Solution Architects or other field specialists to deploy backend bidder server simulator.

Distributed Load Testing (DLT) 72

https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/

Prebid Server Deployment on AWS Implementation Guide

3. Create a new revision for the task definition of Prebid Server deployed in step 1 under Task
definitions in ECS console.

a. Update environment variable AMT_ADAPTER_ENABLED to true.

b. Add environment variable AMT_BIDDING_SERVER_SIMULATOR_ENDPOINT in the ECS task
definition and assign the endpoint of bidder server deployed in step 2 as its value.

4. Update the revision of service of Prebid Server cluster with the revision created in step 3.

5. Open the source/loadtest/jmx/prebid_server_test_plan_using_amt_adapter.jmx
test plan in JMeter.

6. Update the URL under User Defined Variables in JMeter console with the CloudFront endpoint
of Prebid Server deployed in step 1.

7. Open the Distributed Load Testing on AWS console. For more information, see the Distributed
Load Testing on AWS Implementation Guide.

8. Upload the updated test plan in step 6 to start the tests.

Accessing Prebid Server logs from EFS

The following procedure describes how to access Prebid Server logs from EFS.

To create an EC2 instance that will function as a bastion host

1. Sign in to the Amazon EC2 console.

2. Choose Launch instance.

3. Provide a name and leave the default Amazon Machine Image and instance type.

4. Choose Key pair, and select a key pair. Create one if you don’t already have any.

5. Under Network settings, choose Edit.

6. Select PrebidVpc.

7. Select the public subnet that is the 10.8.0.0 network - PrebidVpc/Prebid-PublicSubnet1.

8. Select Create security group and use default settings.

9. Leave the default storage settings and choose Launch instance.

To enable incoming NFS connections to the EFS access point

1. Navigate to the Amazon EFS console.

2. In the navigation pane, choose File systems.

Accessing Prebid Server logs from EFS 73

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_definitions.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/solution-overview.html
https://docs.aws.amazon.com/solutions/latest/distributed-load-testing-on-aws/solution-overview.html
https://console.aws.amazon.com/ec2/
https://console.aws.amazon.com/efs/home

Prebid Server Deployment on AWS Implementation Guide

3. Open the EFS file system that is in the prebid stack.

4. Choose the Network tab and note the security group ID for the security group with
PrebidfsEfsSecurityGroup in the name.

5. Navigate to the Amazon EC2 console.

6. In the navigation pane, choose Security Groups.

7. Open the solution’s security group and choose Edit inbound rules.

8. Under Edit inbound rules:

a. Choose Add rule.

b. Under Type, select NFS.

c. Under Source, select Custom.

d. Enter 10.0.0.0/8 for CIDR blocks.

e. Choose Save rules.

9. Return to the EFS system and choose File system policy.

10.Choose Edit, add elasticfilesystem:ClientMount to the list of allowed actions, and
choose Save.

To mount the EFS file system

1. Navigate to the AWS CloudFormation console.

2. Open the solution’s stack, select the Resources tab, and select the EFS file system.

3. Choose Attach.

4. Copy the NFS mount command.

5. SSH into the EC2 instance that you just created.

6. Make a mount point directory:

sudo mkdir efs

7. Paste the NFS mount command that you copied earlier. It looks similar to this:

sudo mount -t nfs4 -o
 nfsvers=4.1,rsize=1048576,wsize=1048576,hard,timeo=600,retrans=2,noresvport fs-
xxxxxxxxxxxxxxxxx.efs.us-east-1.amazonaws.com:/ efs

Accessing Prebid Server logs from EFS 74

https://console.aws.amazon.com/ec2/home
https://console.aws.amazon.com/cloudformation/home

Prebid Server Deployment on AWS Implementation Guide

Reference

This section includes information about an optional feature for collecting unique metrics for this
solution, pointers to related resources, and a list of builders who contributed to this solution.

Anonymized data collection

This solution includes an option to send anonymized operational metrics to AWS. We use this data
to better understand how customers use this solution and related services and products. When
invoked, the following information is collected and sent to AWS:

• Solution ID - The AWS solution identifier

• Unique ID (UUID) - Randomly generated, unique identifier for each solution deployment

• Timestamp - Data-collection timestamp

We harvest metrics directly from the various resources in the solution. These are filtered for the
last 24 hours. The name of each metric comes from the service and is defined by that service.
DeleteEfsFiles and StartGlueJob are our counts.

AWS owns the data gathered though this survey. Data collection is subject to the Privacy
Notice. To opt out of this feature, complete the following steps before launching the AWS
CloudFormation template.

1. Download the AWS CloudFormation template to your local hard drive.

2. Open the AWS CloudFormation template with a text editor.

3. Modify the AWS CloudFormation template mapping section from:

AnonymizedData:
 SendAnonymizedData:
 Data: Yes

to:

AnonymizedData:
 SendAnonymizedData:
 Data: No

Anonymized data collection 75

https://aws.amazon.com/privacy/
https://aws.amazon.com/privacy/
https://solutions-reference.s3.amazonaws.com/prebid-server-deployment-on-aws/latest/prebid-server-deployment-on-aws.template

Prebid Server Deployment on AWS Implementation Guide

4. Sign in to the AWS CloudFormation console.

5. Select Create stack.

6. On the Create stack page, Specify template section, select Upload a template file.

7. Under Upload a template file, choose Choose file and select the edited template from your
local drive.

8. Choose Next and follow the steps in Launch the stack in the Deploy the solution section of this
guide.

Related resources

You can use the Distributed Load Testing on AWS solution to verify basic operations and the
configuration installed can scale to the capacity required for successful operation.

Contributors

• Ian Downard

• Immanuel George

• Tom Gilman

• Cheryl Isler

• Andrew Marriott

• Alessandro Narciso

• Mike Olson

• Yang Qin

• Thyag Ramachandran

• Chip Reno

• Jim Thario

Related resources 76

https://console.aws.amazon.com/cloudformation/home
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/

Prebid Server Deployment on AWS Implementation Guide

Revisions

Date Change

May 2024 Initial release

June 2024 Documentation updates to Cost and Tune the
solution sections.

77

Prebid Server Deployment on AWS Implementation Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents AWS current
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers, or licensors. AWS products
or services are provided “as is” without warranties, representations, or conditions of any kind,
whether express or implied. AWS responsibilities and liabilities to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

Prebid Server Deployment on AWS is licensed under the terms of the Apache License Version 2.0.

78

https://www.apache.org/licenses/LICENSE-2.0

	Prebid Server Deployment on AWS
	Table of Contents
	Deploy a Prebid Server to manage ad auction requests with AWS infrastructure
	Features and benefits
	Use cases
	Concepts and definitions

	Architecture overview
	Architecture diagram
	AWS Well-Architected design considerations
	Operational excellence
	Security
	Reliability
	Performance efficiency
	Cost optimization
	Sustainability

	Regulatory compliance

	Architecture details
	CloudFront distribution
	AWS WAF
	Application Load Balancer (ALB)
	Amazon VPC
	Amazon ECS
	Prebid Server container
	Amazon EFS
	DataSync (EFS to S3)
	Glue ETL (Metrics processing)
	AWS Glue Data Catalog
	Amazon CloudWatch
	How Prebid Server Deployment on AWS works
	Workflow of banner ads
	Amazon CloudFront, AWS WAF, and ALB
	Prebid Server container
	ECS Fargate containers automatic scaling
	AWS Fargate Spot compared to Reserved Instances
	AWS Fargate container health check
	Prebid Server metrics
	Operational and metrics Logs
	Transfer of log files
	Metrics processing

	Logging
	Prebid Server operation and metrics logs

	AWS services in this solution

	Plan your deployment
	Cost
	Cost tables
	Costs from fixed load testing
	Sample costs from AWS Pricing Calculator

	Configurations for Elastic Container Service (ECS) Auto Scaling
	Static cluster size configurations
	Auto Scaling cluster configurations
	Fargate Spot instances ratio configurations
	Example cluster size, Auto-scaling policy, and Fargate Spot instances ratio configurations

	Security
	IAM roles
	Amazon CloudFront
	Application Load Balancer (ALB)
	Amazon VPC
	AWS Fargate
	Security groups
	AWS WAF
	Customer managed AWS KMS keys
	Audit trails

	Supported AWS Regions
	Quotas
	Quotas for AWS services in this solution
	AWS CloudFormation quotas

	Deploy the solution
	Prerequisites
	Deployment process overview
	AWS CloudFormation template
	Launch the stack

	Tune the solution
	CloudFront distribution domain name
	Guidance on how to implement/enable TLS between CloudFront and ALB
	Opt out of using CloudFront and AWS WAF
	Firewall rules
	Container tuning

	Monitor the solution
	Monitor the solution with Service Catalog AppRegistry
	Activate CloudWatch Application Insights
	Confirm cost tags associated with the solution
	Activate cost allocation tags associated with the solution
	AWS Cost Explorer

	Traffic monitoring and troubleshooting
	Amazon CloudWatch alarms
	AWS WAF
	Blocked requests
	HTTP flood detected
	Allowed requests

	CloudFront
	Alarm: 5xx error rate
	Alarm: 4xx error rate
	Alarm: Requests

	Application Load Balancer (ALB)
	Target HTTP 4xx error rate
	Target HTTP 5xx error rate
	ALB HTTP 4xx error rate
	ALB HTTP 5xx error rate
	Target response time (Latency)
	Unhealthy host count

	NAT gateway
	Port allocation errors
	Packets dropped count

	Elastic Container Service (ECS)
	CPU and memory utilization

	Elastic File System (EFS)
	Percent of I/O utilization

	AWS Lake Formation permission errors
	Contact AWS Support
	Create case
	How can we help?
	Additional information
	Help us resolve your case faster
	Solve now or contact us

	Uninstall the solution
	Using the AWS Management Console
	Using AWS Command Line Interface
	Deleting the Amazon S3 buckets

	Use the solution
	Querying metrics with Athena
	Metric definitions
	Glue table schemas
	Example queries
	Create views
	Queries
	General auction metrics

	Developer guide
	Source code
	Patches to Prebid Server
	Metrics
	AMT bid adapter

	Testing
	Functional tests
	Distributed Load Testing (DLT)
	Prebid Server test plan
	Prebid Server test plan using AMT bid adapter

	Accessing Prebid Server logs from EFS

	Reference
	Anonymized data collection
	Related resources
	Contributors

	Revisions
	Notices

