
Developer Guide

AWS Step Functions

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS Step Functions Developer Guide

AWS Step Functions: Developer Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS Step Functions Developer Guide

Table of Contents

What is AWS Step Functions? ... 1
AWS SDK and Optimized integrations ... 2
Standard and Express workflows .. 2

Standard workflows specifications .. 2
Express workflows specifications ... 2

Use cases .. 3
Use case #1: Function orchestration ... 3
Use case #2: Branching .. 4
Use case #3: Error handling .. 4
Use case #4: Human in the loop ... 5
Use case #5: Parallel processing .. 6
Use case #6: Dynamic parallelism ... 6

Service integrations ... 6
Supported regions ... 10
Is this your first time using Step Functions? .. 10

Prerequisites .. 11
Step 1: Create account and an IAM user ... 11

Sign up for an AWS account .. 11
Create an administrative user .. 12

Step 2: Grant programmatic access ... 13
Getting started .. 15

Key concepts ... 15
Tutorials in this series ... 17
Tutorial 1: Create the prototype for your state machine .. 20

Next steps ... 22
Tutorial 2: Define the first service integration using a Lambda function 22

Step 1: Create and test the Lambda function .. 22
Step 2: Update the workflow – configure the Get credit limit state .. 23
Next steps ... 24

Tutorial 3: Implement an if-else condition in your workflow ... 24
Step 1: Create an Amazon SNS topic that receives the callback token 25
Step 2: Create a Lambda function to handle the callback ... 25
Step 3: Update the workflow – add if-else condition logic in the Choice state 28
Next steps ... 30

iii

AWS Step Functions Developer Guide

Tutorial 4: Define multiple tasks to perform in parallel .. 30
Step 1: Create the Lambda functions to perform the required checks 31
Step 2: Update the workflow – Add parallel tasks to be performed ... 33

Tutorial 5: Concurrently iterate over a collection of items .. 34
Step 1: Create a DynamoDB table to store the name of all credit bureaus 35
Step 2: Update the state machine – Fetch results from the DynamoDB table 35
Step 3: Create a Lambda function that returns the credit scores for all credit bureaus 36
Step 4: Update the state machine – add a Map state to iteratively fetch credit scores 36

Tutorial 6: Save the workflow and execute the state machine ... 37
Step 1: Save the state machine ... 37
Step 2: Add the remaining IAM policies .. 39
Step 3: Run the state machine .. 39

Tutorial 7: Configure input and output ... 40
Select specific portions of the raw input using the InputPath filter .. 42
Manipulate the selected input using the Parameters filter ... 45
Configure output using the ResultSelector, ResultPath, and OutputPath filters 46

Tutorial 8: Debug errors in the console .. 49
Debugging the invalid path Choice state error .. 49
Debugging JSON path expression errors while applying input and output filters 51

Use cases .. 54
Data processing .. 54
Machine learning .. 56
Microservice orchestration ... 57
IT and security automation .. 58

How Step Functions works ... 60
Standard vs. Express Workflows ... 60

Synchronous and Asynchronous Express Workflows ... 64
Execution guarantees ... 65
Cost-optimization using Express Workflows ... 66

States .. 68
Amazon States Language .. 70
Pass .. 91
Task .. 93
Choice .. 114
Wait .. 120
Succeed ... 122

iv

AWS Step Functions Developer Guide

Fail .. 123
Parallel .. 125
Map .. 129

Map state processing modes ... 130
Inline mode and Distributed mode differences .. 131
Using Map state in Inline mode .. 133
Using Map state in Distributed mode .. 141

Tolerated failure threshold for Distributed Map state ... 152
Transitions ... 154

Transitions in Distributed Map state .. 155
State Machine Data ... 156

Data Format ... 156
State Machine Input/Output .. 157
State Input/Output .. 157

Input and Output Processing .. 158
Paths .. 161
InputPath, Parameters and ResultSelector ... 163
ResultPath .. 169
OutputPath .. 178
InputPath, ResultPath, and OutputPath Examples .. 179
Map state input and output fields .. 184
Context object ... 215

Data flow simulator ... 222
Using Data flow simulator .. 223
Data flow simulator considerations .. 224

Versions and aliases .. 225
Versions ... 226
Aliases ... 230
Authorization for versions and aliases ... 233
Associating executions with a version or alias ... 235
Deployment example ... 239
Gradual deployment of versions ... 242

Executions .. 251
Start Executions from a Task ... 252
Using EventBridge Scheduler ... 254
Standard and Express Workflow executions ... 260

v

AWS Step Functions Developer Guide

Viewing and debugging executions .. 265
Redriving executions .. 287
Examining Map Run ... 297

Error handling ... 310
Error names ... 310
Retrying after an error .. 313
Fallback states ... 317
State machine examples using Retry and using Catch ... 320

Invoke Step Functions ... 324
Read Consistency ... 325
Tagging in Step Functions ... 325

Tagging for Cost Allocation ... 326
Tagging for Security .. 327
Viewing and Managing .. 328
Tagging API .. 328

Workflow Studio .. 329
Interface overview ... 330

Design mode .. 330
Code mode ... 336
Config mode .. 340
Keyboard shortcuts .. 344

Using Workflow Studio ... 344
Create a workflow .. 345
Design a workflow .. 347
Run your workflow ... 353
Edit your workflow ... 354
Export your workflow .. 356
Create your workflow prototype ... 357

Configure input and output .. 358
Configure input to a state .. 359
Configure output of a state ... 362

Execution roles in Workflow Studio ... 367
About auto-generated roles ... 368
Automatically generating roles ... 368
Resolving role generation problems .. 370
Role for testing HTTP Tasks in Workflow Studio .. 371

vi

AWS Step Functions Developer Guide

Role for testing an optimized service integration in Workflow Studio 371
Role for testing an AWS SDK service integration in Workflow Studio 371
Role for testing flow states in Workflow Studio .. 372

Error handling ... 373
Retry on errors .. 373
Catch errors ... 374
Timeouts ... 375
HeartbeatSeconds .. 375

Tutorial: Learn to use the AWS Step Functions Workflow Studio .. 375
Step 1: Navigate to Workflow Studio .. 376
Step 2: Create a state machine ... 376
Step 3: Review the auto-generated Amazon States Language definition 378
Step 4: Edit the workflow definition in Code mode ... 380
Step 5: Save the state machine .. 382
Step 6: Run the state machine .. 383
Step 7: Update your state machine .. 384
Step 8: Clean up ... 385

Tutorials ... 387
Create a Step Functions state machine that uses Lambda ... 387

Step 1: Create a Lambda function .. 388
Step 2: Test the Lambda function .. 389
Step 3: Create a state machine ... 389
Step 4: Run the state machine .. 392

Handling Error Conditions Using a State Machine ... 393
Step 1: Create a Lambda function that fails .. 394
Step 2: Test the Lambda function .. 395
Step 3: Create a state machine with a Catch field .. 395
Step 4: Run the state machine .. 398

Repeat an action using Inline Map state .. 399
Step 1: Create the workflow prototype ... 400
Step 2: Configure input and output ... 400
Step 3: Review the auto-generated Amazon States Language definition and save the
workflow ... 401
Step 4: Run the state machine .. 403

Getting started with using Distributed Map state .. 404
Prerequisites .. 405

vii

AWS Step Functions Developer Guide

Step 1: Create the workflow prototype ... 406
Step 2: Configure the required fields for Map state ... 406
Step 3: Configure additional options ... 408
Step 4: Configure the Lambda function .. 408
Step 5: Update the workflow prototype ... 409
Step 6: Review the auto-generated Amazon States Language definition and save the
workflow ... 410
Step 7: Run the state machine .. 412

Processing entire batch of data with a Lambda function ... 413
Step 1: Create the state machine ... 413
Step 2: Create the Lambda function .. 415
Step 3: Run the state machine .. 417

Processing individual data items with a Lambda function ... 418
Step 1: Create the state machine ... 419
Step 2: Create the Lambda function .. 421
Step 3: Run the state machine .. 417

Starting a State Machine Execution in Response to Amazon S3 Events 426
Prerequisite: Create a State Machine ... 426
Step 1: Create a Bucket in Amazon S3 .. 427
Step 2: Enable Amazon S3 Event Notification with EventBridge ... 427
Step 3: Create an Amazon EventBridge Rule ... 428
Step 4: Test the Rule ... 429
Example of Execution Input ... 430

Creating a Step Functions API using API Gateway ... 431
Step 1: Create an IAM Role for API Gateway ... 431
Step 2: Create your API Gateway API .. 432
Step 3: Test and Deploy the API Gateway API ... 435

Create a Step Functions state machine using AWS SAM ... 437
Prerequisites .. 438
Step 1: Download a Sample AWS SAM Application .. 439
Step 2: Build Your Application .. 440
Step 3: Deploy Your Application to the AWS Cloud .. 441
Troubleshooting .. 442
Clean Up ... 443

Creating an Activity state machine .. 443
Step 1: Create an Activity ... 444

viii

AWS Step Functions Developer Guide

Step 2: Create a state machine ... 445
Step 3: Implement a Worker .. 446
Step 4: Run the state machine .. 449
Step 5: Run and Stop the Worker ... 450

Iterate a loop with Lambda ... 450
Step 1: Create a Lambda function to iterate a count ... 451
Step 2: Test the Lambda Function ... 452
Step 3: Create a State Machine ... 453
Step 4: Start a New Execution .. 456

Continuing Ongoing Work as a New Execution .. 457
Using a Step Functions API action (recommended) .. 457
Using a Lambda function ... 461

Deploying an Example Human Approval Project .. 473
Step 1: Create a Template .. 474
Step 2: Create a stack ... 474
Step 3: Approve the SNS subscription ... 475
Step 4: Run the state machine .. 476
Template Source Code .. 478

View X-Ray traces in Step Functions ... 488
Step 1: Create an IAM role for Lambda ... 488
Step 2: Create a Lambda function .. 489
Step 3: Create two more Lambda functions ... 491
Step 4: Create a state machine ... 491
Step 5: Run the state machine .. 493

Gather Amazon S3 bucket info using AWS SDK service integrations ... 497
Step 1: Create the state machine ... 497
Step 2: Add the necessary IAM role permissions ... 500
Step 3: Run a Standard state machine execution .. 500
Step 4: Run an Express state machine execution .. 501

Developer tools .. 503
Development Options ... 503

Step Functions console ... 504
AWS SDKs ... 504
Standard and Express workflows .. 505
HTTPS service API .. 505
Development environments ... 505

ix

AWS Step Functions Developer Guide

Endpoints .. 506
AWS CLI .. 506
Step Functions Local .. 506
AWS Toolkit for Visual Studio Code ... 507
AWS Serverless Application Model and Step Functions ... 507
Terraform and Step Functions ... 507
Definition format support .. 507

Step Functions and AWS SAM .. 514
Why use Step Functions with AWS SAM? .. 515
Step Functions integration with the AWS SAM specification .. 516
Step Functions integration with the SAM CLI .. 516
DefinitionSubstitutions in AWS SAM templates ... 517
Next steps .. 521

Using Workflow Studio in Application Composer ... 521
Using Workflow Studio in Application Composer ... 522
Dynamically reference resources using CloudFormation definition substitutions 522
Connect service integration tasks to enhanced component cards ... 523
Import existing projects and sync them locally ... 524
Unavailable Workflow Studio features in AWS Application Composer 524

Creating a Lambda State Machine Using AWS CloudFormation .. 525
Step 1: Set up your AWS CloudFormation template .. 525
Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 531
Step 3: Start a State Machine execution ... 536

Creating a Lambda state machine using AWS CDK .. 537
Step 1: Set up your AWS CDK project ... 538
Step 2: Use AWS CDK to create a state machine .. 539
Step 3: Start a state machine execution ... 548
Step 4: Clean Up .. 549
Next steps .. 549

Creating an API Gateway REST API with Synchronous Express State Machine Using the AWS
CDK ... 550

Step 1: Set Up Your AWS CDK Project ... 550
Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express
State Machine backend integration .. 554
Step 3: Test the API Gateway .. 564
Step 4: Clean Up .. 567

x

AWS Step Functions Developer Guide

Data Science SDK ... 567
Deploying state machines using Terraform ... 568

Prerequisites .. 568
Development lifecycle with Terraform ... 569
IAM roles and policies for your state machine ... 571

Testing and debugging ... 573
Using TestState API ... 573

Considerations about using the TestState API ... 574
Using inspection levels in TestState API .. 575
IAM permissions for using TestState API ... 582
Testing a state (Console) .. 583
Testing a state using AWS CLI ... 584
Testing and debugging input and output data flow ... 590

Testing state machines locally .. 594
Setting Up Step Functions Local (Downloadable Version) and Docker 595
Setting Up Step Functions Local (Downloadable Version) - Java Version 596
Setting Configuration Options for Step Functions Local ... 597
Running Step Functions Local on Your Computer ... 599
Testing Step Functions and AWS SAM CLI Local ... 601
Using Mocked Service Integrations .. 606

Best practices ... 624
Use timeouts to avoid stuck executions ... 624
Use Amazon S3 ARNs instead of passing large payloads .. 625
Avoid reaching the history quota ... 627
Handle Lambda service exceptions .. 628
Avoid latency when polling for activity tasks .. 629
Choosing Standard or Express Workflows .. 630
Amazon CloudWatch Logs resource policy size restrictions .. 630

Working with other services ... 632
Call other AWS services .. 632

Optimized integrations .. 633
AWS SDK integrations ... 633
Integration pattern support ... 633
Cross-account access .. 636

AWS SDK service integrations ... 636
Using AWS SDK service integrations .. 637

xi

AWS Step Functions Developer Guide

Supported services ... 638
Unsupported API actions for supported services .. 678
Deprecated AWS SDK service integrations .. 680

Optimized integrations ... 680
Amazon API Gateway .. 684
Amazon Athena ... 692
AWS Batch .. 694
Amazon Bedrock ... 696
AWS CodeBuild ... 700
Amazon DynamoDB ... 706
Amazon ECS/Fargate ... 709
Amazon EMR ... 712
Amazon EMR on EKS ... 724
Amazon EKS ... 728
Amazon EMR Serverless .. 742
Amazon EventBridge .. 751
AWS Glue .. 753
AWS Glue DataBrew ... 754
AWS Lambda ... 755
Amazon SageMaker .. 759
Amazon SNS .. 770
Amazon SQS .. 773
AWS Step Functions ... 775

Call third-party APIs .. 779
HTTP Task definition ... 779
HTTP Task fields ... 780
Authentication for an HTTP Task .. 787
Merging EventBridge connection and HTTP Task definition data .. 787
Applying URL-encoding on request body .. 791
IAM permissions to run an HTTP Task ... 792
HTTP Task example .. 793
Testing an HTTP Task .. 796
Unsupported HTTP Task responses .. 798

Service integration patterns .. 799
Request Response ... 799
Run a Job (.sync) .. 800

xii

AWS Step Functions Developer Guide

Wait for a Callback with the Task Token ... 802
Pass parameters to a service API ... 807

Pass static JSON as parameters .. 807
Pass state input as parameters using Paths ... 808
Pass Context Object Nodes as Parameters ... 809

Change log for integrations .. 809
Sample projects for Step Functions ... 833

Manage a batch job (AWS Batch, Amazon SNS) ... 834
Step 1: Create the state machine and provision resources .. 834
Step 2: Run the state machine .. 836
Example State Machine Code .. 837
IAM Example .. 839

Manage a container task (Amazon ECS, Amazon SNS) .. 840
Step 1: Create the state machine and provision resources .. 840
Step 2: Run the state machine .. 842
Example State Machine Code .. 843
IAM Example .. 845

Transfer data records (Lambda, DynamoDB, Amazon SQS) .. 846
Step 1: Create the state machine and provision resources .. 846
Step 2: Run the state machine .. 848
Example State Machine Code .. 849
IAM Example .. 851

Poll for Job Status (Lambda, AWS Batch) .. 852
Step 1: Create the state machine and provision resources .. 853
Step 2: Run the state machine .. 855
Example State Machine Code .. 857

Task Timer (Lambda, Amazon SNS) ... 859
Step 1: Create the state machine and provision resources .. 860
Step 2: Run the state machine .. 862

Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda) ... 864
Step 1: Create the state machine and provision resources .. 864
Step 2: Run the state machine .. 866
Lambda Callback Example .. 868

Manage an Amazon EMR Job ... 869
Step 1: Create the State Machine and Provision Resources ... 869
Step 2: Run the state machine .. 842

xiii

AWS Step Functions Developer Guide

Example State Machine Code .. 843
IAM Example .. 845

Run an EMR Serverless job .. 877
AWS CloudFormation template and additional resources ... 878
Step 1: Create the state machine and provision resources .. 878
Step 2: Run the state machine .. 880

Start a Workflow within a Workflow (Step Functions, Lambda) .. 881
Step 1: Create the state machine and provision resources .. 881
Step 2: Run the state machine .. 883
Example State Machine Code .. 884

Dynamically process data with a Map state ... 887
Step 1: Create the state machine and provision resources .. 887
Step 2: Subscribe to the Amazon SNS topic .. 890
Step 3: Add messages to the Amazon SQS queue .. 890
Step 4: Run the state machine .. 891
Example state machine code ... 892
IAM example .. 894

Process a CSV file with Distributed Map .. 895
AWS CloudFormation template and additional resources ... 896
Step 1: Create the state machine and provision resources .. 896
Step 2: Run the state machine .. 899

Process data in an Amazon S3 bucket with Distributed Map ... 900
AWS CloudFormation template and additional resources ... 901
Step 1: Create the state machine and provision resources .. 902
Step 2: Run the state machine .. 905

Train a Machine Learning Model .. 906
Step 1: Create the state machine and provision resources .. 906
Step 2: Run the state machine .. 908
Example State Machine Code .. 909
IAM Example .. 912

Tune a Machine Learning Model .. 913
Step 1: Create the state machine and provision resources .. 914
Step 2: Run the state machine .. 916
Example State Machine Code .. 917
IAM Examples .. 922

Process High-Volume Messages from Amazon SQS (Express Workflows) 924

xiv

AWS Step Functions Developer Guide

Step 1: Create the state machine and provision resources .. 925
Step 2: Trigger the state machine execution .. 927
Example Lambda Function Code ... 928
Example State Machine Code .. 929
IAM Example .. 930

Selective Checkpointing Example (Express Workflows) ... 931
Step 1: Create the State Machine and Provision Resources ... 932
Step 2: Run the state machine .. 934
Example State Machine Code for the Parent (Standard Workflows) 935
Example IAM Role for the Parent State Machine .. 938
Example State Machine Code for the Nested State Machine (Express Workflows) 935
Example IAM Role for Child State Machine .. 942

Build an AWS CodeBuild Project (CodeBuild, Amazon SNS) ... 943
Step 1: Create the state machine and provision resources .. 943
Step 2: Run the state machine .. 945
Example State Machine Code .. 946

Preprocess data and train a machine learning model .. 948
Step 1: Create the state machine and provision resources .. 948
Step 2: Run the state machine .. 951
Example State Machine Code .. 952
IAM Example .. 955

Lambda orchestration example .. 956
Step 1: Create the state machine and provision resources .. 957
Step 2: Run the state machine .. 959
About the state machine and its execution .. 960
IAM Examples .. 964

Start an Athena query .. 966
Step 1: Create the state machine and provision resources .. 967
Step 2: Run the state machine .. 969
Example State Machine Code .. 970
IAM Example .. 972

Execute multiple queries (Amazon Athena, Amazon SNS) .. 974
Step 1: Create the state machine and provision resources .. 974
Step 2: Run the state machine .. 977
Example State Machine Code .. 978
IAM Examples .. 980

xv

AWS Step Functions Developer Guide

Query large datasets (Amazon Athena, Amazon S3, AWS Glue, Amazon SNS) 984
Step 1: Create the state machine and provision resources .. 984
Step 2: Run the state machine .. 987
Example State Machine Code .. 988
IAM Examples .. 989

Keep data up to date (Amazon Athena, Amazon S3, AWS Glue) ... 993
Step 1: Create the state machine and provision resources .. 993
Step 2: Run the state machine .. 995
Example State Machine Code .. 996
IAM Example .. 997

Manage an Amazon EKS cluster ... 999
Step 1: Create the state machine and provision resources .. 1000
Step 2: Run the state machine ... 1003
Example State Machine Code .. 1004
IAM Example ... 1008

Make a call to API Gateway .. 1009
Step 1: Create the state machine and provision resources .. 1010
Step 2: Run the state machine ... 1012
Example State Machine Code .. 1013
IAM Example ... 1015

Call a microservice with API Gateway ... 1015
Step 1: Create the state machine and provision resources .. 1016
Step 2: Run the state machine ... 1018
Example State Machine Code .. 1019
IAM Example ... 1021

Send a custom event to EventBridge .. 1022
Step 1: Create the state machine and provision resources .. 1023
Step 2: Run the state machine ... 1025
Example State Machine Code .. 1026
IAM Example ... 1027

Invoke Synchronous Express Workflows ... 1028
Step 1: Create the state machine and provision resources .. 1028
Step 2: Run the state machine ... 1030
Example State Machine Code .. 1031
IAM Examples .. 1033

Run ETL/ELT workflows using Amazon Redshift .. 1034

xvi

AWS Step Functions Developer Guide

Step 1: Create the state machine and provision resources .. 1035
Step 2: Run the state machine ... 1038
Example State Machine Code .. 1039
IAM Example ... 1059

Use Step Functions and AWS Batch with error handling .. 1060
Step 1: Create the state machine and provision resources .. 1060
Step 2: Run the state machine ... 1062
Example State Machine Code .. 1063
IAM Example ... 1065

Fan out an AWS Batch job .. 1066
Step 1: Create the state machine and provision resources .. 1066
Step 2: Run the state machine ... 1068
Example State Machine Code .. 1069
IAM Example ... 1071

AWS Batch with Lambda ... 1072
Step 1: Create the State Machine and Provision Resources .. 1072
Step 2: Run the state machine ... 1074
Example State Machine Code .. 1075
IAM Example ... 1076

Perform AI prompt-chaining with Amazon Bedrock .. 1078
AWS CloudFormation template and additional resources ... 1078
Prerequisites .. 1078
Step 1: Create the state machine and provision resources .. 1079
Step 2: Run the state machine ... 1081

Quotas .. 1083
General quotas ... 1084
Quotas related to accounts ... 1085
Quotas related to HTTP Task ... 1086
Quotas related to state throttling ... 1086
Quotas related to API action throttling ... 1087

Quota related to TestState API ... 1088
Other quotas ... 1088

Quotas related to state machine executions ... 1092
Quotas related to task executions ... 1094
Quotas related to versions and aliases ... 1095
Restrictions related to tagging ... 1095

xvii

AWS Step Functions Developer Guide

Logging and monitoring ... 1097
Amazon CloudWatch Metrics .. 1097

Metrics that report a time interval .. 1098
Metrics that report a count ... 1099
Execution metrics ... 1099
Resource count metrics for versions and aliases ... 1102
Activity Metrics ... 1103
Lambda Function Metrics ... 1104
Service Integration Metrics .. 1105
Service Metrics .. 1106
API Metrics ... 1107
Best-effort CloudWatch metrics delivery .. 1107
Viewing Metrics for Step Functions ... 1108
Setting Alarms for Step Functions ... 1110

Amazon EventBridge Events ... 1112
EventBridge payloads .. 1113
Step Functions event examples .. 1114
Routing a Step Functions event to EventBridge .. 1118

Logging Step Functions Using AWS CloudTrail ... 1120
Step Functions Information in CloudTrail ... 1120
Example: Step Functions Log File Entries ... 1121

Logging using CloudWatch Logs .. 1126
Configure logging .. 1126
CloudWatch Logs payloads .. 1127
IAM Policies for logging to CloudWatch Logs .. 1127
Log levels ... 1129

X-Ray .. 1133
Setup and configuration ... 1134
Concepts ... 1138
Service integrations ... 1139
Viewing the X-Ray console ... 1140
Viewing X-Ray tracing information for Step Functions .. 1140
Traces .. 1140
Service map ... 1141
Segments and subsegments .. 1142
Analytics ... 1144

xviii

AWS Step Functions Developer Guide

Configuration .. 1145
What if there is no data in the trace map or service map? ... 1146

Using AWS User Notifications with Step Functions ... 1147
Security .. 1148

Data Protection .. 1148
Encryption .. 1149

Identity and Access Management .. 1149
Audience ... 1150
Authenticating with identities ... 1150
Managing access using policies ... 1154
Access Control ... 1156
Policy actions .. 1156
Policy resources .. 1157
Policy condition keys ... 1158
ACLs ... 1159
ABAC .. 1159
Temporary credentials ... 1160
Principal permissions ... 1160
Service roles .. 1161
Service-linked roles .. 1161
How AWS Step Functions works with IAM ... 1161
Identity-based policy examples ... 1162
Identity-based policies .. 1165
Resource-based policies .. 1166
Creating a state machine IAM role ... 1166
Creating Granular IAM Permissions for Non-Admin Users .. 1169
Accessing cross-account AWS resources .. 1172
VPC Endpoints .. 1183
IAM Policies for integrated services ... 1186
IAM policies for using Distributed Map state ... 1275
Tag-based Policies .. 1280
Troubleshooting .. 1282

Logging and Monitoring .. 1283
Compliance Validation .. 1284
Resilience ... 1284
Infrastructure Security .. 1285

xix

AWS Step Functions Developer Guide

Configuration and Vulnerability Analysis ... 1285
Migrating workloads from AWS Data Pipeline .. 1286

Migrating workloads ... 1286
Concept mapping .. 1287
Step Functions sample projects ... 1288
Pricing comparison .. 1289

Troubleshooting ... 1290
General troubleshooting .. 1290

I'm unable to create a state machine. ... 1290
I'm unable to use a JsonPath to reference the previous task’s output. 1290
There was a delay in state transitions. .. 1291
When I start new Standard Workflow executions, they fail with the
ExecutionLimitExceeded error. .. 1291
A failure on one branch in a parallel state causes the whole execution to fail. 1291

Troubleshooting service integrations .. 1291
My job is complete in the downstream service, but in Step Functions the task state
remains "In progress" or its completion is delayed. .. 1291
I want to return a JSON output from a nested state machine execution. 1292
I can't invoke a Lambda function from another account. .. 1292
I'm unable to see task tokens passed from .waitForTaskToken states. 1293

Troubleshooting activities .. 1294
My state machine execution is stuck at an activity state. .. 1294
My activity worker times out while waiting for a task token. ... 1294

Troubleshooting Express Workflows .. 1295
My application times out before receiving a response from a StartSyncExecution API
call. .. 1295
I'm unable to see the execution history in order to troubleshoot Express Workflow
failures. ... 1295

Related information .. 1297
Recent feature launches .. 1298
Document history .. 1301
AWS Glossary ... 1335

xx

AWS Step Functions Developer Guide

What is AWS Step Functions?

AWS Step Functions is a serverless orchestration service that lets you integrate with AWS Lambda
functions and other AWS services to build business-critical applications. Through Step Functions'
graphical console, you see your application’s workflow as a series of event-driven steps.

Step Functions is based on state machines and tasks. In Step Functions, a workflow is called a state
machine, which is a series of event-driven steps. Each step in a workflow is called a state. A Task
state represents a unit of work that another AWS service, such as AWS Lambda, performs. A Task
state can call any AWS service or API.

With Step Functions' built-in controls, you examine the state of each step in your workflow to make
sure that your application runs in order and as expected. Depending on your use case, you can have
Step Functions call AWS services, such as Lambda, to perform tasks. You can create workflows that
process and publish machine learning models. You can have Step Functions control AWS services,
such as AWS Glue, to create extract, transform, and load (ETL) workflows. You also can create long-
running, automated workflows for applications that require human interaction.

Tip

To familiarize yourself with the primary features of Step Functions through a series of
interactive modules, see The AWS Step Functions Workshop. Or start using Step Functions
by following these Getting Started tutorials to create a credit card application workflow.

Topics

• AWS SDK and Optimized integrations

• Standard and Express workflows

• Use cases

• Service integrations

• Supported regions

• Is this your first time using Step Functions?

1

https://aws.amazon.com/lambda/
https://aws.amazon.com/glue/
https://s12d.com/sfn-ws-docs

AWS Step Functions Developer Guide

AWS SDK and Optimized integrations

To call other AWS services, you can use Step Functions' AWS SDK integrations, or you can use one
of Step Functions' Optimized integrations.

• The AWS SDK integrations let you call any of the over two hundred AWS services directly from
your state machine, giving you access to over nine thousand API actions.

• Step Functions' Optimized integrations have been customized to simplify usage in your state
machines.

Standard and Express workflows

Step Functions has two workflow types. Standard workflows have exactly-once workflow execution
and can run for up to one year. This means that each step in a Standard workflow will execute
exactly once. Express workflows, however, have at-least-once workflow execution and can run for
up to five minutes. This means that one or more steps in an Express Workflow can potentially run
more than once, while each step in the workflow executes at least once.

Executions are instances where you run your workflow to perform tasks. Standard workflows are
ideal for long-running, auditable workflows, as they show execution history and visual debugging.
Express workflows are ideal for high-event-rate workloads, such as streaming data processing and
IoT data ingestion.

Standard workflows specifications

• 2,000 per second execution rate

• 4,000 per second state transition rate

• Priced by state transition

• Show execution history and visual debugging

• Support all service integrations and patterns

Express workflows specifications

• 100,000 per second execution rate

• Nearly unlimited state transition rate

AWS SDK and Optimized integrations 2

AWS Step Functions Developer Guide

• Priced by number and duration of executions

• Send execution history to Amazon CloudWatch

• Show execution history and visual debugging based on the Log level enabled

• Support all service integrations and most patterns

For more information about Standard and Express workflows, including Step Functions pricing, see
the following:

• Standard vs. Express Workflows

• AWS Step Functions pricing

Use cases

Step Functions manages your application's components and logic, so you can write less code and
focus on building and updating your application quickly. This section describes typical use cases for
working with Step Functions.

Use case #1: Function orchestration

You create a workflow that runs a group of Lambda functions (steps) in a specific order. One
Lambda function's output passes to the next Lambda function's input. The last step in your
workflow gives a result. With Step Functions, you can see how each step in your workflow interacts
with one other, so you can make sure that each step performs its intended function.

For a tutorial that shows you how to create a state machine with a group of functions, see the
following:

• Getting started with AWS Step Functions

Use cases 3

https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

Use case #2: Branching

A customer requests a credit limit increase. Using a Choice state, you can have Step Functions
make decisions based on the Choice state’s input. If the request is more than your customer’s pre-
approved credit limit, you can have Step Functions send your customer's request to a manager for
sign-off. If the request is less than your customer’s pre-approved credit limit, you can have Step
Functions approve the request automatically.

Use case #3: Error handling

Retry

In this use case, a customer requests a username. The first time, your customer’s request is
unsuccessful. Using a Retry statement, you can have Step Functions try your customer's request
again. The second time, your customer’s request is successful.

Catch

In a similar use case, a customer requests an unavailable username. Using a Catch statement, you
have Step Functions suggest an available username. If your customer takes the available username,
you can have Step Functions go to the next step in your workflow, which is to send a confirmation
email. If your customer doesn’t take the available username, you have Step Functions go to a
different step in your workflow, which is to start the sign-up process over.

Use case #2: Branching 4

AWS Step Functions Developer Guide

For more detailed examples of Retry and Catch statements, see the following:

• Error handling in Step Functions

Use case #4: Human in the loop

Using a banking app, one of your customers sends money to a friend. Your customer waits for a
confirmation email. With a callback and a task token, you have Step Functions tell Lambda to send
your customer’s money and report back when your customer’s friend receives it. After Lambda
reports back that your customer’s friend received the money, you can have Step Functions go to
the next step in your workflow, which is to send your customer a confirmation email.

To see a sample project that shows a callback with a task token, see the following:

• Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda)

Use case #4: Human in the loop 5

AWS Step Functions Developer Guide

Use case #5: Parallel processing

A customer converts a video file into five different display resolutions, so viewers can watch the
video on multiple devices. Using a Parallel state, Step Functions inputs the video file, so Lambda
can process it into the five display resolutions at the same time.

Use case #6: Dynamic parallelism

A customer orders three items, and you need to prepare each item for delivery. You check each
item's availability, gather each item, and then package each item for delivery. Using a Map state,
Step Functions has Lambda process each of your customer's items in parallel. Once all of your
customer's items are packaged for delivery, Step Functions goes to the next step in your workflow,
which is to send your customer a confirmation email with tracking information.

To see a sample project that shows dynamic parallelism using a Map state, see the following:

• Dynamically process data with a Map state

Service integrations

Step Functions integrates with multiple AWS services. To combine Step Functions with these
services, use the following service integration patterns:

Use case #5: Parallel processing 6

AWS Step Functions Developer Guide

Request a response (default)

• Call a service, and let Step Functions progress to the next state after it gets an HTTP response.

Run a job (.sync)

• Call a service, and have Step Functions wait for a job to complete.

Wait for a callback with a task token (.waitForTaskToken)

• Call a service with a task token, and have Step Functions wait until the task token returns with a
callback.

The table below shows the available service integrations and service integration patterns for Step
Functions.

Standard Workflows and Express Workflows support the same integrations but not the same
integration patterns.

• Optimized integrations pattern support is different for each integration.

• Express Workflows do not support Run a Job (.sync) or Wait for Callback (.waitForTaskToken).

• For more information, see Standard vs. Express Workflows.

Standard Workflows

Supported service integrations

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon API Gateway ✓ ✓

Amazon Athena ✓ ✓

Optimized
integrati
ons

AWS Batch ✓ ✓

Service integrations 7

AWS Step Functions Developer Guide

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon Bedrock ✓ ✓ ✓

AWS CodeBuild ✓ ✓

Amazon DynamoDB ✓

Amazon ECS/Fargate ✓ ✓ ✓

Amazon EKS ✓ ✓ ✓

Amazon EMR ✓ ✓

Amazon EMR on EKS ✓ ✓

Amazon EMR Serverless ✓ ✓

Amazon EventBridge ✓ ✓

AWS Glue ✓ ✓

AWS Glue DataBrew ✓ ✓

AWS Lambda ✓ ✓

Amazon SageMaker ✓ ✓

Amazon SNS ✓ ✓

Amazon SQS ✓ ✓

AWS Step Functions ✓ ✓ ✓

AWS
SDK
integrati
ons

Over two hundred ✓ ✓

Service integrations 8

AWS Step Functions Developer Guide

Express Workflows

Supported service integrations

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon API Gateway ✓

Amazon Athena ✓

AWS Batch ✓

Amazon Bedrock ✓

AWS CodeBuild ✓

Amazon DynamoDB ✓

Amazon ECS/Fargate ✓

Amazon EKS ✓

Amazon EMR ✓

Amazon EMR on EKS ✓

Amazon EMR Serverless ✓

Amazon EventBridge ✓

AWS Glue ✓

AWS Glue DataBrew ✓

AWS Lambda ✓

Amazon SageMaker ✓

Optimized
integrati
ons

Amazon SNS ✓

Service integrations 9

AWS Step Functions Developer Guide

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon SQS ✓

AWS Step Functions ✓

AWS
SDK
integrati
ons

Over two hundred ✓

Supported regions

Most AWS regions support Step Functions. For a complete list of AWS regions where Step
Functions is available, see the AWS Region Table.

Is this your first time using Step Functions?

If this is your first time using Step Functions, the following topics help you understand different
parts of working with Step Functions, including how Step Functions combines with other AWS
services:

• Tutorials for Step Functions

• Sample projects for Step Functions

• AWS Step Functions Data Science SDK for Python

Supported regions 10

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Step Functions Developer Guide

Prerequisites for Getting Started with AWS Step
Functions

Before you get started with AWS Step Functions for the first time, complete the prerequisites that
are listed on this page.

Topics

• Step 1: Sign up for an AWS account and an IAM user

• Step 2: Grant programmatic access

Step 1: Sign up for an AWS account and an IAM user

To access any AWS service, you must first create an AWS account. You can use your AWS account to
view your activity and usage reports and to manage authentication and access. You're only charged
for the products and services that you use, and you can get started with AWS for free. For more
information, see AWS Free Tier.

To avoid using your AWS account root user for Step Functions actions, it is a best practice to create
an IAM user for each person who needs administrative access to Step Functions.

If you already have an AWS account, skip to the next prerequisite.

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign

Step 1: Create account and an IAM user 11

https://aws.amazon.com/
https://aws.amazon.com/free/
https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html

AWS Step Functions Developer Guide

administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Create an administrative user 12

https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/
https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html

AWS Step Functions Developer Guide

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

Step 2: Grant programmatic access

Users need programmatic access if they want to interact with AWS outside of the AWS
Management Console. The way to grant programmatic access depends on the type of user that's
accessing AWS.

To grant users programmatic access, choose one of the following options.

Which user needs
programmatic access?

To By

Workforce identity

(Users managed in IAM
Identity Center)

Use temporary credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Configuring the AWS
CLI to use AWS IAM
Identity Center in the AWS
Command Line Interface
User Guide.

• For AWS SDKs, tools, and
AWS APIs, see IAM Identity
Center authentication in
the AWS SDKs and Tools
Reference Guide.

IAM Use temporary credentials to
sign programmatic requests

Following the instructions in
Using temporary credentia

Step 2: Grant programmatic access 13

https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-sso.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html

AWS Step Functions Developer Guide

Which user needs
programmatic access?

To By

to the AWS CLI, AWS SDKs, or
AWS APIs.

ls with AWS resources in the
IAM User Guide.

IAM (Not recommended)
Use long-term credentials to
sign programmatic requests
to the AWS CLI, AWS SDKs, or
AWS APIs.

Following the instructions for
the interface that you want to
use.

• For the AWS CLI, see
Authenticating using IAM
user credentials in the AWS
Command Line Interface
User Guide.

• For AWS SDKs and tools,
see Authenticate using
long-term credentials in
the AWS SDKs and Tools
Reference Guide.

• For AWS APIs, see
Managing access keys for
IAM users in the IAM User
Guide.

Step 2: Grant programmatic access 14

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-authentication-user.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/sdkref/latest/guide/access-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html

AWS Step Functions Developer Guide

Getting started with AWS Step Functions

Welcome to the Step Functions Getting Started tutorials series.

Step Functions is a serverless orchestration service that lets you define an application workflow
as a series of event-driven steps. Each step in the workflow is called a state. You most commonly
use states, such as Task, Choice, Parallel, and Map, to define your workflows. Within Task states,
you can use the AWS SDK integrations that Step Functions supports and orchestrate multiple AWS
services in your workflows.

Topics

• Key concepts

• Tutorials in this series

• Tutorial 1: Create the prototype for your state machine

• Tutorial 2: Define the first service integration using a Lambda function

• Tutorial 3: Implement an if-else condition in your workflow

• Tutorial 4: Define multiple tasks to perform in parallel

• Tutorial 5: Concurrently iterate over a collection of items

• Tutorial 6: Save the workflow and execute the state machine

• Tutorial 7: Configure input and output

• Tutorial 8: Debug errors in the console

Key concepts

This section introduces you to important Step Functions concepts. Before you get started, review
the following key concepts.

Term Description

Workflow Describes a sequence of steps and often matches a business process.

Workflow
Studio

A visual workflow designer that helps you to prototype and build workflows
faster. For more information, see AWS Step Functions Workflow Studio.

Key concepts 15

AWS Step Functions Developer Guide

Term Description

States Individual steps in your state machine, which perform a variety of functions in
the state machine. For more information, see States.

State
machines

A workflow defined using JSON text representing the individual states or steps
in the workflow along with fields, such as StartAt, TimeoutSeconds , and
Version. For more information, see State machine structure.

Amazon
States
Language

A JSON-based, structured language used to define your state machine. It's a
collection of states that can do work (Task state), determine which states to
transition to next (Choice state), and stop an execution with an error (Fail
state). For more information, see Amazon States Language.

Input and
output
configuration

Individual states in a workflow receive JSON data as input and usually pass
JSON data as output to the next state. Step Functions provides multiple filters
to control the input and output data flow between states. For more informati
on, see Input and Output Processing in Step Functions.

Service
integration

Step Functions directly integrates with AWS services, letting you call each
service's API actions from your workflow. For more information, see Using AWS
Step Functions with other services.

Service
integration
type

Step Functions provides the following service integration types:

• Optimized integrations – Customized by Step Functions to provide special
functionality for a workflow. For example, Lambda Invoke will convert its API
output from an escaped JSON string to a JSON object.

• AWS SDK integrations – Behaves exactly like a standard API call using the
AWS SDK. You can call any of the over two hundred AWS services directly
from your state machine and access over nine thousand API actions.

For more information, see Using AWS Step Functions with other services.

Key concepts 16

AWS Step Functions Developer Guide

Term Description

Service
integration
pattern

To call an integrated AWS service in your workflow, you use one of the
following service integration patterns that Step Functions provides:

• Request a response (default) – Call a service and let Step Functions progress
to the next state after it gets an HTTP response.

• Run a job (.sync) – Call a service and have Step Functions wait for a job to
complete.

• Wait for a callback with a task token (.waitForTaskToken) – Call a service with
a task token and have Step Functions wait until the task token returns with a
callback.

Execution State machine executions are instances where you run your workflow to
perform tasks. For more information, see Executions in Step Functions.

Tutorials in this series

The Getting Started tutorials in this chapter walk you through creating a basic workflow for
processing credit card applications. In these tutorials, you'll learn how to use commonly used states
in Step Functions. You'll integrate your workflow with other AWS services, such as AWS Lambda
and Amazon Simple Notification Service. After completing these tutorials, you'll have a simple
workflow that simulates processing a credit card application.

Note

While these Getting Started tutorials depict a credit card application workflow, you can
use Step Functions for creating multiple types of workflows. For example, you can create
workflows for data processing, IT automation, machine learning, media processing, or order
processing.

The following images represent a credit card application workflow and how it appears when
orchestrated using Step Functions. Each step in the flowchart is represented with a state in the
Step Functions workflow.

Tutorials in this series 17

AWS Step Functions Developer Guide

Tutorials in this series 18

AWS Step Functions Developer Guide

Tutorials in this series 19

AWS Step Functions Developer Guide

Note

We recommend completing all of these tutorials in order. Completing the full tutorials
will teach you how to use concepts and features key to using Step Functions in production
workflows.

The following roadmap shows the steps that you'll perform to build the credit card processing
workflow using Step Functions' Workflow Studio. These steps are presented as a series of tutorials
that contain instructions on how to complete that step.

Before you get started, make sure to complete the prerequisites.

Tutorial 1: Create the prototype for your state machine

In this tutorial, you create the prototype for your credit card processing workflow using Step
Functions’ Workflow Studio. You’ll choose the required API actions and states from the Actions
and Flow tabs respectively, and use the drag and drop feature of Workflow Studio to create the
workflow prototype. In the subsequent tutorials, you’ll learn how to configure the AWS services
and the Step Functions’ states you’ll be using in this workflow.

To create the state machine prototype

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. In Workflow Studio, from the Actions tab, drag an AWS Lambda Invoke API action and drop it
to the empty state labelled Drag first state here. Configure it as follows:

• In the Configuration tab, for State name, enter Get credit limit.

Tutorial 1: Create the prototype for your state machine 20

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

5. From the Flow tab, drag and drop a Choice state below the Get credit limit state. Rename the
Choice state to Credit applied >= 5000?.

6. Drag and drop the following states as branches of the Credit applied >= 5000? state.

a. Amazon SNS Publish – From the Actions tab, drag and drop the Amazon SNS Publish API
action. Rename this state to Wait for human approval.

b. Pass state — From the Flow tab, drag and drop the Pass state. Rename this branch to
Auto-approve limit.

7. Drag and drop a Pass state below the Wait for human approval state. Rename this Pass state
to Credit limit approved.

8. Drag and drop a Parallel state after the Choice state as follows:

a. Drop the Parallel state after the Credit limit approved state.

b. Rename the Parallel state to Verify applicant's identity and address.

c. Under both the branches of the Parallel state, drag and drop two AWS Lambda Invoke
API actions.

d. Rename these states as Verify identity and Verify address respectively.

e. Choose the Auto-approve limit state and for Next state, select Verify applicant's identity
and address.

9. Drag a DynamoDB Scan state and drop it below the Verify applicant's identity and address
state. Rename the DynamoDB Scan state to Get list of credit bureaus.

10. Drag and drop a Map state after the Get list of credit bureaus state. Configure the Map state
as follows:

a. Rename it to Get scores from all credit bureaus.

b. For Processing mode, keep the default selection of Inline.

c. Drag and drop an AWS Lambda Invoke API action to the empty state labelled Drop state
here.

d. Rename the AWS Lambda Invoke state to Get all scores.

11. Keep this window open and proceed to the next tutorial for further actions.

Tutorial 1: Create the prototype for your state machine 21

AWS Step Functions Developer Guide

Next steps

In the next tutorial, you learn how to integrate the Lambda function used by the Get credit limit
state.

Tutorial 2: Define the first service integration using a Lambda
function

In this tutorial, you learn how to define the first service integration for your workflow. You use the
Task state named Get credit limit to invoke a Lambda function. Within Task states, you can use
the AWS SDK integrations that Step Functions supports.

To define the first service integration for your workflow, first create a Lambda function. Then,
update your workflow to specify the service integration with the Lambda function. The Lambda
function used in this tutorial returns a randomly generated integer representing the credit limit
that an applicant has applied for.

Topics

• Step 1: Create and test the Lambda function

• Step 2: Update the workflow – configure the Get credit limit state

• Next steps

Step 1: Create and test the Lambda function

You can write code for the function in the AWS Management Console or your favorite editor. In the
following steps, you create a Node.js Lambda function titled RandomNumberforCredit.

Important

Make sure that the workflow prototype you created in Tutorial 1 is under the same AWS
Region as the Lambda function you’ll create in this tutorial.

1. In a new tab or window, open the Lambda console and create a Node.js 16.x Lambda function
titled RandomNumberforCredit. For information about creating a Lambda function using
the console, see Create a Lambda function in the console in the AWS Lambda Developer Guide.

Next steps 22

https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html#getting-started-create-function

AWS Step Functions Developer Guide

2. On the RandomNumberforCredit page, choose index.mjs and replace the existing code in the
Code source area with the following code.

export const handler = async function(event, context) {

 const credLimit = Math.floor(Math.random() * 10000);
 return (credLimit);

};

3. From the Function overview section, copy the Amazon Resource Name of the Lambda
function and save it in a text file. You’ll need the function ARN while specifying the service
integration for the Get credit limit state. The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:HelloWorld

4. Choose Deploy and then choose Test to deploy the changes and see the output of the Lambda
function.

Step 2: Update the workflow – configure the Get credit limit state

In the Step Functions console, you’ll update your workflow to specify service integration with the
RandomNumberforCredit Lambda function that you created in Step 1.

1. Open the Step Functions console window containing the workflow prototype you created in
Tutorial 1.

2. Choose the Get credit limit state, and in the Configuration tab, do the following:

a. For Integration type, keep the default selection of Optimized.

Using Step Functions, you can integrate with other AWS services and orchestrate them
in your workflows. For more information about service integrations and their types, see
Using AWS Step Functions with other services.

b. For Function name, choose the RandomNumberforCredit Lambda function from the
dropdown list.

c. Keep the default selections for rest of the items.

3. Keep this window open and proceed to the next tutorial for further actions.

Step 2: Update the workflow – configure the Get credit limit state 23

https://console.aws.amazon.com/https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Note

In this tutorial, you learned how to integrate with a Lambda function within a Task state in
your workflows. You can also use other supported AWS SDK integrations in the Task state
by specifying the service name and API call, as shown in the following syntax:

arn:aws:states:::aws-sdk:serviceName:apiAction

For more information, see Using AWS Step Functions with other services.

Next steps

In the next tutorial, you’ll implement conditional logic in your workflow. Conditional logic in Step
Functions state machines behaves similar to an if-else statement in most common programming
languages. You’ll use conditional logic in your workflow to determine the execution path based on
conditional information.

Tutorial 3: Implement an if-else condition in your workflow

You can implement if-else conditions in your workflows by using the Choice state. It determines
the workflow execution path based on whether a specified condition evaluates to true or false.

In this tutorial, you’ll add conditional logic to determine if the applied credit amount returned by
the RandomNumberforCredit Lambda function used in Tutorial 2 exceeds a specific threshold
limit. If the amount exceeds the threshold limit, the application requires a human interaction for
approval. Otherwise, the application is auto-approved and moves to the next step.

You’ll mimic the human interaction step by pausing the workflow execution until a task token is
returned. To do this, you’ll pass a task token to the AWS SDK integration you’ll be using in this
tutorial, which is Amazon Simple Notification Service. The workflow execution will be paused until
it receives the task token back with a SendTaskSuccess API call. For more information about
using task tokens, see Wait for a Callback with the Task Token.

Because you’ve already defined the steps for human approval and auto-approval in your workflow
prototype, in this tutorial, you first create an Amazon SNS topic that receives the callback token.
Then, you create a Lambda function to implement the callback functionality. Finally, you update
your workflow prototype by adding the details of these AWS service integrations.

Next steps 24

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

Topics

• Step 1: Create an Amazon SNS topic that receives the callback token

• Step 2: Create a Lambda function to handle the callback

• Step 3: Update the workflow – add if-else condition logic in the Choice state

• Next steps

Step 1: Create an Amazon SNS topic that receives the callback token

To implement the human interaction step, you’ll publish to an Amazon Simple Notification Service
topic and pass the callback task token to this topic. The callback task will pause the workflow
execution until the task token is returned with a payload.

1. Open the Amazon SNS console and create a Standard topic type. For information about
creating a topic, see Create an Amazon SNS topic in the Amazon Simple Notification Service
Developer Guide.

2. Specify the topic name as TaskTokenTopic.

3. Make sure to copy the topic ARN and save it in a text file. You’ll need the topic ARN while
specifying the service integration for the Wait for human approval state. The following is an
example topic ARN:

arn:aws:sns:us-east-2:123456789012:TaskTokenTopic

4. Create an email-based subscription for the topic and then confirm your subscription. For
information about subscribing to a topic, see Create a subscription to the topic in the Amazon
Simple Notification Service Developer Guide.

Step 2: Create a Lambda function to handle the callback

To handle callback functionality, you'll define a Lambda function and add the Amazon SNS topic
you created in Step 1 as a trigger for this function. When you publish to the Amazon SNS topic
with a task token, the Lambda function is invoked with the payload of the published message.

• Step 2.1: Create the Lambda function to handle callback

• Step 2.2: Add the Amazon SNS topic as a trigger for the Lambda function

• Step 2.3: Provide necessary permissions to the Lambda function IAM role

Step 1: Create an Amazon SNS topic that receives the callback token 25

https://console.aws.amazon.com/sns/home
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-create-queue
https://docs.aws.amazon.com/sns/latest/dg/sns-getting-started.html#step-send-message

AWS Step Functions Developer Guide

Step 2.1: Create the Lambda function to handle callback

In this function, you'll process the credit limit approval request and return the request’s result as
successful with the SendTaskSuccess API call. This Lambda function will also return the task
token it received from the Amazon SNS topic.

For simplicity, the Lambda function used for the human interaction step automatically approves
any task and returns the task token with a SendTaskSuccess API call. You can name the Lambda
function as callback-human-approval.

1. In a new tab or window, open the Lambda console and create a Node.js 16.x Lambda function
titled callback-human-approval. For information about creating a Lambda function using
the console, see Create a Lambda function in the console in the AWS Lambda Developer Guide.

2. On the callback-human-approval page, replace the existing code in the Code source area with
the following code.

// Sample Lambda function that will automatically approve any task whenever a
 message is published to an Amazon SNS topic by Step Functions.

console.log('Loading function');
const AWS = require('aws-sdk');
const resultMessage = "Successful";

exports.handler = async (event, context) => {
 const stepfunctions = new AWS.StepFunctions();

 let message = JSON.parse(event.Records[0].Sns.Message);
 let taskToken = message.TaskToken;

 console.log('Message received from SNS:', message);
 console.log('Task token: ', taskToken);

 // Return task token to Step Functions

 let params = {
 output: JSON.stringify(resultMessage),
 taskToken: taskToken
 };

 console.log('JSON Returned to Step Functions: ', params);
 let myResult = await stepfunctions.sendTaskSuccess(params).promise();
 console.log('State machine - callback completed..');

Step 2: Create a Lambda function to handle the callback 26

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html#getting-started-create-function

AWS Step Functions Developer Guide

 return myResult;

};

3. Keep this window open and perform the steps in the next section for further actions.

Step 2.2: Add the Amazon SNS topic as a trigger for the Lambda function

When you add the Amazon SNS topic you created in Step 1 of this tutorial as a trigger for the
Lambda function you created in Step 2.1 of this tutorial, the Lambda function is triggered each
time you publish to the Amazon SNS topic. When you publish to the Amazon SNS topic with a
task token, the Lambda function is invoked with the payload of the published message. For more
information about configuring triggers for Lambda functions, see Configuring triggers in the AWS
Lambda Developer Guide.

1. In the Function overview section of the callback-human-approval Lambda function,
choose Add trigger.

2. From the drop-down list of triggers, choose SNS as the trigger.

3. For SNS topic, start typing the name of the Amazon SNS topic you created in Step 1 of this
tutorial, and choose it from the dropdown list that appears.

4. Choose Add.

5. Keep this window open and perform the steps in the next section for further actions.

Step 2.3: Provide necessary permissions to the Lambda function IAM role

You must provide the callback-human-approval Lambda function the permissions to access
Step Functions for returning the task token along with the SendTaskSucess API call.

1. On the callback-human-approval page, choose the Configuration tab, and then choose
Permissions.

2. Under Execution role, choose the Role name to navigate to the AWS Identity and Access
Management console’s Roles page.

3. To add the required permission, choose Add permissions, and then choose Attach policies.

4. In the search box, type AWSStepFunctions and then press Enter.

Step 2: Create a Lambda function to handle the callback 27

https://docs.aws.amazon.com/lambda/latest/dg/configuration-function-common.html#configuration-common-triggers

AWS Step Functions Developer Guide

5. Choose AWSStepFunctionsFullAccess and then scroll down to choose Attach policies. This
adds the policy containing the necessary permission for the callback-human-approval
Lambda function role.

Step 3: Update the workflow – add if-else condition logic in the Choice
state

In the Step Functions console, define conditional logic for your workflow using the Choice state.
If the output returned by the RandomNumberforCredit Lambda function is less than 5000, the
requested credit is auto-approved. If the output returned is greater than or equal to 5000, the
workflow execution proceeds to the human interaction step for the credit limit approval.

In the Choice state, you use a comparison operator to compare an input variable with a specific
value. You can specify the input variable as the execution input while starting a state machine
execution or use the output of a preceding step as input for the current step. By default, the
output of a step is stored in a variable called Payload. To use the Payload variable’s value for
comparison in the Choice state, use the $ syntax as shown in the following procedure.

For information about how information flows from one state to another and specifying input
and output in your workflows, see Tutorial 7: Configure input and output and Input and Output
Processing in Step Functions.

Note

If the Choice state uses an input variable specified in the state machine execution input
for comparison, use the $.variable_name syntax to perform the comparison. For
example, to compare a variable, such as myAge, use the syntax $.myAge.

Because in this step, the Choice state will receive input from the Get credit limit state, you’ll use
the $ syntax for the Choice state configuration. To explore how the result of the state machine
execution differs when you use the $.variable_name syntax in the Choice state configuration
to refer to the output from a preceding step, see the Debugging the invalid path Choice state error
section in Tutorial 8.

Step 3: Update the workflow – add if-else condition logic in the Choice state 28

AWS Step Functions Developer Guide

To add if-else condition logic using the Choice state

1. Open the Step Functions console window containing the workflow prototype you created in
Tutorial 1: Create the prototype for your state machine.

2. Choose the Credit applied >= 5000? state and in the Configuration tab, specify the
conditional logic as follows:

a. Under Choice Rules, choose the Edit icon in the Rule #1 tile to define the first choice rule.

b. Choose Add conditions.

c. In the Conditions for rule #1 dialog box, for Variable, enter $.

d. For Operator, choose is less than.

e. For Value, choose Number constant, and then enter 5000 in the field next to the Value
dropdown list.

f. Choose Save conditions.

g. For the Then next state is: dropdown list, choose Auto-approve limit.

h. Choose Add new choice rule, and then define the second choice rule when the credit
amount is greater than or equal to 5000 by repeating substeps 2.b through 2.f. For
Operator, choose is greater than or equal to.

i. For the Then next state is: dropdown list, choose Wait for human approval.

j. In the Default rule box, choose the Edit icon to define the default choice rule, and then
choose Wait for human approval from the Default state dropdown list. You define the
Default rule to specify the next state to transition to if none of the Choice state conditions
evaluate to true or false.

3. Configure the Wait for human approval state as follows:

a. In the Configuration tab, for Topic, start typing the name of the Amazon SNS topic,
TaskTokenTopic, and choose the name as it appears in the dropdown list.

b. For Message, choose Enter message from the dropdown list. In the Message field, you
specify the message you want to publish to the Amazon SNS topic. For this tutorial, you
publish a task token as the message.

A task token lets you pause a Standard type Step Functions workflow until an external
process is complete and the task token is returned. When you specify a Task state as a
callback task by specifying the .waitForTaskToken service integration pattern, a task
token is generated and placed in the context object when the task is started. The context

Step 3: Update the workflow – add if-else condition logic in the Choice state 29

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

object is an internal JSON structure that is available during an execution, and contains
information about your state machine and its execution. For more information about
context objects, see Context object.

c. In the box that appears, enter the following as message:

{
 "TaskToken.$": "$$.Task.Token"
}

d. Choose the Wait for callback checkbox.

e. Choose Done in the dialog box that appears.

4. Keep this window open and proceed to the next tutorial for further actions.

Next steps

In the next tutorial, you’ll learn how to perform multiple tasks in parallel.

Tutorial 4: Define multiple tasks to perform in parallel

So far you’ve learned how to run workflows in a sequential manner. However, you can run two
or more steps in parallel using the Parallel state. A Parallel state causes the interpreter to
execute each branch concurrently.

Both the branches in a Parallel state receive the same input, but each branch processes the
parts of input specific for it. Step Functions waits until each branch completes executing before
proceeding to the next step.

In this tutorial, you use the Parallel state to concurrently check the identity and address of the
applicant.

Topics

• Step 1: Create the Lambda functions to perform the required checks

• Step 2: Update the workflow – Add parallel tasks to be performed

Next steps 30

AWS Step Functions Developer Guide

Step 1: Create the Lambda functions to perform the required checks

This credit card application workflow invokes two Lambda functions inside the Parallel state to
check the applicant’s identity and address. These checks are performed simultaneously using the
Parallel state. The state machine completes execution only after both the parallel branches have
completed executing.

To create the check-identity and check-address Lambda functions

1. In a new tab or window, open the Lambda console and create two Node.js 16.x Lambda
functions titled check-identity and check-address. For information about creating a
Lambda function using the console, see Create a Lambda function in the console in the AWS
Lambda Developer Guide.

2. Open the check-identity function page and replace the existing code in the Code source area
with the following code:

const ssnRegex = /^\d{3}-?\d{2}-?\d{4}$/;
const emailRegex = /^[a-zA-Z0-9._-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,4}$/;

class ValidationError extends Error {
 constructor(message) {
 super(message);
 this.name = "CustomValidationError";
 }
}

exports.handler = async (event) => {
 const {
 ssn,
 email
 } = event;
 console.log(`SSN: ${ssn} and email: ${email}`);

 const approved = ssnRegex.test(ssn) && emailRegex.test(email);

 if (!approved) {
 throw new ValidationError("Check Identity Validation Failed");
 }

 return {
 statusCode: 200,

Step 1: Create the Lambda functions to perform the required checks 31

https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/getting-started.html#getting-started-create-function

AWS Step Functions Developer Guide

 body: JSON.stringify({
 approved,
 message: `Identity validation ${approved ? 'passed' : 'failed'}`
 })
 }
};

3. Open the check-address function page and replace the existing code in the Code source area
with the following code:

class ValidationError extends Error {
 constructor(message) {
 super(message);
 this.name = "CustomAddressValidationError";
 }
}

exports.handler = async event => {
 const {
 street,
 city,
 state,
 zip
 } = event;
 console.log(`Address information: ${street}, ${city}, ${state} - ${zip}`);

 const approved = [street, city, state, zip].every(i => i?.trim().length > 0);

 if (!approved) {
 throw new ValidationError("Check Address Validation Failed");
 }

 return {
 statusCode: 200,
 body: JSON.stringify({
 approved,
 message: `Address validation ${ approved ? 'passed' : 'failed'}`
 })
 }
};

4. For both the Lambda functions, from the Function overview section, copy their respective
Amazon Resource Names (ARN) and save them in a text file. You’ll need the function ARNs

Step 1: Create the Lambda functions to perform the required checks 32

AWS Step Functions Developer Guide

while specifying the service integration for the Verify applicant's identity and address state.
The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:HelloWorld

Step 2: Update the workflow – Add parallel tasks to be performed

In the Step Functions console, you’ll update your workflow to specify service integration with the
check-identity and check-address Lambda functions you created in Step 1.

To add parallel tasks in the workflow

1. Open the Step Functions console window containing the workflow prototype you created in
Tutorial 1: Create the prototype for your state machine.

2. Choose the Verify identity state, and in the Configuration tab, do the following:

a. For Integration type, keep the default selection of Optimized.

Note

Using Step Functions, you can integrate with other AWS services and orchestrate
them in your workflows. For more information about service integrations and their
types, see Using AWS Step Functions with other services

b. For Function name, choose the check-identity Lambda function from the dropdown list.

c. For Payload, choose Enter payload and then replace the example payload with the
following as payload:

{
 "email": "janedoe@example.com",
 "ssn": "012-00-0000"
}

3. Choose the Verify address state, and in the Configuration tab, do the following:

a. For Integration type, keep the default selection of Optimized.

b. For Function name, choose the check-address Lambda function from the dropdown list.

Step 2: Update the workflow – Add parallel tasks to be performed 33

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

c. For Payload, choose Enter payload and then replace the example payload with the
following as payload:

{
 "street": "123 Any St",
 "city": "Any Town",
 "state": "AT",
 "zip": "01000"
}

4. Choose Next.

Tutorial 5: Concurrently iterate over a collection of items

In the previous tutorial, you learned how to run separate branches of steps in parallel using the
Parallel state. Using the Map state, you can run a set of workflow steps for each item in a
dataset. The Map state's iterations run in parallel, which makes it possible to process a dataset
quickly.

By including the Map state in your workflows you can perform tasks, such as data processing, using
one of the two Map state processing modes: Inline mode and Distributed mode. To configure a
Map state, you define an ItemProcessor, which contains JSON objects that specify the Map state
processing mode and its definition. In this tutorial, you run the Map state in the default Inline
mode, which supports up to 40 concurrent iterations. When you run the Map state in Distributed
mode, it supports up to 10,000 parallel child workflow executions.

When your workflow execution enters the Map state, it will iterate over a JSON array specified in
the state input. For each array item, its corresponding iteration runs in the context of the workflow
that contains the Map state. When all iterations are complete, the Map state will return an array
containing the output for each item processed by the ItemProcessor.

In this tutorial, you learn how to use the Map state in Inline mode to fetch the credit score of an
applicant by iterating over a set of credit bureaus. To do this, you first fetch the names of all the
credit bureaus stored in a Amazon DynamoDB table, and then use the Map state to loop through
the credit bureau list to fetch the applicant’s credit score reported by each of these bureaus.

Topics

• Step 1: Create a DynamoDB table to store the name of all credit bureaus

Tutorial 5: Concurrently iterate over a collection of items 34

AWS Step Functions Developer Guide

• Step 2: Update the state machine – Fetch results from the DynamoDB table

• Step 3: Create a Lambda function that returns the credit scores for all credit bureaus

• Step 4: Update the state machine – add a Map state to iteratively fetch credit scores

Step 1: Create a DynamoDB table to store the name of all credit
bureaus

In this step, you create a table named GetCreditBureau using the DynamoDB console. The table
uses the string attribute Name as the Partition key. In this table, you store the name of all the
credit bureaus from which you want to fetch the applicant’s credit score.

1. Sign in to the AWS Management Console and open the DynamoDB console at https://
console.aws.amazon.com/dynamodb/.

2. In the navigation pane on the console, choose Tables, and then choose Create table.

3. Enter the table details as follows:

a. For the Table name, enter GetCreditBureau.

b. For the Partition key, enter Name.

c. Keep the default selections, and choose Create table.

4. After your table is created, in the Tables list, choose the GetCreditBureau table.

5. Choose Actions, and then choose Create item.

6. For Value, enter the name of a credit bureau. For example, CredTrack.

7. Choose Create item.

8. Repeat this process and create items for names of other credit bureaus. For example, KapFinn
and CapTrust.

Step 2: Update the state machine – Fetch results from the DynamoDB
table

In the Step Functions console, you’ll add a Task state and use the AWS SDK integration to fetch
the names of credit bureaus from the DynamoDB table you created in Step 1. You’ll use the output
of this step as the input for the Map state you’ll add later in your workflow in this tutorial.

1. Open the CreditCardWorkflow state machine to update it.

Step 1: Create a DynamoDB table to store the name of all credit bureaus 35

AWS Step Functions Developer Guide

2. Choose the Get list of credit bureaus state.

3. For API Parameters, specify the Table name value as GetCreditBureau.

Step 3: Create a Lambda function that returns the credit scores for all
credit bureaus

In this step, you create a Lambda function that receives the names of all credit bureaus as input,
and returns the credit score of the applicant for each of these credit bureaus. This Lambda function
will be invoked from the Map state you’ll add in your workflow in Step 4 of this tutorial.

1. Create a Node.js 16.x Lambda function and name it get-credit-score.

2. On the page titled get-credit-score, paste the following code into the Code source area.

function getScore(arr) {
 let temp;
 let i = Math.floor((Math.random() * arr.length));
 temp = arr[i];
 console.log(i);
 console.log(temp);
 return temp;
}

const arrScores = [700, 820, 640, 460, 726, 850, 694, 721, 556];

exports.handler = (event, context, callback) => {
 let creditScore = getScore(arrScores);
 callback(null, "Credit score pulled is: " + creditScore + ".");
};

3. Deploy the Lambda function.

Step 4: Update the state machine – add a Map state to iteratively fetch
credit scores

In the Step Functions console, you add a Map state that invokes the get-credit-score Lambda
function to check the applicant’s credit score for all the credit bureaus returned by the Get list of
credit bureaus state.

Step 3: Create a Lambda function that returns the credit scores for all credit bureaus 36

AWS Step Functions Developer Guide

1. Open the CreditCardWorkflow state machine to update it.

2. Choose the Get scores from all credit bureaus state.

3. In the Configuration tab, choose Provide a path to items array and then enter $.Items.

4. Choose Get all scores step inside the Map state.

5. In the Configuration tab, make sure for Integration type, Optimized is selected.

6. For Function name, start typing the name of the get-credit-score Lambda function and
choose it from the dropdown list that appears.

7. For Payload, choose No payload.

Tutorial 6: Save the workflow and execute the state machine

Now that you’ve configured the resources of all the AWS services you’re using in the workflow
prototype, you can save it as a Step Functions state machine and start executing it.

Topics

• Step 1: Review the auto-generated state machine definition and save the state machine

• Step 2: Add the remaining IAM policies

• Step 3: Run the state machine

Step 1: Review the auto-generated state machine definition and save
the state machine

As you drag and drop states from the Flow tab onto the canvas in Workflow Studio to build the
workflow prototype, Step Functions automatically composes the Amazon States Language (ASL)
definition of your workflow in real-time. You can edit this definition as required in the Code editor.

To review the ASL definition and save the state machine

1. (Optional) Choose Definition on the Inspector to view the state machine's Amazon States
Language (ASL) definition, which is automatically generated based on your selections in the
Actions and Flow tabs and Inspector panel.

Tutorial 6: Save the workflow and execute the state machine 37

AWS Step Functions Developer Guide

Tip

To edit the definition, you can open the code editor by choosing Code on top of the
page. For this tutorial, continue with the auto-generated definition.

2. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name CreditCardWorkflow.

3. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

Note

(Optional) Step Functions automatically creates an execution role for the state
machine with the least privileges required to invoke the RandomNumberforCredit
Lambda function and publish to the Amazon SNS topic.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 1: Save the state machine 38

AWS Step Functions Developer Guide

Step 2: Add the remaining IAM policies

Because Step Functions doesn't auto-generate the permissions to invoke the Lambda functions
used in the Parallel state, you need to add the necessary policy.

To add the remaining policy

1. On the CreditCardWorkflow page, choose the IAM role for your state machine to navigate to
the IAM console. You’ll add the necessary permissions for the remaining Lambda functions on
this page.

2. Choose Add permissions, and then choose Attach policies.

3. In the search box, type AWSLambdaRole and then press Enter.

4. Choose AWSLambdaRole and then choose Attach policies. This policy is now added to the
execution role of your state machine. This policy lets you invoke any Lambda function in your
state machine.

Step 3: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

To execute the state machine

1. On the CreditCardWorkflow page, choose Start execution.

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Note

Step Functions allows you to create names for state machines, executions,
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

Step 2: Add the remaining IAM policies 39

AWS Step Functions Developer Guide

Note

You don’t need to provide any input to execute this state machine. But you can
specify an execution input, if required, in the Input area of the Start execution
dialog box for other state machines. For an example of how to provide execution
input to a state machine, see Step 4: Start a new execution of the Learn to use the
AWS Step Functions Workflow Studio tutorial.

b. Choose Start execution.

3. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution Details page – Interface overview.

Tutorial 7: Configure input and output

A Step Functions execution receives a JSON text as input and passes that input to the first state
in the workflow. Individual states in a workflow receive JSON data as input and usually pass
JSON data as output to the next state. By default, data passes from one state to the next state
in the workflow unless you’ve configured the input and/or output for one or more states in the
workflow. Understanding how the information flows from state to another, and learning how to
filter and manipulate this data, is key to effectively designing and implementing workflows in Step
Functions.

Step Functions provides multiple filters to control the input and output data flow between states.
The following filters are available for use in your workflows:

Note

Based on your use case, you may not need to apply all of these filters in your workflows.

Tutorial 7: Configure input and output 40

AWS Step Functions Developer Guide

InputPath

Selects WHAT portion of the entire input payload to be used as a task’s input. If you specify this
field, Step Functions first applies this field.

Parameters

Specifies HOW the input should look like before invoking the task. With the Parameters
field, you can create a collection of key-value pairs that are passed as input to an AWS service
integration, such as an AWS Lambda function. These values can be static, or dynamically
selected from either the state input or the workflow context object.

ResultSelector

Determines WHAT to choose from a task's output. With the ResultSelector field, you can
create a collection of key-value pairs that replace a state’s result and pass that collection to
ResultPath.

ResultPath

Determines WHERE to put a task's output. Use the ResultPath to determine whether the
output of a state is a copy of its input, the result it produces, or a combination of both.

OutputPath

Determines WHAT to send to the next state. With OutputPath, you can filter out unwanted
information, and pass only the portion of JSON data that you care about.

Tip

The Parameters and ResultSelector filters work by constructing JSON, whereas the
InputPath and OutputPath filters work by filtering specific nodes within a JSON data
object, and the ResultPath filter works by creating a field under which the output can be
added.

In this tutorial, you learn how to perform the following tasks:

• Select specific portions of the raw input using the InputPath filter

• Manipulate the selected input using the Parameters filter

• Configure output using the ResultSelector, ResultPath, and OutputPath filters

Tutorial 7: Configure input and output 41

AWS Step Functions Developer Guide

For more information about configuring input and output in your workflows, see Input and Output
Processing in Step Functions.

Select specific portions of the raw input using the InputPath filter

Use the InputPath filter to select a specific portion of the input payload.

If you don't specify InputPath, its value defaults to $, which causes the state's task to refer to the
entire raw input instead of a specific portion.

To learn how to use the InputPath filter, perform the following steps:

• Step 1: Create a state machine

• Step 2: Run the state machine

• Step 3: Use the InputPath filter to select specific parts of an execution input

Step 1: Create a state machine

Important

Ensure that your state machine is under the same AWS account and Region as the Lambda
function you created earlier.

1. Use the Parallel state example you learned about in Tutorial 4 to create a new state
machine. Make sure your workflow prototype looks similar to the following prototype.

2. Configure the integrations for the check-identity and check-address Lambda functions.
For information about creating the Lambda functions and using them in your state machine,
see Step 1: Create the Lambda functions to perform the required checks and Step 2: Update
the workflow – Add parallel tasks to be performed.

3. For Payload, make sure you keep the default selection of Use state input as payload.

4. Choose Next and then do the steps 1 through 3 in Step 1: Save the state machine of
Tutorial 5 to create a new state machine. For this tutorial, name your state machine
WorkflowInputOutput.

Step 2: Run the state machine

1. On the WorkflowInputOutput page, choose Start execution.

Select specific portions of the raw input using the InputPath filter 42

AWS Step Functions Developer Guide

2. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work with
Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose a name
that uses only ASCII characters.

3. In the Input area, add the following JSON data as the execution input.

{
 "data": {
 "firstname": "Jane",
 "lastname": "Doe",
 "identity": {
 "email": "jdoe@example.com",
 "ssn": "123-45-6789"
 },
 "address": {
 "street": "123 Main St",
 "city": "Columbus",
 "state": "OH",
 "zip": "43219"
 }
 }
}

4. Choose Start execution.

5. The state machine execution results in an error because you’ve not specified what parts of the
execution input the check-identity and check-address Lambda functions must use to
perform the required identity and address verification.

6. Continue to Step 3 of this tutorial to fix the error.

Step 3: Use the InputPath filter to select specific parts of an execution input

1. On the Execution Details page, choose Edit state machine.

Select specific portions of the raw input using the InputPath filter 43

AWS Step Functions Developer Guide

2. To verify the applicant’s identity as mentioned in the execution input provided in Step 2: Run
the state machine, edit the Verify identity task definition as follows:

...
{
 "StartAt": "Verify identity",
 "States": {
 "Verify identity": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "InputPath": "$.data.identity",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:check-
identity:$LATEST"
 },
 "End": true
 }
 }
 }
 ...

Consequently, the following JSON data becomes available as input for the check-identity
function.

{
 "email": "jdoe@example.com",
 "ssn": "123-45-6789"
 }

3. To verify the applicant’s address as mentioned in the execution input, edit the Verify
address task definition as follows:

...
{
 "StartAt": "Verify address",
 "States": {
 "Verify address": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "InputPath": "$.data.address",
 "Parameters": {

Select specific portions of the raw input using the InputPath filter 44

AWS Step Functions Developer Guide

 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-east-1:123456789012:function:check-
address:$LATEST"
 },
 "End": true
 }
 }
 }
 ...

Consequently, the following JSON data becomes available as input for the check-address
function.

{
 "street": "123 Main St",
 "city": "Columbus",
 "state": "OH",
 "zip": "43219"
}

4. Choose Start execution. The state machine execution now completes successfully.

Manipulate the selected input using the Parameters filter

While the InputPath filter helps you limit the raw JSON input you provide, using the
Parameters filter, you can pass a collection of key-value pairs as input. These key-value pairs can
either be static values that you define in your state machine definition, or values that are selected
from the raw input using InputPath.

In your workflows, Parameters are applied after InputPath. Parameters help you specify
how the underlying task accepts its input payload. For example, if the check-address
Lambda function accepts a string parameter as input instead of the JSON data, you can use the
Parameters filter to transform the input.

In the following example, the Parameters filter receives the input you selected using InputPath
in Step 3: Use the InputPath filter to select specific parts of an execution input and applies the
intrinsic function States.Format on the input items to create a string called addressString.
Intrinsic functions help you perform basic data processing operations on a given input. For more
information, see Intrinsic functions.

Manipulate the selected input using the Parameters filter 45

AWS Step Functions Developer Guide

"Parameters": {
 "addressString.$": "States.Format('{}. {}, {} - {}', $.street, $.city, $.state,
 $.zip)"
 }

Consequently, the following string gets created and is provided to the check-address Lambda
function as input.

{
 "addressString": "123 Main St. Columbus, OH - 43219"
}

Configure output using the ResultSelector, ResultPath, and OutputPath
filters

When the check-address Lambda function is invoked in the WorkflowInputOutput state
machine, the function returns an output payload after performing the address verification. On the
Execution Details page, choose the Verify address step and view the output payload inside Task
result on the Step details pane.

{
 "ExecutedVersion": "$LATEST",
 "Payload": {
 "statusCode": 200,
 "body": "{\"approved\":true,\"message\":\"identity validation passed\"}"
 },
 "SdkHttpMetadata": {
 "AllHttpHeaders": {
 "X-Amz-Executed-Version": [
 "$LATEST"
],
 ...
 ...
 "StatusCode": 200
 }

Using ResultSelector

Now if you need to provide the result of the identity and address verification checks to the
following states in your workflow, you can select the Payload.body node in the output JSON and

Configure output using the ResultSelector, ResultPath, and OutputPath filters 46

AWS Step Functions Developer Guide

use the StringToJson intrinsic function in the ResultSelector filter to format the data as
required.

ResultSelector selects what is needed from the task output. In the following example,
ResultSelector takes the string in $.Payload.body and applies the States.StringToJson
intrinsic function to convert the string to JSON and puts the resulting JSON inside the identity
node.

"ResultSelector": {
 "identity.$": "States.StringToJson($.Payload.body)"
 }

Consequently, the following JSON data is created.

{
 "identity": {
 "approved": true,
 "message": "Identity validation passed"
 }
 }

As you work with these input and output filters, you can also encounter runtime errors arising
because of specifying invalid JSON path expressions. For more information, see.

Using ResultPath

You can specify a location in the initial input payload to save a state’s task processing result using
the ResultPath field. If you don't specify ResultPath, its value defaults to $, which causes the
initial input payload to be replaced with the raw task result. If you specify ResultPath as null,
the raw result is discarded and the initial input payload becomes the effective output.

If you apply the ResultPath field on the JSON data created using the ResultSelector field, the
task result is added inside the results node in the input payload as shown in the following example:

{
 "data": {
 "firstname": "Jane",
 "lastname": "Doe",
 "identity": {
 "email": "jdoe@example.com",

Configure output using the ResultSelector, ResultPath, and OutputPath filters 47

AWS Step Functions Developer Guide

 "ssn": "123-45-6789"
 },
 "address": {
 "street": "123 Main St",
 "city": "Columbus",
 "state": "OH",
 "zip": "43219"
 },
 "results": {
 "identity": {
 "approved": true
 }
 }
}

Using OutputPath

You can select a portion of the state output after the application of ResultPath to pass to the
next state. This enables you to filter out unwanted information, and pass only the portion of JSON
that you care about.

In the following example, the OutputPath field saves the state output inside the results node:
"OutputPath": "$.results". Consequently, the final output of the state, which you can pass
to the next state is as follows:

{
 "addressResult": {
 "approved": true,
 "message": "address validation passed"
 },
 "identityResult": {
 "approved": true,
 "message": "identity validation passed"
 }
}

Using console features to visualize the input and output data flows

You can visualize the input and output data flow between the states in your workflows using the
Step Functions console’s Data flow simulator or Advanced view option in the Execution Details
page.

Configure output using the ResultSelector, ResultPath, and OutputPath filters 48

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

Tutorial 8: Debug errors in the console

As you work with Step Functions, you might encounter runtime errors arising because of reasons,
such as:

• An invalid JSON path for the Variable field in the Choice state.

• State machine definition issue, such as no matching rule defined for a Choice state.

• Invalid JSON path expressions while applying filters to manipulate input and output.

• Task failures because of a Lambda function exception.

• IAM permission errors.

In this tutorial, you’ll learn about debugging some of these errors using the Step Functions console.
For more information, see Error handling in Step Functions.

Topics

• Debugging the invalid path Choice state error

• Debugging JSON path expression errors while applying input and output filters

Debugging the invalid path Choice state error

When you specify an incorrect or unresolvable JSON path in the Variable field of the Choice
state or do not define a matching rule in the Choice state, you receive an error while running your
workflow.

To illustrate the invalid path error, this tutorial introduces a Choice state error in your workflow.
You’ll use the CreditCardWorkflow state machine and edit its definition to introduce the error.

1. Open the Step Functions console and then choose the CreditCardWorkflow state machine.

2. Choose Edit to edit the state machine definition. Make the change highlighted in the following
code to your state machine definition.

{
 "Comment": "A description of my state machine",
 "StartAt": "Get credit limit",
 "States": {
 "Get credit limit": {
 ...

Tutorial 8: Debug errors in the console 49

AWS Step Functions Developer Guide

 ...
 },
 "Credit applied >= 5000?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.Payload",
 "NumericLessThan": 5000,
 "Next": "Auto-approve limit"
 },
 {
 "Variable": "$.Payload",
 "NumericGreaterThanEquals": 5000,
 "Next": "Wait for human approval"
 }
],
 "Default": "Wait for human approval"
 },
 ...
 ...
 }
}

3. Choose Save and then choose Save anyway.

4. Run the state machine.

5. On the Execution Details page of your state machine execution, do one of the following:

a. Choose Cause on the error message to view the reason for execution failure.

b. Choose Show step detail on the error message to view the step that caused the error.

6. In the Input & Output tab of the Step details section, choose the Advanced view toggle
button to see the input and output data transfer path for a selected state.

7. In Graph view, make sure Credit applied >= 5000? is selected and do the following:

a. View the state’s input value in Input box.

b. Choose the Definition tab, and notice the JSON path specified for the Variable field.

The input value for the Credit applied >= 5000? state is a numeric value, while you’ve
specified the JSON path for the input value as $.Payload. During the state machine
execution, the Choice state cannot resolve this JSON path because it doesn’t exist.

8. Edit the state machine to specify the Variable field value as $.

Debugging the invalid path Choice state error 50

AWS Step Functions Developer Guide

{
 "Comment": "A description of my state machine",
 "StartAt": "Get credit limit",
 "States": {
 "Get credit limit": {
 ...
 ...
 },
 "Credit applied >= 5000?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$",
 "NumericLessThan": 5000,
 "Next": "Auto-approve limit"
 },
 {
 "Variable": "$",
 "NumericGreaterThanEquals": 5000,
 "Next": "Wait for human approval"
 }
],
 "Default": "Wait for human approval"
 },
 ...
 ...
 }
}

Debugging JSON path expression errors while applying input and
output filters

As you work with the input and output filters, you might encounter runtime errors arising because
of specifying invalid JSON path expressions.

The following example uses the WorkflowInputOutput state machine you created in Tutorial 5 and
demonstrates a scenario where you use the ResultSelector filter to select portions of the task
output.

Debugging JSON path expression errors while applying input and output filters 51

AWS Step Functions Developer Guide

1. Apply the ResultSelector filter to choose a portion of the task output for the Verify
identity step. To do this, edit your state machine definition as follows:

{
 "StartAt": "Verify identity",
 "States": {
 "Verify identity": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:check-
identity",
 "Payload": {
 "email": "jdoe@example.com",
 "ssn": "123-45-6789"
 }
 },
 ...
 ...
 "ResultSelector": {
 "identity.$": "$.Payload.body.message"
 }",
 "End": true
 }
 }
}

2. Run the state machine.

3. On the Execution Details page of your state machine execution, do the following:

a. Choose Cause on the error message to view the reason for execution failure.

b. Choose Show step detail on the error message to view the step that caused the error.

4. In the error message, note that the contents of the $.Payload.body node is an escaped JSON
string. The error has occurred because you cannot refer to a string using the JSON path
notation.

5. To refer to the $.Payload.body.message node, do the following:

a. Use the States.StringToJSON intrinsic function to first convert the string to a JSON
format.

b. Specify the JSON path for the $.Payload.body.message node inside the intrinsic function.

Debugging JSON path expression errors while applying input and output filters 52

AWS Step Functions Developer Guide

"ResultSelector": {
 "identity.$":"States.StringToJson($.Payload.body.message)"
}

6. Run the state machine again.

Debugging JSON path expression errors while applying input and output filters 53

AWS Step Functions Developer Guide

Use cases

AWS Step Functions lets you build visual workflows that help rapidly translate business
requirements into applications. Step Functions manages state, checkpoints and restarts for you,
and provides built-in capabilities to automatically deal with errors and exceptions. To better
understand the capabilities Step Functions can provide you with, read through the following use
cases:

Topics

• Data processing

• Machine learning

• Microservice orchestration

• IT and security automation

Data processing

As the volume of data grows, coming from increasingly diverse sources, organizations find they
need to move quickly to process this data to ensure they make faster, well-informed business
decisions. To process data at scale, organizations need to elastically provision resources to manage
the information they receive from mobile devices, applications, satellites, marketing and sales,
operational data stores, infrastructure, and more.

Step Functions provides the scalability, reliability, and availability needed to successfully manage
your data processing workflows. You can manage millions of concurrent executions with Step
Functions as it scales horizontally and provides fault-tolerant workflows. Process data faster using
parallel executions like Step Functions’ Parallel state type, or dynamic parallelism using its Map
state type. As part of your workflow, you can use the Map state to iterate over objects in a static
data store like an Amazon S3 bucket. Step Functions also lets you easily retry failed executions, or
choose a specific way to handle errors without the need to manage a complex process.

Depending upon your data processing needs, Step Functions directly integrates with other data
processing services provided by AWS such as AWS Batch for batch processing, Amazon EMR for big
data processing, AWS Glue for data preparation, Athena for data analysis, and AWS Lambda for
compute.

Data processing 54

AWS Step Functions Developer Guide

Examples of the types of data processing workflows that customers use Step Functions to
accomplish include:

File, video, and image processing

• Take a collection of video files and convert them to other sizes or resolutions that are ideal for
the device they will be displayed on, such as mobile phones, laptops, or a television.

• Take a large collection of photos uploaded by users and convert them into thumbnails or various
resolution images that can then be displayed on users’ websites.

• Take semi-structured data, such as a CSV file, and combine it with unstructured data, such as an
invoice, to produce a business report that is sent to business stakeholders monthly.

• Take earth observing data collected from satellites, convert it into formats that align with each
other and then add other data sources collected on earth for additional insight.

• Take the transportation logs from various modes of transportation for products and look for
optimizations using Monte Carlo Simulations and then send reports back to the organizations
and people that are relying on you to ship their goods.

Coordinate extract, transform and load (ETL) jobs:

• Combine sales opportunity records with marketing metric datasets through a series of data
preparation steps using AWS Glue, and produce business intelligence reports that can be used
across the organization.

• Create, start, and terminate an Amazon EMR cluster for big data processing.

Batch processing and High Performance Computing (HPC) workloads:

• Build a genomics secondary analysis pipeline that processes raw whole genome sequences
into variant calls. Align raw files to a reference sequence, and call variants on a specified list of
chromosomes using dynamic parallelism.

• Find efficiencies in the production of your next mobile device or other electronics by simulating
various layouts using different electric and chemical compounds. Run large batch processing of
your workloads through various simulations to get the optimal design.

Data processing 55

AWS Step Functions Developer Guide

Machine learning

Machine learning enables organizations to quickly analyze collected data to identify patterns,
then make decisions with minimal human intervention. Machine learning starts with an initial set
of data, known as training data. This training data helps to increase a machine learning model’s
prediction accuracy, and serves as the foundation through which this model learns. Once the model
is considered accurate enough to meet business needs, it’s deployed to production. The AWS Step
Functions Data Science Software Development Kit (SDK) is an open-source library that allows you
to easily create workflows that preprocess data, train and then publish your models using Amazon
SageMaker and Step Functions.

Preprocessing existing data sets is how an organization often creates training data. This method
adds information, such as by labeling objects in an image, annotating text or processing audio. To
preprocess data you can use AWS Glue, or you can create an SageMaker notebook instance that
runs the Jupyter Notebook app. Once your data is ready, it can be uploaded to Amazon S3 for
easy access. As machine learning models are trained, you can make adjustments to each model’s
parameters to improve accuracy until it’s ready for deployment.

Step Functions lets you to orchestrate end-to-end machine learning workflows on SageMaker.
These workflows can include data preprocessing, post-processing, feature engineering, data
validation, and model evaluation. Once the model has been deployed to production, you can refine
and test new approaches to continually improve business outcomes. You can create production-
ready workflows directly in Python, or you can use the Step Functions Data Science SDK to copy
that workflow, experiment with new options, and place the refined workflow in production.

Some types of machine learning workflows that customers use Step Functions for include:

Fraud Detection

• Identify and prevent fraudulent transactions, such as credit fraud, from occurring.

• Detect and prevent account takeovers using trained machine learning models.

• Identify promotional abuse, including the creation of fake accounts, so you can quickly take
action.

Personalization and Recommendations

• Recommend products to targeted customers based upon what is predicted to attract their
interest.

Machine learning 56

AWS Step Functions Developer Guide

• Predict whether a customer will upgrade their account from a free tier to a paid subscription.

Data Enrichment

• Use data enrichment as part of preprocessing to provide better training data for more accurate
machine learning models.

• Annotate text and audio excerpts to add syntactical information, such as sarcasm and slang.

• Label additional objects in images to provide critical information for the model to learn from,
such as whether an object is an apple, a basketball, a rock, or an animal.

Microservice orchestration

Microservice architecture breaks applications into loosely coupled services. Benefits include
improved scalability, increased resiliency, and faster time to market. Each microservice is
independent, making it easy to scale up a single service or function without needing to scale
the entire application. Individual services are loosely coupled, letting independent teams focus
on a single business process, without the need for them to understand the entire application.
Microservices also let you choose which individual components suit your business needs, giving you
the flexibility to change your selection without rewriting your entire workflow. Different teams can
use the programming languages and frameworks of their choice to work with their microservice,
and this microservice can still communicate with any other in the application through application
programming interfaces (APIs).

Step Functions gives you several ways to manage your microservice workflows. For long-running
workflows you can use Standard Workflows with the AWS Fargate integration to orchestrate
applications running in containers. For short-duration, high-volume workflows that require an
immediate response, Synchronous Express Workflows are ideal. These can be used for web-based
or mobile applications, which often have workflows of short duration, and require the completion
of a series of steps before they return a response. You can directly trigger a Synchronous Express
Workflows from Amazon API Gateway, and the connection is held open until the workflow
completes or timeouts. For short duration workflows that do not require an immediate response,
Step Functions provides Asynchronous Express Workflows.

Examples of some API orchestrations that use Step Functions include:

Synchronous or real-time workflows

Microservice orchestration 57

AWS Step Functions Developer Guide

• Change a value in a record such as updating an employee’s last name and have the change
immediately visible on the screen.

• Update an order during checkout, such as adding, removing, or changing the quantity of an item,
then immediately reflect the update back to the customer.

• Run a quick processing job and immediately return the result back to the requester.

Container Orchestration

• Run jobs on Kubernetes with Amazon Elastic Kubernetes Service or on Amazon Elastic Container
Service (ECS) with Fargate and integrate with other AWS services, such as sending notifications
with Amazon SNS, as part of the same workflow.

IT and security automation

IT automation can help manage increasingly complex and time-consuming operations, such as
upgrading and patching software, deploying security updates to address vulnerabilities, selecting
infrastructure, synchronizing data, routing support tickets, and more. The automation of repetitive
and time-consuming tasks can allow your organization to complete routine operations quickly and
consistently on a large scale. This lets you focus on strategic work such as feature development,
complex support requests, and innovation while meeting these growing demands.

Step Functions allows you to create workflows that automatically scale to meet the needs of your
business without requiring manual intervention. In cases where an error occurs in your workflow, it
often does not require manual intervention. Step Functions lets you automatically retry failed tasks
and an exponential backoff that can manage errors in your workflow.

There can be situations where human intervention is required before the workflow can progress.
For example, approving a substantial credit increase may require human approval. To manage this,
you can define branching logic in Step Functions, so that only requests over a defined amount
require human approval, while all other requests are automatically completed. In cases where
human approval is required, Step Functions lets you pause the workflow at a specific step, wait for
a response, and then continue the workflow once the response is received.

Some examples of the types of automation workflows that customers use Step Functions for
include:

IT automation

IT and security automation 58

AWS Step Functions Developer Guide

• Auto-remediate incidents like opening an SSH port, low disk space, or when a public access is
given to a Amazon S3 bucket.

• Automate the deployment of AWS CloudFormation StackSets

Security automation

• Automate the response to a scenario where a user and user access key has been exposed.

• Auto-remediate security incident responses according to policy actions defined such as
restricting actions to specific ARNs or applying other actions.

• Warn employees of phishing emails within seconds of receipt.

Human Approval

• Automate the training of machine learning model and then require manual approval of the
model by a data scientist before then automatically deploying or rejecting the model based upon
the response received.

• Automate the routing of customer feedback received based on sentiment analysis so that those
with a negative sentiment are immediately escalated for manual review.

IT and security automation 59

AWS Step Functions Developer Guide

How Step Functions works

This section describes important concepts to help you get familiar with AWS Step Functions and
understand how it works.

Topics

• Standard vs. Express Workflows

• States

• Map state processing modes

• Tolerated failure threshold for Distributed Map state

• Transitions

• State Machine Data

• Input and Output Processing in Step Functions

• Data flow simulator

• Manage continuous deployments with versions and aliases

• Executions in Step Functions

• Error handling in Step Functions

• Invoke AWS Step Functions from other services

• Read Consistency in Step Functions

• Tagging in Step Functions

Standard vs. Express Workflows

When you create a state machine, you select a Type of either Standard or Express. The default
Type for state machines is Standard. A state machine whose Type is Standard is called a Standard
workflow and a state machine whose Type is Express is called an Express workflow.

For both Standard and Express workflows, you define your state machine using the Amazon States
Language. Your state machine executions will behave differently depending on the Type that you
select.

Standard vs. Express Workflows 60

AWS Step Functions Developer Guide

Important

The Type you choose can't be changed after you create the state machine.

Note

If you define your state machines outside the Step Functions' console, such as in an editor
of your choice, you must save your state machine definitions with the extension .asl.json.

Standard Workflows are ideal for long-running (up to one year), durable, and auditable workflows.
You can retrieve the full execution history using the Step Functions API for up to 90 days after your
execution completes. Standard Workflows follow an exactly-once model, where your tasks and
states are never run more than once, unless you have specified Retry behavior in ASL. This makes
Standard Workflows suited to orchestrating non-idempotent actions, such as starting an Amazon
EMR cluster or processing payments. Standard Workflow executions are billed according to the
number of state transitions processed.

Express Workflows are ideal for high-volume, event-processing workloads such as IoT data
ingestion, streaming data processing and transformation, and mobile application backends.
They can run for up to five minutes. Express Workflows employ an at-least-once model, where
an execution could potentially run more than once. This makes Express Workflows ideal for
orchestrating idempotent actions such as transforming input data and storing by way of a PUT
action in Amazon DynamoDB. Express Workflow executions are billed by the number of executions,
the duration of execution, and the memory consumed while the execution ran.

Standard and Express Workflows can automatically start in response to events such as HTTP
requests from Amazon API Gateway (fully-managed APIs at scale), IoT Rules and over 140 other
event sources in Amazon EventBridge.

Tip

To deploy an example of an Express workflow to your AWS account, see Module 7 - API
Gateway, Parallel State, Express workflows of The AWS Step Functions Workshop.

Standard vs. Express Workflows 61

https://docs.aws.amazon.com/step-functions/latest/apireference
https://s12d.com/sfn-ws-standard-express-workflows
https://s12d.com/sfn-ws-standard-express-workflows

AWS Step Functions Developer Guide

For information about the console experience for Standard and Express Workflow executions, see
Standard and Express Workflow executions in the console.

Standard vs Express Workflows

 Standard Workflows Express Workflows:
Synchronous and Asynchron
ous

Maximum duration One year Five minutes

Supported execution start
rate

For information about
quotas related to supported
execution start rate, see
Quotas related to API action
throttling.

For information about
quotas related to supported
execution start rate, see
Quotas related to API action
throttling.

Supported state transition
rate

For information about quotas
related to supported state
transition rate, see Quotas
related to state throttling.

No limit

Pricing Priced by number of state
transitions. A state transition
is counted each time a step in
your execution is completed.

Priced by the number of
executions you run, their
duration, and memory
consumption.

Execution history Executions can be listed and
described with Step Functions
APIs. Executions can be
visually debugged through
the console. They can also be
inspected in CloudWatch Logs
by enabling logging on your
state machine.

For more information
about debugging Standard
Workflow executions in the

Unlimited execution history,
that is, as many execution
history entries are maintained
as you can generate within a
5-minute period.

Executions can be inspected
in CloudWatch Logs or the
Step Functions console by
enabling logging on your
state machine.

Standard vs. Express Workflows 62

https://aws.amazon.com/step-functions/pricing

AWS Step Functions Developer Guide

 Standard Workflows Express Workflows:
Synchronous and Asynchron
ous

console, see Standard and
Express Workflow execution
s in the console and Viewing
and debugging executions.

For more information about
debugging Express Workflow
executions in the console,
see Standard and Express
Workflow executions in the
console and Viewing and
debugging executions.

Execution semantics Exactly-once workflow
execution.

Asynchronous Express
Workflows: At-least-once
workflow execution.

Synchronous Express
Workflows: At-most-once
workflow execution.

Service integrations Supports all service integrati
ons and patterns.

Supports all service integrati
ons.

Note

Express Workflows
do not support
Job-run (.sync) or
Callback (.waitForT
askToken) service
integration patterns.

Step Functions activities Supports Step Functions
activities.

Doesn't support Step
Functions activities.

Standard vs. Express Workflows 63

AWS Step Functions Developer Guide

Synchronous and Asynchronous Express Workflows

There are two types of Express Workflows that you can choose: Asynchronous Express Workflows
and Synchronous Express Workflows.

• Asynchronous Express Workflows return confirmation that the workflow was started, but don't
wait for the workflow to complete. To get the result, you must poll the service's CloudWatch
Logs. You can use Asynchronous Express Workflows when you don't require immediate response
output, such as messaging services or data processing that other services don't depend on. You
can start Asynchronous Express Workflows in response to an event, by a nested workflow in Step
Functions, or by using the StartExecution API call.

• Synchronous Express Workflows start a workflow, wait until it completes, and then return
the result. Synchronous Express Workflows can be used to orchestrate microservices. With
Synchronous Express Workflows, you can develop applications without the need to develop
additional code to handle errors, retries, or run parallel tasks. You can run Synchronous
Express Workflows invoked from Amazon API Gateway, AWS Lambda, or by using the
StartSyncExecution API call.

Note

If you run Step Functions Express Workflows synchronously from the console, the
StartSyncExecution request elapses after 60 seconds. To run the Express Workflows
synchronously for a duration of up to five minutes, make the StartSyncExecution
request using the AWS SDK or AWS Command Line Interface (AWS CLI) instead of the
Step Functions console.

Synchronous Express execution API calls don't contribute to existing account capacity limits.
Step Functions provides capacity on demand and automatically scales with sustained workload.
Surges in workload may be throttled until capacity is available.

Synchronous and Asynchronous Express Workflows 64

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions Developer Guide

Execution guarantees

Standard Workflows Asynchronous
Express Workflows

Synchronous Express
Workflows

Exactly-once
workflow execution

At-least-once
workflow execution

At-most-once
workflow execution

Execution state
internally persists
between state
transitions.

Execution state
doesn't persist
between state
transitions.

Execution state
doesn't persist
between state
transitions.

Automatically returns
an idempotent
response on starting
an execution with
the same name
as a currently-
running workflow.
The new workflow
doesn't start and an
exception is thrown
once the currently-
running workflow is
complete.

Idempotency is
not automatically
managed. Starting
multiple workflows
with the same name
results in concurrent
executions. Can result
in loss of internal
workflow state if
state machine logic is
not idempotent.

Idempotency is
not automatically
managed. Step
Functions waits
once an execution
starts and returns
the state machine's
result on completio
n. Workflows don't
restart if an exception
occurs.

Execution history
data removed after
90 days. Workflow
names can be reused
after removal of out-
of-date execution
 data.

To meet complianc
e, organizational, or
regulatory requireme

Execution history is
not captured by Step
Functions. Logging
must be enabled
through Amazon
CloudWatch Logs.

Execution history is
not captured by Step
Functions. Logging
must be enabled
through Amazon
CloudWatch Logs.

Execution guarantees 65

AWS Step Functions Developer Guide

Standard Workflows Asynchronous
Express Workflows

Synchronous Express
Workflows

nts, you can reduce
the execution history
retention period to
30 days by sending
a quota request.
To do this, use the
AWS Support Center
Console and create a
new case.

Cost-optimization using Express Workflows

Step Functions determines pricing for Standard and Express workflows based on the workflow type
you use to build your state machines. To optimize the cost of your serverless workflows, you can
follow either or both of the following recommendations:

Topics

• Tip #1: Nesting Express workflows inside Standard workflows

• Tip #2: Convert Standard workflows into Express workflows

For information about how choosing a Standard or Express workflow type affects billing, see AWS
Step Functions Pricing.

Tip #1: Nesting Express workflows inside Standard workflows

Step Functions runs workflows that have a finite duration and number of steps. Some workflows
may complete execution within a short period of time. Others may require a combination of both
long-running and high-event-rate workflows. With Step Functions, you can build large, complex
workflows out of multiple smaller, simpler workflows.

For example, to build an order processing workflow, you can include all non-idempotent actions
into a Standard workflow. This could include actions, such as approving order through human
interaction and processing payments. You can then combine a series of idempotent actions, such
as sending payment notifications and updating product inventory, in an Express workflow. You can

Cost-optimization using Express Workflows 66

https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

nest this Express workflow within the Standard workflow. In this example, the Standard workflow is
known as the parent state machine. The nested Express workflow is known as a child state machine.

Tip #2: Convert Standard workflows into Express workflows

You can convert your existing Standard workflows into Express workflows if they meet the
following requirements:

• The workflow must complete its execution within five minutes.

• The workflow conforms to an at-least-once execution model. This means that each step in the
workflow may run more than exactly once.

• The workflow doesn't use the .waitForTaskToken or .sync service integration patterns.

Important

Express workflows use Amazon CloudWatch Logs to record execution histories. You will
incur additional costs when using CloudWatch Logs.

To convert a Standard workflow into an Express workflow using the console

1. Open the Step Functions console.

2. On the State machines page, choose a Standard type state machine to open it.

Tip

From the Any type dropdown list, choose Standard to filter the state machines list and
view only Standard workflows.

3. Choose Copy to new.

Workflow Studio opens in Design mode displaying workflow of the state machine you
selected.

4. (Optional) Update the workflow design.

5. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

Cost-optimization using Express Workflows 67

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

6. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

Make sure that for Type, you choose Express. Keep all the other default selections on State
machine settings.

Note

If you're converting a Standard workflow previously defined in AWS CDK or AWS SAM,
you must change the value of Type and Resource name.

7. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

For more information about best practices and guidelines when you manage cost-optimization for
your workflows, see Building cost-effective AWS Step Functions workflows.

States

Individual states can make decisions based on their input, perform actions from those inputs, and
pass output to other states. In AWS Step Functions, you define your workflows in the Amazon
States Language (ASL). The Step Functions console provides a graphical representation of your
state machine to help visualize your application's logic.

Note

If you define your state machines outside the Step Functions' console, such as in an editor
of your choice, you must save your state machine definitions with the extension .asl.json.

States 68

https://docs.aws.amazon.com/cdk/api/latest/docs/aws-stepfunctions-readme.html
https://aws.amazon.com/blogs/compute/building-cost-effective-aws-step-functions-workflows/

AWS Step Functions Developer Guide

States are elements in your state machine. A state is referred to by its name, which can be any
string, but which must be unique within the scope of the entire state machine.

States can perform a variety of functions in your state machine:

• Do some work in your state machine (a Task state)

• Make a choice between branches of execution (a Choice state)

• Stop an execution with a failure or success (a Fail or Succeed state)

• Pass its input to its output, or inject some fixed data into the workflow (a Pass state)

• Provide a delay for a certain amount of time, or until a specified date and time (a Wait state)

• Begin parallel branches of execution (a Parallel state)

• Dynamically iterate steps (a Map state)

The following is an example state named HelloWorld that performs an AWS Lambda function.

"HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
 "Next": "AfterHelloWorldState",
 "Comment": "Run the HelloWorld Lambda function"
}

States share many common features:

• A Type field indicating what type of state it is.

• An optional Comment field to hold a human-readable comment about, or description of, the
state.

• Each state (except a Succeed or Fail state) requires a Next field or, alternatively, can become a
terminal state by specifying an End field.

Note

A Choice state may have more than one Next, but only one within each Choice Rule. A
Choice state can't use End.

Certain state types require additional fields, or may redefine common field usage.

States 69

AWS Step Functions Developer Guide

After you have created and run Standard workflows, you can access information about each state,
its input and output, when it was active and for how long, by viewing the Execution Details page
in the Step Functions console. For more information, see Viewing and debugging executions on the
Step Functions console.

After you have created and run Express Workflow executions and if logging is enabled for your
Express Workflow, you can access information about the execution in Amazon CloudWatch Logs or
the Step Functions console. For more information, see Viewing and debugging executions on the
Step Functions console.

Topics

• Amazon States Language

• Pass

• Task

• Choice

• Wait

• Succeed

• Fail

• Parallel

• Map

Amazon States Language

The Amazon States Language is a JSON-based, structured language used to define your state
machine, a collection of states, that can do work (Task states), determine which states to
transition to next (Choice states), stop an execution with an error (Fail states), and so on.

For more information, see the Amazon States Language Specification and Statelint, a tool that
validates Amazon States Language code.

To create a state machine on the Step Functions console using Amazon States Language, see
Getting Started.

Amazon States Language 70

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://states-language.net/spec.html
https://github.com/awslabs/statelint
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Note

If you define your state machines outside the Step Functions' console, such as in an editor
of your choice, you must save your state machine definitions with the extension .asl.json.

Example Amazon States Language Specification

{
 "Comment": "An example of the Amazon States Language using a choice state.",
 "StartAt": "FirstState",
 "States": {
 "FirstState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_NAME",
 "Next": "ChoiceState"
 },
 "ChoiceState": {
 "Type" : "Choice",
 "Choices": [
 {
 "Variable": "$.foo",
 "NumericEquals": 1,
 "Next": "FirstMatchState"
 },
 {
 "Variable": "$.foo",
 "NumericEquals": 2,
 "Next": "SecondMatchState"
 }
],
 "Default": "DefaultState"
 },

 "FirstMatchState": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:OnFirstMatch",
 "Next": "NextState"
 },

 "SecondMatchState": {
 "Type" : "Task",

Amazon States Language 71

AWS Step Functions Developer Guide

 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:OnSecondMatch",
 "Next": "NextState"
 },

 "DefaultState": {
 "Type": "Fail",
 "Error": "DefaultStateError",
 "Cause": "No Matches!"
 },

 "NextState": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FUNCTION_NAME",
 "End": true
 }
 }
}

Topics

• State machine structure

• Intrinsic functions

• Common State Fields

State machine structure

State machines are defined using JSON text that represents a structure containing the following
fields.

Comment (Optional)

A human-readable description of the state machine.

StartAt (Required)

A string that must exactly match (is case sensitive) the name of one of the state objects.

 TimeoutSeconds (Optional)

The maximum number of seconds an execution of the state machine can run. If it runs longer
than the specified time, the execution fails with a States.Timeout Error Name.

Amazon States Language 72

AWS Step Functions Developer Guide

Version (Optional)

The version of the Amazon States Language used in the state machine (default is "1.0").

States (Required)

An object containing a comma-delimited set of states.

The States field contains States.

{
 "State1" : {
 },

 "State2" : {
 },
 ...
}

A state machine is defined by the states it contains and the relationships between them.

The following is an example.

{
 "Comment": "A Hello World example of the Amazon States Language using a Pass state",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Pass",
 "Result": "Hello World!",
 "End": true
 }
 }
}

When an execution of this state machine is launched, the system begins with the state referenced
in the StartAt field ("HelloWorld"). If this state has an "End": true field, the execution stops
and returns a result. Otherwise, the system looks for a "Next": field and continues with that
state next. This process repeats until the system reaches a terminal state (a state with "Type":
"Succeed", "Type": "Fail", or "End": true), or a runtime error occurs.

The following rules apply to states within a state machine:

Amazon States Language 73

AWS Step Functions Developer Guide

• States can occur in any order within the enclosing block, but the order in which they're listed
doesn't affect the order in which they're run. The contents of the states determines this order.

• Within a state machine, there can be only one state that's designated as the start state,
designated by the value of the StartAt field in the top-level structure. This state is the one that
is executed first when the execution starts.

• Any state for which the End field is true is considered an end (or terminal) state. Depending
on your state machine logic—for example, if your state machine has multiple branches of
execution—you might have more than one end state.

• If your state machine consists of only one state, it can be both the start state and the end
state.

Intrinsic functions

The Amazon States Language provides several intrinsic functions, also known as intrinsics, that
help you perform basic data processing operations without using a Task state. Intrinsics are
constructs that look similar to functions in programming languages. They can be used to help
payload builders process the data going to and from the Resource field of a Task state.

In Amazon States Language, intrinsic functions are grouped into the following categories, based on
the type of data processing task that you want to perform:

• Intrinsics for arrays

• Intrinsics for data encoding and decoding

• Intrinsic for hash calculation

• Intrinsics for JSON data manipulation

• Intrinsics for Math operations

• Intrinsic for String operation

• Intrinsic for unique identifier generation

• Intrinsic for generic operation

Note

• To use intrinsic functions you must specify .$ in the key value in your state machine
definitions, as shown in the following example:

Amazon States Language 74

AWS Step Functions Developer Guide

"KeyId.$": "States.Array($.Id)"

• You can nest up to 10 intrinsic functions within a field in your workflows. The following
example shows a field named myArn that includes nine nested intrinsic functions:

"myArn.$": "States.Format('{}.{}.{}',
 States.ArrayGetItem(States.StringSplit(States.ArrayGetItem(States.StringSplit($.ImageRecipe.Arn,
 '/'), 2), '.'), 0),
 States.ArrayGetItem(States.StringSplit(States.ArrayGetItem(States.StringSplit($.ImageRecipe.Arn,
 '/'), 2), '.'), 1))"

Tip

If you use Step Functions in a local development environment, make sure you're using
version 1.12.0 or higher to be able to include all the intrinsic functions in your workflows.

Fields that support intrinsic functions

The following table shows which fields support intrinsic functions for each state.

Fields that support intrinsic functions

State

Pass Task Choice Wait Succeed Fail Parallel Map

InputPath

Parameter
s

✓ ✓ ✓ ✓

ResultSel
ector

✓ ✓ ✓

ResultPat
h

Amazon States Language 75

https://hub.docker.com/layers/amazon/aws-stepfunctions-local/1.12.0/images/sha256-23df777f44837432603a22eaab9ca473718579cacb289ee9d2431ab431c7cedf?context=explore

AWS Step Functions Developer Guide

State

Pass Task Choice Wait Succeed Fail Parallel Map

OutputPat
h

Variable

<Comparis
on
Operator>
Path

TimeoutSe
condsPath

Heartbeat
SecondsPa
th

Credentia
ls

✓

Intrinsics for arrays

Use the following intrinsics for performing array manipulations.

States.Array

The States.Array intrinsic function takes zero or more arguments. The interpreter returns a
JSON array containing the values of the arguments in the order provided. For example, given
the following input:

{
 "Id": 123456
}

You could use

Amazon States Language 76

AWS Step Functions Developer Guide

"BuildId.$": "States.Array($.Id)"

Which would return the following result:

“BuildId”: [123456]

States.ArrayPartition

Use the States.ArrayPartition intrinsic function to partition a large array. You can also use
this intrinsic to slice the data and then send the payload in smaller chunks.

This intrinsic function takes two arguments. The first argument is an array, while the second
argument defines the chunk size. The interpreter chunks the input array into multiple arrays of
the size specified by chunk size. The length of the last array chunk may be less than the length
of the previous array chunks if the number of remaining items in the array is smaller than the
chunk size.

Input validation

• You must specify an array as the input value for the function's first argument.

• You must specify a non-zero, positive integer for the second argument representing the
chunk size value.

If you specify a non-integer value for the second argument, Step Functions will round it off to
the nearest integer.

• The input array can't exceed Step Functions' payload size limit of 256 KB.

For example, given the following input array:

{"inputArray": [1,2,3,4,5,6,7,8,9] }

You could use the States.ArrayPartition function to divide the array into chunks of four
values:

"inputArray.$": "States.ArrayPartition($.inputArray,4)"

Which would return the following array chunks:

Amazon States Language 77

AWS Step Functions Developer Guide

{"inputArray": [[1,2,3,4], [5,6,7,8], [9]] }

In the previous example, the States.ArrayPartition function outputs three arrays. The
first two arrays each contain four values, as defined by the chunk size. A third array contains the
remaining value and is smaller than the defined chunk size.

States.ArrayContains

Use the States.ArrayContains intrinsic function to determine if a specific value is present
in an array. For example, you can use this function to detect if there was an error in a Map state
iteration.

This intrinsic function takes two arguments. The first argument is an array, while the second
argument is the value to be searched for within the array.

Input validation

• You must specify an array as the input value for function's first argument.

• You must specify a valid JSON object as the second argument.

• The input array can't exceed Step Functions' payload size limit of 256 KB.

For example, given the following input array:

{
 "inputArray": [1,2,3,4,5,6,7,8,9],
 "lookingFor": 5
}

You could use the States.ArrayContains function to find the lookingFor value within the
inputArray:

"contains.$": "States.ArrayContains($.inputArray, $.lookingFor)"

Because the value stored in lookingFor is included in the inputArray,
States.ArrayContains returns the following result:

{"contains": true }

Amazon States Language 78

AWS Step Functions Developer Guide

States.ArrayRange

Use the States.ArrayRange intrinsic function to create a new array containing a specific
range of elements. The new array can contain up to 1000 elements.

This function takes three arguments. The first argument is the first element of the new array,
the second argument is the final element of the new array, and the third argument is the
increment value between the elements in the new array.

Input validation

• You must specify integer values for all of the arguments.

If you specify a non-integer value for any of the arguments, Step Functions will round it off to
the nearest integer.

• You must specify a non-zero value for the third argument.

• The newly generated array can't contain more than 1000 items.

For example, the following use of the States.ArrayRange function will create an array with
a first value of 1, a final value of 9, and values in between the first and final values increase by
two for each item:

"array.$": "States.ArrayRange(1, 9, 2)"

Which would return the following array:

{"array": [1,3,5,7,9] }

States.ArrayGetItem

This intrinsic function returns a specified index's value. This function takes two arguments. The
first argument is an array of values and the second argument is the array index of the value to
return.

For example, use the following inputArray and index values:

{
 "inputArray": [1,2,3,4,5,6,7,8,9],
 "index": 5

Amazon States Language 79

AWS Step Functions Developer Guide

}

From these values, you can use the States.ArrayGetItem function to return the value in the
index position 5 within the array:

"item.$": "States.ArrayGetItem($.inputArray, $.index)"

In this example, States.ArrayGetItem would return the following result:

{ "item": 6 }

States.ArrayLength

The States.ArrayLength intrinsic function returns the length of an array. It has one
argument, the array to return the length of.

For example, given the following input array:

{
 "inputArray": [1,2,3,4,5,6,7,8,9]
}

You can use States.ArrayLength to return the length of inputArray:

"length.$": "States.ArrayLength($.inputArray)"

In this example, States.ArrayLength would return the following JSON object that
represents the array length:

{ "length": 9 }

States.ArrayUnique

The States.ArrayUnique intrinsic function removes duplicate values from an array and
returns an array containing only unique elements. This function takes an array, which can be
unsorted, as its sole argument.

For example, the following inputArray contains a series of duplicate values:

Amazon States Language 80

AWS Step Functions Developer Guide

{"inputArray": [1,2,3,3,3,3,3,3,4] }

You could use the States.ArrayUnique function as and specify the array you want to remove
duplicate values from:

"array.$": "States.ArrayUnique($.inputArray)"

The States.ArrayUnique function would return the following array containing only unique
elements, removing all duplicate values:

{"array": [1,2,3,4] }

Intrinsics for data encoding and decoding

Use the following intrinsic functions to encode or decode data based on the Base64 encoding
scheme.

States.Base64Encode

Use the States.Base64Encode intrinsic function to encode data based on MIME Base64
encoding scheme. You can use this function to pass data to other AWS services without using an
AWS Lambda function.

This function takes a data string of up to 10,000 characters to encode as its only argument.

For example, consider the following input string:

{"input": "Data to encode" }

You can use the States.Base64Encode function to encode the input string as a MIME
Base64 string:

"base64.$": "States.Base64Encode($.input)"

The States.Base64Encode function returns the following encoded data in response:

{"base64": "RGF0YSB0byBlbmNvZGU=" }

Amazon States Language 81

AWS Step Functions Developer Guide

States.Base64Decode

Use the States.Base64Decode intrinsic function to decode data based on MIME Base64
decoding scheme. You can use this function to pass data to other AWS services without using a
Lambda function.

This function takes a Base64 encoded data string of up to 10,000 characters to decode as its
only argument.

For example, given the following input:

{"base64": "RGF0YSB0byBlbmNvZGU=" }

You can use the States.Base64Decode function to decode the base64 string to a human-
readable string:

"data.$": "States.Base64Decode($.base64)"

The States.Base64Decode function would return the following decoded data in response:

{"data": "Decoded data" }

Intrinsic for hash calculation

States.Hash

Use the States.Hash intrinsic function to calculate the hash value of a given input. You can
use this function to pass data to other AWS services without using a Lambda function.

This function takes two arguments. The first argument is the data you want to calculate the
hash value of. The second argument is the hashing algorithm to use to perform the hash
calculation. The data you provide must be an object string containing 10,000 characters or less.

The hashing algorithm you specify can be any of the following algorithms:

• MD5

• SHA-1

• SHA-256

Amazon States Language 82

AWS Step Functions Developer Guide

• SHA-384

• SHA-512

For example, you can use this function to calculate the hash value of the Data string using the
specified Algorithm:

{
 "Data": "input data",
 "Algorithm": "SHA-1"
}

You can use the States.Hash function to calculate the hash value:

"output.$": "States.Hash($.Data, $.Algorithm)"

The States.Hash function returns the following hash value in response:

{"output": "aaff4a450a104cd177d28d18d7485e8cae074b7" }

Intrinsics for JSON data manipulation

Use these functions to perform basic data processing operations on JSON objects.

States.JsonMerge

Use the States.JsonMerge intrinsic function to merge two JSON objects into a single object.
This function takes three arguments. The first two arguments are the JSON objects that you
want to merge. The third argument is a boolean value of false. This boolean value determines
if the deep merging mode is enabled.

Currently, Step Functions only supports the shallow merging mode; therefore, you must specify
the boolean value as false. In the shallow mode, if the same key exists in both JSON objects,
the latter object's key overrides the same key in the first object. Additionally, objects nested
within a JSON object aren't merged when you use shallow merging.

For example, you can use the States.JsonMerge function to merge the following JSON
objects that share the key a.

{

Amazon States Language 83

AWS Step Functions Developer Guide

 "json1": { "a": {"a1": 1, "a2": 2}, "b": 2 },
 "json2": { "a": {"a3": 1, "a4": 2}, "c": 3 }
}

You can specify the json1 and json2 objects as inputs in the States.JsonMerge function to
merge them together:

"output.$": "States.JsonMerge($.json1, $.json2, false)"

The States.JsonMerge returns the following merged JSON object as result. In the merged
JSON object output, the json2 object's key a replaces the json1 object's key a. Also, the
nested object in json1 object's key a is discarded because shallow mode doesn't support
merging nested objects.

{
 "output": {
 "a": {"a3": 1, "a4": 2},
 "b": 2,
 "c": 3
 }
}

 States.StringToJson

The States.StringToJson function takes a reference path to an escaped JSON string as its
only argument.

The interpreter applies a JSON parser and returns the input's parsed JSON form. For example,
you can use this function to escape the following input string:

{
 "escapedJsonString": "{\"foo\": \"bar\"}"
}

Use the States.StringToJson function and specify the escapedJsonString as the input
argument:

States.StringToJson($.escapedJsonString)

Amazon States Language 84

AWS Step Functions Developer Guide

The States.StringToJson function returns the following result:

{ "foo": "bar" }

 States.JsonToString

The States.JsonToString function takes only one argument, which is the Path that contains
the JSON data to return as an unescaped string. The interpreter returns a string that contains
JSON text representing the data specified by the Path. For example, you can provide the
following JSON Path containing an escaped value:

{
 "unescapedJson": {
 "foo": "bar"
 }
}

Provide the States.JsonToString function with the data contained within unescapedJson:

States.JsonToString($.unescapedJson)

The States.JsonToString function returns the following response:

{\"foo\": \"bar\"}

Intrinsics for Math operations

Use these functions to perform Math operations.

States.MathRandom

Use the States.MathRandom intrinsic function to return a random number between the
specified start number (inclusive) and end number (exclusive).

You can use this function to distribute a specific task between two or more resources.

This function takes three arguments. The first argument is the start number, the second
argument is the end number, and the last argument controls the seed value. The seed value

Amazon States Language 85

AWS Step Functions Developer Guide

argument is optional. If you use this function with the same seed value, it returns an identical
number.

Important

Because the States.MathRandom function doesn't return cryptographically
secure random numbers, we recommend that you don't use it for security sensitive
applications.

Input validation

• You must specify integer values for the start number and end number arguments.

If you specify a non-integer value for the start number or end number argument, Step
Functions will round it off to the nearest integer.

For example, to generate a random number between one and 999, you can use the following
input values:

{
 "start": 1,
 "end": 999
}

To generate the random number, provide the start and end values to the
States.MathRandom function:

"random.$": "States.MathRandom($.start, $.end)"

The States.MathRandom function returns the following random number as a response:

{"random": 456 }

States.MathAdd

Use the States.MathAdd intrinsic function to return the sum of two numbers. For example,
you can use this function to increment values inside a loop without invoking a Lambda function.

Amazon States Language 86

AWS Step Functions Developer Guide

Input validation

• You must specify integer values for all the arguments.

If you specify a non-integer value for one or both the arguments, Step Functions will round it
off to the nearest integer.

• You must specify integer values in the range of -2147483648 and 2147483647.

For example, you can use the following values to subtract one from 111:

{
 "value1": 111,
 "step": -1
}

Then, use the States.MathAdd function defining value1 as the starting value, and step as
the value to increment value1 by:

"value1.$": "States.MathAdd($.value1, $.step)"

The States.MathAdd function would return the following number in response:

{"value1": 110 }

Intrinsic for String operation

States.StringSplit

Use the States.StringSplit intrinsic function to split a string into an array of values. This
function takes two arguments. The first argument is a string and the second argument is the
delimiting character that the function will use to divide the string.

Example - Split an input string using a single delimiting character

For this example, use States.StringSplit to divide the following inputString, which
contains a series of comma separated values:

{

Amazon States Language 87

AWS Step Functions Developer Guide

 "inputString": "1,2,3,4,5",
 "splitter": ","
}

Use the States.StringSplit function and define inputString as the first argument, and
the delimiting character splitter as the second argument:

"array.$": "States.StringSplit($.inputString, $.splitter)"

The States.StringSplit function returns the following string array as result:

{"array": ["1","2","3","4","5"] }

Example - Split an input string using multiple delimiting characters

For this example, use States.StringSplit to divide the following inputString, which
contains multiple delimiting characters:

{
 "inputString": "This.is+a,test=string",
 "splitter": ".+,="
}

Use the States.StringSplit function as follows:

{
 "myStringArray.$": "States.StringSplit($.inputString, $.splitter)"
}

The States.StringSplit function returns the following string array as result:

{"myStringArray": [
 "This",
 "is",
 "a",
 "test",
 "string"
]}

Amazon States Language 88

AWS Step Functions Developer Guide

Intrinsic for unique identifier generation

States.UUID

Use the States.UUID intrinsic function to return a version 4 universally unique identifier (v4
UUID) generated using random numbers. For example, you can use this function to call other
AWS services or resources that need a UUID parameter or insert items in a DynamoDB table.

The States.UUID function is called with no arguments specified:

"uuid.$": "States.UUID()"

The function returns a randomly generated UUID, as in the following example:

{"uuid": "ca4c1140-dcc1-40cd-ad05-7b4aa23df4a8" }

Intrinsic for generic operation

States.Format

Use the States.Format intrinsic function to construct a string from both literal and
interpolated values. This function takes one or more arguments. The value of the first argument
must be a string, and may include zero or more instances of the character sequence {}. There
must be as many remaining arguments in the intrinsic's invocation as there are occurrences of
{}. The interpreter returns the string defined in the first argument with each {} replaced by the
value of the positionally-corresponding argument in the Intrinsic invocation.

For example, you can use the following inputs of an individual's name, and a template
sentence to have their name inserted into:

{
 "name": "Arnav",
 "template": "Hello, my name is {}."
}

Use the States.Format function and specify the template string and the string to insert in
place of the {} characters:

States.Format('Hello, my name is {}.', $.name)

Amazon States Language 89

AWS Step Functions Developer Guide

or

States.Format($.template, $.name)

With either of the previous inputs, the States.Format function returns the completed string
in response:

Hello, my name is Arnav.

Reserved characters in intrinsic functions

The following characters are reserved for intrinsic functions, and must be escaped with a backslash
('\') if you want them to appear in the Value: '{}, and \.

If the character \ needs to appear as part of the value without serving as an escape character, you
must escape it with a backslash. The following escaped character sequences are used with intrinsic
functions:

• The literal string \' represents '.

• The literal string \{ represents {.

• The literal string \} represents }.

• The literal string \\ represents \.

In JSON, backslashes contained in a string literal value must be escaped with another backslash.
The equivalent list for JSON is:

• The escaped string \\\' represents \'.

• The escaped string \\\{ represents \{.

• The escaped string \\\} represents \}.

• The escaped string \\\\ represents \\.

Note

If an open escape backslash \ is found in the intrinsic invocation string, the interpreter will
return a runtime error.

Amazon States Language 90

AWS Step Functions Developer Guide

Common State Fields

Type (Required)

The state's type.

Next

The name of the next state that is run when the current state finishes. Some state types, such as
Choice, allow multiple transition states.

If the current state is the last state in your workflow, or a terminal state, such as Succeed or Fail,
you don't need to specify the Next field.

End

Designates this state as a terminal state (ends the execution) if set to true. There can be any
number of terminal states per state machine. Only one of Next or End can be used in a state.
Some state types, such as Choice, or terminal states, such as Succeed and Fail, don't support or
use the End field.

Comment (Optional)

Holds a human-readable description of the state.

InputPath (Optional)

A path that selects a portion of the state's input to be passed to the state's task for processing.
If omitted, it has the value $ which designates the entire input. For more information, see Input
and Output Processing.

OutputPath (Optional)

A path that selects a portion of the state's output to be passed to the next state. If omitted, it
has the value $ which designates the entire output. For more information, see Input and Output
Processing.

Pass

A Pass state ("Type": "Pass") passes its input to its output, without performing work. Pass
states are useful when constructing and debugging state machines.

Pass 91

AWS Step Functions Developer Guide

You can also use a Pass state to transform JSON state input using filters, and then pass the
transformed data to the next state in your workflows. For information about input transformation,
see InputPath, Parameters and ResultSelector.

In addition to the common state fields, Pass states allow the following fields.

Result (Optional)

Refers to the output of a virtual task that is passed on to the next state. If you include
the ResultPath field in your state machine definition, Result is placed as specified by
ResultPath and passed on to the next state.

ResultPath (Optional)

Specifies where to place the output (relative to the input) of the virtual task specified in
Result. The input is further filtered as specified by the OutputPath field (if present) before
being used as the state's output. For more information, see Input and Output Processing.

Parameters (Optional)

Creates a collection of key-value pairs that will be passed as input. You can specify Parameters
as a static value or select from the input using a path. For more information, see InputPath,
Parameters and ResultSelector.

Pass State Example

Here is an example of a Pass state that injects some fixed data into the state machine, probably
for testing purposes.

"No-op": {
 "Type": "Pass",
 "Result": {
 "x-datum": 0.381018,
 "y-datum": 622.2269926397355
 },
 "ResultPath": "$.coords",
 "End": true
}

Suppose the input to this state is the following.

{

Pass 92

AWS Step Functions Developer Guide

 "georefOf": "Home"
}

Then the output would be this.

{
 "georefOf": "Home",
 "coords": {
 "x-datum": 0.381018,
 "y-datum": 622.2269926397355
 }
}

Task

A Task state ("Type": "Task") represents a single unit of work performed by a state machine.
A task performs work by using an activity or an AWS Lambda function, by integrating with other
supported AWS services, or by invoking a third-party API, such as Stripe.

The Amazon States Language represents tasks by setting a state's type to Task and by providing
the task with the Amazon Resource Name (ARN) of the activity, Lambda function, or the third-
party API endpoint. The following Task state definition invokes a Lambda function named
HelloFunction.

"Lambda Invoke": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:HelloFunction:
$LATEST"
 },
 "End": true
}

In this topic

• Task types

• Task state fields

• Task state definition examples

Task 93

AWS Step Functions Developer Guide

• Activities

Task types

Step Functions supports the following task types that you can specify in a Task state definition:

• Activity

• Lambda functions

• A supported AWS service

• An HTTP Task

You specify a task type by providing its ARN in the Resource field of a Task state definition. The
following example shows the syntax of the Resource field. All Task types except the one that
invokes an third-party API, use the following syntax. For information about syntax of the HTTP
Task, see Call third-party APIs.

In your Task state definition, replace the italicized text in the following syntax with the AWS
resource-specific information.

arn:partition:service:region:account:task_type:name

The following list explains the individual components in this syntax:

• partition is the AWS Step Functions partition to use, most commonly aws.

• service indicates the AWS service used to execute the task, and can be one of the following
values:

• states for an activity.

• lambda for a Lambda function. If you integrate with other AWS services, for example, Amazon
SNS or Amazon DynamoDB, use sns or dynamodb.

• region is the AWS Region code in which the Step Functions activity or state machine type,
Lambda function, or any other AWS resource has been created.

• account is the AWS account ID in which you've defined the resource.

• task_type is the type of task to run. It can be one of the following values:

• activity – An activity.

• function – A Lambda function.

Task 94

https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS Step Functions Developer Guide

• servicename – The name of a supported connected service (see Optimized integrations for
Step Functions).

• name is the registered resource name (activity name, Lambda function name, or service API
action).

Note

Step Functions doesn't support referencing ARNs across partitions or regions. For example,
aws-cn can't invoke tasks in the aws partition, and the other way around.

The following sections provide more detail about each task type.

Activity

Activities represent workers (processes or threads), implemented and hosted by you, that perform a
specific task. They are supported only by Standard Workflows, not Express Workflows.

Activity Resource ARNs use the following syntax.

arn:partition:states:region:account:activity:name

Note

You must create activities with Step Functions (using a CreateActivity, API action, or the
Step Functions console) before their first use.

For more information about creating an activity and implementing workers, see Activities.

Lambda functions

Lambda tasks execute a function using AWS Lambda. To specify a Lambda function, use the ARN of
the Lambda function in the Resource field.

Depending on the type of integration (Optimized integration or AWS SDK integration) you use for
specifying a Lambda function, the syntax of your Lambda function's Resource field varies.

Task 95

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

The following Resource field syntax is an example of an optimized integration with a Lambda
function.

"arn:aws:states:::lambda:invoke"

The following Resource field syntax is an example of an AWS SDK integration with a Lambda
function.

"arn:aws:states:::aws-sdk:lambda:invoke"

The following Task state definition shows an example of an optimized integration with a Lambda
function named HelloWorld.

"LambdaState": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-east-1:function:HelloWorld:$LATEST"
 },
 "Next": "NextState"
}

After the Lambda function specified in the Resource field completes, its output is sent to the
state identified in the Next field ("NextState").

A supported AWS service

When you reference a connected resource, Step Functions directly calls the API actions of a
supported service. Specify the service and action in the Resource field.

Connected service Resource ARNs use the following syntax.

arn:partition:states:region:account:servicename:APIname

Note

To create a synchronous connection to a connected resource, append .sync to the
APIname entry in the ARN. For more information, see Working with other services.

Task 96

AWS Step Functions Developer Guide

For example:

{
 "StartAt": "BATCH_JOB",
 "States": {
 "BATCH_JOB": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobDefinition": "preprocessing",
 "JobName": "PreprocessingBatchJob",
 "JobQueue": "SecondaryQueue",
 "Parameters.$": "$.batchjob.parameters",
 "RetryStrategy": {
 "attempts": 5
 }
 },
 "End": true
 }
 }
}

Task state fields

In addition to the common state fields, Task states have the following fields.

Resource (Required)

A URI, especially an ARN that uniquely identifies the specific task to execute.

Parameters (Optional)

Used to pass information to the API actions of connected resources. The parameters can use a
mix of static JSON and JsonPath. For more information, see Pass parameters to a service API.

Credentials (Optional)

Specifies a target role the state machine's execution role must assume before invoking the
specified Resource. Alternatively, you can also specify a JSONPath value or an intrinsic
function that resolves to an IAM role ARN at runtime based on the execution input. If you
specify a JSONPath value, you must prefix it with the $. notation.

Task 97

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

For examples of using this field in the Task state, see Task state's Credentials field examples.
For an example of using this field to access a cross-account AWS resource from your state
machine, see Tutorial: Accessing cross-account AWS resources.

Note

This field is supported by the Task types that use Lambda functions and a supported
AWS service.

ResultPath (Optional)

Specifies where (in the input) to place the results of executing the task that's specified in
Resource. The input is then filtered as specified by the OutputPath field (if present) before
being used as the state's output. For more information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy if the state encounters runtime
errors. For more information, see State machine examples using Retry and using Catch.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. This state is executed if the
state encounters runtime errors and its retry policy is exhausted or isn't defined. For more
information, see Fallback States.

TimeoutSeconds (Optional)

Specifies the maximum time an activity or a task can run before it times out with the
States.Timeout error and fails. The timeout value must be positive, non-zero integer. The
default value is 99999999.

The timeout count begins after a task starts, for example, when ActivityStarted or
LambdaFunctionStarted events are logged in the execution event history. For Activities, the
count begins when GetActivityTask receives a token and ActivityStarted is logged in
the execution event history.

Task 98

AWS Step Functions Developer Guide

When a task starts, Step Functions waits for a success or failure response from the task or
activity worker within the specified TimeoutSeconds duration. If the task or activity worker
fails to respond within this time, Step Functions marks the workflow execution as failed.

TimeoutSecondsPath (Optional)

If you want to provide a timeout value dynamically from the state input using a reference path,
use TimeoutSecondsPath. When resolved, the reference path must select fields whose values
are positive integers.

Note

A Task state cannot include both TimeoutSeconds and TimeoutSecondsPath.

HeartbeatSeconds (Optional)

Determines the frequency of heartbeat signals an activity worker sends during the execution
of a task. Heartbeats indicate that a task is still running and it needs more time to complete.
Heartbeats prevent an activity or task from timing out within the TimeoutSeconds duration.

HeartbeatSeconds must be a positive, non-zero integer value less than the
TimeoutSeconds field value. The default value is 99999999. If more time than the specified
seconds elapses between heartbeats from the task, the Task state fails with a States.Timeout
error.

For Activities, the count begins when GetActivityTask receives a token and
ActivityStarted is logged in the execution event history.

HeartbeatSecondsPath (Optional)

If you want to provide a heartbeat value dynamically from the state input using a reference
path, use HeartbeatSecondsPath. When resolved, the reference path must select fields
whose values are positive integers.

Note

A Task state cannot include both HeartbeatSeconds and HeartbeatSecondsPath.

Task 99

AWS Step Functions Developer Guide

A Task state must set either the End field to true if the state ends the execution, or must provide
a state in the Next field that is run when the Task state is complete.

Task state definition examples

The following examples show how you can specify the Task state definition based on your
requirement.

• Specifying Task state timeouts and heartbeat intervals

• Static timeout and heartbeat notification example

• Dynamic task timeout and heartbeat notification example

• Using Credentials field

• Specifying hard-coded IAM role ARN

• Specifying JSONPath as IAM role ARN

• Specifying an intrinsic function as IAM role ARN

Task state timeouts and heartbeat intervals

It's a good practice to set a timeout value and a heartbeat interval for long-running activities. This
can be done by specifying the timeout and heartbeat values, or by setting them dynamically.

Static timeout and heartbeat notification example

When HelloWorld completes, the next state (here called NextState) will be run.

If this task fails to complete within 300 seconds, or doesn't send heartbeat notifications in intervals
of 60 seconds, the task is marked as failed.

"ActivityState": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:HelloWorld",
 "TimeoutSeconds": 300,
 "HeartbeatSeconds": 60,
 "Next": "NextState"
}

Dynamic task timeout and heartbeat notification example

In this example, when the AWS Glue job completes, the next state will be run.

Task 100

AWS Step Functions Developer Guide

If this task fails to complete within the interval set dynamically by the AWS Glue job, the task is
marked as failed.

"GlueJobTask": {
 "Type": "Task",
 "Resource": "arn:aws:states:::glue:startJobRun.sync",
 "Parameters": {
 "JobName": "myGlueJob"
 },
 "TimeoutSecondsPath": "$.params.maxTime",

 "Next": "NextState"
}

Task state's Credentials field examples

Specifying hard-coded IAM role ARN

The following example specifies a target IAM role that a state machine's execution role must
assume to access a cross-account Lambda function named Echo. In this example, the target role
ARN is specified as a hard-coded value.

{
 "StartAt": "Cross-account call",
 "States": {
 "Cross-account call": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Credentials": {
 "RoleArn": "arn:aws:iam::111122223333:role/LambdaRole"
 },
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:Echo"
 },
 "End": true
 }
 }
}

Task 101

AWS Step Functions Developer Guide

Specifying JSONPath as IAM role ARN

The following example specifies a JSONPath value, which will resolve to an IAM role ARN at
runtime.

{
 "StartAt": "Lambda",
 "States": {
 "Lambda": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Credentials": {
 "RoleArn.$": "$.roleArn"
 },
 ...
 }
 }
}

Specifying an intrinsic function as IAM role ARN

The following example uses the States.Format intrinsic function, which resolves to an IAM role
ARN at runtime.

{
 "StartAt": "Lambda",
 "States": {
 "Lambda": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Credentials": {
 "RoleArn.$": "States.Format('arn:aws:iam::{}:role/ROLENAME', $.accountId)"
 },
 ...
 }
 }
}

Activities

Activities are an AWS Step Functions feature that enables you to have a task in your state machine
where the work is performed by a worker that can be hosted on Amazon Elastic Compute Cloud

Task 102

AWS Step Functions Developer Guide

(Amazon EC2), Amazon Elastic Container Service (Amazon ECS), mobile devices—basically
anywhere.

Overview

In AWS Step Functions, activities are a way to associate code running somewhere (known as an
activity worker) with a specific task in a state machine. You can create an activity using the Step
Functions console, or by calling CreateActivity. This provides an Amazon Resource Name (ARN)
for your task state. Use this ARN to poll the task state for work in your activity worker.

Note

Activities are not versioned and are expected to be backward compatible. If you must make
a backward-incompatible change to an activity, create a new activity in Step Functions
using a unique name.

An activity worker can be an application running on an Amazon EC2 instance, an AWS Lambda
function, a mobile device: any application that can make an HTTP connection, hosted anywhere.
When Step Functions reaches an activity task state, the workflow waits for an activity worker
to poll for a task. An activity worker polls Step Functions by using GetActivityTask, and
sending the ARN for the related activity. GetActivityTask returns a response including input
(a string of JSON input for the task) and a taskToken (a unique identifier for the task). After
the activity worker completes its work, it can provide a report of its success or failure by using
SendTaskSuccess or SendTaskFailure. These two calls use the taskToken provided by
GetActivityTask to associate the result with that task.

APIs Related to Activity Tasks

Step Functions provides APIs for creating and listing activities, requesting a task, and for managing
the flow of your state machine based on the results of your worker.

The following are the Step Functions APIs that are related to activities:

• CreateActivity

• GetActivityTask

• ListActivities

• SendTaskFailure

Task 103

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html#StepFunctions-GetActivityTask-response-taskToken
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListActivities.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html

AWS Step Functions Developer Guide

• SendTaskHeartbeat

• SendTaskSuccess

Note

Polling for activity tasks with GetActivityTask can cause latency in some
implementations. See Avoid latency when polling for activity tasks.

Waiting for an Activity Task to Complete

Configure how long a state waits by setting TimeoutSeconds in the task definition. To keep
the task active and waiting, periodically send a heartbeat from your activity worker using
SendTaskHeartbeat within the time configured in TimeoutSeconds. By configuring a long
timeout duration and actively sending a heartbeat, an activity in Step Functions can wait up to a
year for an execution to complete.

For example, if you need a workflow that waits for the outcome of a long process, do the following:

1. Create an activity by using the console, or by using CreateActivity. Make a note of the
activity ARN.

2. Reference that ARN in an activity task state in your state machine definition and set
TimeoutSeconds.

3. Implement an activity worker that polls for work by using GetActivityTask, referencing that
activity ARN.

4. Use SendTaskHeartbeat periodically within the time you set in HeartbeatSeconds in your
state machine task definition to keep the task from timing out.

5. Start an execution of your state machine.

6. Start your activity worker process.

The execution pauses at the activity task state and waits for your activity worker to poll for
a task. Once a taskToken is provided to your activity worker, your workflow will wait for
SendTaskSuccess or SendTaskFailure to provide a status. If the execution doesn't receive
either of these or a SendTaskHeartbeat call before the time configured in TimeoutSeconds,
the execution will fail and the execution history will contain an ExecutionTimedOut event.

Task 104

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html

AWS Step Functions Developer Guide

Next Steps

For a more detailed look at creating state machines that use an activity workers, see:

• Creating an Activity state machine using Step Functions

• Example Activity Worker in Ruby

Example Activity Worker in Ruby

The following is an example activity worker that uses the AWS SDK for Ruby to show you how to
use best practices and implement your own activity worker.

The code implements a consumer-producer pattern with a configurable number of threads for
pollers and activity workers. The poller threads are constantly long polling the activity task. Once
an activity task is retrieved, it's passed through a bounded blocking queue for the activity thread to
pick it up.

• For more information about the AWS SDK for Ruby, see the AWS SDK for Ruby API Reference.

• To download this code and related resources, see the step-functions-ruby-activity-worker
repository on GitHub.

The following Ruby code is the main entry point for this example Ruby activity worker.

 require_relative '../lib/step_functions/activity'
 credentials = Aws::SharedCredentials.new
 region = 'us-west-2'
 activity_arn = 'ACTIVITY_ARN'

 activity = StepFunctions::Activity.new(
 credentials: credentials,
 region: region,
 activity_arn: activity_arn,
 workers_count: 1,
 pollers_count: 1,
 heartbeat_delay: 30
)

 # The start method takes as argument the block that is the actual logic of your custom
 activity.
 activity.start do |input|

Task 105

https://docs.aws.amazon.com/sdk-for-ruby/v3/api/
https://github.com/aws-samples/step-functions-ruby-activity-worker

AWS Step Functions Developer Guide

 { result: :SUCCESS, echo: input['value'] }
 end

The code includes defaults you can change to reference your activity, and to adapt it to your
specific implementation. This code takes as input the actual implementation logic, allows you to
reference your specific activity and credentials, and enables you to configure the number of threads
and heartbeat delay. For more information and to download the code, see Step Functions Ruby
Activity Worker.

Item Description

require_relative Relative path to the following example activity
worker code.

region AWS Region of your activity.

workers_count The number of threads for your activity
worker. For most implementations, between
10 and 20 threads should be sufficient. The
longer the activity takes to process, the
more threads it might need. As an estimate,
multiply the number of process activities
per second by the 99th percentile activity
processing latency, in seconds.

pollers_count The number of threads for your pollers.
Between 10 and 20 threads should be sufficien
t for most implementations.

heartbeat_delay The delay in seconds between heartbeats.

input Implementation logic of your activity.

The following is the Ruby activity worker, referenced with ../lib/step_functions/activity
in your code.

require 'set'

Task 106

https://github.com/aws-samples/step-functions-ruby-activity-worker
https://github.com/aws-samples/step-functions-ruby-activity-worker

AWS Step Functions Developer Guide

require 'json'
require 'thread'
require 'logger'
require 'aws-sdk'

module Validate
 def self.positive(value)
 raise ArgumentError, 'Argument has to be positive' if value <= 0
 value
 end

 def self.required(value)
 raise ArgumentError, 'Argument is required' if value.nil?
 value
 end
end

module StepFunctions
 class RetryError < StandardError
 def initialize(message)
 super(message)
 end
 end

 def self.with_retries(options = {}, &block)
 retries = 0
 base_delay_seconds = options[:base_delay_seconds] || 2
 max_retries = options[:max_retries] || 3
 begin
 block.call
 rescue => e
 puts e
 if retries < max_retries
 retries += 1
 sleep base_delay_seconds**retries
 retry
 end
 raise RetryError, 'All retries of operation had failed'
 end
 end

 class Activity
 def initialize(options = {})
 @states = Aws::States::Client.new(

Task 107

AWS Step Functions Developer Guide

 credentials: Validate.required(options[:credentials]),
 region: Validate.required(options[:region]),
 http_read_timeout: Validate.positive(options[:http_read_timeout] || 60)
)
 @activity_arn = Validate.required(options[:activity_arn])
 @heartbeat_delay = Validate.positive(options[:heartbeat_delay] || 60)
 @queue_max = Validate.positive(options[:queue_max] || 5)
 @pollers_count = Validate.positive(options[:pollers_count] || 1)
 @workers_count = Validate.positive(options[:workers_count] || 1)
 @max_retry = Validate.positive(options[:workers_count] || 3)
 @logger = Logger.new(STDOUT)
 end

 def start(&block)
 @sink = SizedQueue.new(@queue_max)
 @activities = Set.new
 start_heartbeat_worker(@activities)
 start_workers(@activities, block, @sink)
 start_pollers(@activities, @sink)
 wait
 end

 def queue_size
 return 0 if @sink.nil?
 @sink.size
 end

 def activities_count
 return 0 if @activities.nil?
 @activities.size
 end

 private

 def start_pollers(activities, sink)
 @pollers = Array.new(@pollers_count) do
 PollerWorker.new(
 states: @states,
 activity_arn: @activity_arn,
 sink: sink,
 activities: activities,
 max_retry: @max_retry
)
 end

Task 108

AWS Step Functions Developer Guide

 @pollers.each(&:start)
 end

 def start_workers(activities, block, sink)
 @workers = Array.new(@workers_count) do
 ActivityWorker.new(
 states: @states,
 block: block,
 sink: sink,
 activities: activities,
 max_retry: @max_retry
)
 end
 @workers.each(&:start)
 end

 def start_heartbeat_worker(activities)
 @heartbeat_worker = HeartbeatWorker.new(
 states: @states,
 activities: activities,
 heartbeat_delay: @heartbeat_delay,
 max_retry: @max_retry
)
 @heartbeat_worker.start
 end

 def wait
 sleep
 rescue Interrupt
 shutdown
 ensure
 Thread.current.exit
 end

 def shutdown
 stop_workers(@pollers)
 wait_workers(@pollers)
 wait_activities_drained
 stop_workers(@workers)
 wait_activities_completed
 shutdown_workers(@workers)
 shutdown_worker(@heartbeat_worker)
 end

Task 109

AWS Step Functions Developer Guide

 def shutdown_workers(workers)
 workers.each do |worker|
 shutdown_worker(worker)
 end
 end

 def shutdown_worker(worker)
 worker.kill
 end

 def wait_workers(workers)
 workers.each(&:wait)
 end

 def wait_activities_drained
 wait_condition { @sink.empty? }
 end

 def wait_activities_completed
 wait_condition { @activities.empty? }
 end

 def wait_condition(&block)
 loop do
 break if block.call
 sleep(1)
 end
 end

 def stop_workers(workers)
 workers.each(&:stop)
 end

 class Worker
 def initialize
 @logger = Logger.new(STDOUT)
 @running = false
 end

 def run
 raise 'Method run hasn\'t been implemented'
 end

 def process

Task 110

AWS Step Functions Developer Guide

 loop do
 begin
 break unless @running
 run
 rescue => e
 puts e
 @logger.error('Unexpected error has occurred')
 @logger.error(e)
 end
 end
 end

 def start
 return unless @thread.nil?
 @running = true
 @thread = Thread.new do
 process
 end
 end

 def stop
 @running = false
 end

 def kill
 return if @thread.nil?
 @thread.kill
 @thread = nil
 end

 def wait
 @thread.join
 end
 end

 class PollerWorker < Worker
 def initialize(options = {})
 @states = options[:states]
 @activity_arn = options[:activity_arn]
 @sink = options[:sink]
 @activities = options[:activities]
 @max_retry = options[:max_retry]
 @logger = Logger.new(STDOUT)
 end

Task 111

AWS Step Functions Developer Guide

 def run
 activity_task = StepFunctions.with_retries(max_retry: @max_retry) do
 begin
 @states.get_activity_task(activity_arn: @activity_arn)
 rescue => e
 @logger.error('Failed to retrieve activity task')
 @logger.error(e)
 end
 end
 return if activity_task.nil? || activity_task.task_token.nil?
 @activities.add(activity_task.task_token)
 @sink.push(activity_task)
 end
 end

 class ActivityWorker < Worker
 def initialize(options = {})
 @states = options[:states]
 @block = options[:block]
 @sink = options[:sink]
 @activities = options[:activities]
 @max_retry = options[:max_retry]
 @logger = Logger.new(STDOUT)
 end

 def run
 activity_task = @sink.pop
 result = @block.call(JSON.parse(activity_task.input))
 send_task_success(activity_task, result)
 rescue => e
 send_task_failure(activity_task, e)
 ensure
 @activities.delete(activity_task.task_token) unless activity_task.nil?
 end

 def send_task_success(activity_task, result)
 StepFunctions.with_retries(max_retry: @max_retry) do
 begin
 @states.send_task_success(
 task_token: activity_task.task_token,
 output: JSON.dump(result)
)
 rescue => e

Task 112

AWS Step Functions Developer Guide

 @logger.error('Failed to send task success')
 @logger.error(e)
 end
 end
 end

 def send_task_failure(activity_task, error)
 StepFunctions.with_retries do
 begin
 @states.send_task_failure(
 task_token: activity_task.task_token,
 cause: error.message
)
 rescue => e
 @logger.error('Failed to send task failure')
 @logger.error(e)
 end
 end
 end
 end

 class HeartbeatWorker < Worker
 def initialize(options = {})
 @states = options[:states]
 @activities = options[:activities]
 @heartbeat_delay = options[:heartbeat_delay]
 @max_retry = options[:max_retry]
 @logger = Logger.new(STDOUT)
 end

 def run
 sleep(@heartbeat_delay)
 @activities.each do |token|
 send_heartbeat(token)
 end
 end

 def send_heartbeat(token)
 StepFunctions.with_retries(max_retry: @max_retry) do
 begin
 @states.send_task_heartbeat(token)
 rescue => e
 @logger.error('Failed to send heartbeat for activity')
 @logger.error(e)

Task 113

AWS Step Functions Developer Guide

 end
 end
 rescue => e
 @logger.error('Failed to send heartbeat for activity')
 @logger.error(e)
 end
 end
 end
end

Choice

A Choice state ("Type": "Choice") adds conditional logic to a state machine.

In addition to most of the common state fields, Choice states contains the following additional
fields.

Choices (Required)

An array of Choice Rules that determines which state the state machine transitions to next. You
use a comparison operator in a Choice Rule to compare an input variable with a specific value.
For example, using Choice Rules you can compare if an input variable is greater than or less
than 100.

When a Choice state is run, it evaluates each Choice Rule to true or false. Based on the result
of this evaluation, Step Functions transitions to the next state in the workflow.

You must define at least one rule in the Choice state.

Default (Optional, Recommended)

The name of the state to transition to if none of the transitions in Choices is taken.

Important

Choice states don't support the End field. In addition, they use Next only inside their
Choices field.

Choice 114

AWS Step Functions Developer Guide

Tip

To deploy an example of a workflow that uses a Choice state to your AWS account, see
Module 5 - Choice State and Map State of The AWS Step Functions Workshop.

Choice Rules

A Choice state must have a Choices field whose value is a non-empty array. Each element in this
array is an object called Choice Rule, which contains the following:

• A comparison – Two fields that specify an input variable to compare, the type of comparison,
and the value to compare the variable to. Choice Rules support comparison between two
variables. Within a Choice Rule, the value of variable can be compared with another value from
the state input by appending Path to name of supported comparison operators. The values of
Variable and Path fields in a comparison must be valid Reference Paths.

• A Next field – The value of this field must match a state name in the state machine.

The following example checks whether the numerical value is equal to 1.

{
 "Variable": "$.foo",
 "NumericEquals": 1,
 "Next": "FirstMatchState"
}

The following example checks whether the string is equal to MyString.

{
 "Variable": "$.foo",
 "StringEquals": "MyString",
 "Next": "FirstMatchState"
}

The following example checks whether the string is greater than MyStringABC.

{
 "Variable": "$.foo",
 "StringGreaterThan": "MyStringABC",

Choice 115

https://s12d.com/sfn-ws-choice-and-map

AWS Step Functions Developer Guide

 "Next": "FirstMatchState"
}

The following example checks whether the string is null.

{
 "Variable": "$.possiblyNullValue",
 "IsNull": true
}

The following example shows how the StringEquals rule is only evaluated when
$.keyThatMightNotExist exists because of the preceding IsPresent Choice Rule.

"And": [
 {
 "Variable": "$.keyThatMightNotExist",
 "IsPresent": true
 },
 {
 "Variable": "$.keyThatMightNotExist",
 "StringEquals": "foo"
 }
]

The following example checks whether a pattern with a wildcard matches.

{
 "Variable": "$.foo",
 "StringMatches": "log-*.txt"
}

The following example checks whether the timestamp is equal to 2001-01-01T12:00:00Z.

{
 "Variable": "$.foo",
 "TimestampEquals": "2001-01-01T12:00:00Z",
 "Next": "FirstMatchState"
}

The following example compares a variable with another value from the state input.

Choice 116

AWS Step Functions Developer Guide

{
 "Variable": "$.foo",
 "StringEqualsPath": "$.bar"
}

Step Functions examines each of the Choice Rules in the order listed in the Choices field. Then
it transitions to the state specified in the Next field of the first Choice Rule in which the variable
matches the value according to the comparison operator.

The following comparison operators are supported:

• And

• BooleanEquals,BooleanEqualsPath

• IsBoolean

• IsNull

• IsNumeric

• IsPresent

• IsString

• IsTimestamp

• Not

• NumericEquals,NumericEqualsPath

• NumericGreaterThan,NumericGreaterThanPath

• NumericGreaterThanEquals,NumericGreaterThanEqualsPath

• NumericLessThan,NumericLessThanPath

• NumericLessThanEquals,NumericLessThanEqualsPath

• Or

• StringEquals,StringEqualsPath

• StringGreaterThan,StringGreaterThanPath

• StringGreaterThanEquals,StringGreaterThanEqualsPath

• StringLessThan,StringLessThanPath

• StringLessThanEquals,StringLessThanEqualsPath

Choice 117

AWS Step Functions Developer Guide

• StringMatches

• TimestampEquals,TimestampEqualsPath

• TimestampGreaterThan,TimestampGreaterThanPath

• TimestampGreaterThanEquals,TimestampGreaterThanEqualsPath

• TimestampLessThan,TimestampLessThanPath

• TimestampLessThanEquals,TimestampLessThanEqualsPath

For each of these operators, the corresponding value must be of the appropriate type: string,
number, Boolean, or timestamp. Step Functions doesn't attempt to match a numeric field to a
string value. However, because timestamp fields are logically strings, it's possible that a field
considered to be a timestamp can be matched by a StringEquals comparator.

Note

For interoperability, don't assume that numeric comparisons work with values outside
the magnitude or precision that the IEEE 754-2008 binary64 data type represents. In
particular, integers outside of the range [-253+1, 253-1] might fail to compare in the
expected way.
Timestamps (for example, 2016-08-18T17:33:00Z) must conform to RFC3339 profile
ISO 8601, with further restrictions:

• An uppercase T must separate the date and time portions.

• An uppercase Z must denote that a numeric time zone offset isn't present.

To understand the behavior of string comparisons, see the Java compareTo
documentation.
The values of the And and Or operators must be non-empty arrays of Choice Rules that
must not themselves contain Next fields. Likewise, the value of a Not operator must be a
single Choice Rule that must not contain Next fields.
You can create complex, nested Choice Rules using And, Not, and Or. However, the Next
field can appear only in a top-level Choice Rule.
String comparison against patterns with one or more wildcards (“*”) can be performed with
the StringMatches comparison operator. The wildcard character is escaped by using the
standard \\ (Ex: “*”). No characters other than “*” have any special meaning during
matching.

Choice 118

https://en.wikipedia.org/wiki/IEEE_754#Basic_and_interchange_formats
https://www.ietf.org/rfc/rfc3339.txt
https://www.ietf.org/rfc/rfc3339.txt
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-
https://docs.oracle.com/javase/8/docs/api/java/lang/String.html#compareTo-java.lang.String-

AWS Step Functions Developer Guide

Choice State Example

The following is an example of a Choice state and other states that it transitions to.

Note

You must specify the $.type field. If the state input doesn't contain the $.type field,
the execution fails and an error is displayed in the execution history. You can only
specify a string in the StringEquals field that matches a literal value. For example,
"StringEquals": "Buy".

"ChoiceStateX": {
 "Type": "Choice",
 "Choices": [
 {
 "Not": {
 "Variable": "$.type",
 "StringEquals": "Private"
 },
 "Next": "Public"
 },
 {
 "Variable": "$.value",
 "NumericEquals": 0,
 "Next": "ValueIsZero"
 },
 {
 "And": [
 {
 "Variable": "$.value",
 "NumericGreaterThanEquals": 20
 },
 {
 "Variable": "$.value",
 "NumericLessThan": 30
 }
],
 "Next": "ValueInTwenties"
 }
],
 "Default": "DefaultState"

Choice 119

AWS Step Functions Developer Guide

},

"Public": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Foo",
 "Next": "NextState"
},

"ValueIsZero": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Zero",
 "Next": "NextState"
},

"ValueInTwenties": {
 "Type" : "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Bar",
 "Next": "NextState"
},

"DefaultState": {
 "Type": "Fail",
 "Cause": "No Matches!"
}

In this example, the state machine starts with the following input value.

{
 "type": "Private",
 "value": 22
}

Step Functions transitions to the ValueInTwenties state, based on the value field.

If there are no matches for the Choice state's Choices, the state provided in the Default field
runs instead. If the Default state isn't specified, the execution fails with an error.

Wait

A Wait state ("Type": "Wait") delays the state machine from continuing for a specified time.
You can choose either a relative time, specified in seconds from when the state begins, or an
absolute end time, specified as a timestamp.

Wait 120

AWS Step Functions Developer Guide

In addition to the common state fields, Wait states have one of the following fields.

Seconds

A time, in seconds, to wait before beginning the state specified in the Next field. You must
specify time as a positive, integer value from 0 up to 99999999.

Timestamp

An absolute time to wait until beginning the state specified in the Next field.

Timestamps must conform to the RFC3339 profile of ISO 8601, with the further restrictions
that an uppercase T must separate the date and time portions, and an uppercase Z must denote
that a numeric time zone offset is not present, for example, 2024-08-18T17:33:00Z.

Note

Currently, if you specify the wait time as a timestamp, Step Functions considers the time
value up to seconds and truncates milliseconds.

SecondsPath

A time, in seconds, to wait before beginning the state specified in the Next field, specified using
a path from the state's input data.

You must specify an integer value for this field.

TimestampPath

An absolute time to wait until beginning the state specified in the Next field, specified using a
path from the state's input data.

Note

You must specify exactly one of Seconds, Timestamp, SecondsPath, or
TimestampPath. In addition, the maximum wait time that you can specify for Standard
Workflows and Express workflows is one year and five minutes respectively.

Wait 121

AWS Step Functions Developer Guide

Wait State Examples

The following Wait state introduces a 10-second delay into a state machine.

"wait_ten_seconds": {
 "Type": "Wait",
 "Seconds": 10,
 "Next": "NextState"
}

In the next example, the Wait state waits until an absolute time: March 14, 2024, at 1:59 AM UTC.

"wait_until" : {
 "Type": "Wait",
 "Timestamp": "2024-03-14T01:59:00Z",
 "Next": "NextState"
}

You don't have to hard-code the wait duration. For example, given the following input data:

{
 "expirydate": "2024-03-14T01:59:00Z"
}

You can select the value of "expirydate" from the input using a reference path to select it from the
input data.

"wait_until" : {
 "Type": "Wait",
 "TimestampPath": "$.expirydate",
 "Next": "NextState"
}

Succeed

A Succeed state ("Type": "Succeed") stops an execution successfully. The Succeed state is a
useful target for Choice state branches that don't do anything but stop the execution.

Because Succeed states are terminal states, they have no Next field, and don't need an End field,
as shown in the following example.

Succeed 122

AWS Step Functions Developer Guide

"SuccessState": {
 "Type": "Succeed"
}

Fail

A Fail state ("Type": "Fail") stops the execution of the state machine and marks it as a
failure, unless it is caught by a Catch block.

The Fail state only allows the use of Type and Comment fields from the set of common state
fields. In addition, the Fail state allows the following fields.

Cause (Optional)

A custom string that describes the cause of the error. You can specify this field for operational
or diagnostic purposes.

CausePath (Optional)

If you want to provide a detailed desciption about the cause of the error dynamically from the
state input using a reference path, use CausePath. When resolved, the reference path must
select a field that contains a string value.

You can also specify CausePath using an intrinsic function that returns a string. These
intrinsics are: States.Format, States.JsonToString, States.ArrayGetItem, States.Base64Encode,
States.Base64Decode, States.Hash, and States.UUID.

Important

• You can specify either Cause or CausePath, but not both in your Fail state definition.

• As an information security best practice, we recommend that you remove any
sensitive information or internal system details from the cause description.

Error (Optional)

An error name that you can provide to perform error handling using Retry or Catch fields. You
can also provide an error name for operational or diagnostic purposes.

Fail 123

AWS Step Functions Developer Guide

ErrorPath (Optional)

If you want to provide a name for the error dynamically from the state input using a reference
path, use ErrorPath. When resolved, the reference path must select a field that contains a
string value.

You can also specify ErrorPath using an intrinsic function that returns a string. These
intrinsics are: States.Format, States.JsonToString, States.ArrayGetItem, States.Base64Encode,
States.Base64Decode, States.Hash, and States.UUID.

Important

• You can specify either Error or ErrorPath, but not both in your Fail state definition.

• As an information security best practice, we recommend that you remove any
sensitive information or internal system details from the error name.

Because Fail states always exit the state machine, they have no Next field and don't require an
End field.

Fail state definition examples

The following Fail state definition example specifies static Error and Cause field values.

"FailState": {
 "Type": "Fail",
 "Cause": "Invalid response.",
 "Error": "ErrorA"
}

The following Fail state definition example uses reference paths dynamically to resolve the Error
and Cause field values.

"FailState": {
 "Type": "Fail",
 "CausePath": "$.Cause",
 "ErrorPath": "$.Error"
}

Fail 124

AWS Step Functions Developer Guide

The following Fail state definition example uses the States.Format intrinsic function to specify the
Error and Cause field values dynamically.

"FailState": {
 "Type": "Fail",
 "CausePath": "States.Format('This is a custom error message for {}, caused by {}.',
 $.Error, $.Cause)",
 "ErrorPath": "States.Format('{}', $.Error)"
}

Parallel

The Parallel state ("Type": "Parallel") can be used to add separate branches of execution
in your state machine.

In addition to the common state fields, Parallel states include these additional fields.

Branches (Required)

An array of objects that specify state machines to execute in parallel. Each such state machine
object must have fields named States and StartAt, whose meanings are exactly like those in
the top level of a state machine.

ResultPath (Optional)

Specifies where (in the input) to place the output of the branches. The input is then filtered as
specified by the OutputPath field (if present) before being used as the state's output. For more
information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy in case the state encounters
runtime errors. For more information, see State machine examples using Retry and using Catch.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state that is executed if the
state encounters runtime errors and its retry policy is exhausted or isn't defined. For more
information, see Fallback States.

Parallel 125

AWS Step Functions Developer Guide

A Parallel state causes AWS Step Functions to execute each branch, starting with the state
named in that branch's StartAt field, as concurrently as possible, and wait until all branches
terminate (reach a terminal state) before processing the Parallel state's Next field.

Parallel State Example

{
 "Comment": "Parallel Example.",
 "StartAt": "LookupCustomerInfo",
 "States": {
 "LookupCustomerInfo": {
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "LookupAddress",
 "States": {
 "LookupAddress": {
 "Type": "Task",
 "Resource":
 "arn:aws:lambda:us-east-1:123456789012:function:AddressFinder",
 "End": true
 }
 }
 },
 {
 "StartAt": "LookupPhone",
 "States": {
 "LookupPhone": {
 "Type": "Task",
 "Resource":
 "arn:aws:lambda:us-east-1:123456789012:function:PhoneFinder",
 "End": true
 }
 }
 }
]
 }
 }
}

Parallel 126

AWS Step Functions Developer Guide

In this example, the LookupAddress and LookupPhone branches are executed in parallel. Here is
how the visual workflow looks in the Step Functions console.

Each branch must be self-contained. A state in one branch of a Parallel state must not have a
Next field that targets a field outside of that branch, nor can any other state outside the branch
transition into that branch.

Parallel State Input and Output Processing

A Parallel state provides each branch with a copy of its own input data (subject to modification
by the InputPath field). It generates output that is an array with one element for each branch,
containing the output from that branch. There is no requirement that all elements be of the same
type. The output array can be inserted into the input data (and the whole sent as the Parallel
state's output) by using a ResultPath field in the usual way (see Input and Output Processing).

Parallel 127

AWS Step Functions Developer Guide

{
 "Comment": "Parallel Example.",
 "StartAt": "FunWithMath",
 "States": {
 "FunWithMath": {
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "Add",
 "States": {
 "Add": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:Add",
 "End": true
 }
 }
 },
 {
 "StartAt": "Subtract",
 "States": {
 "Subtract": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:Subtract",
 "End": true
 }
 }
 }
]
 }
 }
}

If the FunWithMath state was given the array [3, 2] as input, then both the Add and Subtract
states receive that array as input. The output of the Add and Subtract tasks would be the sum
of and difference between the array elements 3 and 2, which is 5 and 1, while the output of the
Parallel state would be an array.

[5, 1]

Parallel 128

AWS Step Functions Developer Guide

Tip

If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,
see Flattening an array of arrays.

Error Handling

If any branch fails, because of an unhandled error or by transitioning to a Fail state, the entire
Parallel state is considered to have failed and all its branches are stopped. If the error is not
handled by the Parallel state itself, Step Functions stops the execution with an error.

Note

When a parallel state fails, invoked Lambda functions continue to run and activity workers
processing a task token are not stopped.

• To stop long-running activities, use heartbeats to detect if its branch has been
stopped by Step Functions, and stop workers that are processing tasks. Calling
SendTaskHeartbeat, SendTaskSuccess, or SendTaskFailure will throw an error if
the state has failed. See Heartbeat Errors.

• Running Lambda functions cannot be stopped. If you have implemented a fallback, use a
Wait state so that cleanup work happens after the Lambda function has finished.

Map

Use the Map state to run a set of workflow steps for each item in a dataset. The Map state's
iterations run in parallel, which makes it possible to process a dataset quickly. Map states can use a
variety of input types, including a JSON array, a list of Amazon S3 objects, or a CSV file.

Step Functions provides two types of processing modes for using the Map state in your workflows:
Inline mode and Distributed mode.

For information about these modes, and how to use the Map state in either mode, see the
following topics:

• Map state processing modes

Map 129

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html#API_SendTaskHeartbeat_Errors

AWS Step Functions Developer Guide

• Using Map state in Inline mode

• Using Map state in Distributed mode

Tip

To deploy an example of a workflow that uses a Map state to your AWS account, see Module
5 - Choice State and Map State of The AWS Step Functions Workshop.

Map state processing modes

Step Functions provides the following processing modes for the Map state depending on how you
want to process the items in a dataset.

• Inline – Limited-concurrency mode. In this mode, each iteration of the Map state runs in the
context of the workflow that contains the Map state. Step Functions adds the execution history
of these iterations to the parent workflow's execution history. By default, Map states run in Inline
mode.

In this mode, the Map state accepts only a JSON array as input. Also, this mode supports up to 40
concurrent iterations.

For more information, see Using Map state in Inline mode.

• Distributed – High-concurrency mode. In this mode, the Map state runs each iteration as a child
workflow execution, which enables high concurrency of up to 10,000 parallel child workflow
executions. Each child workflow execution has its own, separate execution history from that of
the parent workflow.

In this mode, the Map state can accept either a JSON array or an Amazon S3 data source, such as
a CSV file, as its input.

For more information, see Using Map state in Distributed mode.

The mode you should use depends on how you want to process the items in a dataset. Use the
Map state in Inline mode if your workflow's execution history won't exceed 25,000 entries, or if you
don't require more than 40 concurrent iterations.

Map state processing modes 130

https://s12d.com/sfn-ws-choice-and-map
https://s12d.com/sfn-ws-choice-and-map

AWS Step Functions Developer Guide

Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads
that meet any combination of the following conditions:

• The size of your dataset exceeds 256 KB.

• The workflow's execution event history exceeds 25,000 entries.

• You need a concurrency of more than 40 parallel iterations.

Topics

• Inline mode and Distributed mode differences

• Using Map state in Inline mode

• Using Map state in Distributed mode to orchestrate large-scale parallel workloads

Inline mode and Distributed mode differences

The following table highlights the differences between the Inline and Distributed modes.

Inline mode Distributed mode

Supported data sources

Accepts a JSON array passed from a previous
step in the workflow as input.

Accepts the following data sources as input:

• JSON array passed from a previous step in
the workflow

• JSON file in an Amazon S3 bucket that
contains an array

• CSV file in an Amazon S3 bucket

• Amazon S3 object list

• Amazon S3 inventory

Map iterations

In this mode, each iteration of the Map state
runs in the context of the workflow that
contains the Map state. Step Functions adds

In this mode, the Map state runs each iteration
as a child workflow execution, which enables
high concurrency of up to 10,000 parallel child
workflow executions. Each child workflow

Inline mode and Distributed mode differences 131

AWS Step Functions Developer Guide

Inline mode Distributed mode

the execution history of these iterations to the
parent workflow's execution history.

execution has its own, separate execution
history from that of the parent workflow.

Maximum concurrency for parallel iterations

Lets you run up to 40 iterations as concurren
tly as possible.

Lets you run up to 10,000 parallel child
workflow executions to process millions of
data items at one time.

Input payload and event history sizes

Enforces a limit of 256 KB on the input
payload size and 25,000 entries in the
execution event history.

Lets you overcome the payload size limitation
because the Map state can read input directly
from Amazon S3 data sources.

In this mode, you can also overcome execution
history limitations because the child workflow
executions started by the Map state maintain
their own, separate execution histories from
the parent workflow's execution history.

Monitoring and observability

You can review the workflow's execution
history from the console or by invoking the
GetExecutionHistory API action.

You can also view the execution history
through CloudWatch and X-Ray.

When you run a Map state in Distributed
mode, Step Functions creates a Map Run
resource. A Map Run refers to a set of child
workflow executions that a Distributed Map
state starts. You can view a Map Run in the
Step Functions console. You can also invoke
the DescribeMapRun API action. A Map Run
also emits metrics to CloudWatch.

For more information, see Examining Map Run
of a Distributed Map state execution.

Inline mode and Distributed mode differences 132

https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

Using Map state in Inline mode

By default, Map states runs in Inline mode. In Inline mode, the Map state accepts only a JSON array
as input. It receives this array from a previous step in the workflow. In this mode, each iteration of
the Map state runs in the context of the workflow that contains the Map state. Step Functions adds
the execution history of these iterations to the parent workflow's execution history.

In this mode, the Map state supports up to 40 concurrent iterations.

A Map state set to Inline is known as an Inline Map state. Use the Map state in Inline mode if your
workflow's execution history won't exceed 25,000 entries, or if you don't require more than 40
concurrent iterations.

For an introduction to using the Inline Map state, see the tutorial Repeat an action using Inline Map
state.

Contents

• Key concepts in this topic

• Inline Map state fields

• Deprecated fields

• Inline Map state example

• Inline Map state example with ItemSelector

• Inline Map state input and output processing

Key concepts in this topic

Inline mode

A limited-concurrency mode of the Map state. In this mode, each iteration of the Map state runs
in the context of the workflow that contains the Map state. Step Functions adds the execution
history of these iterations to the parent workflow's execution history. Map states run in the
Inline mode by default.

This mode accepts only a JSON array as input and supports up to 40 concurrent iterations.

Inline Map state

A Map state set to the Inline mode.

Using Map state in Inline mode 133

AWS Step Functions Developer Guide

Map workflow

The set of steps that the Map state runs for each iteration.

Map state iteration

A repetition of the workflow defined inside of the Map state.

Inline Map state fields

To use the Inline Map state in your workflows, specify one or more of these fields. You specify these
fields in addition to the common state fields.

Type (Required)

Sets the type of state, such as Map.

ItemProcessor (Required)

Contains the following JSON objects that specify the Map state processing mode and definition.

The definition contains the set of steps to repeat for processing each array item.

• ProcessorConfig – An optional JSON object that specifies the processing mode for the Map
state. This object contains the Mode sub-field. This field defaults to INLINE, which uses the
Map state in Inline mode.

In this mode, the failure of any iteration causes the Map state to fail. All iterations stop when
the Map state fails.

• StartAt – Specifies a string that indicates the first state in a workflow. This string is case-
sensitive and must match the name of one of the state objects. This state runs first for each
item in the dataset. Any execution input that you provide to the Map state passes to the
StartAt state first.

• States – A JSON object containing a comma-delimited set of states. In this object, you
define the Map workflow.

Note

• States within the ItemProcessor field can only transition to each other. No state
outside the ItemProcessor field can transition to a state within it.

Using Map state in Inline mode 134

AWS Step Functions Developer Guide

• The ItemProcessor field replaces the now deprecated Iterator field. Although
you can continue to include Map states that use the Iterator field, we highly
recommend that you replace this field with ItemProcessor.

Step Functions Local doesn't currently support the ItemProcessor field. We
recommend that you use the Iterator field with Step Functions Local.

ItemsPath (Optional)

Specifies a reference path using the JsonPath syntax. This path selects the JSON node that
contains the array of items inside the state input. For more information, see ItemsPath.

ItemSelector (Optional)

Overrides the values of the input array items before they're passed on to each Map state
iteration.

In this field, you specify a valid JSON that contains a collection of key-value pairs. These pairs
can contain any of the following:

• Static values you define in your state machine definition.

• Values selected from the state input using a path.

• Values accessed from the context object.

For more information, see ItemSelector.

The ItemSelector field replaces the now deprecated Parameters field. Although you can
continue to include Map states that use the Parameters field, we highly recommend that you
replace this field with ItemSelector.

MaxConcurrency (Optional)

Specifies an integer value that provides the upper bound on the number of Map state iterations
that can run in parallel. For example, a MaxConcurrency value of 10 limits the Map state to 10
concurrent iterations running at one time.

Note

Concurrent iterations may be limited. When this occurs, some iterations won't begin
until previous iterations are complete. The likelihood of this occurring increases when
your input array has more than 40 items.

Using Map state in Inline mode 135

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

To achieve a higher concurrency, consider Using Map state in Distributed mode.

The default value is 0, which places no limit on concurency. Step Functions invokes iterations as
concurrently as possible.

A MaxConcurrency value of 1 invokes the ItemProcessor once for each array element. Items
in the array are processed in the order of their appearance in the input. Step Functions doesn't
start a new iteration until it completes the previous iteration.

MaxConcurrencyPath (Optional)

If you want to provide a maximum concurrency value dynamically from the state input using a
reference path, use MaxConcurrencyPath. When resolved, the reference path must select a
field whose value is a non-negative integer.

Note

A Map state cannot include both MaxConcurrency and MaxConcurrencyPath.

ResultPath (Optional)

Specifies where in the input to store the output of the Map state's iterations. The Map state
then filters the input as specified by the OutputPath field, if specified. Then, it uses the filtered
input as the state's output. For more information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key value pairs, where the values are either static or selected from the
result. For more information, see ResultSelector.

Tip

If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,
see Flattening an array of arrays.

Using Map state in Inline mode 136

AWS Step Functions Developer Guide

Retry (Optional)

An array of objects, called Retriers, that define a retry policy. States use a retry policy when they
encounter runtime errors. For more information, see State machine examples using Retry and
using Catch.

Note

If you define Retriers for the Inline Map state, the retry policy applies to all Map state
iterations, instead of only failed iterations. For example, your Map state contains two
successful iterations and one failed iteration. If you've defined the Retry field for the
Map state, the retry policy applies to all three Map state iterations instead of only the
failed iteration.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. States run a catcher if they
encounter runtime errors and either don't have a retry policy, or their retry policy is exhausted.
For more information, see Fallback States.

Deprecated fields

Note

Although you can continue to include Map states that use the following fields, we highly
recommend that you replace Iterator with ItemProcessor and Parameters with
ItemSelector.

Iterator

Specifies a JSON object that defines a set of steps that process each element of the array.

Parameters

Specifies a collection of key-value pairs, where the values can contain any of the following:

• Static values that you define in your state machine definition.

• Values selected from the input using a path.

Using Map state in Inline mode 137

AWS Step Functions Developer Guide

Inline Map state example

Consider the following input data for a Map state running in Inline mode.

{
 "ship-date": "2016-03-14T01:59:00Z",
 "detail": {
 "delivery-partner": "UQS",
 "shipped": [
 { "prod": "R31", "dest-code": 9511, "quantity": 1344 },
 { "prod": "S39", "dest-code": 9511, "quantity": 40 },
 { "prod": "R31", "dest-code": 9833, "quantity": 12 },
 { "prod": "R40", "dest-code": 9860, "quantity": 887 },
 { "prod": "R40", "dest-code": 9511, "quantity": 1220 }
]
 }
}

Given the previous input, the Map state in the following example invokes an AWS Lambda function
named ship-val once for each item of the array in the shipped field.

"Validate All": {
 "Type": "Map",
 "InputPath": "$.detail",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "INLINE"
 },
 "StartAt": "Validate",
 "States": {
 "Validate": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-
east-2:123456789012:function:ship-val:$LATEST"
 },
 "End": true
 }
 }
 },
 "End": true,

Using Map state in Inline mode 138

AWS Step Functions Developer Guide

 "ResultPath": "$.detail.shipped",
 "ItemsPath": "$.shipped"
}

Each iteration of the Map state sends an item in the array, selected with the ItemsPath field, as
input to the ship-val Lambda function. The following values are an example of input the Map
state sends to an invocation of the Lambda function:

{
 "prod": "R31",
 "dest-code": 9511,
 "quantity": 1344
}

When complete, the output of the Map state is a JSON array, where each item is the output of an
iteration. In this case, this array contains the output of the ship-val Lambda function.

Inline Map state example with ItemSelector

Suppose that the ship-val Lambda function in the previous example also needs information
about the shipment's courier. This information is in addition to the items in the array for each
iteration. You can include information from the input, along with information specific to the
current iteration of the Map state. Note the ItemSelector field in the following example:

"Validate-All": {
 "Type": "Map",
 "InputPath": "$.detail",
 "ItemsPath": "$.shipped",
 "MaxConcurrency": 0,
 "ResultPath": "$.detail.shipped",
 "ItemSelector": {
 "parcel.$": "$$.Map.Item.Value",
 "courier.$": "$.delivery-partner"
 },
 "ItemProcessor": {
 "StartAt": "Validate",
 "States": {
 "Validate": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:ship-val",
 "End": true
 }

Using Map state in Inline mode 139

AWS Step Functions Developer Guide

 }
 },
 "End": true
}

The ItemSelector block replaces the input to the iterations with a JSON node. This node
contains both the current item data from the context object and the courier information from
the Map state input's delivery-partner field. The following is an example of input to a single
iteration. The Map state passes this input to an invocation of the ship-val Lambda function.

{
 "parcel": {
 "prod": "R31",
 "dest-code": 9511,
 "quantity": 1344
 },
 "courier": "UQS"
}

In the previous Inline Map state example, the ResultPath field produces output in the same
format as the input. However, it overwrites the detail.shipped field with an array in which each
element is the output of each iteration's ship-val Lambda invocation.

For more information about using the Inline Map state state and its fields, see the following.

• Repeat an action using Inline Map state

• Input and Output Processing in Step Functions

• ItemsPath

• Context Object Data for Map States

Inline Map state input and output processing

For a given Map state, InputPath selects a subset of the state's input.

The input of a Map state must include a JSON array. The Map state runs the ItemProcessor
section once for each item in the array. If you specify the ItemsPath field, the Map state selects
where in the input to find the array to iterate over. If not specified, the value of ItemsPath is
$, and the ItemProcessor section expects that the array is the only input. If you specify the
ItemsPath field, its value must be a Reference Path. The Map state applies this path to the

Using Map state in Inline mode 140

AWS Step Functions Developer Guide

effective input after it applies the InputPath. The ItemsPath must identify a field whose value is
a JSON array.

The input to each iteration, by default, is a single element of the array field identified by the
ItemsPath value. You can override this value with the ItemSelector field.

When complete, the output of the Map state is a JSON array, where each item is the output of an
iteration.

For more information about Inline Map state inputs and outputs, see the following:

• Repeat an action using Inline Map state

• Inline Map state example with ItemSelector

• Input and Output Processing in Step Functions

• Context Object Data for Map States

• Dynamically process data with a Map state

Using Map state in Distributed mode to orchestrate large-scale parallel
workloads

With Step Functions, you can orchestrate large-scale parallel workloads to perform tasks, such
as on-demand processing of semi-structured data. These parallel workloads let you concurrently
process large-scale data sources stored in Amazon S3. For example, you might process a single
JSON or CSV file that contains large amounts of data. Or you might process a large set of Amazon
S3 objects.

To set up a large-scale parallel workload in your workflows, include a Map state in Distributed
mode. The Map state processes items in a dataset concurrently. A Map state set to Distributed
is known as a Distributed Map state. In Distributed mode, the Map state allows high-concurrency
processing. In Distributed mode, the Map state processes the items in the dataset in iterations
called child workflow executions. You can specify the number of child workflow executions that can
run in parallel. Each child workflow execution has its own, separate execution history from that
of the parent workflow. If you don't specify, Step Functions runs 10,000 parallel child workflow
executions in parallel.

The following illustration explains how you can set up large-scale parallel workloads in your
workflows.

Using Map state in Distributed mode 141

AWS Step Functions Developer Guide

In this topic

• Key terms

• Distributed Map state definition example

• Permissions to run Distributed Map

• Distributed Map state fields

• Next steps

Using Map state in Distributed mode 142

AWS Step Functions Developer Guide

Key terms

Distributed mode

A processing mode of the Map state. In this mode, each iteration of the Map state runs as a child
workflow execution that enables high concurrency. Each child workflow execution has its own
execution history, which is separate from the parent workflow's execution history. This mode
supports reading input from large-scale Amazon S3 data sources.

Distributed Map state

A Map state set to Distributed processing mode.

Map workflow

A set of steps that a Map state runs.

Parent workflow

A workflow that contains one or more Distributed Map states.

Child workflow execution

An iteration of the Distributed Map state. A child workflow execution has its own execution
history, which is separate from the parent workflow's execution history.

Map Run

When you run a Map state in Distributed mode, Step Functions creates a Map Run resource. A
Map Run refers to a set of child workflow executions that a Distributed Map state starts, and
the runtime settings that control these executions. Step Functions assigns an Amazon Resource
Name (ARN) to your Map Run. You can examine a Map Run in the Step Functions console. You
can also invoke the DescribeMapRun API action. A Map Run also emits metrics to CloudWatch.

For more information, see Examining Map Run.

Distributed Map state definition example

Use the Map state in Distributed mode when you need to orchestrate large-scale parallel workloads
that meet any combination of the following conditions:

• The size of your dataset exceeds 256 KB.

Using Map state in Distributed mode 143

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

• The workflow's execution event history exceeds 25,000 entries.

• You need a concurrency of more than 40 parallel iterations.

The following Distributed Map state definition example specifies the dataset as a CSV file stored in
an Amazon S3 bucket. It also specifies a Lambda function that processes the data in each row of
the CSV file. Because this example uses a CSV file, it also specifies the location of the CSV column
headers. To view the complete state machine definition of this example, see the tutorial Copying
large-scale CSV data using Distributed Map.

{
 "Map": {
 "Type": "Map",
 "ItemReader": {
 "ReaderConfig": {
 "InputType": "CSV",
 "CSVHeaderLocation": "FIRST_ROW"
 },
 "Resource": "arn:aws:states:::s3:getObject",
 "Parameters": {
 "Bucket": "Database",
 "Key": "csv-dataset/ratings.csv"
 }
 },
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "DISTRIBUTED",
 "ExecutionType": "EXPRESS"
 },
 "StartAt": "LambdaTask",
 "States": {
 "LambdaTask": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-
east-2:123456789012:function:processCSVData"
 },
 "End": true
 }
 }

Using Map state in Distributed mode 144

AWS Step Functions Developer Guide

 },
 "Label": "Map",
 "End": true,
 "ResultWriter": {
 "Resource": "arn:aws:states:::s3:putObject",
 "Parameters": {
 "Bucket": "myOutputBucket",
 "Prefix": "csvProcessJobs"
 }
 }
 }
}

Permissions to run Distributed Map

When you include a Distributed Map state in your workflows, Step Functions needs appropriate
permissions to allow the state machine role to invoke the StartExecution API action for the
Distributed Map state.

The following IAM policy example grants the least privileges required to your state machine role
for running the Distributed Map state.

Note

Make sure that you replace stateMachineName with the name of the state machine
in which you're using the Distributed Map state. For example, arn:aws:states:us-
east-2:123456789012:stateMachine:mystateMachine.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": [
 "arn:aws:states:region:accountID:stateMachine:stateMachineName"
]
 },

Using Map state in Distributed mode 145

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "states:DescribeExecution",
 "states:StopExecution"
],
 "Resource": "arn:aws:states:region:accountID:execution:stateMachineName:*"
 }
]
}

In addition, you need to make sure that you have the least privileges necessary to access the AWS
resources used in the Distributed Map state, such as Amazon S3 buckets. For information, see IAM
policies for using Distributed Map state.

Distributed Map state fields

To use the Distributed Map state in your workflows, specify one or more of these fields. You specify
these fields in addition to the common state fields.

Type (Required)

Sets the type of state, such as Map.

ItemProcessor (Required)

Contains the following JSON objects that specify the Map state processing mode and definition.

•
ProcessorConfig – A JSON object that specifies the configuration for the Map state. This
object contains the following sub-fields:

• Mode – Set to DISTRIBUTED to use the Map state in Distributed mode.

Note

Currently, if you use the Map state inside Express workflows, you can't set the Mode
to DISTRIBUTED. However, if you use the Map state inside Standard workflows, you
can set the Mode to DISTRIBUTED.

• ExecutionType – Specifies the execution type for the Map workflow as either STANDARD
or EXPRESS. You must provide this field if you specified DISTRIBUTED for the Mode sub-
field. For more information about workflow types, see Standard vs. Express Workflows.

Using Map state in Distributed mode 146

AWS Step Functions Developer Guide

• StartAt – Specifies a string that indicates the first state in a workflow. This string is case-
sensitive and must match the name of one of the state objects. This state runs first for each
item in the dataset. Any execution input that you provide to the Map state passes to the
StartAt state first.

• States – A JSON object containing a comma-delimited set of states. In this object, you
define the Map workflow.

ItemReader

Specifies a dataset and its location. The Map state receives its input data from the specified
dataset.

In Distributed mode, you can use either a JSON payload passed from a previous state or a large-
scale Amazon S3 data source as the dataset. For more information, see ItemReader.

ItemsPath (Optional)

Specifies a reference path using the JsonPath syntax to select the JSON node that contains an
array of items inside the state input.

In Distributed mode, you specify this field only when you use a JSON array from a previous step
as your state input. For more information, see ItemsPath.

ItemSelector (Optional)

Overrides the values of individual dataset items before they're passed on to each Map state
iteration.

In this field, you specify a valid JSON input that contains a collection of key-value pairs.
These pairs can either be static values that you define in your state machine definition, values
selected from the state input using a path, or values accessed from the context object. For more
information, see ItemSelector.

ItemBatcher (Optional)

Specifies to process the dataset items in batches. Each child workflow execution then receives a
batch of these items as input. For more information, see ItemBatcher.

MaxConcurrency (Optional)

Specifies the number of child workflow executions that can run in parallel. The interpreter only
allows up to the specified number of parallel child workflow executions. If you don't specify

Using Map state in Distributed mode 147

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

a concurrency value or set it to zero, Step Functions doesn't limit concurreny and runs 10,000
parallel child workflow executions.

Note

While you can specify a higher concurrency limit for parallel child workflow executions,
we recommend that you don't exceed the capacity of a downstream AWS service, such
as AWS Lambda.

MaxConcurrencyPath (Optional)

If you want to provide a maximum concurrency value dynamically from the state input using a
reference path, use MaxConcurrencyPath. When resolved, the reference path must select a
field whose value is a non-negative integer.

Note

A Map state cannot include both MaxConcurrency and MaxConcurrencyPath.

ToleratedFailurePercentage (Optional)

Defines the percentage of failed items to tolerate in a Map Run. The Map Run automatically
fails if it exceeds this percentage. Step Functions calculates the percentage of failed items as
the result of the total number of failed or timed out items divided by the total number of items.
You must specify a value between zero and 100. For more information, see Tolerated failure
threshold for Distributed Map state.

ToleratedFailurePercentagePath (Optional)

If you want to provide a tolerated failure percentage value dynamically from the state input
using a reference path, use ToleratedFailurePercentagePath. When resolved, the
reference path must select a field whose value is between zero and 100.

ToleratedFailureCount (Optional)

Defines the number of failed items to tolerate in a Map Run. The Map Run automatically fails
if it exceeds this number. For more information, see Tolerated failure threshold for Distributed
Map state.

Using Map state in Distributed mode 148

AWS Step Functions Developer Guide

ToleratedFailureCountPath (Optional)

If you want to provide a tolerated failure count value dynamically from the state input using a
reference path, use ToleratedFailureCountPath. When resolved, the reference path must
select a field whose value is a non-negative integer.

Label (Optional)

A string that uniquely identifies a Map state. For each Map Run, Step Functions adds the label to
the Map Run ARN. The following is an example of a Map Run ARN with a custom label named
demoLabel:

arn:aws:states:us-east-1:123456789012:mapRun:demoWorkflow/
demoLabel:3c39a231-69bb-3d89-8607-9e124eddbb0b

If you don't specify a label, Step Functions automatically generates a unique label.

Note

Labels can't exceed 40 characters in length, must be unique within a state machine
definition, and can't contain any of the following characters:

• Whitespace characters

• Wildcard characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # % & ` ")

• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).
Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work with
Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose a name
that uses only ASCII characters.

ResultWriter (Optional)

Specifies the Amazon S3 location where Step Functions writes all child workflow execution
results.

Using Map state in Distributed mode 149

AWS Step Functions Developer Guide

Step Functions consolidates all child workflow execution data, such as execution input and
output, ARN, and execution status. It then exports executions with the same status to their
respective files in the specified Amazon S3 location. For more information, see ResultWriter.

If you don't export the Map state results, it returns an array of all the child workflow execution
results. For example:

[1, 2, 3, 4, 5]

ResultPath (Optional)

Specifies where in the input to place the output of the iterations. The input is then filtered as
specified by the OutputPath field if present, before it is passed as the state's output. For more
information, see Input and Output Processing.

ResultSelector (Optional)

Pass a collection of key-value pairs, where the values are static or selected from the result. For
more information, see ResultSelector.

Tip

If the Parallel or Map state you use in your state machines returns an array of arrays, you
can transform them into a flat array with the ResultSelector field. For more information,
see Flattening an array of arrays.

Retry (Optional)

An array of objects, called Retriers, that define a retry policy. An execution uses the retry policy
if the state encounters runtime errors. For more information, see State machine examples using
Retry and using Catch.

Note

If you define Retriers for the Distributed Map state, the retry policy applies to all of the
child workflow executions the Map state started. For example, imagine your Map state
started three child workflow executions, out of which one fails. When the failure occurs,
the execution uses the Retry field, if defined, for the Map state. The retry policy applies
to all the child workflow executions and not just the failed execution. If one or more
child workflow executions fails, the Map Run fails.

Using Map state in Distributed mode 150

AWS Step Functions Developer Guide

When you retry a Map state, it creates a new Map Run.

Catch (Optional)

An array of objects, called Catchers, that define a fallback state. Step Functions uses the
Catchers defined in Catch if the state encounters runtime errors. When an error occurs,
the execution first uses any retriers defined in Retry. If the retry policy isn't defined or is
exhausted, the execution uses its Catchers, if defined. For more information, see Fallback States.

Next steps

To continue learning more about Distributed Map state, see the following resources:

• Input and output processing

To configure the input that a Distributed Map state receives and the output that it generates,
Step Functions provides the following fields:

• ItemReader

• ItemsPath

• ItemSelector

• ItemBatcher

• ResultWriter

• Parsing an input CSV file

In addition to these fields, Step Functions also provides you the ability to define a tolerated
failure threshold for Distributed Map. This value lets you specify the maximum number of, or
percentage of, failed items as a failure threshold for a Map Run. For more information about
configuring the tolerated failure threshold, see Tolerated failure threshold for Distributed Map
state.

• Using Distributed Map state

Refer the following tutorials and sample projects to get started with using Distributed Map state.

• Getting started with using Distributed Map state

• Processing entire batch of data with a Lambda function

• Processing individual data items with a Lambda function
Using Map state in Distributed mode 151

AWS Step Functions Developer Guide

• Sample project: Process a CSV file with Distributed Map

• Sample project: Process data in an Amazon S3 bucket with Distributed Map

• Examine Distributed Map state execution

The Step Functions console provides a Map Run Details page, which displays all the information
related to a Distributed Map state execution. For information about how to examine the
information displayed on this page, see Examining Map Run.

Tolerated failure threshold for Distributed Map state

When you orchestrate large-scale parallel workloads, you can also define a tolerated failure
threshold. This value lets you specify the maximum number of, or percentage of, failed items
as a failure threshold for a Map Run. Depending on which value you specify, your Map Run fails
automatically if it exceeds the threshold. If you specify both values, the workflow fails when it
exceeds either value.

Specifying a threshold helps you fail a specific number of items before the entire Map Run fails.
Step Functions returns a States.ExceedToleratedFailureThreshold error when the Map
Run fails because the specified threshold is exceeded.

Note

Step Functions may continue to run child workflows in a Map Run even after the tolerated
failure threshold is exceeded, but before the Map Run fails.

To specify the threshold value in Workflow Studio, select Set a tolerated failure threshold in
Additional configuration under the Runtime settings field.

Tolerated failure percentage

Defines the percentage of failed items to tolerate. Your Map Run fails if this value is exceeded.
Step Functions calculates the percentage of failed items as the result of the total number
of failed or timed out items divided by the total number of items. You must specify a value
between zero and 100. The default percentage value is zero, which means that the workflow
fails if any one of its child workflow executions fails or times out. If you specify the percentage
as 100, the workflow won’t fail even if all child workflow executions fail.

Tolerated failure threshold for Distributed Map state 152

AWS Step Functions Developer Guide

Alternatively, you can specify the percentage as a reference path to an existing key-value pair
in your Distributed Map state input. This path must resolve to a positive integer between 0 and
100 at runtime. You specify the reference path in the ToleratedFailurePercentagePath
sub-field.

For example, given the following input:

{
 "percentage": 15
}

You can specify the percentage using a reference path to that input as follows:

{
 ...
 "Map": {
 "Type": "Map",
 ...
 "ToleratedFailurePercentagePath": "$.percentage"
 ...
 }
}

Important

You can specify either ToleratedFailurePercentage or
ToleratedFailurePercentagePath, but not both in your Distributed Map state
definition.

Tolerated failure count

Defines the number of failed items to tolerate. Your Map Run fails if this value is exceeded.

Alternatively, you can specify the count as a reference path to an existing key-value pair in your
Distributed Map state input. This path must resolve to a positive integer at runtime. You specify
the reference path in the ToleratedFailureCountPath sub-field.

For example, given the following input:

Tolerated failure threshold for Distributed Map state 153

AWS Step Functions Developer Guide

{
 "count": 10
}

You can specify the number using a reference path to that input as follows:

{
 ...
 "Map": {
 "Type": "Map",
 ...
 "ToleratedFailureCountPath": "$.count"
 ...
 }
}

Important

You can specify either ToleratedFailureCount or ToleratedFailureCountPath,
but not both in your Distributed Map state definition.

Transitions

When you start a new execution of your state machine, the system begins with the state referenced
in the top-level StartAt field. This field, given as a string, must exactly match, including case, the
name of a state in the workflow.

After a state runs, AWS Step Functions uses the value of the Next field to determine the next state
to advance to.

Next fields also specify state names as strings. This string is case-sensitive and must match the
name of a state specified in the state machine description exactly

For example, the following state includes a transition to NextState.

"SomeState" : {
 ...,
 "Next" : "NextState"

Transitions 154

AWS Step Functions Developer Guide

}

Most states permit only a single transition rule with the Next field. However, certain flow-control
states, such as a Choice state, allow you to specify multiple transition rules, each with its own
Next field. The Amazon States Language provides details about each of the state types you can
specify, including information about how to specify transitions.

States can have multiple incoming transitions from other states.

The process repeats until it either reaches a terminal state (a state with "Type": Succeed,
"Type": Fail, or "End": true), or a runtime error occurs.

When you redrive an execution, it's considered as a state transition. In addition, all states that are
rerun in a redrive are also considered as state transitions.

The following rules apply to states within a state machine:

• States can occur in any order within the enclosing block. However, the order in which they're
listed doesn't affect the order in which they're run. That order is determined by the contents of
the states.

• Within a state machine, there can be only one state designated as the start state. The start
state is defined by the value of the StartAt field in the top-level structure.

• Depending on your state machine logic — for example, if your state machine has multiple logic
branches — you may have more than one end state.

• If your state machine consists of only one state, it can be both the start and end state.

Transitions in Distributed Map state

When you use the Map state in Distributed mode, you'll be charged one state transition for each
child workflow execution that the Distributed Map state starts. When you use the Map state in Inline
mode, you aren't charged a state transition for each iteration of the Inline Map state.

You can optimize cost by using the Map state in Distributed mode and include a nested workflow
in the Map state definition. The Distributed Map state also adds more value when you start child
workflow executions of type Express. Step Functions stores the response and status of the Express
child workflow executions, which reduces the need to store execution data in CloudWatch Logs.
You can also get access to flow controls available with a Distributed Map state, such as defining

Transitions in Distributed Map state 155

AWS Step Functions Developer Guide

error thresholds or batching a group of items. For information about Step Functions pricing, see
AWS Step Functions pricing.

State Machine Data

State machine data takes the following forms:

• The initial input into a state machine

• Data passed between states

• The output from a state machine

This section describes how state machine data is formatted and used in AWS Step Functions.

Topics

• Data Format

• State Machine Input/Output

• State Input/Output

Data Format

State machine data is represented by JSON text. You can provide values to a state machine using
any data type supported by JSON.

Note

• Numbers in JSON text format conform to JavaScript semantics. These numbers typically
correspond to double-precision IEEE-854 values.

• The following is valid JSON text:

• Standalone, quote-delimited strings

• Objects

• Arrays

• Numbers

• Boolean values

• null

State Machine Data 156

https://aws.amazon.com/step-functions/pricing/
https://standards.ieee.org/findstds/standard/854-1987.html

AWS Step Functions Developer Guide

• The output of a state becomes the input for the next state. However, you can restrict
states to work on a subset of the input data by using Input and Output Processing.

State Machine Input/Output

You can give your initial input data to an AWS Step Functions state machine in one of two ways.
You can pass the data to a StartExecution action when you start an execution. You can also
pass the data to the state machine from the Step Functions console. Initial data is passed to the
state machine's StartAt state. If no input is provided, the default is an empty object ({}).

The output of the execution is returned by the last state (terminal). This output appears as JSON
text in the execution's result.

For Standard Workflows, you can retrieve execution results from the execution history using
external callers, such as the DescribeExecution action. You can view execution results on the
Step Functions console.

For Express Workflows, if you enabled logging, you can retrieve results from CloudWatch Logs, or
view and debug the executions in the Step Functions console. For more information, see Logging
using CloudWatch Logs and Viewing and debugging executions on the Step Functions console.

You should also consider quotas related to your state machine. For more information, see Quotas

State Input/Output

Each state's input consists of JSON text from the preceding state or, for the StartAt state, the
input into the execution. Certain flow-control states echo their input to their output.

In the following example, the state machine adds two numbers together.

1. Define the AWS Lambda function.

function Add(input) {
 var numbers = JSON.parse(input).numbers;
 var total = numbers.reduce(
 function(previousValue, currentValue, index, array) {
 return previousValue + currentValue; });
 return JSON.stringify({ result: total });
}

State Machine Input/Output 157

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

2. Define the state machine.

{
 "Comment": "An example that adds two numbers together.",
 "StartAt": "Add",
 "Version": "1.0",
 "TimeoutSeconds": 10,
 "States":
 {
 "Add": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Add",
 "End": true
 }
 }
}

3. Start an execution with the following JSON text.

{ "numbers": [3, 4] }

The Add state receives the JSON text and passes it to the Lambda function.

The Lambda function returns the result of the calculation to the state.

The state returns the following value in its output.

{ "result": 7 }

Because Add is also the final state in the state machine, this value is returned as the state
machine's output.

If the final state returns no output, then the state machine returns an empty object ({}).

For more information, see Input and Output Processing in Step Functions.

Input and Output Processing in Step Functions

A Step Functions execution receives a JSON text as input and passes that input to the first state
in the workflow. Individual states receive JSON as input and usually pass JSON as output to the

Input and Output Processing 158

AWS Step Functions Developer Guide

next state. Understanding how this information flows from state to state, and learning how to filter
and manipulate this data, is key to effectively designing and implementing workflows in AWS Step
Functions.

In the Amazon States Language, these fields filter and control the flow of JSON from state to state:

• InputPath

• Parameters

• ResultSelector

• ResultPath

• OutputPath

The following diagram shows how JSON information moves through a task state. InputPath
selects which parts of the JSON input to pass to the task of the Task state (for example, an
AWS Lambda function). ResultPath then selects what combination of the state input and the
task result to pass to the output. OutputPath can filter the JSON output to further limit the
information that's passed to the output.

Input and Output Processing 159

AWS Step Functions Developer Guide

InputPath, Parameters, ResultSelector, ResultPath, and OutputPath each manipulate
JSON as it moves through each state in your workflow.

Each can use paths to select portions of the JSON from the input or the result. A path is a string,
beginning with $, that identifies nodes within JSON text. Step Functions paths use JsonPath
syntax.

Input and Output Processing 160

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

Tip

Use the data flow simulator in the Step Functions console to test JSON path syntax, to
better understand how data is manipulated within a state, and to see how data is passed
between states.

Tip

To deploy an example of a workflow that includes input and output processing to your AWS
account, see Module 6 - Input and Output Processing of The AWS Step Functions Workshop.

Topics

• Paths

• InputPath, Parameters and ResultSelector

• ResultPath

• OutputPath

• InputPath, ResultPath, and OutputPath Examples

• Map state input and output fields

• Context object

Paths

In the Amazon States Language, a path is a string beginning with $ that you can use to identify
components within JSON text. Paths follow JsonPath syntax. You can specify a path to access
subsets of the input when specifying values for InputPath, ResultPath, and OutputPath. For
more information see Input and Output Processing in Step Functions.

Note

You can also specify a JSON node of the input or the context object by using paths within
the Parameters field of a state definition. See Pass parameters to a service API.

Paths 161

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator
https://s12d.com/sfn-ws-input-output
https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

You must use square bracket notation if your field name contains any character that is not included
in the member-name-shorthand definition of the JsonPath ABNF rule. Therefore, to encode
special characters, such as punctuation marks (excluding _), you must use square bracket notation.
For example, $.abc.['def ghi'].

Reference Paths

A reference path is a path whose syntax is limited in such a way that it can identify only a single
node in a JSON structure:

• You can access object fields using only dot (.) and square bracket ([]) notation.

• Functions such as length() aren't supported.

• Lexical operators, which are non-symbolic, such as subsetof aren't supported.

• Filtering by regular expression or by referencing another value in the JSON structure isn't
supported.

• The @ operator, matching the current node being processed in a filter, does not match scalar
values. It only matches objects.

For example, if state input data contains the following values:

{
 "foo": 123,
 "bar": ["a", "b", "c"],
 "car": {
 "cdr": true
 },
 "jar": [{"a": 1}, {"a": 5}, {"a": 2}, {"a": 7}, {"a": 3}]
}

The following reference paths would return the following.

$.foo => 123
$.bar => ["a", "b", "c"]
$.car.cdr => true
$.jar[?(@.a >= 5)] => [{"a": 5}, {"a": 7}]

Certain states use paths and reference paths to control the flow of a state machine or configure a
state's settings or options. For more information, see Modeling workflow input and output path
processing with data flow simulator and Using JSONPath effectively in AWS Step Functions.

Paths 162

https://www.ietf.org/archive/id/draft-ietf-jsonpath-base-21.html#jsonpath-abnf
https://aws.amazon.com/blogs/compute/modeling-workflow-input-output-path-processing-with-data-flow-simulator/
https://aws.amazon.com/blogs/compute/modeling-workflow-input-output-path-processing-with-data-flow-simulator/
https://aws.amazon.com/blogs/compute/using-jsonpath-effectively-in-aws-step-functions/

AWS Step Functions Developer Guide

Flattening an array of arrays

If the Parallel or Map state in your state machines return an array of arrays, you can transform
them into a flat array with the ResultSelector field. You can include this field inside the Parallel or
Map state definition to manipulate the result of these states.

To flatten arrays, use the JMESPath syntax [*] in the ResultSelector field as shown in the
following example.

"ResultSelector": {
 "flattenArray.$": "$[*][*]"
 }

For examples that show how to flatten an array, see Step 3 in the following tutorials:

• Processing entire batch of data with a Lambda function

• Processing individual data items with a Lambda function

InputPath, Parameters and ResultSelector

The InputPath, Parameters and ResultSelector fields provide a way to manipulate JSON
as it moves through your workflow. InputPath can limit the input that is passed by filtering the
JSON notation by using a path (see Paths). The Parameters field enables you to pass a collection
of key-value pairs, where the values are either static values that you define in your state machine
definition, or that are selected from the input using a path. The ResultSelector field provides a
way to manipulate the state’s result before ResultPath is applied.

AWS Step Functions applies the InputPath field first, and then the Parameters field. You can
first filter your raw input to a selection you want using InputPath, and then apply Parameters
to manipulate that input further, or add new values. You can then use the ResultSelector field
to manipulate the state's output before ResultPath is applied.

Tip

Use the data flow simulator in the Step Functions console to test JSON path syntax, to
better understand how data is manipulated within a state, and to see how data is passed
between states.

InputPath, Parameters and ResultSelector 163

https://jmespath.org/specification.html#wildcard-expressions
https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

InputPath

Use InputPath to select a portion of the state input.

For example, suppose the input to your state includes the following.

{
 "comment": "Example for InputPath.",
 "dataset1": {
 "val1": 1,
 "val2": 2,
 "val3": 3
 },
 "dataset2": {
 "val1": "a",
 "val2": "b",
 "val3": "c"
 }
}

You could apply the InputPath.

"InputPath": "$.dataset2",

With the previous InputPath, the following is the JSON that is passed as the input.

{
 "val1": "a",
 "val2": "b",
 "val3": "c"
}

Note

A path can yield a selection of values. Consider the following example.

{ "a": [1, 2, 3, 4] }

If you apply the path $.a[0:2], the following is the result.

InputPath, Parameters and ResultSelector 164

AWS Step Functions Developer Guide

[1, 2]

Parameters

This section describes the different ways you can use the Parameters field.

Key-value pairs

Use the Parameters field to create a collection of key-value pairs that are passed as input. The
values of each can either be static values that you include in your state machine definition, or
selected from either the input or the context object with a path. For key-value pairs where the
value is selected using a path, the key name must end in .$.

For example, suppose you provide the following input.

{
 "comment": "Example for Parameters.",
 "product": {
 "details": {
 "color": "blue",
 "size": "small",
 "material": "cotton"
 },
 "availability": "in stock",
 "sku": "2317",
 "cost": "$23"
 }
}

To select some of the information, you could specify these parameters in your state machine
definition.

"Parameters": {
 "comment": "Selecting what I care about.",
 "MyDetails": {
 "size.$": "$.product.details.size",
 "exists.$": "$.product.availability",
 "StaticValue": "foo"
 }

InputPath, Parameters and ResultSelector 165

AWS Step Functions Developer Guide

 },

Given the previous input and the Parameters field, this is the JSON that is passed.

{
 "comment": "Selecting what I care about.",
 "MyDetails": {
 "size": "small",
 "exists": "in stock",
 "StaticValue": "foo"
 }
},

In addition to the input, you can access a special JSON object, known as the context object. The
context object includes information about your state machine execution. See Context object.

Connected resources

The Parameters field can also pass information to connected resources. For example, if your task
state is orchestrating an AWS Batch job, you can pass the relevant API parameters directly to the
API actions of that service. For more information, see:

• Pass parameters to a service API

• Working with other services

Amazon S3

If the Lambda function data you are passing between states might grow to more than 262,144
bytes, we recommend using Amazon S3 to store the data, and implement one of the following
methods:

• Use the Distributed Map state in your workflow so that the Map state can read input directly from
Amazon S3 data sources. For more information, see Using Map state in Distributed mode.

• Parse the Amazon Resource Name (ARN) of the bucket in the Payload parameter to get the
bucket name and key value. For more information, see Use Amazon S3 ARNs instead of passing
large payloads.

Alternatively, you can adjust your implementation to pass smaller payloads in your executions.

InputPath, Parameters and ResultSelector 166

AWS Step Functions Developer Guide

ResultSelector

Use the ResultSelector field to manipulate a state's result before ResultPath is applied. The
ResultSelector field lets you create a collection of key value pairs, where the values are static or
selected from the state's result. Using the ResultSelector field, you can choose what parts of a
state's result you want to pass to the ResultPath field.

Note

With the ResultPath field, you can add the output of the ResultSelector field to the
original input.

ResultSelector is an optional field in the following states:

• Map

• Task

• Parallel

For example, Step Functions service integrations return metadata in addition to the payload in the
result. ResultSelector can select portions of the result and merge them with the state input
with ResultPath. In this example, we want to select just the resourceType and ClusterId,
and merge that with the state input from an Amazon EMR createCluster.sync. Given the following:

{
 "resourceType": "elasticmapreduce",
 "resource": "createCluster.sync",
 "output": {
 "SdkHttpMetadata": {
 "HttpHeaders": {
 "Content-Length": "1112",
 "Content-Type": "application/x-amz-JSON-1.1",
 "Date": "Mon, 25 Nov 2019 19:41:29 GMT",
 "x-amzn-RequestId": "1234-5678-9012"
 },
 "HttpStatusCode": 200
 },
 "SdkResponseMetadata": {
 "RequestId": "1234-5678-9012"
 },

InputPath, Parameters and ResultSelector 167

AWS Step Functions Developer Guide

 "ClusterId": "AKIAIOSFODNN7EXAMPLE"
 }
}

You can then select the resourceType and ClusterId using ResultSelector:

"Create Cluster": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:createCluster.sync",
 "Parameters": {
 <some parameters>
 },
 "ResultSelector": {
 "ClusterId.$": "$.output.ClusterId",
 "ResourceType.$": "$.resourceType"
 },
 "ResultPath": "$.EMROutput",
 "Next": "Next Step"
}

With the given input, using ResultSelector produces:

{
 "OtherDataFromInput": {},
 "EMROutput": {
 "ResourceType": "elasticmapreduce",
 "ClusterId": "AKIAIOSFODNN7EXAMPLE"
 }
}

Flattening an array of arrays

If the Parallel or Map state in your state machines return an array of arrays, you can transform
them into a flat array with the ResultSelector field. You can include this field inside the Parallel or
Map state definition to manipulate the result of these states.

To flatten arrays, use the JMESPath syntax [*] in the ResultSelector field as shown in the
following example.

"ResultSelector": {
 "flattenArray.$": "$[*][*]"
 }

InputPath, Parameters and ResultSelector 168

https://jmespath.org/specification.html#wildcard-expressions

AWS Step Functions Developer Guide

For examples that show how to flatten an array, see Step 3 in the following tutorials:

• Processing entire batch of data with a Lambda function

• Processing individual data items with a Lambda function

ResultPath

The output of a state can be a copy of its input, the result it produces (for example, output from
a Task state’s Lambda function), or a combination of its input and result. Use ResultPath to
control which combination of these is passed to the state output.

The following state types can generate a result and can include ResultPath:

• Pass

• Task

• Parallel

• Map

Use ResultPath to combine a task result with task input, or to select one of these. The path you
provide to ResultPath controls what information passes to the output.

Note

ResultPath is limited to using reference paths, which limit scope so that it can identify
only a single node in JSON. See Reference Paths in the Amazon States Language.

These examples are based on the state machine and Lambda function described in the Creating
a Step Functions state machine that uses Lambda tutorial. Work through that tutorial and test
different outputs by trying various paths in a ResultPath field.

Use ResultPath to:

• Use ResultPath to Replace the Input with the Result

• Discard the Result and Keep the Original Input

• Use ResultPath to Include the Result with the Input

• Use ResultPath to Update a Node in the Input with the Result

ResultPath 169

AWS Step Functions Developer Guide

• Use ResultPath to Include Both Error and Input in a Catch

Tip

Use the data flow simulator in the Step Functions console to test JSON path syntax, to
better understand how data is manipulated within a state, and to see how data is passed
between states.

Use ResultPath to Replace the Input with the Result

If you don't specify a ResultPath, the default behavior is as if you had specified "ResultPath":
"$". Because this tells the state to replace the entire input with the result, the state input is
completely replaced by the result coming from the task result.

The following diagram shows how ResultPath can completely replace the input with the result of
the task.

ResultPath 170

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

Use the state machine and Lambda function described in Creating a Step Functions state machine
that uses Lambda, and change the service integration type to AWS SDK integration for the Lambda
function. To do this, specify the Lambda function Amazon Resource Name (ARN) in the Resource
field of the Task state as shown in the following example. Using AWS SDK integration ensures that
the Task state result only contains the Lambda function output without any metadata.

{
 "StartAt":"CallFunction",
 "States":{
 "CallFunction": {
 "Type":"Task",
 "Resource":"arn:aws:lambda:us-east-2:123456789012:function:HelloFunction",
 "End": true
 }
 }

ResultPath 171

AWS Step Functions Developer Guide

}

Then, pass the following input:

{
 "comment": "This is a test of the input and output of a Task state.",
 "details": "Default example",
 "who": "AWS Step Functions"
}

The Lambda function provides the following result.

"Hello, AWS Step Functions!"

Tip

You can view this result on the Step Functions console. To do this, on the Execution Details
page of the console, choose the Lambda function in the Graph view. Then, choose the
Output tab in the Step details pane to see this result.

If ResultPath isn't specified in the state, or if "ResultPath": "$" is set, the input of the state
is replaced by the result of the Lambda function, and the output of the state is the following.

"Hello, AWS Step Functions!"

Note

ResultPath is used to include content from the result with the input, before passing it to
the output. But, if ResultPath isn't specified, the default is to replace the entire input.

Discard the Result and Keep the Original Input

If you set ResultPath to null, it will pass the original input to the output. Using
"ResultPath": null, the state's input payload will be copied directly to the output, with no
regard for the result.

ResultPath 172

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

The following diagram shows how a null ResultPath will copy the input directly to the output.

Use ResultPath to Include the Result with the Input

The following diagram shows how ResultPath can include the result with the input.

ResultPath 173

AWS Step Functions Developer Guide

Using the state machine and Lambda function described in the Creating a Step Functions state
machine that uses Lambda tutorial, we could pass the following input.

{
 "comment": "This is a test of the input and output of a Task state.",
 "details": "Default example",
 "who": "AWS Step Functions"
}

The result of the Lambda function is the following.

"Hello, AWS Step Functions!"

ResultPath 174

AWS Step Functions Developer Guide

To preserve the input, insert the result of the Lambda function, and then pass the combined JSON
to the next state, we could set ResultPath to the following.

"ResultPath": "$.taskresult"

This includes the result of the Lambda function with the original input.

{
 "comment": "This is a test of input and output of a Task state.",
 "details": "Default behavior example",
 "who": "AWS Step Functions",
 "taskresult": "Hello, AWS Step Functions!"
}

The output of the Lambda function is appended to the original input as a value for taskresult.
The input, including the newly inserted value, is passed to the next state.

You can also insert the result into a child node of the input. Set the ResultPath to the following.

"ResultPath": "$.strings.lambdaresult"

Start an execution using the following input.

{
 "comment": "An input comment.",
 "strings": {
 "string1": "foo",
 "string2": "bar",
 "string3": "baz"
 },
 "who": "AWS Step Functions"
}

The result of the Lambda function is inserted as a child of the strings node in the input.

{
 "comment": "An input comment.",
 "strings": {
 "string1": "foo",
 "string2": "bar",
 "string3": "baz",

ResultPath 175

AWS Step Functions Developer Guide

 "lambdaresult": "Hello, AWS Step Functions!"
 },
 "who": "AWS Step Functions"
}

The state output now includes the original input JSON with the result as a child node.

Use ResultPath to Update a Node in the Input with the Result

The following diagram shows how ResultPath can update the value of existing JSON nodes in
the input with values from the task result.

Using the example of the state machine and Lambda function described in the Creating a Step
Functions state machine that uses Lambda tutorial, we could pass the following input.

{

ResultPath 176

AWS Step Functions Developer Guide

 "comment": "This is a test of the input and output of a Task state.",
 "details": "Default example",
 "who": "AWS Step Functions"
}

The result of the Lambda function is the following.

Hello, AWS Step Functions!

Instead of preserving the input and inserting the result as a new node in the JSON, we can
overwrite an existing node.

For example, just as omitting or setting "ResultPath": "$" overwrites the entire node, you can
specify an individual node to overwrite with the result.

"ResultPath": "$.comment"

Because the comment node already exists in the state input, setting ResultPath to "$.comment"
replaces that node in the input with the result of the Lambda function. Without further filtering by
OutputPath, the following is passed to the output.

{
 "comment": "Hello, AWS Step Functions!",
 "details": "Default behavior example",
 "who": "AWS Step Functions",
}

The value for the comment node, "This is a test of the input and output of a Task
state.", is replaced by the result of the Lambda function: "Hello, AWS Step Functions!" in
the state output.

Use ResultPath to Include Both Error and Input in a Catch

The Handling error conditions using a Step Functions state machine tutorial shows how to use
a state machine to catch an error. In some cases, you might want to preserve the original input
with the error. Use ResultPath in a Catch to include the error with the original input, instead of
replacing it.

"Catch": [{

ResultPath 177

AWS Step Functions Developer Guide

 "ErrorEquals": ["States.ALL"],
 "Next": "NextTask",
 "ResultPath": "$.error"
}]

If the previous Catch statement catches an error, it includes the result in an error node within the
state input. For example, with the following input:

{"foo": "bar"}

The state output when catching an error is the following.

{
 "foo": "bar",
 "error": {
 "Error": "Error here"
 }
}

For more information about error handling, see the following:

• Error handling in Step Functions

• Handling error conditions using a Step Functions state machine

OutputPath

OutputPath enables you to select a portion of the state output to pass to the next state. This
enables you to filter out unwanted information, and pass only the portion of JSON that you care
about.

If you don't specify an OutputPath the default value is $. This passes the entire JSON node
(determined by the state input, the task result, and ResultPath) to the next state.

Tip

Use the data flow simulator in the Step Functions console to test JSON path syntax, to
better understand how data is manipulated within a state, and to see how data is passed
between states.

OutputPath 178

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

For more information, see the following:

• Paths in the Amazon States Language

• InputPath, ResultPath, and OutputPath Examples

• Pass static JSON as parameters

• Input and Output Processing in Step Functions

InputPath, ResultPath, and OutputPath Examples

Any state other than a Fail state or a Succeed state can include the input and output processing
fields, such as InputPath, ResultPath, or OutputPath. Additionally, the Wait and Choice states
don't support the ResultPath field. With these fields, you can use a JsonPath to filter the JSON
data as it moves through your workflow.

You can also use the Parameters field to manipulate the JSON data as it moves through
your workflow. For information about using Parameters, see InputPath, Parameters and
ResultSelector.

For example, start with the AWS Lambda function and state machine described in the Creating
a Step Functions state machine that uses Lambda tutorial. Modify the state machine so that it
includes the following InputPath, ResultPath, and OutputPath.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
 "InputPath": "$.lambda",
 "ResultPath": "$.data.lambdaresult",
 "OutputPath": "$.data",
 "End": true
 }
 }
}

Start an execution using the following input.

InputPath, ResultPath, and OutputPath Examples 179

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

{
 "comment": "An input comment.",
 "data": {
 "val1": 23,
 "val2": 17
 },
 "extra": "foo",
 "lambda": {
 "who": "AWS Step Functions"
 }
}

Assume that the comment and extra nodes can be discarded, but that we want to include the
output of the Lambda function, and preserve the information in the data node.

In the updated state machine, the Task state is altered to process the input to the task.

"InputPath": "$.lambda",

This line in the state machine definition limits the task input to only the lambda node from
the state input. The Lambda function receives only the JSON object {"who": "AWS Step
Functions"} as input.

"ResultPath": "$.data.lambdaresult",

This ResultPath tells the state machine to insert the result of the Lambda function into a
node named lambdaresult, as a child of the data node in the original state machine input.
Because we aren't performing any other manipulation on the original input and the result using
OutputPath, the output of the state now includes the result of the Lambda function with the
original input.

{
 "comment": "An input comment.",
 "data": {
 "val1": 23,
 "val2": 17,
 "lambdaresult": "Hello, AWS Step Functions!"
 },
 "extra": "foo",

InputPath, ResultPath, and OutputPath Examples 180

AWS Step Functions Developer Guide

 "lambda": {
 "who": "AWS Step Functions"
 }
}

But, our goal was to preserve only the data node, and include the result of the Lambda function.
OutputPath filters this combined JSON before passing it to the state output.

"OutputPath": "$.data",

This selects only the data node from the original input (including the lambdaresult child
inserted by ResultPath) to be passed to the output. The state output is filtered to the following.

{
 "val1": 23,
 "val2": 17,
 "lambdaresult": "Hello, AWS Step Functions!"
}

In this Task state:

1. InputPath sends only the lambda node from the input to the Lambda function.

2. ResultPath inserts the result as a child of the data node in the original input.

3. OutputPath filters the state input (which now includes the result of the Lambda function) so
that it passes only the data node to the state output.

Example to manipulate original state machine input, result, and final output using JsonPath

Consider the following state machine that verifies an insurance applicant's identity and address.

Note

To view the complete example, see How to use JSON Path in Step Functions.

{
 "Comment": "Sample state machine to verify an applicant's ID and address",
 "StartAt": "Verify info",
 "States": {

InputPath, ResultPath, and OutputPath Examples 181

https://github.com/aws-samples/serverless-account-signup-service

AWS Step Functions Developer Guide

 "Verify info": {
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "Verify identity",
 "States": {
 "Verify identity": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:check-
identity:$LATEST"
 },
 "End": true
 }
 }
 },
 {
 "StartAt": "Verify address",
 "States": {
 "Verify address": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:check-
address:$LATEST"
 },
 "End": true
 }
 }
 }
]
 }
 }
}

If you run this state machine using the following input, the execution fails because the Lambda
functions that perform verification only expect the data that needs to be verified as input.
Therefore, you must specify the nodes that contain the information to be verified using an
appropriate JsonPath.

InputPath, ResultPath, and OutputPath Examples 182

AWS Step Functions Developer Guide

{
 "data": {
 "firstname": "Jane",
 "lastname": "Doe",
 "identity": {
 "email": "jdoe@example.com",
 "ssn": "123-45-6789"
 },
 "address": {
 "street": "123 Main St",
 "city": "Columbus",
 "state": "OH",
 "zip": "43219"
 },
 "interests": [
 {
 "category": "home",
 "type": "own",
 "yearBuilt": 2004
 },
 {
 "category": "boat",
 "type": "snowmobile",
 "yearBuilt": 2020
 },
 {
 "category": "auto",
 "type": "RV",
 "yearBuilt": 2015
 },
]
 }
}

To specify the node that the check-identity Lambda function must use, use the InputPath
field as follows:

"InputPath": "$.data.identity"

And to specify the node that the check-address Lambda function must use, use the InputPath
field as follows:

InputPath, ResultPath, and OutputPath Examples 183

AWS Step Functions Developer Guide

"InputPath": "$.data.address"

Now if you want to store the verification result within the original state machine input, use the
ResultPath field as follows:

"ResultPath": "$.results"

However, if you only need the identity and verification results and discard the original input, use
the OutputPath field as follows:

"OutputPath": "$.results"

For more information, see Input and Output Processing in Step Functions.

Map state input and output fields

Map states concurrently iterate over a collection of items in a dataset, such as a JSON array, a list of
Amazon S3 objects, or the rows of a CSV file in an Amazon S3 bucket. It repeats a set of steps for
each item in the collection. You can configure the input that the Map state receives and the output
it generates using these fields. Step Functions applies each field in your Distributed Map state in
the order shown in the following list and illustration:

Note

Based on your use case, you may not need to apply all of these fields.

1. ItemReader

2. ItemsPath

3. ItemSelector

4. ItemBatcher

5. ResultWriter

Map state input and output fields 184

AWS Step Functions Developer Guide

Note

These Map state input and output fields are currently unavailable in the data flow
simulator in the Step Functions console.

ItemReader

The ItemReader field is a JSON object, which specifies a dataset and its location. A Distributed
Map state uses this dataset as its input. The following example shows the syntax of the
ItemReader field if your dataset is a CSV file that's stored in an Amazon S3 bucket.

"ItemReader": {
 "ReaderConfig": {

Map state input and output fields 185

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator
https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

 "InputType": "CSV",
 "CSVHeaderLocation": "FIRST_ROW"
 },
 "Resource": "arn:aws:states:::s3:getObject",
 "Parameters": {
 "Bucket": "myBucket",
 "Key": "csvDataset/ratings.csv"
 }
}

Tip

In Workflow Studio, you specify the dataset and its location in the Item source field.

Contents

• Contents of the ItemReader field

• Examples of datasets

• IAM policies for datasets

Contents of the ItemReader field

Depending on your dataset, the contents of the ItemReader field varies. For example, if your
dataset is a JSON array passed from a previous step in the workflow, the ItemReader field is
omitted. If your dataset is an Amazon S3 data source, this field contains the following sub-fields.

ReaderConfig

A JSON object that specifies the following details:

• InputType

Specifies the type of Amazon S3 data source, such as CSV file, object, JSON file, or an Amazon
S3 inventory list. In Workflow Studio, you can select an input type from the Amazon S3 item
source dropdown list under the Item source field.

• CSVHeaderLocation

Map state input and output fields 186

AWS Step Functions Developer Guide

Note

You must specify this field only if you use a CSV file as dataset.

Accepts one of the following values to specify the location of the column header:

Important

Currently, Step Functions supports CSV headers of up to 10 KB.

• FIRST_ROW – Use this option if the first line of the file is the header.

• GIVEN – Use this option to specify the header within the state machine definition. For
example, if your CSV file contains the following data.

1,307,3.5,1256677221
1,481,3.5,1256677456
1,1091,1.5,1256677471
...

Provide the following JSON array as a CSV header.

"ItemReader": {
 "ReaderConfig": {
 "InputType": "CSV",
 "CSVHeaderLocation": "GIVEN",
 "CSVHeaders": [
 "userId",
 "movieId",
 "rating",
 "timestamp"
]
 }
}

Map state input and output fields 187

AWS Step Functions Developer Guide

Tip

In Workflow Studio, you can find this option under Additional configuration in the
Item source field.

• MaxItems

Limits the number of data items passed to the Map state. For example, suppose that you
provide a CSV file that contains 1000 rows and specify a limit of 100. Then, the interpreter
passes only 100 rows to the Map state. The Map state processes items in sequential order,
starting after the header row.

By default, the Map state iterates over all the items in the specified dataset.

Note

Currently, you can specify a limit of up to 100,000,000. The Distributed Map state
stops reading items beyond this limit.

Tip

In Workflow Studio, you can find this option under Additional configuration in the
Item source field.

Alternatively, you can specify a reference path to an existing key-value pair in your Distributed
Map state input. This path must resolve to a positive integer. You specify the reference path in
the MaxItemsPath sub-field.

Important

You can specify either the MaxItems or the MaxItemsPath sub-field, but not both.

Resource

The Amazon S3 API action that Step Functions must invoke depending on the specified dataset.

Map state input and output fields 188

AWS Step Functions Developer Guide

Parameters

A JSON object that specifies the Amazon S3 bucket name and object key that the dataset is
stored in.

Important

Make sure that your Amazon S3 buckets are under the same AWS account and AWS Region
as your state machine.

Examples of datasets

You can specify one of the following options as your dataset:

• JSON array from a previous step

• A list of Amazon S3 objects

• JSON file in an Amazon S3 bucket

• CSV file in an Amazon S3 bucket

• Amazon S3 inventory list

Important

Step Functions needs appropriate permissions to access the Amazon S3 datasets that you
use. For information about IAM policies for the datasets, see IAM policies for datasets.

JSON array from a previous step

A Distributed Map state can accept a JSON input passed from a previous step in the workflow. This
input must either be an array, or must contain an array within a specific node. To select a node that
contains the array, you can use the ItemsPath field.

To process individual items in the array, the Distributed Map state starts a child workflow execution
for each array item. The following tabs show examples of the input passed to the Map state and the
corresponding input to a child workflow execution.

Map state input and output fields 189

AWS Step Functions Developer Guide

Note

Step Functions omits the ItemReader field when your dataset is a JSON array from a
previous step.

Input passed to the Map state

Consider the following JSON array of three items.

"facts": [
 {
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
 },
 {
 "verdict": "false",
 "statement_date": "6/7/2022",
 "statement_source": "television"
 },
 {
 "verdict": "mostly-true",
 "statement_date": "5/18/2016",
 "statement_source": "news"
 }
]

Input passed to a child workflow execution

The Distributed Map state starts three child workflow executions. Each execution receives
an array item as input. The following example shows the input received by a child workflow
execution.

{
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
}

Map state input and output fields 190

AWS Step Functions Developer Guide

Amazon S3 objects example

A Distributed Map state can iterate over the objects that are stored in an Amazon S3 bucket. When
the workflow execution reaches the Map state, Step Functions invokes the ListObjectsV2 API action,
which returns an array of the Amazon S3 object metadata. In this array, each item contains data,
such as ETag and Key, for the data stored in the bucket.

To process individual items in the array, the Distributed Map state starts a child workflow execution.
For example, suppose that your Amazon S3 bucket contains 100 images. Then, the array returned
after invoking the ListObjectsV2 API action contains 100 items. The Distributed Map state then
starts 100 child workflow executions to process each array item.

Note

• Currently, Step Functions also includes an item for each folder you create in a specific
Amazon S3 bucket using the Amazon S3 console. This results in an extra child workflow
execution started by the Distributed Map state. To avoid creating an extra child workflow
execution for the folder, we recommend that you use the AWS CLI to create folders.
For more information, see High-level Amazon S3 commands in the AWS Command Line
Interface User Guide.

• Step Functions needs appropriate permissions to access the Amazon S3 datasets that you
use. For information about IAM policies for the datasets, see IAM policies for datasets.

The following tabs show examples of the ItemReader field syntax and the input passed to a child
workflow execution for this dataset.

ItemReader syntax

In this example, you've organized your data, which includes images, JSON files, and objects,
within a prefix named processData in an Amazon S3 bucket named myBucket.

"ItemReader": {
 "Resource": "arn:aws:states:::s3:listObjectsV2",
 "Parameters": {
 "Bucket": "myBucket",
 "Prefix": "processData"
 }
}

Map state input and output fields 191

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-services-s3-commands.html#using-s3-commands-managing-buckets-creating

AWS Step Functions Developer Guide

Input passed to a child workflow execution

The Distributed Map state starts as many child workflow executions as the number of items
present in the Amazon S3 bucket. The following example shows the input received by a child
workflow execution.

{
 "Etag": "\"05704fbdccb224cb01c59005bebbad28\"",
 "Key": "processData/images/n02085620_1073.jpg",
 "LastModified": 1668699881,
 "Size": 34910,
 "StorageClass": "STANDARD"
}

JSON file in an Amazon S3 bucket

A Distributed Map state can accept a JSON file that's stored in an Amazon S3 bucket as a dataset.
The JSON file must contain an array.

When the workflow execution reaches the Map state, Step Functions invokes the GetObject API
action to fetch the specified JSON file. The Map state then iterates over each item in the array and
starts a child workflow execution for each item. For example, if your JSON file contains 1000 array
items, the Map state starts 1000 child workflow executions.

Note

• The execution input used to start a child workflow execution can't exceed 256 KB.
However, Step Functions supports reading an item of up to 8 MB from a CSV or JSON file
if you then apply the optional ItemSelector field to reduce the item's size.

• Currently, Step Functions supports 10 GB as the maximum size of an individual file in an
Amazon S3 inventory report. However, Step Functions can process more than 10 GB if
each individual file is under 10 GB.

• Step Functions needs appropriate permissions to access the Amazon S3 datasets that you
use. For information about IAM policies for the datasets, see IAM policies for datasets.

The following tabs show examples of the ItemReader field syntax and the input passed to a child
workflow execution for this dataset.

Map state input and output fields 192

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

AWS Step Functions Developer Guide

For this example, imagine you have a JSON file named factcheck.json. You've stored this file
within a prefix named jsonDataset in an Amazon S3 bucket. The following is an example of the
JSON dataset.

[
 {
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
 },
 {
 "verdict": "false",
 "statement_date": "6/7/2022",
 "statement_source": "television"
 },
 {
 "verdict": "mostly-true",
 "statement_date": "5/18/2016",
 "statement_source": "news"
 },
 ...
]

ItemReader syntax

"ItemReader": {
 "Resource": "arn:aws:states:::s3:getObject",
 "ReaderConfig": {
 "InputType": "JSON"
 },
 "Parameters": {
 "Bucket": "myBucket",
 "Key": "jsonDataset/factcheck.json"
 }
}

Input to a child workflow execution

The Distributed Map state starts as many child workflow executions as the number of array
items present in the JSON file. The following example shows the input received by a child
workflow execution.

Map state input and output fields 193

AWS Step Functions Developer Guide

{
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
}

CSV file in an Amazon S3 bucket

A Distributed Map state can accept a CSV file that's stored in an Amazon S3 bucket as a dataset. If
you use a CSV file as your dataset, you need to specify a CSV column header. For information about
how to specify a CSV header, see Contents of the ItemReader field.

Because there isn't a standardized format to create and maintain data in CSV files, Step Functions
parses CSV files based on the following rules:

• Commas (,) are a delimiter that separates individual fields.

• Newlines are a delimiter that separates individual records.

• Fields are treated as strings. For data type conversions, use the States.StringToJson intrinsic
function in ItemSelector.

• Double quotation marks (" ") aren't required to enclose strings. However, strings that are
enclosed by double quotation marks can contain commas and newlines without them
functioning as delimiters.

• Escape double quotes by repeating them.

• If the number of fields in a row is less than the number of fields in the header, Step Functions
provides empty strings for the missing values.

• If the number of fields in a row is more than the number of fields in the header, Step Functions
skips the additional fields.

For more information about how Step Functions parses a CSV file, see Example of parsing an input
CSV file.

When the workflow execution reaches the Map state, Step Functions invokes the GetObject API
action to fetch the specified CSV file. The Map state then iterates over each row in the CSV file and
starts a child workflow execution to process the items in each row. For example, suppose that you
provide a CSV file that contains 100 rows as input. Then, the interpreter passes each row to the
Map state. The Map state processes items in serial order, starting after the header row.

Map state input and output fields 194

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

AWS Step Functions Developer Guide

Note

• The execution input used to start a child workflow execution can't exceed 256 KB.
However, Step Functions supports reading an item of up to 8 MB from a CSV or JSON file
if you then apply the optional ItemSelector field to reduce the item's size.

• Currently, Step Functions supports 10 GB as the maximum size of an individual file in an
Amazon S3 inventory report. However, Step Functions can process more than 10 GB if
each individual file is under 10 GB.

• Step Functions needs appropriate permissions to access the Amazon S3 datasets that you
use. For information about IAM policies for the datasets, see IAM policies for datasets.

The following tabs show examples of the ItemReader field syntax and the input passed to a child
workflow execution for this dataset.

ItemReader syntax

For example, say that you have a CSV file named ratings.csv. Then, you've stored this file
within a prefix that's named csvDataset in an Amazon S3 bucket.

{
 "ItemReader": {
 "ReaderConfig": {
 "InputType": "CSV",
 "CSVHeaderLocation": "FIRST_ROW"
 },
 "Resource": "arn:aws:states:::s3:getObject",
 "Parameters": {
 "Bucket": "myBucket",
 "Key": "csvDataset/ratings.csv"
 }
 }
}

Input to a child workflow execution

The Distributed Map state starts as many child workflow executions as the number of rows
present in the CSV file, excluding the header row, if in the file. The following example shows the
input received by a child workflow execution.

Map state input and output fields 195

AWS Step Functions Developer Guide

{
 "rating": "3.5",
 "movieId": "307",
 "userId": "1",
 "timestamp": "1256677221"
}

S3 inventory example

A Distributed Map state can accept an Amazon S3 inventory manifest file that's stored in an
Amazon S3 bucket as a dataset.

When the workflow execution reaches the Map state, Step Functions invokes the GetObject API
action to fetch the specified Amazon S3 inventory manifest file. The Map state then iterates over
the objects in the inventory to return an array of Amazon S3 inventory object metadata.

Note

• Currently, Step Functions supports 10 GB as the maximum size of an individual file in an
Amazon S3 inventory report. However, Step Functions can process more than 10 GB if
each individual file is under 10 GB.

• Step Functions needs appropriate permissions to access the Amazon S3 datasets that you
use. For information about IAM policies for the datasets, see IAM policies for datasets.

The following is an example of an inventory file in CSV format. This file includes the objects
named csvDataset and imageDataset, which are stored in an Amazon S3 bucket that's named
sourceBucket.

"sourceBucket","csvDataset/","0","2022-11-16T00:27:19.000Z"
"sourceBucket","csvDataset/titles.csv","3399671","2022-11-16T00:29:32.000Z"
"sourceBucket","imageDataset/","0","2022-11-15T20:00:44.000Z"
"sourceBucket","imageDataset/n02085620_10074.jpg","27034","2022-11-15T20:02:16.000Z"
...

Map state input and output fields 196

https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

AWS Step Functions Developer Guide

Important

Currently, Step Functions doesn't support user-defined Amazon S3 inventory report as a
dataset. You must also make sure that the output format of your Amazon S3 inventory
report is CSV. For more information about Amazon S3 inventories and how to set them up,
see Amazon S3 Inventory in the Amazon S3 User Guide.

The following example of an inventory manifest file shows the CSV headers for the inventory
object metadata.

{
 "sourceBucket" : "sourceBucket",
 "destinationBucket" : "arn:aws:s3:::inventory",
 "version" : "2016-11-30",
 "creationTimestamp" : "1668560400000",
 "fileFormat" : "CSV",
 "fileSchema" : "Bucket, Key, Size, LastModifiedDate",
 "files" : [{
 "key" : "source-bucket/destination-prefix/
data/20e55de8-9c21-45d4-99b9-46c732000228.csv.gz",
 "size" : 7300,
 "MD5checksum" : "a7ff4a1d4164c3cd55851055ec8f6b20"
 }]
}

The following tabs show examples of the ItemReader field syntax and the input passed to a child
workflow execution for this dataset.

ItemReader syntax

{
 "ItemReader": {
 "ReaderConfig": {
 "InputType": "MANIFEST"
 },
 "Resource": "arn:aws:states:::s3:getObject",
 "Parameters": {
 "Bucket": "destinationBucket",
 "Key": "destination-prefix/source-bucket/config-ID/YYYY-MM-DDTHH-MMZ/
manifest.json"

Map state input and output fields 197

https://docs.aws.amazon.com/AmazonS3/latest/userguide/storage-inventory.html

AWS Step Functions Developer Guide

 }
 }
}

Input to a child workflow execution

{
 "LastModifiedDate": "2022-11-16T00:29:32.000Z",
 "Bucket": "sourceBucket",
 "Size": "3399671",
 "Key": "csvDataset/titles.csv"
}

Depending on the fields you selected while configuring the Amazon S3 inventory report, the
contents of your manifest.json file may vary from the example shown.

IAM policies for datasets

When you create workflows with the Step Functions console, Step Functions can automatically
generate IAM policies based on the resources in your workflow definition. These policies include
the least privileges necessary to allow the state machine role to invoke the StartExecution
API action for the Distributed Map state. These policies also include the least privileges necessary
Step Functions to access AWS resources, such as Amazon S3 buckets and objects and Lambda
functions. We highly recommend that you include only those permissions that are necessary in
your IAM policies. For example, if your workflow includes a Map state in Distributed mode, scope
your policies down to the specific Amazon S3 bucket and folder that contains your dataset.

Important

If you specify an Amazon S3 bucket and object, or prefix, with a reference path to an
existing key-value pair in your Distributed Map state input, make sure that you update the
IAM policies for your workflow. Scope the policies down to the bucket and object names the
path resolves to at runtime.

The following IAM policy examples grant the least privileges required to access your Amazon S3
datasets using the ListObjectsV2 and GetObject API actions.

Map state input and output fields 198

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

AWS Step Functions Developer Guide

Example IAM policy for Amazon S3 object as dataset

The following example shows an IAM policy that grants the least privileges to access the objects
organized within processImages in an Amazon S3 bucket named myBucket.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::myBucket"
],
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "processImages"
]
 }
 }
 }
]
}

Example IAM policy for a CSV file as dataset

The following example shows an IAM policy that grants least privileges to access a CSV file named
ratings.csv.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::myBucket/csvDataset/ratings.csv"
]

Map state input and output fields 199

AWS Step Functions Developer Guide

 }
]
}

Example IAM policy for an Amazon S3 inventory as dataset

The following example shows an IAM policy that grants least privileges to access an Amazon S3
inventory report.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::destination-prefix/source-bucket/config-ID/YYYY-MM-DDTHH-
MMZ/manifest.json",
 "arn:aws:s3:::destination-prefix/source-bucket/config-ID/data/*"
]
 }
]
}

ItemsPath

Use the ItemsPath field to select an array within a JSON input provided to a Map state. The Map
state repeats a set of steps for each item in the array. By default, the Map state sets ItemsPath to
$, which selects the entire input. If the input to the Map state is a JSON array, it runs an iteration
for each item in the array, passing that item to the iteration as input.

Note

You can use ItemsPath in the Distributed Map state only if you use a JSON input passed
from a previous state in the workflow.

You can use the ItemsPath field to specify a location in the input that points to JSON array used
for iterations. The value of ItemsPath must be a Reference Path, and that path must point to

Map state input and output fields 200

AWS Step Functions Developer Guide

JSON array. For instance, consider input to a Map state that includes two arrays, like the following
example.

{
 "ThingsPiratesSay": [
 {
 "say": "Avast!"
 },
 {
 "say": "Yar!"
 },
 {
 "say": "Walk the Plank!"
 }
],
 "ThingsGiantsSay": [
 {
 "say": "Fee!"
 },
 {
 "say": "Fi!"
 },
 {
 "say": "Fo!"
 },
 {
 "say": "Fum!"
 }
]
}

In this case, you could specify which array to use for Map state iterations by selecting it with
ItemsPath. The following state machine definition specifies the ThingsPiratesSay array in the
input using ItemsPath.It then runs an iteration of the SayWord pass state for each item in the
ThingsPiratesSay array.

{
 "StartAt": "PiratesSay",
 "States": {
 "PiratesSay": {
 "Type": "Map",
 "ItemsPath": "$.ThingsPiratesSay",

Map state input and output fields 201

AWS Step Functions Developer Guide

 "ItemProcessor": {
 "StartAt": "SayWord",
 "States": {
 "SayWord": {
 "Type": "Pass",
 "End": true
 }
 }
 },
 "End": true
 }
 }
}

When processing input, the Map state applies ItemsPath after InputPath. It operates on the
effective input to the state after InputPath filters the input.

For more information on Map states, see the following:

• Map state

• Map state processing modes

• Repeat an action using Inline Map state

• Inline Map state input and output processing

ItemSelector

By default, the effective input for the Map state is the set of individual data items present in the
raw state input. The ItemSelector field lets you override the data items’ values before they’re
passed on to the Map state. To override the values, specify a valid JSON input that contains a
collection of key-value pairs. These pairs can be static values provided in your state machine
definition, values selected from the state input using a path, or values accessed from the context
object.

If you specify key-value pairs using a path or context object, the key name must end in .$.

Map state input and output fields 202

AWS Step Functions Developer Guide

Note

The ItemSelector field replaces the Parameters field within the Map state. If you use
the Parameters field in your Map state definitions to create custom input, we highly
recommend that you replace them with ItemSelector.

You can specify the ItemSelector field in both an Inline Map state and a Distributed Map state.

For example, consider the following JSON input that contains an array of three items within the
imageData node. For each Map state iteration, an array item is passed to the iteration as input.

[
 {
 "resize": "true",
 "format": "jpg"
 },
 {
 "resize": "false",
 "format": "png"
 },
 {
 "resize": "true",
 "format": "jpg"
 }
]

Using the ItemSelector field, you can define a custom JSON input to override the original input
as shown in the following example. Step Functions then passes this custom input to each Map state
iteration. The custom input contains a static value for size and the value of a context object data
for Map state. The $$.Map.Item.Value context object contains the value of each individual data
item.

{
 "ItemSelector": {
 "size": 10,
 "value.$": "$$.Map.Item.Value"
 }
}

The following example shows the input received by one iteration of the Inline Map state:

Map state input and output fields 203

AWS Step Functions Developer Guide

{
 "size": 10,
 "value": {
 "resize": "true",
 "format": "jpg"
 }
}

Tip

For a complete example of a Distributed Map state that uses the ItemSelector field, see
Getting started with using Distributed Map state.

ItemBatcher

The ItemBatcher field is a JSON object, which specifies to process a group of items in a single
child workflow execution. Use batching when processing large CSV files or JSON arrays, or large
sets of Amazon S3 objects.

The following example shows the syntax of the ItemBatcher field. In the following syntax, the
maximum number of items that each child workflow execution should process is set to 100.

{
 "ItemBatcher": {
 "MaxItemsPerBatch": 100
 }
}

By default, each item in a dataset is passed as input to individual child workflow executions. For
example, assume you specify a JSON file as input that contains the following array:

[
 {
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
 },
 {

Map state input and output fields 204

AWS Step Functions Developer Guide

 "verdict": "false",
 "statement_date": "6/7/2022",
 "statement_source": "television"
 },
 {
 "verdict": "true",
 "statement_date": "5/18/2016",
 "statement_source": "news"
 },
 ...
]

For the given input, each child workflow execution receives an array item as its input. The following
example shows the input of a child workflow execution:

{
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
}

To help optimize the performance and cost of your processing job, select a batch size that balances
the number of items against the items processing time. If you use batching, Step Functions adds
the items to an Items array. It then passes the array as input to each child workflow execution. The
following example shows a batch of two items passed as input to a child workflow execution:

{
 "Items": [
 {
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
 },
 {
 "verdict": "false",
 "statement_date": "6/7/2022",
 "statement_source": "television"
 }
]
}

Map state input and output fields 205

AWS Step Functions Developer Guide

Tip

To learn more about using the ItemBatcher field in your workflows, try the following
tutorials and workshop:

• Process an entire batch of data within a Lambda function

• Iterate over items in a batch inside child workflow executions

• Large-Scale Parallelization with Distributed Map in Module 14 - Data Processing of The
AWS Step Functions Workshop

Contents

• Fields to specify item batching

Fields to specify item batching

To batch items, specify the maximum number of items to batch, the maximum batch size, or both.
You must specify one of these values to batch items.

Max items per batch

Specifies the maximum number of items that each child workflow execution processes. The
interpreter limits the number of items batched in the Items array to this value. If you specify
both a batch number and size, the interpreter reduces the number of items in a batch to avoid
exceeding the specified batch size limit.

If you don't specify this value but provide a value for maximum batch size, Step Functions
processes as many items as possible in each child workflow execution without exceeding the
maximum batch size in bytes.

For example, imagine you run an execution with an input JSON file that contains 1130 nodes. If
you specify a maximum items value for each batch of 100, Step Functions creates 12 batches.
Of these, 11 batches contain 100 items each, while the twelfth batch contains the remaining 30
items.

Alternatively, you can specify the maximum items for each batch as a reference path to an
existing key-value pair in your Distributed Map state input. This path must resolve to a positive
integer.

Map state input and output fields 206

https://s12d.com/sfn-ws-distributed-map

AWS Step Functions Developer Guide

For example, given the following input:

{
 "maxBatchItems": 500
}

You can specify the maximum number of items to batch using a reference path as follows:

{
 ...
 "Map": {
 "Type": "Map",
 "MaxConcurrency": 2000,
 "ItemBatcher": {
 "MaxItemsPerBatchPath": "$.maxBatchItems"
 }
 ...
 ...
 }
}

Important

You can specify either the MaxItemsPerBatch or the MaxItemsPerBatchPath sub-
field, but not both.

Max KBs per batch

Specifies the maximum size of a batch in bytes, up to 256 KBs. If you specify both a maximum
batch number and size, Step Functions reduces the number of items in a batch to avoid
exceeding the specified batch size limit.

Alternatively, you can specify the maximum batch size as a reference path to an existing key-
value pair in your Distributed Map state input. This path must resolve to a positive integer.

Note

If you use batching and don't specify a maximum batch size, the interpreter processes as
many items it can process up to 256 KB in each child workflow execution.

Map state input and output fields 207

AWS Step Functions Developer Guide

For example, given the following input:

{
 "batchSize": 131072
}

You can specify the maximum batch size using a reference path as follows:

{
 ...
 "Map": {
 "Type": "Map",
 "MaxConcurrency": 2000,
 "ItemBatcher": {
 "MaxInputBytesPerBatchPath": "$.batchSize"
 }
 ...
 ...
 }
}

Important

You can specify either the MaxInputBytesPerBatch or the
MaxInputBytesPerBatchPath sub-field, but not both.

Batch input

Optionally, you can also specify a fixed JSON input to include in each batch passed to each child
workflow execution. Step Functions merges this input with the input for each individual child
workflow executions. For example, given the following fixed input of a fact check date on an
array of items:

"ItemBatcher": {
 "BatchInput": {
 "factCheck": "December 2022"
 }
}

Map state input and output fields 208

AWS Step Functions Developer Guide

Each child workflow execution receives the following as input:

{
 "BatchInput": {
 "factCheck": "December 2022"
 },
 "Items": [
 {
 "verdict": "true",
 "statement_date": "6/11/2008",
 "statement_source": "speech"
 },
 {
 "verdict": "false",
 "statement_date": "6/7/2022",
 "statement_source": "television"
 },
 ...
]
}

ResultWriter

The ResultWriter field is a JSON object that specifies the Amazon S3 location where Step
Functions writes the results of the child workflow executions started by a Distributed Map state. By
default, Step Functions doesn't export these results.

Important

Make sure that the Amazon S3 bucket you use to export the results of a Map Run is under
the same AWS account and AWS Region as your state machine. Otherwise, your state
machine execution will fail with the States.ResultWriterFailed error.

Exporting the results to an Amazon S3 bucket is helpful if your output payload size exceeds
256 KB. Step Functions consolidates all child workflow execution data, such as execution input
and output, ARN, and execution status. It then exports executions with the same status to their
respective files in the specified Amazon S3 location. The following example shows the syntax of the
ResultWriter field if you export the child workflow execution results. In this example, you store
the results in a bucket named myOutputBucket within a prefix called csvProcessJobs.

Map state input and output fields 209

AWS Step Functions Developer Guide

{
 "ResultWriter": {
 "Resource": "arn:aws:states:::s3:putObject",
 "Parameters": {
 "Bucket": "myOutputBucket",
 "Prefix": "csvProcessJobs"
 }
 }
}

Tip

In Workflow Studio, you can export the child workflow execution results by selecting
Export Map state results to Amazon S3. Then, provide the name of the Amazon S3 bucket
and prefix where you want to export the results to.

Step Functions needs appropriate permissions to access the bucket and folder where you want to
export the results. For information about the required IAM policy, see IAM policies for ResultWriter.

If you export the child workflow execution results, the Distributed Map state execution returns the
Map Run ARN and data about the Amazon S3 export location in the following format:

{
 "MapRunArn": "arn:aws:states:us-
east-2:123456789012:mapRun:csvProcess/Map:ad9b5f27-090b-3ac6-9beb-243cd77144a7",
 "ResultWriterDetails": {
 "Bucket": "myOutputBucket",
 "Key": "csvProcessJobs/ad9b5f27-090b-3ac6-9beb-243cd77144a7/manifest.json"
 }
}

Step Functions exports executions with the same status to their respective files. For example, if
your child workflow executions resulted in 500 success and 200 failure results, Step Functions
creates two files in the specified Amazon S3 location for the success and failure results. In this
example, the success results file contains the 500 success results, while the failure results file
contains the 200 failure results.

For a given execution attempt, Step Functions creates the following files in the specified Amazon
S3 location depending on your execution output:

Map state input and output fields 210

AWS Step Functions Developer Guide

• manifest.json – Contains Map Run metadata, such as export location, Map Run ARN, and
information about the result files.

If you've redriven a Map Run, the manifest.json file, contains references to all the successful
child workflow executions across all the attempts of a Map Run. However, this file contains
references to the failed and pending executions for a specific redrive.

• SUCCEEDED_n.json – Contains the consolidated data for all successful child workflow
executions. n represents the index number of the file. The index number starts from 0. For
example, SUCCEEDED_1.json.

• FAILED_n.json – Contains the consolidated data for all failed, timed out, and aborted child
workflow executions. Use this file to recover from failed executions. n represents the index of the
file. The index number starts from 0. For example, FAILED_1.json.

• PENDING_n.json – Contains the consolidated data for all child workflow executions that
weren’t started because the Map Run failed or aborted. n represents the index of the file. The
index number starts from 0. For example, PENDING_1.json.

Step Functions supports individual result files of up to 5 GB. If a file size exceeds 5 GB, Step
Functions creates another file to write the remaining execution results and appends an index
number to the file name. For example, if size of the Succeeded_0.json file exceeds 5 GB, Step
Functions creates Succeeded_1.json file to record the remaining results.

If you didn’t specify to export the child workflow execution results, the state machine execution
returns an array of child workflow execution results as shown in the following example:

Note

If the returned output size exceeds 256 KB, the state machine execution fails and returns a
States.DataLimitExceeded error.

[
 {
 "statusCode": 200,
 "inputReceived": {
 "show_id": "s1",
 "release_year": "2020",
 "rating": "PG-13",

Map state input and output fields 211

AWS Step Functions Developer Guide

 "type": "Movie"
 }
 },
 {
 "statusCode": 200,
 "inputReceived": {
 "show_id": "s2",
 "release_year": "2021",
 "rating": "TV-MA",
 "type": "TV Show"
 }
 },
 ...
]

IAM policies for ResultWriter

When you create workflows with the Step Functions console, Step Functions can automatically
generate IAM policies based on the resources in your workflow definition. These policies include
the least privileges necessary to allow the state machine role to invoke the StartExecution
API action for the Distributed Map state. These policies also include the least privileges necessary
Step Functions to access AWS resources, such as Amazon S3 buckets and objects and Lambda
functions. We highly recommend that you include only those permissions that are necessary in
your IAM policies. For example, if your workflow includes a Map state in Distributed mode, scope
your policies down to the specific Amazon S3 bucket and folder that contains your dataset.

Important

If you specify an Amazon S3 bucket and object, or prefix, with a reference path to an
existing key-value pair in your Distributed Map state input, make sure that you update the
IAM policies for your workflow. Scope the policies down to the bucket and object names the
path resolves to at runtime.

The following IAM policy example grants the least privileges required to write your child workflow
execution results to a folder named csvJobs in an Amazon S3 bucket using the PutObject API
action.

{
 "Version": "2012-10-17",

Map state input and output fields 212

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::resultBucket/csvJobs/*"
]
 }
]
}

If the Amazon S3 bucket to which you're writing the child workflow execution result is encrypted
using an AWS Key Management Service (AWS KMS) key, you must include the necessary AWS
KMS permissions in your IAM policy. For more information, see IAM permissions for AWS KMS key
encrypted Amazon S3 bucket.

Parsing an input CSV file

Because there isn't a standardized format to create and maintain data in CSV files, Step Functions
parses CSV files based on the following rules:

• Commas (,) are a delimiter that separates individual fields.

• Newlines are a delimiter that separates individual records.

• Fields are treated as strings. For data type conversions, use the States.StringToJson intrinsic
function in ItemSelector.

• Double quotation marks (" ") aren't required to enclose strings. However, strings that are
enclosed by double quotation marks can contain commas and newlines without them
functioning as delimiters.

• Escape double quotes by repeating them.

• If the number of fields in a row is less than the number of fields in the header, Step Functions
provides empty strings for the missing values.

• If the number of fields in a row is more than the number of fields in the header, Step Functions
skips the additional fields.

Map state input and output fields 213

AWS Step Functions Developer Guide

Example of parsing an input CSV file

Say that you have provided a CSV file named myCSVInput.csv that contains one row as input.
Then, you've stored this file in an Amazon S3 bucket that's named my-bucket. The CSV file is as
follows.

abc,123,"This string contains commas, a double quotation marks (""), and a newline (
)",{""MyKey"":""MyValue""},"[1,2,3]"

The following state machine reads this CSV file and uses ItemSelector to convert the data types of
some of the fields.

{
 "StartAt": "Map",
 "States": {
 "Map": {
 "Type": "Map",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "DISTRIBUTED",
 "ExecutionType": "STANDARD"
 },
 "StartAt": "Pass",
 "States": {
 "Pass": {
 "Type": "Pass",
 "End": true
 }
 }
 },
 "End": true,
 "Label": "Map",
 "MaxConcurrency": 1000,
 "ItemReader": {
 "Resource": "arn:aws:states:::s3:getObject",
 "ReaderConfig": {
 "InputType": "CSV",
 "CSVHeaderLocation": "GIVEN",
 "CSVHeaders": [
 "MyLetters",
 "MyNumbers",
 "MyString",

Map state input and output fields 214

AWS Step Functions Developer Guide

 "MyObject",
 "MyArray"
]
 },
 "Parameters": {
 "Bucket": "my-bucket",
 "Key": "myCSVInput.csv"
 }
 },
 "ItemSelector": {
 "MyLetters.$": "$$.Map.Item.Value.MyLetters",
 "MyNumbers.$": "States.StringToJson($$.Map.Item.Value.MyNumbers)",
 "MyString.$": "$$.Map.Item.Value.MyString",
 "MyObject.$": "States.StringToJson($$.Map.Item.Value.MyObject)",
 "MyArray.$": "States.StringToJson($$.Map.Item.Value.MyArray)"
 }
 }
 }
}

When you run this state machine, it produces the following output.

[
 {
 "MyNumbers": 123,
 "MyObject": {
 "MyKey": "MyValue"
 },
 "MyString": "This string contains commas, a double quote (\"), and a newline (\n)",
 "MyLetters": "abc",
 "MyArray": [
 1,
 2,
 3
]
 }
]

Context object

The context object is an internal JSON structure that is available during an execution, and contains
information about your state machine and execution. This allows your workflows access to

Context object 215

AWS Step Functions Developer Guide

information about their specific execution. You can access the context object from the following
fields:

• InputPath

• OutputPath

• ItemsPath (in Map states)

• Variable (in Choice states)

• ResultSelector

• Parameters

• Variable to variable comparison operators

Context Object Format

The context object includes information about the state machine, state, execution, and task. This
JSON object includes nodes for each type of data, and is in the following format.

{
 "Execution": {
 "Id": "String",
 "Input": {},
 "Name": "String",
 "RoleArn": "String",
 "StartTime": "Format: ISO 8601",
 "RedriveCount": Number,
 "RedriveTime": "Format: ISO 8601"
 },
 "State": {
 "EnteredTime": "Format: ISO 8601",
 "Name": "String",
 "RetryCount": Number
 },
 "StateMachine": {
 "Id": "String",
 "Name": "String"
 },
 "Task": {
 "Token": "String"
 }
}

Context object 216

AWS Step Functions Developer Guide

During an execution, the context object is populated with relevant data for the Parameters field
from where it is accessed. The value for a Task field is null if the Parameters field is outside of a
task state.

The value of the RedriveCount context object is 0, if you've not yet redriven an execution.
Further, the RedriveTime context object is only available if you've redriven an execution. If you've
redriven a Map Run, the RedriveTime context object is only available for child workflows of
type Standard. For a redriven Map Run with child workflows of type Express, RedriveTime isn't
available.

Content from a running execution includes specifics in the following format.

{
 "Execution": {
 "Id": "arn:aws:states:us-
east-1:123456789012:execution:stateMachineName:executionName",
 "Input": {
 "key": "value"
 },
 "Name": "executionName",
 "RoleArn": "arn:aws:iam::123456789012:role...",
 "StartTime": "2019-03-26T20:14:13.192Z"
 },
 "State": {
 "EnteredTime": "2019-03-26T20:14:13.192Z",
 "Name": "Test",
 "RetryCount": 3
 },
 "StateMachine": {
 "Id": "arn:aws:states:us-east-1:123456789012:stateMachine:stateMachineName",
 "Name": "stateMachineName"
 },
 "Task": {
 "Token": "h7XRiCdLtd/83p1E0dMccoxlzFhglsdkzpK9mBVKZsp7d9yrT1W"
 }
}

Note

For context object data related to Map states, see Context Object Data for Map States.

Context object 217

AWS Step Functions Developer Guide

Accessing the Context Object

To access the context object, first specify the parameter name by appending .$ to the end, as you
do when selecting state input with a path. Then, to access context object data instead of the input,
prepend the path with $$.. This tells AWS Step Functions to use the path to select a node in the
context object.

The following examples show how you can access context objects, such as execution ID, name, start
time, and redrive count.

• Retrieve and pass execution ARN to a downstream service

• Access the execution start time and name in a Pass state

• Access the redrive count of an execution

Retrieve and pass execution ARN to a downstream service

This example Task state uses a path to retrieve and pass the execution Amazon Resource Name
(ARN) to an Amazon Simple Queue Service (Amazon SQS) message.

{
 "Order Flight Ticket Queue": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage",
 "Parameters": {
 "QueueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/flight-purchase",
 "MessageBody": {
 "From": "YVR",
 "To": "SEA",
 "Execution.$": "$$.Execution.Id"
 }
 },
 "Next": "NEXT_STATE"
 }
}

For more information about using the task token when calling an integrated service, see Wait for a
Callback with the Task Token.

Access the execution start time and name in a Pass state

{

Context object 218

AWS Step Functions Developer Guide

 "Comment": "Accessing context object in a state machine",
 "StartAt": "Get execution context data",
 "States": {
 "Get execution context data": {
 "Type": "Pass",
 "Parameters": {
 "startTime.$": "$$.Execution.StartTime",
 "execName.$": "$$.Execution.Name"
 },
 "ResultPath": "$.executionContext",
 "End": true
 }
 }
}

Access the redrive count of an execution

The following example of a Task state definition shows how you can access the redrive count of an
execution.

{
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload": {
 "Number.$": "$$.Execution.RedriveCount"
 },
 "FunctionName": "arn:aws:lambda:us-east-2:123456789012:function:functionName"
 },
 "End": true
}

Context Object Data for Map States

There are two additional items available in the context object when processing a Map state: Index
and Value. For each Map state iteration, Index contains the index number for the array item that
is being currently processed, while Value contains the array item being processed. Within a Map
state, the context object includes the following data:

"Map": {

Context object 219

AWS Step Functions Developer Guide

 "Item": {
 "Index": Number,
 "Value": "String"
 }
}

These are available only in a Map state, and can be specified in the ItemSelector field.

Note

You must define parameters from the context object in the ItemSelector block of the
main Map state, not within the states included in the ItemProcessor section.

Given a state machine with a simple Map state, we can inject information from the context object
as follows.

{
 "StartAt": "ExampleMapState",
 "States": {
 "ExampleMapState": {
 "Type": "Map",
 "ItemSelector": {
 "ContextIndex.$": "$$.Map.Item.Index",
 "ContextValue.$": "$$.Map.Item.Value"
 },
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "INLINE"
 },
 "StartAt": "TestPass",
 "States": {
 "TestPass": {
 "Type": "Pass",
 "End": true
 }
 }
 },
 "End": true
 }
 }
}

Context object 220

AWS Step Functions Developer Guide

If you execute the previous state machine with the following input, Index and Value are inserted
in the output.

[
 {
 "who": "bob"
 },
 {
 "who": "meg"
 },
 {
 "who": "joe"
 }
]

The output for the execution returns the values of Index and Value items for each of the three
iterations as follows:

[
 {
 "ContextIndex": 0,
 "ContextValue": {
 "who": "bob"
 }
 },
 {
 "ContextIndex": 1,
 "ContextValue": {
 "who": "meg"
 }
 },
 {

 "ContextIndex": 2,
 "ContextValue": {
 "who": "joe"
 }
 }
]

Context object 221

AWS Step Functions Developer Guide

Data flow simulator

You can design, implement, and debug workflows in the Step Functions console. You can also
control the flow of data in your workflows with JsonPath input and output data processing. With
the Data flow simulator, you can simulate the order that the Task states in your workflow process
data at runtime. Using the simulator, you can understand how to filter and manipulate data as it
flows from one state to another. It simulates each of the following fields that Step Functions uses
to process and control the flow of JSON data:

InputPath

Selects WHAT portion of the entire input payload to be used as a task’s input. If you specify this
field, Step Functions first applies this field.

Parameters

Specifies HOW the input should look like before invoking the task. With the Parameters
field, you can create a collection of key-value pairs that are passed as input to an AWS service
integration, such as an AWS Lambda function. These values can be static, or dynamically
selected from either the state input or the workflow context object.

ResultSelector

Determines WHAT to choose from a task's output. With the ResultSelector field, you can
create a collection of key-value pairs that replace a state’s result and pass that collection to
ResultPath.

ResultPath

Determines WHERE to put a task's output. Use the ResultPath to determine whether the
output of a state is a copy of its input, the result it produces, or a combination of both.

OutputPath

Determines WHAT to send to the next state. With OutputPath, you can filter out unwanted
information, and pass only the portion of JSON data that you care about.

In this topic

• Using Data flow simulator

• Considerations about using the Data flow simulator

Data flow simulator 222

https://console.aws.amazon.com/states/home
https://datatracker.ietf.org/wg/jsonpath/about/
https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

Using Data flow simulator

The simulator provides a real-time, side-by-side comparison of your data before and after you
apply an input and output data processing field. To use the simulator, specify a JSON input. Then,
evaluate it through each of the input and output processing fields. The simulator automatically
validates your JSON input and highlights any syntax errors.

To use the data flow simulator

In the following steps, you provide JSON input and apply the InputPath and Parameters fields.
You can also apply the other available fields and view their outputs.

1. Open the Step Functions console.

2. In the navigation pane, choose Data flow simulator.

3. In the State input area, replace the prepopulated example JSON data with the following JSON
data. Then, choose Next.

{
 "data": {
 "firstname": "Jane",
 "lastname": "Doe",
 "identity": {
 "email": "jdoe@example.com",
 "ssn": "123-45-6789"
 },
 "address": {
 "street": "123 Main St",
 "city": "Columbus",
 "state": "OH",
 "zip": "43219"
 }
 }
}

4. For InputPath, enter $.data.address to select the address node of the input JSON data.

The State input after InputPath box displays the following results.

{
 "street": "123 Main St",
 "city": "Columbus",

Using Data flow simulator 223

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 "state": "OH",
 "zip": "43219"
}

5. Choose Next.

6. Apply the Parameters field to convert the resulting JSON data to a string. To convert the
data, do the following:

• In the Parameters box, enter the following code to create a string called addressString.

{
 "addressString.$": "States.Format('{}. {}, {} - {}', $.street, $.city,
 $.state, $.zip)"
 }

7. View the result of the Parameters field application in the Filtered input after Parameters
box.

Considerations about using the Data flow simulator

Before you use the Data flow simulator, consider its limitations, including, but not limited to:

• Unsupported filter expressions

Filter expressions in the simulator behave differently than in the Step Functions service. This
includes expressions that use the following syntax: [?(expression)]. The following is a list of
unsupported expressions. If used, these expressions may not return the expected outcome after
their evaluation.

• $..book[?(@.isInStock==true)]

• $..book[?(@.price > 10.0)].title

• Incorrect JsonPath evaluation for single item arrays

If you filter your data with a JsonPath expression that'd return a single array item, the simulator
returns the item without the array. For example, consider the following array of data, called
items:

{
 "items": [

Data flow simulator considerations 224

AWS Step Functions Developer Guide

 {
 "name": "shoe",
 "color": "blue",
 "comment": "nice shoe"
 },
 {
 "name": "hat",
 "color": "red"
 },
 {
 "name": "shirt",
 "color": "yellow"
 }
]
}

Given this items array, if you enter $..comment in the InputPath field, you'd expect the
following output:

[
 "nice shoe"
]

However, the Data flow simulator returns the following output instead:

"nice shoe"

For JsonPath evaluation of an array that contains multiple items, the simulator returns the
expected output.

Manage continuous deployments with versions and aliases

You can use Step Functions to manage continuous deployments of your workflows through state
machine versions and aliases. A version is a numbered, immutable snapshot of a state machine that
you can run. An alias is a pointer for up to two versions of a state machine.

You can maintain multiple versions of your state machines and manage their deployment in your
production workflow. With aliases, you can route traffic between different workflow versions and
gradually deploy those workflows to the production environment.

Versions and aliases 225

AWS Step Functions Developer Guide

Additionally, you can start state machine executions using a version or an alias. If you don't use a
version or alias when you start a state machine execution, Step Functions uses the latest revision of
the state machine definition.

State machine revision

A state machine can have one or more revisions. When you update a state machine using
the UpdateStateMachine API action, it creates a new state machine revision. A revision is an
immutable, read-only snapshot of a state machine’s definition and configuration. You can't
start a state machine execution from a revision, and revisions don't have an ARN. Revisions
have a revisionId, which is a universally unique identifier (UUID).

Contents

• State machine versions

• State machine aliases

• Authorization for versions and aliases

• Associating state machine executions with a version or alias

• Alias and version deployment example

• Perform gradual deployment of state machine versions

State machine versions

A version is a numbered, immutable snapshot of a state machine. You publish versions from the
most recent revision made to that state machine. Each version has a unique Amazon Resource
Name (ARN). This ARN is a combination of state machine ARN and the version number separated
by a colon (:). The following example shows the format of a state machine version ARN.

arn:partition:states:region:account-id:stateMachine:myStateMachine:1

To start using state machine versions, you must publish the first version. After you publish a
version, you can invoke the StartExecution API action with the version ARN. You can't edit a version,
but you can update a state machine and publish a new version. You can also publish multiple
versions of your state machine.

Versions 226

https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

When you publish a new version of your state machine, Step Functions assigns it a version number.
Version numbers start at 1 and increase monotonically for each new version. Version numbers
aren't reused for a given state machine. If you delete version 10 of your state machine and then
publish a new version, Step Functions publishes it as version 11.

The following properties are the same for all versions of a state machine:

• All versions of a state machine share the same type (Standard or Express).

• You can't change the name or creation date of a state machine between versions.

• Tags apply globally to state machines. You can manage tags for state machines using the
TagResource and UntagResource API actions.

State machines also contain properties that are a part of each version and revision, but these
properties can differ between two given versions or revisions. These properties include State
machine definition, IAM role, tracing configuration, and logging configuration.

Contents

• Publishing a state machine version (Console)

• Managing versions with Step Functions API operations

• Running a state machine version from the console

Publishing a state machine version (Console)

You can publish up to 1000 versions of a state machine. To request an increase to this soft limit,
use the Support Center page in the AWS Management Console. You can manually delete unused
versions from the console or by invoking the DeleteStateMachineVersion API action.

Versions 227

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UntagResource.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html#StepFunctions-UpdateStateMachine-request-definition
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html#StepFunctions-UpdateStateMachine-request-definition
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html#StepFunctions-UpdateStateMachine-request-roleArn
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html#StepFunctions-UpdateStateMachine-request-tracingConfiguration
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html#StepFunctions-UpdateStateMachine-request-loggingConfiguration
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachineVersion.html

AWS Step Functions Developer Guide

To publish a state machine version

1. Open the Step Functions console, and then choose an existing state machine.

2. On the State machine detail page, choose Edit.

3. Edit the state machine definition as required, and then choose Save.

4. Choose Publish version.

5. (Optional) In the Description field of the dialog box that appears, enter a brief description
about the state machine version.

6. Choose Publish.

Note

When you publish a new version of your state machine, Step Functions assigns it a version
number. Version numbers start at 1 and increase monotonically for each new version.
Version numbers aren't reused for a given state machine. If you delete version 10 of your
state machine and then publish a new version, Step Functions publishes it as version 11.

Managing versions with Step Functions API operations

Step Functions provides the following API operations to publish and manage state machine
versions:

• PublishStateMachineVersion – Publishes a version from the current revision of a state machine.

• UpdateStateMachine – Publishes a new state machine version if you update a state machine and
set the publish parameter to true in the same request.

• CreateStateMachine – Publishes the first revision of the state machine if you set the publish
parameter to true.

• ListStateMachineVersions – Lists versions for the specified state machine ARN.

• DescribeStateMachine – Returns the state machine version details for a version ARN specified in
stateMachineArn.

• DeleteStateMachineVersion – Deletes a state machine version.

To publish a new version from the current revision of a state machine called myStateMachine
using the AWS Command Line Interface, use the publish-state-machine-version command:

Versions 228

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_PublishStateMachineVersion.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListStateMachineVersions.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachineVersion.html

AWS Step Functions Developer Guide

aws stepfunctions publish-state-machine-version --state-machine-arn arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine

The response returns the stateMachineVersionArn. For example,
the previous command returns a response ofarn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:1.

Note

When you publish a new version of your state machine, Step Functions assigns it a version
number. Version numbers start at 1 and increase monotonically for each new version.
Version numbers aren't reused for a given state machine. If you delete version 10 of your
state machine and then publish a new version, Step Functions publishes it as version 11.

Running a state machine version from the console

To start using state machine versions, you must first publish a version from the current
state machine revision. To publish a version, use the Step Functions console or invoke the
PublishStateMachineVersion API action. You can also invoke the UpdateStateMachineAlias API
action with an optional parameter named publish to update a state machine and publish its
version.

You can start executions of a version by using the console or by invoking the StartExecution API
action and providing the version ARN. You can also use an alias to start executions of a version.
Based on its routing configuration, an alias routes traffic to a specific version.

If you start a state machine execution without using a version, Step Functions uses the most
recent revision of the state machine for the execution. For information about how Step Functions
associates an execution with a version, see Associating executions with a version or alias.

To start an execution using a state machine version

1. Open the Step Functions console, and then choose an existing state machine that you've
published one or more versions for. To learn how to publish a version, see Publishing a state
machine version (Console).

2. On the State machine detail page, choose the Versions tab.

3. In the Versions section, do the following:

Versions 229

https://docs.aws.amazon.com/step-functions/latest/apireference/API_PublishStateMachineVersion.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

a. Select the version that you want to start the execution with.

b. Choose Start execution.

4. (Optional) In the Start execution dialog box, enter a name for the execution.

5. (Optional) , enter the execution input, and then choose Start execution.

State machine aliases

An alias is a pointer for up to two versions of the same state machine. You can create multiple
aliases for your state machines. Each alias has a unique Amazon Resource Name (ARN). The alias
ARN is a combination of the state machine's ARN and the alias name, separated by a colon (:). The
following example shows the format of a state machine alias ARN.

arn:partition:states:region:account-id:stateMachine:myStateMachine:aliasName

You can use an alias to route traffic between one of the two state machine versions. You can also
create an alias that points to a single version. Aliases can only point to state machine versions.
You can't use an alias to point to another alias. You can also update an alias to point to a different
version of the state machine.

Contents

• Creating a state machine alias (Console)

• Managing aliases with Step Functions API operations

• Alias routing configuration

• Running a state machine using an alias (Console)

Aliases 230

AWS Step Functions Developer Guide

Creating a state machine alias (Console)

You can create up to 100 aliases for each state machine by using the Step Functions console or by
invoking the CreateStateMachineAlias API action. To request an increase to this soft limit, use the
Support Center page in the AWS Management Console. Delete unused aliases from the console or
by invoking the DeleteStateMachineAlias API action.

To create a state machine alias

1. Open the Step Functions console, and then choose an existing state machine.

2. On the State machine detail page, choose the Aliases tab.

3. Choose Create new alias.

4. On the Create alias page, do the following:

a. Enter an Alias name.

b. (Optional) Enter a Description for the alias.

5. To configure routing on the alias, see Alias routing configuration.

6. Choose Create alias.

Managing aliases with Step Functions API operations

Step Functions provides the following API operations that you can use to create and manage state
machine aliases or get information about the aliases:

• CreateStateMachineAlias – Creates an alias for a state machine.

• DescribeStateMachineAlias – Returns details about a state machine alias.

• ListStateMachineAliases – Lists aliases for the specified state machine ARN.

• UpdateStateMachineAlias – Updates the configuration of an existing state machine alias by
modifying its description or routingConfiguration.

• DeleteStateMachineAlias – Deletes a state machine version.

To create an alias named PROD that points to version 1 of a state machine named
myStateMachine using the AWS Command Line Interface, use the create-state-machine-
alias command.

Aliases 231

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachineAlias.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachineAlias.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListStateMachineAliases.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachineAlias.html

AWS Step Functions Developer Guide

aws stepfunctions create-state-machine-alias --name PROD --routing-
configuration "[{\"stateMachineVersionArn\":\"arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:1\",\"weight\":100}]"

Alias routing configuration

You can use an alias to route execution traffic between two versions of a state machine. For
example, say you want to launch a new version of your state machine. You can reduce the risks
involved in deploying the new version by configuring routing on an alias. By configuring routing,
you can send most of your traffic to an earlier, tested version of your state machine. The new
version can then receive a smaller percentage, until you can confirm that it's safe to roll forward
the new version.

To define routing configuration, make sure that you publish both state machine versions that your
alias points to. When you start an execution from an alias, Step Functions randomly chooses the
state machine version to run from the versions specified in the routing configuration. It bases this
choice on the traffic percentage that you assign to each version in the alias routing configuration.

To configure routing configuration on an alias

• On the Create alias page, under Routing configuration, do the following:

a. For Version, choose the first state machine version that the alias points to.

b. Select the Split traffic between two versions check box.

Tip

To point to a single version, clear the Split traffic between two versions check
box.

c. For Version, choose the second version that the alias must point to.

d. In the Traffic percentage fields, specify the percentage of traffic to route to each version.
For example, enter 60 and 40 to route 60 percent of the execution traffic to the first
version and 40 percent traffic to the second version.

The combined traffic percentages must equal to 100 percent.

Aliases 232

AWS Step Functions Developer Guide

Running a state machine using an alias (Console)

You can start state machine executions with an alias from either the console or by invoking the
StartExecution API action with the alias' ARN. Step Functions then runs the version specified by the
alias. By default, if you don't specify a version or alias when you start a state machine execution,
Step Functions uses the most recent revision.

To start a state machine execution using an alias

1. Open the Step Functions console, then choose an existing state machine that you've created
an alias for. For information about creating an alias, see Creating a state machine alias
(Console).

2. On the State machine detail page, choose the Aliases tab.

3. In the Aliases section, do the following:

a. Select the alias that you want to start the execution with.

b. Choose Start execution.

4. (Optional) In the Start execution dialog box, enter a name for the execution.

5. If required, enter the execution input, and then choose Start execution.

Authorization for versions and aliases

To invoke Step Functions API actions with a version or an alias, you need appropriate permissions.
To authorize a version or an alias to invoke an API action, Step Functions uses the state machine’s
ARN instead of using the version ARN or alias ARN. You can also scope down the permissions for a
specific version or alias. For more information, see Scoping down permissions.

You can use the following IAM policy example of a state machine named myStateMachine to
invoke the CreateStateMachineAlias API action to create a state machine alias.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "states:CreateStateMachineAlias",
 "Resource": "arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine"
 }

Authorization for versions and aliases 233

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachineAlias.html

AWS Step Functions Developer Guide

]
}

When you set permissions to allow or deny access to API actions using state machine versions or
aliases, consider the following:

• If you use the publish parameter of the CreateStateMachine and UpdateStateMachine API
actions to publish a new state machine version, you also need the ALLOW permission on the
PublishStateMachineVersion API action.

• The DeleteStateMachine API action deletes all versions and aliases associated with a state
machine.

In this topic

• Scoping down permissions for a version or alias

Scoping down permissions for a version or alias

You can use a qualifier to further scope down the authorization permission needed by a version or
an alias. A qualifier refers to a version number or an alias name. You use the qualifier to qualify a
state machine. The following example is a state machine ARN that uses an alias named PROD as the
qualifier.

arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine:PROD

For more information about qualified and unqualified ARNs, see Associating executions with a
version or alias.

You scope down the permissions using the optional context key named
states:StateMachineQualifier in an IAM policy's Condition statement. For example, the
following IAM policy for a state machine named myStateMachine denies access to invoke the
DescribeStateMachine API action with an alias named as PROD or the version 1.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",

Authorization for versions and aliases 234

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_PublishStateMachineVersion.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachine.html

AWS Step Functions Developer Guide

 "Action": "states:DescribeStateMachine",
 "Resource": "arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine",
 "Condition": {
 "ForAnyValue:StringEquals": {
 "states:StateMachineQualifier": [
 "PROD",
 "1"
]
 }
 }
 }
]
}

The following list specifies the API actions on which you can scope down the permissions with the
StateMachineQualifier context key.

• CreateStateMachineAlias

• DeleteStateMachineAlias

• DeleteStateMachineVersion

• DescribeStateMachine

• DescribeStateMachineAlias

• ListExecutions

• ListStateMachineAliases

• StartExecution

• StartSyncExecution

• UpdateStateMachineAlias

Associating state machine executions with a version or alias

Step Functions associates an execution with a version or alias based on the Amazon Resource Name
(ARN) that you use to invoke the StartExecution API action. Step Functions performs this action at
the execution start time.

You can start a state machine execution using a qualified or an unqualified ARN.

• Qualified ARN – Refers to a state machine ARN suffixed with a version number or an alias name.

Associating executions with a version or alias 235

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachineVersion.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListExecutions.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListStateMachineAliases.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachineAlias.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

The following qualified ARN example refers to version 3 of a state machine named
myStateMachine.

arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine:3

The following qualified ARN example refers to an alias named PROD of a state machine named
myStateMachine.

arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine:PROD

• Unqualified ARN – Refers to a state machine ARN without a version number or an alias name
suffix.

arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine

For example, if your qualified ARN refers to version 3, Step Functions associates the execution with
this version. It doesn't associate the execution with any aliases that point to the version 3.

If your qualified ARN refers to an alias, Step Functions associates the execution with that alias and
the version to which the alias points. An execution can only be associated with one alias.

Note

If you start an execution with an unqualified ARN, Step Functions doesn't associate that
execution with a version even if the version uses the same state machine revision. For
example, if version 3 uses the latest revision, but you start an execution with an unqualified
ARN, Step Functions doesn't associate that execution with the version 3.

In this topic

• Viewing executions started with a version or an alias

Viewing executions started with a version or an alias

Step Functions provides the following ways in which you can view the executions started with a
version or an alias:

Associating executions with a version or alias 236

AWS Step Functions Developer Guide

Using API actions

You can view all the executions associated with a version or an alias by invoking the
DescribeExecution and ListExecutions API actions. These API actions return the ARN of the version
or alias that was used to start the execution. These actions also return other details including
status and ARN of the execution.

You can also provide a state machine alias ARN or version ARN to list the executions associated
with a specific alias or version.

The following example response of the ListExecutions API action shows the ARN of the alias used
to start a state machine execution named myFirstExecution.

The italicized text in the following code snippet represents resource-specific information.

{
 "executions": [
 {
 "executionArn": "arn:aws:states:us-
east-1:123456789012:execution:myStateMachine:myFirstExecution",
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine",
 "stateMachineAliasArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:PROD",
 "name": "myFirstExecution",
 "status": "SUCCEEDED",
 "startDate": "2023-04-20T23:07:09.477000+00:00",
 "stopDate": "2023-04-20T23:07:09.732000+00:00"
 }
]
}

Using Step Functions console

You can also view the executions started by a version or an alias from the Step Functions console.
The following procedure shows how you can view the executions started with a specific version:

1. Open the Step Functions console, and then choose an existing state machine for which you've
published a version or created an alias. This example shows how to view the executions started
with a specific state machine version.

2. Choose the Versions tab, and then choose a version from the Versions list.

Associating executions with a version or alias 237

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListExecutions.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListExecutions.html
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Tip

Filter by property or value box to search for a specific version.

3. On the Version details page, you can see a list of all the in-progress and past state machine
executions started with the selected version.

The following image shows the Version Details console page. This page lists executions started by
the version 4 of a state machine named MathAddDemo. This list also displays an execution that was
started by an alias named PROD. This alias routed the execution traffic to version 4.

Using CloudWatch metrics

For each state machine execution that you start with a Qualified ARN, Step Functions emits
additional metrics with the same name and value as the metrics emitted currently. These additional
metrics contain dimensions for each of the version identifier and alias name with which you
start an execution. With these metrics, you can monitor state machine executions at the version
level and determine when a rollback scenario might be necessary. You can also create Amazon
CloudWatch alarms based on these metrics.

Associating executions with a version or alias 238

AWS Step Functions Developer Guide

Step Functions emits the following metrics for executions that you start with an alias or a version:

• ExecutionTime

• ExecutionsAborted

• ExecutionsFailed

• ExecutionsStarted

• ExecutionsSucceeded

• ExecutionsTimedOut

If you started the execution with a version ARN, Step Functions publishes the metric with the
StateMachineArn and a second metric with StateMachineArn and Version dimensions.

If you started the execution with an alias ARN, Step Functions emits the following metrics:

• Two metrics for the unqualified ARN and version.

• A metric with the StateMachineArn and Alias dimensions.

Alias and version deployment example

The following example of the Canary deployment technique shows how you can deploy a new
state machine version with the AWS Command Line Interface. In this example, the alias you create
routes 20 percent of execution traffic to the new version. It then routes the remaining 80 percent
the earlier version. To deploy a new state machine version and shift execution traffic with an alias,
complete the following steps:

1. Publish a version from the current state machine revision.

Use the publish-state-machine-version command in the AWS CLI to publish a version from the
current revision of a state machine called myStateMachine:

aws stepfunctions publish-state-machine-version --state-machine-arn
 arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine

The response returns the stateMachineVersionArn of the
version that you published. For example, arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:1.

Deployment example 239

AWS Step Functions Developer Guide

2. Create an alias that points to the state machine version.

Use the create-state-machine-alias command to create an alias named PROD that points to
version 1 of myStateMachine:

aws stepfunctions create-state-machine-alias --name PROD --routing-
configuration "[{\"stateMachineVersionArn\":\"arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:1\",\"weight\":100}]"

3. Verify that executions started by the alias use correct published version.

Start a new execution of myStateMachine by providing the ARN of the alias PROD in the start-
execution command:

aws stepfunctions start-execution
 --state-machine-arn arn:aws:states:us-
east-1:123456789012:stateMachineAlias:myStateMachine:PROD
 --input "{}"

If you provide the state machine ARN in the StartExecution request, it uses the most recent
revision of the state machine instead of the version specified in your alias for starting the
execution.

4. Update the state machine definition and publish a new version.

Update myStateMachine and publish its new version. To do this, use the optional publish
parameter of the update-state-machine command:

aws stepfunctions update-state-machine
 --state-machine-arn arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine
 --definition $UPDATED_STATE_MACHINE_DEFINITION
 --publish

The response returns the stateMachineVersionArn for the new version. For example,
arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine:2.

5. Update the alias to point to both the versions and set the alias' routing configuration.

Deployment example 240

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

Use the update-state-machine-alias command to update the routing configuration of the alias
PROD. Configure the alias so that 80 percent of the execution traffic goes to version 1 and the
remaining 20 percent goes to version 2:

aws stepfunctions update-state-machine-alias --state-machine-alias-arn
 arn:aws:states:us-east-1:123456789012:stateMachineAlias:myStateMachine:PROD
 --routing-configuration "[{\"stateMachineVersionArn\":
\"arn:aws:states:us-east-1:123456789012:stateMachine:myStateMachine:1\",
\"weight\":80}, {\"stateMachineVersionArn\":\"arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:2\",\"weight\":20}]"

6. Replace version 1 with version 2.

After you verify that your new state machine version works correctly, you can deploy the new
state machine version. To do this, update the alias again to assign 100 percent of execution
traffic to the new version.

Use the update-state-machine-alias command to set the routing configuration of the alias
PROD to 100 percent for version 2:

aws stepfunctions update-state-machine-alias --state-machine-alias-arn
 arn:aws:states:us-east-1:123456789012:stateMachineAlias:myStateMachine:PROD
 --routing-configuration "[{\"stateMachineVersionArn\":\"arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:2\",\"weight\":100}]"

Tip

To roll back the deployment of version 2, edit the alias' routing configuration to shift 100
percent of traffic to the newly deployed version.

aws stepfunctions update-state-machine-alias
 --state-machine-alias-arn arn:aws:states:us-
east-1:123456789012:stateMachineAlias:myStateMachine:PROD
 --routing-configuration "[{\"stateMachineVersionArn\":\"arn:aws:states:us-
east-1:123456789012:stateMachine:myStateMachine:1\",\"weight\":100}]"

Deployment example 241

AWS Step Functions Developer Guide

You can use versions and aliases to perform other types of deployments. For instance, you can
perform a rolling deployment of a new version of your state machine. To do so, gradually increase
the weighted percentage in the routing configuration of the alias that points to the new version.

You can also use versions and aliases to perform a blue/green deployment. To do so, create an alias
named green that runs the current version 1 of your state machine. Then, create another alias
named blue that runs the new version, for example, 2. To test the new version, send execution
traffic to the blue alias. When you're confident that your new version works correctly, update the
green alias to point to your new version.

Perform gradual deployment of state machine versions

A rolling deployment is a deployment strategy that slowly replaces previous versions of an
application with new versions of an application. To perform a rolling deployment of a state
machine version, gradually send an increasing amount of execution traffic to the new version. The
amount of traffic and rate of increase are parameters that you configure.

You can perform rolling deployment of a version using one of the following options:

• Step Functions console – Create an alias that points to two versions of the same state machine.
For this alias, you configure the routing configuration to shift traffic between the two versions.
For more information about using the console to roll out versions, see Versions and Aliases.

• Scripts for AWS CLI and SDK – Create a shell script using the AWS CLI or the AWS SDK. For more
information, see the following sections for using AWS CLI and AWS SDK.

• AWS CloudFormation templates – Use the AWS::StepFunctions::StateMachineVersion
and AWS::StepFunctions::StateMachineAlias resources to publish multiple state
machine versions and create an alias to point to one or two of these versions.

Use the AWS CLI to deploy a new state machine version

The example script in this section shows how you can use the AWS CLI to gradually shift traffic
from a previous state machine version to a new state machine version. You can either use this
example script or update it according to your requirements.

This script shows a Canary deployment for deploying a new state machine version using an alias.
The following steps outline the tasks that the script performs:

Gradual deployment of versions 242

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide

1. If the publish_revision parameter is set to true, publish the most recent revision as the
next version of the state machine. This version becomes the new, live version if the deployment
succeeds.

If you set the publish_revision parameter to false, the script deploys the last published
version of the state machine.

2. Create an alias if it doesn't exist yet. If the alias doesn't exist, point 100 percent of traffic for this
alias to the new version, and then exit the script.

3. Update the routing configuration of the alias to shift a small percentage of traffic
from the previous version to the new version. You set this canary percentage with the
canary_percentage parameter.

4. By default, monitor the configurable CloudWatch alarms every 60 seconds. If any of these
alarms set off, rollback the deployment immediately by pointing 100 percent of traffic to the
previous version.

After every time interval, in seconds, defined in alarm_polling_interval,
continue monitoring the alarms. Continue monitoring until the time interval defined in
canary_interval_seconds has passed.

5. If no alarms were set off during canary_interval_seconds, shift 100 percent of traffic to the
new version.

6. If the new version deploys successfully, delete any versions older than the number specified in
the history_max parameter.

#!/bin/bash

AWS StepFunctions example showing how to create a canary deployment with a
State Machine Alias and versions.

Requirements: AWS CLI installed and credentials configured.

A canary deployment deploys the new version alongside the old version, while
routing only a small fraction of the overall traffic to the new version to
see if there are any errors. Only once the new version has cleared a testing
period will it start receiving 100% of traffic.

For a Blue/Green or All at Once style deployment, you can set the
canary_percentage to 100. The script will immediately shift 100% of traffic

Gradual deployment of versions 243

AWS Step Functions Developer Guide

to the new version, but keep on monitoring the alarms (if any) during the
canary_interval_seconds time interval. If any alarms raise during this period,
the script will automatically rollback to the previous version.

Step Functions allows you to keep a maximum of 1000 versions in version history
for a state machine. This script has a version history deletion mechanism at
the end, where it will delete any versions older than the limit specified.

For a fuller example, that also demonstrates linear (or rolling) deployments,
please see
https://github.com/aws-samples/aws-stepfunctions-examples/blob/main/gradual-deploy/
sfndeploy.py

set -euo pipefail

**
you can safely change the variables in this block to your values
state_machine_name="my-state-machine"
alias_name="alias-1"
region="us-east-1"

array of cloudwatch alarms to poll during the test period.
to disable alarm checking, set alarm_names=()
alarm_names=("alarm1" "alarm name with a space")

true to publish the current revision as the next version before deploy.
false to deploy the latest version from the state machine's version history.
publish_revision=true

true to force routing configuration update even if the current routing
for the alias does not have a 100% routing config.
false will abandon deploy attempt if current routing config not 100% to a
single version.
Be careful when you combine this flag with publish_revision - if you just
rerun the script you might deploy the newly published revision from the
previous run.
force=false

percentage of traffic to route to the new version during the test period
canary_percentage=10

how many seconds the canary deployment lasts before full deploy to 100%
canary_interval_seconds=300

Gradual deployment of versions 244

AWS Step Functions Developer Guide

how often to poll the alarms
alarm_polling_interval=60

how many versions to keep in history. delete versions prior to this.
set to 0 to disable old version history deletion.
history_max=0
**

#######################################
Update alias routing configuration.

If you don't specify version 2 details, will only create 1 routing entry. In
this case the routing entry weight must be 100.

Globals:
alias_arn
Arguments:
1. version 1 arn
2. version 1 weight
3. version 2 arn (optional)
4. version 2 weight (optional)
#######################################
function update_routing() {
 if [[$# -eq 2]]; then
 local routing_config="[{\"stateMachineVersionArn\": \"$1\", \"weight\":$2}]"
 elif [[$# -eq 4]]; then
 local routing_config="[{\"stateMachineVersionArn\": \"$1\", \"weight\":$2},
 {\"stateMachineVersionArn\": \"$3\", \"weight\":$4}]"
 else
 echo "You have to call update_routing with either 2 or 4 input arguments." >&2
 exit 1
 fi

 ${aws} update-state-machine-alias --state-machine-alias-arn ${alias_arn} --routing-
configuration "${routing_config}"
}

**
pre-run validation
if [[(("${#alarm_names[@]}" -gt 0))]]; then
 alarm_exists_count=$(aws cloudwatch describe-alarms --alarm-names "${alarm_names[@]}"
 --alarm-types "CompositeAlarm" "MetricAlarm" --query "length([MetricAlarms,
 CompositeAlarms][])" --output text)

Gradual deployment of versions 245

AWS Step Functions Developer Guide

 if [[(("${#alarm_names[@]}" -ne "${alarm_exists_count}"))]]; then
 echo All of the alarms to monitor do not exist in CloudWatch: $(IFS=,; echo
 "${alarm_names[*]}") >&2
 echo Only the following alarm names exist in CloudWatch:
 aws cloudwatch describe-alarms --alarm-names "${alarm_names[@]}" --alarm-types
 "CompositeAlarm" "MetricAlarm" --query "join(', ', [MetricAlarms, CompositeAlarms]
[].AlarmName)" --output text
 exit 1
 fi
fi

if [[(("${history_max}" -gt 0)) && (("${history_max}" -lt 2))]]; then
 echo The minimum value for history_max is 2. This is the minimum number of older
 state machine versions to be able to rollback in the future. >&2
 exit 1
fi
**
main block follows

account_id=$(aws sts get-caller-identity --query Account --output text)

sm_arn="arn:aws:states:${region}:${account_id}:stateMachine:${state_machine_name}"

the aws command we'll be invoking a lot throughout.
aws="aws stepfunctions"

promote the latest revision to the next version
if [["${publish_revision}" = true]]; then
 new_version=$(${aws} publish-state-machine-version --state-machine-arn=$sm_arn --
query stateMachineVersionArn --output text)
 echo Published the current revision of state machine as the next version with arn:
 ${new_version}
else
 new_version=$(${aws} list-state-machine-versions --state-machine-arn ${sm_arn} --max-
results 1 --query "stateMachineVersions[0].stateMachineVersionArn" --output text)
 echo "Since publish_revision is false, using the latest version from the state
 machine's version history: ${new_version}"
fi

find the alias if it exists
alias_arn_expected="${sm_arn}:${alias_name}"
alias_arn=$(${aws} list-state-machine-aliases --state-machine-arn
 ${sm_arn} --query "stateMachineAliases[?stateMachineAliasArn==\`
${alias_arn_expected}\`].stateMachineAliasArn" --output text)

Gradual deployment of versions 246

AWS Step Functions Developer Guide

if [["${alias_arn_expected}" == "${alias_arn}"]]; then
 echo Found alias ${alias_arn}

 echo Current routing configuration is:
 ${aws} describe-state-machine-alias --state-machine-alias-arn "${alias_arn}" --query
 routingConfiguration
else
 echo Alias does not exist. Creating alias ${alias_arn_expected} and routing 100%
 traffic to new version ${new_version}

 ${aws} create-state-machine-alias --name "${alias_name}" --routing-configuration
 "[{\"stateMachineVersionArn\": \"${new_version}\", \"weight\":100}]"

 echo Done!
 exit 0
fi

find the version to which the alias currently points (the current live version)
old_version=$(${aws} describe-state-machine-alias --state-machine-alias-arn $alias_arn
 --query "routingConfiguration[?weight==\`100\`].stateMachineVersionArn" --output text)

if [[-z "${old_version}"]]; then
 if [["${force}" = true]]; then
 echo Force setting is true. Will force update to routing config for alias to point
 100% to new version.
 update_routing "${new_version}" 100

 echo Alias ${alias_arn} now pointing 100% to ${new_version}.
 echo Done!
 exit 0
 else
 echo Alias ${alias_arn} does not have a routing config entry with 100% of the
 traffic. This means there might be a deploy in progress, so not starting another
 deploy at this time. >&2
 exit 1
 fi
fi

if [["${old_version}" == "${new_version}"]]; then
 echo The alias already points to this version. No update necessary.
 exit 0
fi

Gradual deployment of versions 247

AWS Step Functions Developer Guide

echo Switching ${canary_percentage}% to new version ${new_version}
((old_weight = 100 - ${canary_percentage}))
update_routing "${new_version}" ${canary_percentage} "${old_version}" ${old_weight}

echo New version receiving ${canary_percentage}% of traffic.
echo Old version ${old_version} is still receiving ${old_weight}%.

if [[${#alarm_names[@]} -eq 0]]; then
 echo No alarm_names set. Skipping cloudwatch monitoring.
 echo Will sleep for ${canary_interval_seconds} seconds before routing 100% to new
 version.
 sleep ${canary_interval_seconds}
 echo Canary period complete. Switching 100% of traffic to new version...
else
 echo Checking if alarms fire for the next ${canary_interval_seconds} seconds.

 ((total_wait = canary_interval_seconds + $(date +%s)))

 now=$(date +%s)
 while [[((${now} -lt ${total_wait}))]]; do
 alarm_result=$(aws cloudwatch describe-alarms --alarm-names "${alarm_names[@]}"
 --state-value ALARM --alarm-types "CompositeAlarm" "MetricAlarm" --query "join(', ',
 [MetricAlarms, CompositeAlarms][].AlarmName)" --output text)

 if [[! -z "${alarm_result}"]]; then
 echo The following alarms are in ALARM state: ${alarm_result}. Rolling back
 deploy. >&2
 update_routing "${old_version}" 100

 echo Rolled back to ${old_version}
 exit 1
 fi

 echo Monitoring alarms...no alarms have triggered.
 sleep ${alarm_polling_interval}
 now=$(date +%s)
 done

 echo No alarms detected during canary period. Switching 100% of traffic to new
 version...
fi

update_routing "${new_version}" 100

Gradual deployment of versions 248

AWS Step Functions Developer Guide

echo Version ${new_version} is now receiving 100% of traffic.

if [[(("${history_max}" -eq 0))]]; then
 echo Version History deletion is disabled. Remember to prune your history, the
 default limit is 1000 versions.
 echo Done!
 exit 0
fi

echo Keep the last ${history_max} versions. Deleting any versions older than that...

the results are sorted in descending order of the version creation time
version_history=$(${aws} list-state-machine-versions --state-
machine-arn ${sm_arn} --max-results 1000 --query "join(\`\"\\n\"\`,
 stateMachineVersions[].stateMachineVersionArn)" --output text)

counter=0

while read line; do
 ((counter=${counter} + 1))

 if [[((${counter} -gt ${history_max}))]]; then
 echo Deleting old version ${line}
 ${aws} delete-state-machine-version --state-machine-version-arn ${line}
 fi
done <<< "${version_history}"

echo Done!

Use the AWS SDK to deploy a new state machine version

The example script at aws-stepfunctions-examples shows how to use the AWS SDK for Python to
gradually shift traffic from a previous version to a new version of a state machine. You can either
use this example script or update it according to your requirements.

The script shows the following deployment strategies:

• Canary – Shifts traffic in two increments.

In the first increment, a small percentage of traffic, for example, 10 percent is shifted to the
new version. In the second increment, before a specified time interval in seconds gets over, the
remaining traffic is shifted to the new version. The switch to the new version for the remaining
traffic takes place only if no CloudWatch alarms are set off during the specified time interval.

Gradual deployment of versions 249

https://github.com/aws-samples/aws-stepfunctions-examples/tree/main/gradual-deploy

AWS Step Functions Developer Guide

• Linear or Rolling – Shifts traffic to the new version in equal increments with an equal number of
seconds between each increment.

For example, if you specify the increment percent as 20 with an --interval of 600 seconds,
this deployment increases traffic by 20 percent every 600 seconds until the new version receives
100 percent of the traffic.

This deployment immediately rolls back the new version if any CloudWatch alarms are set off.

• All at Once or Blue/Green – Shifts 100 percent of traffic to the new version immediately. This
deployment monitors the new version and rolls it back automatically to the previous version if
any CloudWatch alarms are set off.

Use AWS CloudFormation to deploy a new state machine version

The following CloudFormation template example publishes two versions of a state machine named
MyStateMachine. It creates an alias named PROD, which points to both these versions, and then
deploys the version 2.

In this example, 10 percent of traffic is shifted to the version 2 every five minutes until this version
receives 100 percent of the traffic. This example also shows how you can set CloudWatch alarms. If
any of the alarms you set go into the ALARM state, the deployment fails and rolls back immediately.

MyStateMachine:
 Type: AWS::StepFunctions::StateMachine
 Properties:
 Type: STANDARD
 StateMachineName: MyStateMachine
 RoleArn: arn:aws:iam::123456789012:role/myIamRole
 Definition:
 StartAt: PassState
 States:
 PassState:
 Type: Pass
 Result: Result
 End: true

MyStateMachineVersionA:
 Type: AWS::StepFunctions::StateMachineVersion
 Properties:
 Description: Version 1
 StateMachineArn: !Ref MyStateMachine

Gradual deployment of versions 250

AWS Step Functions Developer Guide

MyStateMachineVersionB:
 Type: AWS::StepFunctions::StateMachineVersion
 Properties:
 Description: Version 2
 StateMachineArn: !Ref MyStateMachine

PROD:
 Type: AWS::StepFunctions::StateMachineAlias
 Properties:
 Name: PROD
 Description: The PROD state machine alias taking production traffic.
 DeploymentPreference:
 StateMachineVersionArn: !Ref MyStateMachineVersionB
 Type: LINEAR
 Percentage: 10
 Interval: 5
 Alarms:
 # A list of alarms that you want to monitor. If any of these alarms trigger,
 rollback the deployment immediately by pointing 100 percent of traffic to the previous
 version.
 - !Ref CloudWatchAlarm1
 - !Ref CloudWatchAlarm2

Executions in Step Functions

A state machine execution occurs when an AWS Step Functions state machine runs and performs
its tasks. Each Step Functions state machine can have multiple simultaneous executions, which
you can initiate from the Step Functions console, or by using the AWS SDKs, the Step Functions
API actions, or the AWS Command Line Interface (AWS CLI). An execution receives JSON input and
produces JSON output. You can start a Step Functions execution in the following ways:

• Call the StartExecution API action.

• Start a new execution in the Step Functions console.

• Use Amazon EventBridge to start an execution in response to an event.

• Use Amazon EventBridge Scheduler to start a state machine execution on a schedule.

• Start an execution with Amazon API Gateway.

• Start a nested workflow execution from a Task state.

Executions 251

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

For more information about the different ways of working with Step Functions, see Development
Options.

Start Workflow Executions from a Task State

AWS Step Functions can start workflow executions directly from a Task state of a state machine.
This allows you to break your workflows into smaller state machines, and to start executions of
these other state machines. By starting these new workflow executions you can:

• Separate higher level workflow from lower level, task-specific workflows.

• Avoid repetitive elements by calling a separate state machine multiple times.

• Create a library of modular reusable workflows for faster development.

• Reduce complexity and make it easier to edit and troubleshoot state machines.

Step Functions can start these workflow executions by calling its own API as an integrated service.
Simply call the StartExecution API action from your Task state and pass the necessary
parameters. You can call the Step Functions API using any of the service integration patterns.

Tip

To deploy an example of a nested workflow to your AWS account, see Module 13 - Nested
Express Workflows.

To start a new execution of a state machine, use a Task state similar to the following example:

{
 "Type":"Task",
 "Resource":"arn:aws:states:::states:startExecution",
 "Parameters":{
 "StateMachineArn":"arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",
 "Input":{
 "Comment":"Hello world!"
 },
 },
 "Retry":[
 {
 "ErrorEquals":[

Start Executions from a Task 252

https://s12d.com/sfn-ws-nested-workflows
https://s12d.com/sfn-ws-nested-workflows

AWS Step Functions Developer Guide

 "StepFunctions.ExecutionLimitExceeded"
]
 }
],
 "End":true
}

This Task state will start a new execution of the HelloWorld state machine, and will pass the
JSON comment as input.

Note

The StartExecution API action quotas can limit the number of executions that you can
start. Use the Retry on StepFunctions.ExecutionLimitExceeded to ensure your
execution is started. See the following.

• Quotas related to API action throttling

• Error handling in Step Functions

Associate Workflow Executions

To associate a started workflow execution with the execution that started it, pass the execution ID
from the context object to the execution input. You can access the ID from the context object from
your Task state in a running execution. Pass the execution ID by appending .$ to the parameter
name, and referencing the ID in the context object with $$.Execution.Id.

"AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"

You can use a special parameter named AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID
when you start an execution. If included, this association provides links in the Step details
section of the Step Functions console. When provided, you can easily trace the executions of
your workflows from starting executions to their started workflow executions. Using the previous
example, associate the execution ID with the started execution of the HelloWorld state machine,
as follows.

{
 "Type":"Task",

Start Executions from a Task 253

AWS Step Functions Developer Guide

 "Resource":"arn:aws:states:::states:startExecution",
 "Parameters":{
 "StateMachineArn":"arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",
 "Input": {
 "Comment": "Hello world!",
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
 }
 },
 "End":true
}

For more information, see the following:

• Working with other services

• Pass parameters to a service API

• Accessing the Context Object

• AWS Step Functions

Using Amazon EventBridge Scheduler with AWS Step Functions

Amazon EventBridge Scheduler is a serverless scheduler that allows you to create, run, and manage
tasks from one central, managed service. With EventBridge Scheduler, you can create schedules
using cron and rate expressions for recurring patterns, or configure one-time invocations. You can
set up flexible time windows for delivery, define retry limits, and set the maximum retention time
for failed API invocations.

For example, with EventBridge Scheduler, you can start a state machine execution on a schedule
when a security related event occurs or to automate a data processing job.

This page explains how to use EventBridge Scheduler to start execution of a Step Functions state
machine on a schedule.

Topics

• Set up the execution role

• Create a schedule

• Related resources

Using EventBridge Scheduler 254

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html

AWS Step Functions Developer Guide

Set up the execution role

When you create a new schedule, EventBridge Scheduler must have permission to invoke its target
API operation on your behalf. You grant these permissions to EventBridge Scheduler using an
execution role. The permission policy you attach to your schedule's execution role defines the
required permissions. These permissions depend on the target API you want EventBridge Scheduler
to invoke.

When you use the EventBridge Scheduler console to create a schedule, as in the following
procedure, EventBridge Scheduler automatically sets up an execution role based on your selected
target. If you want to create a schedule using one of the EventBridge Scheduler SDKs, the AWS
CLI, or AWS CloudFormation, you must have an existing execution role that grants the permissions
EventBridge Scheduler requires to invoke a target. For more information about manually setting up
an execution role for your schedule, see Setting up an execution role in the EventBridge Scheduler
User Guide.

Create a schedule

To create a schedule by using the console

1. Open the Amazon EventBridge Scheduler console at https://console.aws.amazon.com/
scheduler/home.

2. On the Schedules page, choose Create schedule.

3. On the Specify schedule detail page, in the Schedule name and description section, do the
following:

a. For Schedule name, enter a name for your schedule. For example, MyTestSchedule.

b. (Optional) For Description, enter a description for your schedule. For example, My first
schedule.

c. For Schedule group, choose a schedule group from the dropdown list. If you don't have a
group, choose default. To create a schedule group, choose create your own schedule.

You use schedule groups to add tags to groups of schedules.

4. • Choose your schedule options.

Using EventBridge Scheduler 255

https://docs.aws.amazon.com/scheduler/latest/UserGuide/setting-up.html#setting-up-execution-role
https://console.aws.amazon.com/scheduler/home/
https://console.aws.amazon.com/scheduler/home/

AWS Step Functions Developer Guide

Occurrence Do this...

One-time schedule

A one-time schedule
invokes a target only once
at the date and time that
you specify.

For Date and time, do the
following:

• Enter a valid date in
YYYY/MM/DD format.

• Enter a timestamp in 24-
hour hh:mm format.

• For Timezone, choose
the timezone.

Using EventBridge Scheduler 256

AWS Step Functions Developer Guide

Occurrence Do this...

Recurring schedule

A recurring schedule
invokes a target at a rate
that you specify using a
cron expression or rate
expression.

a. For Schedule type, do
one of the following:

• To use a cron
expression to define
the schedule, choose
Cron-based schedule
and enter the cron
expression.

• To use a rate
expression to define
the schedule, choose
Rate-based schedule
and enter the rate
expression.

For more informati
on about cron and
rate expressions,
see Schedule types
on EventBridge
Scheduler in the
Amazon EventBridge
Scheduler User Guide.

b. For Flexible time
window, choose Off to
turn off the option, or
choose one of the pre-
defined time windows.
For example, if you
choose 15 minutes
and you set a recurring
 schedule to invoke its
target once every hour,
the schedule runs within

Using EventBridge Scheduler 257

https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based
https://docs.aws.amazon.com/scheduler/latest/UserGuide/schedule-types.html#cron-based

AWS Step Functions Developer Guide

Occurrence Do this...

15 minutes after the
start of every hour.

5. (Optional) If you chose Recurring schedule in the previous step, in the Timeframe section, do
the following:

a. For Timezone, choose a timezone.

b. For Start date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

c. For End date and time, enter a valid date in YYYY/MM/DD format, and then specify a
timestamp in 24-hour hh:mm format.

6. Choose Next.

7. On the Select target page, choose the AWS API operation that EventBridge Scheduler invokes:

a. Choose AWS Step Functions StartExecution.

b. In the StartExecution section, select a state machine or choose Create new state
machine.

Currently, you can't run Synchronous Express workflows on a schedule.

c. Enter a JSON payload for the execution. Even if your state machine doesn't require any
JSON payload, you must still include input in JSON format as shown in the following
example.

{
 "Comment": "sampleJSONData"
}

8. Choose Next.

9. On the Settings page, do the following:

a. To turn on the schedule, under Schedule state, toggle Enable schedule.

b. To configure a retry policy for your schedule, under Retry policy and dead-letter queue
(DLQ), do the following:

• Toggle Retry.

Using EventBridge Scheduler 258

AWS Step Functions Developer Guide

• For Maximum age of event, enter the maximum hour(s) and min(s) that EventBridge
Scheduler must keep an unprocessed event.

• The maximum time is 24 hours.

• For Maximum retries, enter the maximum number of times EventBridge Scheduler
retries the schedule if the target returns an error.

The maximum value is 185 retries.

With retry policies, if a schedule fails to invoke its target, EventBridge Scheduler re-runs
the schedule. If configured, you must set the maximum retention time and retries for the
schedule.

c. Choose where EventBridge Scheduler stores undelivered events.

Dead-letter queue (DLQ)
option

Do this...

Don't store Choose None.

Store the event in the
same AWS account
where you're creating the
schedule

a. Choose Select an
Amazon SQS queue in
my AWS account as a
DLQ.

b. Choose the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

Store the event in a
different AWS account
from where you're creating
the schedule

a. Choose Specify an
Amazon SQS queue in
other AWS accounts as
a DLQ.

b. Enter the Amazon
Resource Name (ARN) of
the Amazon SQS queue.

d. To use a customer managed key to encrypt your target input, under Encryption, choose
Customize encryption settings (advanced).

Using EventBridge Scheduler 259

AWS Step Functions Developer Guide

If you choose this option, enter an existing KMS key ARN or choose Create an AWS KMS
key to navigate to the AWS KMS console. For more information about how EventBridge
Scheduler encrypts your data at rest, see Encryption at rest in the Amazon EventBridge
Scheduler User Guide.

e. To have EventBridge Scheduler create a new execution role for you, choose Create new
role for this schedule. Then, enter a name for Role name. If you choose this option,
EventBridge Scheduler attaches the required permissions necessary for your templated
target to the role.

10. Choose Next.

11. In the Review and create schedule page, review the details of your schedule. In each section,
choose Edit to go back to that step and edit its details.

12. Choose Create schedule.

You can view a list of your new and existing schedules on the Schedules page. Under the
Status column, verify that your new schedule is Enabled.

To confirm that EventBridge Scheduler invoked the state machine, check the state machine's
Amazon CloudWatch logs.

Related resources

For more information about EventBridge Scheduler, see the following:

• EventBridge Scheduler User Guide

• EventBridge Scheduler API Reference

• EventBridge Scheduler Pricing

Standard and Express Workflow executions in the console

When you create a state machine, you select a Type of either Standard or Express. The default
Type for state machines is Standard. A state machine whose Type is Standard is called a Standard
workflow and a state machine whose Type is Express is called an Express workflow.

For both Standard and Express workflows, you define your state machine using the Amazon States
Language. Your state machine executions will behave differently depending on the Type that you
select.

Standard and Express Workflow executions 260

https://docs.aws.amazon.com/scheduler/latest/UserGuide/encryption-rest.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/APIReference/Welcome.html
https://aws.amazon.com/eventbridge/pricing/#Scheduler

AWS Step Functions Developer Guide

Important

The Type you choose can't be changed after you create the state machine.

For more information about Standard and Express workflows, see Standard vs. Express Workflows.

The history of Standard workflow executions are recorded in Step Functions, while the history
of Express workflow executions aren't recorded in Step Functions. To record the history of an
Express workflow execution, you must configure it to send logs to Amazon CloudWatch. For more
information, see Logging using CloudWatch Logs.

Once logging is configured on an Express workflow, you can view its executions in the Step
Functions console. The console experience to view Express workflow executions and Standard
workflow executions is similar, except for the following differences and limitations.

Note

Because execution data for Express workflows are displayed using CloudWatch Logs
Insights, scanning the logs will incur charges. By default, your log group only lists
executions completed in the last three hours. If you specify a larger time range that
includes more execution events, your costs will increase. For more information, see Vended
Logs under the Logs tab on the CloudWatch Pricing page and Logging using CloudWatch
Logs.

Contents

• Console experience differences

• Considerations and limitations for viewing Express workflow executions

Console experience differences

For all Standard and Express workflows, you can view details, such as the state machine and its IAM
role ARN, on the State machine detail page in the Step Functions console.

On the State machine detail page, you can also see a list of your state machine's execution histories
under the Executions tab. Use the Filter executions by property or value box to search for a specific
execution, version, or alias of the chosen state machine. Use the All dropdown to filter execution

Standard and Express Workflow executions 261

https://aws.amazon.com/cloudwatch/pricing

AWS Step Functions Developer Guide

histories by their status. You can also choose an execution history and select the View details
button to open its Execution details page.

Standard workflows

The execution histories for Standard Workflows are always available for executions completed in
the last 90 days.

Express workflows

To display execution history for Express workflows, the Step Functions console retrieves log data
gathered through a CloudWatch Logs log group.

You must also enable the new console experience to view Express workflow executions. To do this,
choose the Enable button displayed inside the banner on the Executions tab. Once you choose this
button, it won't appear again.

Standard and Express Workflow executions 262

AWS Step Functions Developer Guide

Tip

To switch between enabling or disabling the console experience, use the Enable express
execution history toggle button.

The histories for executions completed in the last three hours are available by default. You can
adjust this time range or specify a custom range. If you specify a larger time range that includes
more execution events, the cost to scan the logs will increase. For more information, see Vended
Logs under the Logs tab on the CloudWatch Pricing page and Logging using CloudWatch Logs.

Considerations and limitations for viewing Express workflow executions

When viewing Express workflow executions on the Step Functions console, keep in mind the
following considerations and limitations.

• Availability of Express workflow execution details relies on Amazon CloudWatch Logs

• Partial Express workflow execution details are available if logging level is ERROR or FATAL

• State machine definition of an older execution can't be viewed once it has been updated

Standard and Express Workflow executions 263

https://aws.amazon.com/cloudwatch/pricing

AWS Step Functions Developer Guide

Availability of Express workflow execution details relies on Amazon CloudWatch Logs

Note

If you don’t enable the new console experience to view Express workflow executions,
the execution histories and their corresponding execution details are unavailable in the
Step Functions console. To enable the new console experience, choose the Enable button
displayed inside the banner on the Executions tab.

For Express workflows, their execution history and detailed execution information are gathered
through CloudWatch Logs Insights. This information is kept in the CloudWatch Logs log group
that you specify when you create the state machine. The state machine's execution history is
shown under the Executions tab on the Step Functions console. Detailed information about
each execution of the state machine is displayed on the Execution details page for the chosen
execution.

Warning

If you delete the CloudWatch Logs for an Express workflow, it won't be listed under the
Executions tab.

We recommend that you use the default log level of ALL for logging all execution event types. You
can update the log level as required for your existing state machines when you edit them. For more
information, see Logging using CloudWatch Logs and Log levels.

Partial Express workflow execution details are available if logging level is ERROR or FATAL

By default, the logging level for Express workflow executions is set to ALL. If you change the log
level, the execution histories and execution details for completed executions won’t be affected.
However, all new executions will emit logs based on the updated log level. For more information,
see Logging using CloudWatch Logs and Log levels.

For example, if you change the log level from ALL to either ERROR or FATAL, the Executions tab
on the Step Functions console only lists failed executions. In the Event view tab, the console shows
only the event details for the state machine steps that failed.

Standard and Express Workflow executions 264

AWS Step Functions Developer Guide

We recommend that you use the default log level of ALL for logging all execution event types.
You can update the log level as required for your existing state machines when you edit the state
machine.

State machine definition of an older execution can't be viewed once it has been updated

State machine definitions for past executions aren't stored for Express workflows. If you change the
state machine definition, you can only view the state machine definition for executions using the
most current definition.

For example, if you remove one or more steps from your state machine definition, Step Functions
detects a mismatch between the definition and prior execution events. Because previous
definitions are not stored for Express workflows, Step Functions can't display the state machine
definition for executions run on an earlier version of the state machine definition. As a result,
the Execution input & output, Definition, Graph view, and Table view tabs are unavailable for
executions run on previous versions of a state machine definition.

Viewing and debugging executions on the Step Functions console

The Execution Details page on the Step Functions console presents information about past and in-
progress state machine executions for Standard and Express Workflows. This information is shown
in a dashboard format. For example, you can find the state machine’s Amazon States Language
definition, its execution status, ARN, and total number of state transitions. You can also view the
execution details for any individual state in the state machine.

Contents

• Execution Details page – Interface overview

• Execution summary

• Error message

• View mode

• Step details

• Events

• Tutorial: Examining state machine executions using the Step Functions console

• Step 1: Create and test the required Lambda functions

• Step 2: Create and execute the state machine

• Step 3: View the state machine execution details

Viewing and debugging executions 265

AWS Step Functions Developer Guide

• Step 4: Explore the different View modes

Execution Details page – Interface overview

You can find the details for all your in-progress and past state machine executions for both
Standard and Express Workflows on the Execution Details page. If you specified an execution ID
while starting your execution, this page is titled with that execution ID. Otherwise, it’s titled with
the unique execution ID that Step Functions automatically generates for you.

Besides the execution metrics, the Execution Details page provides the following options for
managing your state machine and its execution:

Button Choose this button to:

Edit state machine Edit your state machine's Amazon States
Language definition.

New execution Start a new execution of your state machine.

Actions Provides the following options to choose from:

• Stop execution – Stop an in-progress
execution. This option is unavilable for
completed executions.

• Redrive – Redrive executions of Standard
Workflows that didn't complete successfu
lly in the last 14 days. These include failed,
aborted, or timed out executions. For more
information, see Redriving executions.

• Export – Export the execution details in
JSON format to share it with others or
perform offline analysis.

• Send feedback – Share feedback about the
interface.

Viewing and debugging executions 266

AWS Step Functions Developer Guide

Viewing executions started with a version or alias

You can also view the executions started with a version or an alias in the Step Functions
console. For more information, see Listing executions for versions and aliases.

The Execution Details console page contains the following sections:

Viewing and debugging executions 267

AWS Step Functions Developer Guide

Viewing and debugging executions 268

AWS Step Functions Developer Guide

1. Execution summary

2. Error message

3. View mode

4. Step details

5. Events

Execution summary

The Execution summary section appears at the top of the Execution Details page. This section
provides you with an overview of the execution details of your workflow. This information is
divided between the following three tabs:

Details

Shows information, such as the execution's status, ARN, and timestamps for execution start and
end time. You can also view the total count of State transitions that occurred while running
the state machine execution. You can also view the links for X-Ray trace map and Amazon
CloudWatch Execution Logs if you enabled tracing or logs for your state machine.

If your state machine execution was started by another state machine, you can view the link for
the parent state machine on this tab.

If your state machine execution was redriven, this tab displays redrive related information, for
example Redrive count.

Execution input and output

Shows the state machine execution input and output side-by-side.

Definition

Shows the state machine's Amazon States Language definition.

Error message

If your state machine execution failed, the Execution Details page displays an error message.
Choose Cause or View step details in the error message to view the reason for execution failure or
the step that caused the error.

If you choose View step details, Step Functions highlights the step that caused the error in the
Step details, Graph view, and Table view tabs. If the step is a Task, Map, or Parallel state for which

Viewing and debugging executions 269

AWS Step Functions Developer Guide

you've defined retries, the Step details pane displays the Retry tab for the step. Additionally, if
you've redriven the execution, you can see the retries and redrive execution details in the Retries &
redrives tab of the Step details pane.

From the Recover dropdown button on this error message, you can either redrive your unsuccessful
executions or start a new execution. For more information, see Redriving executions.

View mode

The View mode section contains two different visualizations for your state machine. You can choose
to view a graphic representation of the workflow, a table outlining the states in your workflow, or a
list of the events associated with your state machine's execution:

Note

Choose a tab to view its contents.

Graph view

The Graph view mode displays a graphical representation of your workflow. A legend is
included at the bottom that indicates the execution status of the state machine. It also contains

Viewing and debugging executions 270

AWS Step Functions Developer Guide

buttons that let you zoom in, zoom out, center align the full workflow, or view the workflow in
full-screen mode.

From this view, you can choose any step in your workflow to view details about its execution
in the Step details component. When you chose a step in the Graph view, the Table view also
shows that step. This is true in reverse as well. If you choose a step from Table view, the Graph
view shows the same step.

If your state machine contains a Map state, Parallel state, or both, you can view their names
in the workflow in the Graph view. In addition, for the Map state, the Graph view lets you move

Viewing and debugging executions 271

AWS Step Functions Developer Guide

across different iterations of the Map state execution data. For example, if your Map state has
five iterations and you want to view the execution data for the third and fourth iterations, do
the following:

1. Choose the Map state whose iteration data you want to view.

2. From Map iteration viewer, choose #2 from the dropdown list for third iteration. This is
because iterations are counted from zero. Likewise, choose #3 from the dropdown list for the
fourth iteration of the Map state.

Alternatively, use the

and

controls to move between different iterations of the Map state.

Note

If your state machine contains nested Map states, the dropdown lists for the parent
and child Map state iterations will be displayed as shown in the following example:

3. (Optional) If one or more of your Map state iterations failed to execute, or the execution was
stopped, you can view its data by choosing those iteration numbers under Failed or Aborted
in the dropdown list.

Finally, you can use the Export and Layout buttons to export the workflow graph as an SVG or
PNG image. You can also switch between horizontal and vertical views of your workflow.

Table view

The Table view mode displays a tabular representation of the states in your workflow. In this
View mode, you can see the details of each state that was executed in your workflow, including
its name, the name of any resource it used (such as an AWS Lambda function), and if the state
executed successfully.

Viewing and debugging executions 272

AWS Step Functions Developer Guide

From this view, you can choose any state in your workflow to view details about its execution
in the Step details component. When you chose a step in the Table view, the Graph view also
shows that step. This is true in reverse as well. If you choose a step from Graph view, the Table
view shows the same step.

You can also limit the amount of data displayed in the Table view mode by applying filters to
the view. You can create a filter for a specific property, such as Status or Redrive attempt. For
more information, see Tutorial: Examining state machine executions using the Step Functions
console.

Viewing and debugging executions 273

AWS Step Functions Developer Guide

By default, this mode displays the Name, Type, Status, Resource, and Started After columns.
You can configure the columns you want to view using the Preferences dialog box. The
selections that you make on this dialog box persist for future state machine executions until
they are changed again.

If you add the Timeline column, the execution duration of each state is shown with respect to
the runtime for the entire execution. This is displayed as a color-coded, linear timeline. This can
help you identify any performance-related issues with a specific state's execution. The color-
coded segments for each state on the timeline help you identify the state's execution status,
such as in-progress, failed, or aborted.

For example, if you've defined execution retries for a state in your state machine, these retries
are shown in the timline. Red segments represent the failed Retry attempts, while light gray
segments represent the BackoffRate between each Retry attempt.

If your state machine contains a Map state, Parallel state, or both, you can view their names
in the workflow in Table view. For Map and Parallel states, the Table view mode displays
the execution data for their iterations and parallel branches as nodes inside a tree view. You can
choose each node in these states to view their individual details in the Step details section. For
example, you can review the data for a specific Map state iteration that caused the state to fail.
Expand the node for the Map state, and then view the status for each iteration in the Status
column.

Viewing and debugging executions 274

AWS Step Functions Developer Guide

Step details

The Step details section opens up on the right when you choose a state in the Graph view or Table
view. This section contains the following tabs, which provide you in-depth information about the
selected state:

Input

Shows the input details of the selected state. If there is an error in the input, it is indicated with
a

on the tab header. In addition, you can view the reason for the error in this tab.

You can also choose the Advanced view toggle button to see the input data transfer path
as the data passed through the selected state. This lets you identify how your input was
processed as one or more of the fields, such as InputPath, Parameters, ResultSelector,
OutputPath, and ResultPath, were applied to the data.

Output

Shows the output of the selected state. If there is an error in the output, it is indicated with a

on the tab header. In addition, you can view the reason for the error in the this tab.

You can also choose the Advanced view toggle button to see the output data transfer path
as the data passed through the selected state. This lets you identify how your input was
processed as one or more of the fields, such as InputPath, Parameters, ResultSelector,
OutputPath, and ResultPath, were applied to the data.

Details

Shows information, such as the state type, its execution status, and execution duration.

For Task states that use a resource, such as AWS Lambda, this tab provides links to the resource
definition page and Amazon CloudWatch logs page for the resource invocation. It also shows
values, if specified, for the Task state's TimeoutSeconds and HeartbeatSeconds fields.

For Map states, this tab shows you information regarding the total count of a Map state's
iterations. Iterations are categorized as Failed, Aborted, Succeeded, or InProgress.

Definition

Shows the Amazon States Language definition corresponding to the selected state.

Viewing and debugging executions 275

AWS Step Functions Developer Guide

Retry

Note

This tab appears only if you've defined a Retry field in your state machine's Task or
Parallel state.

Shows the initial and subsequent retry attempts for a selected state in its original
execution attempt. For the initial and all the subsequent failed attempts, choose the

next to Type to view the Reason for failure that appears in a dropdown box. If the retry attempt
succeeds, you can view the Output that appears in a dropdown box.

If you've redriven your execution, this tab header displays the name Retries & redrives and
displays the retry attempt details for each redrive.

Events

Shows a filtered list of the events associated with the selected state in an execution. The
information you see on this tab is a subset of the complete execution event history you see in
the Events table.

Events

The Events table displays the complete history for the selected execution as a list of events
spanning multiple pages. Each page contains up to 25 events. This section also displays the total
event count, which can help you determine if you exceeded the maximum event history count of
25,000 events.

Viewing and debugging executions 276

AWS Step Functions Developer Guide

By default, the results in the Events table are displayed in ascending order based on the
Timestamp of the events. You can change the execution event history's sorting to descending
order by clicking on the Timestamp column header.

In the Events table, each event is color-coded to indicate its execution status. For example,
events that failed appear in red. To view additional details about an event, choose the

next to the event ID. Once open, the event details show the input, output, and resource invocation
for the event.

In addition, in the Events table, you can apply filters to limit the execution event history
results that are displayed. You can choose properties such as ID, or Redrive attempt. For more
information, see Tutorial: Examining state machine executions using the Step Functions console.

Tutorial: Examining state machine executions using the Step Functions console

In this tutorial, you will learn how to inspect the execution information displayed on the Execution
Details page and view the reason for a failed execution. Then, you'll learn how to access different
iterations of a Map state execution. Finally, you'll learn how to configure the columns on the Table
view and apply suitable filters to view only the information of interest to you.

Viewing and debugging executions 277

AWS Step Functions Developer Guide

In this tutorial, you create a Standard type state machine, which obtains the price of a set of fruits.
To do this, the state machine uses three AWS Lambda functions which return a random list of four
fruits, the price of each fruit, and the average cost of the fruits. The Lambda functions are designed
to throw an error if the price of the fruits is less than or equal to a threshold value.

Note

While the following procedure contains instructions for how to examine the details of
a Standard workflow execution, you can also examine the details for Express workflow
executions. For information about the differences between the execution details for
Standard and Express workflow types, see Standard and Express Workflow executions in
the console.

Contents

• Step 1: Create and test the required Lambda functions

• Step 2: Create and execute the state machine

• Step 3: View the state machine execution details

• Step 4: Explore the different View modes

Step 1: Create and test the required Lambda functions

1. Open the Lambda console and then perform steps 1 through 4 in the Step 1: Create a Lambda
function section. Make sure to name the Lambda function GetListOfFruits.

2. After you create your Lambda function, copy the function's Amazon Resource Name
(ARN) displayed in the upper-right corner of the page. To copy the ARN, click the

.
The following is an example ARN, where function-name is the name of the Lambda function
(in this case, GetListOfFruits):

arn:aws:lambda:us-east-1:123456789012:function:function-name

3. Copy the following code for the Lambda function into the Code source area of the
GetListOfFruits page.

function getRandomSubarray(arr, size) {
 var shuffled = arr.slice(0), i = arr.length, temp, index;

Viewing and debugging executions 278

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

 while (i--) {
 index = Math.floor((i + 1) * Math.random());
 temp = shuffled[index];
 shuffled[index] = shuffled[i];
 shuffled[i] = temp;
 }
 return shuffled.slice(0, size);
}

exports.handler = async function(event, context) {

 const fruits = ['Abiu','Açaí','Acerola','Ackee','African
 cucumber','Apple','Apricot','Avocado','Banana','Bilberry','Blackberry','Blackcurrant','Jostaberry'];

 const errorChance = 45;

 const waitTime = Math.floor(100 * Math.random());

 await new Promise(r => setTimeout(() => r(), waitTime));

 const num = Math.floor(100 * Math.random());
 // const num = 51;
 if (num <= errorChance) {
 throw(new Error('Error'));
 }

 return getRandomSubarray(fruits, 4);
};

4. Choose Deploy, and then choose Test, to deploy the changes and see the output of your
Lambda function.

5. Create two additional Lambda functions, named GetFruitPrice and CalculateAverage
respectively, with the following steps:

a. Copy the following code into the Code source area of the GetFruitPrice Lambda function:

exports.handler = async function(event, context) {

 const errorChance = 0;
 const waitTime = Math.floor(100 * Math.random());

 await new Promise(r => setTimeout(() => r(), waitTime));

Viewing and debugging executions 279

AWS Step Functions Developer Guide

 const num = Math.floor(100 * Math.random());
 if (num <= errorChance) {
 throw(new Error('Error'));
 }

 return Math.floor(Math.random()*100)/10;
};

b. Copy the following code into the Code source area of the CalculateAverage Lambda
function:

function getRandomSubarray(arr, size) {
 var shuffled = arr.slice(0), i = arr.length, temp, index;
 while (i--) {
 index = Math.floor((i + 1) * Math.random());
 temp = shuffled[index];
 shuffled[index] = shuffled[i];
 shuffled[i] = temp;
 }
 return shuffled.slice(0, size);
}

const average = arr => arr.reduce((p, c) => p + c, 0) / arr.length;

exports.handler = async function(event, context) {
 const errors = [
 "Error getting data from DynamoDB",
 "Error connecting to DynamoDB",
 "Network error",
 "MemoryError - Low memory"
]

 const errorChance = 0;

 const waitTime = Math.floor(100 * Math.random());

 await new Promise(r => setTimeout(() => r(), waitTime));

 const num = Math.floor(100 * Math.random());
 if (num <= errorChance) {
 throw(new Error(getRandomSubarray(errors, 1)[0]));
 }

Viewing and debugging executions 280

AWS Step Functions Developer Guide

 return average(event);
};

c. Make sure to copy the ARNs of these two Lambda functions, and then Deploy and Test
them.

Step 2: Create and execute the state machine

Use the Step Functions console to create a state machine that invokes the Lambda functions you
created in Step 1. In this state machine, three Map states are defined. Each of these Map states
contains a Task state that invokes one of your Lambda functions. Additionally, a Retry field is
defined in each Task state with a number of retry attempts defined for each state. If a Task state
encounters a runtime error, it's executed again up to the number of retry attempts defined for that
Task.

1. Open the Step Functions console and choose Write your workflow in code.

Important

Ensure that your state machine is under the same AWS account and Region as the
Lambda function you created earlier.

2. For Type, keep the default selection of Standard.

3. Copy the following Amazon States Language definition and paste it under Definition. Make
sure to replace the ARNs shown with those of the Lambda functions that you previously
created.

{
 "StartAt": "LoopOverStores",
 "States": {
 "LoopOverStores": {
 "Type": "Map",
 "Iterator": {
 "StartAt": "GetListOfFruits",
 "States": {
 "GetListOfFruits": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",

Viewing and debugging executions 281

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:GetListofFruits:$LATEST",
 "Payload": {
 "storeName.$": "$"
 }
 },
 "Retry": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "IntervalSeconds": 2,
 "MaxAttempts": 1,
 "BackoffRate": 1.3
 }
],
 "Next": "LoopOverFruits"
 },
 "LoopOverFruits": {
 "Type": "Map",
 "Iterator": {
 "StartAt": "GetFruitPrice",
 "States": {
 "GetFruitPrice": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:GetFruitPrice:$LATEST",
 "Payload": {
 "fruitName.$": "$"
 }
 },
 "Retry": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "IntervalSeconds": 2,
 "MaxAttempts": 3,
 "BackoffRate": 1.3
 }

Viewing and debugging executions 282

AWS Step Functions Developer Guide

],
 "End": true
 }
 }
 },
 "ItemsPath": "$",
 "End": true
 }
 }
 },
 "ItemsPath": "$.stores",
 "Next": "LoopOverStoreFruitsPrice",
 "ResultPath": "$.storesFruitsPrice"
 },
 "LoopOverStoreFruitsPrice": {
 "Type": "Map",
 "End": true,
 "Iterator": {
 "StartAt": "CalculateAverage",
 "States": {
 "CalculateAverage": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:Calculate-average:$LATEST",
 "Payload.$": "$"
 },
 "Retry": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "IntervalSeconds": 2,
 "MaxAttempts": 2,
 "BackoffRate": 1.3
 }
],
 "End": true
 }
 }
 },
 "ItemsPath": "$.storesFruitsPrice",

Viewing and debugging executions 283

AWS Step Functions Developer Guide

 "ResultPath": "$.storesPriceAverage",
 "MaxConcurrency": 1
 }
 }
}

4. Enter a name for your state machine. Keep the default selections for the other options on this
page and choose Create state machine.

5. Open the page titled with your state machine name. Perform steps 1 through 4 in the Step 4:
Run the state machine section, but use the following data as the execution input:

{
 "stores": [
 "Store A",
 "Store B",
 "Store C",
 "Store D"
]
}

Step 3: View the state machine execution details

On the page titled with your execution ID, you can review the results of your execution and debug
any errors.

1. (Optional) Choose from the tabs displayed on the Execution Details page to see the information
present in each of them. For example, to view the state machine input and its execution output,
choose Execution input & output on the Execution summary section.

2. If your state machine execution failed, choose Cause or Show step detail on the error message.
Details about the error are displayed in the Step details section. Notice that the step that caused
the error, which is a Task state named GetListofFruits, is highlighted in the Graph view and
Table view.

Note

Because the GetListofFruits step is defined inside a Map state, and the step failed to
execute successfully, the Status of Map state step is displayed as Failed.

Viewing and debugging executions 284

AWS Step Functions Developer Guide

Step 4: Explore the different View modes

You can choose a preferred mode to view either the state machine workflow or the execution event
history. Some of the tasks that you can perform in these View modes are as follows:

Graph view – Switch between different Map state iterations

If your Map state has five iterations and you want to view the execution details for the third and
fourth iterations, do the following:

1. Choose the Map state that you want to view the iteration data for.

2. From Map iteration viewer, choose the iteration that you want to view. Iterations are counted
from zero. To choose the third iteration out of five, choose #2 from the dropdown list next to
the Map state's name.

Note

If your state machine contains nested Map states, Step Functions displays the parent and
child Map state iterations as two separate dropdown lists:

3. (Optional) If one or more of your Map state iterations failed to execute or was stopped in an
aborted state, you can view details about the failed iteration. To see these details, choose the
affected iteration numbers under Failed or Aborted in the dropdown list.

Table view – Switch between different Map state iterations

If your Map state has five iterations and you want to view the execution details for the iteration
number three and four, do the following:

1. Choose the Map state for which you want to view the different iteration data.

2. In the tree view display of the Map state iterations, choose the row for iteration named #2 for
iteration number three. Similarly, choose the row named #3 for iteration number four.

Viewing and debugging executions 285

AWS Step Functions Developer Guide

Table view – Configure the columns to display

Choose

.
Then, in the Preferences dialog box, choose the columns you want to display under Select visible
columns.

By default, this mode displays the Name, Type, Status, Resource, and Started After columns.

Table view – Filter the results

Limit the amount of information displayed by applying one or more filters based on a property,
such as Status, or a date and time range. For example, to view the steps that failed execution,
apply the following filter:

1. Choose Filter by properties or search by keyword, and then choose Status under Properties.

2. Under Operators, choose Status =.

3. Choose Status = Failed.

4. (Optional) Choose Clear filters to remove the applied filters.

Event view – Filter the results

Limit the amount of information displayed by applying one or more filters based on a property,
such as Type, or a date and time range. For example, to view the Task state steps that failed
execution, apply the following filter:

1. Choose Filter by properties or search by keyword, and then choose Type under Properties.

2. Under Operators, choose Type =.

3. Choose Type = TaskFailed.

4. (Optional) Choose Clear filters to remove the applied filters.

Event view – Inspect a TaskFailed event detail

Choose the

next to the ID of a TaskFailed event to inspect its details, including input, output, and resource
invocation that appear in a dropdown box.

Viewing and debugging executions 286

AWS Step Functions Developer Guide

Redriving executions

You can use redrive to restart executions of Standard Workflows that didn't complete successfully
in the last 14 days. These include failed, aborted, or timed out executions.

When you redrive an execution, it continues the failed execution from the unsuccessful step and
uses the same input. Step Functions preserves the results and execution history of the successful
steps, and these steps aren’t rerun when you redrive an execution. For example, say that your
workflow contains two states: a Pass state followed by a Task state. If your workflow execution fails
at the Task state, and you redrive the execution, the execution reschedules and then reruns the
Task state.

Redriven executions use the same state machine definition and execution ARN that was used for
the original execution attempt. If your original execution attempt was associated with a version,
alias, or both, the redriven execution is associated with the same version, alias, or both. Even if you
update your alias to point to a different version, the redriven execution continues to use the version
associated with the original execution attempt. Because redriven executions use the same state
machine definition, you must start a new execution if you update your state machine definition.

When you redrive an execution, the state machine level timeout, if defined, is reset to 0. For more
information about state machine level timeout, see TimeoutSeconds.

Execution redrives are considered as state transitions. For information about how state transitions
affect billing, see Step Functions Pricing.

Topics

• Redrive eligibility for unsuccessful executions

• Redrive behavior of individual states

• IAM permission to redrive an execution

• Redriving executions in console

• Redriving executions using API

• Examining redriven executions

• Retry behavior of redriven executions

Redrive eligibility for unsuccessful executions

You can redrive executions if your original execution attempt meets the following conditions:

Redriving executions 287

https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

• You started the execution on or after November 15, 2023. Executions that you started prior to
this date aren't eligible for redrive.

• The execution status isn't SUCCEEDED.

• The workflow execution hasn't exceeded the redrivable period of 14 days. Redrivable period
refers to the time during which you can redrive a given execution. This period starts from the day
a state machine completes its execution.

• The workflow execution hasn't exceeded the maximum open time of one year. For information
about state machine execution quotas, see Quotas related to state machine executions.

• The execution event history count is less than 24,999. Redriven executions append their event
history to the existing event history. Make sure your workflow execution contains less than
24,999 events to accommodate the ExecutionRedriven history event and at least one other
history event.

Redrive behavior of individual states

Depending on the state that failed in your workflow, the redrive behavior for all unsuccessful states
varies. The following table describes the redrive behavior for all the states.

State name Redrive execution behavior

Pass If a preceding step fails or the state machine
times out, the Pass state is exited and isn't
executed on redrive.

Task Schedules and starts the Task state again.

When you redrive an execution that reruns
a Task state, the TimeoutSeconds for
the state, if defined, is reset to 0. For more
information about timeout, see Task state.

Choice Reevaluates the Choice state rules.

Wait If the state specifies Timestamp or
TimestampPath that refers to a timestamp
in the past, redrive causes the Wait state to

Redriving executions 288

AWS Step Functions Developer Guide

State name Redrive execution behavior

be exited and enters the state specified in the
Next field.

Succeed Doesn't redrive state machine executions that
enter the Succeed state.

Fail Reenters the Fail state and fails again.

Parallel Reschedules and redrives only those branches
that failed or aborted.

If the state failed because of a States.Da
taLimitExceeded error, the Parallel state
is rerun, including the branches that were
successful in the original execution attempt.

Inline Map state Reschedules and redrives only those iterations
that failed or aborted.

If the state failed because of a States.Da
taLimitExceeded error, the Inline Map
state is rerun, including the iterations that
were successful in the original execution
 attempt.

Distributed Map state redrives the unsuccessful child workflow
executions in a Map Run. For more informati
on, see Redriving Map Runs.

If the state failed because of a States.Da
taLimitExceeded error, the Distribut
ed Map state is rerun. This includes the child
workflows that were successful in the original
execution attempt.

Redriving executions 289

AWS Step Functions Developer Guide

IAM permission to redrive an execution

Step Functions needs appropriate permission to redrive an execution. The following IAM policy
example grants the least privilege required to your state machine for redriving an execution.
Remember to replace the italicized text with your resource-specific information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:RedriveExecution"
],
 "Resource": "arn:aws:states:us-
east-2:123456789012:execution:myStateMachine:*"
 }
]
}

For an example of the permission you need to redrive a Map Run, see Example of IAM policy for
redriving a Distributed Map.

Redriving executions in console

You can redrive eligible executions from the Step Functions console.

For example, say that the following image represents the workflow graph of your state machine.

Redriving executions 290

AWS Step Functions Developer Guide

Imagine you run this state machine. The following image shows the graph for the state machine
execution.

Redriving executions 291

AWS Step Functions Developer Guide

As shown in this image, the Lambda Invoke step named Do square number inside the Parallel
state has returned an error. This caused the Parallel state to fail. The branches whose execution
were in progress or not started are stopped and the state machine execution fails.

To redrive an execution from the console

1. Open the Step Functions console, and then choose an existing state machine that failed
execution.

2. On the state machine detail page, under Executions, choose a failed execution instance.

3. Choose Redrive.

4. In the Redrive dialog box, choose Redrive execution.

Tip

If you're on the Execution Details page of a failed execution, do one of the following to
redrive the execution:

• Choose Recover, and then select Redrive from failure.

Redriving executions 292

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• Choose Actions, and then select Redrive.

Notice that redrive uses the same state machine definition and ARN. It continues running the
execution from the step that failed in the original execution attempt. In this example, it's the
Do square number step and Wait 3 sec branch inside the Parallel state. After restarting the
execution of these unsuccessful steps in the Parallel state, redrive will continue execution for
the Done step.

5. Choose the execution to open the Execution Details page.

On this page, you can view the results of the redriven execution. For example, in the
Execution summary section, you can see Redrive count, which represents the number of
times an execution has been redriven. In the Events section, you can see the redrive related
execution events appended to the events of the original execution attempt. For example, the
ExecutionRedriven event.

Redriving executions using API

You can redrive eligible executions using the RedriveExecution API. This API restarts unsuccessful
executions of Standard Workflows from the step that failed, aborted, or timed out.

In the AWS Command Line Interface (AWS CLI), run the following command to redrive an
unsuccessful state machine execution. Remember to replace the italicized text with your
resource-specific information.

aws stepfunctions redrive-execution --execution-arn arn:aws:states:us-
east-2:123456789012:execution:myStateMachine:foo

Examining redriven executions

You can examine a redriven execution in the console or using the APIs: GetExecutionHistory and
DescribeExecution.

Examine redriven executions on console

1. Open the Step Functions console, and then choose an existing state machine for which you've
redriven an execution.

2. Open the Execution Details page.

Redriving executions 293

https://docs.aws.amazon.com/step-functions/latest/apireference/API_RedriveExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

On this page, you can view the results of the redriven execution. For example, in the
Execution summary section, you can see Redrive count, which represents the number of
times an execution has been redriven. In the Events section, you can see the redrive related
execution events appended to the events of the original execution attempt. For example, the
ExecutionRedriven event.

Examine redriven executions using APIs

If you've redriven a state machine execution, you can use one of the following APIs to view details
about the redriven execution. Remember to replace the italicized text with your resource-
specific information.

• GetExecutionHistory – Returns the history of the specified execution as a list of events. This API
also returns the details about the redrive attempt of an execution, if available.

In the AWS CLI, run the following command.

aws stepfunctions get-execution-history --execution-arn arn:aws:states:us-
east-2:123456789012:execution:myStateMachine:foo

• DescribeExecution – Provides information about a state machine execution. This can be the state
machine associated with the execution, the execution input and output, execution redrive details,
if available, and relevant execution metadata.

In the AWS CLI, run the following command.

aws stepfunctions describe-execution --execution-arn arn:aws:states:us-
east-2:123456789012:execution:myStateMachine:foo

Retry behavior of redriven executions

If your redriven execution reruns a Task, Parallel, or Inline Map state, for which you have defined
retries, the retry attempt count for these states is reset to 0. This allows for the maximum number
of attempts on redrive. For a redriven execution, you can track individual retry attempts of these
states using the console.

Redriving executions 294

AWS Step Functions Developer Guide

To examine the individual retry attempts in the console

1. On the Execution Details page of the Step Functions console, choose a state that was retried on
redrive.

2. Choose the Retries & redrives tab.

3. Choose the

next to each retry attempt to view its details. If the retry attempt succeeded, you can view the
results in Output that appears in a dropdown box.

The following image shows an example of the retries performed for a state in the original
execution attempt and the redrives of that execution. In this image, three retries are performed in
the original and redrive execution attempts. The execution succeeds in the fourth redrive attempt
and returns an output of 16.

Redriving executions 295

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Redriving executions 296

AWS Step Functions Developer Guide

Examining Map Run of a Distributed Map state execution

When you run a Map state in Distributed mode, Step Functions creates a Map Run resource. A Map
Run refers to a set of child workflow executions that a Distributed Map state starts, and the runtime
settings that control these executions. Step Functions assigns an Amazon Resource Name (ARN) to
your Map Run. You can examine a Map Run in the Step Functions console. You can also invoke the
DescribeMapRun API action. A Map Run also emits metrics to CloudWatch.

The Step Functions console provides a Map Run Details page which displays all the information
related to a Distributed Map state execution. For example, you can view the status of the
Distributed Map state's execution, the Map Run's ARN, and the statuses of the items processed
in the child workflow executions started by the Distributed Map state. You can also view a list of
all child workflow executions and access their details. Additionally, if your Map Run was redriven,
you can see the redrive details of the Map Run in the Map Run execution summary section. For
example, Last redrive time. The console displays this information in a dashboard format.

The Map Run Details page contains the following sections:

Examining Map Run 297

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html

AWS Step Functions Developer Guide

Contents

• Map Run execution summary

• Error message

Examining Map Run 298

AWS Step Functions Developer Guide

• Item processing status

• Executions listing

• Redriving Map Runs

• Redrive eligibility for child workflows in a Map Run

• Child workflow execution redrive behavior

• Scenarios of input used on Map Run redrive

• IAM permission to redrive a Map Run

• Redriving Map Run in console

• Redriving Map Run using API

Map Run execution summary

The Map Run Execution summary section appears at the top of the Map Run Details page. This
section provides you with an overview of the execution details of the Distributed Map state. This
information is divided between the following tabs:

Details

Shows information, such as the execution status of the Distributed Map state, the Map Run ARN,
and type of the child workflow executions started by the Distributed Map state. You can view
additional configurations, such as tolerated failure threshold for the Map Run and the maximum
concurrency specified for child workflow executions. You can also edit these configurations.

Input and output

Shows the input received by the Distributed Map state and the corresponding output that it
generates. For example, you can view the input dataset and its location, and the input filters
applied to the individual data items in that dataset. If you export the output of the Distributed
Map state execution, this tab shows the path to the Amazon S3 bucket that contains the
execution results. Otherwise, it points you to the parent workflow's Execution Details page to
view the execution output.

Error message

If your Map Run failed, the Map Run Details page displays an error message with the reason for
failure.

Examining Map Run 299

AWS Step Functions Developer Guide

From the Recover dropdown button on this error message, you can either redrive the unsuccessful
child workflow executions started by this Map Run or start a new execution of the parent workflow.
For more information, see Redriving Map Runs.

Item processing status

The Item processing status section displays the status of the items processed in a Map Run. For
example, Pending indicates that a child workflow execution hasn’t started processing the item yet.

Item statuses are dependent on the status of the child workflow executions processing the items.
If a child workflow execution failed, times out, or if a user cancels the execution, Step Functions
doesn't receive any information about the processing result of the items inside that child workflow
execution. All items processed by that execution share the child workflow execution's status.

For example, say that you want to process 100 items in two child workflow executions, where each
execution processes a batch of 50 items. If one of the executions fails and the other succeeds, you'll
have 50 successful and 50 failed items.

The following table explains the types of processing statuses available for all items:

Examining Map Run 300

AWS Step Functions Developer Guide

Status Description

Pending Indicates an item that the child workflow
execution hasn't started processing. If a Map
Run stops, fails, or a user cancels the execution
before processing of an item starts, the item
remains in Pending status.

For example, if a Map Run fails with 10 items
pending to process, these 10 items remain in
the Pending status.

Running Indicates an item currently being processed by
the child workflow execution.

Succeeded Indicates that the child workflow execution
successfully processed the item.

A successful child workflow execution can't
have any failed items. If one item in the
dataset fails during execution, the entire child
workflow execution fails.

Failed Indicates that the child workflow execution
either failed to process the item, or the
execution timed out. If any one item processed
by a child workflow execution fails, the entire
child workflow execution fails.

For example, consider a child workflow
execution that processed 1000 items. If any
one item in that dataset fails during execution
, then Step Functions considers the entire child
workflow execution as failed.

When you redrive a Map Run, the count of
items with this status is reset to 0.

Examining Map Run 301

AWS Step Functions Developer Guide

Status Description

Aborted Indicates that the child workflow execution
started processing the item, but either
the user cancelled the execution, or Step
Functions stopped the execution because the
Map Run failed.

For example, consider a Running child
workflow execution that's processing 50 items.
If the Map Run stops because of a failure or
because a user cancelled the execution, the
child workflow execution and the status of all
50 items changes to Aborted.

If you use a child workflow execution of the
Express type, you can't stop the execution.

When you redrive a Map Run that starts child
workflow executions of type Express, the
count of items with this status is reset to 0.
This is because Express child workflows are
restarted using the StartExecution API action
instead of being redriven.

Executions listing

The Executions section lists all of the child workflow executions for a specific Map Run. Use the
Search by exact execution name field to search for a specific child workflow execution. You can
also use the Any status dropdown to filter child workflow execution histories by their status. To see
details about a specific execution, select a child workflow execution from the list and choose the
View details button to open its Execution details page.

Important

The retention policy for child workflow executions is 90 days. Completed child workflow
executions that are older than this retention period aren't displayed in the Executions
table. This is true even if the Distributed Map state or the parent workflow continues to run

Examining Map Run 302

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

longer than the retention period. You can view execution details, including results, of these
child workflow executions if you export the Distributed Map state output to an Amazon S3
bucket using ResultWriter.

Tip

Choose the refresh button

to view the most current list of all child workflow executions.

Redriving Map Runs

You can restart unsuccessful child workflow executions in a Map Run by redriving your parent
workflow. A redriven parent workflow redrives all the unsuccessful states, including Distributed
Map. A parent workflow redrives unsuccessful states if there's no <stateType>Exited event
corresponding to the <stateType>Entered event for a state when the parent workflow
completed its execution. For example, if the event history doesn't contain the MapStateExited
event for a MapStateEntered event, you can redrive the parent workflow to redrive all the
unsuccessful child workflow executions in the Map Run.

A Map Run is either not started or fails in the original execution attempt when the state machine
doesn't have the required permission to access the ItemReader, ResultWriter, or both. If the Map
Run wasn't started in the original execution attempt of the parent workflow, redriving the parent
workflow starts the Map Run for the first time. To reolve this, add the required permissions to
your state machine role, and then redrive the parent workflow. If you redrive the parent workflow
without adding the required permissions, it attempts to start a new Map Run run that will fail
again. For information about the permissions that you might need, see IAM policies for using
Distributed Map state.

Topics

• Redrive eligibility for child workflows in a Map Run

• Child workflow execution redrive behavior

• Scenarios of input used on Map Run redrive

• IAM permission to redrive a Map Run

Examining Map Run 303

AWS Step Functions Developer Guide

• Redriving Map Run in console

• Redriving Map Run using API

Redrive eligibility for child workflows in a Map Run

You can redrive the unsuccessful child workflow executions in a Map Run if the following conditions
are met:

• You started the parent workflow execution on or after November 15, 2023. Executions that you
started prior to this date aren't eligible for redrive.

• You haven't exceeded the hard limit of 1000 redrives of a given Map Run. If you've exceeded this
limit, you'll receive the States.Runtime error.

• The parent workflow is redrivable. If the parent workflow isn't redrivable, you can't redrive the
child workflow executions in a Map Run. For more information about redrive eligibility of a
workflow, see Redrive eligibility for unsuccessful executions.

• The child workflow executions of type Standard in your Map Run haven't exceeded the 25,000
execution event history limit. Child workflow executions that have exceeded the event history
limit are counted towards the tolerated failure threshold and considered as failed. For more
information about the redrive eligibility of an execution, see Redrive eligibility for unsuccessful
executions.

A new Map Run is started and the existing Map Run isn't redriven in the following cases even if the
Map Run failed in the original execution attempt:

• Map Run failed because of the States.DataLimitExceeded error.

• Map Run failed because of the JSON data interpolation error, States.Runtime. For example,
you selected a non-existent JSON node in OutputPath.

A Map Run can continue to run even after the parent workflow stops or times out. In these
scenarios, the redrive doesn't happen immediately:

• Map Run might still be canceling in progress child workflow executions of type Standard, or
waiting for child workflow executions of type Express to complete their executions.

• Map Run might still be writing results to the ResultWriter, if you configured it to export results.

Examining Map Run 304

AWS Step Functions Developer Guide

In these cases, the running Map Run completes its operations before attempting to redrive.

Child workflow execution redrive behavior

The redriven child workflow executions in a Map Run exhibit the behavior as described in the
following table.

Express child workflow Standard child workflow

All child workflow executions that failed or
timed out in the original execution attempt
are started using the StartExecution API
action. The first state in ItemProcessor is run
first.

All child workflow executions that failed,
timed out, or canceled in the original
execution attempt are redriven using the
RedriveExecution API action. These child
workflows are redriven from the last state in
ItemProcessor that resulted in their unsuccess
ful execution.

Unsuccessful executions can always be
redriven. This is because Express child
workflow executions are always started as a
new execution using the StartExecution API
action.

Unsuccessful Standard child workflow
executions can't always be redriven. If
an execution isn't redrivable, it won't be
attempted again. The last error or output of
the execution is permanent. This is possible
when an execution exceeds 25,000 history
events, or its redrivable period of 14 days has
expired.

A Standard child workflow execution might
not be redrivable if the parent workflow
execution has closed within 14 days, but the
child workflow execution closed earlier than
14 days.

Express child workflow executions use the
same execution ARN as the original execution
attempt, but you can't distinctly identify their
individual redrives.

Standard child workflow executions use
the same execution ARN as the original
execution attempt. You can distinctly identify
the individual redrives in the console and
using APIs, such as GetExecutionHistory and

Examining Map Run 305

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_RedriveExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html

AWS Step Functions Developer Guide

Express child workflow Standard child workflow

DescribeExecution. For more information, see
Examining redriven executions.

If you've redriven a Map Run, and it has reached its concurrency limit, the child workflow
executions in that Map Run transition to the pending state. The execution status of the Map Run
also transitions to the Pending redrive state. Until the specified concurrency limit can allow for
more child workflow executions to run, the execution remains in the Pending redrive state.

For example, say that the concurrency limit of the Distributed Map in your workflow is 3000, and
the number of child workflows to be rerun is 6000. This causes 3000 child workflows to run in
parallel while the remaining 3000 workflows remain in the Pending redrive state. After the first
batch of 3000 child workflows complete their execution, the remaining 3000 child workflows are
run.

When a Map Run has completed its execution or is aborted, the count of child workflow executions
in the Pending redrive state is reset to 0.

Scenarios of input used on Map Run redrive

Depending on how you provided input to the Distributed Map in the original execution attempt, a
redriven Map Run will use the input as described in the following table.

Input in the original execution attempt Input used on Map Run redrive

Input passed from a previous state or the
execution input.

The redriven Map Run uses the same input.

Input passed using ItemReader and the Map
Run didn't start the child workflow execution
s because one of the following conditions is
true:

• Map Run failed with the States.It
emReaderFailed error.

• Map Run failed with the States.Re
sultWriterFailed error.

The redriven Map Run uses the input in the
Amazon S3 bucket.

Examining Map Run 306

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html

AWS Step Functions Developer Guide

Input in the original execution attempt Input used on Map Run redrive

• The parent workflow execution was timed
out or canceled before the Map Run was
started.

Input passed using ItemReader. The Map Run
failed after starting or attempting to start
child workflow executions.

The redriven Map Run uses the same input
provided in the original execution attempt.

IAM permission to redrive a Map Run

Step Functions needs appropriate permission to redrive a Map Run. The following IAM policy
example grants the least privilege required to your state machine for redriving a Map Run.
Remember to replace the italicized text with your resource-specific information.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:RedriveExecution"
],
 "Resource": "arn:aws:states:us-
east-2:123456789012:execution:myStateMachine/myMapRunLabel:*"
 }
]
}

Redriving Map Run in console

The following image shows the execution graph of a state machine that contains a Distributed
Map. This execution failed because the Map Run failed. To redrive the Map Run, you must redrive
the parent workflow.

Examining Map Run 307

AWS Step Functions Developer Guide

To redrive a Map Run from the console

1. Open the Step Functions console, and then choose an existing state machine that contains a
Distributed Map that failed execution.

2. On the state machine detail page, under Executions, choose a failed execution instance of this
state machine.

3. Choose Redrive.

4. In the Redrive dialog box, choose Redrive execution.

Tip

You can also redrive a Map Run from the Execution Details or Map Run Details page.
If you're on the Execution Details page, do one of the following to redrive the
execution:

• Choose Recover, and then select Redrive from failure.

• Choose Actions, and then select Redrive.

Examining Map Run 308

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

If you're on the Map Run Details page, choose Recover, and then select Redrive from
failure.

Notice that redrive uses the same state machine definition and ARN. It continues running the
execution from the step that failed in the original execution attempt. In this example, it's the
Distributed Map step named Map and the Process input step inside it. After restarting the
unsuccessful child workflow executions of the Map Run, redrive will continue execution for the
Done step.

5. From the Execution Details page, choose Map Run to see the details of the redriven Map Run.

On this page, you can view the results of the redriven execution. For example, in the Map
Run execution summary section, you can see Redrive count, which represents the number of
times the Map Run has been redriven. In the Events section, you can see the redrive related
execution events appended to the events of the original execution attempt. For example, the
MapRunRedriven event.

After you've redriven a Map Run, you can examine its redrive details in the console or using the
GetExecutionHistory and DescribeExecution API actions. For more information about examining a
redriven execution, see Examining redriven executions.

Redriving Map Run using API

You can redrive an eligible Map Run using the RedriveExecution API on the parent workflow. This
API restarts unsuccessful child workflow executions in a Map Run.

In the AWS Command Line Interface (AWS CLI), run the following command to redrive an
unsuccessful state machine execution. Remember to replace the italicized text with your
resource-specific information.

aws stepfunctions redrive-execution --execution-arn arn:aws:states:us-
east-2:123456789012:execution:myStateMachine:foo

After you've redriven a Map Run, you can examine its redrive details in the console or using the
DescribeMapRun API action. To examine the redrive details of Standard workflow executions
in a Map Run, you can use the GetExecutionHistory or DescribeExecution API action. For more
information about examining a redriven execution, see Examining redriven executions.

Examining Map Run 309

https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_RedriveExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeMapRun.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html

AWS Step Functions Developer Guide

You can examine the redrive details of Express workflow executions in a Map Run on the Step
Functions console if you've enabled logging on the parent workflow. For more information, see
Logging using CloudWatch Logs.

Error handling in Step Functions

All states, except Pass and Wait states, can encounter runtime errors. Errors can happen for
various reasons, such as the following examples:

• State machine definition issues (for example, no matching rule in a Choice state)

• Task failures (for example, an exception in a AWS Lambda function)

• Transient issues (for example, network partition events)

By default, when a state reports an error, AWS Step Functions causes the execution to fail entirely.

Tip

To deploy an example of a workflow that includes error handling to your AWS account, see
Module 8 - Error Handling of The AWS Step Functions Workshop.

Topics

• Error names

• Retrying after an error

• Fallback states

• State machine examples using Retry and using Catch

Error names

Step Functions identifies errors in the Amazon States Language using case-sensitive strings, known
as error names. The Amazon States Language defines a set of built-in strings that name well-
known errors, all beginning with the States. prefix.

States.ALL

A wildcard that matches any known error name.

Error handling 310

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://s12d.com/sfn-ws-error-handling

AWS Step Functions Developer Guide

Note

This error type can't catch the States.DataLimitExceeded terminal error
type and runtime error types. For more information about these error types, see
States.DataLimitExceeded and States.Runtime.

States.DataLimitExceeded

Step Functions reports a States.DataLimitExceeded exception under the following
conditions:

• When the output of a connector is larger than payload size quota.

• When the output of a state is larger than payload size quota.

• When, after Parameters processing, the input of a state is larger than the payload size
quota.

For more information on quotas, see Quotas.

Note

This is a terminal error that can't be caught by the States.ALL error type.

States.ExceedToleratedFailureThreshold

A Map state failed because the number of failed items exceeded the threshold specified in the
state machine definition. For more information, see Tolerated failure threshold for Distributed
Map state.

States.HeartbeatTimeout

A Task state failed to send a heartbeat for a period longer than the HeartbeatSeconds value.

Note

This error is only available inside the Catch and Retry fields.

Error names 311

AWS Step Functions Developer Guide

States.IntrinsicFailure

An attempt to invoke an intrinsic function within a payload template failed.

States.ItemReaderFailed

A Map state failed because it couldn't read from the item source specified in the ItemReader
field. For more information, see ItemReader.

States.NoChoiceMatched

A Choice state failed to match the input with the conditions defined in the Choice Rule and a
Default transition isn't specified.

States.ParameterPathFailure

An attempt to replace a field, within a state's Parameters field, whose name ends in .$ using a
path fails.

States.Permissions

A Task state failed because it had insufficient privileges to run the specified code.

States.ResultPathMatchFailure

Step Functions failed to apply a state's ResultPath field to the input the state received.

States.ResultWriterFailed

A Map state failed because it couldn't write results to the destination specified in the
ResultWriter field. For more information, see ResultWriter.

States.Runtime

An execution failed due to some exception that it couldn't process. Often these are caused by
errors at runtime, such as attempting to apply InputPath or OutputPath on a null JSON
payload. A States.Runtime error isn't retriable, and will always cause the execution to fail. A
retry or catch on States.ALL won't catch States.Runtime errors.

States.TaskFailed

A Task state failed during the execution. When used in a retry or catch, States.TaskFailed
acts as a wildcard that matches any known error name except for States.Timeout.

States.Timeout

A Task state either ran longer than the TimeoutSeconds value, or failed to send a heartbeat
for a period longer than the HeartbeatSeconds value.

Error names 312

AWS Step Functions Developer Guide

Additionally, if a state machine runs longer than the specified TimeoutSeconds value, the
execution fails with a States.Timeout error.

States can report errors with other names. However, these error names can't begin with the
States. prefix.

As a best practice, ensure production code can handle AWS Lambda service exceptions
(Lambda.ServiceException and Lambda.SdkClientException). For more information, see
Handle Lambda service exceptions.

Note

Unhandled errors in Lambda are reported as Lambda.Unknown in the error output. These
include out-of-memory errors and function timeouts. You can match on Lambda.Unknown,
States.ALL, or States.TaskFailed to handle these errors. When Lambda hits the
maximum number of invocations, the error is Lambda.TooManyRequestsException. For
more information about Lambda function errors, see Error handling and automatic retries
in the AWS Lambda Developer Guide.

Retrying after an error

Task, Parallel, and Map states can have a field named Retry, whose value must be an array of
objects known as retriers. An individual retrier represents a certain number of retries, usually at
increasing time intervals.

When one of these states reports an error and there's a Retry field, Step Functions scans through
the retriers in the order listed in the array. When the error name appears in the value of a retrier's
ErrorEquals field, the state machine makes retry attempts as defined in the Retry field.

If your redriven execution reruns a Task, Parallel, or Inline Map state, for which you have defined
retries, the retry attempt count for these states is reset to 0 to allow for the maximum number
of attempts on redrive. For a redriven execution, you can track individual retry attempts of these
states using the console. For more information, see Retry behavior of redriven executions in
Redriving executions.

A retrier contains the following fields:

Retrying after an error 313

https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html

AWS Step Functions Developer Guide

Note

Retries are treated as state transitions. For information about how state transitions affect
billing, see Step Functions Pricing.

ErrorEquals (Required)

A non-empty array of strings that match error names. When a state reports an error, Step
Functions scans through the retriers. When the error name appears in this array, it implements
the retry policy described in this retrier.

IntervalSeconds (Optional)

A positive integer that represents the number of seconds before the first retry attempt (1 by
default). IntervalSeconds has a maximum value of 99999999.

MaxAttempts (Optional)

A positive integer that represents the maximum number of retry attempts (3 by default). If the
error recurs more times than specified, retries cease and normal error handling resumes. A value
of 0 specifies that the error is never retried. MaxAttempts has a maximum value of 99999999.

BackoffRate (Optional)

The multiplier by which the retry interval denoted by IntervalSeconds increases after each
retry attempt. By default, the BackoffRate value increases by 2.0.

For example, say your IntervalSeconds is 3, MaxAttempts is 3, and BackoffRate is 2. The
first retry attempt takes place three seconds after the error occurs. The second retry takes place
six seconds after the first retry attempt. While the third retry takes place 12 seconds after the
second retry attempt.

MaxDelaySeconds (Optional)

A positive integer that sets the maximum value, in seconds, up to which a retry interval can
increase. This field is helpful to use with the BackoffRate field. The value you specify in this
field limits the exponential wait times resulting from the backoff rate multiplier applied to each
consecutive retry attempt. You must specify a value greater than 0 and less than 31622401 for
MaxDelaySeconds.

If you don't specify this value, Step Functions doesn't limit the wait times between retry
attempts.

Retrying after an error 314

https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

JitterStrategy (Optional)

A string that determines whether or not to include jitter in the wait times between consecutive
retry attempts. Jitter reduces simultaneous retry attempts by spreading these out over a
randomized delay interval. This string accepts FULL or NONE as its values. The default value is
NONE.

For example, say you have set MaxAttempts as 3, IntervalSeconds as 2, and BackoffRate
as 2. The first retry attempt takes place two seconds after the error occurs. The second retry
takes place four seconds after the first retry attempt and the third retry takes place eight
seconds after the second retry attempt. If you set JitterStrategy as FULL, the first retry
interval is randomized between 0 and 2 seconds, the second retry interval is randomized
between 0 and 4 seconds, and the third retry interval is randomized between 0 and 8 seconds.

Retry field examples

This section includes the following Retry field examples.

• Retry with BackoffRate

• Retry with MaxDelaySeconds

• Retry all errors except States.Timeout

• Complex retry scenario

Tip

To deploy an example of an error handling workflow to your AWS account, see Error
Handling module of The AWS Step Functions Workshop.

Example 1 – Retry with BackoffRate

The following example of a Retry makes two retry attempts with the first retry taking place
after waiting for three seconds. Based on the BackoffRate you specify, Step Functions increases
the interval between each retry until the maximum number of retry attempts is reached. In the
following example, the second retry attempt starts after waiting for three seconds after the first
retry.

"Retry": [{

Retrying after an error 315

https://catalog.workshops.aws/stepfunctions/en-US/development/error-handling
https://catalog.workshops.aws/stepfunctions/en-US/development/error-handling

AWS Step Functions Developer Guide

 "ErrorEquals": ["States.Timeout"],
 "IntervalSeconds": 3,
 "MaxAttempts": 2,
 "BackoffRate": 1
}]

Example 2 – Retry with MaxDelaySeconds

The following example makes three retry attempts and limits the wait time resulting from
BackoffRate at 5 seconds. The first retry takes place after waiting for three seconds. The second
and third retry attempts take place after waiting for five seconds after the preceding retry attempt
because of the maximum wait time limit set by MaxDelaySeconds.

"Retry": [{
 "ErrorEquals": ["States.Timeout"],
 "IntervalSeconds": 3,
 "MaxAttempts": 3,
 "BackoffRate":2,
 "MaxDelaySeconds": 5,
 "JitterStrategy": "FULL"
}]

Without MaxDelaySeconds, the second retry attempt would take place six seconds after the first
retry, and the third retry attempt would take place 12 seconds after the second retry.

Example 3 – Retry all errors except States.Timeout

The reserved name States.ALL that appears in a retrier's ErrorEquals field is a wildcard that
matches any error name. It must appear alone in the ErrorEquals array and must appear in the
last retrier in the Retry array. The name States.TaskFailed also acts a wildcard and matches
any error except for States.Timeout.

The following example of a Retry field retries any error except States.Timeout.

"Retry": [{
 "ErrorEquals": ["States.Timeout"],
 "MaxAttempts": 0
}, {
 "ErrorEquals": ["States.ALL"]
}]

Retrying after an error 316

AWS Step Functions Developer Guide

Example 4 – Complex retry scenario

A retrier's parameters apply across all visits to the retrier in the context of a single-state execution.

Consider the following Task state.

"X": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:task:X",
 "Next": "Y",
 "Retry": [{
 "ErrorEquals": ["ErrorA", "ErrorB"],
 "IntervalSeconds": 1,
 "BackoffRate": 2.0,
 "MaxAttempts": 2
 }, {
 "ErrorEquals": ["ErrorC"],
 "IntervalSeconds": 5
 }],
 "Catch": [{
 "ErrorEquals": ["States.ALL"],
 "Next": "Z"
 }]
}

This task fails four times in succession, outputting these error names: ErrorA, ErrorB, ErrorC,
and ErrorB. The following occurs as a result:

• The first two errors match the first retrier and cause waits of one and two seconds.

• The third error matches the second retrier and causes a wait of five seconds.

• The fourth error also matches the first retrier. However, it already reached its maximum of two
retries (MaxAttempts) for that particular error. Therefore, that retrier fails and the execution
redirects the workflow to the Z state through the Catch field.

Fallback states

Task, Map and Parallel states can each have a field named Catch. This field's value must be an
array of objects, known as catchers.

A catcher contains the following fields.

Fallback states 317

AWS Step Functions Developer Guide

ErrorEquals (Required)

A non-empty array of strings that match error names, specified exactly as they are with the
retrier field of the same name.

Next (Required)

A string that must exactly match one of the state machine's state names.

ResultPath (Optional)

A path that determines what input the catcher sends to the state specified in the Next field.

When a state reports an error and either there is no Retry field, or if retries fail to resolve the
error, Step Functions scans through the catchers in the order listed in the array. When the error
name appears in the value of a catcher's ErrorEquals field, the state machine transitions to the
state named in the Next field.

The reserved name States.ALL that appears in a catcher's ErrorEquals field is a wildcard that
matches any error name. It must appear alone in the ErrorEquals array and must appear in the
last catcher in the Catch array. The name States.TaskFailed also acts a wildcard and matches
any error except for States.Timeout.

The following example of a Catch field transitions to the state named RecoveryState when
a Lambda function outputs an unhandled Java exception. Otherwise, the field transitions to the
EndState state.

"Catch": [{
 "ErrorEquals": ["java.lang.Exception"],
 "ResultPath": "$.error-info",
 "Next": "RecoveryState"
}, {
 "ErrorEquals": ["States.ALL"],
 "Next": "EndState"
}]

Note

Each catcher can specify multiple errors to handle.

Fallback states 318

AWS Step Functions Developer Guide

Error output

When Step Functions transitions to the state specified in a catch name, the object usually contains
the field Cause. This field's value is a human-readable description of the error. This object is known
as the error output.

In this example, the first catcher contains a ResultPath field. This works similarly to a
ResultPath field in a state's top level, resulting in two possibilities:

• It takes the results of that state's execution and overwrites either all of, or a portion of, the
state's input.

• It takes the results and adds them to the input. In the case of an error handled by a catcher, the
result of the state's execution is the error output.

Thus, for the first catcher in the example, the catcher adds the error output to the input as a field
named error-info if there isn't already a field with this name in the input. Then, the catcher
sends the entire input to RecoveryState. For the second catcher, the error output overwrites the
input and the catcher only sendsthe error output to EndState.

Note

If you don't specify the ResultPath field, it defaults to $, which selects and overwrites the
entire input.

When a state has both Retry and Catch fields, Step Functions uses any appropriate retriers first.
If the retry policy fails to resolve the error, Step Functions applies the matching catcher transition.

Cause payloads and service integrations

A catcher returns a string payload as an output. When working with service integrations such
as Amazon Athena or AWS CodeBuild, you may want to convert the Cause string to JSON. The
following example of a Pass state with intrinsic functions shows how to convert a Cause string to
JSON.

"Handle escaped JSON with JSONtoString": {
 "Type": "Pass",
 "Parameters": {

Fallback states 319

AWS Step Functions Developer Guide

 "Cause.$": "States.StringToJson($.Cause)"
 },
 "Next": "Pass State with Pass Processing"
},

State machine examples using Retry and using Catch

The state machines defined in the following examples assume the existence of two Lambda
functions: one that always fails and one that waits long enough to allow a timeout defined in the
state machine to occur.

This is a definition of a Node.js Lambda function that always fails, returning the message error.
In the state machine examples that follow, this Lambda function is named FailFunction. For
information about creating a Lambda function, see Step 1: Create a Lambda function section.

exports.handler = (event, context, callback) => {
 callback("error");
};

This is a definition of a Node.js Lambda function that sleeps for 10 seconds. In the state machine
examples that follow, this Lambda function is named sleep10.

Note

When you create this Lambda function in the Lambda console, remember to change the
Timeout value in the Advanced settings section from 3 seconds (default) to 11 seconds.

exports.handler = (event, context, callback) => {
 setTimeout(function(){
 }, 11000);
};

Handling a failure using Retry

This state machine uses a Retry field to retry a function that fails and outputs the error name
HandledError. It retries this function twice with an exponential backoff between retries.

{

State machine examples using Retry and using Catch 320

AWS Step Functions Developer Guide

 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Retry": [{
 "ErrorEquals": ["HandledError"],
 "IntervalSeconds": 1,
 "MaxAttempts": 2,
 "BackoffRate": 2.0
 }],
 "End": true
 }
 }
}

This variant uses the predefined error code States.TaskFailed, which matches any error that a
Lambda function outputs.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Retry": [{
 "ErrorEquals": ["States.TaskFailed"],
 "IntervalSeconds": 1,
 "MaxAttempts": 2,
 "BackoffRate": 2.0
 }],
 "End": true
 }
 }
}

State machine examples using Retry and using Catch 321

AWS Step Functions Developer Guide

Note

As a best practice, tasks that reference a Lambda function should handle Lambda service
exceptions. For more information, see Handle Lambda service exceptions.

Handling a failure using Catch

This example uses a Catch field. When a Lambda function outputs an error, it catches the error
and the state machine transitions to the fallback state.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Catch": [{
 "ErrorEquals": ["HandledError"],
 "Next": "fallback"
 }],
 "End": true
 },
 "fallback": {
 "Type": "Pass",
 "Result": "Hello, AWS Step Functions!",
 "End": true
 }
 }
}

This variant uses the predefined error code States.TaskFailed, which matches any error that a
Lambda function outputs.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {

State machine examples using Retry and using Catch 322

AWS Step Functions Developer Guide

 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Catch": [{
 "ErrorEquals": ["States.TaskFailed"],
 "Next": "fallback"
 }],
 "End": true
 },
 "fallback": {
 "Type": "Pass",
 "Result": "Hello, AWS Step Functions!",
 "End": true
 }
 }
}

Handling a timeout using Retry

This state machine uses a Retry field to retry a Task state that times out, based on the timeout
value specfied in TimeoutSeconds. Step Functions retries the Lambda function invocation in this
Task state twice, with an exponential backoff between retries.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:sleep10",
 "TimeoutSeconds": 2,
 "Retry": [{
 "ErrorEquals": ["States.Timeout"],
 "IntervalSeconds": 1,
 "MaxAttempts": 2,
 "BackoffRate": 2.0
 }],
 "End": true
 }
 }
}

State machine examples using Retry and using Catch 323

AWS Step Functions Developer Guide

Handling a timeout using Catch

This example uses a Catch field. When a timeout occurs, the state machine transitions to the
fallback state.

{
 "Comment": "A Hello World example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:sleep10",
 "TimeoutSeconds": 2,
 "Catch": [{
 "ErrorEquals": ["States.Timeout"],
 "Next": "fallback"
 }],
 "End": true
 },
 "fallback": {
 "Type": "Pass",
 "Result": "Hello, AWS Step Functions!",
 "End": true
 }
 }
}

Note

You can preserve the state input and the error by using ResultPath. See Use ResultPath
to Include Both Error and Input in a Catch.

Invoke AWS Step Functions from other services

You can configure several other services to invoke state machines. Based on the state machine's
workflow type, you can invoke state machines asynchronously or synchronously. To invoke
state machines synchronously, use the StartSyncExecution API call or Amazon API Gateway
integration with Express Workflows. With asynchronous invocation, Step Functions pauses the

Invoke Step Functions 324

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions Developer Guide

workflow execution until a task token is returned. However, waiting for a task token does make the
workflow synchronous.

Services that you can configure to invoke Step Functions include:

• AWS Lambda, using the StartExecution call.

• Amazon API Gateway

• Amazon EventBridge

• AWS CodePipeline

• AWS IoT Rules Engine

• AWS Step Functions

Step Functions invocations are governed by the StartExecution quota. For more information,
see:

• Quotas

Read Consistency in Step Functions

State machine updates in AWS Step Functions are eventually consistent. All StartExecution
calls within a few seconds will use the updated definition and roleArn (the Amazon Resource
Name for the IAM role). Executions started immediately after calling UpdateStateMachine might
use the previous state machine definition and roleArn.

For more information, see the following:

• UpdateStateMachine in the AWS Step Functions API Reference

• Update a workflow in Getting started with AWS Step Functions.

Tagging in Step Functions

AWS Step Functions supports tagging of state machines (both Standard and Express) and activities.
This can help you track and manage the costs associated with your resources, and provide better
security in your AWS Identity and Access Management (IAM) policies. Tagging Step Functions
resources allows them to be managed by AWS Resource Groups. For more information on Resource
Groups, see the AWS Resource Groups User Guide.

Read Consistency 325

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/dg/tutorial-api-gateway.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/create-eventbridge-rule.html
https://docs.aws.amazon.com/codepipeline/latest/userguide/action-reference-StepFunctions.html
https://docs.aws.amazon.com/iot/latest/developerguide/iot-rule-actions.html
https://docs.aws.amazon.com/step-functions/latest/dg/connect-stepfunctions.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html
https://docs.aws.amazon.com/ARG/latest/userguide/

AWS Step Functions Developer Guide

For tag-based authorization, state machine execution resources as shown in the following example
inherit the tags associated with a state machine.

arn:<partition>:states:<Region>:<account-id>:execution:<StateMachineName>:<ExecutionId>

When you call DescribeExecution or other APIs in which you specify the execution resource
ARN, Step Functions uses tags associated with the state machine to accept or deny the request
while performing tag-based authorization. This helps you allow or deny access to state machine
executions at the state machine level.

To review the restrictions related to resource tagging, see Restrictions related to tagging.

Topics

• Tagging for Cost Allocation

• Tagging for Security

• Viewing and Managing Tags in the Step Functions Console

• Manage Tags with Step Functions API Actions

Tagging for Cost Allocation

To organize and identify your Step Functions resources for cost allocation, you can add metadata
tags that identify the purpose of a state machine or activity. This is especially useful when you have
many resources. You can use cost allocation tags to organize your AWS bill to reflect your own cost
structure. To do this, sign up to get your AWS account bill to include the tag keys and values. For
more information, see Setting Up a Monthly Cost Allocation Report in the AWS Billing User Guide.

For example, you could add tags that represent the cost center and purpose of your Step Functions
resources, as follows.

Resource Key Value

Cost Center 34567
StateMachine1

Application Image processing

StateMachine2 Cost Center 34567

Tagging for Cost Allocation 326

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html#allocation-report

AWS Step Functions Developer Guide

Resource Key Value

Application Rekognition processin
g

Cost Center 12345
Activity1

Application Legacy database

This tagging scheme allows you to group two state machines performing related tasks in the same
cost center, while tagging an unrelated activity with a different cost allocation tag.

Tagging for Security

IAM supports controlling access to resources based on tags. To control access based on tags,
provide information about your resource tags in the condition element of an IAM policy.

For example, you could restrict access to all Step Functions resources that include a tag with the
key environment and the value production.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "states:TagResource",
 "states:DeleteActivity",
 "states:DeleteStateMachine",
 "states:StopExecution"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/environment": "production"}
 }
 }
]
}

For more information, see Controlling Access Using Tags in the IAM User Guide.

Tagging for Security 327

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS Step Functions Developer Guide

Viewing and Managing Tags in the Step Functions Console

Step Functions allows you to view and manage the tags for your state machines in the Step
Functions console. From the Details page of a state machine, select Tags. Here, you can view the
existing tags associated with your state machine.

Note

To manage tags for activites, see Manage Tags with Step Functions API Actions.

To add or delete tags that are associated with your state machine, select the Manage Tags button.

1. Browse to the details page of a state machine.

2. Select Tags, next to Executions and Definition.

3. Choose Manage tags.

• To modify existing tags, edit the Key and Value.

• To remove existing tags, choose Remove tag.

• To add a new tag, choose Add tag and enter a Key and Value.

4. Choose Save.

Manage Tags with Step Functions API Actions

To manage tags using the Step Functions API, use the following API actions:

• ListTagsForResource

• TagResource

• UntagResource

Viewing and Managing 328

https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListTagsForResource.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TagResource.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UntagResource.html

AWS Step Functions Developer Guide

AWS Step Functions Workflow Studio

Workflow Studio for AWS Step Functions is a low-code visual workflow designer that lets you
create serverless workflows by orchestrating AWS services. Using its drag-and-drop feature or
the built-in code editor, you can create and edit workflows, control how input and output is
filtered or transformed for each state, and configure error handling. As you drag and drop states
to build your workflow, Workflow Studio validates your work and auto-generates code. You can
review the generated code or update the state machine definition within the code editor. When
you're finished, you can save your workflow, run it, then examine the results in the Step Functions
console. You can visually add and modify workflows to orchestrate the multiple services in your
application.

To use Step Functions Workflow Studio, you will need an AWS account, and credentials that
provide the correct permissions for any resources you want to use. For more information, see
Prerequisites for Getting Started with AWS Step Functions.

Note

Workflow Studio doesn't support Internet Explorer 11. If you're you using Internet Explorer
11 and encounter issues using Workflow Studio, try using a different browser.

You can access Workflow Studio from the Step Functions console, when you create or edit
a workflow in Step Functions. You can also access Workflow Studio within AWS Application
Composer. Workflow Studio in Application Composer provides a visual IaC environment that
makes it easy for you to incorporate workflows in your serverless applications built using IaC tools,
such as AWS CloudFormation templates. Using Workflow Studio in Application Composer, you
can build workflows using AWS CloudFormation templates. Within Application Composer, you
can add a new workflow, modify an existing workflow, and connect individual workflow steps to
other application resources. Application Composer automatically creates and updates the needed
CloudFormation resources and configurations. This helps you create and manage all resources used
in your workflows in one place. This also helps you accelerate your path from workflow prototyping
to production deployment.

When you use Workflow Studio in Application Composer, you can also directly connect to your
local project. This helps you to work in your integrated development environment (IDE) alongside
the visual canvas. For more information, see Using Workflow Studio in Application Composer.

329

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Topics

• Interface overview

• Using Workflow Studio

• Configure inputs and outputs for your states

• Execution roles in Workflow Studio

• Error handling

• Tutorial: Learn to use the AWS Step Functions Workflow Studio

Interface overview

Workflow Studio for AWS Step Functions is a low-code visual workflow designer that lets you
create serverless workflows by orchestrating AWS services. With its drag and drop feature,
Workflow Studio makes it easy for you to build, edit, and visualize your workflow prototypes.
Workflow Studio also offers a built-in code editor for writing and editing your workflow definitions
using Amazon States Language (ASL) within the Step Functions console.

To help you build and visualize your workflows, edit their definitions, and manage their
configuration, Workflow Studio provides three modes: Design, Code, and Config. The following
sections describe these modes in detail.

In this topic

• Design mode

• Code mode

• Config mode

• Keyboard shortcuts

Design mode

The Design mode of Workflow Studio provides a graphical interface to visualize your workflows as
you build their prototypes. The following image shows the different components available in the
Design mode.

Interface overview 330

AWS Step Functions Developer Guide

1. Mode buttons – Switch between the Design, Code, and Config modes of the Workflow Studio
using the mode buttons. You can't switch modes if the JSON in the ASL definition of your
workflow is invalid.

2. The States browser contains the following three tabs:

• The Actions tab provides a list of AWS APIs that you can drag and drop into your workflow
graph in the canvas. Each action represents a Task state.

• The Flow tab provides a list of flow states that you can drag and drop into your workflow
graph in the canvas.

• The Patterns tab provides several ready-to-use, reusable building blocks that you can use for
a variety of use cases. For example, you can use these patterns to iteratively process data in an
Amazon S3 bucket.

3. The Canvas is where you drag and drop states into your workflow graph, change the order of
states, and select states to configure or view.

4. The Inspector panel is where you can view and edit the properties of any state you've selected
on the canvas. Turn on the Definition toggle to view the Amazon States Language code for your
workflow, with the currently selected state highlighted.

5. Info links open a panel with contextual information when you need help. These panels also
include links to related topics in the Step Functions documentation.

6. Design toolbar – Contains a set of buttons to perform common actions, such as undo, delete,
and zoom in.

Design mode 331

AWS Step Functions Developer Guide

7. Utility buttons – A set of buttons to perform tasks, such as saving your workflows or exporting
their ASL definitions in a JSON or YAML file.

States browser

The States browser is where you select states to drag and drop into your workflow graph. The
Actions tab provides a list of AWS APIs, and the Flow tab provides a list of flow states. While the
Patterns tab provides several ready-to-use, reusable building blocks that you can use for a variety
of use cases. You can search all states in the States Browser using the Search box at the top.

There are seven flow states that you can use to direct and control your workflow. All of them take
input from the previous state, and many let you filter the input from the preceding state, and the
output to the state that follows. The flow states are:

• Choice: Add a choice between branches of execution to your workflow. In the Configuration tab
of the Inspector, you can configure rules to determine which state the workflow will transition to.

• Parallel: Add parallel branches of execution to your workflow.

• Map: Dynamically iterate steps for each element of an input array. Unlike a Parallel flow state,
a Map state will execute the same steps for multiple entries of an array in the state input.

• Pass: Lets you pass its input to its output. (Optional) You can add fixed data into the output.

• Wait: Have your workflow pause for a certain amount of time or until a specified time or date.

Design mode 332

AWS Step Functions Developer Guide

• Succeed: Stops your workflow with a success.

• Fail: Stops your workflow with a failure.

Canvas

After you choose a state to add to your workflow, drag it to to the canvas and drop it into your
workflow graph. You can also drag and drop states to move them to different places in your
workflow. If your workflow is complex, you may not be able to view all of it in the canvas panel.
Use the controls at the top of the canvas to zoom in or out. To view different parts of a workflow
graph, you can drag the workflow graph in the canvas.

Drag a workflow state from the Actions or Flow tab and drop it into your workflow. A line shows
where it will be placed in your workflow. The new workflow state has been added to your workflow,
and its code is auto-generated.

To change the order of a state, you can drag it to a different place in your workflow.

Design mode 333

AWS Step Functions Developer Guide

Inspector

You can configure any states that you add to your workflow. Choose the state you want to
configure, and you will see its configuration options in the Inspector panel. To see the auto-
generated ASL definition for your workflow code, turn on the Definition toggle. The ASL definition
associated with the state you've selected will appear highlighted.

Design mode 334

AWS Step Functions Developer Guide

Design mode 335

AWS Step Functions Developer Guide

Code mode

The Code mode of Workflow Studio provides an integrated code editor to view, write, and edit the
Amazon States Language (ASL) definition of your workflows within the Step Functions console. The
following image shows the different components available in the Code mode.

Code mode 336

AWS Step Functions Developer Guide

1. Mode buttons – Switch between the Design, Code, and Config modes of the Workflow Studio
using the mode buttons. You can't switch modes if the JSON in the ASL definition of your
workflow is invalid.

2. The Code editor is where you write and edit the ASL definition of your workflows within the
Workflow Studio. The code editor also provides features, such as syntax highlighting and auto-
completion.

3. Graph visualization pane – Shows a real-time graphical visualization of your workflow.

4. Utility buttons – A set of buttons to perform tasks, such as saving your workflows or exporting
their ASL definitions in a JSON or YAML file.

5. Code toolbar – Contains a set of buttons to perform common actions, such as undoing an action
or formatting the code.

6. Graph toolbar – Contains a set of buttons to perform common actions, such as zooming in and
zooming out the workflow graph.

Code mode 337

AWS Step Functions Developer Guide

Code editor

The code editor provides an IDE-like experience to write and edit your workflow definitions using
JSON within the Workflow Studio. The code editor includes several features, such as syntax
highlighting, auto-complete suggestions, ASL definition validation, and context-sensitive help
display. As you update your workflow definition, the Graph visualization pane renders a real-time
graph of your workflow. You can also see the updated workflow graph in the Design mode.

If you select a state in the Design mode or the graph visualization pane, the ASL definition of that
state appears highlighted in the code editor. The ASL definition of your workflow is automatically
updated if you reorder, delete, or add a state in the Design mode or the graph visualization pane.

Place the cursor over any field in the workflow definition to view its context-sensitive help as a
tooltip.

Code mode 338

AWS Step Functions Developer Guide

The auto-complete suggestions displays code snippets for the fields or states that you can include
in your workflows. To see a list of fields you can include within a specific state, press Ctrl+Space.
To generate code snippet for a new state in your workflow press Ctrl+Space after the current
state's definition. You can also press F1 to display a list of available commands.

Code mode 339

AWS Step Functions Developer Guide

Graph visualization pane

Graph visualizations let you see what your workflow looks like in graphical format. When you write
your workflow definitions in the Code editor of Workflow Studio, the graph visualization pane
renders a real-time graph of your workflow. As you reorder, delete, or duplicate a state in the graph
visualization pane, the workflow definition in the Code editor is automatically updated. Similarly,
as you update your workflow definitions, reorder, delete, or add a state in the Code editor, the
visualization is automatically updated.

If the JSON in the ASL definition of your workflow is invalid, the graph visualization pane pauses
the rendering and displays a status message at the bottom of the pane.

Config mode

The Config mode of Workflow Studio lets you manage the configuration of your state machines.
In this mode, you can specify details, such as state machine name and its type, IAM permissions,
and logging configuration for the state machine. Other additional configurations that you can
specify in this mode include enabling AWS X-Ray tracing and publishing a version when you

Config mode 340

AWS Step Functions Developer Guide

create the state machine. After you've created the state machine, you can edit all state machine
configuration options except the state machine name and type. The following image shows some
of the configurations you can specify in the Config mode.

Manage state machine configuration

To manage your state machine configuration, do the following:

Config mode 341

AWS Step Functions Developer Guide

1. Enter a name for your state machine in the State machine name box.

Tip

Alternatively, choose the edit icon next to the default state machine name of
MyStateMachine. Then, under State machine configuration, specify a name.

Important

You can't edit the state machine name after you've created the state machine.

2. In Type, choose a state machine type of Standard or Express. For information about state
machine types, see Standard vs. Express Workflows.

Important

You can't edit the state machine type after you've created the state machine.

3. In Permissions, select the IAM role to be used as the execution role for the state machine.

• Create new role (Recommended): If you select this option, Step Functions automatically
creates an execution role for your state machines with the least privileges required when you
create the state machines. These automatically generated IAM roles are valid for the AWS
Region in which you create the state machine.

Tip

To review the permissions that Step Functions will automatically generate for your
state machine, choose Review auto-generated permissions.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Config mode 342

AWS Step Functions Developer Guide

• Choose an existing role: Create your own IAM role for the state machine and then choose it
from the options listed below Choose an existing role. Make sure the role's policy includes the
permissions that you would like the state machine to assume.

For information about creating IAM policies, see Creating IAM policies in the IAM User Guide.

• Enter a role ARN: Specify the Amazon Resource Name (ARN) of an existing IAM role to use for
this state machine. For example, arn:aws:iam::123456789012:role/service-role/
StepFunctions-WorkflowStudio-role-777f4027.

4. In Logging, set the log level for your state machine. Step Functions logs the execution history
events based on your selection. You can select one of the following options:

• ALL: All event types are logged.

• ERROR: All error event types are logged, such as TaskFailed and ExecutionFailed.

• FATAL: All fatal error event types are logged, such as ExecutionAborted and ExecutionFailed.

• OFF: No event types are logged.

For more information about log levels, see Log levels.

5. In Additional configuration, set one or more of the following optional configurations:

• Enable X-Ray tracing: Choose this checkbox for Step Functions to send traces to X-Ray for
state machine executions, even when a trace ID is not passed by an upstream service. For more
information, see AWS X-Ray and Step Functions.

• Publish version on creation: A version is a numbered, immutable snapshot of a state machine
that you can run. Choose this checkbox to publish a version of your state machine while
creating the state machine. Step Functions publishes version 1 as the first revision of the state
machine.

For more information about versions, see State machine versions.

• Add new tag: Choose this box to add tags to your state machine. Adding tags can help you
track and manage the costs associated with your resources, and provide better security in your
IAM policies. For more information about tags, see Tagging in Step Functions.

6. Choose Create.

7. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role configuration to go back to the Config mode.

Config mode 343

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Step Functions Developer Guide

Keyboard shortcuts

Workflow Studio supports the following keyboard shortcuts:

Keyboard shortcut Function

Shortcuts for the Code mode

Ctrl+space Auto-complete suggestions

F1 Display a list of available commands

Common shortcuts for the Design and Code modes

Ctrl+Z Undo the last operation

Ctrl+Shift+Z Redo the last operation

Alt+C Center the workflow in the canvas

Backspace Remove all selected states

Delete Remove all selected states

Ctrl+D Duplicate selected state

Using Workflow Studio

Learn to create, edit, and run workflows using Step Functions Workflow Studio. After your
workflow is ready, you can export it. You can also use Workflow Studio for rapid prototyping.

In this topic

• Create a workflow

• Design a workflow

• Run your workflow

• Edit your workflow

• Export your workflow

• Create your workflow prototype

Keyboard shortcuts 344

AWS Step Functions Developer Guide

Create a workflow

In Workflow Studio, you can either choose a starter template, or choose a blank template to create
a workflow from scratch. For blank templates, you can use the Design or Code mode to create your
workflow.

A starter template is a ready-to-run sample project that automatically creates the workflow
proptotype and definition, and deploys all the related AWS resources that your project needs to
your AWS account. You can use these starter templates to deploy and run them as is, or use the
workflow prototypes to build on them. For more information about starter templates, see Sample
projects for Step Functions.

Create a workflow using starter templates

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, do one of the following to choose a sample project, for
example, the Task Timer sample project:

• Type Task Timer in the Search by keyword box, and then choose Task Timer from the
search results that are returned.

• Browse through the sample projects listed under All on the right pane, and then choose
Task Timer.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition. In Design mode, drag and drop states from the States browser to continue
building your workflow protoype. Or switch to the Code mode for updating the Amazon
States Language (ASL) definition of your workflow.

Create a workflow 345

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

Note

It can take up to 10 minutes for these resources and related IAM permissions to be
created. While your resources are being deployed, you can open the CloudFormation
Stack ID link to see which resources are being provisioned.

Important

Standard charges apply for each service used in the CloudFormation template.

Create a workflow using a blank template

1. Open the Step Functions console.

2. Choose Create state machine.

3. In the Choose a template dialog box, select Blank.

4. Choose Select. This opens Workflow Studio in Design mode.

Create a workflow 346

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

You can now start designing your workflow in Design mode or writing your workflow definition
in Code mode.

5. Choose Config to manage the configuration of your workflow in the Config mode. For
example, provide a name for your workflow and choose its type.

Design a workflow

If you know the name of the state you want to add, use the search box at the top of the States
browser to find that state in the Actions and Flow tabs of the Design mode.

Otherwise, choose a state from the states browser and drag and drop it onto the canvas, placing
it where you want in your workflow. You can also reorder states in your workflow by dragging
them to a different location in your workflow. As you drag a state onto the canvas, a line appears
wherever you can drop it in your workflow. After a state is dropped onto the canvas, its code is
auto-generated and added inside your workflow definition. To see the definition, turn on the
Definition toggle on the Inspector panel. To make edits to your workflow definition, choose the
Code mode that offers an integrated code editor.

Design a workflow 347

AWS Step Functions Developer Guide

After you drop a state onto the canvas, you can configure it in the Inspector panel on the right. This
panel contains the Configuration, Input, Output, and Error Handling tabs for each of the state or
API action that you place on the canvas. You configure the states you include in your workflows in
the Configuration tab. For example, the Configuration tab for Lambda Invoke API action consists
of the following options:

Design a workflow 348

AWS Step Functions Developer Guide

1. The State name identifies the state. You can use your own name or accept the default generated
name.

2. The API shows the API action used by the state.

3. The Integration type dropdown list provides options to choose the type of service integrations
available in Step Functions. The integration type you choose is used to call API actions of a
specific AWS service from your workflow.

Design a workflow 349

AWS Step Functions Developer Guide

4. The Function name provides options to:

• Enter a function name: You can enter your function name or its ARN.

• Get function name at runtime from state input: You can use this option to dynamically get
the function name from the state input based on the path you specify.

• Select function name: You can directly select from the functions available in your account and
region.

5. The Payload lets you select from the following options:

• Use state input as payload: You can use this option to pass the state’s input as the payload
provided to your Lambda function.

• Enter your own payload: You can use this option to construct a JSON object to pass as
the payload to your Lambda function. This JSON can include both static values and values
selected from the state input.

• No payload: You can use this option if you don’t want to pass any payload to your Lambda
function.

6. (Optional) Some states will have an option to select Wait for task to complete or Wait for
callback. When available, these options select one of the following service integration patterns:

• No option selected: Step Functions will use the Request Response integration pattern. Step
Functions will wait for an HTTP response and then progress to the next state. Step Functions
will not wait for a job to complete. When no options are available, the state will use this
pattern.

• Wait for task to complete: Step Functions will use the Run a Job (.sync) integration pattern.

• Wait for callback: Step Functions will use the Wait for a Callback with the Task Token
integration pattern.

7. (Optional) To access resources configured in different AWS accounts within your workflows, Step
Functions provides cross-account access. IAM role for cross-account access provides options to:

• Provide IAM role ARN: Specify the IAM role that contains appropriate resource access
permissions. These resources are available in a target account, which is an AWS account to
which you make cross-account calls.

• Get IAM role ARN at runtime from state input: Specify a reference path to an existing key-
value pair in the state’s JSON input which contains the IAM role.

8. Next state lets you to select the state you want to transition to next.

9. (Optional) The Comment field can be used to add your own comment. It will not affect the
workflow, but can be used to annotate your workflow.

Design a workflow 350

AWS Step Functions Developer Guide

Some states will have more generic configuration options. For example, the Amazon ECS RunTask
state configuration contains an API Parameters field populated with placeholder values.

For these states, you can replace the placeholder values with configurations that are suited to your
needs.

Design a workflow 351

AWS Step Functions Developer Guide

To delete a state, you can use backspace, right-click and choose Delete state, or choose Delete on
the Design toolbar.

As your workflow grows, it may not fit in the canvas. You can:

1. Use the controls on the side panels to resize or close the panels.

2. Use the Design toolbar controls at the top of the Canvas to zoom the workflow graph in or out.

Design a workflow 352

AWS Step Functions Developer Guide

Run your workflow

After you create or edit your workflow with the Workflow Studio, you can run it and view its
execution in the Step Functions console.

To run a workflow in Workflow Studio

1. In the Design, Code, or Config mode, choose Execute.

The Start execution dialog box opens in a new tab.

2. In the Start execution dialog box, do the following:

Run your workflow 353

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Edit your workflow

You can edit an existing workflow visually in the Design mode of Workflow Studio. You can also
edit the workflow definition in Code mode of Workflow Studio.

To edit an existing workflow:

1. Open the Step Functions console.

2. On the State machines page, choose the workflow you want to edit.

3. On the State machine detail page, choose Edit.

4. The workflow opens in Design mode of Workflow Studio. Edit the workflow as required.

Edit your workflow 354

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

Note

If you see errors in your workflow, you must fix them in Design mode. You can't switch to
the Code or Config mode if any errors exist in your workflow.

5. (Optional) Choose the Code button to view or edit the workflow definition in Workflow Studio.

Edit your workflow 355

AWS Step Functions Developer Guide

6. When you are done, choose Save to save your updated workflow.

7. (Optional) To run your updated workflow, choose Execute. The Start execution dialog box opens
in a new tab.

Export your workflow

You can export your workflow's Amazon States Language (ASL) definition and your workflow
graph:

1. Choose your workflow in the Step Functions console.

2. On the State machine detail page, choose Edit.

3. (Optional) Your workflow opens in Design mode of Workflow Studio. Edit your workflow in
Design mode or switch to the Code mode.

4. Choose the Actions dropdown button, and then do one or both of the following:

Export your workflow 356

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

• To export the workflow graph to an SVG or PNG file, under Export graph, select the format
you want.

• To export the workflow definition as a JSON or YAML file, under Export definition, select the
format you want.

Create your workflow prototype

You can use Workflow Studio to create prototypes of new workflows that contain placeholder
resources. You can also build your workflows using Workflow Studio in Application Composer. To
create a prototype:

1. Sign in to the Step Functions console.

2. Choose Create state machine.

3. In the Choose a template dialog box, select Blank.

4. Choose Select. This opens Workflow Studio in Design mode.

5. The Design mode of Workflow Studio opens. Design your workflow in Workflow Studio. To
include placeholder resources:

a. Choose the state for which you want to include a placeholder resource, and then in
Configuration:

• For Lambda Invoke states, choose Function name, then choose Enter function name. You
can also enter a custom name for your function.

• For Amazon SQS Send Message states, choose Queue URL, then choose Enter queue URL.
Enter a placeholder queue URL.

• For Amazon SNS Publish states, from Topic, choose a topic ARN.

• For all other states listed under Actions, you can use the default configuration.

Note

If you see errors in your workflow, you must fix them in Design mode. You can't switch
to the Code or Config mode if any errors exist in your workflow.

b. (Optional) To view the auto-generated ASL definition of your workflow, choose Definition.

c. (Optional) To update the workflow definition in Workflow Studio, choose the Code button.

Create your workflow prototype 357

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Note

If you see errors in your workflow definition, you must fix them in Code mode.
You can't switch to the Design or Config mode if any errors exist in your workflow
definition.

6. (Optional) To edit the state machine name, choose the edit icon next to the default state
machine name of MyStateMachine and specify a name in the State machine name box.

You can also switch to the Config mode to edit the default state machine name.

7. Specify your workflow settings, such as state machine type and its execution role.

8. Choose Create.

You've now created a new workflow with placeholder resources that can be used to prototype. You
can export your workflow definition and the workflow graph.

• To export your workflow definition as a JSON or YAML file, in the Design or Code mode, choose
the Actions dropdown button. Then, under Export definition, select the format you want to
export. You can use this exported definition as the starting point for local development with the
AWS Toolkit for Visual Studio Code.

• To export your workflow graph to an SVG or PNG file, in the Design or Code mode, choose the
Actions dropdown button. Then, under Export definition, select the format you want.

Configure inputs and outputs for your states

Each state makes a decision or performs an action based on input that it receives. In most cases, it
then passes output to other states. In Workflow Studio, you can configure how a state filters and
manipulates its input and output data in the Input and Output tabs of the Inspector panel. Use the
Info links to access contextual help when configuring inputs and outputs.

Configure input and output 358

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/bulding-stepfunctions.html

AWS Step Functions Developer Guide

For detailed information about how Step Functions processes input and output, see Input and
Output Processing in Step Functions.

Configure input to a state

Each state receives input from the previous state as JSON. If you want to filter the input, you can
use the InputPath filter under the Input tab in the Inspector panel. The InputPath is a string,
beginning with $, that identifies a specific JSON node. These are called reference paths, and they
follow JsonPath syntax.

To filter the input:

• Choose Filter input with InputPath.

• Enter a valid JsonPath for the InputPath filter. For example, $.data.

Configure input to a state 359

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

Your InputPath filter will be added to your workflow.

Example Example 1: Use InputPath filter in Workflow Studio

Say the input to your state includes the following JSON data.

{
 "comment": "Example for InputPath",
 "dataset1": {
 "val1": 1,
 "val2": 2,
 "val3": 3
 },
 "dataset2": {
 "val1": "a",
 "val2": "b",
 "val3": "c"
 }
}

To apply the InputPath filter, choose Filter input with InputPath, then enter an appropriate
reference path. If you enter $.dataset2.val1, the following JSON is passed as input to the state.

{"a"}

A reference path can also have a selection of values. If the data you reference is { "a": [1, 2,
3, 4] } and you apply the reference path $.a[0:2] as the InputPath filter, the following is the
result.

[1, 2]

Parallel, Map, and Pass flow states have an additional input filtering option called Parameters
under their Input tab. This filter takes effect after the InputPath filter and can be used to construct
a custom JSON object consisting of one or more key-value pairs. The values of each pair can either
be static values, can be selected from the input, or can be selected from the Context object with a
path.

Configure input to a state 360

AWS Step Functions Developer Guide

Note

To specify that a parameter uses a reference path to point to a JSON node in the input, the
parameter name must end with .$.

Example Example 2: Create custom JSON input for Parallel state

Say the following JSON data is the input to a Parallel state.

{
 "comment": "Example for Parameters",
 "product": {
 "details": {
 "color": "blue",
 "size": "small",
 "material": "cotton"
 },
 "availability": "in stock",
 "sku": "2317",
 "cost": "$23"
 }
}

To select part of this input and pass additional key-value pairs with a static value, you can specify
the following in the Parameters field, under the Parallel state’s Input tab.

{
 "comment": "Selecting what I care about.",
 "MyDetails": {
 "size.$": "$.product.details.size",
 "exists.$": "$.product.availability",
 "StaticValue": "foo"
 }
 }

The following JSON data will be the result.

{
 "comment": "Selecting what I care about.",
 "MyDetails": {

Configure input to a state 361

AWS Step Functions Developer Guide

 "size": "small",
 "exists": "in stock",
 "StaticValue": "foo"
 }
}

Configure output of a state

Each state produces JSON output that can be filtered before it is passed to the next state. There
are several filters available, and each affects the output in a different way. Output filters available
for each state are listed under the Output tab in the Inspector panel. For Task states, any output
filters you select are processed in this order:

1. ResultSelector: Use this filter to manipulate the state’s result. You can construct a new JSON
object with parts of the result.

2. ResultPath: Use this filter to select a combination of the state input and the task result to pass
to the output.

3. OutputPath: Use this filter to filter the JSON output to choose which information from the
result will be passed to the next state.

Configure output of a state 362

AWS Step Functions Developer Guide

Use ResultSelector

ResultSelector is an optional output filter for the following states:

• Task states, which are all states listed in the Actions tab of the States browser.

• Map states, in the Flow tab of the States browser.

• Parallel states, in the Flow tab of the States browser.

ResultSelector can be used to construct a custom JSON object consisting of one or more key-
value pairs. The values of each pair can either be static values or selected from the state's result
with a path.

Note

To specify that a parameter uses a path to reference a JSON node in the result, the
parameter name must end with .$.

Example Example to use ResultSelector filter

In this example, you use ResultSelector to manipulate the response from the Amazon EMR
CreateCluster API call for an Amazon EMR CreateCluster state. The following is the result from
the Amazon EMR CreateCluster API call.

{
 "resourceType": "elasticmapreduce",
 "resource": "createCluster.sync",
 "output": {
 "SdkHttpMetadata": {
 "HttpHeaders": {
 "Content-Length": "1112",
 "Content-Type": "application/x-amz-JSON-1.1",
 "Date": "Mon, 25 Nov 2019 19:41:29 GMT",
 "x-amzn-RequestId": "1234-5678-9012"
 },
 "HttpStatusCode": 200
 },
 "SdkResponseMetadata": {
 "RequestId": "1234-5678-9012"
 },

Configure output of a state 363

AWS Step Functions Developer Guide

 "ClusterId": "AKIAIOSFODNN7EXAMPLE"
 }
}

To select part of this information and pass an additional key-value pair with a static value, specify
the following in the ResultSelector field, under the state’s Output tab.

{
 "result": "found",
 "ClusterId.$": "$.output.ClusterId",
 "ResourceType.$": "$.resourceType"
 }

Using ResultSelector produces the following result.

{
 "result": "found",
 "ClusterId": "AKIAIOSFODNN7EXAMPLE",
 "ResourceType": "elasticmapreduce"
}

Use ResultPath

The output of a state can be a copy of its input, the result it produces , or a combination of its input
and result. Use ResultPath to control which combination of these is passed to the state output.
For more use cases of ResultPath, see ResultPath.

ResultPath is an optional output filter for the following states:

• Task states, which are all states listed in the Actions tab of the States browser.

• Map states, in the Flow tab of the States browser.

• Parallel states, in the Flow tab of the States browser.

• Pass states, in the Flow tab of the States browser.

ResultPath can be used to add the result into the original state input. The specified path
indicates where to add the result.

Example Example to use ResultPath filter

Say the following is the input to a Task state.

Configure output of a state 364

AWS Step Functions Developer Guide

{
 "details": "Default example",
 "who": "AWS Step Functions"
}

The result of the Task state is the following.

Hello, AWS Step Functions

You can add this result to the state’s input by applying ResultPath and entering a reference path
that indicates where to add the result, such as $.taskresult:

With this ResultPath, the following is the JSON that is passed as the state’s output.

{
 "details": "Default example",
 "who": "AWS Step Functions",
 "taskresult": "Hello, AWS Step Functions!"
}

Use OutputPath

The OutputPath filter lets you filter out unwanted information, and pass only the portion of JSON
that you care about. The OutputPath is a string, beginning with $, that identifies nodes within
JSON text.

Example Example to use OutputPath filter

A Lambda Invoke API call returns metadata in addition to the payload, which is the Lambda
function’s result. An example of the response from this API call is shown under the Output tab of
the state.

Configure output of a state 365

AWS Step Functions Developer Guide

You can use OutputPath to filter out the additional metadata. By default, the value of
OutputPath filter for Lambda Invoke states created through the Workflow Studio is $.Payload.
This default value removes the additional metadata and returns an output equivalent to running
the Lambda function directly.

Configure output of a state 366

AWS Step Functions Developer Guide

The Lambda Invoke task result example and the value of $.Payload for the Output filter pass the
following JSON data as the output.

{
 "foo": "bar",
 "colors": [
 "red",
 "blue",
 "green"
],
 "car": {
 "year": 2008,
 "make": "Toyota",
 "model": "Matrix"
 }
}

Note

Since the OutputPath filter is the last output filter to take effect, if you use additional
output filters such as ResultSelector or ResultPath, you should modify the default
value of $.Payload for the OutputPath filter accordingly.

Execution roles in Workflow Studio

Every Step Functions state machine requires an AWS Identity and Access Management (IAM) role
which grants the state machine permission to perform actions on AWS services and resources or
call third-party APIs. This role is called an execution role. This role must contain IAM policies for
each action, for example, policies that allow the state machine to invoke an AWS Lambda function,
run an AWS Batch job, or call the Stripe API. Step Functions requires you to provide an execution
role in the following cases:

• You create a state machine in the console, AWS SDKs or AWS CLI using the CreateStateMachine
API.

• You test a state in the console, AWS SDKs, or AWS CLI using the TestState API.

Workflow Studio has capabilities that makes it easy to manage execution roles for your workflows.

Execution roles in Workflow Studio 367

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

Topics

• About auto-generated roles

• Automatically generating roles

• Resolving role generation problems

• Role for testing HTTP Tasks in Workflow Studio

• Role for testing an optimized service integration in Workflow Studio

• Role for testing an AWS SDK service integration in Workflow Studio

• Role for testing flow states in Workflow Studio

About auto-generated roles

When you create a state machine in the Step Functions console, Workflow Studio can automatically
create an execution role for you which contains the necessary IAM policies. Workflow Studio
analyzes your state machine definition and generates policies with the least privileges necessary to
execute your workflow.

Workflow Studio can generate IAM policies for the following:

• HTTP Tasks that call third-party APIs.

• Task states that call other AWS services using optimized integrations, such as Lambda Invoke,
DynamoDB GetItem, or AWS Glue StartJobRun.

• Task states that run nested workflows.

• Distributed Map states, including policies to start child workflow executions, list Amazon S3
buckets, and read or write S3 objects.

• X-Ray tracing. Every role that is auto-generated in Workflow Studio contains a policy which
grants permissions for the state machine to send traces to X-Ray.

• Logging using CloudWatch Logs when logging is enabled on the state machine.

Workflow Studio can't generate IAM policies for Task states that call other AWS services using AWS
SDK integrations.

Automatically generating roles

1. Open the Step Functions console and choose Create state machine.

About auto-generated roles 368

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

You can also update an existing state machine. Refer Step 4 if you're updating a state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. Choose the Config tab.

5. Scroll down to the Permissions section, and do the following:

a. For Execution role, make sure you keep the default selection of Create new role.

Workflow Studio automatically generates all the required IAM policies for every valid state
in your state machine definition. It displays a banner in with the message, An execution
role will be created with full permissions.

Tip

To review the permissions that Workflow Studio automatically generates for your
state machine, choose Review auto-generated permissions.

Automatically generating roles 369

AWS Step Functions Developer Guide

Note

If you delete the IAM role that Step Functions creates, Step Functions can't
recreate it later. Similarly, if you modify the role (for example, by removing Step
Functions from the principals in the IAM policy), Step Functions can't restore its
original settings later.

If Workflow Studio can't generate all the required IAM policies, it displays a banner with
the message Permissions for certain actions cannot be auto-generated. An IAM role will
be created with partial permissions only. For information about how to add the missing
permissions, see Resolving role generation problems.

b. Choose Create if you're creating a state machine. Otherwise, choose Save.

c. Choose Confirm in the dialog box that appears.

Workflow Studio saves your state machine and creates the new execution role.

Resolving role generation problems

Workflow Studio can't automatically generate an execution role with all the required permissions in
the following cases:

• There're errors in your state machine. Make sure to resolve all validation errors in Workflow
Studio. Also, make sure that you address any server-side errors you encounter in the course of
saving.

• Your state machine contains tasks use AWS SDK integrations. Workflow Studio can't auto-
generate IAM policies in this case. Workflow Studio displays a banner with the message,
Permissions for certain actions cannot be auto-generated. An IAM role will be created with
partial permissions only. In the Review auto-generated permissions table, choose the content
in Status for more information about the policies your execution role is missing. Workflow Studio
can still generate an execution role, but this role will not contain IAM policies for all actions. See
the links under Documentation links to write your own policies and add them to the role after it
is generated. These links are available even after you save the state machine.

Resolving role generation problems 370

AWS Step Functions Developer Guide

Role for testing HTTP Tasks in Workflow Studio

You require an execution role to test an HTTP Task state. If you don’t have a role with sufficient
permissions, use one of the following options to create a role:

• Auto-generate a role with Workflow Studio (recommended) – This is the secure option. Close
the Test state dialog box and follow the instructions in Automatically generating roles. This will
require you to create or update your state machine first, then go back into Workflow Studio to
test your state.

• Use a role with Administrator access – If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Role for testing an optimized service integration in Workflow Studio

You require an execution role to Task states that call optimized service integrations. If you don’t
have a role with sufficient permissions, use one of the following options to create a role:

• Use the documentation links in Workflow Studio to write your own IAM policies
(recommended) – This is the secure option. Close the Test state dialog box and follow the
instructions in Automatically generating roles. This will require you to create or update your state
machine first, then go back into Workflow Studio to test your state.

• Use a role with Administrator access – If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Role for testing an AWS SDK service integration in Workflow Studio

You require an execution role to Task states that call AWS SDK integrations. If you don’t have a role
with sufficient permissions, use one of the following options to create a role:

• Use the documentation links in Workflow Studio to write your own IAM policies
(recommended) – This is the secure option. Close the Test state dialog box and follow the
instructions in Automatically generating roles. This will require you to create or update your state
machine first, then go back into Workflow Studio to test your state. Do the following:

Role for testing HTTP Tasks in Workflow Studio 371

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

1. Close the Test state dialog box

2. Choose the Config tab to view the Config mode.

3. Scroll down to the Permissions section.

4. Workflow Studio displays a banner with the message, Permissions for certain actions cannot
be auto-generated. An IAM role will be created with partial permissions only. Choose
Review auto-generated permissions.

5. The Review auto-generated permissions table displays a row that shows the action
corresponding to the task state you want to test. See the links under Documentation links to
write your own IAM policies into a custom role.

• Use a role with Administrator access – If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state
in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Role for testing flow states in Workflow Studio

You require an execution role to test flow states in Workflow Studio. Flow states are those states
that direct execution flow, such as Choice, Parallel, Map, Pass, Wait, Succeed, or Fail. The TestState
API doesn't work with Map or Parallel states. Use one of the following options to create a role for
testing a flow state:

• Use any role in your AWS account (recommended) – Flow states do not require any specific IAM
policies, because they don’t call AWS actions or resources. Therefore, you can use any IAM role in
your AWS account.

1. In the Test state dialog box, select any role from the Execution role dropdown list.

2. If no roles appear in the dropdown list, do the following:

a. In the IAM console https://console.aws.amazon.com/iam/, choose Roles.

b. Choose a role from the list, and copy its ARN from the role details page. You will need to
provide this ARN in the Test state dialog box.

c. In the Test state dialog box, select Enter a role ARN from the Execution role dropdown list.

d. Paste the ARN in Role ARN.

• Use a role with Administrator access – If you have permissions to create a role with full
access to all services and resources in AWS, you can use that role to test any type of state

Role for testing flow states in Workflow Studio 372

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

in your workflow. To do this, you can create a Step Functions service role and add the
AdministratorAccess policy to it in the IAM console https://console.aws.amazon.com/iam/.

Error handling

By default, when a state reports an error, Step Functions causes the workflow execution to fail
entirely. For actions and some flow states, you can configure how Step Functions handles errors.
Even if you have configured error handling, some errors may still cause a workflow execution to
fail. For more information, see Error handling in Step Functions. In Workflow Studio, configure
error handling in the the Error handling tab of the Inspector panel.

Retry on errors

You can add one or more rules to action states and the Parallel flow state to retry the task when an
error occurs. These rules are called retriers. To add a retrier, choose the edit icon in Retrier #1 box,
then configure its options:

Error handling 373

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html#jf_administrator
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

• (Optional) In the Comment field, add your comment. It will not affect the workflow, but can be
used to annotate your workflow.

• Place the cursor in the Errors field and choose an error that will trigger the retrier, or enter a
custom error name. You can choose or add multiple errors.

• (Optional) Set an Interval. This is the time in seconds before Step Functions make its first retry.
Additional retries will follow at intervals that you can configure with Max attempts and Backoff
rate.

• (Optional) Set Max attempts. This is the maximum number of retries before Step Functions will
cause the execution to fail.

• (Optional) Set the Backoff rate. This is a multiplier that determines by how much the retry
interval will increase with each attempt.

Note

Not all error handling options are available for all states. Lambda Invoke has one retrier
configured by default.

Catch errors

You can add one or more rules to action states and to the Parallel and Map flow states to catch an
error. These rules are called catchers. To add a catcher, choose Add new catcher, then configure its
options:

• (Optional) In the Comment field, add your comment. It will not affect the workflow, but can be
used to annotate your workflow.

• Place the cursor in Errors field and choose an error that will trigger the catcher, or enter a
custom error name. You can choose or add multiple errors.

• In the Fallback state field, choose a fallback state. This is the state that the workflow will move
to next, after an error is caught.

• (Optional) In the ResultPath field, add a ResultPath filter to add the error to the original state
input. The ResultPath must be a valid JsonPath. This will be sent to the fallback state.

Catch errors 374

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

Timeouts

You can configure a timeout for action states to set the maximum number of seconds your state
can run before it fails. Use timeouts to prevent stuck executions. To configure a timeout, enter the
number of seconds your state should wait before the execution fails. For more information about
timeouts, see TimeoutSeconds in Task state.

HeartbeatSeconds

You can configure a Heartbeat or periodic notification sent by your task. If you set a heartbeat
interval, and your state doesn't send heartbeat notifications in the configured intervals, the task is
marked as failed. To configure a heartbeat, set a positive, non-zero integer number of seconds. For
more information, see HeartBeatSeconds in Task state.

Tutorial: Learn to use the AWS Step Functions Workflow Studio

In this tutorial, you will learn the basics of working with Workflow Studio for AWS Step Functions.
In Design mode of Workflow Studio, you'll create a state machine containing multiple states,
including Pass, Choice, Fail, Wait, and Parallel. You'll use the drag and drop feature to
search for, select, and configure these states. Then, you'll view the auto-generated Amazon States
Language (ASL) definition of your workflow. You'll also use the Code mode of Workflow Studio to
edit the workflow definition. Then, you'll exit Workflow Studio, run the state machine, and review
the execution details.

In this tutorial, you'll also learn how to update the state machine and view the changes in the
execution output. Finally, you'll perform a clean-up step and delete your state machine.

After you complete this tutorial, you'll know how to use Workflow Studio to create and configure a
workflow using both the Design and Code modes. You'll also know how to update, run, and delete
your state machine.

Note

Before you start, make sure to complete the prerequisites for this tutorial.

Topics

• Step 1: Navigate to Workflow Studio

Timeouts 375

AWS Step Functions Developer Guide

• Step 2: Create a state machine

• Step 3: Review the auto-generated Amazon States Language definition

• Step 4: Edit the workflow definition in Code mode

• Step 5: Save the state machine

• Step 6: Run the state machine

• Step 7: Update your state machine

• Step 8: Clean up

Step 1: Navigate to Workflow Studio

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

Step 2: Create a state machine

In Workflow Studio, a state machine is a graphical representation of your workflow. With Workflow
Studio, you can define, configure, and examine the individual steps of your workflow. In the
following steps, you use the Design mode of Workflow Studio to create your state machine.

To create a state machine

1. Make sure you're in the Design mode of Workflow Studio.

2. From the States browser on the left, choose the Flow tab. Then, drag a Pass state to the empty
state labelled Drag first state here.

3. Drag a Choice state from the Flow tab and drop it below the Pass state.

4. For State name, replace the default name of Choice. For this tutorial, use the name
IsHelloWorldExample.

5. Drag another Pass state and drop it to one branch of the IsHelloWorldExample state. Then,
drag a Fail state and drop it below the other branch of the IsHelloWorldExample state.

6. Choose the Pass (1) state, and rename it to Yes. Rename the Fail state as No.

7. Specify the IsHelloWorldExample state's branching logic using the boolean variable
IsHelloWorldExample.

Step 1: Navigate to Workflow Studio 376

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

If IsHelloWorldExample is False, the workflow will enter the No state. Otherwise, the
workflow will continue its execution flow in the Yes state.

To define the branching logic, do the following:

a. Choose the IsHelloWorldExample state on the Canvas, and then under Choice Rules,
choose the edit icon in the Rule #1 box to define the first choice rule.

b. Choose Add conditions.

c. In the Conditions for rule #1 dialog box, enter $.IsHelloWorldExample under
Variable.

d. Choose is equal to under Operator.

e. Choose Boolean constant under Value, and then choose true from the dropdown list.

f. Choose Save conditions.

g. Make sure the Then next state is: dropdown list has Yes selected.

h. Choose Add new choice rule, then choose Add conditions.

i. In the Rule #2 box, define the second choice rule when the IsHelloWorldExample
variable's value is false by repeating substeps 7.c through 7.f. For step 7.e, choose false
instead of true.

j. In the Rule #2 box, choose No from the Then next state is: dropdown list.

k. In the Default rule box, choose the edit icon to define the default choice rule, and then
choose Yes from the dropdown list.

8. Add a Wait state after the Yes state, and name it Wait 3 sec. Then, configure the wait time
to be three seconds by doing the following steps:

a. Under Options, keep the default selection of Wait for a fixed interval.

b. Under Seconds, make sure Enter seconds is selected, and then enter 3 in the box.

9. After the Wait 3 sec state, add a Parallel state. Add two Pass states in its two branches. Name
the first Pass state Hello. Name the second Pass state World.

The completed workflow will look like this:

Step 2: Create a state machine 377

AWS Step Functions Developer Guide

Step 3: Review the auto-generated Amazon States Language definition

As you drag and drop states from the Flow tab onto the canvas, Workflow Studio automatically
composes the Amazon States Language (ASL) definition of your workflow in real-time. In the
Inspector panel, choose the Definition toggle button to view this definition or switch to the Code
mode to edit this definition as required. For information about editing the workflow definition, see
Step 4 of this tutorial.

• (Optional) Choose Definition on the Inspector panel and view the state machine's workflow.

The following example code shows the auto-generated Amazon States Language definition
for the IsHelloWorldExample state machine. The Choice state that you added in Workflow
Studio is used to determine the execution flow based on the branching logic you defined in
Step 2.

{
 "Comment": "A Hello World example of the Amazon States Language using Pass
 states",
 "StartAt": "Pass",
 "States": {
 "Pass": {
 "Type": "Pass",

Step 3: Review the auto-generated Amazon States Language definition 378

AWS Step Functions Developer Guide

 "Next": "IsHelloWorldExample",
 "Comment": "A Pass state passes its input to its output, without performing
 work. Pass states are useful when constructing and debugging state machines."
 },
 "IsHelloWorldExample": {
 "Type": "Choice",
 "Comment": "A Choice state adds branching logic to a state machine. Choice
 rules can implement 16 different comparison operators, and can be combined using
 And, Or, and Not\"",
 "Choices": [
 {
 "Variable": "$.IsHelloWorldExample",
 "BooleanEquals": false,
 "Next": "No"
 },
 {
 "Variable": "$.IsHelloWorldExample",
 "BooleanEquals": true,
 "Next": "Yes"
 }
],
 "Default": "Yes"
 },
 "No": {
 "Type": "Fail",
 "Cause": "Not Hello World"
 },
 "Yes": {
 "Type": "Pass",
 "Next": "Wait 3 sec"
 },
 "Wait 3 sec": {
 "Type": "Wait",
 "Seconds": 3,
 "Next": "Parallel"
 },
 "Parallel": {
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "Hello",
 "States": {
 "Hello": {

Step 3: Review the auto-generated Amazon States Language definition 379

AWS Step Functions Developer Guide

 "Type": "Pass",
 "End": true
 }
 }
 },
 {
 "StartAt": "World",
 "States": {
 "World": {
 "Type": "Pass",
 "End": true
 }
 }
 }
]
 }
 }
}

Step 4: Edit the workflow definition in Code mode

The Code mode of Workflow Studio provides an integrated code editor to view and edit the ASL
definition of your workflows.

1. Choose Code to switch to the Code mode.

2. After the Parallel state's definition, place the cursor and press Enter.

3. Press Ctrl+space to see the list of states that you can add after the Parallel state.

4. Choose Pass State from the list of options. The code editor adds boilerplate code for the Pass
State.

5. The addition of this state results in errors in your workflow definition. In the Parallel state's
definition, replace "End": true with "Next": "PassState".

6. In the Pass State definition you added, make the following changes:

a. Remove the Result node.

b. Remove "ResultPath": "$.result", and "Next": "NextState".

c. After "Type": "Pass",, enter "End": true.

d. Add a , after the Pass State definition.

Step 4: Edit the workflow definition in Code mode 380

AWS Step Functions Developer Guide

Your workflow definition should now look similar to the following definition.

{
 "Comment": "A description of my state machine",
 "StartAt": "Pass",
 "States": {
 "Pass": {
 "Type": "Pass",
 "Next": "IsHelloWorldExample"
 },
 "IsHelloWorldExample": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.IsHelloWorldExample",
 "BooleanEquals": true,
 "Next": "Yes"
 },
 {
 "Variable": "$.IsHelloWorldExample",
 "BooleanEquals": false,
 "Next": "No"
 }
],
 "Default": "Yes"
 },
 "Yes": {
 "Type": "Pass",
 "Next": "Wait 3 seconds"
 },
 "Wait 3 seconds": {
 "Type": "Wait",
 "Seconds": 3,
 "Next": "Parallel"
 },
 "Parallel": {
 "Type": "Parallel",
 "Branches": [
 {
 "StartAt": "Hello",
 "States": {
 "Hello": {
 "Type": "Pass",
 "End": true

Step 4: Edit the workflow definition in Code mode 381

AWS Step Functions Developer Guide

 }
 }
 },
 {
 "StartAt": "World",
 "States": {
 "World": {
 "Type": "Pass",
 "End": true
 }
 }
 }
],
 "Next": "PassState"
 },
 "PassState": {
 "Type": "Pass",
 "End": true
 },
 "No": {
 "Type": "Fail"
 }
 }
}

Step 5: Save the state machine

1. Choose the Config more or choose the edit icon next to the default state machine name
of MyStateMachine. In State machine configuration, specify a name. For example, enter
HelloWorld.

2. (Optional) Specify other workflow settings, such as state machine type and its execution role.
For this tutorial, keep all the default selections in State machine configuration.

3. Choose Create.

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role configuration to go back to the Config mode.

For more information about the Config mode, see Config mode of Workflow Studio.

Step 5: Save the state machine 382

AWS Step Functions Developer Guide

Step 6: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. On the State machines page, choose the HelloWorld state machine.

2. On the HelloWorld page, choose Start execution.

3. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

4. In the Input box, enter input values for your execution in JSON format. Based on your input,
the IsHelloWorldExample variable determines which state machine flow will be executed.
For now, use the following input value:

{
 "IsHelloWorldExample": true
}

Note

While specifying an execution input is optional, in this tutorial, it is mandatory to
specify an execution input similar to the above example input. This input value is
referenced in the Choice state when you run the state machine.

5. Choose Start execution.

6. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,

Step 6: Run the state machine 383

AWS Step Functions Developer Guide

and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution Details page – Interface overview.

For this tutorial, if you entered an input value of "IsHelloWorldExample": true, you
should see the following output:

{
 "IsHelloWorldExample": true
},
{
 "IsHelloWorldExample": true
}

Step 7: Update your state machine

When you update a state machine, your updates are eventually consistent. After a short amount of
time, all newly started executions will reflect your state machine's updated definition. All currently
running executions will run to completion under the previous definition.

In this step, you'll update your state machine in the Design mode mode of Workflow Studio. You'll
add a Result field in the Pass state named World.

1. On the page titled with your execution ID, choose Edit state machine.

2. Make sure you're in the Design mode.

3. Choose the Pass state named World on the canvas, and then choose Output.

4. In the Result box, enter "World has been updated!".

5. Choose Save.

6. (Optional) In the Definition area, view the updated Amazon States Language definition of your
workflow.

{
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "Hello",
 "States": {
 "Hello": {

Step 7: Update your state machine 384

AWS Step Functions Developer Guide

 "Type": "Pass",
 "End": true
 }
 }
 },
 {
 "StartAt": "World",
 "States": {
 "World": {
 "Type": "Pass",
 "Result": "World has been updated!",
 "End": true
 }
 }
 }
],
 "Next": "PassState"
 }

7. Choose Execute.

8. In the Start execution dialog box that opens in a new tab, provide the following execution
input.

{
 "IsHelloWorldExample": true
}

9. Choose Start Execution.

10. (Optional) In the Graph view, choose the World step, and then choose Output. The output is
World has been updated!

Step 8: Clean up

To delete your state machine

1. From the navigation menu, choose State machines.

2. On the State machines page, select HelloWorld, and then choose Delete.

3. In the Delete state machine dialog box, type delete to confirm deletion.

4. Choose Delete.

Step 8: Clean up 385

AWS Step Functions Developer Guide

If deletion is successful, a green status bar appears at the top of your screen. The green status
bar tells you that your state machine is marked for deletion. Your state machine will be deleted
when all of its in-progress executions stop running.

To delete your execution role

1. Open the Roles page for IAM.

2. Choose the IAM role that Step Functions created for you. For example, StepFunctions-
HelloWorld-role-EXAMPLE.

3. Choose Delete role.

4. Choose Yes, delete.

Step 8: Clean up 386

https://console.aws.amazon.com/iam/home?#/roles

AWS Step Functions Developer Guide

Tutorials for Step Functions

The tutorials in this section can help you understand different aspects of working with AWS Step
Functions.

To complete these tutorials, you need an AWS account. If you don't have an AWS account, navigate
to https://aws.amazon.com/ and choose Create an AWS Account.

Topics

• Creating a Step Functions state machine that uses Lambda

• Handling error conditions using a Step Functions state machine

• Using Inline Map state to repeat an action

• Copying large-scale CSV data using Distributed Map

• Processing entire batch of data with a Lambda function

• Processing individual data items with a Lambda function

• Starting a State Machine Execution in Response to Amazon S3 Events

• Creating a Step Functions API using API Gateway

• Create a Step Functions state machine using AWS SAM

• Creating an Activity state machine using Step Functions

• Iterate a loop with Lambda

• Continuing Long-running Workflow Executions as a New Execution

• Deploying an Example Human Approval Project

• View X-Ray traces in Step Functions

• Gather Amazon S3 bucket info using AWS SDK service integrations

Creating a Step Functions state machine that uses Lambda

In this tutorial, you will create a single-step workflow using AWS Step Functions to invoke an AWS
Lambda function.

Note

Step Functions is based on state machines and tasks. In Step Functions, a workflow is
called a state machine, which is a series of event-driven steps. Each step in a workflow is

Create a Step Functions state machine that uses Lambda 387

https://aws.amazon.com/

AWS Step Functions Developer Guide

called a state. A Task state represents a unit of work that another AWS service, such as AWS
Lambda, performs. A Task state can call any AWS service or API.
For more information, see:

• What is AWS Step Functions?

• Call other AWS services

Lambda is well-suited for Task states, because Lambda functions are serverless and easy to write.
You can write code in the AWS Management Console or your favorite editor. AWS handles the
details of providing a computing environment for your function and running it.

In this topic:

• Step 1: Create a Lambda function

• Step 2: Test the Lambda function

• Step 3: Create a state machine

• Step 4: Run the state machine

Step 1: Create a Lambda function

Your Lambda function receives event data and returns a greeting message.

Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the Lambda console and choose Create function.

2. On the Create function page, choose Author from scratch.

3. For Function name, enter HelloFunction.

4. Keep the default selections for all other options, and then choose Create function.

5. After your Lambda function is created, copy the function's Amazon Resource Name
(ARN) displayed in the upper-right corner of the page. To copy the ARN, click

.
The following is an example ARN:

Step 1: Create a Lambda function 388

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

arn:aws:lambda:us-east-1:123456789012:function:HelloFunction

6. Copy the following code for the Lambda function into the Code source section of the
HelloFunction page.

export const handler = async(event, context, callback) => {
 callback(null, "Hello from " + event.who + "!");
};

This code assembles a greeting using the who field of the input data, which is provided by
the event object passed into your function. You add input data for this function later, when
you start a new execution. The callback method returns the assembled greeting from your
function.

7. Choose Deploy.

Step 2: Test the Lambda function

Test your Lambda function to see it in operation.

1. Choose Test.

2. For Event name, enter HelloEvent.

3. Replace the Event JSON data with the following.

{
 "who": "AWS Step Functions"
}

The "who" entry corresponds to the event.who field in your Lambda function, completing
the greeting. You will input the same input data when you run your state machine.

4. Choose Save and then choose Test.

5. To review the test results, under Execution result, expand Details.

Step 3: Create a state machine

Use the Step Functions console to create a state machine that invokes the Lambda function that
you created in Step 1.

Step 2: Test the Lambda function 389

AWS Step Functions Developer Guide

1. Open the Step Functions console and choose Create state machine.

Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda function you created earlier.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. In the States browser on the left, make sure you've chosen the Actions tab. Then, do the
following:

• Drag and drop the AWS Lambda Invoke API into the empty state labelled Drag first state
here.

5. In the Inspector panel on the right, configure the Lambda function:

a. In the API Parameters section, choose the Lambda function that you created earlier in the
Function name dropdown list.

b. Keep the default selection in the Payload dropdown list.

Step 3: Create a state machine 390

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

6. (Optional) Choose Definition to view the state machine's Amazon States Language (ASL)
definition, which is automatically generated based on your selections in the Actions tab and
Inspector panel.

7. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For example, enter the name LambdaStateMachine.

Note

Names of state machines, executions, and activity tasks must not exceed 80 characters
in length. These names must be unique for your account and AWS Region, and must
not contain any of the following:

• Whitespace

• Wildcard characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # % & ` ")

• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).

If your state machine is of type Express, you can provide the same name to multiple
executions of the state machine. Step Functions generates a unique execution ARN
for each Express state machine execution, even if multiple executions have the same
name.
Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

8. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

9. Choose Create.

10. In the Confirm role creation dialog box, choose Confirm to continue.
Step 3: Create a state machine 391

AWS Step Functions Developer Guide

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

After you create your state machine, you can run it.

1. On the State machines page, choose LambdaStateMachine.

2. Choose Start execution.

The Start execution dialog box is displayed.

3. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

4. In the Input area, replace the example execution data with the following.

{
 "who" : "AWS Step Functions"
}

"who" is the key name that your Lambda function uses to get the name of the person to greet.

5. Choose Start Execution.

Step 4: Run the state machine 392

AWS Step Functions Developer Guide

Your state machine's execution starts, and a new page showing your running execution is
displayed.

6. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution Details page – Interface overview.

Note

You can also pass payloads while invoking Lambda from a state machine. For more
information and examples about invoking Lambda by passing payload in the Parameters
field, see Invoke Lambda with Step Functions.

Handling error conditions using a Step Functions state machine

In this tutorial, you create an AWS Step Functions state machine with a Fallback states field.
The Catch field uses an AWS Lambda function to respond with conditional logic based on error
message type. This is a technique called function error handling.

For more information, see AWS Lambda function errors in Node.js in the AWS Lambda Developer
Guide.

Handling Error Conditions Using a State Machine 393

https://docs.aws.amazon.com/lambda/latest/dg/nodejs-exceptions.html

AWS Step Functions Developer Guide

Note

You can also create state machines that Retry on timeouts or those that use Catch to
transition to a specific state when an error or timeout occurs. For examples of these error
handling techniques, see Examples Using Retry and Using Catch.

In this topic:

• Step 1: Create a Lambda function that fails

• Step 2: Test the Lambda function

• Step 3: Create a state machine with a Catch field

• Step 4: Run the state machine

Step 1: Create a Lambda function that fails

Use a Lambda function to simulate an error condition.

Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the AWS Lambda console at https://console.aws.amazon.com/lambda/.

2. Choose Create function.

3. Choose Use a blueprint, enter step-functions into the search box, and then choose the
Throw a custom error blueprint.

4. For Function name, enter FailFunction.

5. For Role, keep the default selection (Create a new role with basic Lambda permissions).

6. The following code is displayed in the Lambda function code pane.

exports.handler = async (event, context) => {
 function CustomError(message) {
 this.name = 'CustomError';
 this.message = message;
 }

Step 1: Create a Lambda function that fails 394

https://console.aws.amazon.com/lambda/

AWS Step Functions Developer Guide

 CustomError.prototype = new Error();

 throw new CustomError('This is a custom error!');
};

The context object returns the error message This is a custom error!.

7. Choose Create function.

8. After your Lambda function is created, copy the function's Amazon Resource Name
(ARN) displayed in the upper-right corner of the page. To copy the ARN, click

.
The following is an example ARN:

arn:aws:lambda:us-east-1:123456789012:function:FailFunction

9. Choose Deploy.

Step 2: Test the Lambda function

Test your Lambda function to see it in operation.

1. On the FailFunction page, choose the Test tab, and then choose Test. You don't need to create
a test event.

2. To review the test results (the simulated error), under Execution result, expand Details.

Step 3: Create a state machine with a Catch field

Use the Step Functions console to create a state machine that uses a Task state with a Catch field.
Add a reference to your Lambda function in the Task state. The state machine invokes the Lambda
function, which fails during execution. Step Functions retries the function twice using exponential
backoff between retries.

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. Choose Code to open the code editor. In the code editor, you write and edit the Amazon States
Language (ASL) definition of your workflows.

Step 2: Test the Lambda function 395

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

5. Paste the following code, but replace the ARN of the Lambda function that you created earlier
in the Resource field.

{
 "Comment": "A Catch example of the Amazon States Language using an AWS Lambda
 function",
 "StartAt": "CreateAccount",
 "States": {
 "CreateAccount": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:FailFunction",
 "Catch": [{
 "ErrorEquals": ["CustomError"],
 "Next": "CustomErrorFallback"
 }, {
 "ErrorEquals": ["States.TaskFailed"],
 "Next": "ReservedTypeFallback"
 }, {
 "ErrorEquals": ["States.ALL"],
 "Next": "CatchAllFallback"
 }],
 "End": true
 },
 "CustomErrorFallback": {
 "Type": "Pass",
 "Result": "This is a fallback from a custom Lambda function exception",
 "End": true
 },
 "ReservedTypeFallback": {
 "Type": "Pass",
 "Result": "This is a fallback from a reserved error code",
 "End": true
 },
 "CatchAllFallback": {
 "Type": "Pass",
 "Result": "This is a fallback from any error code",
 "End": true
 }
 }
}

Step 3: Create a state machine with a Catch field 396

AWS Step Functions Developer Guide

This is a description of your state machine using the Amazon States Language. It defines a
single Task state named CreateAccount. For more information, see State Machine Structure.

For more information about the syntax of the Retry field, see State machine examples using
Retry and using Catch.

Note

Unhandled errors in Lambda are reported as Lambda.Unknown in the error
output. These include out-of-memory errors and function timeouts. You can
match on Lambda.Unknown, States.ALL, or States.TaskFailed to handle
these errors. When Lambda hits the maximum number of invocations, the error
is Lambda.TooManyRequestsException. For more information about Lambda
function errors, see Error handling and automatic retries in the AWS Lambda Developer
Guide.

6. (Optional) In the Graph visualization pane, see the real-time graphical visualization of your
workflow.

7. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter Catchfailure.

8. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

9. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Create a state machine with a Catch field 397

https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html

AWS Step Functions Developer Guide

Step 4: Run the state machine

After you create your state machine, you can run it.

1. On the State machines page, choose Catchfailure.

2. On the Catchfailure page, choose Start execution. The Start execution dialog box is
displayed.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

For example, to view your custom error message, choose the CreateAccount step in Graph
view, and then choose the Output tab.

Step 4: Run the state machine 398

AWS Step Functions Developer Guide

Note

You can preserve the state input with the error by using ResultPath. See Use
ResultPath to Include Both Error and Input in a Catch.

Using Inline Map state to repeat an action

This tutorial helps you get started with using the Map state in Inline mode. You use the Inline Map
state in your workflows to repeatedly perform an action. For more information about Inline mode,
see Map state in Inline mode.

In this tutorial, you use the Inline Map state to repeatedly generate version 4 universally unique
identifiers (v4 UUID). You start by creating a workflow that contains two Pass states and an Inline
Map state in the Workflow Studio. Then, you configure the input and output, including the input
JSON array for the Map state. The Map state returns an output array that contains the v4 UUIDs
generated for each item in the input array.

Contents

• Step 1: Create the workflow prototype

• Step 2: Configure input and output

• Step 3: Review the auto-generated Amazon States Language definition and save the workflow

Repeat an action using Inline Map state 399

AWS Step Functions Developer Guide

• Step 4: Run the state machine

Step 1: Create the workflow prototype

In this step, you create the prototype for your workflow using Workflow Studio. Workflow Studio
is a visual workflow designer available in the Step Functions console. You’ll choose the required
states from the Flow tab and use the drag and drop feature of Workflow Studio to create the
workflow prototype.

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. From the Flow tab, drag a Pass state and drop it to the empty state labelled Drag first state
here.

5. Drag a Map state and drop it below the Pass state. Rename the Map state to Map demo.

6. Drag a second Pass state and drop it inside of the Map demo state.

7. Rename the second Pass state to Generate UUID.

Step 2: Configure input and output

In this step, you configure input and output for all the states in your workflow prototype. First,
you inject some fixed data into the workflow using the first Pass state. This Pass state passes on
this data as input to the Map demo state. Within this input, you specify the node that contains the
input array the Map demo state should iterate over. Then you define the step that the Map demo
state should repeat to generate the v4 UUIDs. Finally, you configure the output to return for each
repetition.

1. Choose the first Pass state in your workflow prototype. In the Output tab, enter the following
under Result:

{
 "foo": "bar",
 "colors": [
 "red",
 "green",
 "blue",

Step 1: Create the workflow prototype 400

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 "yellow",
 "white"
]
}

2. Choose the Map demo state and in the Configuration tab, do the following:

a. Choose Provide a path to items array.

b. Specify the following reference path to select the node that contains the input array:

$.colors

3. Choose the Generate UUID state and in the Input tab, do the following:

a. Choose Transform input with Parameters.

b. Enter the following JSON input to generate the v4 UUIDs for each of the input array
items. You use the States.UUID intrinsic function to generate the UUIDs.

{
 "uuid.$": "States.UUID()"
}

4. For the Generate UUID state, choose the Output tab and do the following:

a. Choose Filter output with OutputPath.

b. Enter the following reference path to select the JSON node that contains the output array
items:

$.uuid

Step 3: Review the auto-generated Amazon States Language definition
and save the workflow

As you drag and drop states from the Flow panel onto the canvas, Workflow Studio automatically
composes the Amazon States Language (ASL) definition of your workflow in real-time. You can edit
this definition as required.

1. (Optional) Choose Definition on the Inspector panel to view the automatically-generated
Amazon States Language definition of your workflow.

Step 3: Review the auto-generated Amazon States Language definition and save the workflow 401

AWS Step Functions Developer Guide

Tip

You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

The following example shows the automatically generated Amazon States Language definition
for your workflow.

{
 "Comment": "Using Map state in Inline mode",
 "StartAt": "Pass",
 "States": {
 "Pass": {
 "Type": "Pass",
 "Next": "Map demo",
 "Result": {
 "foo": "bar",
 "colors": [
 "red",
 "green",
 "blue",
 "yellow",
 "white"
]
 }
 },
 "Map demo": {
 "Type": "Map",
 "ItemsPath": "$.colors",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "INLINE"
 },
 "StartAt": "Generate UUID",
 "States": {
 "Generate UUID": {
 "Type": "Pass",
 "End": true,
 "Parameters": {
 "uuid.$": "States.UUID()"

Step 3: Review the auto-generated Amazon States Language definition and save the workflow 402

AWS Step Functions Developer Guide

 },
 "OutputPath": "$.uuid"
 }
 }
 },
 "End": true
 }
 }
 }

2. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name InlineMapDemo.

3. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine configuration.

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 4: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. On the InlineMapDemo page, choose Start execution.

2. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Step 4: Run the state machine 403

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

To view the execution input and output side-by-side, choose Execution input and output.
Under Output, view the output array returned by the Map state. The following is an example of
the output array:

[
 "a85cbc7b-4e65-4ac2-97af-80ed504adc1d",
 "b05bca11-d481-414e-aa9a-88285ec6590d",
 "f42d59f7-bd32-480f-b270-caddb518ce2a",
 "15f18616-517d-4b69-b7c3-bf22222d2efd",
 "690bcfee-6d58-408c-a6b4-1995ccafdbd2"
]

Copying large-scale CSV data using Distributed Map

This tutorial helps you start using the Map state in Distributed mode. A Map state set to Distributed
is known as a Distributed Map state. You use the Distributed Map state in your workflows to iterate
over large-scale Amazon S3 data sources. The Map state runs each iteration as a child workflow

Getting started with using Distributed Map state 404

AWS Step Functions Developer Guide

execution, which enables high concurrency. For more information about Distributed mode, see Map
state in Distributed mode.

In this tutorial, you use the Distributed Map state to iterate over a CSV file in an Amazon S3 bucket.
You then return its contents, along with the ARN of a child workflow execution, in another Amazon
S3 bucket. You start by creating a workflow prototype in the Workflow Studio. Next, you set the
Map state's processing mode to Distributed, specify the CSV file as the dataset, and provide its
location to the Map state. You also specify the workflow type for the child workflow executions
that the Distributed Map state starts as Express.

In addition to these settings, you also specify other configurations, such as the maximum number
of concurrent child workflow executions and the location to export the Map result, for the example
workflow used in this tutorial.

Contents

• Prerequisites

• Step 1: Create the workflow prototype

• Step 2: Configure the required fields for Map state

• Step 3: Configure additional options

• Step 4: Configure the Lambda function

• Step 5: Update the workflow prototype

• Step 6: Review the auto-generated Amazon States Language definition and save the workflow

• Step 7: Run the state machine

Prerequisites

• Upload a CSV file to an Amazon S3 bucket. You must define a header row within your CSV file.
For information about size limits imposed on the CSV file and how to specify the header row, see
CSV file in an Amazon S3 bucket.

• Create another Amazon S3 bucket and a folder within that bucket to export the Map state result
to.

Prerequisites 405

AWS Step Functions Developer Guide

Important

Make sure that your Amazon S3 buckets are under the same AWS account and AWS Region
as your state machine.

Step 1: Create the workflow prototype

In this step, you create the prototype for your workflow using Workflow Studio. Workflow Studio is
a visual workflow designer available in the Step Functions console. You choose the required state
and API action from the Flow and Actions tabs respectively. You'll use the drag and drop feature of
Workflow Studio to create the workflow prototype.

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. From the Flow tab, drag a Map state and drop it to the empty state labelled Drag first state
here.

5. In the Configuration tab, for State name, enter Process data.

6. From the Actions tab, drag an AWS Lambda Invoke API action and drop it inside the Process
data state.

7. Rename the AWS Lambda Invoke state to Process CSV data.

Step 2: Configure the required fields for Map state

In this step, you configure the following required fields of the Distributed Map state:

• ItemReader – Specifies the dataset and its location from which the Map state can read input.

• ItemProcessor – Specifies the following values:

• ProcessorConfig – Set the Mode and ExecutionType to DISTRIBUTED and EXPRESS
respectively. This sets the Map state's processing mode and the workflow type for child
workflow executions that the Distributed Map state starts.

• StartAt – The first state in the Map workflow.

• States – Defines the Map workflow, which is a set of steps to repeat in each child workflow
execution.

Step 1: Create the workflow prototype 406

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

• ResultWriter – Specifies the Amazon S3 location where Step Functions writes the Distributed Map
state results.

Important

Make sure that the Amazon S3 bucket you use to export the results of a Map Run is under
the same AWS account and AWS Region as your state machine. Otherwise, your state
machine execution will fail with the States.ResultWriterFailed error.

To configure the required fields:

1. Choose the Process data state and, in the Configuration tab, do the following:

a. For Processing mode, choose Distributed.

b. For Item source, choose Amazon S3, and then choose CSV file in S3 from the S3 item
source dropdown list.

c. Do the following to specify the Amazon S3 location of your CSV file:

i. For S3 object, select Enter bucket and key from the dropdown list.

ii. For Bucket, enter the name of the Amazon S3 bucket, which contains the CSV file. For
example, sourceBucket.

iii. For Key, enter the name of the Amazon S3 object in which you saved the CSV file. You
must also specify the name of the CSV file in this field. For example, csvDataset/
ratings.csv.

d. For CSV files, you must also specify the location of the column header. To do this, choose
Additional configuration, and then for CSV header location keep the default selection of
First row if the first row of your CSV file is the header. Otherwise, choose Given to specify
the header within the state machine definition. For more information, see ReaderConfig.

e. For Child execution type, choose Express.

2. In Export location, to export the Map Run results to a specific Amazon S3 location, choose
Export Map state's output to Amazon S3.

3. Do the following:

a. For S3 bucket, choose Enter bucket name and prefix from the dropdown list.

Step 2: Configure the required fields for Map state 407

AWS Step Functions Developer Guide

b. For Bucket, enter the name of the Amazon S3 bucket where you want to export the
results to. For example, mapOutputs.

c. For Prefix, enter the folder name where you want to save the results to. For example,
resultData.

Step 3: Configure additional options

In addition to the required settings for a Distributed Map state, you can also specify other options.
These can include the maximum number of concurrent child workflow executions and the location
to export the Map state result to.

1. Choose the Process data state. Then, in Item source, choose Additional configuration.

2. Do the following:

a. Choose Modify items with ItemSelector to specify a custom JSON input for each child
workflow execution.

b. Enter the following JSON input:

{
 "index.$": "$$.Map.Item.Index",
 "value.$": "$$.Map.Item.Value"
}

For information about how to create a custom input, see ItemSelector.

3. In Runtime settings, for Concurrency limit, specify the number of concurrent child workflow
executions that the Distributed Map state can start. For example, enter 100.

4. Open a new window or tab on your browser and complete the configuration of the Lambda
function you'll use in this workflow, as explained in Step 4: Configure the Lambda function.

Step 4: Configure the Lambda function

Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

Step 3: Configure additional options 408

AWS Step Functions Developer Guide

1. Open the Lambda console and choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function:

a. For Function name, enter distributedMapLambda.

b. For Runtime, choose Node.js 16.x.

c. Keep all of the default selections and choose Create function.

d. After you create your Lambda function, copy the function's Amazon
Resource Name (ARN) displayed in the upper-right corner of the page. You'll
need to provide this in your workflow prototype. To copy the ARN, click

.
The following is an example ARN:

arn:aws:lambda:us-east-2:123456789012:function:distributedMapLambda

4. Copy the following code for the Lambda function and paste it into the Code source section of
the distributedMapLambda page.

exports.handler = async function(event, context) {
 console.log("Received Input:\n", event);

 return {
 'statusCode' : 200,
 'inputReceived' : event //returns the input that it received
 }
};

5. Choose Deploy. Once your function deploys, choose Test to see the output of your Lambda
function.

Step 5: Update the workflow prototype

In the Step Functions console, you'll update your workflow to add the Lambda function's ARN.

1. Return to the tab or window where you created the workflow prototype.

2. Choose the Process CSV data step, and in the Configuration tab, do the following:

a. For Integration type, choose Optimized.

Step 5: Update the workflow prototype 409

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

b. For Function name, start to enter the name of your Lambda function. Choose the function
from the dropdown list that appears, or choose Enter function name and provide the
Lambda function ARN.

Step 6: Review the auto-generated Amazon States Language definition
and save the workflow

As you drag and drop states from the Action and Flow tabs onto the canvas, Workflow Studio
automatically composes the Amazon States Language definition of your workflow in real-time. You
can edit this definition as required.

1. (Optional) Choose Definition on the Inspector panel and view the state machine definition.

Tip

You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

The following example code shows the automatically generated Amazon States Language
definition for your workflow.

{
 "Comment": "Using Map state in Distributed mode",
 "StartAt": "Process data",
 "States": {
 "Process data": {
 "Type": "Map",
 "MaxConcurrency": 100,
 "ItemReader": {
 "ReaderConfig": {
 "InputType": "CSV",
 "CSVHeaderLocation": "FIRST_ROW"
 },
 "Resource": "arn:aws:states:::s3:getObject",
 "Parameters": {
 "Bucket": "sourceBucket",
 "Key": "csvDataset/ratings.csv"
 }

Step 6: Review the auto-generated Amazon States Language definition and save the workflow 410

AWS Step Functions Developer Guide

 },
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "DISTRIBUTED",
 "ExecutionType": "EXPRESS"
 },
 "StartAt": "Process CSV data",
 "States": {
 "Process CSV data": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-
east-2:123456789012:function:distributedMapLambda"
 },
 "End": true
 }
 }
 },
 "Label": "Processdata",
 "End": true,
 "ResultWriter": {
 "Resource": "arn:aws:states:::s3:putObject",
 "Parameters": {
 "Bucket": "mapOutputs",
 "Prefix": "resultData"
 }
 },
 "ItemSelector": {
 "index.$": "$$.Map.Item.Index",
 "value.$": "$$.Map.Item.Value"
 }
 }
 }
}

2. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name DistributedMapDemo.

Step 6: Review the auto-generated Amazon States Language definition and save the workflow 411

AWS Step Functions Developer Guide

3. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine configuration.

4. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 7: Run the state machine

An execution is an instance of your state machine where you run your workflow to perform tasks.

1. On the DistributedMapDemo page, choose Start execution.

2. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

Step 7: Run the state machine 412

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

For example, choose the Map state, and then choose Map Run to open the Map Run Details
page. On this page, you can view all the execution details of the Distributed Map state and the
child workflow executions that it started. For information about this page, see Examining Map
Run.

Processing entire batch of data with a Lambda function

In this tutorial, you use the Distributed Map state's ItemBatcher field to process an entire batch of
items inside a Lambda function. Each batch contains a maximum of three items. The Distributed
Map state starts four child workflow executions, where each execution processes three items, while
one execution processes a single item. Each child workflow execution invokes a Lambda function
that iterates over the individual items present in the batch.

You'll create a state machine that performs multiplication on an array of integers. Say that
the integer array you provide as input is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the
multiplication factor is 7. Then, the resulting array formed after multiplying these integers with a
factor of 7, will be [7, 14, 21, 28, 35, 42, 49, 56, 63, 70].

Topics

• Step 1: Create the state machine

• Step 2: Create the Lambda function

• Step 3: Run the state machine

Step 1: Create the state machine

In this step, you create the workflow prototype of the state machine that passes an entire batch of
data to the Lambda function you'll create in Step 2.

Processing entire batch of data with a Lambda function 413

AWS Step Functions Developer Guide

• Use the following definition to create a state machine using the Step Functions console. For
information about creating a state machine, see Step 1: Create the workflow prototype in the
Getting started with using Distributed Map state tutorial.

In this state machine, you define a Distributed Map state that accepts an array of 10 integers
as input and passes this array to a Lambda function in batches of 3. The Lambda function
iterates over the individual items present in the batch and returns an output array named
multiplied. The output array contains the result of the multiplication performed on the
items passed in the input array.

Important

Make sure to replace the Amazon Resource Name (ARN) of the Lambda function in the
following code with the ARN of the function you'll create in Step 2.

{
 "StartAt": "Pass",
 "States": {
 "Pass": {
 "Type": "Pass",
 "Next": "Map",
 "Result": {
 "MyMultiplicationFactor": 7,
 "MyItems": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 }
 },
 "Map": {
 "Type": "Map",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "DISTRIBUTED",
 "ExecutionType": "STANDARD"
 },
 "StartAt": "Lambda Invoke",
 "States": {
 "Lambda Invoke": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {

Step 1: Create the state machine 414

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:functionName"
 },
 "Retry": [
 {
 "ErrorEquals": [
 "Lambda.ServiceException",
 "Lambda.AWSLambdaException",
 "Lambda.SdkClientException",
 "Lambda.TooManyRequestsException"
],
 "IntervalSeconds": 2,
 "MaxAttempts": 6,
 "BackoffRate": 2
 }
],
 "End": true
 }
 }
 },
 "End": true,
 "Label": "Map",
 "MaxConcurrency": 1000,
 "ItemBatcher": {
 "MaxItemsPerBatch": 3,
 "BatchInput": {
 "MyMultiplicationFactor.$": "$.MyMultiplicationFactor"
 }
 },
 "ItemsPath": "$.MyItems"
 }
 }
}

Step 2: Create the Lambda function

In this step, you create the Lambda function that processes all the items passed in the batch.

Step 2: Create the Lambda function 415

AWS Step Functions Developer Guide

Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

To create the Lambda function

1. Use the Lambda console to create a Python 3.9 Lambda function named
ProcessEntireBatch. For information about creating a Lambda function, see Step 4:
Configure the Lambda function in the Getting started with using Distributed Map state
tutorial.

2. Copy the following code for the Lambda function and paste it into the Code source section of
your Lambda function.

import json

def lambda_handler(event, context):
 multiplication_factor = event['BatchInput']['MyMultiplicationFactor']
 items = event['Items']

 results = [multiplication_factor * item for item in items]

 return {
 'statusCode': 200,
 'multiplied': results
 }

3. After you create your Lambda function, copy the function's ARN displayed
in the upper-right corner of the page. To copy the ARN, click the

.
The following is an example ARN, where function-name is the name of the Lambda function
(in this case, ProcessEntireBatch):

arn:aws:lambda:us-east-1:123456789012:function:function-name

You'll need to provide the function ARN in the state machine you created in Step 1.

4. Choose Deploy to deploy the changes.

Step 2: Create the Lambda function 416

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

Step 3: Run the state machine

When you run the state machine, the Distributed Map state starts four child workflow executions,
where each execution processes three items, while one execution processes a single item.

The following example shows the data passed to the ProcessEntireBatch function by one of
the child workflow executions.

{
 "BatchInput": {
 "MyMultiplicationFactor": 7
 },
 "Items": [1, 2, 3]
}

Given this input, the following example shows the output array named multiplied that is
returned by the Lambda function.

{
 "statusCode": 200,
 "multiplied": [7, 14, 21]
}

The state machine returns the following output that contains four arrays named multiplied for
the four child workflow executions. These arrays contain the multiplication results of the individual
input items.

[
 {
 "statusCode": 200,
 "multiplied": [7, 14, 21]
 },
 {
 "statusCode": 200,
 "multiplied": [28, 35, 42]
 },
 {
 "statusCode": 200,
 "multiplied": [49, 56, 63]
 },
 {

Step 3: Run the state machine 417

AWS Step Functions Developer Guide

 "statusCode": 200,
 "multiplied": [70]
 }
]

To combine all the array items returned into a single output array, you can use the ResultSelector
field. Define this field inside the Distributed Map state to find all the multiplied arrays, extract all
the items inside these arrays, and then combine them into a single output array.

To use the ResultSelector field, update your state machine definition as shown in the following
example.

{
 "StartAt": "Pass",
 "States": {
 ...
 ...
 "Map": {
 "Type": "Map",
 ...
 ...
 "ItemsPath": "$.MyItems",
 "ResultSelector": {
 "multiplied.$": "$..multiplied[*]"
 }
 }
 }
}

The updated state machine returns a consolidated output array as shown in the following example.

{
 "multiplied": [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
}

Processing individual data items with a Lambda function

In this tutorial, you use the Distributed Map state's ItemBatcher field to iterate over individual items
present in a batch using a Lambda function. The Distributed Map state starts four child workflow
executions. Each of these child workflows runs an Inline Map state. For its each iteration, the Inline

Processing individual data items with a Lambda function 418

AWS Step Functions Developer Guide

Map state invokes a Lambda function and passes a single item from the batch to the function. The
Lambda function then processes the item and returns the result.

You'll create a state machine that performs multiplication on an array of integers. Say that
the integer array you provide as input is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the
multiplication factor is 7. Then, the resulting array formed after multiplying these integers with a
factor of 7, will be [7, 14, 21, 28, 35, 42, 49, 56, 63, 70].

Topics

• Step 1: Create the state machine

• Step 2: Create the Lambda function

• Step 3: Run the state machine

Step 1: Create the state machine

In this step, you create the workflow prototype of the state machine that passes a single item from
a batch of items to each invocation of the Lambda function you'll create in Step 2.

• Use the following definition to create a state machine using the Step Functions console. For
information about creating a state machine, see Step 1: Create the workflow prototype in the
Getting started with using Distributed Map state tutorial.

In this state machine, you define a Distributed Map state that accepts an array of 10 integers
as input and passes these array items to the child workflow executions in batches. Each child
workflow execution receives a batch of three items as input and runs an Inline Map state. Every
iteration of the Inline Map state invokes a Lambda function and passes an item from the batch
to the function. This function then multiplies the item with a factor of 7 and returns the result.

The ouput of each child workflow execution is a JSON array that contains the multiplication
result for each of the items passed.

Important

Make sure to replace the Amazon Resource Name (ARN) of the Lambda function in the
following code with the ARN of the function you'll create in Step 2.

Step 1: Create the state machine 419

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

{
 "StartAt": "Pass",
 "States": {
 "Pass": {
 "Type": "Pass",
 "Next": "Map",
 "Result": {
 "MyMultiplicationFactor": 7,
 "MyItems": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
 }
 },
 "Map": {
 "Type": "Map",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "DISTRIBUTED",
 "ExecutionType": "STANDARD"
 },
 "StartAt": "InnerMap",
 "States": {
 "InnerMap": {
 "Type": "Map",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "INLINE"
 },
 "StartAt": "Lambda Invoke",
 "States": {
 "Lambda Invoke": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "arn:aws:lambda:us-
east-1:123456789012:function:functionName"
 },
 "Retry": [
 {
 "ErrorEquals": [
 "Lambda.ServiceException",
 "Lambda.AWSLambdaException",

Step 1: Create the state machine 420

AWS Step Functions Developer Guide

 "Lambda.SdkClientException",
 "Lambda.TooManyRequestsException"
],
 "IntervalSeconds": 2,
 "MaxAttempts": 6,
 "BackoffRate": 2
 }
],
 "End": true
 }
 }
 },
 "End": true,
 "ItemsPath": "$.Items",
 "ItemSelector": {
 "MyMultiplicationFactor.$": "$.BatchInput.MyMultiplicationFactor",
 "MyItem.$": "$$.Map.Item.Value"
 }
 }
 }
 },
 "End": true,
 "Label": "Map",
 "MaxConcurrency": 1000,
 "ItemsPath": "$.MyItems",
 "ItemBatcher": {
 "MaxItemsPerBatch": 3,
 "BatchInput": {
 "MyMultiplicationFactor.$": "$.MyMultiplicationFactor"
 }
 }
 }
 }
}

Step 2: Create the Lambda function

In this step, you create the Lambda function that processes each item passed from the batch.

Step 2: Create the Lambda function 421

AWS Step Functions Developer Guide

Important

Ensure that your Lambda function is under the same AWS Region as your state machine.

To create the Lambda function

1. Use the Lambda console to create a Python 3.9 Lambda function named
ProcessSingleItem. For information about creating a Lambda function, see Step 4:
Configure the Lambda function in the Getting started with using Distributed Map state
tutorial.

2. Copy the following code for the Lambda function and paste it into the Code source section of
your Lambda function.

import json

def lambda_handler(event, context):

 multiplication_factor = event['MyMultiplicationFactor']
 item = event['MyItem']

 result = multiplication_factor * item

 return {
 'statusCode': 200,
 'multiplied': result
 }

3. After you create your Lambda function, copy the function's ARN displayed
in the upper-right corner of the page. To copy the ARN, click the

.
The following is an example ARN, where function-name is the name of the Lambda function
(in this case, ProcessSingleItem):

arn:aws:lambda:us-east-1:123456789012:function:function-name

You'll need to provide the function ARN in the state machine you created in Step 1.

4. Choose Deploy to deploy the changes.

Step 2: Create the Lambda function 422

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

Step 3: Run the state machine

When you run the state machine, the Distributed Map state starts four child workflow executions,
where each execution processes three items, while one execution processes a single item.

The following example shows the data passed to one of the ProcessSingleItem function
invocations inside a child workflow execution.

{
 "MyMultiplicationFactor": 7,
 "MyItem": 1
}

Given this input, the following example shows the output that is returned by the Lambda function.

{
 "statusCode": 200,
 "multiplied": 7
}

The following example shows the output JSON array for one of the child workflow executions.

[
 {
 "statusCode": 200,
 "multiplied": 7
 },
 {
 "statusCode": 200,
 "multiplied": 14
 },
 {
 "statusCode": 200,
 "multiplied": 21
 }
]

The state machine returns the following output that contains four arrays for the four child
workflow executions. These arrays contain the multiplication results of the individual input items.

Step 3: Run the state machine 423

AWS Step Functions Developer Guide

Finally, the state machine output is an array named multiplied that combines all the
multiplication results returned for the four child workflow executions.

[
 [
 {
 "statusCode": 200,
 "multiplied": 7
 },
 {
 "statusCode": 200,
 "multiplied": 14
 },
 {
 "statusCode": 200,
 "multiplied": 21
 }
],
 [
 {
 "statusCode": 200,
 "multiplied": 28
 },
 {
 "statusCode": 200,
 "multiplied": 35
 },
 {
 "statusCode": 200,
 "multiplied": 42
 }
],
 [
 {
 "statusCode": 200,
 "multiplied": 49
 },
 {
 "statusCode": 200,
 "multiplied": 56
 },
 {
 "statusCode": 200,

Step 3: Run the state machine 424

AWS Step Functions Developer Guide

 "multiplied": 63
 }
],
 [
 {
 "statusCode": 200,
 "multiplied": 70
 }
]
]

To combine all the multiplication results returned by the child workflow executions into a single
output array, you can use the ResultSelector field. Define this field inside the Distributed Map state
to find all the results, extract the individual results, and then combine them into a single output
array named multiplied.

To use the ResultSelector field, update your state machine definition as shown in the following
example.

{
 "StartAt": "Pass",
 "States": {
 ...
 ...
 "Map": {
 "Type": "Map",
 ...
 ...
 "ItemBatcher": {
 "MaxItemsPerBatch": 3,
 "BatchInput": {
 "MyMultiplicationFactor.$": "$.MyMultiplicationFactor"
 }
 },
 "ItemsPath": "$.MyItems",
 "ResultSelector": {
 "multiplied.$": "$..multiplied"
 }
 }
 }
}

Step 3: Run the state machine 425

AWS Step Functions Developer Guide

The updated state machine returns a consolidated output array as shown in the following example.

{
 "multiplied": [7, 14, 21, 28, 35, 42, 49, 56, 63, 70]
}

Starting a State Machine Execution in Response to Amazon S3
Events

You can execute an AWS Step Functions state machine in response to an Amazon EventBridge rule.

This tutorial shows you how to configure a state machine as a target for an Amazon EventBridge
rule. This rule will start a state machine execution when files are added to an Amazon Simple
Storage Service (Amazon S3) bucket.

For a practical application, you could launch a state machine that performs operations on files that
you add to the bucket, such as creating thumbnails or running Amazon Rekognition analysis on
image and video files.

In this tutorial, you start the execution of a Helloworld state machine by uploading a file
to an Amazon S3 bucket. Then you review the example input of that execution to identify
the information that is included in input from the Amazon S3 event notification delivered to
EventBridge.

Topics

• Prerequisite: Create a State Machine

• Step 1: Create a Bucket in Amazon S3

• Step 2: Enable Amazon S3 Event Notification with EventBridge

• Step 3: Create an Amazon EventBridge Rule

• Step 4: Test the Rule

• Example of Execution Input

Prerequisite: Create a State Machine

Before you can configure a state machine as an Amazon EventBridge target, you must create the
state machine.

Starting a State Machine Execution in Response to Amazon S3 Events 426

AWS Step Functions Developer Guide

• To create a basic state machine, use the Creating state machine that uses a Lambda function
tutorial.

• If you already have a Helloworld state machine, proceed to the next step.

Step 1: Create a Bucket in Amazon S3

Now that you have a Helloworld state machine, you need to create an Amazon S3 bucket which
stores your files. In Step 3 of this tutorial, you set up a rule so that when a file is uploaded to this
bucket, EventBridge triggers an execution of your state machine.

1. Navigate to the Amazon S3 console, and then choose Create bucket to create the bucket in
which you want to store your files and trigger an Amazon S3 event rule.

2. Enter a Bucket name, such as username-sfn-tutorial.

Note

Bucket names must be unique across all existing bucket names in all AWS Regions in
Amazon S3. Use your own username to make this name unique. You need to create all
resources in the same AWS Region.

3. Keep all the default selections on the page, and choose Create bucket.

Step 2: Enable Amazon S3 Event Notification with EventBridge

After you create the Amazon S3 bucket, configure it to send events to EventBridge whenever
certain events happen in your S3 bucket, such as file uploads.

1. Navigate to the Amazon S3 console.

2. In the Buckets list, choose the name of the bucket that you want to enable events for.

3. Choose Properties.

4. Scroll down the page to view the Event Notifications section, and then choose Edit in the
Amazon EventBridge subsection.

5. Under Send notifications to Amazon EventBridge for all events in this bucket, choose On.

6. Choose Save changes.

Step 1: Create a Bucket in Amazon S3 427

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/s3/

AWS Step Functions Developer Guide

Note

After you enable EventBridge, it takes around five minutes for the changes to take
effect.

Step 3: Create an Amazon EventBridge Rule

After you have a state machine, and have created the Amazon S3 bucket and configured it to send
event notifications to EventBridge, create an EventBridge rule.

Note

You must configure EventBridge rule in the same AWS Region as the Amazon S3 bucket.

To create the rule

1. Navigate to the Amazon EventBridge console, choose Create rule.

Tip

Alternatively, in the navigation pane on the EventBridge console, choose Rules under
Buses, and then choose Create rule.

2. Enter a Name for your rule (for example, S3Step Functions) and optionally enter a
Description for the rule.

3. For Event bus and Rule type, keep the default selections.

4. Choose Next. This opens the Build event pattern page.

5. Scroll down to the Event pattern section, and do the following:

a. For Event source, keep the default selection of AWS events or EventBridge partner
events.

b. For AWS service, choose Simple Storage Service (S3).

c. For Event type, choose Amazon S3 Event Notification.

d. Choose Specific event(s), and then choose Object Created.

Step 3: Create an Amazon EventBridge Rule 428

https://console.aws.amazon.com/events/

AWS Step Functions Developer Guide

e. Choose Specific bucket(s) by name and enter the bucket name you created in Step 1
(username-sfn-tutorial) to store your files.

f. Choose Next. This opens the Select target(s) page.

To create the target

1. In Target 1, keep the default selection of AWS service.

2. In the Select a target dropdown list, select Step Functions state machine.

3. In the State machine list, select the state machine that you created earlier (for example,
Helloworld).

4. Keep all the default selections on the page, and choose Next. This opens the Configure tags
page.

5. Choose Next again. This opens the Review and create page.

6. Review the details of the rule and choose Create rule.

The rule is created and the Rules page is displayed, listing all your Amazon EventBridge rules.

Step 4: Test the Rule

Now that everything is in place, test adding a file to the Amazon S3 bucket, and then look at the
input of the resulting state machine execution.

1. Add a file to your Amazon S3 bucket.

Navigate to the Amazon S3 console, choose the bucket you created to store files (username-
sfn-tutorial), and then choose Upload.

2. Add a file, for example test.png, and then choose Upload.

This launches an execution of your state machine, passing information from AWS CloudTrail as
the input.

3. Check the execution for your state machine.

Navigate to the Step Functions console and select the state machine used in your Amazon
EventBridge rule (Helloworld).

4. Select the most recent execution of that state machine and expand the Execution Input
section.

Step 4: Test the Rule 429

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

This input includes information such as the bucket name and the object name. In a real-world
use case, a state machine can use this input to perform actions on that object.

Example of Execution Input

The following example shows a typical input to the state machine execution.

{
 "version": "0",
 "id": "6c540ad4-0671-9974-6511-756fbd7771c3",
 "detail-type": "Object Created",
 "source": "aws.s3",
 "account": "123456789012",
 "time": "2023-06-23T23:45:48Z",
 "region": "us-east-2",
 "resources": [
 "arn:aws:s3:::username-sfn-tutorial"
],
 "detail": {
 "version": "0",
 "bucket": {
 "name": "username-sfn-tutorial"
 },
 "object": {
 "key": "test.png",
 "size": 800704,
 "etag": "f31d8546bb67845b4d3048cde533b937",
 "sequencer": "00621049BA9A8C712B"
 },
 "request-id": "79104EXAMPLEB723",
 "requester": "123456789012",
 "source-ip-address": "200.0.100.11",
 "reason": "PutObject"
 }
 }

Example of Execution Input 430

AWS Step Functions Developer Guide

Creating a Step Functions API using API Gateway

You can use Amazon API Gateway to associate your AWS Step Functions APIs with methods in an
API Gateway API. When an HTTPS request is sent to an API method, API Gateway invokes your Step
Functions API actions.

This tutorial shows you how to create an API that uses one resource and the POST method to
communicate with the StartExecution API action. You'll use the AWS Identity and Access
Management (IAM) console to create a role for API Gateway. Then, you'll use the API Gateway
console to create an API Gateway API, create a resource and method, and map the method to the
StartExecution API action. Finally, you'll deploy and test your API.

Note

Although Amazon API Gateway can start a Step Functions execution by calling
StartExecution, you must call DescribeExecution to get the result.

Topics

• Step 1: Create an IAM Role for API Gateway

• Step 2: Create your API Gateway API

• Step 3: Test and Deploy the API Gateway API

Step 1: Create an IAM Role for API Gateway

Before you create your API Gateway API, you need to give API Gateway permission to call Step
Functions API actions.

To set up permissions for API Gateway

1. Sign in to the IAM console and choose Roles, Create role.

2. On the Select trusted entity page, do the following:

a. For Trusted entity type, keep the default selection of AWS service.

b. For Use case, choose API Gateway from the dropdown list.

3. Select API Gateway, and then choose Next.

4. On the Add permissions page, choose Next.

Creating a Step Functions API using API Gateway 431

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide

5. (Optional) On the Name, review, and create page, enter details, such as the role name. For
example, enter APIGatewayToStepFunctions.

6. Choose Create role.

The IAM role appears in the list of roles.

7. Choose the name of your role and note the Role ARN, as shown in the following example.

arn:aws:iam::123456789012:role/APIGatewayToStepFunctions

To attach a policy to the IAM role

1. On the Roles page, search for your role (APIGatewayToStepFunctions), and then choose
the role.

2. On the Permissions tab, choose Add permissions, and then choose Attach policies.

3. On the Attach Policy page, search for AWSStepFunctionsFullAccess, choose the policy,
and then choose Add permissions.

Step 2: Create your API Gateway API

After you create your IAM role, you can create your custom API Gateway API.

To create the API

1. Open the Amazon API Gateway console, and then choose Create API.

2. On the Choose an API type page, in the REST API pane, choose Build.

3. On the Create REST API page, select New API, and then enter StartExecutionAPI for the
API name.

4. Keep API endpoint type as Regional, and then choose Create API.

To create a resource

1. On the Resources page of StartExecutionAPI, choose Create resource.

2. On the Create resource page, enter execution for Resource name, and then choose Create
resource.

Step 2: Create your API Gateway API 432

https://console.aws.amazon.com/apigateway/

AWS Step Functions Developer Guide

To create a POST method

1. Choose the /execution resource, and then choose Create method.

2. For Method type, choose POST.

3. For Integration type, choose AWS service.

4. For AWS Region, choose a Region from the list.

Note

For Regions that currently support Step Functions, see Supported Regions.

5. For AWS service, choose Step Functions from the list.

6. Keep AWS subdomain blank.

7. For HTTP method, choose POST from the list.

Note

All Step Functions API actions use the HTTP POST method.

8. For Action type, select Use action name.

9. For Action name, enter StartExecution.

10. For Execution role, enter the role ARN of the IAM role that you created earlier, as shown in the
following example.

arn:aws:iam::123456789012:role/APIGatewayToStepFunctions

Step 2: Create your API Gateway API 433

AWS Step Functions Developer Guide

11. Keep the default options for Credential cache and Default timeout, and then choose Save.

Step 2: Create your API Gateway API 434

AWS Step Functions Developer Guide

The visual mapping between API Gateway and Step Functions is displayed on the /execution -
POST - Method execution page.

Step 3: Test and Deploy the API Gateway API

Once you have created the API, test and deploy it.

To test the communication between API Gateway and Step Functions

1. On the /execution - POST - Method Execution page, choose the Test tab. You might need to
choose the right arrow button to show the tab.

2. On the /execution - POST - Method Test tab, copy the following request parameters into
the Request body section using the ARN of an existing state machine (or create a new state
machine that uses a Lambda function), and then choose Test.

{
 "input": "{}",
 "name": "MyExecution",
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld"
}

Step 3: Test and Deploy the API Gateway API 435

AWS Step Functions Developer Guide

For more information, see the StartExecution Request Syntax in the AWS Step Functions
API Reference.

Note

If you don't want to include the ARN of your state machine in the body of your API
Gateway call, you can configure a mapping template in the Integration request tab, as
shown in the following example.

{
 "input": "$util.escapeJavaScript($input.json('$'))",
 "stateMachineArn": "$util.escapeJavaScript($stageVariables.arn)"
}

With this approach, you can specify ARNs of different state machines based on your
development stage (for example, dev, test, and prod). For more information about
specifying stage variables in a mapping template, see $stageVariables in the API
Gateway Developer Guide.

3. The execution starts and the execution ARN and its epoch date are displayed under Response
body.

{
 "executionArn": "arn:aws:states:us-
east-1:123456789012:execution:HelloWorld:MyExecution",
 "startDate": 1486768956.878
}

Note

You can view the execution by choosing your state machine on the AWS Step Functions
console.

To deploy your API

1. On the Resources page of StartExecutionAPI, choose Deploy API.

Step 3: Test and Deploy the API Gateway API 436

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-mapping-template-reference.html#stagevariables-template-reference
https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/

AWS Step Functions Developer Guide

2. For Stage, select New stage.

3. For Stage name, enter alpha.

4. (Optional) For Description, enter a description.

5. Choose Deploy.

To test your deployment

1. On the Stages page of StartExecutionAPI, expand alpha, /, /execution, POST, and then
choose the POST method.

2. Under Method overrides, choose the copy icon to copy your API's invoke URL. The full URL
should look like the following example.

https://a1b2c3d4e5.execute-api.us-east-1.amazonaws.com/alpha/execution

3. From the command line, run the curl command using the ARN of your state machine, and
then invoke the URL of your deployment, as shown in the following example.

curl -X POST -d '{"input": "{}","name": "MyExecution","stateMachineArn":
 "arn:aws:states:us-east-1:123456789012:stateMachine:HelloWorld"}' https://
a1b2c3d4e5.execute-api.us-east-1.amazonaws.com/alpha/execution

The execution ARN and its epoch date are returned, as shown in the following example.

{"executionArn":"arn:aws:states:us-
east-1:123456789012:execution:HelloWorld:MyExecution","startDate":1.486772644911E9}

Note

If you get a "Missing Authentication Token" error, make sure that the invoke URL ends
with /execution.

Create a Step Functions state machine using AWS SAM

In this guide, you download, build, and deploy a sample AWS SAM application that contains an
AWS Step Functions state machine. This application creates a mock stock trading workflow which

Create a Step Functions state machine using AWS SAM 437

AWS Step Functions Developer Guide

runs on a pre-defined schedule (note that the schedule is disabled by default to avoid incurring
charges).

The following diagram shows the components of this application:

The following is a preview of commands that you run to create your sample application. For more
details about each of these commands, see the sections later in this page

Step 1 - Download a sample application. For this tutorial you
will follow the prompts to select an AWS Quick Start Template
called 'Multi-step workflow'
sam init

Step 2 - Build your application
cd project-directory
sam build

Step 3 - Deploy your application
sam deploy --guided

Prerequisites

This guide assumes that you've completed the steps in the Installing the AWS SAM CLI for your OS.
It assumes that you've done the following:

1. Created an AWS account.

2. Configured IAM permissions.

3. Installed Homebrew. Note: Homebrew is only a prerequisite for Linux and macOS.

Prerequisites 438

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

AWS Step Functions Developer Guide

4. Installed the AWS SAM CLI. Note: Make sure you have version 0.52.0 or later. You can check
which version you have by executing the command sam --version.

Step 1: Download a Sample AWS SAM Application

Command to run:

sam init

Follow the on-screen prompts to select the following:

1. Template: AWS Quick Start Templates

2. Language: Python, Ruby, NodeJS, Go, Java, or .NET

3. Project name: (name of your choice - default is sam-app)

4. Quick start application: Multi-step workflow

What AWS SAM is doing:

This command creates a directory with the name you provided for the 'Project name' prompt
(default is sam-app). The specific contents of the directory will depend on the language you
choose.

Following are the directory contents when you choose one of the Python runtimes:

README.md
functions
__init__.py
stock_buyer
__init__.py
app.py
requirements.txt
stock_checker
__init__.py
app.py
requirements.txt
stock_seller
__init__.py
app.py
requirements.txt
statemachine

Step 1: Download a Sample AWS SAM Application 439

AWS Step Functions Developer Guide

stock_trader.asl.json
template.yaml
tests
 ### unit
 ### __init__.py
 ### test_buyer.py
 ### test_checker.py
 ### test_seller.py

There are two especially interesting files that you can take a look at:

• template.yaml: Contains the AWS SAM template that defines your application's AWS
resources.

• statemachine/stockTrader.asl.json: Contains the application's state machine definition,
which is written in Amazon States Language.

You can see the following entry in the template.yaml file, which points to the state machine
definition file:

 Properties:
 DefinitionUri: statemachine/stock_trader.asl.json

It can be helpful to keep the state machine definition as a separate file instead of embedding it in
the AWS SAM template. For example, tracking changes to the state machine definition is easier if
you don't include the definition in the template. You can use the Workflow Studio to create and
maintain the state machine definition, and export the definition from the console directly to the
Amazon States Language specification file without merging it into the template.

For more information about the sample application, see the README.md file in the project
directory.

Step 2: Build Your Application

Command to run:

First change into the project directory (that is, the directory where the template.yaml file for the
sample application is located; by default is sam-app), then run this command:

sam build

Step 2: Build Your Application 440

AWS Step Functions Developer Guide

Example output:

 Build Succeeded

 Built Artifacts : .aws-sam/build
 Built Template : .aws-sam/build/template.yaml

 Commands you can use next
 =========================
 [*] Invoke Function: sam local invoke
 [*] Deploy: sam deploy --guided

What AWS SAM is doing:

The AWS SAM CLI comes with abstractions for a number of Lambda runtimes to build your
dependencies, and copies all build artifacts into staging folders so that everything is ready to be
packaged and deployed. The sam build command builds any dependencies that your application
has, and copies the build artifacts to folders under .aws-sam/build.

Step 3: Deploy Your Application to the AWS Cloud

Command to run:

sam deploy --guided

Follow the on-screen prompts. You can just respond with Enter to accept the default options
provided in the interactive experience.

What AWS SAM is doing:

This command deploys your application to the AWS cloud. It take the deployment artifacts you
build with the sam build command, packages and uploads them to an Amazon S3 bucket created
by AWS SAM CLI, and deploys the application using AWS CloudFormation. In the output of the
deploy command you can see the changes being made to your AWS CloudFormation stack.

You can verify the example Step Functions state machine was successfully deployed by following
these steps:

Step 3: Deploy Your Application to the AWS Cloud 441

AWS Step Functions Developer Guide

1. Sign in to the AWS Management Console and open the Step Functions console at https://
console.aws.amazon.com/states/.

2. In the left navigation, choose State machines.

3. Find and choose your new state machine in the list. It will be named
StockTradingStateMachine-<unique-hash>.

4. Choose the Definition tab.

You should now see a visual representation of your state machine. You can verify that the
visual representation matches the state machine definition found in the statemachine/
stockTrader.asl.json file of your project directory.

Troubleshooting

SAM CLI error: "no such option: --guided"

When executing sam deploy, you see the following error:

Error: no such option: --guided

This means that you are using an older version of the AWS SAM CLI that does not support the --
guided parameter. To fix this, you can either update your version of AWS SAM CLI to 0.33.0 or
later, or omit the --guided parameter from the sam deploy command.

SAM CLI error: "Failed to create managed resources: Unable to locate credentials"

When executing sam deploy, you see the following error:

Error: Failed to create managed resources: Unable to locate credentials

This means that you have not set up AWS credentials to enable the AWS SAM CLI to make AWS
service calls. To fix this, you must set up AWS credentials. For more information, see Setting Up
AWS Credentials in the AWS Serverless Application Model Developer Guide.

Troubleshooting 442

https://console.aws.amazon.com/states/
https://console.aws.amazon.com/states/
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started-set-up-credentials.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-getting-started-set-up-credentials.html

AWS Step Functions Developer Guide

Clean Up

If you no longer need the AWS resources you created by running this tutorial, you can remove them
by deleting the AWS CloudFormation stack that you deployed.

To delete the AWS CloudFormation stack created with this tutorial using the AWS Management
Console, follow these steps:

1. Sign in to the AWS Management Console and open the AWS CloudFormation console at
https://console.aws.amazon.com/cloudformation.

2. In the left navigation pane, choose Stacks.

3. In the list of stacks, choose sam-app (or the name of stack you created).

4. Choose Delete.

When done, the status of the of the stack will change to DELETE_COMPLETE.

Alternatively, you can delete the AWS CloudFormation stack by executing the following AWS CLI
command:

aws cloudformation delete-stack --stack-name sam-app --region region

Verify Deleted Stack

For both methods of deleting the AWS CloudFormation stack, you can verify it was deleted
by going to the https://console.aws.amazon.com/cloudformation, choosing Stacks in the left
navigation pane, and choosing Deleted in the dropdown to the right of the search text box. You
should see your stack name sam-app (or the name of the stack you created) in the list of deleted
stacks.

Creating an Activity state machine using Step Functions

This tutorial shows you how to create an activity-based state machine using Java and AWS Step
Functions. Activities allow you to control worker code that runs somewhere else from your state
machine. For an overview, see Activities in How Step Functions works.

To complete this tutorial, you need the following:

Clean Up 443

https://console.aws.amazon.com/cloudformation/
https://console.aws.amazon.com/cloudformation/

AWS Step Functions Developer Guide

• The SDK for Java. The example activity in this tutorial is a Java application that uses the AWS
SDK for Java to communicate with AWS.

• AWS credentials in the environment or in the standard AWS configuration file. For more
information, see Set Up Your AWS Credentials in the AWS SDK for Java Developer Guide.

Topics

• Step 1: Create an Activity

• Step 2: Create a state machine

• Step 3: Implement a Worker

• Step 4: Run the state machine

• Step 5: Run and Stop the Worker

Step 1: Create an Activity

You must make Step Functions aware of the activity whose worker (a program) you want to create.
Step Functions responds with an Amazon Resource Name(ARN) that establishes an identity for the
activity. Use this identity to coordinate the information passed between your state machine and
worker.

Important

Ensure that your activity task is under the same AWS account as your state machine.

1. In the Step Functions console, in the navigation pane on the left, choose Activities.

2. Choose Create activity.

3. Enter a Name for the activity, for example, get-greeting, and then choose Create activity.

4. When your activity task is created, make a note of its ARN, as shown in the following example.

arn:aws:states:us-east-1:123456789012:activity:get-greeting

Step 1: Create an Activity 444

https://aws.amazon.com/sdk-for-java/
https://docs.aws.amazon.com/AWSSdkDocsJava/latest/DeveloperGuide/set-up-creds.html
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

Step 2: Create a state machine

Create a state machine that determines when your activity is invoked and when your worker should
perform its primary work, collect its results, and return them. To create the state machine, you'll
use the Code editor of Workflow Studio.

1. In the Step Functions console, in the navigation pane on the left, choose State machines.

2. On the State machines page, choose Create state machine.

3. In the Choose a template dialog box, select Blank.

4. Choose Select. This opens Workflow Studio in Design mode.

5. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the code editor. To do this, choose Code.

6. Remove the existing boilerplate code and paste the following code. Remember to replace
the example ARN in this code with the ARN of the activity task that you created earlier in the
Resource field.

{
 "Comment": "An example using a Task state.",
 "StartAt": "getGreeting",
 "Version": "1.0",
 "TimeoutSeconds": 300,
 "States":
 {
 "getGreeting": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:get-greeting",
 "End": true
 }
 }
}

This is a description of your state machine using the Amazon States Language (ASL). It defines
a single Task state named getGreeting. For more information, see State Machine Structure.

7. On the Graph visualization pane, make sure the workflow graph for the ASL definition you
added looks similar to the following graph.

Step 2: Create a state machine 445

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

8. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ActivityStateMachine.

9. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

10. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Implement a Worker

Create a worker. A worker is a program that is responsible for:

• Polling Step Functions for activities using the GetActivityTask API action.

Step 3: Implement a Worker 446

AWS Step Functions Developer Guide

• Performing the work of the activity using your code, (for example, the getGreeting() method
in the following code).

• Returning the results using the SendTaskSuccess, SendTaskFailure, and
SendTaskHeartbeat API actions.

Note

For a more complete example of an activity worker, see Example Activity Worker in Ruby.
This example provides an implementation based on best practices, which you can use as a
reference for your activity worker. The code implements a consumer-producer pattern with
a configurable number of threads for pollers and activity workers.

To implement the worker

1. Create a file named GreeterActivities.java.

2. Add the following code to it.

import com.amazonaws.ClientConfiguration;
import com.amazonaws.auth.EnvironmentVariableCredentialsProvider;
import com.amazonaws.regions.Regions;
import com.amazonaws.services.stepfunctions.AWSStepFunctions;
import com.amazonaws.services.stepfunctions.AWSStepFunctionsClientBuilder;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskRequest;
import com.amazonaws.services.stepfunctions.model.GetActivityTaskResult;
import com.amazonaws.services.stepfunctions.model.SendTaskFailureRequest;
import com.amazonaws.services.stepfunctions.model.SendTaskSuccessRequest;
import com.amazonaws.util.json.Jackson;
import com.fasterxml.jackson.databind.JsonNode;
import java.util.concurrent.TimeUnit;

public class GreeterActivities {

 public String getGreeting(String who) throws Exception {
 return "{\"Hello\": \"" + who + "\"}";
 }

 public static void main(final String[] args) throws Exception {
 GreeterActivities greeterActivities = new GreeterActivities();

Step 3: Implement a Worker 447

AWS Step Functions Developer Guide

 ClientConfiguration clientConfiguration = new ClientConfiguration();
 clientConfiguration.setSocketTimeout((int)TimeUnit.SECONDS.toMillis(70));

 AWSStepFunctions client = AWSStepFunctionsClientBuilder.standard()
 .withRegion(Regions.US_EAST_1)
 .withCredentials(new EnvironmentVariableCredentialsProvider())
 .withClientConfiguration(clientConfiguration)
 .build();

 while (true) {
 GetActivityTaskResult getActivityTaskResult =
 client.getActivityTask(
 new
 GetActivityTaskRequest().withActivityArn(ACTIVITY_ARN));

 if (getActivityTaskResult.getTaskToken() != null) {
 try {
 JsonNode json =
 Jackson.jsonNodeOf(getActivityTaskResult.getInput());
 String greetingResult =

 greeterActivities.getGreeting(json.get("who").textValue());
 client.sendTaskSuccess(
 new SendTaskSuccessRequest().withOutput(

 greetingResult).withTaskToken(getActivityTaskResult.getTaskToken()));
 } catch (Exception e) {
 client.sendTaskFailure(new
 SendTaskFailureRequest().withTaskToken(
 getActivityTaskResult.getTaskToken()));
 }
 } else {
 Thread.sleep(1000);
 }
 }
 }
}

Note

The EnvironmentVariableCredentialsProvider class in this example assumes
that the AWS_ACCESS_KEY_ID (or AWS_ACCESS_KEY) and AWS_SECRET_KEY (or
AWS_SECRET_ACCESS_KEY) environment variables are set. For more information

Step 3: Implement a Worker 448

AWS Step Functions Developer Guide

about providing the required credentials to the factory, see AWSCredentialsProvider
in the AWS SDK for Java API Reference and Set Up AWS Credentials and Region for
Development in the AWS SDK for Java Developer Guide.
By default the AWS SDK will wait up to 50 seconds to receive data from the server
for any operation. The GetActivityTask operation is a long-poll operation
that will wait up to 60 seconds for the next available task. To prevent receiving a
SocketTimeoutException error, set SocketTimeout to 70 seconds.

3. In the parameter list of the GetActivityTaskRequest().withActivityArn()
constructor, replace the ACTIVITY_ARN value with the ARN of the activity task that you
created earlier.

Step 4: Run the state machine

When you start the execution of the state machine, your worker polls Step Functions for activities,
performs its work (using the input that you provide), and returns its results.

1. On the ActivityStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. In the Input box, enter the following JSON input to run your workflow.

{
 "who": "AWS Step Functions"
}

Step 4: Run the state machine 449

https://docs.aws.amazon.com/AWSJavaSDK/latest/javadoc/com/amazonaws/auth/AWSCredentialsProvider.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-credentials.html

AWS Step Functions Developer Guide

c. Choose Start execution.

d. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 5: Run and Stop the Worker

To have the worker poll your state machine for activities, you must run the worker.

1. On the command line, navigate to the directory in which you created
GreeterActivities.java.

2. To use the AWS SDK, add the full path of the lib and third-party directories to the
dependencies of your build file and to your Java CLASSPATH. For more information, see
Downloading and Extracting the SDK in the AWS SDK for Java Developer Guide.

3. Compile the file.

$ javac GreeterActivities.java

4. Run the file.

$ java GreeterActivities

5. On the Step Functions console, navigate to the Execution Details page.

6. When the execution completes, examine the results of your execution.

7. Stop the worker.

Iterate a loop with Lambda

In this tutorial, you implement a design pattern that uses a state machine and an AWS Lambda
function to iterate a loop a specific number of times.

Step 5: Run and Stop the Worker 450

https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/setup-install.html#download-and-extract-sdk
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Use this design pattern any time you need to keep track of the number of loops in a state
machine. This implementation can help you break up large tasks or long-running executions into
smaller chunks, or to end an execution after a specific number of events. You can use a similar
implementation to periodically end and restart a long-running execution to avoid exceeding service
quotas for AWS Step Functions, AWS Lambda, or other AWS services.

Before you begin, go through the Creating a Step Functions state machine that uses Lambda
tutorial to ensure you are familiar with using Lambda and Step Functions together.

Step 1: Create a Lambda function to iterate a count

By using a Lambda function you can track the number of iterations of a loop in your state machine.
The following Lambda function receives input values for count, index, and step. It returns these
values with an updated index and a Boolean value named continue. The Lambda function sets
continue to true if the index is less than count.

Your state machine then implements a Choice state that executes some application logic if
continue is true, or exits if it is false.

To create the Lambda function

1. Sign in to the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Iterator.

b. For Runtime, choose Node.js.

c. In Change default execution role, choose Create a new role with basic Lambda
permissions.

d. Choose Create function.

4. Copy the following code for the Lambda function into the Code source.

export const handler = function (event, context, callback) {
 let index = event.iterator.index
 let step = event.iterator.step
 let count = event.iterator.count

 index = index + step

Step 1: Create a Lambda function to iterate a count 451

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

 callback(null, {
 index,
 step,
 count,
 continue: index < count
 })
}

This code accepts input values for count, index, and step. It increments the index by the
value of step and returns these values, and the Boolean continue. The value of continue is
true if index is less than count.

5. Choose Deploy.

Step 2: Test the Lambda Function

Run your Lambda function with numeric values to see it in operation. You can provide input values
for your Lambda function that mimic an iteration.

To test your Lambda function

1. Choose Test.

2. In the Configure test event dialog box, enter TestIterator in the Event name box.

3. Replace the example data with the following.

{
 "Comment": "Test my Iterator function",
 "iterator": {
 "count": 10,
 "index": 5,
 "step": 1
 }
}

These values mimic what would come from your state machine during an iteration. The
Lambda function will increment the index and return true for continue when the index is
less than count. For this test, the index has already incremented to 5. The test will increment
index to 6 and set continue to true.

4. Choose Create.

Step 2: Test the Lambda Function 452

AWS Step Functions Developer Guide

5. Choose Test to test your Lambda function.

The results of the test are displayed in the Execution results tab.

6. Choose the Execution results tab to see the output.

{
 "index": 6,
 "step": 1,
 "count": 10,
 "continue": true
}

Note

If you set index to 9 and test again, the index increments to 10, and continue will
be false.

Step 3: Create a State Machine

Before you leave the Lambda console…

Copy the Lambda function ARN. Paste it into a note. You'll need it in the next step.

Next, you will create a state machine with the following states:

• ConfigureCount – Sets default values for count, index, and step.

• Iterator – Refers to the Lambda function you created earlier, passing in the values configured
in ConfigureCount.

• IsCountReached – A choice state that continues the loop or proceeds to Done state, based on
the value returned from your Iterator function.

• ExampleWork – A stub for work that needs to be done. In this example, the workflow has a Pass
state, but in a real solution, you would likely use a Task.

• Done – End state of your workflow.

Step 3: Create a State Machine 453

AWS Step Functions Developer Guide

To create the state machine in the console:

1. Open the Step Functions console, and then choose Create a state machine.

Important

Your state machine must be in the same AWS account and Region as your Lambda
function.

2. Select the Blank template.

3. In the Code pane, paste the following JSON which defines the state machine.

For more information about the Amazon States Language, see State Machine Structure.

{
 "Comment": "Iterator State Machine Example",
 "StartAt": "ConfigureCount",
 "States": {

 "ConfigureCount": {
 "Type": "Pass",
 "Result": {
 "count": 10,
 "index": 0,
 "step": 1
 },
 "ResultPath": "$.iterator",
 "Next": "Iterator"
 },
 "Iterator": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Iterate",
 "ResultPath": "$.iterator",
 "Next": "IsCountReached"
 },
 "IsCountReached": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.iterator.continue",
 "BooleanEquals": true,
 "Next": "ExampleWork"

Step 3: Create a State Machine 454

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 }
],
 "Default": "Done"
 },
 "ExampleWork": {
 "Comment": "Your application logic, to run a specific number of times",
 "Type": "Pass",
 "Result": {
 "success": true
 },
 "ResultPath": "$.result",
 "Next": "Iterator"
 },
 "Done": {
 "Type": "Pass",
 "End": true

 }
 }
}

4. Replace the Iterator Resource field with the ARN for your Iterator Lambda function
that you created earlier.

5. Select Config, and enter a Name for your state machine, such as IterateCount.

Note

Names of state machines, executions, and activity tasks must not exceed 80 characters
in length. These names must be unique for your account and AWS Region, and must
not contain any of the following:

• Whitespace

• Wildcard characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # % & ` ")

• Control characters (\\u0000 - \\u001f or \\u007f - \\u009f).

If your state machine is of type Express, you can provide the same name to multiple
executions of the state machine. Step Functions generates a unique execution ARN

Step 3: Create a State Machine 455

AWS Step Functions Developer Guide

for each Express state machine execution, even if multiple executions have the same
name.
Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

6. For Type, accept default value of Standard. For Permissions, choose Create new role.

7. Choose Create, and then Confirm the role creations.

Step 4: Start a New Execution

After you create your state machine, you can start an execution.

1. On the IterateCount page, choose Start execution.

2. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

3. Choose Start Execution.

A new execution of your state machine starts, showing your running execution.
State machine graph view, showing Iterator state in blue to indicate in progress status.

The execution increments in steps, tracking the count using your Lambda function. On each
iteration, it performs the example work referenced in the ExampleWork state in your state
machine.

When the count reaches the number specified in the ConfigureCount state in your state
machine, the execution quits iterating and ends.
State machine graph view, showing Iterator state and Done state in green to indicate both
have succeeded.

Step 4: Start a New Execution 456

AWS Step Functions Developer Guide

Continuing Long-running Workflow Executions as a New
Execution

AWS Step Functions is designed to run workflows that have a finite duration and number of steps.
Executions have a maximum duration of one year, and a maximum of 25,000 events (see Quotas).

For long-running executions, to avoid reaching the hard quota of 25,000 entries in the execution
event history, we recommend that you start a new workflow execution directly from the Task
state of a state machine. This allows you to break your workflows into smaller state machines, and
to continue your ongoing work in a new execution. To start these workflow executions, call the
StartExecution API action from your Task state and pass the necessary parameters.

Alternatively, you can also implement a pattern that uses a Lambda function to start a new
execution of your state machine to split ongoing work across multiple workflow executions.

This tutorial shows you both the approaches to continue workflow executions without exceeding
service quotas.

Topics

• Using a Step Functions API action to continue a new execution (recommended)

• Using a Lambda function to continue a new execution

Using a Step Functions API action to continue a new execution
(recommended)

Step Functions can start workflow executions by calling its own API as an integrated service.
We recommend that you use this approach to avoid exceeding service quotas for long-running
executions.

Step 1: Create a long-running state machine

Create a long-running state machine that you want to start from the Task state of a different state
machine. For this tutorial, use the state machine that uses a Lambda function.

Continuing Ongoing Work as a New Execution 457

AWS Step Functions Developer Guide

Note

Make sure to copy the name and Amazon Resource Name of this state machine in a text file
for later use.

Step 2: Create a state machine to call the Step Functions API action

To start workflow executions from a Task state

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. From the Actions tab, drag the StartExecution API action and drop it on the empty state
labelled Drag first state here.

5. Choose the StartExecution state and do the following in the Configuration tab in Design
mode:

a. Rename the state to Start nested execution.

b. For Integration type, choose AWS SDK - new from the dropdown list.

c. In API Parameters, do the following:

i. For StateMachineArn, replace the sample Amazon Resource Name with the ARN
of your state machine. For example, enter the ARN of the state machine that uses
Lambda.

ii. For Input node, replace the existing placeholder text with the following value:

"Comment": "Starting workflow execution using a Step Functions API action"

iii. Make sure your inputs in API Parameters look similar to the following:

{
 "StateMachineArn": "arn:aws:states:us-
east-2:123456789012:stateMachine:LambdaStateMachine",
 "Input": {
 "Comment": "Starting workflow execution using a Step Functions API
 action",
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"

Using a Step Functions API action (recommended) 458

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 }

6. (Optional) Choose Definition on the Inspector panel to view the automatically-generated
Amazon States Language (ASL) definition of your workflow.

Tip

You can also view the ASL definition in the Code editor of Workflow Studio. In the code
editor, you can also edit the ASL definition of your workflow.

7. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ParentStateMachine.

8. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

9. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 3: Update the IAM policy

To make sure your state machine has permissions to start the execution of the state machine that
uses a Lambda function, you need to attach an inline policy to your state machine's IAM role. For
more information, see Embedding Inline Policies in the IAM User Guide.

Using a Step Functions API action (recommended) 459

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

AWS Step Functions Developer Guide

1. On the ParentStateMachine page, choose the IAM role ARN to navigate to the IAM Roles
page for your state machine.

2. Assign an appropriate permission to the IAM role of the ParentStateMachine for it to be able
to start execution of another state machine. To assign the permission, do the following:

a. On the IAM Roles page, choose Add permissions, and then choose Create inline policy.

b. On the Create policy page, choose the JSON tab.

c. Replace the existing text with the following policy.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": [
 "arn:aws:states:us-
east-2:123456789012:stateMachine:LambdaStateMachine"
]
 }
]
}

d. Choose Review policy.

e. Specify a name for the policy, and then choose Create policy.

Step 4: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

1. On the ParentStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Using a Step Functions API action (recommended) 460

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. (Optional) In the Input box, enter input values in JSON format to run your workflow.

c. Choose Start execution.

d. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

3. Open the LambdaStateMachine page and notice a new execution triggered by the
ParentStateMachine.

Using a Lambda function to continue a new execution

You can create a state machine that uses a Lambda function to start a new execution before
the current execution terminates. Using this approach to continue your ongoing work in a new
execution enables you to have a state machine that can break large jobs into smaller workflows, or
to have a state machine that runs indefinitely.

This tutorial builds on the concept of using an external Lambda function to modify your workflow,
which was demonstrated in the Iterate a loop with Lambda tutorial. You use the same Lambda
function (Iterator) to iterate a loop for a specific number of times. In addition, you create
another Lambda function to start a new execution of your workflow, and to decrement a count
each time it starts a new execution. By setting the number of executions in the input, this state
machine ends and restarts an execution a specified number of times.

The state machine you'll create implements the following states.

Using a Lambda function 461

AWS Step Functions Developer Guide

State Purpose

ConfigureCount A Pass state that configures the count, index, and step
values that the Iterator Lambda function uses to step through
iterations of work.

Iterator A Task state that references the Iterator Lambda function.

IsCountReached A Choice state that uses a Boolean value from the Iterator
function to decide whether the state machine should continue the
example work, or move to the ShouldRestart state.

ExampleWork A Pass state that represents the Task state that would perform
work in an actual implementation.

ShouldRestart A Choice state that uses the executionCount value to decide
whether it should end one execution and start another, or simply
end.

Restart A Task state that uses a Lambda function to start a new
execution of your state machine. Like the Iterator function, this
function also decrements a count. The Restart state passes the
decremented value of the count to the input of the new execution.

Prerequisites

Before you begin, go through the Creating a Step Functions state machine that uses Lambda
tutorial to ensure that you're familiar with using Lambda and Step Functions together.

Topics

• Step 1: Create a Lambda function to iterate a count

• Step 2: Create a Restart Lambda function to start a new Step Functions execution

• Step 3: Create a state machine

• Step 4: Update the IAM Policy

• Step 5: Run the state machine

Using a Lambda function 462

AWS Step Functions Developer Guide

Step 1: Create a Lambda function to iterate a count

Note

If you have completed the Iterate a loop with Lambda tutorial, you can skip this step and
use that Lambda function.

This section and the Iterate a loop with Lambda tutorial show how you can use a Lambda function
to track a count, for example, the number of iterations of a loop in your state machine.

The following Lambda function receives input values for count, index, and step. It returns
these values with an updated index and a Boolean named continue. The Lambda function sets
continue to true if the index is less than count.

Your state machine then implements a Choice state that executes some application logic if
continue is true, or moves on to ShouldRestart if continue is false.

Create the Iterate Lambda function

1. Open the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Iterator.

b. For Runtime, choose Node.js 16.x.

c. Keep all the default selections on the page, and then choose Create function.

When your Lambda function is created, make a note of its Amazon Resource Name (ARN)
in the upper-right corner of the page, for example:

arn:aws:lambda:us-east-1:123456789012:function:Iterator

4. Copy the following code for the Lambda function into the Code source section of the
Iterator page in the Lambda console.

exports.handler = function iterator (event, context, callback) {
 let index = event.iterator.index;
 let step = event.iterator.step;

Using a Lambda function 463

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

 let count = event.iterator.count;

 index = index + step;

 callback(null, {
 index,
 step,
 count,
 continue: index < count
 })
}

This code accepts input values for count, index, and step. It increments the index by the
value of step and returns these values, and the Boolean value of continue. The value of
continue is true if index is less than count.

5. Choose Deploy to deploy the code.

Test the Iterate Lambda function

To see your Iterate function working, run it with numeric values. You can provide input values
for your Lambda function that mimic an iteration to see what output you get with specific input
values.

To test your Lambda function

1. In the Configure test event dialog box, choose Create new test event, and then type
TestIterator for Event name.

2. Replace the example data with the following.

{
 "Comment": "Test my Iterator function",
 "iterator": {
 "count": 10,
 "index": 5,
 "step": 1
 }
}

These values mimic what would come from your state machine during an iteration. The
Lambda function increments the index and returns continue as true. When the index is

Using a Lambda function 464

AWS Step Functions Developer Guide

not less than the count, it returns continue as false. For this test, the index has already
incremented to 5. The results should increment the index to 6 and set continue to true.

3. Choose Create.

4. On the Iterator page in your Lambda console, be sure TestIterator is listed, and then choose
Test.

The results of the test are displayed at the top of the page. Choose Details and review the
result.

{
 "index": 6,
 "step": 1,
 "count": 10,
 "continue": true
}

Note

If you set index to 9 for this test, the index increments to 10, and continue is
false.

Step 2: Create a Restart Lambda function to start a new Step Functions execution

1. Open the Lambda console, and then choose Create function.

2. On the Create function page, choose Author from scratch.

3. In the Basic information section, configure your Lambda function, as follows:

a. For Function name, enter Restart.

b. For Runtime, choose Node.js 16.x.

4. Keep all the default selections on the page, and then choose Create function.

When your Lambda function is created, make a note of its Amazon Resource Name (ARN) in
the upper-right corner of the page, for example:

arn:aws:lambda:us-east-1:123456789012:function:Iterator

Using a Lambda function 465

https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

5. Copy the following code for the Lambda function into the Code source section of the
Restart page in the Lambda console.

The following code decrements a count of the number of executions, and starts a new
execution of your state machine, including the decremented value.

var aws = require('aws-sdk');
var sfn = new aws.StepFunctions();

exports.restart = function(event, context, callback) {

 let StateMachineArn = event.restart.StateMachineArn;
 event.restart.executionCount -= 1;
 event = JSON.stringify(event);

 let params = {
 input: event,
 stateMachineArn: StateMachineArn
 };

 sfn.startExecution(params, function(err, data) {
 if (err) callback(err);
 else callback(null,event);
 });

}

6. Choose Deploy to deploy the code.

Step 3: Create a state machine

Now that you've created your two Lambda functions, create a state machine. In this state machine,
the ShouldRestart and Restart states are how you break your work across multiple executions.

Example ShouldRestart Choice state

The following excerpt shows the ShouldRestartChoice state. This state determines whether or
not you should restart the execution.

"ShouldRestart": {
"Type": "Choice",
"Choices": [

Using a Lambda function 466

AWS Step Functions Developer Guide

 {
 "Variable": "$.restart.executionCount",
 "NumericGreaterThan": 1,
 "Next": "Restart"
 }
],

The $.restart.executionCount value is included in the input of the initial execution. It's
decremented by one each time the Restart function is called, and then placed into the input for
each subsequent execution.

Example Restart Task state

The following excerpt shows the RestartTask state. This state uses the Lambda function you
created earlier to restart the execution, and to decrement the count to track the remaining number
of executions to start.

"Restart": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Restart",
 "Next": "Done"
},

To create the state machine

1. Open the Step Functions console and choose Create state machine.

Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda functions you created earlier in Step 1 and Step 2.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following code. Remember to replace the
ARNs in this code with the ARNs of the Lambda functions you created.

{

Using a Lambda function 467

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 "Comment": "Continue-as-new State Machine Example",
 "StartAt": "ConfigureCount",
 "States": {
 "ConfigureCount": {
 "Type": "Pass",
 "Result": {
 "count": 100,
 "index": -1,
 "step": 1
 },
 "ResultPath": "$.iterator",
 "Next": "Iterator"
 },
 "Iterator": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Iterator",
 "ResultPath": "$.iterator",
 "Next": "IsCountReached"
 },
 "IsCountReached": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.iterator.continue",
 "BooleanEquals": true,
 "Next": "ExampleWork"
 }
],
 "Default": "ShouldRestart"
 },
 "ExampleWork": {
 "Comment": "Your application logic, to run a specific number of times",
 "Type": "Pass",
 "Result": {
 "success": true
 },
 "ResultPath": "$.result",
 "Next": "Iterator"
 },
 "ShouldRestart": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.restart.executionCount",

Using a Lambda function 468

AWS Step Functions Developer Guide

 "NumericGreaterThan": 0,
 "Next": "Restart"
 }
],
 "Default": "Done"
 },
 "Restart": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:Restart",
 "Next": "Done"
 },
 "Done": {
 "Type": "Pass",
 "End": true
 }
 }
}

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name ContinueAsNew.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Using a Lambda function 469

AWS Step Functions Developer Guide

9. Save the Amazon Resource Name (ARN) of this state machine in a text file. You'll need to
provide the ARN while providing permission to the Lambda function to start a new Step
Functions execution.

Step 4: Update the IAM Policy

To make sure your Lambda function has permissions to start a new Step Functions execution,
attach an inline policy to the IAM role you use for your Restart Lambda function. For more
information, see Embedding Inline Policies in the IAM User Guide.

Note

You can update the Resource line in the previous example to reference the ARN of
your ContinueAsNew state machine. This restricts the policy so that it can only start an
execution of that specific state machine.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": "arn:aws:states:us-east-2:123456789012stateMachine:ContinueAsNew"
 }
]
}

Step 5: Run the state machine

To start an execution, provide input that includes the ARN of the state machine and an
executionCount for how many times it should start a new execution.

1. On the ContinueAsNew page, choose Start execution.

The Start execution dialog box is displayed.

Using a Lambda function 470

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_manage-attach-detach.html#embed-inline-policy-console

AWS Step Functions Developer Guide

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. In the Input box, enter the following JSON input to run your workflow.

{
 "restart": {
 "StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:ContinueAsNew",
 "executionCount": 4
 }
}

c. Update the StateMachineArn field with the ARN for your ContinueAsNew state
machine.

d. Choose Start execution.

e. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

The Graph view displays the first of the four executions. Before it completes, it will pass
through the Restart state and start a new execution.

Using a Lambda function 471

AWS Step Functions Developer Guide

As this execution completes, you can look at the next execution that's running. Select
the ContinueAsNew link at the top to see the list of executions. You should see both the
recently closed execution, and an ongoing execution that the Restart Lambda function
started.

When all the executions are complete, you should see four successful executions in the
list. The first execution that was started displays the name you chose, and subsequent
executions have a generated name.

Using a Lambda function 472

AWS Step Functions Developer Guide

Deploying an Example Human Approval Project

This tutorial shows you how to deploy a human approval project that allows an AWS Step
Functions execution to pause during a task, and wait for a user to respond to an email. The
workflow progresses to the next state once the user has approved the task to proceed.

Deploying the AWS CloudFormation stack included in this tutorial will create all necessary
resources, including:

• Amazon API Gateway resources

• An AWS Lambda functions

• An AWS Step Functions state machine

• An Amazon Simple Notification Service email topic

• Related AWS Identity and Access Management roles and permissions

Note

You will need to provide a valid email address that you have access to when you create the
AWS CloudFormation stack.

For more information, see Working with CloudFormation Templates and the
AWS::StepFunctions::StateMachine resource in the AWS CloudFormation User Guide.

Topics

Deploying an Example Human Approval Project 473

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide

• Step 1: Create an AWS CloudFormation template

• Step 2: Create a stack

• Step 3: Approve the Amazon SNS subscription

• Step 4: Run the state machine

• AWS CloudFormation Template Source Code

Step 1: Create an AWS CloudFormation template

1. Copy the example code from the AWS CloudFormation Template Source Code section.

2. Paste the source of the AWS CloudFormation template into a file on your local machine.

For this example the file is called human-approval.yaml.

Step 2: Create a stack

1. Log into the AWS CloudFormation console.

2. Choose Create Stack, and then choose With new resources (standard).

3. On the Create stack page, do the following:

a. In the Prerequisite - Prepare template section, make sure Template is ready is selected.

b. In the Specify template section, choose Upload a template file and then choose Choose
file to upload the human-approval.yaml file you created earlier that includes the
template source code.

4. Choose Next.

5. On the Specify stack details page, do the following:

a. For Stack name, enter a name for your stack.

b. Under Parameters, enter a valid email address. You'll use this email address to subscribe
to the Amazon SNS topic.

Step 1: Create a Template 474

https://console.aws.amazon.com/cloudformation/home

AWS Step Functions Developer Guide

6. Choose Next, and then choose Next again.

7. On the Review page, choose I acknowledge that AWS CloudFormation might create IAM
resources and then choose Create.

AWS CloudFormation begins to create your stack and displays the CREATE_IN_PROGRESS
status. When the process is complete, AWS CloudFormation displays the CREATE_COMPLETE
status.

8. (Optional) To display the resources in your stack, select the stack and choose the Resources
tab.

Step 3: Approve the Amazon SNS subscription

Once the Amazon SNS topic is created, you will receive an email requesting that you confirm
subscription.

1. Open the email account you provided when you created the AWS CloudFormation stack.

2. Open the message AWS Notification - Subscription Confirmation from no-
reply@sns.amazonaws.com

The email will list the Amazon Resource Name for the Amazon SNS topic, and a confirmation
link.

3. Choose the confirm subscription link.

Step 3: Approve the SNS subscription 475

AWS Step Functions Developer Guide

Step 4: Run the state machine

1. On the HumanApprovalLambdaStateMachine page, choose Start execution.

The Start execution dialog box is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. In the Input box, enter the following JSON input to run your workflow.

{
 "Comment": "Testing the human approval tutorial."
}

c. Choose Start execution.

Step 4: Run the state machine 476

AWS Step Functions Developer Guide

The ApprovalTest state machine execution starts, and pauses at the Lambda Callback
task.

d. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

3. In the email account you used for the Amazon SNS topic earlier, open the message with the
subject Required approval from AWS Step Functions.

The message includes separate URLs for Approve and Reject.

4. Choose the Approve URL.

The workflow continues based on your choice.

Step 4: Run the state machine 477

AWS Step Functions Developer Guide

AWS CloudFormation Template Source Code

Use this AWS CloudFormation template to deploy an example of a human approval process
workflow.

AWSTemplateFormatVersion: "2010-09-09"
Description: "AWS Step Functions Human based task example. It sends an email with an
 HTTP URL for approval."
Parameters:
 Email:
 Type: String
 AllowedPattern: "^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\.[a-zA-Z0-9-.]+$"
 ConstraintDescription: Must be a valid email address.
Resources:
 # Begin API Gateway Resources
 ExecutionApi:
 Type: "AWS::ApiGateway::RestApi"
 Properties:
 Name: "Human approval endpoint"
 Description: "HTTP Endpoint backed by API Gateway and Lambda"
 FailOnWarnings: true

 ExecutionResource:

Template Source Code 478

AWS Step Functions Developer Guide

 Type: 'AWS::ApiGateway::Resource'
 Properties:
 RestApiId: !Ref ExecutionApi
 ParentId: !GetAtt "ExecutionApi.RootResourceId"
 PathPart: execution

 ExecutionMethod:
 Type: "AWS::ApiGateway::Method"
 Properties:
 AuthorizationType: NONE
 HttpMethod: GET
 Integration:
 Type: AWS
 IntegrationHttpMethod: POST
 Uri: !Sub "arn:aws:apigateway:${AWS::Region}:lambda:path/2015-03-31/functions/
${LambdaApprovalFunction.Arn}/invocations"
 IntegrationResponses:
 - StatusCode: 302
 ResponseParameters:
 method.response.header.Location:
 "integration.response.body.headers.Location"
 RequestTemplates:
 application/json: |
 {
 "body" : $input.json('$'),
 "headers": {
 #foreach($header in $input.params().header.keySet())
 "$header":
 "$util.escapeJavaScript($input.params().header.get($header))"
 #if($foreach.hasNext),#end

 #end
 },
 "method": "$context.httpMethod",
 "params": {
 #foreach($param in $input.params().path.keySet())
 "$param": "$util.escapeJavaScript($input.params().path.get($param))"
 #if($foreach.hasNext),#end

 #end
 },
 "query": {
 #foreach($queryParam in $input.params().querystring.keySet())

Template Source Code 479

AWS Step Functions Developer Guide

 "$queryParam":
 "$util.escapeJavaScript($input.params().querystring.get($queryParam))"
 #if($foreach.hasNext),#end

 #end
 }
 }
 ResourceId: !Ref ExecutionResource
 RestApiId: !Ref ExecutionApi
 MethodResponses:
 - StatusCode: 302
 ResponseParameters:
 method.response.header.Location: true

 ApiGatewayAccount:
 Type: 'AWS::ApiGateway::Account'
 Properties:
 CloudWatchRoleArn: !GetAtt "ApiGatewayCloudWatchLogsRole.Arn"

 ApiGatewayCloudWatchLogsRole:
 Type: 'AWS::IAM::Role'
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service:
 - apigateway.amazonaws.com
 Action:
 - 'sts:AssumeRole'
 Policies:
 - PolicyName: ApiGatewayLogsPolicy
 PolicyDocument:
 Version: 2012-10-17
 Statement:
 - Effect: Allow
 Action:
 - "logs:*"
 Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"

 ExecutionApiStage:
 DependsOn:
 - ApiGatewayAccount

Template Source Code 480

AWS Step Functions Developer Guide

 Type: 'AWS::ApiGateway::Stage'
 Properties:
 DeploymentId: !Ref ApiDeployment
 MethodSettings:
 - DataTraceEnabled: true
 HttpMethod: '*'
 LoggingLevel: INFO
 ResourcePath: /*
 RestApiId: !Ref ExecutionApi
 StageName: states

 ApiDeployment:
 Type: "AWS::ApiGateway::Deployment"
 DependsOn:
 - ExecutionMethod
 Properties:
 RestApiId: !Ref ExecutionApi
 StageName: DummyStage
 # End API Gateway Resources

 # Begin
 # Lambda that will be invoked by API Gateway
 LambdaApprovalFunction:
 Type: 'AWS::Lambda::Function'
 Properties:
 Code:
 ZipFile:
 Fn::Sub: |
 const { SFN: StepFunctions } = require("@aws-sdk/client-sfn");
 var redirectToStepFunctions = function(lambdaArn, statemachineName,
 executionName, callback) {
 const lambdaArnTokens = lambdaArn.split(":");
 const partition = lambdaArnTokens[1];
 const region = lambdaArnTokens[3];
 const accountId = lambdaArnTokens[4];

 console.log("partition=" + partition);
 console.log("region=" + region);
 console.log("accountId=" + accountId);

 const executionArn = "arn:" + partition + ":states:" + region + ":" +
 accountId + ":execution:" + statemachineName + ":" + executionName;
 console.log("executionArn=" + executionArn);

Template Source Code 481

AWS Step Functions Developer Guide

 const url = "https://console.aws.amazon.com/states/home?region=" + region
 + "#/executions/details/" + executionArn;
 callback(null, {
 statusCode: 302,
 headers: {
 Location: url
 }
 });
 };

 exports.handler = (event, context, callback) => {
 console.log('Event= ' + JSON.stringify(event));
 const action = event.query.action;
 const taskToken = event.query.taskToken;
 const statemachineName = event.query.sm;
 const executionName = event.query.ex;

 const stepfunctions = new StepFunctions();

 var message = "";

 if (action === "approve") {
 message = { "Status": "Approved! Task approved by ${Email}" };
 } else if (action === "reject") {
 message = { "Status": "Rejected! Task rejected by ${Email}" };
 } else {
 console.error("Unrecognized action. Expected: approve, reject.");
 callback({"Status": "Failed to process the request. Unrecognized
 Action."});
 }

 stepfunctions.sendTaskSuccess({
 output: JSON.stringify(message),
 taskToken: event.query.taskToken
 })
 .then(function(data) {
 redirectToStepFunctions(context.invokedFunctionArn, statemachineName,
 executionName, callback);
 }).catch(function(err) {
 console.error(err, err.stack);
 callback(err);
 });
 }
 Description: Lambda function that callback to AWS Step Functions

Template Source Code 482

AWS Step Functions Developer Guide

 FunctionName: LambdaApprovalFunction
 Handler: index.handler
 Role: !GetAtt "LambdaApiGatewayIAMRole.Arn"
 Runtime: nodejs18.x

 LambdaApiGatewayInvoke:
 Type: "AWS::Lambda::Permission"
 Properties:
 Action: "lambda:InvokeFunction"
 FunctionName: !GetAtt "LambdaApprovalFunction.Arn"
 Principal: "apigateway.amazonaws.com"
 SourceArn: !Sub "arn:aws:execute-api:${AWS::Region}:${AWS::AccountId}:
${ExecutionApi}/*"

 LambdaApiGatewayIAMRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Action:
 - "sts:AssumeRole"
 Effect: "Allow"
 Principal:
 Service:
 - "lambda.amazonaws.com"
 Policies:
 - PolicyName: CloudWatchLogsPolicy
 PolicyDocument:
 Statement:
 - Effect: Allow
 Action:
 - "logs:*"
 Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"
 - PolicyName: StepFunctionsPolicy
 PolicyDocument:
 Statement:
 - Effect: Allow
 Action:
 - "states:SendTaskFailure"
 - "states:SendTaskSuccess"
 Resource: "*"
 # End Lambda that will be invoked by API Gateway

Template Source Code 483

AWS Step Functions Developer Guide

 # Begin state machine that publishes to Lambda and sends an email with the link for
 approval
 HumanApprovalLambdaStateMachine:
 Type: AWS::StepFunctions::StateMachine
 Properties:
 RoleArn: !GetAtt LambdaStateMachineExecutionRole.Arn
 DefinitionString:
 Fn::Sub: |
 {
 "StartAt": "Lambda Callback",
 "TimeoutSeconds": 3600,
 "States": {
 "Lambda Callback": {
 "Type": "Task",
 "Resource": "arn:
${AWS::Partition}:states:::lambda:invoke.waitForTaskToken",
 "Parameters": {
 "FunctionName": "${LambdaHumanApprovalSendEmailFunction.Arn}",
 "Payload": {
 "ExecutionContext.$": "$$",
 "APIGatewayEndpoint": "https://${ExecutionApi}.execute-api.
${AWS::Region}.amazonaws.com/states"
 }
 },
 "Next": "ManualApprovalChoiceState"
 },
 "ManualApprovalChoiceState": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.Status",
 "StringEquals": "Approved! Task approved by ${Email}",
 "Next": "ApprovedPassState"
 },
 {
 "Variable": "$.Status",
 "StringEquals": "Rejected! Task rejected by ${Email}",
 "Next": "RejectedPassState"
 }
]
 },
 "ApprovedPassState": {
 "Type": "Pass",
 "End": true

Template Source Code 484

AWS Step Functions Developer Guide

 },
 "RejectedPassState": {
 "Type": "Pass",
 "End": true
 }
 }
 }

 SNSHumanApprovalEmailTopic:
 Type: AWS::SNS::Topic
 Properties:
 Subscription:
 -
 Endpoint: !Sub ${Email}
 Protocol: email

 LambdaHumanApprovalSendEmailFunction:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.lambda_handler"
 Role: !GetAtt LambdaSendEmailExecutionRole.Arn
 Runtime: "nodejs18.x"
 Timeout: "25"
 Code:
 ZipFile:
 Fn::Sub: |
 console.log('Loading function');
 const { SNS } = require("@aws-sdk/client-sns");
 exports.lambda_handler = (event, context, callback) => {
 console.log('event= ' + JSON.stringify(event));
 console.log('context= ' + JSON.stringify(context));

 const executionContext = event.ExecutionContext;
 console.log('executionContext= ' + executionContext);

 const executionName = executionContext.Execution.Name;
 console.log('executionName= ' + executionName);

 const statemachineName = executionContext.StateMachine.Name;
 console.log('statemachineName= ' + statemachineName);

 const taskToken = executionContext.Task.Token;
 console.log('taskToken= ' + taskToken);

Template Source Code 485

AWS Step Functions Developer Guide

 const apigwEndpint = event.APIGatewayEndpoint;
 console.log('apigwEndpint = ' + apigwEndpint)

 const approveEndpoint = apigwEndpint + "/execution?
action=approve&ex=" + executionName + "&sm=" + statemachineName + "&taskToken=" +
 encodeURIComponent(taskToken);
 console.log('approveEndpoint= ' + approveEndpoint);

 const rejectEndpoint = apigwEndpint + "/execution?
action=reject&ex=" + executionName + "&sm=" + statemachineName + "&taskToken=" +
 encodeURIComponent(taskToken);
 console.log('rejectEndpoint= ' + rejectEndpoint);

 const emailSnsTopic = "${SNSHumanApprovalEmailTopic}";
 console.log('emailSnsTopic= ' + emailSnsTopic);

 var emailMessage = 'Welcome! \n\n';
 emailMessage += 'This is an email requiring an approval for a step
 functions execution. \n\n'
 emailMessage += 'Please check the following information and click
 "Approve" link if you want to approve. \n\n'
 emailMessage += 'Execution Name -> ' + executionName + '\n\n'
 emailMessage += 'Approve ' + approveEndpoint + '\n\n'
 emailMessage += 'Reject ' + rejectEndpoint + '\n\n'
 emailMessage += 'Thanks for using Step functions!'

 const sns = new SNS();
 var params = {
 Message: emailMessage,
 Subject: "Required approval from AWS Step Functions",
 TopicArn: emailSnsTopic
 };

 sns.publish(params)
 .then(function(data) {
 console.log("MessageID is " + data.MessageId);
 callback(null);
 }).catch(
 function(err) {
 console.error(err, err.stack);
 callback(err);
 });
 }

Template Source Code 486

AWS Step Functions Developer Guide

 LambdaStateMachineExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: states.amazonaws.com
 Action: "sts:AssumeRole"
 Policies:
 - PolicyName: InvokeCallbackLambda
 PolicyDocument:
 Statement:
 - Effect: Allow
 Action:
 - "lambda:InvokeFunction"
 Resource:
 - !Sub "${LambdaHumanApprovalSendEmailFunction.Arn}"

 LambdaSendEmailExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: "sts:AssumeRole"
 Policies:
 - PolicyName: CloudWatchLogsPolicy
 PolicyDocument:
 Statement:
 - Effect: Allow
 Action:
 - "logs:CreateLogGroup"
 - "logs:CreateLogStream"
 - "logs:PutLogEvents"
 Resource: !Sub "arn:${AWS::Partition}:logs:*:*:*"
 - PolicyName: SNSSendEmailPolicy
 PolicyDocument:
 Statement:
 - Effect: Allow

Template Source Code 487

AWS Step Functions Developer Guide

 Action:
 - "SNS:Publish"
 Resource:
 - !Sub "${SNSHumanApprovalEmailTopic}"

End state machine that publishes to Lambda and sends an email with the link for
 approval
Outputs:
 ApiGatewayInvokeURL:
 Value: !Sub "https://${ExecutionApi}.execute-api.${AWS::Region}.amazonaws.com/
states"
 StateMachineHumanApprovalArn:
 Value: !Ref HumanApprovalLambdaStateMachine

View X-Ray traces in Step Functions

In this tutorial, you will learn how to use X-Ray to trace errors that occur when running a state
machine. You can use AWS X-Ray to visualize the components of your state machine, identify
performance bottlenecks, and troubleshoot requests that resulted in an error. In this tutorial, you
will create several Lambda functions that randomly produce errors, which you can then trace and
analyze using X-Ray.

The Creating a Step Functions state machine that uses Lambda tutorial walks you though creating
a state machine that calls a Lambda function. If you have completed that tutorial, skip to Step 2
and use the AWS Identity and Access Management (IAM) role that you previously created.

Topics

• Step 1: Create an IAM role for Lambda

• Step 2: Create a Lambda function

• Step 3: Create two more Lambda functions

• Step 4: Create a state machine

• Step 5: Run the state machine

Step 1: Create an IAM role for Lambda

Both AWS Lambda and AWS Step Functions can execute code and access AWS resources (for
example, data stored in Amazon S3 buckets). To maintain security, you must grant Lambda and
Step Functions access to these resources.

View X-Ray traces in Step Functions 488

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

AWS Step Functions Developer Guide

Lambda requires you to assign an AWS Identity and Access Management (IAM) role when you
create a Lambda function, in the same way Step Functions requires you to assign an IAM role when
you create a state machine.

You use the IAM console to create a service-linked role.

To create a role (console)

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. In the navigation pane of the IAM console, choose Roles. Then choose Create role.

3. Choose the AWS Service role type, and then choose Lambda.

4. Choose the Lambda use case. Use cases are defined by the service to include the trust policy
required by the service. Then choose Next: Permissions.

5. Choose one or more permissions policies to attach to the role (for example,
AWSLambdaBasicExecutionRole). See AWS Lambda Permissions Model.

Select the box next to the policy that assigns the permissions that you want the role to have,
and then choose Next: Review.

6. Enter a Role name.

7. (Optional) For Role description, edit the description for the new service-linked role.

8. Review the role, and then choose Create role.

Step 2: Create a Lambda function

Your Lambda function will randomly throw errors or time out, producing example data to view in
X-Ray.

Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

1. Open the Lambda console and choose Create function.

2. In the Create function section, choose Author from scratch.

3. In the Basic information section, configure your Lambda function:

Step 2: Create a Lambda function 489

https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.aws.amazon.com/lambda/latest/dg/intro-permission-model.html
https://console.aws.amazon.com/lambda/home

AWS Step Functions Developer Guide

a. For Function name, enter TestFunction1.

b. For Runtime, choose Node.js 18.x.

c. For Role, select Choose an existing role.

d. For Existing role, select the Lambda role that you created earlier.

Note

If the IAM role that you created doesn't appear in the list, the role might still need
a few minutes to propagate to Lambda.

e. Choose Create function.

When your Lambda function is created, note its Amazon Resource Name (ARN) in the
upper-right corner of the page. For example:

arn:aws:lambda:us-east-1:123456789012:function:TestFunction1

4. Copy the following code for the Lambda function into the Function code section of the
TestFunction1 page.

function getRandomSeconds(max) {
 return Math.floor(Math.random() * Math.floor(max)) * 1000;
}
function sleep(ms) {
 return new Promise(resolve => setTimeout(resolve, ms));
}
export const handler = async (event) => {
 if(getRandomSeconds(4) === 0) {
 throw new Error("Something went wrong!");
 }
 let wait_time = getRandomSeconds(5);
 await sleep(wait_time);
 return { 'response': true }
};

This code creates randomly timed failures, which will be used to generate example errors in
your state machine that can be viewed and analyzed using X-Ray traces.

5. Choose Save.

Step 2: Create a Lambda function 490

AWS Step Functions Developer Guide

Step 3: Create two more Lambda functions

Create two more Lambda functions.

1. Repeat Step 2 to create two more Lambda functions. For the next function, in Function name,
enter TestFunction2. For the last function, in Function name, enter TestFunction3.

2. In the Lambda console, check that you now have three Lambda functions, TestFunction1,
TestFunction2, and TestFunction3.

Step 4: Create a state machine

In this step, you'll use the Step Functions console to create a state machine with three Task states.
Each Task state will a reference one of your three Lambda functions.

1. Open the Step Functions console and choose Create state machine.

Important

Make sure that your state machine is under the same AWS account and Region as the
Lambda functions you created earlier in Step 2 and Step 3.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following code. In the Task state definition,
remember to replace the example ARNs with the ARNs of the Lambda functions you created.

{
 "StartAt": "CallTestFunction1",
 "States": {
 "CallTestFunction1": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:test-function1",
 "Catch": [
 {
 "ErrorEquals": [
 "States.TaskFailed"

Step 3: Create two more Lambda functions 491

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

],
 "Next": "AfterTaskFailed"
 }
],
 "Next": "CallTestFunction2"
 },
 "CallTestFunction2": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:test-function2",
 "Catch": [
 {
 "ErrorEquals": [
 "States.TaskFailed"
],
 "Next": "AfterTaskFailed"
 }
],
 "Next": "CallTestFunction3"
 },
 "CallTestFunction3": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:test-function3",
 "TimeoutSeconds": 5,
 "Catch": [
 {
 "ErrorEquals": [
 "States.Timeout"
],
 "Next": "AfterTimeout"
 },
 {
 "ErrorEquals": [
 "States.TaskFailed"
],
 "Next": "AfterTaskFailed"
 }
],
 "Next": "Succeed"
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "AfterTimeout": {
 "Type": "Fail"

Step 4: Create a state machine 492

AWS Step Functions Developer Guide

 },
 "AfterTaskFailed": {
 "Type": "Fail"
 }
 }
}

This is a description of your state machine using the Amazon States Language. It defines three
Task states named CallTestFunction1, CallTestFunction2 and CallTestFunction3.
Each calls one of your three Lambda functions. For more information, see State Machine
Structure.

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name TraceFunctions.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

For this tutorial, under Additional configuration, choose Enable X-Ray tracing. Keep all the
other default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

Step 5: Run the state machine

State machine executions are instances where you run your workflow to perform tasks.

Step 5: Run the state machine 493

AWS Step Functions Developer Guide

1. On the TraceFunctions page, choose Start execution.

The New execution page is displayed.

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Run several (at least three) executions.

3. After the executions have finished, follow the X-Ray trace map link. You can view the trace
while an execution is still running, but you may want to see the execution results before
viewing the X-Ray trace map.

Step 5: Run the state machine 494

AWS Step Functions Developer Guide

4. View the service map to identify where errors are occurring, connections with high latency,
or traces for requests that were unsuccessful. In this example, you can see how much traffic
each function is receiving. TestFunction2 was called more often than TestFunction3, and
TestFunction1 was called more than twice as often as TestFunction2.

The service map indicates the health of each node by coloring it based on the ratio of
successful calls to errors and faults:

• Green for successful calls

• Red for server faults (500 series errors)

• Yellow for client errors (400 series errors)

• Purple for throttling errors (429 Too Many Requests)

Step 5: Run the state machine 495

AWS Step Functions Developer Guide

You can also choose a service node to view requests for that node, or an edge between two
nodes to view requests that traveled that connection.

5. View the X-Ray trace map to see what has happened for each execution. The Timeline view
shows a hierarchy of segments and subsegments. The first entry in the list is the segment,
which represents all data recorded by the service for a single request. Below the segment are
subsegments. This example shows subsegments recorded by the Lambda functions.

For more information on understanding X-Ray traces and using X-Ray with Step Functions, see
the AWS X-Ray and Step Functions

Step 5: Run the state machine 496

AWS Step Functions Developer Guide

Gather Amazon S3 bucket info using AWS SDK service
integrations

This tutorial shows you how to perform an AWS SDK integration with Amazon Simple Storage
Service. The state machine you create in this tutorial gathers information about your Amazon
S3 buckets, then list your buckets along with version information for each bucket in the current
region.

Topics

• Step 1: Create the state machine

• Step 2: Add the necessary IAM role permissions

• Step 3: Run a Standard state machine execution

• Step 4: Run an Express state machine execution

Step 1: Create the state machine

Using the Step Functions console, you'll create a state machine that includes a Task state to list all
the Amazon S3 buckets in the current account and region. Then, you'll add another Task state that
invokes the HeadBucket API to verify if the returned bucket is accessible in the current region. If
the bucket isn't accessible, the HeadBucket API call returns the S3.S3Exception error. You'll
include a Catch block to catch this exception and a Pass state as the fallback state.

1. Open the Step Functions console and choose Create state machine.

2. In the Choose a template dialog box, select Blank.

3. Choose Select. This opens Workflow Studio in Design mode.

4. For this tutorial, you'll write the Amazon States Language (ASL) definition of your state
machine in the Code editor. To do this, choose Code.

5. Remove the existing boilerplate code and paste the following state machine definition.

{
 "Comment": "A description of my state machine",
 "StartAt": "ListBuckets",
 "States": {
 "ListBuckets": {
 "Type": "Task",
 "Parameters": {},

Gather Amazon S3 bucket info using AWS SDK service integrations 497

https://docs.aws.amazon.com/AmazonS3/latest/API/API_HeadBucket.html
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

 "Resource": "arn:aws:states:::aws-sdk:s3:listBuckets",
 "Next": "Map"
 },
 "Map": {
 "Type": "Map",
 "ItemsPath": "$.Buckets",
 "ItemProcessor": {
 "ProcessorConfig": {
 "Mode": "INLINE"
 },
 "StartAt": "HeadBucket",
 "States": {
 "HeadBucket": {
 "Type": "Task",
 "ResultPath": null,
 "Parameters": {
 "Bucket.$": "$.Name"
 },
 "Resource": "arn:aws:states:::aws-sdk:s3:headBucket",
 "Catch": [
 {
 "ErrorEquals": [
 "S3.S3Exception"
],
 "ResultPath": null,
 "Next": "Pass"
 }
],
 "Next": "GetBucketVersioning"
 },
 "GetBucketVersioning": {
 "Type": "Task",
 "End": true,
 "Parameters": {
 "Bucket.$": "$.Name"
 },
 "ResultPath": "$.BucketVersioningInfo",
 "Resource": "arn:aws:states:::aws-sdk:s3:getBucketVersioning"
 },
 "Pass": {
 "Type": "Pass",
 "End": true,
 "Result": {
 "Status": "Unknown"

Step 1: Create the state machine 498

AWS Step Functions Developer Guide

 },
 "ResultPath": "$.BucketVersioningInfo"
 }
 }
 },
 "End": true
 }
 }
}

6. Specify a name for your state machine. To do this, choose the edit icon next to the default
state machine name of MyStateMachine. Then, in State machine configuration, specify a
name in the State machine name box.

For this tutorial, enter the name Gather-S3-Bucket-Info-Standard.

7. (Optional) In State machine configuration, specify other workflow settings, such as state
machine type and its execution role.

Keep all the default selections in State machine settings.

If you've previously created an IAM role with the correct permissions for your state machine
and want to use it, in Permissions, select Choose an existing role, and then select a role from
the list. Or select Enter a role ARN and then provide an ARN for that IAM role.

8. In the Confirm role creation dialog box, choose Confirm to continue.

You can also choose View role settings to go back to State machine configuration.

Note

If you delete the IAM role that Step Functions creates, Step Functions can't recreate it
later. Similarly, if you modify the role (for example, by removing Step Functions from
the principals in the IAM policy), Step Functions can't restore its original settings later.

In Step 2, you'll add the missing permissions to the state machine role.

Step 1: Create the state machine 499

AWS Step Functions Developer Guide

Step 2: Add the necessary IAM role permissions

To gather information about the Amazon S3 buckets in your current region, you must provide your
state machine the necessary permissions to access the Amazon S3 buckets.

1. On the state machine page, choose IAM role ARN to open the Roles page for the state
machine role.

2. Choose Add permissions and then choose Create inline policy.

3. Choose the JSON tab, and then paste the following permissions into the JSON editor.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "VisualEditor0",
 "Effect": "Allow",
 "Action": [
 "s3:ListAllMyBuckets",
 "s3:ListBucket",
 "s3:GetBucketVersioning"
],
 "Resource": "*"
 }
]
}

4. Choose Review policy.

5. Under Review policy, for the policy Name, enter s3-bucket-permissions.

6. Choose Create policy.

Step 3: Run a Standard state machine execution

1. On the Gather-S3-Bucket-Info-Standard page, choose Start execution.

2. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Step 2: Add the necessary IAM role permissions 500

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 4: Run an Express state machine execution

1. Create an Express state machine using the state machine definition provided in Step 1. Make
sure that you also include the necessary IAM role permissions as explained in Step 2.

Tip

To distinguish from the Standard machine you created earlier, name the Express state
machine as Gather-S3-Bucket-Info-Express.

2. On the Gather-S3-Bucket-Info-Standard page, choose Start execution.

3. In the Start execution dialog box, do the following:

a. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names

Step 4: Run an Express state machine execution 501

AWS Step Functions Developer Guide

don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

b. Choose Start execution.

c. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 4: Run an Express state machine execution 502

AWS Step Functions Developer Guide

Developer tools

The following resources contain additional information about building serverless workflows and
working with state machines:

• AWS CDK

• AWS Toolkit for VS Code

The topics below contain information that teach you how to create, test, and debug state
machines.

Topics

• Development options

• AWS Step Functions and AWS SAM

• Using Workflow Studio in Application Composer

• Creating a Lambda state machine for Step Functions using AWS CloudFormation

• Creating a Lambda state machine for Step Functions using AWS CDK

• Creating an API Gateway REST API with Synchronous Express State Machine Using the AWS CDK

• AWS Step Functions Data Science SDK for Python

• Deploying state machines using Terraform

Development options

You can implement your AWS Step Functions state machines in several ways, such as using the
console, the SDKs, or a local version of Step Functions for testing and development.

Topics

• Step Functions console

• AWS SDKs

• Standard and Express workflows

• HTTPS service API

• Development environments

Development Options 503

https://docs.aws.amazon.com/cdk/api/latest/docs/aws-stepfunctions-readme.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/bulding-stepfunctions.html

AWS Step Functions Developer Guide

• Endpoints

• AWS CLI

• Step Functions Local

• AWS Toolkit for Visual Studio Code

• AWS Serverless Application Model and Step Functions

• Terraform and Step Functions

• Definition format support

Step Functions console

You can define a state machine using the Step Functions console. You can write complex state
machines in the cloud without using a local development environment by using AWS Lambda to
supply code for your tasks. Once written, you can then use the Step Functions console to define
your state machine using the Amazon States Language.

The Creating a Lambda State Machine tutorial uses this technique to create a simple state machine,
execute it, and view its results.

Data flow simulator

You can design, implement and debug workflows in the Step Functions console. You can also
control the flow of data in your workflows by using JsonPath input and output processing. Use
the data flow simulator in the Step Functions console to learn how information flows from state to
state, and to understand how to filter and manipulate data. This tool simulates each of the fields
that Step Functions uses to process data, such as InputPath, Parameters, ResultSelector,
OutputPath, and ResultPath.

For more information, see Data flow simulator.

AWS SDKs

Step Functions is supported by the AWS SDKs for Java, .NET, Ruby, PHP, Python (Boto 3),
JavaScript, Go, and C++. These SDKs provide a convenient way to use the Step Functions HTTPS
API actions in multiple programming languages.

You can develop state machines, activities, or state machine starters using the API actions exposed
by these SDK libraries. You can also access visibility operations using these libraries to develop your
own Step Functions monitoring and reporting tools.

Step Functions console 504

https://console.aws.amazon.com/states/home?region=us-east-1#/
https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

To use Step Functions with other AWS services, see the reference documentation for the current
AWS SDKs and Tools for Amazon Web Services.

Note

Step Functions only supports HTTPS endpoints.

Standard and Express workflows

When you create a new state machine, you must select a Type of either Standard or Express. In
both cases, you define your state machine using the Amazon States Language. Your state machine
executions will behave differently, depending on which Type you select. The Type you choose can't
be changed after your state machine is created.

See Logging using CloudWatch Logs for more information.

HTTPS service API

Step Functions provides service operations that are accessible through HTTPS requests. You
can use these operations to communicate directly with Step Functions and to develop your own
libraries in any language that can communicate with Step Functions through HTTPS.

You can develop state machines, workers, or state machine starters using the service API actions.
You can also access visibility operations through the API actions to develop your own monitoring
and reporting tools.

For detailed information about API actions, see the AWS Step Functions API Reference.

Development environments

You must set up a development environment that is compatible with the programming language
that you plan to use.

For example, to develop for Step Functions using Java, you must install a Java development
environment, such as the AWS SDK for Java, on each of your development workstations. If you use
Eclipse IDE for Java Developers, you should also install the AWS Toolkit for Eclipse. This Eclipse
plugin adds features that are useful for developing on AWS.

If your programming language requires a runtime environment, you must set up the environment
on each computer where these processes will run.

Standard and Express workflows 505

http://aws.amazon.com/tools/
https://docs.aws.amazon.com/step-functions/latest/apireference/

AWS Step Functions Developer Guide

Endpoints

To reduce latency and store data in a location that meets your requirements, Step Functions
provides endpoints in different AWS Regions.

Each endpoint in Step Functions is completely independent. A state machine or activity exists only
within the Region where it was created. Any state machines and activities that you create in one
Region don't share any data or attributes with those created in another Region. For example, you
can register a state machine named STATES-Flows-1 in two different Regions. The STATES-
Flows-1 state machine in one region won't share data or attributes with the STATES-Flow-1
state machine in the other region.

For a list of Step Functions endpoints, see AWS Step Functions Regions and Endpoints in the AWS
General Reference.

AWS CLI

You can access many Step Functions features from the AWS Command Line Interface (AWS
CLI). The AWS CLI is an alternative to using the Step Functions console or, in some cases, to
programming using the Step Functions API actions. For example, you can use the AWS CLI to create
a state machine and then list your existing state machines.

You can use Step Functions commands in the AWS CLI to start and manage executions, poll for
activities, record task heartbeats, and more. For a complete list of Step Functions commands,
descriptions of the available arguments, and examples showing their use, see the AWS CLI
Command Reference.

AWS CLI commands follow the Amazon States Language closely, so you can use the AWS CLI
to learn about the Step Functions API actions. You can also use your existing API knowledge to
prototype code or perform Step Functions actions from the command line.

Step Functions Local

For testing and development purposes, you can install and run Step Functions on your local
machine. With Step Functions Local, you can start an execution on any machine.

The local version of Step Functions can invoke AWS Lambda functions, both in AWS and when
running locally. You can also coordinate other supported AWS services. For more information, see
Testing state machines locally.

Endpoints 506

https://docs.aws.amazon.com/general/latest/gr/step-functions.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

Note

Step Functions Local uses dummy accounts to work.

AWS Toolkit for Visual Studio Code

You can use VS Code to interact with remote state machines and develop state machines locally.
You can create or update state machines, list existing state machines, and execute or download a
state machine. VS Code also lets you create new state machines from templates, see a visualization
of your state machine, and provides code snippets, code completion, and code validation.

For more information, see the AWS Toolkit for Visual Studio Code User Guide

AWS Serverless Application Model and Step Functions

Step Functions is integrated with the AWS Serverless Application Model, which lets you integrate
workflows with Lambda functions, APIs and events to create serverless applications.

You can also use the AWS SAM CLI in conjunction with the AWS Toolkit for Visual Studio Code as
part of an integrated experience.

For more information, see AWS Step Functions and AWS SAM.

Terraform and Step Functions

Terraform by HashiCorp is a framework for building applications using infrastructure as code (IaC).
With Terraform, you can create state machines and use features, such as previewing infrastructure
deployments and creating reusable templates. Terraform templates help you maintain and reuse
the code by breaking it down into smaller chunks.

For more information, see Deploying state machines using Terraform.

Definition format support

Step Functions offers a variety of tools that lets you provide your state machine definitions in
different formats. An Amazon States Language (ASL) definition that specifies the details of your
state machine can be provided as either a string, or as a serialized object using JSON or YAML.

AWS Toolkit for Visual Studio Code 507

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/bulding-stepfunctions.html
https://www.terraform.io/intro/

AWS Step Functions Developer Guide

Note

YAML allows single line comments. Any YAML comments provided in the state machine
definition portion of a template will not be carried forward into the created resource’s
definition. Instead, you can use the Comment property within the state machine definition.
For more information, see the State machine structure page.

The following table shows which tools support ASL-based definitions.

Definition format support by tool

 JSON YAML Stringifi
ed Amazon
States
Language

Step
Functions
Console

✓

HTTPS
Service API

 ✓

AWS CLI ✓

Step
Functions
Local

 ✓

AWS Toolkit
for Visual
Studio Code

✓ ✓

AWS SAM ✓ ✓

AWS
CloudForm
ation

✓ ✓ ✓

Definition format support 508

AWS Step Functions Developer Guide

Note

AWS CloudFormation and AWS SAM also allow you to upload your state machine
definitions to Amazon S3 in JSON or YAML format, and to provide the definition's
Amazon S3 location in the template. This can improve the readability of your templates
when your state machine definition is complex. For more information see the
AWS::StepFunctions::StateMachine S3Location page.

The following example AWS CloudFormation templates show how you can provide the same state
machine definition using different input formats.

JSON with Definition

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "AWS Step Functions sample template.",
 "Resources": {
 "MyStateMachine": {
 "Type": "AWS::StepFunctions::StateMachine",
 "Properties": {
 "RoleArn": {
 "Fn::GetAtt": ["StateMachineRole", "Arn"]
 },
 "TracingConfiguration": {
 "Enabled": true
 },
 "Definition": {
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Pass",
 "End": true
 }
 }
 }
 }
 },
 "StateMachineRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {

Definition format support 509

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-stepfunctions-statemachine-s3location.html

AWS Step Functions Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "states.amazonaws.com"
]
 }
 }
]
 },
 "ManagedPolicyArns": [],
 "Policies": [
 {
 "PolicyName": "StateMachineRolePolicy",
 "PolicyDocument": {
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
 }
]
 }
 }
 },
 "Outputs": {
 "StateMachineArn": {
 "Value": {
 "Ref": "MyStateMachine"
 }
 }
 }
}

Definition format support 510

AWS Step Functions Developer Guide

JSON with DefinitionString

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "AWS Step Functions sample template.",
 "Resources": {
 "MyStateMachine": {
 "Type": "AWS::StepFunctions::StateMachine",
 "Properties": {
 "RoleArn": {
 "Fn::GetAtt": ["StateMachineRole", "Arn"]
 },
 "TracingConfiguration": {
 "Enabled": true
 },
 "DefinitionString": "{\n \"StartAt\": \"HelloWorld\",\n \"States\": {\n
 \"HelloWorld\": {\n \"Type\": \"Pass\",\n \"End\": true\n }\n }\n}"
 }
 },
 "StateMachineRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sts:AssumeRole"
],
 "Effect": "Allow",
 "Principal": {
 "Service": [
 "states.amazonaws.com"
]
 }
 }
]
 },
 "ManagedPolicyArns": [],
 "Policies": [
 {
 "PolicyName": "StateMachineRolePolicy",
 "PolicyDocument": {
 "Statement": [

Definition format support 511

AWS Step Functions Developer Guide

 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
 }
 }
]
 }
 }
 },
 "Outputs": {
 "StateMachineArn": {
 "Value": {
 "Ref": "MyStateMachine"
 }
 }
 }
}

YAML with Definition

AWSTemplateFormatVersion: 2010-09-09
Description: AWS Step Functions sample template.
Resources:
 MyStateMachine:
 Type: 'AWS::StepFunctions::StateMachine'
 Properties:
 RoleArn: !GetAtt
 - StateMachineRole
 - Arn
 TracingConfiguration:
 Enabled: true
 Definition:
 # This is a YAML comment. This will not be preserved in the state machine
 resource's definition.
 Comment: This is an ASL comment. This will be preserved in the state machine
 resource's definition.
 StartAt: HelloWorld
 States:

Definition format support 512

AWS Step Functions Developer Guide

 HelloWorld:
 Type: Pass
 End: true
 StateMachineRole:
 Type: 'AWS::IAM::Role'
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Action:
 - 'sts:AssumeRole'
 Effect: Allow
 Principal:
 Service:
 - states.amazonaws.com
 ManagedPolicyArns: []
 Policies:
 - PolicyName: StateMachineRolePolicy
 PolicyDocument:
 Statement:
 - Action:
 - 'lambda:InvokeFunction'
 Resource: "*"
 Effect: Allow

Outputs:
 StateMachineArn:
 Value:
 Ref: MyStateMachine

YAML with DefinitionString

AWSTemplateFormatVersion: 2010-09-09
Description: AWS Step Functions sample template.
Resources:
 MyStateMachine:
 Type: 'AWS::StepFunctions::StateMachine'
 Properties:
 RoleArn: !GetAtt
 - StateMachineRole
 - Arn
 TracingConfiguration:
 Enabled: true

Definition format support 513

AWS Step Functions Developer Guide

 DefinitionString: |
 {
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Pass",
 "End": true
 }
 }
 }
 StateMachineRole:
 Type: 'AWS::IAM::Role'
 Properties:
 AssumeRolePolicyDocument:
 Version: 2012-10-17
 Statement:
 - Action:
 - 'sts:AssumeRole'
 Effect: Allow
 Principal:
 Service:
 - states.amazonaws.com
 ManagedPolicyArns: []
 Policies:
 - PolicyName: StateMachineRolePolicy
 PolicyDocument:
 Statement:
 - Action:
 - 'lambda:InvokeFunction'
 Resource: "*"
 Effect: Allow

Outputs:
 StateMachineArn:
 Value:
 Ref: MyStateMachine

AWS Step Functions and AWS SAM

You can use the AWS SAM CLI in conjunction with the AWS Toolkit for Visual Studio Code as part
of an integrated experience to create state machines locally. You can build a serverless application
with AWS SAM, then build out your state machine in the VS Code IDE. Then you can validate,

Step Functions and AWS SAM 514

AWS Step Functions Developer Guide

package, and deploy your resources. Optionally, you can also publish to the AWS Serverless
Application Repository.

Tip

To deploy a sample serverless application that starts a Step Functions workflow using
AWS SAM to your AWS account, see Module 11 - Deploy with AWS SAM of The AWS Step
Functions Workshop.

Topics

• Why use Step Functions with AWS SAM?

• Step Functions integration with the AWS SAM specification

• Step Functions integration with the SAM CLI

• DefinitionSubstitutions in AWS SAM templates

• Next steps

Why use Step Functions with AWS SAM?

When you use Step Functions with AWS SAM you can:

• Get started using a AWS SAM sample template.

• Build your state machine into your serverless application.

• Use variable substitution to substitute ARNs into your state machine at the time of deployment.

AWS CloudFormation supports DefinitionSubstitutions that let you add dynamic
references in your workflow definition to a value that you provide in your CloudFormation
template. You can add dynamic references by adding substitutions to your workflow definition
using the ${dollar_sign_brace} notation. You also need to define these dynamic
references in the DefinitionSubstitutions property for the StateMachine resource in
your CloudFormation template. These substitutions are replaced with actual values during the
CloudFormation stack creation process. For more information, see DefinitionSubstitutions in AWS
SAM templates.

• Specify your state machine's role using AWS SAM policy templates.

• Initiate state machine executions with API Gateway, EventBridge events, or on a schedule within
your AWS SAM template.

Why use Step Functions with AWS SAM? 515

https://s12d.com/sfn-ws-sam
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html#cfn-stepfunctions-statemachine-definitionsubstitutions

AWS Step Functions Developer Guide

Step Functions integration with the AWS SAM specification

You can use the AWS SAM Policy Templates to add permissions to your state machine. With these
permissions, you can orchestrate Lambda functions and other AWS resources to form complex and
robust workflows.

Step Functions integration with the SAM CLI

Step Functions is integrated with the AWS SAM CLI. Use this to quickly develop a state machine
into your serverless application.

Try the Create a Step Functions state machine using AWS SAM tutorial to learn how to use AWS
SAM to create state machines.

Supported AWS SAM CLI functions include:

CLI Command Description

sam init Initializes a Serverless Application with an
AWS SAM template. Can be used with a SAM
template for Step Functions.

sam validate Validates an AWS SAM template.

sam package Packages an AWS SAM application. It creates
a ZIP file of your code and dependencies, and
then uploads it to Amazon S3. It then returns
a copy of your AWS SAM template, replacing
references to local artifacts with the Amazon
S3 location where the command uploaded the
artifacts.

sam deploy Deploys an AWS SAM application.

sam publish Publish an AWS SAM application to the
AWS Serverless Application Repository.
This command takes a packaged AWS SAM
template and publishes the application to the
specified region.

Step Functions integration with the AWS SAM specification 516

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html

AWS Step Functions Developer Guide

Note

When using AWS SAM local, you can emulate Lambda and API Gateway locally. However,
you can't emulate Step Functions locally using AWS SAM.

DefinitionSubstitutions in AWS SAM templates

You can define state machines using CloudFormation templates with AWS SAM. Using AWS
SAM, you can define the state machine inline in the template or in a separate file. The following
AWS SAM template includes a state machine that simulates a stock trading workflow. This state
machine invokes three Lambda functions to check the price of a stock and determine whether
to buy or sell the stock. This transaction is then recorded in an Amazon DynamoDB table. The
ARNs for the Lambda functions and DynamoDB table in the following template are specified using
DefinitionSubstitutions.

AWSTemplateFormatVersion: '2010-09-09'
Transform: AWS::Serverless-2016-10-31
Description: |
 step-functions-stock-trader
 Sample SAM Template for step-functions-stock-trader
Resources:
 StockTradingStateMachine:
 Type: AWS::Serverless::StateMachine
 Properties:
 DefinitionSubstitutions:
 StockCheckerFunctionArn: !GetAtt StockCheckerFunction.Arn
 StockSellerFunctionArn: !GetAtt StockSellerFunction.Arn
 StockBuyerFunctionArn: !GetAtt StockBuyerFunction.Arn
 DDBPutItem: !Sub arn:${AWS::Partition}:states:::dynamodb:putItem
 DDBTable: !Ref TransactionTable
 Policies:
 - DynamoDBWritePolicy:
 TableName: !Ref TransactionTable
 - LambdaInvokePolicy:
 FunctionName: !Ref StockCheckerFunction
 - LambdaInvokePolicy:
 FunctionName: !Ref StockBuyerFunction
 - LambdaInvokePolicy:
 FunctionName: !Ref StockSellerFunction
 DefinitionUri: statemachine/stock_trader.asl.json

DefinitionSubstitutions in AWS SAM templates 517

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html#cfn-stepfunctions-statemachine-definitionsubstitutions

AWS Step Functions Developer Guide

 StockCheckerFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: functions/stock-checker/
 Handler: app.lambdaHandler
 Runtime: nodejs18.x
 Architectures:
 - x86_64
 StockSellerFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: functions/stock-seller/
 Handler: app.lambdaHandler
 Runtime: nodejs18.x
 Architectures:
 - x86_64
 StockBuyerFunction:
 Type: AWS::Serverless::Function
 Properties:
 CodeUri: functions/stock-buyer/
 Handler: app.lambdaHandler
 Runtime: nodejs18.x
 Architectures:
 - x86_64
 TransactionTable:
 Type: AWS::DynamoDB::Table
 Properties:
 AttributeDefinitions:
 - AttributeName: id
 AttributeType: S

The following code is the state machine definition in the file stock_trader.asl.json
which is used in the Create a Step Functions state machine using AWS SAM tutorial.This
state machine definition contains several DefinitionSubstitutions denoted by the
${dollar_sign_brace} notation. For example, instead of specifying a static Lambda function
ARN for the Check Stock Value task, the substitution ${StockCheckerFunctionArn}
is used. This substitution is defined in the DefinitionSubstitutions property of the template.
DefinitionSubstitutions is a map of key-value pairs for the state machine resource.
In DefinitionSubstitutions, ${StockCheckerFunctionArn} maps to the ARN of the
StockCheckerFunction resource using the CloudFormation intrinsic function !GetAtt. When

DefinitionSubstitutions in AWS SAM templates 518

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/intrinsic-function-reference-getatt.html

AWS Step Functions Developer Guide

you deploy the AWS SAM template, the DefinitionSubstitutions in the template are replaced
with the actual values.

{
 "Comment": "A state machine that does mock stock trading.",
 "StartAt": "Check Stock Value",
 "States": {
 "Check Stock Value": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "${StockCheckerFunctionArn}"
 },
 "Next": "Buy or Sell?"
 },
 "Buy or Sell?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.stock_price",
 "NumericLessThanEquals": 50,
 "Next": "Buy Stock"
 }
],
 "Default": "Sell Stock"
 },
 "Buy Stock": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "${StockBuyerFunctionArn}"
 },
 "Retry": [
 {
 "ErrorEquals": [
 "Lambda.ServiceException",
 "Lambda.AWSLambdaException",
 "Lambda.SdkClientException",
 "Lambda.TooManyRequestsException"

DefinitionSubstitutions in AWS SAM templates 519

AWS Step Functions Developer Guide

],
 "IntervalSeconds": 1,
 "MaxAttempts": 3,
 "BackoffRate": 2
 }
],
 "Next": "Record Transaction"
 },
 "Sell Stock": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "Payload.$": "$",
 "FunctionName": "${StockSellerFunctionArn}"
 },
 "Next": "Record Transaction"
 },
 "Record Transaction": {
 "Type": "Task",
 "Resource": "arn:aws:states:::dynamodb:putItem",
 "Parameters": {
 "TableName": "${DDBTable}",
 "Item": {
 "Id": {
 "S.$": "$.id"
 },
 "Type": {
 "S.$": "$.type"
 },
 "Price": {
 "N.$": "$.price"
 },
 "Quantity": {
 "N.$": "$.qty"
 },
 "Timestamp": {
 "S.$": "$.timestamp"
 }
 }
 },
 "End": true
 }
 }

DefinitionSubstitutions in AWS SAM templates 520

AWS Step Functions Developer Guide

}

Next steps

You can learn more about using Step Functions with AWS SAM with the following resources:

• Complete the Create a Step Functions state machine using AWS SAM tutorial to create a state
machine with AWS SAM.

• Specify a AWS::Serverless::StateMachine resource.

• Find AWS SAM Policy Templates to use.

• Use AWS Toolkit for Visual Studio Code with Step Functions.

• Review the AWS SAM CLI reference to learn more about the features available in AWS SAM.

You can also design and build your workflows in infrastructure as code (IaC) using visual builders,
such as Workflow Studio in Application Composer. For more information, see Using Workflow
Studio in Application Composer.

Using Workflow Studio in Application Composer

AWS Application Composer is a visual builder that helps you develop AWS SAM and AWS
CloudFormation templates using a simple graphical interface. With Application Composer, you
design an application architecture by dragging, grouping, and connecting AWS services in a visual
canvas. Application Composer then creates an infrastructure as code (IaC) template from your
design that you can use to deploy your application with the AWS SAM Command Line Interface
(AWS SAM CLI) or CloudFormation. To learn more about Application Composer, see What is
Application Composer.

Workflow Studio is available in Application Composer to help you design and build your workflows.
Workflow Studio in Application Composer provides a visual IaC environment that makes it easy
for you to incorporate workflows in your serverless applications built using IaC tools, such as
CloudFormation templates. When you use Workflow Studio in Application Composer, it connects
the individual workflow steps to AWS resources and generates the resource configurations in an
AWS SAM template. It also adds the IAM permissions required for your workflow to run. Using
Workflow Studio in Application Composer, you can create prototypes of your applications and turn
them into production-ready applications.

Next steps 521

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/stepfunctions.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-command-reference.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html
https://docs.aws.amazon.com/application-composer/latest/dg/what-is-composer.html

AWS Step Functions Developer Guide

When you use Workflow Studio in Application Composer, you can switch back and forth between
the Application Composer canvas and Workflow Studio.

Topics

• Using Workflow Studio in Application Composer to build a serverless workflow

• Dynamically reference resources using CloudFormation definition substitutions in Workflow
Studio

• Connect service integration tasks to enhanced component cards

• Import existing projects and sync them locally

• Unavailable Workflow Studio features in AWS Application Composer

Using Workflow Studio in Application Composer to build a serverless
workflow

1. Open the Application Composer console and choose Create project to create a project.

2. In the search field in the Resources palette, enter state machine.

3. Drag the Step Functions State machine resource onto the canvas.

4. Choose Edit in Workflow Studio to edit your state machine resource.

The following animation shows how you can switch to the Workflow Studio for editing your
state machine definition.
An animation that illustrates how you can use Workflow Studio in Application Composer.

The integration with Workflow Studio to edit state machines resources created in
Application Composer is only available for AWS::Serverless::StateMachine
resource. This integration is not available for templates that use the
AWS::StepFunctions::StateMachine resource.

Dynamically reference resources using CloudFormation definition
substitutions in Workflow Studio

In Workflow Studio, you can use CloudFormation definition substitutions in your workflow
definition to dynamically reference resources that you've defined in your IaC template. You can
add placeholder substitutions to your workflow definition using the ${dollar_sign_brace}
notation and they are replaced with actual values during the CloudFormation stack creation

Using Workflow Studio in Application Composer 522

https://console.aws.amazon.com/composer/home
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide

process. For more information about definition substitutions, see DefinitionSubstitutions in AWS
SAM templates.

The following animation shows how you can add placeholder substitutions for the resources in
your state machine definition.
An animation that illustrates how to dynamically reference resources, such as AWS Lambda
functions, definition substitutions when you use Workflow Studio in Application Composer.

Connect service integration tasks to enhanced component cards

You can connect the tasks that call optimized service integrations to enhanced component cards
in Application Composer canvas. Doing this automatically maps any placeholder substitutions
specified by the ${dollar_sign_brace} notation in your workflow definition and the
DefinitionSubstitution property for your StateMachine resource. It also adds the
appropriate AWS SAM policies for the state machine.

If you map optimized service integration tasks with standard component cards, the connection line
doesn't appear on the Application Composer canvas.

The following animation shows how you can connect an optimized task to an enhanced component
card and view the changes in Change Inspector.
An animation that illustrates how to connect tasks that call optimized service integrations to
enhanced component cards when you use Workflow Studio in Application Composer.

You can't connect AWS SDK integrations in your Task state with enhanced component cards or
optimized service integrations with standard component cards. For these tasks, you can map the
substitutions in the Resource properties panel in Application Composer canvas, and add policies in
the AWS SAM template.

Tip

Alternatively, you can also map placeholder substitutions for your state machine under
Definition Substitutions in the Resource properties panel. When you do this, you must
add the required permissions for the AWS service your Task state calls in the state machine
execution role. For information about permissions your execution role might need, see
Execution roles in Workflow Studio.

The following animation shows how you can manually update the placeholder substitution
mapping in the Resource properties panel.

Connect service integration tasks to enhanced component cards 523

https://docs.aws.amazon.com/application-composer/latest/dg/reference-cards.html#reference-cards-enhanced-components
https://docs.aws.amazon.com/application-composer/latest/dg/using-composer-cards.html#using-composer-cards-component-intro
https://docs.aws.amazon.com/application-composer/latest/dg/using-change-inspector.html

AWS Step Functions Developer Guide

An animation that illustrates how to manually update the placeholder substitution mapping in the
Resource properties panel when you use Workflow Studio in Application Composer.

Import existing projects and sync them locally

You can open existing CloudFormation and AWS SAM projects in Application Composer to visualize
them for better understanding and modify their designs. Using Application Composer's local sync
feature, you can automatically sync and save your template and code files to your local build
machine. Using the local sync mode can compliment your existing development flows. Make sure
that your browser supports the File System Access API, which allows web applications to read,
write, and save files in your local file system. We recommend using either Google Chrome or
Microsoft Edge.

Unavailable Workflow Studio features in AWS Application Composer

When you use Workflow Studio in Application Composer, some of the Workflow Studio features
are unavailable. In addition, the API Parameters section available in the Inspector panel supports
CloudFormation definition substitutions. You can add the substitutions in the Code mode
using the ${dollar_sign_brace} notation. For more information about this notation, see
DefinitionSubstitutions in AWS SAM templates.

The following list describes the Workflow Studio features that are unavailable when you use
Workflow Studio in Application Composer:

• Starter templates – Starter templates are ready-to-run sample projects that automatically
create the workflow proptotypes and definitions. These templates deploys all the related AWS
resources that your project needs to your AWS account.

• Config mode – This mode lets you manage the configuration of your state machines. You can
update your state machine configurations in your IaC templates or use the Resource properties
panel in Application Composer canvas. For information about updating configurations in the
Resource properties panel, see Connect service integration tasks to enhanced component cards.

• TestState API

• Option to import or export workflow definitions from the Actions dropdown button in Workflow
Studio. Instead, from the Application Composer menu, select Open > Project folder. Make sure
that you've enabled the local sync mode to automatically save your changes in the Application
Composer canvas directly to your local machine.

Import existing projects and sync them locally 524

https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-fsa.html
https://docs.aws.amazon.com/application-composer/latest/dg/reference-features-local-sync.html

AWS Step Functions Developer Guide

• Execute button. When you use Workflow Studio in Application Composer, Application Composer
generates the IaC code for your workflow. Therefore, you must first deploy the template. Then,
run the workflow in the console or through the AWS Command Line Interface (AWS CLI).

Creating a Lambda state machine for Step Functions using AWS
CloudFormation

This tutorial shows you how to create a basic AWS Lambda function using AWS CloudFormation.
You'll use the AWS CloudFormation console and a YAML template to create the stack (IAM roles,
the Lambda function, and the state machine). Then, you'll use the AWS Step Functions console to
start the state machine execution.

For more information, see Working with CloudFormation Templates and the
AWS::StepFunctions::StateMachine resource in the AWS CloudFormation User Guide.

Topics

• Step 1: Set up your AWS CloudFormation template

• Step 2: Use the AWS CloudFormation template to create a Lambda State Machine

• Step 3: Start a State Machine execution

Step 1: Set up your AWS CloudFormation template

Before you use the example templates, you should understand how to declare the different parts
of an AWS CloudFormation template.

Topics

• To create an IAM role for Lambda

• To create a Lambda function

• To create an IAM role for the state machine execution

• To create a Lambda state machine

To create an IAM role for Lambda

Define the trust policy associated with the IAM role for the Lambda function. The following
examples define a trust policy using either YAML or JSON.

Creating a Lambda State Machine Using AWS CloudFormation 525

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-stepfunctions-statemachine.html

AWS Step Functions Developer Guide

YAML

LambdaExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: "sts:AssumeRole"

JSON

 "LambdaExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }

To create a Lambda function

Define the following properties for a Lambda function that will print the message Hello World.

Important

Ensure that your Lambda function is under the same AWS account and AWS Region as your
state machine.

Step 1: Set up your AWS CloudFormation template 526

AWS Step Functions Developer Guide

YAML

MyLambdaFunction:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role: !GetAtt [LambdaExecutionRole, Arn]
 Code:
 ZipFile: |
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 Runtime: "nodejs12.x"
 Timeout: "25"

JSON

 "MyLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Handler": "index.handler",
 "Role": {
 "Fn::GetAtt": [
 "LambdaExecutionRole",
 "Arn"
]
 },
 "Code": {
 "ZipFile": "exports.handler = (event, context, callback) => {\n
 callback(null, \"Hello World!\");\n};\n"
 },
 "Runtime": "nodejs12.x",
 "Timeout": "25"
 }
 },

To create an IAM role for the state machine execution

Define the trust policy associated with the IAM role for the state machine execution.

Step 1: Set up your AWS CloudFormation template 527

AWS Step Functions Developer Guide

YAML

StatesExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - !Sub states.${AWS::Region}.amazonaws.com
 Action: "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: StatesExecutionPolicy
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - "lambda:InvokeFunction"
 Resource: "*"

JSON

 "StatesExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 {
 "Fn::Sub": "states.
${AWS::Region}.amazonaws.com"
 }
]
 },
 "Action": "sts:AssumeRole"

Step 1: Set up your AWS CloudFormation template 528

AWS Step Functions Developer Guide

 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "StatesExecutionPolicy",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "*"
 }
]
 }
 }
]
 }
 },

To create a Lambda state machine

Define the Lambda state machine.

YAML

MyStateMachine:
 Type: "AWS::StepFunctions::StateMachine"
 Properties:
 DefinitionString:
 !Sub
 - |-
 {
 "Comment": "A Hello World example using an AWS Lambda function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",

Step 1: Set up your AWS CloudFormation template 529

AWS Step Functions Developer Guide

 "Resource": "${lambdaArn}",
 "End": true
 }
 }
 }
 - {lambdaArn: !GetAtt [MyLambdaFunction, Arn]}
 RoleArn: !GetAtt [StatesExecutionRole, Arn]

JSON

 "MyStateMachine": {
 "Type": "AWS::StepFunctions::StateMachine",
 "Properties": {
 "DefinitionString": {
 "Fn::Sub": [
 "{\n \"Comment\": \"A Hello World example using an
 AWS Lambda function\",\n \"StartAt\": \"HelloWorld\",\n \"States\": {\n
 \"HelloWorld\": {\n \"Type\": \"Task\",\n \"Resource\": \"${lambdaArn}\",
\n \"End\": true\n }\n }\n}",
 {
 "lambdaArn": {
 "Fn::GetAtt": [
 "MyLambdaFunction",
 "Arn"
]
 }
 }
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "StatesExecutionRole",
 "Arn"
]
 }
 }
 }

Step 1: Set up your AWS CloudFormation template 530

AWS Step Functions Developer Guide

Step 2: Use the AWS CloudFormation template to create a Lambda
State Machine

Once you understand the components of the AWS CloudFormation template, you can put them
together and use the template to create an AWS CloudFormation stack.

To create the Lambda state machine

1. Copy the following example data to a file named MyStateMachine.yaml for the YAML
example, or MyStateMachine.json for JSON.

YAML

AWSTemplateFormatVersion: "2010-09-09"
Description: "An example template with an IAM role for a Lambda state machine."
Resources:
 LambdaExecutionRole:
 Type: "AWS::IAM::Role"
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Principal:
 Service: lambda.amazonaws.com
 Action: "sts:AssumeRole"

 MyLambdaFunction:
 Type: "AWS::Lambda::Function"
 Properties:
 Handler: "index.handler"
 Role: !GetAtt [LambdaExecutionRole, Arn]
 Code:
 ZipFile: |
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 Runtime: "nodejs12.x"
 Timeout: "25"

 StatesExecutionRole:
 Type: "AWS::IAM::Role"

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 531

AWS Step Functions Developer Guide

 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: "Allow"
 Principal:
 Service:
 - !Sub states.${AWS::Region}.amazonaws.com
 Action: "sts:AssumeRole"
 Path: "/"
 Policies:
 - PolicyName: StatesExecutionPolicy
 PolicyDocument:
 Version: "2012-10-17"
 Statement:
 - Effect: Allow
 Action:
 - "lambda:InvokeFunction"
 Resource: "*"

 MyStateMachine:
 Type: "AWS::StepFunctions::StateMachine"
 Properties:
 DefinitionString:
 !Sub
 - |-
 {
 "Comment": "A Hello World example using an AWS Lambda function",
 "StartAt": "HelloWorld",
 "States": {
 "HelloWorld": {
 "Type": "Task",
 "Resource": "${lambdaArn}",
 "End": true
 }
 }
 }
 - {lambdaArn: !GetAtt [MyLambdaFunction, Arn]}
 RoleArn: !GetAtt [StatesExecutionRole, Arn]

JSON

{

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 532

AWS Step Functions Developer Guide

 "AWSTemplateFormatVersion": "2010-09-09",
 "Description": "An example template with an IAM role for a Lambda state
 machine.",
 "Resources": {
 "LambdaExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "lambda.amazonaws.com"
 },
 "Action": "sts:AssumeRole"
 }
]
 }
 }
 },
 "MyLambdaFunction": {
 "Type": "AWS::Lambda::Function",
 "Properties": {
 "Handler": "index.handler",
 "Role": {
 "Fn::GetAtt": [
 "LambdaExecutionRole",
 "Arn"
]
 },
 "Code": {
 "ZipFile": "exports.handler = (event, context, callback) =>
 {\n callback(null, \"Hello World!\");\n};\n"
 },
 "Runtime": "nodejs12.x",
 "Timeout": "25"
 }
 },
 "StatesExecutionRole": {
 "Type": "AWS::IAM::Role",
 "Properties": {
 "AssumeRolePolicyDocument": {
 "Version": "2012-10-17",

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 533

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": [
 {
 "Fn::Sub": "states.
${AWS::Region}.amazonaws.com"
 }
]
 },
 "Action": "sts:AssumeRole"
 }
]
 },
 "Path": "/",
 "Policies": [
 {
 "PolicyName": "StatesExecutionPolicy",
 "PolicyDocument": {
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "*"
 }
]
 }
 }
]
 }
 },
 "MyStateMachine": {
 "Type": "AWS::StepFunctions::StateMachine",
 "Properties": {
 "DefinitionString": {
 "Fn::Sub": [
 "{\n \"Comment\": \"A Hello World example using
 an AWS Lambda function\",\n \"StartAt\": \"HelloWorld\",\n \"States\":
 {\n \"HelloWorld\": {\n \"Type\": \"Task\",\n \"Resource\":
 \"${lambdaArn}\",\n \"End\": true\n }\n }\n}",

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 534

AWS Step Functions Developer Guide

 {
 "lambdaArn": {
 "Fn::GetAtt": [
 "MyLambdaFunction",
 "Arn"
]
 }
 }
]
 },
 "RoleArn": {
 "Fn::GetAtt": [
 "StatesExecutionRole",
 "Arn"
]
 }
 }
 }
 }
}

2. Open the AWS CloudFormation console and choose Create Stack.

3. On the Select Template page, choose Upload a template to Amazon S3. Choose your
MyStateMachine file, and then choose Next.

4. On the Specify Details page, for Stack name, enter MyStateMachine, and then choose Next.

5. On the Options page, choose Next.

6. On the Review page, choose I acknowledge that AWS CloudFormation might create IAM
resources. and then choose Create.

AWS CloudFormation begins to create the MyStateMachine stack and displays the
CREATE_IN_PROGRESS status. When the process is complete, AWS CloudFormation displays
the CREATE_COMPLETE status.

7. (Optional) To display the resources in your stack, select the stack and choose the Resources
tab.

Step 2: Use the AWS CloudFormation template to create a Lambda State Machine 535

https://console.aws.amazon.com/cloudformation/home

AWS Step Functions Developer Guide

Step 3: Start a State Machine execution

After you create your Lambda state machine, you can start its execution.

To start the state machine execution

1. Open the Step Functions console and choose the name of the state machine that you created
using AWS CloudFormation.

2. On the MyStateMachine-ABCDEFGHIJ1K page, choose New execution.

The New execution page is displayed.

3. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

4. Choose Start Execution.

A new execution of your state machine starts, and a new page showing your running execution
is displayed.

5. (Optional) In the Execution Details, review the Execution Status and the Started and Closed
timestamps.

6. To view the results of your execution, choose Output.

Step 3: Start a State Machine execution 536

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

Creating a Lambda state machine for Step Functions using AWS
CDK

This tutorial shows how to create an AWS Step Functions state machine that contains an
AWS Lambda function using the AWS Cloud Development Kit (AWS CDK). The AWS CDK is an
Infrastructure as Code (IAC) framework that lets you define AWS infrastructure using a full-fledged
programming language. You can write an app in one of the CDK's supported languages containing
one or more stacks. Then, you can synthesize it to an AWS CloudFormation template and deploy it
to your AWS account. We'll use this method to define a Step Functions state machine containing a
a Lambda function, then use the AWS Management Console to run the state machine.

Before you begin this tutorial, you must set up your AWS CDK development environment as
described in Getting Started With the AWS CDK - Prerequisites in the AWS Cloud Development Kit
(AWS CDK) Developer Guide. Then, install the AWS CDK with the following command at the AWS
CLI:

npm install -g aws-cdk

This tutorial produces the same result as the section called “Creating a Lambda State Machine
Using AWS CloudFormation”. However, in this tutorial, the AWS CDK doesn't require you to create
any IAM roles; the AWS CDK does it for you. The AWS CDK version also includes a Succeed step to
illustrate how to add additional steps to your state machine.

Tip

To deploy a sample serverless application that starts a Step Functions workflow using AWS
CDK with TypeScript to your AWS account, see Module 10 - Deploy with AWS CDK of The
AWS Step Functions Workshop.

Topics

• Step 1: Set up your AWS CDK project

• Step 2: Use AWS CDK to create a state machine

• Step 3: Start a state machine execution

• Step 4: Clean Up

• Next steps

Creating a Lambda state machine using AWS CDK 537

https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html#getting_started_prerequisites
https://s12d.com/sfn-ws-cdk

AWS Step Functions Developer Guide

Step 1: Set up your AWS CDK project

1. In your home directory, or another directory if you prefer, run the following command to
create a directory for your new AWS CDK app.

Important

Be sure to name the directory step. The AWS CDK application template uses the name
of the directory to generate names for source files and classes. If you use a different
name, your app will not match this tutorial.

TypeScript

mkdir step && cd step

JavaScript

mkdir step && cd step

Python

mkdir step && cd step

Java

mkdir step && cd step

C#

Make sure you've installed .NET version 6.0 or higher. For information, see Supported
versions.

mkdir step && cd step

2. Initialize the app by using the cdk init command. Specify the desired template ("app") and
programming language as shown in the following examples.

Step 1: Set up your AWS CDK project 538

https://dotnet.microsoft.com/en-us/download/dotnet
https://dotnet.microsoft.com/en-us/download/dotnet

AWS Step Functions Developer Guide

TypeScript

cdk init --language typescript

JavaScript

cdk init --language javascript

Python

cdk init --language python

After the project is initialized, activate the project's virtual environment and install the AWS
CDK's baseline dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

cdk init --language java

C#

cdk init --language csharp

Step 2: Use AWS CDK to create a state machine

First, we'll present the individual pieces of code that define the Lambda function and the Step
Functions state machine. Then, we'll explain how to put them together in your AWS CDK app.
Finally, you'll see how to synthesize and deploy these resources.

To create a Lambda function

The following AWS CDK code defines the Lambda function, providing its source code inline.

Step 2: Use AWS CDK to create a state machine 539

AWS Step Functions Developer Guide

TypeScript

const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
 code: lambda.Code.fromInline(`
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 `),
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: "index.handler",
 timeout: cdk.Duration.seconds(3)
});

JavaScript

const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
 code: lambda.Code.fromInline(`
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 `),
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: "index.handler",
 timeout: cdk.Duration.seconds(3)
});

Python

hello_function = lambda_.Function(
 self, "MyLambdaFunction",
 code=lambda_.Code.from_inline("""
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 }"""),
 runtime=lambda_.Runtime.NODEJS_18_X,
 handler="index.handler",
 timeout=Duration.seconds(25))

Java

final Function helloFunction = Function.Builder.create(this, "MyLambdaFunction")
 .code(Code.fromInline(

Step 2: Use AWS CDK to create a state machine 540

AWS Step Functions Developer Guide

 "exports.handler = (event, context, callback) => { callback(null,
 'Hello World!');}"))
 .runtime(Runtime.NODEJS_18_X)
 .handler("index.handler")
 .timeout(Duration.seconds(25))
 .build();

C#

var helloFunction = new Function(this, "MyLambdaFunction", new FunctionProps
{
 Code = Code.FromInline(@"`
 exports.handler = (event, context, callback) => {
 callback(null, 'Hello World!');
 }"),
 Runtime = Runtime.NODEJS_12_X,
 Handler = "index.handler",
 Timeout = Duration.Seconds(25)
});

You can see in this short example code:

• The function's logical name, MyLambdaFunction.

• The source code for the function, embedded as a string in the source code of the AWS CDK app.

• Other function attributes, such as the runtime to be used (Node 18.x), the function's entry point,
and a timeout.

To create a state machine

Our state machine has two states: a Lambda function task, and a Succeed state. The function
requires that we create a Step Functions the section called “Task” that invokes our function.
This Task state is used as the first step in the state machine. The success state is added to the
state machine using the Task state's next() method. The following code first invokes the
function named MyLambdaTask, then uses the next() method to define a success state named
GreetedWorld.

TypeScript

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {

Step 2: Use AWS CDK to create a state machine 541

AWS Step Functions Developer Guide

 definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
 lambdaFunction: helloFunction
 }).next(new sfn.Succeed(this, "GreetedWorld"))
});

JavaScript

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
 definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
 lambdaFunction: helloFunction
 }).next(new sfn.Succeed(this, "GreetedWorld"))
});

Python

state_machine = sfn.StateMachine(
 self, "MyStateMachine",
 definition=tasks.LambdaInvoke(
 self, "MyLambdaTask",
 lambda_function=hello_function)
 .next(sfn.Succeed(self, "GreetedWorld")))

Java

final StateMachine stateMachine = StateMachine.Builder.create(this,
 "MyStateMachine")
 .definition(LambdaInvoke.Builder.create(this, "MyLambdaTask")
 .lambdaFunction(helloFunction)
 .build()
 .next(new Succeed(this, "GreetedWorld")))
 .build();

C#

var stateMachine = new StateMachine(this, "MyStateMachine", new StateMachineProps {
 DefinitionBody = DefinitionBody.FromChainable(new LambdaInvoke(this,
 "MyLambdaTask", new LambdaInvokeProps
 {
 LambdaFunction = helloFunction
 })
 .Next(new Succeed(this, "GreetedWorld")))
});

Step 2: Use AWS CDK to create a state machine 542

AWS Step Functions Developer Guide

To build and deploy the AWS CDK app

In your newly created AWS CDK project, edit the file that contains the stack's definition to look like
the following example code. You'll recognize the definitions of the Lambda function and the Step
Functions state machine from previous sections.

1. Update the stack as shown in the following examples.

TypeScript

Update lib/step-stack.ts with the following code.

import * as cdk from 'aws-cdk-lib';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as sfn from 'aws-cdk-lib/aws-stepfunctions';
import * as tasks from 'aws-cdk-lib/aws-stepfunctions-tasks';

export class StepStack extends cdk.Stack {
 constructor(app: cdk.App, id: string) {
 super(app, id);

 const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
 code: lambda.Code.fromInline(`
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 `),
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: "index.handler",
 timeout: cdk.Duration.seconds(3)
 });

 const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
 definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
 lambdaFunction: helloFunction
 }).next(new sfn.Succeed(this, "GreetedWorld"))
 });
 }
}

JavaScript

Update lib/step-stack.js with the following code.

Step 2: Use AWS CDK to create a state machine 543

AWS Step Functions Developer Guide

import * as cdk from 'aws-cdk-lib';
import * as lambda from 'aws-cdk-lib/aws-lambda';
import * as sfn from 'aws-cdk-lib/aws-stepfunctions';
import * as tasks from 'aws-cdk-lib/aws-stepfunctions-tasks';

export class StepStack extends cdk.Stack {
 constructor(app, id) {
 super(app, id);

 const helloFunction = new lambda.Function(this, 'MyLambdaFunction', {
 code: lambda.Code.fromInline(`
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 };
 `),
 runtime: lambda.Runtime.NODEJS_18_X,
 handler: "index.handler",
 timeout: cdk.Duration.seconds(3)
 });

 const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
 definition: new tasks.LambdaInvoke(this, "MyLambdaTask", {
 lambdaFunction: helloFunction
 }).next(new sfn.Succeed(this, "GreetedWorld"))
 });
 }
}

Python

Update step/step_stack.py with the following code.

from aws_cdk import (
 Duration,
 Stack,
 aws_stepfunctions as sfn,
 aws_stepfunctions_tasks as tasks,
 aws_lambda as lambda_
)
class StepStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:

Step 2: Use AWS CDK to create a state machine 544

AWS Step Functions Developer Guide

 super().__init__(scope, construct_id, **kwargs)

 hello_function = lambda_.Function(
 self, "MyLambdaFunction",
 code=lambda_.Code.from_inline("""
 exports.handler = (event, context, callback) => {
 callback(null, "Hello World!");
 }"""),
 runtime=lambda_.Runtime.NODEJS_18_X,
 handler="index.handler",
 timeout=Duration.seconds(25))

 state_machine = sfn.StateMachine(
 self, "MyStateMachine",
 definition=tasks.LambdaInvoke(
 self, "MyLambdaTask",
 lambda_function=hello_function)
 .next(sfn.Succeed(self, "GreetedWorld")))

Java

Update src/main/java/com.myorg/StepStack.java with the following code.

package com.myorg;

import software.constructs.Construct;
import software.amazon.awscdk.Stack;
import software.amazon.awscdk.StackProps;
import software.amazon.awscdk.Duration;
import software.amazon.awscdk.services.lambda.Code;
import software.amazon.awscdk.services.lambda.Function;
import software.amazon.awscdk.services.lambda.Runtime;
import software.amazon.awscdk.services.stepfunctions.StateMachine;
import software.amazon.awscdk.services.stepfunctions.Succeed;
import software.amazon.awscdk.services.stepfunctions.tasks.LambdaInvoke;

public class StepStack extends Stack {
 public StepStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public StepStack(final Construct scope, final String id, final StackProps
 props) {

Step 2: Use AWS CDK to create a state machine 545

AWS Step Functions Developer Guide

 super(scope, id, props);

 final Function helloFunction = Function.Builder.create(this,
 "MyLambdaFunction")
 .code(Code.fromInline(
 "exports.handler = (event, context, callback) =>
 { callback(null, 'Hello World!');}"))
 .runtime(Runtime.NODEJS_18_X)
 .handler("index.handler")
 .timeout(Duration.seconds(25))
 .build();

 final StateMachine stateMachine = StateMachine.Builder.create(this,
 "MyStateMachine")
 .definition(LambdaInvoke.Builder.create(this, "MyLambdaTask")
 .lambdaFunction(helloFunction)
 .build()
 .next(new Succeed(this, "GreetedWorld")))
 .build();
 }
}

C#

Update scr/Step/StepStack.cs with the following code.

using Amazon.CDK;
using Constructs;
using Amazon.CDK.AWS.Lambda;
using Amazon.CDK.AWS.StepFunctions;
using Amazon.CDK.AWS.StepFunctions.Tasks;

namespace Step
{
 public class StepStack : Stack
 {
 internal StepStack(Construct scope, string id, IStackProps props =
 null) : base(scope, id, props)
 {
 var helloFunction = new Function(this, "MyLambdaFunction", new
 FunctionProps
 {

Step 2: Use AWS CDK to create a state machine 546

AWS Step Functions Developer Guide

 Code = Code.FromInline(@"exports.handler = (event, context,
 callback) => {
 callback(null, 'Hello World!');
 }"),
 Runtime = Runtime.NODEJS_18_X,
 Handler = "index.handler",
 Timeout = Duration.Seconds(25)
 });

 var stateMachine = new StateMachine(this, "MyStateMachine", new
 StateMachineProps
 {
 DefinitionBody = DefinitionBody.FromChainable(new
 LambdaInvoke(this, "MyLambdaTask", new LambdaInvokeProps
 {
 LambdaFunction = helloFunction
 })
 .Next(new Succeed(this, "GreetedWorld")))
 });
 }
 }
}

2. Save the source file, and then run the cdk synth command in the app's main directory.

AWS CDK runs the app and synthesizes an AWS CloudFormation template from it. AWS CDK
then displays the template.

Note

If you used TypeScript to create your AWS CDK project, running the cdk synth
command may return the following error.

TSError: # Unable to compile TypeScript:
bin/step.ts:7:33 - error TS2554: Expected 2 arguments, but got 3.

Modify the bin/step.ts file as shown in the following example to resolve this error.

#!/usr/bin/env node
import 'source-map-support/register';
import * as cdk from 'aws-cdk-lib';
import { StepStack } from '../lib/step-stack';

Step 2: Use AWS CDK to create a state machine 547

AWS Step Functions Developer Guide

const app = new cdk.App();
new StepStack(app, 'StepStack');
app.synth();

3. To deploy the Lambda function and the Step Functions state machine to your AWS account,
issue cdk deploy. You'll be asked to approve the IAM policies the AWS CDK has generated.

Step 3: Start a state machine execution

After you create your state machine, you can start its execution.

To start the state machine execution

1. Open the Step Functions console and choose the name of the state machine that you created
using AWS CDK.

2. On the state machine page, choose Start execution.

The Start execution dialog box is displayed.

3. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names don't
work with Amazon CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

4. Choose Start Execution.

Your state machine's execution starts, and a new page showing your running execution is
displayed.

5. The Step Functions console directs you to a page that's titled with your execution ID. This page
is known as the Execution Details page. On this page, you can review the execution results as
the execution progresses or after it's complete.

Step 3: Start a state machine execution 548

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then choose
the individual tabs on the Step details pane to view each state's details including input, output,
and definition respectively. For details about the execution information you can view on the
Execution Details page, see Execution Details page – Interface overview.

Step 4: Clean Up

After you've tested your state machine, we recommend that you remove both your state machine
and the related Lambda function to free up resources in your AWS account. Run the cdk destroy
command in your app's main directory to remove your state machine.

Next steps

To learn more about developing AWS infrastructure using AWS CDK, see the AWS CDK Developer
Guide.

For information about writing AWS CDK apps in your language of choice, see:

TypeScript

Working with AWS CDK in TypeScript

JavaScript

Working with AWS CDK in JavaScript

Python

Working with AWS CDK in Python

Java

Working with AWS CDK in Java

C#

Working with AWS CDK in C#

For more information about the AWS Construct Library modules used in this tutorial, see the
following AWS CDK API Reference overviews:

Step 4: Clean Up 549

https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/home.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-typescript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-javascript.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-python.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-java.html
https://docs.aws.amazon.com/cdk/v2/guide/work-with-cdk-csharp.html

AWS Step Functions Developer Guide

• aws-lambda

• aws-stepfunctions

• aws-stepfunctions-tasks

Creating an API Gateway REST API with Synchronous Express
State Machine Using the AWS CDK

This tutorial shows you how to create an API Gateway REST API with Synchronous Express State
Machine as the backend integration using the AWS Cloud Development Kit (AWS CDK). This
tutorial will use the StepFunctionsRestApi construct to connect the State Machine to the API
Gateway. The StepFunctionsRestApi construct will set up a default input/output mapping
and the API Gateway REST API, with required permissions and an HTTP “ANY” method. The AWS
CDK is an Infrastructure as Code (IAC) framework that lets you define AWS infrastructure using a
full-fledged programming language. You write an app in one of the CDK's supported languages,
containing one or more stacks, then synthesize it to an AWS CloudFormation template and deploy
it to your AWS account. We'll use it to define an API Gateway REST API, which is integrated with
Synchronous Express State Machine as the backend, then use the AWS Management Console to
initiate execution.

Before embarking on this tutorial, set up your AWS CDK development environment as described in
Getting Started With the AWS CDK - Prerequisites, then install the AWS CDK by issuing:

npm install -g aws-cdk

Topics

• Step 1: Set Up Your AWS CDK Project

• Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State
Machine backend integration

• Step 3: Test the API Gateway

• Step 4: Clean Up

Step 1: Set Up Your AWS CDK Project

First, create a directory for your new AWS CDK app and initialize the project.

Creating an API Gateway REST API with Synchronous Express State Machine Using the AWS CDK 550

https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_lambda-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_stepfunctions-readme.html
https://docs.aws.amazon.com/cdk/api/v2/docs/aws-cdk-lib.aws_stepfunctions_tasks-readme.html
https://docs.aws.amazon.com/cdk/latest/guide/getting_started.html#getting_started_prerequisites

AWS Step Functions Developer Guide

TypeScript

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language typescript

JavaScript

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language javascript

Python

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language python

After the project has been initialized, activate the project's virtual environment and install the
AWS CDK's baseline dependencies.

source .venv/bin/activate
python -m pip install -r requirements.txt

Java

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language java

C#

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api
cdk init --language csharp

Go

mkdir stepfunctions-rest-api
cd stepfunctions-rest-api

Step 1: Set Up Your AWS CDK Project 551

AWS Step Functions Developer Guide

cdk init --language go

Note

Be sure to name the directory stepfunctions-rest-api. The AWS CDK application
template uses the name of the directory to generate names for source files and classes. If
you use a different name, your app will not match this tutorial.

Now install the construct library modules for AWS Step Functions and Amazon API Gateway.

TypeScript

npm install @aws-cdk/aws-stepfunctions @aws-cdk/aws-apigateway

JavaScript

npm install @aws-cdk/aws-stepfunctions @aws-cdk/aws-apigateway

Python

python -m pip install aws-cdk.aws-stepfunctions
python -m pip install aws-cdk.aws-apigateway

Java

Edit the project's pom.xml to add the following dependencies inside the existing
<dependencies> container.

 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>stepfunctions</artifactId>
 <version>${cdk.version}</version>
 </dependency>
 <dependency>
 <groupId>software.amazon.awscdk</groupId>
 <artifactId>apigateway</artifactId>
 <version>${cdk.version}</version>
 </dependency>

Step 1: Set Up Your AWS CDK Project 552

AWS Step Functions Developer Guide

Maven automatically installs these dependencies the next time you build your app. To build,
issue mvn compile or use your Java IDE's Build command.

C#

dotnet add src/StepfunctionsRestApi package Amazon.CDK.AWS.Stepfunctions
dotnet add src/StepfunctionsRestApi package Amazon.CDK.AWS.APIGateway

You may also install the indicated packages using the Visual Studio NuGet GUI, available via
Tools > NuGet Package Manager > Manage NuGet Packages for Solution.

Once you have installed the modules, you can use them in your AWS CDK app by importing the
following packages.

TypeScript

@aws-cdk/aws-stepfunctions
@aws-cdk/aws-apigateway

JavaScript

@aws-cdk/aws-stepfunctions
@aws-cdk/aws-apigateway

Python

aws_cdk.aws_stepfunctions
aws_cdk.aws_apigateway

Java

software.amazon.awscdk.services.apigateway.StepFunctionsRestApi
software.amazon.awscdk.services.stepfunctions.Pass
software.amazon.awscdk.services.stepfunctions.StateMachine
software.amazon.awscdk.services.stepfunctions.StateMachineType

C#

Amazon.CDK.AWS.StepFunctions
Amazon.CDK.AWS.APIGateway

Step 1: Set Up Your AWS CDK Project 553

AWS Step Functions Developer Guide

Go

Add the following to import inside stepfunctions-rest-api.go.

"github.com/aws/aws-cdk-go/awscdk/awsapigateway"
"github.com/aws/aws-cdk-go/awscdk/awsstepfunctions"

Step 2: Use the AWS CDK to create an API Gateway REST API with
Synchronous Express State Machine backend integration

First, we'll present the individual pieces of code that define the Synchronous Express State Machine
and the API Gateway REST API, then explain how to put them together into your AWS CDK app.
Then you'll see how to synthesize and deploy these resources.

Note

The State Machine that we will show here will be a simple State Machine with a Pass state.

To create an Express State Machine

This is the AWS CDK code that defines a simple state machine with a Pass state.

TypeScript

const machineDefinition = new stepfunctions.Pass(this, 'PassState', {
 result: {value:"Hello!"},
})

const stateMachine = new stepfunctions.StateMachine(this, 'MyStateMachine', {
 definition: machineDefinition,
 stateMachineType: stepfunctions.StateMachineType.EXPRESS,
});

JavaScript

const machineDefinition = new sfn.Pass(this, 'PassState', {
 result: {value:"Hello!"},
})

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

554

AWS Step Functions Developer Guide

const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
 definition: machineDefinition,
 stateMachineType: stepfunctions.StateMachineType.EXPRESS,
});

Python

machine_definition = sfn.Pass(self,"PassState",
 result = sfn.Result("Hello"))

state_machine = sfn.StateMachine(self, 'MyStateMachine',
 definition = machine_definition,
 state_machine_type = sfn.StateMachineType.EXPRESS)

Java

Pass machineDefinition = Pass.Builder.create(this, "PassState")
 .result(Result.fromString("Hello"))
 .build();

StateMachine stateMachine = StateMachine.Builder.create(this, "MyStateMachine")
 .definition(machineDefinition)
 .stateMachineType(StateMachineType.EXPRESS)
 .build();

C#

var machineDefinition = new Pass(this, "PassState", new PassProps
{
 Result = Result.FromString("Hello")
});

var stateMachine = new StateMachine(this, "MyStateMachine", new StateMachineProps
{
 Definition = machineDefinition,
 StateMachineType = StateMachineType.EXPRESS
});

Go

var machineDefinition = awsstepfunctions.NewPass(stack, jsii.String("PassState"),
 &awsstepfunctions.PassProps

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

555

AWS Step Functions Developer Guide

{
 Result: awsstepfunctions.NewResult(jsii.String("Hello")),
})

var stateMachine = awsstepfunctions.NewStateMachine(stack,
 jsii.String("StateMachine"), &awsstepfunctions.StateMachineProps
{
 Definition: machineDefinition,
 StateMachineType: awsstepfunctions.StateMachineType_EXPRESS,
})

You can see in this short snippet:

• The machine definition named PassState, which is a Pass State.

• The State Machine’s logical name, MyStateMachine.

• The machine definition is used as the State Machine definition.

• The State Machine Type is set as EXPRESS because StepFunctionsRestApi will only allow a
Synchronous Express state machine.

To create the API Gateway REST API using StepFunctionsRestApi construct

We will use StepFunctionsRestApi construct to create the API Gateway REST API with required
permissions and default input/output mapping.

TypeScript

const api = new apigateway.StepFunctionsRestApi(this,
 'StepFunctionsRestApi', { stateMachine: stateMachine });

JavaScript

const api = new apigateway.StepFunctionsRestApi(this,
 'StepFunctionsRestApi', { stateMachine: stateMachine });

Python

api = apigw.StepFunctionsRestApi(self, "StepFunctionsRestApi",
 state_machine = state_machine)

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

556

AWS Step Functions Developer Guide

Java

StepFunctionsRestApi api = StepFunctionsRestApi.Builder.create(this,
 "StepFunctionsRestApi")
 .stateMachine(stateMachine)
 .build();

C#

var api = new StepFunctionsRestApi(this, "StepFunctionsRestApi", new
 StepFunctionsRestApiProps
{
 StateMachine = stateMachine
});

Go

awsapigateway.NewStepFunctionsRestApi(stack, jsii.String("StepFunctionsRestApi"),
 &awsapigateway.StepFunctionsRestApiProps
{
 StateMachine = stateMachine,
})

To build and deploy the AWS CDK app

In the AWS CDK project you created, edit the file containing the definition of the stack to look like
the code below. You'll recognize the definitions of the Step Functions state machine and the API
Gateway from above.

TypeScript

Update lib/stepfunctions-rest-api-stack.ts to read as follows.

import * as cdk from 'aws-cdk-lib';
import * as stepfunctions from 'aws-cdk-lib/aws-stepfunctions'
import * as apigateway from 'aws-cdk-lib/aws-apigateway';

export class StepfunctionsRestApiStack extends cdk.Stack {
 constructor(scope: cdk.App, id: string, props?: cdk.StackProps) {

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

557

AWS Step Functions Developer Guide

 super(scope, id, props);

 const machineDefinition = new stepfunctions.Pass(this, 'PassState', {
 result: {value:"Hello!"},
 });

 const stateMachine = new stepfunctions.StateMachine(this, 'MyStateMachine', {
 definition: machineDefinition,
 stateMachineType: stepfunctions.StateMachineType.EXPRESS,
 });

 const api = new apigateway.StepFunctionsRestApi(this,
 'StepFunctionsRestApi', { stateMachine: stateMachine });

JavaScript

Update lib/stepfunctions-rest-api-stack.js to read as follows.

const cdk = require('@aws-cdk/core');
const stepfunctions = require('@aws-cdk/aws-stepfunctions');
const apigateway = require('@aws-cdk/aws-apigateway');

class StepfunctionsRestApiStack extends cdk.Stack {
 constructor(scope: cdk.Construct, id: string, props?: cdk.StackProps) {
 super(scope, id, props);

 const machineDefinition = new stepfunctions.Pass(this, "PassState", {
 result: {value:"Hello!"},
 })

 const stateMachine = new sfn.StateMachine(this, 'MyStateMachine', {
 definition: machineDefinition,
 stateMachineType: stepfunctions.StateMachineType.EXPRESS,
 });

 const api = new apigateway.StepFunctionsRestApi(this,
 'StepFunctionsRestApi', { stateMachine: stateMachine });

 }
}

module.exports = { StepStack }

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

558

AWS Step Functions Developer Guide

Python

Update stepfunctions_rest_api/stepfunctions_rest_api_stack.py to read as
follows.

from aws_cdk import App, Stack
from constructs import Construct
from aws_cdk import aws_stepfunctions as sfn
from aws_cdk import aws_apigateway as apigw

class StepfunctionsRestApiStack(Stack):

 def __init__(self, scope: Construct, construct_id: str, **kwargs) -> None:
 super().__init__(scope, construct_id, **kwargs)

 machine_definition = sfn.Pass(self,"PassState",
 result = sfn.Result("Hello"))

 state_machine = sfn.StateMachine(self, 'MyStateMachine',
 definition = machine_definition,
 state_machine_type = sfn.StateMachineType.EXPRESS)

 api = apigw.StepFunctionsRestApi(self,
 "StepFunctionsRestApi",
 state_machine = state_machine)

Java

Update src/main/java/com.myorg/StepfunctionsRestApiStack.java to read as
follows.

package com.myorg;

import software.amazon.awscdk.core.Construct;
import software.amazon.awscdk.core.Stack;
import software.amazon.awscdk.core.StackProps;
import software.amazon.awscdk.services.stepfunctions.Pass;
import software.amazon.awscdk.services.stepfunctions.StateMachine;
import software.amazon.awscdk.services.stepfunctions.StateMachineType;
import software.amazon.awscdk.services.apigateway.StepFunctionsRestApi;

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

559

AWS Step Functions Developer Guide

public class StepfunctionsRestApiStack extends Stack {
 public StepfunctionsRestApiStack(final Construct scope, final String id) {
 this(scope, id, null);
 }

 public StepfunctionsRestApiStack(final Construct scope, final String id, final
 StackProps props) {
 super(scope, id, props);

 Pass machineDefinition = Pass.Builder.create(this, "PassState")
 .result(Result.fromString("Hello"))
 .build();

 StateMachine stateMachine = StateMachine.Builder.create(this,
 "MyStateMachine")
 .definition(machineDefinition)
 .stateMachineType(StateMachineType.EXPRESS)
 .build();

 StepFunctionsRestApi api = StepFunctionsRestApi.Builder.create(this,
 "StepFunctionsRestApi")
 .stateMachine(stateMachine)
 .build();

 }
}

C#

Update src/StepfunctionsRestApi/StepfunctionsRestApiStack.cs to read as
follows.

using Amazon.CDK;
using Amazon.CDK.AWS.StepFunctions;
using Amazon.CDK.AWS.APIGateway;

namespace StepfunctionsRestApi
{
 public class StepfunctionsRestApiStack : Stack
 {
 internal StepfunctionsRestApi(Construct scope, string id, IStackProps props
 = null) : base(scope, id, props)
 {

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

560

AWS Step Functions Developer Guide

 var machineDefinition = new Pass(this, "PassState", new PassProps
 {
 Result = Result.FromString("Hello")
 });

 var stateMachine = new StateMachine(this, "MyStateMachine", new
 StateMachineProps
 {
 Definition = machineDefinition,
 StateMachineType = StateMachineType.EXPRESS
 });

 var api = new StepFunctionsRestApi(this, "StepFunctionsRestApi", new
 StepFunctionsRestApiProps
 {
 StateMachine = stateMachine
 });

 }
 }
}

Go

Update stepfunctions-rest-api.go to read as follows.

package main
import (
 "github.com/aws/aws-cdk-go/awscdk"
 "github.com/aws/aws-cdk-go/awscdk/awsapigateway"
 "github.com/aws/aws-cdk-go/awscdk/awsstepfunctions"
 "github.com/aws/constructs-go/constructs/v3"
 "github.com/aws/jsii-runtime-go"
)

type StepfunctionsRestApiGoStackProps struct {
 awscdk.StackProps
}

func NewStepfunctionsRestApiGoStack(scope constructs.Construct, id string, props
 *StepfunctionsRestApiGoStackProps) awscdk.Stack {
 var sprops awscdk.StackProps
 if props != nil {

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

561

AWS Step Functions Developer Guide

 sprops = props.StackProps
 }
 stack := awscdk.NewStack(scope, &id, &sprops)

 // The code that defines your stack goes here
 var machineDefinition = awsstepfunctions.NewPass(stack,
 jsii.String("PassState"), &awsstepfunctions.PassProps
 {
 Result: awsstepfunctions.NewResult(jsii.String("Hello")),
 })

 var stateMachine = awsstepfunctions.NewStateMachine(stack,
 jsii.String("StateMachine"), &awsstepfunctions.StateMachineProps{
 Definition: machineDefinition,
 StateMachineType: awsstepfunctions.StateMachineType_EXPRESS,
 });

 awsapigateway.NewStepFunctionsRestApi(stack,
 jsii.String("StepFunctionsRestApi"), &awsapigateway.StepFunctionsRestApiProps{
 StateMachine = stateMachine,
 })

 return stack
}

func main() {
 app := awscdk.NewApp(nil)

 NewStepfunctionsRestApiGoStack(app, "StepfunctionsRestApiGoStack",
 &StepfunctionsRestApiGoStackProps{
 awscdk.StackProps{
 Env: env(),
 },
 })

 app.Synth(nil)
}

// env determines the AWS environment (account+region) in which our stack is to
// be deployed. For more information see: https://docs.aws.amazon.com/cdk/latest/
guide/environments.html
func env() *awscdk.Environment {
 // If unspecified, this stack will be "environment-agnostic".
 // Account/Region-dependent features and context lookups will not work, but a

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

562

AWS Step Functions Developer Guide

 // single synthesized template can be deployed anywhere.
 //---
 return nil

 // Uncomment if you know exactly what account and region you want to deploy
 // the stack to. This is the recommendation for production stacks.
 //---
 // return &awscdk.Environment{
 // Account: jsii.String("123456789012"),
 // Region: jsii.String("us-east-1"),
 // }

 // Uncomment to specialize this stack for the AWS Account and Region that are
 // implied by the current CLI configuration. This is recommended for dev
 // stacks.
 //---
 // return &awscdk.Environment{
 // Account: jsii.String(os.Getenv("CDK_DEFAULT_ACCOUNT")),
 // Region: jsii.String(os.Getenv("CDK_DEFAULT_REGION")),
 // }
}

Save the source file, then issue cdk synth in the app's main directory. The AWS CDK runs the app
and synthesizes an AWS CloudFormation template from it, then displays the template.

To actually deploy the Amazon API Gateway and the AWS Step Functions state machine to your
AWS account, issue cdk deploy. You'll be asked to approve the IAM policies the AWS CDK has
generated. The policies being created will look something like this:

Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine
backend integration

563

AWS Step Functions Developer Guide

Step 3: Test the API Gateway

After you create your API Gateway REST API with Synchronous Express State Machine as the
backend integration, you can test the API Gateway.

To test the deployed API Gateway using API Gateway console

1. Open the Amazon API Gateway console and sign in.

2. Choose your REST API named StepFunctionsRestApi.

3. In the Resources pane, choose the ANY method.

Step 3: Test the API Gateway 564

https://console.aws.amazon.com/apigateway/

AWS Step Functions Developer Guide

4. Choose the Test tab. You might need to choose the right arrow button to show the tab.

5. For Method, choose POST.

6. For Request body, copy the following request parameters.

{
 "key": "Hello"
}

7. Choose Test. The following information will be displayed:

• Request is the resource's path that was called for the method.

• Status is the response's HTTP status code.

Step 3: Test the API Gateway 565

AWS Step Functions Developer Guide

• Latency is the time between the receipt of the request from the caller and the returned
response.

• Response body is the HTTP response body.

• Response headers are the HTTP response headers.

• Log shows the simulated Amazon CloudWatch Logs entries that would have been written if
this method were called outside of the API Gateway console.

Note

Although the CloudWatch Logs entries are simulated, the results of the method call
are real.

The Response body output should be something like this:

"Hello"

Tip

Try the API Gateway with different methods and an invalid input to see the error output.
You may want to change the state machine to look for a particular key and during testing
provide the wrong key to fail the State Machine execution and generate an error message
in the Response body output.

To test the deployed API using cURL

1. Open a terminal window.

2. Copy the following cURL command and paste it into the terminal window, replacing <api-id>
with your API's API ID and <region> with the region where your API is deployed.

curl -X POST\
 'https://<api-id>.execute-api.<region>.amazonaws.com/prod' \
 -d '{"key":"Hello"}' \
 -H 'Content-Type: application/json'

Step 3: Test the API Gateway 566

AWS Step Functions Developer Guide

The Response Body output should be something like this:

"Hello"

Tip

Try the API Gateway with different methods and an invalid input to see the error output.
You may want to change the state machine to look for a particular key and during testing
provide the wrong key to fail the State Machine execution and generate an error message
in the Response Body output.

Step 4: Clean Up

When you're done trying out your API Gateway, you can tear down both the state machine and the
API Gateway using the AWS CDK. Issue cdk destroy in your app's main directory.

AWS Step Functions Data Science SDK for Python

The AWS Step Functions Data Science SDK is an open source library for data scientists. With this
SDK, you can create workflows that process and publish machine learning models using SageMaker
and Step Functions. You can also create multi-step machine learning workflows in Python that
orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services
separately.

The AWS Step Functions Data Science SDK provides a Python API that can create and invoke Step
Functions workflows. You can manage and execute these workflows directly in Python, as well as
Jupyter notebooks.

In addition to creating production-ready workflows directly in Python, the AWS Step Functions
Data Science SDK allows you to copy that workflow, experiment with new options, and then put
the refined workflow into production.

For more information about the AWS Step Functions Data Science SDK, see the following:

• Project on Github

• SDK documentation

Step 4: Clean Up 567

https://github.com/aws/aws-step-functions-data-science-sdk-python
https://aws-step-functions-data-science-sdk.readthedocs.io/

AWS Step Functions Developer Guide

• The following Example notebooks, which are available in Jupyter notebook instances in the
SageMaker console and the related GitHub project:

• hello_world_workflow.ipynb

• machine_learning_workflow_abalone.ipynb

• training_pipeline_pytorch_mnist.ipynb

Deploying state machines using Terraform

Terraform by HashiCorp is a framework for building applications using infrastructure as code (IaC).
With Terraform, you can create state machines and use features, such as previewing infrastructure
deployments and creating reusable templates. Terraform templates help you maintain and reuse
the code by breaking it down into smaller chunks.

If you're familiar with Terraform, you can follow the development lifecycle described in this topic
as a model for creating and deploying your state machines in Terraform. If you aren't familiar with
Terraform, we recommend that you first complete the workshop Introduction to Terraform on AWS
for getting acquainted with Terraform.

Tip

To deploy an example of a state machine built using Terraform to your AWS account,
see the module Managing state machines with infrastructure as code of The AWS Step
Functions Workshop.

In this topic

• Prerequisites

• State machine development lifecycle with Terraform

• IAM roles and policies for your state machine

Prerequisites

Before you get started, make sure you complete the following prerequisites:

• Install Terraform on your machine. For information about installing Terraform, see Install
Terraform.

Deploying state machines using Terraform 568

https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://console.aws.amazon.com/sagemaker/
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/step-functions-data-science-sdk
https://www.terraform.io/intro/
https://catalog.workshops.aws/terraform101/en-US
https://catalog.workshops.aws/stepfunctions/en-US/development/iac/deploy-with-terraform
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli
https://developer.hashicorp.com/terraform/tutorials/aws-get-started/install-cli

AWS Step Functions Developer Guide

• Install Step Functions Local on your machine. We recommend that you install the Step Functions
Local Docker image to use Step Functions Local. For more information, see Testing state
machines locally.

• Install AWS SAM CLI. For installation information, see Installing the AWS SAM CLI in the AWS
Serverless Application Model Developer Guide.

• Install the AWS Toolkit for Visual Studio Code to view the workflow diagram of your state
machines. For installation information, see Installing the AWS Toolkit for Visual Studio Code in
the AWS Toolkit for Visual Studio Code User Guide.

State machine development lifecycle with Terraform

The following procedure explains how you can use a state machine prototype that you build using
Workflow Studio in the Step Functions console as a starting point for local development with
Terraform and the AWS Toolkit for Visual Studio Code.

To view the complete example that discusses the state machine development with Terraform
and presents the best practices in detail, see Best practices for writing Step Functions Terraform
projects.

To start the development lifecycle of a state machine with Terraform

1. Bootstrap a new Terraform project with the following command.

terraform init

2. Open the Step Functions console to create a prototype for your state machine.

3. In Workflow Studio, do the following:

a. Create your workflow prototype.

b. Export the Amazon States Language (ASL) definition of your workflow. To do this, choose
the Import/Export dropdownlist, and then select Export JSON definition.

4. Save the exported ASL definition within your project directory.

You pass the exported ASL definition as an input parameter to the aws_sfn_state_machine
Terraform resource that uses the templatefile function. This function is used inside the
definition field that passes the exported ASL definition and any variable substitutions.

Development lifecycle with Terraform 569

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/install-sam-cli.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/setup-toolkit.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://aws.amazon.com/blogs/devops/best-practices-for-writing-step-functions-terraform-projects/
https://aws.amazon.com/blogs/devops/best-practices-for-writing-step-functions-terraform-projects/
https://console.aws.amazon.com/states/home?region=us-east-1#/
https://registry.terraform.io/modules/terraform-aws-modules/step-functions/aws/latest
https://developer.hashicorp.com/terraform/language/functions/templatefile

AWS Step Functions Developer Guide

Tip

Because the ASL definition file can contain lengthy blocks of text, we recommend you
avoid the inline EOF method. This makes it easier to substitute parameters into your
state machine definition.

5. (Optional) Update the ASL definition within your IDE and visualize your changes using the AWS
Toolkit for Visual Studio Code.

To avoid continuously exporting your definition and refactoring it into your project, we
recommend that you make updates locally in you IDE and track these updates with Git.

6. Test your workflow using Step Functions Local.

Tip

You can also locally test service integrations with Lambda functions and API Gateway
APIs in your state machine using AWS SAM CLI Local.

7. Preview your state machine and other AWS resources before deploying the state machine. To
do this, run the following command.

terraform plan

Development lifecycle with Terraform 570

https://git-scm.com/

AWS Step Functions Developer Guide

8. Deploy your state machine from your local environment or through CI/CD pipelines using the
following command.

terraform apply

9. (Optional) Clean up your resources and delete the state machine using the following
command.

terraform destroy

IAM roles and policies for your state machine

Use the Terraform service integration policies to add necessary IAM permissions to your state
machine, for example, permission to invoke Lambda functions. You can also define explicit roles
and policies and associate them with your state machine.

The following IAM policy example grants your state machine access to invoke a Lambda function
named myFunction.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:myFunction"
 }
]
}

We also recommend using the aws_iam_policy_document data source when defining IAM
policies for your state machines in Terraform. This helps you check if your policy is malformed and
substitute any resources with variables.

The following IAM policy example uses the aws_iam_policy_document data source and grants
your state machine access to invoke a Lambda function named myFunction.

data "aws_iam_policy_document" "state_machine_role_policy" {

IAM roles and policies for your state machine 571

https://aws.amazon.com/blogs/developer/build-infrastructure-ci-for-terraform-code-leveraging-aws-developer-tools-and-terratest/
https://registry.terraform.io/modules/terraform-aws-modules/step-functions/aws/latest#service-integration-policies
https://registry.terraform.io/providers/hashicorp/aws/latest/docs/data-sources/iam_policy_document

AWS Step Functions Developer Guide

 statement {
 effect = "Allow"

 actions = [
 "lambda:InvokeFunction"
]

 resources = ["${aws_lambda_function.[[myFunction]].arn}:*"]
 }

}

Tip

To view more advanced AWS architectural patterns deployed with Terraform, see Terraform
examples at Serverless Land Workflows Collection.

IAM roles and policies for your state machine 572

https://serverlessland.com/workflows?framework=Terraform
https://serverlessland.com/workflows?framework=Terraform

AWS Step Functions Developer Guide

Testing and debugging

Step Functions provides different ways to test and debug state machines. For example, you can test
and debug your state machines in the console, use the TestState API to test an individual state, or
use Step Functions Local to test state machines locally.

Using the TestState API, you provide the definition of a single state and execute it. You can test a
single state without creating a state machine or updating an existing state machine.

Step Functions Local is a downloadable version of Step Functions that lets you develop and test
applications using a version of Step Functions running in your own development environment.
With Step Functions Local, you can run your state machines to test their input and output data
flows, integrations with supported services, and more in your local development environment.

Topics

• Using TestState API to test a state

• Testing state machines locally

Using TestState API to test a state

The TestState API accepts the definition of a single state and executes it. You can test a state
without creating a state machine or updating an existing state machine.

Using the TestState API, you can test the following:

• A state's input and output processing data flow.

• An AWS service integration with other AWS services request and response

• An HTTP Task request and response

To test a state, you can also use the Step Functions console, AWS Command Line Interface (AWS
CLI), or the SDK.

The TestState API assumes an IAM role which must contain the required IAM permissions for the
resources your state accesses. For information about the permissions a state might need, see IAM
permissions for using TestState API.

Using TestState API 573

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

Topics

• Considerations about using the TestState API

• Using inspection levels in TestState API

• IAM permissions for using TestState API

• Testing a state (Console)

• Testing a state using AWS CLI

• Testing and debugging input and output data flow

Considerations about using the TestState API

Using the TestState API, you can test only one state at a time. The states that you can test include
the following:

• All Task types, except Activities

• Pass

• Wait

• Choice

• Succeed

• Fail

While using the TestState API, keep in mind the following considerations.

• The TestState API doesn't include support for the following:

• Task states that use the following resource types:

• Activity

• Service integration patterns of type .sync or .waitForTaskToken

• Parallel state

• Map state

• A test can run for up to five minutes. If a test exceeds this duration, it fails with the
States.Timeout error.

Considerations about using the TestState API 574

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

Using inspection levels in TestState API

To test a state using the TestState API, you provide the definition of that state. The test then
returns an output. For each state, you can specify the amount of detail you want to view in the test
results. These details provide additional information about the state you're testing. For example, if
you've used any input and output data processing filters, such as InputPath or ResultPath in a
state, you can view the intermediate and final data processing results.

Step Functions provides the following levels to specify the details you want to view:

• INFO

• DEBUG

• TRACE

All these levels also return the status and nextState fields. status indicates the status of the
state execution. For example, SUCCEEDED, FAILED, RETRIABLE, and CAUGHT_ERROR. nextState
indicates the name of the next state to transition to. If you haven't defined a next state in your
definition, this field returns an empty value.

For information about testing a state using these inspection levels in the Step Functions console
and AWS CLI, see Testing a state (Console) and Testing a state using AWS CLI.

INFO inspectionLevel

If the test succeeds, this level shows the state output. If the test fails, this level shows the error
output. By default, Step Functions sets Inspection level to INFO if you don't specify a level.

Example of test with INFO level that succeeds

The following image shows a test for a Pass state that succeeds. The Inspection level for this state
is set to INFO and the output for the state appears in the Output tab.

Using inspection levels in TestState API 575

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

Example of test with INFO level that fails

The following image shows a test that failed for a Task state when the Inspection level is set
to INFO. The Output tab shows the error output that includes the error name and a detailed
explanation of the cause for that error.

Using inspection levels in TestState API 576

AWS Step Functions Developer Guide

DEBUG inspectionLevel

If the test succeeds, this level shows the state output and the result of input and output data
processing.

If the test fails, this level shows the error output. This level shows the intermediate data processing
results up to the point of failure. For example, say that you tested a Task state that invokes a
Lambda function. Imagine that you had applied the InputPath, Parameters, ResultPath, and
OutputPath filters to the Task state. Say that the invocation failed. In this case, the DEBUG level
shows data processing results based on the application of the filters in the following order:

Using inspection levels in TestState API 577

AWS Step Functions Developer Guide

• input – Raw state input

• afterInputPath – Input after Step Functions applies the InputPath filter.

• afterParameters – The effective input after Step Functions applies the Parameters filter.

The diagnostic information available in this level can help you troubleshoot issues related to a
service integration or input and output data processing flow that you might have defined.

Example of test with DEBUG level that succeeds

The following image shows a test for a Pass state that succeeds. The Inspection level for this state
is set to DEBUG. The Input/output processing tab in the following image shows the result of the
application of Parameters on the input provided for this state.

Using inspection levels in TestState API 578

AWS Step Functions Developer Guide

Example of test with DEBUG level that fails

The following image shows a test that failed for a Task state when the Inspection level is set to
DEBUG. The Input/output processing tab in the following image shows the input and output data
processing result for the state up to the point of its failure.

Using inspection levels in TestState API 579

AWS Step Functions Developer Guide

TRACE inspectionLevel

Step Functions provides the TRACE level to test an HTTP Task. This level returns information about
the HTTP request that Step Functions makes and response that a third-party API returns. The
response might contain information, such as headers and request body. In addition, you can view
the state output and result of input and output data processing in this level.

If the test fails, this level shows the error output.

This level is only applicable for HTTP Task. Step Functions throws an error if you use this level for
other state types.

Using inspection levels in TestState API 580

AWS Step Functions Developer Guide

When you set the Inspection level to TRACE, you can also view secrets included in the
EventBridge connection. To do this, you must set the revealSecrets parameter to true in the
TestState API. In addition, you must make sure that the IAM user that calls the TestState API has
permission for the states:RevealSecrets action. For an example of IAM policy that sets the
states:RevealSecrets permission, see IAM permissions for using TestState API. Without this
permission, Step Functions throws an access denied error.

If you set the revealSecrets parameter to false, Step Functions omits all secrets in the HTTP
request and response data.

Example of test with TRACE level that succeeds

The following image shows a test for an HTTP Task that succeeds. The Inspection level for this
state is set to TRACE. The HTTP request & response tab in the following image shows the result of
the third-party API call.

Using inspection levels in TestState API 581

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

IAM permissions for using TestState API

The IAM user that calls the TestState API must have permissions to perform the
states:TestState and iam:PassRole actions. In addition, if you set the revealSecrets
parameter to true, you must make sure that the IAM user has permissions to perform the
states:RevealSecrets action. Without this permission, Step Functions throws an access denied
error.

You must also make sure that your execution role contains the required IAM permissions for the
resources your state is accessing. For information about the permissions a state might need, see
Managing execution roles.

IAM permissions for using TestState API 582

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html#StepFunctions-TestState-request-revealSecrets

AWS Step Functions Developer Guide

The following IAM policy example sets the states:TestState, iam:PassRole, and
states:RevealSecrets permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:TestState",
 "states:RevealSecrets",
 "iam:PassRole"
],
 "Resource": "*"
 }
]
}

Testing a state (Console)

You can test a state in the console and check the state output or input and output data processing
flow. For an HTTP Task, you can test the raw HTTP request and response.

To test a state

1. Open the Step Functions console.

2. Choose Create state machine to start creating a state machine or choose an existing state
machine.

3. In the Design mode of Workflow Studio, choose a state that you want to test.

4. Choose Test state in the Inspector panel of Workflow Studio.

5. In the Test state dialog box, do the following:

a. For Execution role, choose an execution role to test the state. Make sure that you have the
required IAM permissions for the state that you want to test.

b. (Optional) Provide any JSON input that your selected state needs for the test.

c. For Inspection level, select one of the following options based on the values you want to
view:

Testing a state (Console) 583

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• INFO – Shows the state output in the Output tab if the test succeeds. If the test fails,
INFO shows the error output, which includes the error name and a detailed explanation
of the cause for that error. By default, Step Functions sets Inspection level to INFO if
you don't select a level.

• DEBUG – Shows the state output and the result of input and output data processing if
the test succeeds. If the test fails, DEBUG shows the error output, which includes the
error name and a detailed explanation of the cause for that error.

• TRACE – Shows the raw HTTP request and response, and is useful for verifying headers,
query parameters, and other API-specific details. This option is only available for the
HTTP Task.

Optionally, you can choose to select Reveal secrets. In combination with TRACE,
this setting lets you see the sensitive data that the EventBridge connection inserts,
such as API keys. The IAM user identity that you use to access the console must have
permission to perform the states:RevealSecrets action. Without this permission,
Step Functions throws an access denied error when you start the test. For an example of
an IAM policy that sets the states:RevealSecrets permission, see IAM permissions
for using TestState API.

d. Choose Start test.

Testing a state using AWS CLI

You can test a supported state using the TestState API in the AWS CLI. This API accepts the
definition of a state and executes it.

For each state, you can specify the amount of detail you want to view in the test results. These
details provide additional information about the state's execution, including its input and output
data processing result and HTTP request and response information. The following examples
showcase the different inspection levels you can specify for the TestState API. Remember to
replace the italicized text with your resource-specific information.

This section contains the following examples that describe how you can use the different
inspection levels that Step Functions provides in the AWS CLI:

• Using INFO inspectionLevel

• Using DEBUG inspectionLevel

Testing a state using AWS CLI 584

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

• Using TRACE inspectionLevel

• Using jq utility in AWS CLI to filter and print the HTTP response that TestState API returns

Example 1: Using INFO inspectionLevel to test a Choice state

To test a state using the INFO inspectionLevel in the AWS CLI, run the test-state command as
shown in the following example.

aws stepfunctions test-state \
 --definition '{"Type": "Choice", "Choices": [{"Variable": "$.number",
 "NumericEquals": 1, "Next": "Equals 1"}, {"Variable": "$.number", "NumericEquals": 2,
 "Next": "Equals 2"}], "Default": "No Match"}' \
 --role-arn arn:aws:iam::123456789012:role/myRole \
 --input '{"number": 2}'

This example uses a Choice state to determine the execution path for the state based on the
numeric input you provide. By default, Step Functions sets the inspectionLevel to INFO if you
don't set a level.

Step Functions returns the following output.

{
 "output": "{\"number\": 2}",
 "nextState": "Equals 2",
 "status": "SUCCEEDED"
}

Example 2: Using DEBUG inspectionLevel to debug input and output data
processing in a Pass state

To test a state using the DEBUG inspectionLevel in the AWS CLI, run the test-state command as
shown in the following example.

aws stepfunctions test-state \
 --definition '{"Type": "Pass", "InputPath": "$.payload", "Parameters": {"data": 1},
 "ResultPath": "$.result", "OutputPath": "$.result.data", "Next": "Another State"}' \
 --role-arn arn:aws:iam::123456789012:role/myRole \
 --input '{"payload": {"foo": "bar"}}' \
 --inspection-level DEBUG

Testing a state using AWS CLI 585

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html#StepFunctions-TestState-request-inspectionLevel
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html#StepFunctions-TestState-request-inspectionLevel

AWS Step Functions Developer Guide

This example uses a Pass state to showcase how Step Functions filters and manipulates input
JSON data using the input and output data processing filters. This example uses these filters:
InputPath, Parameters, ResultPath, and OutputPath.

Step Functions returns the following output.

{
 "output": "1",
 "inspectionData": {
 "input": "{\"payload\": {\"foo\": \"bar\"}}",
 "afterInputPath": "{\"foo\":\"bar\"}",
 "afterParameters": "{\"data\":1}",
 "afterResultSelector": "{\"data\":1}",
 "afterResultPath": "{\"payload\":{\"foo\":\"bar\"},\"result\":{\"data\":1}}"
 },
 "nextState": "Another State",
 "status": "SUCCEEDED"
}

Example 3: Using TRACE inspectionLevel and revealSecrets to inspect the HTTP
request sent to a third-party API

To test an HTTP Task using the TRACE inspectionLevel along with the revealSecrets parameter in
the AWS CLI, run the test-state command as shown in the following example.

aws stepfunctions test-state \
 --definition '{"Type": "Task", "Resource": "arn:aws:states:::http:invoke",
 "Parameters": {"Method": "GET", "Authentication": {"ConnectionArn":
 "arn:aws:events:us-
east-1:123456789012:connection/MyConnection/0000000-0000-0000-0000-000000000000"},
 "ApiEndpoint": "https://httpbin.org/get", "Headers": {"definitionHeader": "h1"},
 "RequestBody": {"message": "Hello from Step Functions!"}, "QueryParameters":
 {"queryParam": "q1"}}, "End": true}' \
 --role-arn arn:aws:iam::123456789012:role/myRole \
 --inspection-level TRACE \
 --reveal-secrets

This example tests if the HTTP Task calls the specified third-party API, https://httpbin.org/.
It also shows the HTTP request and response data for the API call.

{

Testing a state using AWS CLI 586

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html#StepFunctions-TestState-request-inspectionLevel
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html#StepFunctions-TestState-request-revealSecrets

AWS Step Functions Developer Guide

 "output": "{\"Headers\":{\"date\":[\"Tue, 21 Nov 2023 00:06:17 GMT\"],
\"access-control-allow-origin\":[\"*\"],\"content-length\":[\"620\"],\"server\":
[\"gunicorn/19.9.0\"],\"access-control-allow-credentials\":[\"true\"],\"content-
type\":[\"application/json\"]},\"ResponseBody\":{\"args\":{\"QueryParam1\":
\"QueryParamValue1\",\"queryParam\":\"q1\"},\"headers\":{\"Authorization
\":\"Basic XXXXXXXX\",\"Content-Type\":\"application/json; charset=UTF-8\",
\"Customheader1\":\"CustomHeaderValue1\",\"Definitionheader\":\"h1\",\"Host\":
\"httpbin.org\",\"Range\":\"bytes=0-262144\",\"Transfer-Encoding\":\"chunked\",
\"User-Agent\":\"Amazon|StepFunctions|HttpInvoke|us-east-1\",\"X-Amzn-Trace-Id\":
\"Root=1-0000000-0000-0000-0000-000000000000\"},\"origin\":\"12.34.567.891\",\"url\":
\"https://httpbin.org/get?queryParam=q1&QueryParam1=QueryParamValue1\"},\"StatusCode
\":200,\"StatusText\":\"OK\"}",
 "inspectionData": {
 "input": "{}",
 "afterInputPath": "{}",
 "afterParameters": "{\"Method\":\"GET\",\"Authentication\":{\"ConnectionArn
\":\"arn:aws:events:us-east-1:123456789012:connection/foo/a59c10f0-a315-4c1f-
be6a-559b9a0c6250\"},\"ApiEndpoint\":\"https://httpbin.org/get\",\"Headers\":
{\"definitionHeader\":\"h1\"},\"RequestBody\":{\"message\":\"Hello from Step Functions!
\"},\"QueryParameters\":{\"queryParam\":\"q1\"}}",
 "result": "{\"Headers\":{\"date\":[\"Tue, 21 Nov 2023 00:06:17 GMT\"],
\"access-control-allow-origin\":[\"*\"],\"content-length\":[\"620\"],\"server\":
[\"gunicorn/19.9.0\"],\"access-control-allow-credentials\":[\"true\"],\"content-
type\":[\"application/json\"]},\"ResponseBody\":{\"args\":{\"QueryParam1\":
\"QueryParamValue1\",\"queryParam\":\"q1\"},\"headers\":{\"Authorization
\":\"Basic XXXXXXXX\",\"Content-Type\":\"application/json; charset=UTF-8\",
\"Customheader1\":\"CustomHeaderValue1\",\"Definitionheader\":\"h1\",\"Host\":
\"httpbin.org\",\"Range\":\"bytes=0-262144\",\"Transfer-Encoding\":\"chunked\",
\"User-Agent\":\"Amazon|StepFunctions|HttpInvoke|us-east-1\",\"X-Amzn-Trace-Id\":
\"Root=1-0000000-0000-0000-0000-000000000000\"},\"origin\":\"12.34.567.891\",\"url\":
\"https://httpbin.org/get?queryParam=q1&QueryParam1=QueryParamValue1\"},\"StatusCode
\":200,\"StatusText\":\"OK\"}",
 "afterResultSelector": "{\"Headers\":{\"date\":[\"Tue, 21 Nov 2023
 00:06:17 GMT\"],\"access-control-allow-origin\":[\"*\"],\"content-length\":
[\"620\"],\"server\":[\"gunicorn/19.9.0\"],\"access-control-allow-credentials
\":[\"true\"],\"content-type\":[\"application/json\"]},\"ResponseBody\":{\"args
\":{\"QueryParam1\":\"QueryParamValue1\",\"queryParam\":\"q1\"},\"headers\":
{\"Authorization\":\"Basic XXXXXXXX\",\"Content-Type\":\"application/json;
 charset=UTF-8\",\"Customheader1\":\"CustomHeaderValue1\",\"Definitionheader\":\"h1\",
\"Host\":\"httpbin.org\",\"Range\":\"bytes=0-262144\",\"Transfer-Encoding\":\"chunked
\",\"User-Agent\":\"Amazon|StepFunctions|HttpInvoke|us-east-1\",\"X-Amzn-Trace-Id\":
\"Root=1-0000000-0000-0000-0000-000000000000\"},\"origin\":\"12.34.567.891\",\"url\":
\"https://httpbin.org/get?queryParam=q1&QueryParam1=QueryParamValue1\"},\"StatusCode
\":200,\"StatusText\":\"OK\"}",

Testing a state using AWS CLI 587

AWS Step Functions Developer Guide

 "afterResultPath": "{\"Headers\":{\"date\":[\"Tue, 21 Nov 2023 00:06:17
 GMT\"],\"access-control-allow-origin\":[\"*\"],\"content-length\":[\"620\"],
\"server\":[\"gunicorn/19.9.0\"],\"access-control-allow-credentials\":[\"true\"],
\"content-type\":[\"application/json\"]},\"ResponseBody\":{\"args\":{\"QueryParam1\":
\"QueryParamValue1\",\"queryParam\":\"q1\"},\"headers\":{\"Authorization\":
\"Basic XXXXXXXX\",\"Content-Type\":\"application/json; charset=UTF-8\",
\"Customheader1\":\"CustomHeaderValue1\",\"Definitionheader\":\"h1\",\"Host\":
\"httpbin.org\",\"Range\":\"bytes=0-262144\",\"Transfer-Encoding\":\"chunked\",
\"User-Agent\":\"Amazon|StepFunctions|HttpInvoke|us-east-1\",\"X-Amzn-Trace-Id\":
\"Root=1-0000000-0000-0000-0000-000000000000\"},\"origin\":\"12.34.567.891\",\"url\":
\"https://httpbin.org/get?queryParam=q1&QueryParam1=QueryParamValue1\"},\"StatusCode
\":200,\"StatusText\":\"OK\"}",
 "request": {
 "protocol": "https",
 "method": "GET",
 "url": "https://httpbin.org/get?
queryParam=q1&QueryParam1=QueryParamValue1",
 "headers": "[definitionHeader: h1, Authorization: Basic XXXXXXXX,
 CustomHeader1: CustomHeaderValue1, User-Agent: Amazon|StepFunctions|HttpInvoke|us-
east-1, Range: bytes=0-262144]",
 "body": "{\"message\":\"Hello from Step Functions!\",\"BodyKey1\":
\"BodyValue1\"}"
 },
 "response": {
 "protocol": "https",
 "statusCode": "200",
 "statusMessage": "OK",
 "headers": "[date: Tue, 21 Nov 2023 00:06:17 GMT, content-type:
 application/json, content-length: 620, server: gunicorn/19.9.0, access-control-allow-
origin: *, access-control-allow-credentials: true]",
 "body": "{\n \"args\": {\n \"QueryParam1\": \"QueryParamValue1\", \n
 \"queryParam\": \"q1\"\n }, \n \"headers\": {\n \"Authorization\": \"Basic
 XXXXXXXX\", \n \"Content-Type\": \"application/json; charset=UTF-8\", \n
 \"Customheader1\": \"CustomHeaderValue1\", \n \"Definitionheader\": \"h1\", \n
 \"Host\": \"httpbin.org\", \n \"Range\": \"bytes=0-262144\", \n \"Transfer-
Encoding\": \"chunked\", \n \"User-Agent\": \"Amazon|StepFunctions|HttpInvoke|us-
east-1\", \n \"X-Amzn-Trace-Id\": \"Root=1-0000000-0000-0000-0000-000000000000\"\n
 }, \n \"origin\": \"12.34.567.891\", \n \"url\": \"https://httpbin.org/get?
queryParam=q1&QueryParam1=QueryParamValue1\"\n}\n"
 }
 },
 "status": "SUCCEEDED"
}

Testing a state using AWS CLI 588

AWS Step Functions Developer Guide

Example 4: Using jq utility to filter and print the response that TestState API
returns

The TestState API returns JSON data as escaped strings in its response. The following AWS CLI
example extends Example 3 and uses the jq utility to filter and print the HTTP response that the
TestState API returns in a human-readable format. For information about jq and its installation
instructions, see jq on GitHub.

aws stepfunctions test-state \
 --definition '{"Type": "Task", "Resource": "arn:aws:states:::http:invoke",
 "Parameters": {"Method": "GET", "Authentication": {"ConnectionArn":
 "arn:aws:events:us-
east-1:123456789012:connection/MyConnection/0000000-0000-0000-0000-000000000000"},
 "ApiEndpoint": "https://httpbin.org/get", "Headers": {"definitionHeader": "h1"},
 "RequestBody": {"message": "Hello from Step Functions!"}, "QueryParameters":
 {"queryParam": "q1"}}, "End": true}' \
 --role-arn arn:aws:iam::123456789012:role/myRole \
 --inspection-level TRACE \
 --reveal-secrets \
 | jq '.inspectionData.response.body | fromjson'

The following example shows the output returned in a human-readable format.

{
 "args": {
 "QueryParam1": "QueryParamValue1",
 "queryParam": "q1"
 },
 "headers": {
 "Authorization": "Basic XXXXXXXX",
 "Content-Type": "application/json; charset=UTF-8",
 "Customheader1": "CustomHeaderValue1",
 "Definitionheader": "h1",
 "Host": "httpbin.org",
 "Range": "bytes=0-262144",
 "Transfer-Encoding": "chunked",
 "User-Agent": "Amazon|StepFunctions|HttpInvoke|us-east-1",
 "X-Amzn-Trace-Id": "Root=1-0000000-0000-0000-0000-000000000000"
 },
 "origin": "12.34.567.891",
 "url": "https://httpbin.org/get?queryParam=q1&QueryParam1=QueryParamValue1"

Testing a state using AWS CLI 589

https://stedolan.github.io/jq/

AWS Step Functions Developer Guide

}

Testing and debugging input and output data flow

The TestState API is helpful for testing and debugging the data that flows through your
workflow. This section provides some key concepts and explains how to use the TestState for this
purpose.

Key concepts

In Step Functions, the process of filtering and manipulating JSON data as it passes through the
states in your state machine is called input and output processing. For information about how this
works, see Input and Output Processing in Step Functions.

All the state types in the Amazon States Language (ASL) (Task, Parallel, Map, Pass, Wait, Choice,
Succeed, and Fail) share a set of common fields for filtering and manipulating the JSON data that
passes through them. These fields are: InputPath, Parameters, ResultSelector, ResultPath, and
OutputPath. Support for each field varies across states. At runtime, Step Functions applies each
field in a specific order. The following diagram shows the order in which these fields are applied to
the data inside a Task state:

Testing and debugging input and output data flow 590

https://states-language.net/spec.html#state-type-table

AWS Step Functions Developer Guide

The following list describes the order of application of the input and output processing fields
shown in the diagram.

1. State input is the JSON data passed to the current state from a previous state.

2. InputPath filters a portion of the raw state input.

3. Parameters configures the set of values to pass to the Task.

4. The task performs work and returns a result.

Testing and debugging input and output data flow 591

AWS Step Functions Developer Guide

5. ResultSelector selects a set of values to keep from the task result.

6. ResultPath combines the result with the raw state input, or replaces the result with it.

7. OutputPath filters a portion of the output to pass along to the next state.

8. State output is the JSON data passed from the current state to the next state.

These input and output processing fields are optional. If you don’t use any of these fields in your
state definition, the task will consume the raw state input, and return the task result as the state
output.

Using TestState to inspect input and output processing

When you call the TestState API and set the inspectionLevel parameter to DEBUG, the API
response includes an object called inspectionData. This object contains fields to help you
inspect how data was filtered or manipulated within the state when it was executed. The following
example shows the inspectionData object for a Task state.

"inspectionData": {
 "input": string,
 "afterInputPath": string,
 "afterParameters": string,
 "result": string,
 "afterResultSelector": string,
 "afterResultPath": string,
 "output": string
}

In this example, each field that contains the after prefix, shows the data after a particular
field was applied. For example, afterInputPath shows the effect of applying the InputPath
field to filter the raw state input. The following diagram maps each ASL definition field to its
corresponding field in the inspectionData object:

Testing and debugging input and output data flow 592

AWS Step Functions Developer Guide

For examples of using the TestState API to debug input and output processing, see the following:

• Testing a state using the DEBUG inspection level in the Step Functions console

• Testing a state using the DEBUG inspection level in the AWS CLI

Testing and debugging input and output data flow 593

AWS Step Functions Developer Guide

Testing state machines locally

AWS Step Functions Local is a downloadable version of Step Functions that lets you develop and
test applications using a version of Step Functions running in your own development environment.
The local version of Step Functions can invoke AWS Lambda functions, both in AWS and while
running locally. You can also coordinate other supported AWS services.

Note

Step Functions Local uses dummy accounts to work.

While running Step Functions Local, you can use one of the following ways to invoke service
integrations:

• Configuring local endpoints for AWS Lambda and other services. For information about the
supported endpoints, see Setting Configuration Options for Step Functions Local.

• Making calls directly to an AWS service from Step Functions Local.

• Mocking the response from service integrations. For information about using mocked service
integrations, see Using Mocked Service Integrations.

AWS Step Functions Local is available as a JAR package or a self-contained Docker image that runs
on Microsoft Windows, Linux, macOS, and other platforms that support Java or Docker.

Warning

The downloadable version of AWS Step Functions is intended to be used only for testing
and should never be used to process sensitive information.

Tip

Make sure you're using Step Functions Local version 1.12.0 or higher to be able to include
all the intrinsic functions in your workflows.

Testing state machines locally 594

https://hub.docker.com/layers/amazon/aws-stepfunctions-local/1.12.0/images/sha256-23df777f44837432603a22eaab9ca473718579cacb289ee9d2431ab431c7cedf?context=explore

AWS Step Functions Developer Guide

The following topics describe how you can set up Step Functions Local using Docker and JAR file,
and run Step Functions Local to work with AWS Lambda, AWS Serverless Application Model(AWS
SAM) CLI Local, or other supported services.

Topics

• Setting Up Step Functions Local (Downloadable Version) and Docker

• Setting Up Step Functions Local (Downloadable Version) - Java Version

• Setting Configuration Options for Step Functions Local

• Running Step Functions Local on Your Computer

• Testing Step Functions and AWS SAM CLI Local

• Using Mocked Service Integrations

Setting Up Step Functions Local (Downloadable Version) and Docker

The Step Functions Local Docker image enables you to get started with Step Functions Local
quickly by using a Docker image with all the needed dependencies. The Docker image enables
you to include Step Functions Local in your containerized builds and as part of your continuous
integration testing.

To get the Docker image for Step Functions Local, see https://hub.docker.com/r/amazon/aws-
stepfunctions-local, or enter the following Docker pull command.

docker pull amazon/aws-stepfunctions-local

To start the downloadable version of Step Functions on Docker, run the following Docker run
command

docker run -p 8083:8083 amazon/aws-stepfunctions-local

To interact with AWS Lambda or other supported services, you need to configure your credentials
and other configuration options first. For more information, see the following topics:

• Setting Configuration Options for Step Functions Local

• Credentials and configuration for Docker

Setting Up Step Functions Local (Downloadable Version) and Docker 595

https://hub.docker.com/r/amazon/aws-stepfunctions-local
https://hub.docker.com/r/amazon/aws-stepfunctions-local

AWS Step Functions Developer Guide

Setting Up Step Functions Local (Downloadable Version) - Java Version

The downloadable version of AWS Step Functions is provided as an executable JAR file and as a
Docker image. The Java application runs on Windows, Linux, macOS, and other platforms that
support Java. In addition to Java, you need to install the AWS Command Line Interface (AWS
CLI). For information about installing and configuring the AWS CLI, see the AWS Command Line
Interface User Guide.

To set up and run Step Functions on your computer

1. Download Step Functions using the following links.

Download Links Checksum

.tar.gz .tar.gz.md5

.zip .zip.md5

2. Extract the .zip file.

3. Test the download and view version information.

$ java -jar StepFunctionsLocal.jar -v
Step Function Local
Version: 1.0.0
Build: 2019-01-21

4. (Optional) View a listing of available commands.

$ java -jar StepFunctionsLocal.jar -h

5. To start Step Functions on your computer, open a command prompt, navigate to the directory
where you extracted StepFunctionsLocal.jar, and enter the following command.

java -jar StepFunctionsLocal.jar

6. To access Step Functions running locally, use the --endpoint-url parameter. For example,
using the AWS CLI, you would specify Step Functions commands as follows:

aws stepfunctions --endpoint-url http://localhost:8083 command

Setting Up Step Functions Local (Downloadable Version) - Java Version 596

https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://s3.amazonaws.com/stepfunctionslocal/StepFunctionsLocal.tar.gz
https://s3.amazonaws.com/stepfunctionslocal/StepFunctionsLocal.tar.gz.md5
https://s3.amazonaws.com/stepfunctionslocal/StepFunctionsLocal.zip
https://s3.amazonaws.com/stepfunctionslocal/StepFunctionsLocal.zip.md5

AWS Step Functions Developer Guide

Note

By default, Step Functions Local uses a local test account and credentials, and the AWS
Region is set to US East (N. Virginia). To use Step Functions Local with AWS Lambda, or
other supported services, you must configure your credentials and Region.
If you use Express workflows with Step Functions Local, the execution history will be stored
in a log file. It is not logged to CloudWatch Logs. The log file path will be based on the
CloudWatch Logs log group ARN provided when you create the local state machine. The log
file will be stored in /aws/states/log-group-name/${execution_arn}.log relative
to the location where you are running Step Functions Local. For example, if the execution
ARN is:

arn:aws:states:us-east-1:123456789012:express:test:example-ExpressLogGroup-
wJalrXUtnFEMI

the log file will be:

aws/states/log-group-name/arn:aws:states:us-
east-1:123456789012:express:test:example-ExpressLogGroup-wJalrXUtnFEMI.log

Setting Configuration Options for Step Functions Local

When you start AWS Step Functions Local by using the JAR file, you can set configuration
options by using the AWS Command Line Interface (AWS CLI), or by including them in the system
environment. For Docker, you must specify these options in a file that you reference when starting
Step Functions Local.

Configuration Options

When you configure the Step Functions Local container to use an override endpoint such as
Lambda Endpoint and Batch Endpoint, and make calls to that endpoint, Step Functions Local
doesn't use the credentials you specify. Setting these endpoint overrides is optional.

Option Command Line Environment

Account -account, --aws-account AWS_ACCOUNT_ID

Setting Configuration Options for Step Functions Local 597

AWS Step Functions Developer Guide

Option Command Line Environment

Region -region, --aws-region AWS_DEFAULT_REGION

Wait Time Scale -waitTimeScale, --wait-time-
scale

WAIT_TIME_SCALE

Lambda Endpoint -lambdaEndpoint, --lambda-
endpoint

LAMBDA_ENDPOINT

Batch Endpoint -batchEndpoint, --batch-e
ndpoint

BATCH_ENDPOINT

DynamoDB Endpoint -dynamoDBEndpoint, --
dynamodb-endpoint

DYNAMODB_ENDPOINT

ECS Endpoint -ecsEndpoint, --ecs-endpoint ECS_ENDPOINT

Glue Endpoint -glueEndpoint, --glue-en
dpoint

GLUE_ENDPOINT

SageMaker Endpoint -sageMakerEndpoint, --
sagemaker-endpoint

SAGE_MAKER_ENDPOINT

SQS Endpoint -sqsEndpoint, --sqs-endpoint SQS_ENDPOINT

SNS Endpoint -snsEndpoint, --sns-endpoint SNS_ENDPOINT

Step Functions Endpoint -stepFunctionsEndpoint, --
step-functions-endpoint

STEP_FUNCTIONS_ENDPOINT

Credentials and configuration for Docker

To configure Step Functions Local for Docker, create the following file: aws-stepfunctions-
local-credentials.txt.

This file contains your credentials and other configuration options. The following can be used as a
template when creating the aws-stepfunctions-local-credentials.txt file.

AWS_DEFAULT_REGION=AWS_REGION_OF_YOUR_AWS_RESOURCES

Setting Configuration Options for Step Functions Local 598

AWS Step Functions Developer Guide

AWS_ACCESS_KEY_ID=YOUR_AWS_ACCESS_KEY
AWS_SECRET_ACCESS_KEY=YOUR_AWS_SECRET_KEY
WAIT_TIME_SCALE=VALUE
LAMBDA_ENDPOINT=VALUE
BATCH_ENDPOINT=VALUE
DYNAMODB_ENDPOINT=VALUE
ECS_ENDPOINT=VALUE
GLUE_ENDPOINT=VALUE
SAGE_MAKER_ENDPOINT=VALUE
SQS_ENDPOINT=VALUE
SNS_ENDPOINT=VALUE
STEP_FUNCTIONS_ENDPOINT=VALUE

Once you have configured your credentials and configuration options in aws-stepfunctions-
local-credentials.txt, start Step Functions with the following command.

docker run -p 8083:8083 --env-file aws-stepfunctions-local-credentials.txt amazon/aws-
stepfunctions-local

Note

It is recommended to use the special DNS name host.docker.internal,
which resolves to the internal IP address that the host uses, such as http://
host.docker.internal:8000. For more information, see Docker documentation for
Mac and Windows at Networking features in Docker Desktop for Mac and Networking
features in Docker Desktop for Windows respectively.

Running Step Functions Local on Your Computer

Use the local version of Step Functions to configure, develop and test state machines on your
computer.

Run a HelloWorld state machine locally

After you run Step Functions locally with the AWS Command Line Interface (AWS CLI), you can
start a state machine execution.

1. Create a state machine from the AWS CLI by escaping out the state machine definition.

Running Step Functions Local on Your Computer 599

https://docs.docker.com/desktop/mac/networking/#use-cases-and-workaround
https://docs.docker.com/desktop/windows/networking/
https://docs.docker.com/desktop/windows/networking/

AWS Step Functions Developer Guide

aws stepfunctions --endpoint-url http://localhost:8083 create-state-machine --
definition "{\
 \"Comment\": \"A Hello World example of the Amazon States Language using a Pass
 state\",\
 \"StartAt\": \"HelloWorld\",\
 \"States\": {\
 \"HelloWorld\": {\
 \"Type\": \"Pass\",\
 \"End\": true\
 }\
 }}" --name "HelloWorld" --role-arn "arn:aws:iam::012345678901:role/DummyRole"

Note

The role-arn is not used for Step Functions Local, but you must include it with
the proper syntax. You can use the Amazon Resource Name (ARN) from the previous
example.

If you successfully create the state machine, Step Functions responds with the creation date
and the state machine ARN.

{
 "creationDate": 1548454198.202,
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld"
}

2. Start an execution using the ARN of the state machine you created.

aws stepfunctions --endpoint-url http://localhost:8083 start-execution --state-
machine-arn arn:aws:states:us-east-1:123456789012:stateMachine:HelloWorld

Step Functions Local with AWS SAM CLI Local

You can use the local version of Step Functions with a local version of AWS Lambda. To configure
this, you must install and configure AWS SAM.

For information about configuring and running AWS SAM, see the following:

Running Step Functions Local on Your Computer 600

AWS Step Functions Developer Guide

• Set Up AWS SAM

• Start AWS SAM CLI Local

When Lambda is running on your local system, you can start Step Functions Local. From the
directory where you extracted your Step Functions local JAR files, start Step Functions Local and
use the --lambda-endpoint parameter to configure the local Lambda endpoint.

java -jar StepFunctionsLocal.jar --lambda-endpoint http://127.0.0.1:3001 command

For more information about running Step Functions Local with AWS Lambda, see Testing Step
Functions and AWS SAM CLI Local.

Testing Step Functions and AWS SAM CLI Local

With both AWS Step Functions and AWS Lambda running on your local machine, you can test your
state machine and Lambda functions without deploying your code to AWS.

For more information, see the following topics:

• Testing state machines locally

• Set Up AWS SAM

Topics

• Step 1: Set Up AWS SAM

• Step 2: Test AWS SAM CLI Local

• Step 3: Start AWS SAM CLI Local

• Step 4: Start Step Functions Local

• Step 5: Create a State Machine That References Your AWS SAM CLI Local Function

• Step 6: Start an Execution of Your Local State Machine

Step 1: Set Up AWS SAM

AWS Serverless Application Model (AWS SAM) CLI Local requires the AWS Command Line Interface,
AWS SAM, and Docker to be installed.

1. Install the AWS SAM CLI.

Testing Step Functions and AWS SAM CLI Local 601

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-quick-start.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-cli-command-reference-sam-local-start-lambda.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-quick-start.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html

AWS Step Functions Developer Guide

Note

Before installing the AWS SAM CLI, you need to install the AWS CLI and Docker. See the
Prerequisites for installing the AWS SAM CLI.

2. Go through the AWS SAM Quick Start documentation. Be sure to follow the steps to do the
following:

1. Initialize the Application

2. Test the Application Locally

This creates a sam-app directory, and builds an environment that includes a Python-based
Hello World Lambda function.

Step 2: Test AWS SAM CLI Local

Now that you have installed AWS SAM and created the Hello World Lambda function, you can test
the function. In the sam-app directory, enter the following command:

sam local start-api

This launches a local instance of your Lambda function. You should see output simillar to the
following:

2019-01-31 16:40:27 Found credentials in shared credentials file: ~/.aws/credentials
2019-01-31 16:40:27 Mounting HelloWorldFunction at http://127.0.0.1:3000/hello [GET]
2019-01-31 16:40:27 You can now browse to the above endpoints to invoke your functions.
 You do not need to restart/reload SAM CLI while working on your functions changes will
 be reflected instantly/automatically. You only need to restart SAM CLI if you update
 your AWS SAM template
2019-01-31 16:40:27 * Running on http://127.0.0.1:3000/ (Press CTRL+C to quit)

Open a browser and enter the following:

http://127.0.0.1:3000/hello

Testing Step Functions and AWS SAM CLI Local 602

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-sam-cli-install.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-quick-start.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-quick-start.html#gs-ex1-setup-local-app
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-quick-start.html#gs-ex1-test-locally

AWS Step Functions Developer Guide

This will output a response simillar to the following:

{"message": "hello world", "location": "72.21.198.66"}

Enter CTRL+C to end the Lambda API.

Step 3: Start AWS SAM CLI Local

Now that you've tested that the function works, start AWS SAM CLI Local. In the sam-app
directory, enter the following command:

sam local start-lambda

This starts AWS SAM CLI Local and provides the endpoint to use, similar to the following output:

2019-01-29 15:33:32 Found credentials in shared credentials file: ~/.aws/credentials
2019-01-29 15:33:32 Starting the Local Lambda Service. You can now invoke your Lambda
 Functions defined in your template through the endpoint.
2019-01-29 15:33:32 * Running on http://127.0.0.1:3001/ (Press CTRL+C to quit)

Step 4: Start Step Functions Local

JAR File

If you're using the .jar file version of Step Functions Local, start Step Functions and specify
the Lambda endpoint. In the directory where you extracted the .jar files, enter the following
command:

java -jar StepFunctionsLocal.jar --lambda-endpoint http://localhost:3001

When Step Functions Local starts, it checks the environment, and then the credentials configured
in your ~/.aws/credentials file. By default, it starts using a fictitious user ID, and is listed as
region us-east-1.

2019-01-29 15:38:06.324: Failed to load credentials from environment because Unable to
 load AWS credentials from environment variables (AWS_ACCESS_KEY_ID (or AWS_ACCESS_KEY)
 and AWS_SECRET_KEY (or AWS_SECRET_ACCESS_KEY))
2019-01-29 15:38:06.326: Loaded credentials from profile: default
2019-01-29 15:38:06.326: Starting server on port 8083 with account 123456789012, region
 us-east-1

Testing Step Functions and AWS SAM CLI Local 603

AWS Step Functions Developer Guide

Docker

If you're using the Docker version of Step Functions Local, launch Step Functions with the following
command:

docker run -p 8083:8083 amazon/aws-stepfunctions-local

For information about installing the Docker version of Step Functions, see Setting Up Step
Functions Local (Downloadable Version) and Docker.

Note

You can specify the endpoint through the command line or by setting environment
variables if you launch Step Functions from the .jar file. For the Docker version, you must
specify the endpoints and credentials in a text file. See Setting Configuration Options for
Step Functions Local.

Step 5: Create a State Machine That References Your AWS SAM CLI Local Function

Once Step Functions Local is running, create a state machine that references the
HelloWorldFunction that you initialized in Step 1: Set Up AWS SAM.

aws stepfunctions --endpoint http://localhost:8083 create-state-machine --definition
 "{\
 \"Comment\": \"A Hello World example of the Amazon States Language using an AWS
 Lambda Local function\",\
 \"StartAt\": \"HelloWorld\",\
 \"States\": {\
 \"HelloWorld\": {\
 \"Type\": \"Task\",\
 \"Resource\": \"arn:aws:lambda:us-east-1:123456789012:function:HelloWorldFunction
\",\
 \"End\": true\
 }\
 }\
}\
}}" --name "HelloWorld" --role-arn "arn:aws:iam::012345678901:role/DummyRole"

This will create a state machine and provide an Amazon Resource Name (ARN) that you can use to
start an execution.

Testing Step Functions and AWS SAM CLI Local 604

AWS Step Functions Developer Guide

{
 "creationDate": 1548805711.403,
 "stateMachineArn": "arn:aws:states:us-east-1:123456789012:stateMachine:HelloWorld"
}

Step 6: Start an Execution of Your Local State Machine

Once you have created a state machine, start an execution. You'll need to reference the endpoint
and state machine ARN when using the following aws stepfunctions command:

aws stepfunctions --endpoint http://localhost:8083 start-execution --state-machine
 arn:aws:states:us-east-1:123456789012:stateMachine:HelloWorld --name test

This starts an execution named test of your HelloWorld state machine.

{
 "startDate": 1548810641.52,
 "executionArn": "arn:aws:states:us-east-1:123456789012:execution:HelloWorld:test"
}

Now that Step Functions is running locally, you can interact with it using the AWS CLI. For example,
to get information about this execution, use the following command:

aws stepfunctions --endpoint http://localhost:8083 describe-execution --execution-arn
 arn:aws:states:us-east-1:123456789012:execution:HelloWorld:test

Calling describe-execution for an execution provides more complete details, similar to the
following output:

{
 "status": "SUCCEEDED",
 "startDate": 1549056334.073,
 "name": "test",
 "executionArn": "arn:aws:states:us-east-1:123456789012:execution:HelloWorld:test",
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",
 "stopDate": 1549056351.276,
 "output": "{\"statusCode\": 200, \"body\": \"{\\\"message\\\": \\\"hello world\\\",
 \\\"location\\\": \\\"72.21.198.64\\\"}\"}",
 "input": "{}"

Testing Step Functions and AWS SAM CLI Local 605

AWS Step Functions Developer Guide

}

Using Mocked Service Integrations

In Step Functions Local, you can test the execution paths of your state machines without actually
calling integrated services by using mocked service integrations. To configure your state machines
to use mocked service integrations, you create a mock configuration file. In this file, you define the
desired output of your service integrations as mocked responses and the executions which use your
mocked responses to simulate an execution path as test cases.

By providing the mock configuration file to Step Functions Local, you can test service integration
calls by running state machines that use the mocked responses specified in the test cases instead
of making actual service integration calls.

Note

If you don't specify mocked service integration responses in the mock configuration file,
Step Functions Local will invoke the AWS service integration using the endpoint you
configured while setting up Step Functions Local. For information about configuring
endpoints for Step Functions Local, see Setting Configuration Options for Step Functions
Local.

Topics

• Key concepts in this topic

• Step 1: Specify Mocked Service Integrations in a Mock Configuration File

• Step 2: Provide the Mock Configuration File to Step Functions Local

• Step 3: Run Mocked Service Integration Tests

• Configuration File for Mocked Service Integrations

Key concepts in this topic

This topic uses several concepts which are defined in the following list:

• Mocked Service Integrations - Refers to Task states configured to use mocked responses instead
of performing actual service calls.

Using Mocked Service Integrations 606

AWS Step Functions Developer Guide

• Mocked Responses - Refers to mock data that Task states can be configured to use.

• Test Cases - Refers to state machine executions configured to use mocked service integrations.

• Mock Configuration File - Refers to mock configuration file that contains JSON, which defines
mocked service integrations, mocked responses, and test cases.

Step 1: Specify Mocked Service Integrations in a Mock Configuration File

You can test Step Functions AWS SDK and optimized service integrations using Step Functions
Local. The following image shows the state machine defined in the State machine definition tab:

To do this, you must create a mock configuration file containing sections as defined in Introducing
structure of mock configuration.

1. Create a file named MockConfigFile.json to configure tests with mocked service
integrations.

The following example shows a mock configuration file referencing a state machine with two
defined states named LambdaState and SQSState.

Mock configuration file example

The following is an example of a mock configuration file which demonstrates how to
mock responses from invoking a Lambda function and sending a message to Amazon
SQS. In this example, the LambdaSQSIntegration state machine contains three test

Using Mocked Service Integrations 607

AWS Step Functions Developer Guide

cases named HappyPath, RetryPath, and HybridPath which mock the Task states
named LambdaState and SQSState. These states use the MockedLambdaSuccess,
MockedSQSSuccess, and MockedLambdaRetry mocked service responses. These mocked
service responses are defined in the MockedResponses section of the file.

{
 "StateMachines":{
 "LambdaSQSIntegration":{
 "TestCases":{
 "HappyPath":{
 "LambdaState":"MockedLambdaSuccess",
 "SQSState":"MockedSQSSuccess"
 },
 "RetryPath":{
 "LambdaState":"MockedLambdaRetry",
 "SQSState":"MockedSQSSuccess"
 },
 "HybridPath":{
 "LambdaState":"MockedLambdaSuccess"
 }
 }
 }
 },
 "MockedResponses":{
 "MockedLambdaSuccess":{
 "0":{
 "Return":{
 "StatusCode":200,
 "Payload":{
 "StatusCode":200,
 "body":"Hello from Lambda!"
 }
 }
 }
 },
 "LambdaMockedResourceNotReady":{
 "0":{
 "Throw":{
 "Error":"Lambda.ResourceNotReadyException",
 "Cause":"Lambda resource is not ready."
 }
 }
 },

Using Mocked Service Integrations 608

AWS Step Functions Developer Guide

 "MockedSQSSuccess":{
 "0":{
 "Return":{
 "MD5OfMessageBody":"3bcb6e8e-7h85-4375-b0bc-1a59812c6e51",
 "MessageId":"3bcb6e8e-8b51-4375-b0bc-1a59812c6e51"
 }
 }
 },
 "MockedLambdaRetry":{
 "0":{
 "Throw":{
 "Error":"Lambda.ResourceNotReadyException",
 "Cause":"Lambda resource is not ready."
 }
 },
 "1-2":{
 "Throw":{
 "Error":"Lambda.TimeoutException",
 "Cause":"Lambda timed out."
 }
 },
 "3":{
 "Return":{
 "StatusCode":200,
 "Payload":{
 "StatusCode":200,
 "body":"Hello from Lambda!"
 }
 }
 }
 }
 }
}

State machine definition

The following is an example of a state machine definition called LambdaSQSIntegration,
which defines two service integration task states named LambdaState and SQSState.
LambdaState contains a retry policy based on States.ALL.

{
 "Comment":"This state machine is called: LambdaSQSIntegration",
 "StartAt":"LambdaState",

Using Mocked Service Integrations 609

AWS Step Functions Developer Guide

 "States":{
 "LambdaState":{
 "Type":"Task",
 "Resource":"arn:aws:states:::lambda:invoke",
 "Parameters":{
 "Payload.$":"$",
 "FunctionName":"HelloWorldFunction"
 },
 "Retry":[
 {
 "ErrorEquals":[
 "States.ALL"
],
 "IntervalSeconds":2,
 "MaxAttempts":3,
 "BackoffRate":2
 }
],
 "Next":"SQSState"
 },
 "SQSState":{
 "Type":"Task",
 "Resource":"arn:aws:states:::sqs:sendMessage",
 "Parameters":{
 "QueueUrl":"https://sqs.us-east-1.amazonaws.com/123456789012/myQueue",
 "MessageBody.$":"$"
 },
 "End": true
 }
 }
}

You can run the LambdaSQSIntegration state machine definition referenced in the mock
configuration file using one of the following test cases:

• HappyPath - This test mocks the output of LambdaState and SQSState using
MockedLambdaSuccess and MockedSQSSuccess respectively.

• The LambdaState will return the following value:

"0":{
 "Return":{

Using Mocked Service Integrations 610

AWS Step Functions Developer Guide

 "StatusCode":200,
 "Payload":{
 "StatusCode":200,
 "body":"Hello from Lambda!"
 }
 }
}

• The SQSState will return the following value:

"0":{
 "Return":{
 "MD5OfMessageBody":"3bcb6e8e-7h85-4375-b0bc-1a59812c6e51",
 "MessageId":"3bcb6e8e-8b51-4375-b0bc-1a59812c6e51"
 }
}

• RetryPath - This test mocks the output of LambdaState and SQSState using
MockedLambdaRetry and MockedSQSSuccess respectively. In addition, LambdaState is
configured to perform four retry attempts. The mocked responses for these attempts are
defined and indexed in the MockedLambdaRetry state.

• The initial attempt ends with a task failure containing a cause and error message as shown
in the following example:

"0":{
 "Throw": {
 "Error": "Lambda.ResourceNotReadyException",
 "Cause": "Lambda resource is not ready."
 }
}

• The first and second retry attempts end with a task failure containing a cause and error
message as shown in the following example:

"1-2":{
 "Throw": {
 "Error": "Lambda.TimeoutException",
 "Cause": "Lambda timed out."
 }
}

Using Mocked Service Integrations 611

AWS Step Functions Developer Guide

• The third retry attempt ends with a task success containing state result from Payload
section in the mocked Lambda response.

"3":{
 "Return": {
 "StatusCode": 200,
 "Payload": {
 "StatusCode": 200,
 "body": "Hello from Lambda!"
 }
 }
}

Note

• For states with a retry policy, Step Functions Local will exhaust the retry
attempts set in the policy until it receives a success response. This means that
you must denote mocks for retries with consecutive attempt numbers and
should cover all the retry attempts before returning a success response.

• If you do not specify a mocked response for a specific retry attempt, for
example, retry "3", the state machine execution will fail.

• HybridPath - This test mocks the output of LambdaState. After LambdaState runs
successfully and receives mocked data as a response, SQSState performs an actual service
call to the resource specified in production.

For information about how to start test executions with mocked service integrations, see Step
3: Run Mocked Service Integration Tests.

2. Make sure that the mocked responses' structure conforms to the structure of actual service
responses you receive when you make integrated service calls. For information about the
structural requirements for mocked responses, see Configuring mocked service integrations.

In the previous example mock configuration file, the mocked responses defined in
MockedLambdaSuccess and MockedLambdaRetry conform to the structure of actual
responses that are returned from calling HelloFromLambda.

Using Mocked Service Integrations 612

AWS Step Functions Developer Guide

Important

AWS service responses can vary in structure between different services. Step Functions
Local doesn't validate if mocked response structures conform to actual service
response structures. You must ensure that your mocked responses conform to actual
responses before testing. To review the structure of service responses, you can either
perform the actual service calls using Step Functions or view the documentation for
those services.

Step 2: Provide the Mock Configuration File to Step Functions Local

You can provide the mock configuration file to Step Functions Local in one of the following ways:

Docker

Note

If you're using the Docker version of Step Functions Local, you can provide the mock
configuration file using an environment variable only. In addition, you must mount the
mock configuration file onto the Step Functions Local container at the initial server
boot-up.

Mount the mock configuration file onto any directory within the Step Functions Local container.
Then, set an environment variable named SFN_MOCK_CONFIG that contains the path to the
mock configuration file in the container. This method enables the mock configuration file to be
named anything as long as the environment variable contains the file path and name.

The following command shows the format to start the Docker image.

docker run -p 8083:8083
--mount type=bind,readonly,source={absolute path to mock config file},destination=/
home/StepFunctionsLocal/MockConfigFile.json
-e SFN_MOCK_CONFIG="/home/StepFunctionsLocal/MockConfigFile.json" amazon/aws-
stepfunctions-local

The following example uses the command to start the Docker image.

Using Mocked Service Integrations 613

AWS Step Functions Developer Guide

docker run -p 8083:8083
--mount type=bind,readonly,source=/Users/admin/Desktop/workplace/
MockConfigFile.json,destination=/home/StepFunctionsLocal/MockConfigFile.json
-e SFN_MOCK_CONFIG="/home/StepFunctionsLocal/MockConfigFile.json" amazon/aws-
stepfunctions-local

JAR File

Use one of the following ways to provide the mock configuration file to Step Functions Local:

• Place the mock configuration file in the same directory as Step FunctionsLocal.jar.
When using this method, you must name the mock configuration file
MockConfigFile.json.

• In the session running Step Functions Local, set an environment variable named
SFN_MOCK_CONFIG, to the full path of the mock configuration file. This method enables the
mock configuration file to be named anything as long as the environment variable contains
its file path and name. In the following example, the SFN_MOCK_CONFIG variable is set to
point at a mock configuration file named EnvSpecifiedMockConfig.json, located in the
/home/workspace directory.

export SFN_MOCK_CONFIG="/home/workspace/EnvSpecifiedMockConfig.json"

Note

• If you do not provide the environment variable SFN_MOCK_CONFIG to Step
Functions Local, by default, it will attempt to read a mock configuration file named
MockConfigFile.json in the directory from which you launched Step Functions
Local.

• If you place the mock configuration file in the same directory as Step
FunctionsLocal.jar and set the environment variable SFN_MOCK_CONFIG, Step
Functions Local will read the file specified by the environment variable.

Using Mocked Service Integrations 614

AWS Step Functions Developer Guide

Step 3: Run Mocked Service Integration Tests

After you create and provide a mock configuration file to Step Functions Local, run the state
machine configured in the mock configuration file using mocked service integrations. Then check
the execution results using an API action.

1. Create a state machine based on the previously mentioned definition in the mock
configuration file.

aws stepfunctions create-state-machine \
 --endpoint http://localhost:8083 \
 --definition "{\"Comment\":\"Thisstatemachineiscalled:LambdaSQSIntegration
\",\"StartAt\":\"LambdaState\",\"States\":{\"LambdaState\":{\"Type\":
\"Task\",\"Resource\":\"arn:aws:states:::lambda:invoke\",\"Parameters
\":{\"Payload.$\":\"$\",\"FunctionName\":\"arn:aws:lambda:us-
east-1:123456789012:function:HelloWorldFunction\"},\"Retry\":[{\"ErrorEquals
\":[\"States.ALL\"],\"IntervalSeconds\":2,\"MaxAttempts\":3,\"BackoffRate
\":2}],\"Next\":\"SQSState\"},\"SQSState\":{\"Type\":\"Task\",\"Resource\":
\"arn:aws:states:::sqs:sendMessage\",\"Parameters\":{\"QueueUrl\":\"https://
sqs.us-east-1.amazonaws.com/123456789012/myQueue\",\"MessageBody.$\":\"$\"},\"End
\":true}}}" \
 --name "LambdaSQSIntegration" --role-arn "arn:aws:iam::123456789012:role/
service-role/LambdaSQSIntegration"

2. Run the state machine using mocked service integrations.

To use the mock configuration file, make a StartExecution API call on a state machine
configured in the mock configuration file. To do this, append the suffix, #test_name, to the
state machine ARN used by StartExecution. test_name is a test case, which is configured
for the state machine in the same mock configuration file.

The following command is an example that uses the LambdaSQSIntegration state machine
and mock configuration. In this example, the LambdaSQSIntegration state machine is
executed using the HappyPath test defined in Step 1: Specify Mocked Service Integrations in
a Mock Configuration File. The HappyPath test contains the configuration for the execution to
handle mock service integration calls that LambdaState and SQSState states make using the
MockedLambdaSuccess and MockedSQSSuccess mocked service responses.

aws stepfunctions start-execution \
 --endpoint http://localhost:8083 \
 --name executionWithHappyPathMockedServices \

Using Mocked Service Integrations 615

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

 --state-machine arn:aws:states:us-
east-1:123456789012:stateMachine:LambdaSQSIntegration#HappyPath

3. View the state machine execution response.

The response to calling StartExecution using a mocked service integration test is same as
the response to calling StartExecution normally, which returns the execution ARN and start
date.

The following is an example response to calling StartExecution using the mocked service
integration test:

{
 "startDate":"2022-01-28T15:03:16.981000-05:00",
 "executionArn":"arn:aws:states:us-
east-1:123456789012:execution:LambdaSQSIntegration:executionWithHappyPathMockedServices"
}

4. Check the execution's results by making a ListExecutions, DescribeExecution, or
GetExecutionHistory API call.

aws stepfunctions get-execution-history \
 --endpoint http://localhost:8083 \
 --execution-arn arn:aws:states:us-
east-1:123456789012:execution:LambdaSQSIntegration:executionWithHappyPathMockedServices

The following example demonstrates parts of a response to calling GetExecutionHistory
using the execution ARN from the example response shown in step 2. In this example, the
output of LambdaState and SQSState is the mock data defined in MockedLambdaSuccess
and MockedSQSSuccess in the mock configuration file. In addition, the mocked data is used
the same way that data returned by performing actual service integration calls would be used.
Also, in this example, the output from LambdaState is passed onto SQSState as input.

{
 "events": [
 ...
 {
 "timestamp": "2021-12-02T19:39:48.988000+00:00",
 "type": "TaskStateEntered",
 "id": 2,
 "previousEventId": 0,

Using Mocked Service Integrations 616

https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListExecutions.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html

AWS Step Functions Developer Guide

 "stateEnteredEventDetails": {
 "name": "LambdaState",
 "input": "{}",
 "inputDetails": {
 "truncated": false
 }
 }
 },
 ...
 {
 "timestamp": "2021-11-25T23:39:10.587000+00:00",
 "type": "LambdaFunctionSucceeded",
 "id": 5,
 "previousEventId": 4,
 "lambdaFunctionSucceededEventDetails": {
 "output": "{\"statusCode\":200,\"body\":\"\\\"Hello from Lambda!\\
\"\"}",
 "outputDetails": {
 "truncated": false
 }
 }
 },
 ...
 "timestamp": "2021-12-02T19:39:49.464000+00:00",
 "type": "TaskStateEntered",
 "id": 7,
 "previousEventId": 6,
 "stateEnteredEventDetails": {
 "name": "SQSState",
 "input": "{\"statusCode\":200,\"body\":\"\\\"Hello from Lambda!\\
\"\"}",
 "inputDetails": {
 "truncated": false
 }
 }
 },
 ...
 {
 "timestamp": "2021-11-25T23:39:10.652000+00:00",
 "type": "TaskSucceeded",
 "id": 10,
 "previousEventId": 9,
 "taskSucceededEventDetails": {
 "resourceType": "sqs",

Using Mocked Service Integrations 617

AWS Step Functions Developer Guide

 "resource": "sendMessage",
 "output": "{\"MD5OfMessageBody\":\"3bcb6e8e-7h85-4375-
b0bc-1a59812c6e51\",\"MessageId\":\"3bcb6e8e-8b51-4375-b0bc-1a59812c6e51\"}",
 "outputDetails": {
 "truncated": false
 }
 }
 },
 ...
]
}

Configuration File for Mocked Service Integrations

To use mocked service integrations, you must first create a mock configuration file named
MockConfigFile.json containing your mock configurations. Then provide Step Functions Local
with the mock configuration file. This configuration file defines test cases, which contain mock
states that use mocked service integration responses. The following section contains information
about the structure of mock configuration that includes the mock states and mocked responses:

Topics

• Introducing structure of mock configuration

• Configuring mocked service integrations

Introducing structure of mock configuration

A mock configuration is a JSON object containing the following top-level fields:

• StateMachines - The fields of this object represent state machines configured to use mocked
service integrations.

• MockedResponse - The fields of this object represent mocked responses for service integration
calls.

The following is an example of a mock configuration file which includes a StateMachine
definition and MockedResponse.

{
 "StateMachines":{

Using Mocked Service Integrations 618

AWS Step Functions Developer Guide

 "LambdaSQSIntegration":{
 "TestCases":{
 "HappyPath":{
 "LambdaState":"MockedLambdaSuccess",
 "SQSState":"MockedSQSSuccess"
 },
 "RetryPath":{
 "LambdaState":"MockedLambdaRetry",
 "SQSState":"MockedSQSSuccess"
 },
 "HybridPath":{
 "LambdaState":"MockedLambdaSuccess"
 }
 }
 }
 },
 "MockedResponses":{
 "MockedLambdaSuccess":{
 "0":{
 "Return":{
 "StatusCode":200,
 "Payload":{
 "StatusCode":200,
 "body":"Hello from Lambda!"
 }
 }
 }
 },
 "LambdaMockedResourceNotReady":{
 "0":{
 "Throw":{
 "Error":"Lambda.ResourceNotReadyException",
 "Cause":"Lambda resource is not ready."
 }
 }
 },
 "MockedSQSSuccess":{
 "0":{
 "Return":{
 "MD5OfMessageBody":"3bcb6e8e-7h85-4375-b0bc-1a59812c6e51",
 "MessageId":"3bcb6e8e-8b51-4375-b0bc-1a59812c6e51"
 }
 }
 },

Using Mocked Service Integrations 619

AWS Step Functions Developer Guide

 "MockedLambdaRetry":{
 "0":{
 "Throw":{
 "Error":"Lambda.ResourceNotReadyException",
 "Cause":"Lambda resource is not ready."
 }
 },
 "1-2":{
 "Throw":{
 "Error":"Lambda.TimeoutException",
 "Cause":"Lambda timed out."
 }
 },
 "3":{
 "Return":{
 "StatusCode":200,
 "Payload":{
 "StatusCode":200,
 "body":"Hello from Lambda!"
 }
 }
 }
 }
 }
}

Mock configuration field reference

The following sections explain the top-level object fields that you must define in your mock
configuration.

• StateMachines

• MockedResponses

StateMachines

The StateMachines object defines which state machines will use mocked service integrations.
The configuration for each state machine is represented as a top-level field of StateMachines.
The field name is the name of the state machine and value is an object containing a single field
named TestCases, whose fields represent test cases of that state machine.

The following syntax shows a state machine with two test cases:

Using Mocked Service Integrations 620

AWS Step Functions Developer Guide

"MyStateMachine": {
 "TestCases": {
 "HappyPath": {
 ...
 },
 "SadPath": {
 ...
 }
 }

TestCases

The fields of TestCases represent individual test cases for the state machine. The name of each
test case must be unique per state machine and the value of each test case is an object specifying a
mocked response to use for Task states in the state machine.

The following example of a TestCase links two Task states to two MockedResponses:

"HappyPath": {
 "SomeTaskState": "SomeMockedResponse",
 "AnotherTaskState": "AnotherMockedResponse"
}

MockedResponses

MockedResponses is an object containing multiple mocked response objects with unique field
names. A mocked response object defines the successful result or error output for each invocation
of a mocked Task state. You specify the invocation number using individual integer strings, such as
“0”, “1”, “2”, and “3” or an inclusive range of integers, such as “0-1”, “2-3”.

When you mock a Task, you must specify a mocked response for every invocation. A response must
contain a single field named Return or Throw whose value is the result or error output for the
mocked Task invocation. If you do not specify a mocked response, the state machine execution will
fail.

The following is an example of a MockedResponse with Throw and Return objects. In this
example, the first three times the state machine is run, the response specified in "0-2" is returned,
and the fourth time the state machine runs, the response specified in "3" is returned.

"SomeMockedResponse": {

Using Mocked Service Integrations 621

AWS Step Functions Developer Guide

 "0-2": {
 "Throw": {
 ...
 }
 },
 "3": {
 "Return": {
 ...
 }
 }
}

Note

If you are using a Map state, and want to ensure predictable responses for the Map state,
set the value of maxConcurrency to 1. If you set a value greater than 1, Step Functions
Local will run multiple iterations concurrently, which will cause the overall execution order
of states across iterations to be unpredictable. This may further cause Step Functions Local
to use different mocked responses for iteration states from one execution to the next.

Return

Return is represented as a field of the MockedResponse objects. It specifies the successful result
of a mocked Task state.

The following is an example of a Return object that contains a mocked response for calling
Invoke on a Lambda function:

"Return": {
 "StatusCode": 200,
 "Payload": {
 "StatusCode": 200,
 "body": "Hello from Lambda!"
 }
}

Throw

Throw is represented as a field of the MockedResponse objects. It specifies the error
output of a failed Task. The value of Throw must be an object containing an Error and

Using Mocked Service Integrations 622

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

AWS Step Functions Developer Guide

Cause fields with string values. In addition, the string value you specify in Error field in the
MockConfigFile.json must match the errors handled in the Retry and Catch sections of your
state machine.

The following is an example of a Throw object that contains a mocked response for calling Invoke
on a Lambda function:

"Throw": {
 "Error": "Lambda.TimeoutException",
 "Cause": "Lambda timed out."
}

Configuring mocked service integrations

You can mock any service integration using Step Functions Local. However, Step Functions Local
doesn’t enforce the mocks to be the same as the real APIs. A mocked Task will never call the
service endpoint. If you do not specify a mocked response, a Task will attempt to call the service
endpoints. In addition, Step Functions Local will automatically generate a task token when you
mock a Task using the .waitForTaskToken.

Using Mocked Service Integrations 623

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

AWS Step Functions Developer Guide

Best practices for Step Functions

The following best practices for implementing AWS Step Functions workflows can help you
optimize the performance of your implementations.

Topics

• Use timeouts to avoid stuck executions

• Use Amazon S3 ARNs instead of passing large payloads

• Avoid reaching the history quota

• Handle Lambda service exceptions

• Avoid latency when polling for activity tasks

• Choosing Standard or Express Workflows

• Amazon CloudWatch Logs resource policy size restrictions

Use timeouts to avoid stuck executions

By default, the Amazon States Language doesn't specify timeouts for state machine definitions.
Without an explicit timeout, Step Functions often relies solely on a response from an activity
worker to know that a task is complete. If something goes wrong and the TimeoutSeconds field
isn't specified for an Activity or Task state, an execution is stuck waiting for a response that will
never come.

To avoid this situation, specify a reasonable timeout when you create a Task in your state machine.
For example:

"ActivityState": {
 "Type": "Task",
 "Resource": "arn:aws:states:us-east-1:123456789012:activity:HelloWorld",
 "TimeoutSeconds": 300,
 "Next": "NextState"
}

If you use a callback with a task token (.waitForTaskToken), we recommend that you use
heartbeats and add the HeartbeatSeconds field in your Task state definition. You can set
HeartbeatSeconds to be less than the task timeout so if your workflow fails with a heartbeat

Use timeouts to avoid stuck executions 624

AWS Step Functions Developer Guide

error then you know it's because of the task failure instead of the task taking a long time to
complete.

{
 "StartAt": "Push to SQS",
 "States": {
 "Push to SQS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage.waitForTaskToken",
 "HeartbeatSeconds": 600,
 "Parameters": {
 "MessageBody": { "myTaskToken.$": "$$.Task.Token" },
 "QueueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/push-based-queue"
 },
 "ResultPath": "$.SQS",
 "End": true
 }
 }
}

For more information, see Task in the Amazon States Language documentation.

Note

You can set a timeout for your state machine using the TimeoutSeconds field in your
Amazon States Language definition. For more information, see State machine structure.

Use Amazon S3 ARNs instead of passing large payloads

Executions that pass large payloads of data between states can be terminated. If the data you are
passing between states might grow to over 256 KB, use Amazon Simple Storage Service (Amazon
S3) to store the data, and parse the Amazon Resource Name (ARN) of the bucket in the Payload
parameter to get the bucket name and key value. Alternatively, adjust your implementation so that
you pass smaller payloads in your executions.

In the following example, a state machine passes input to an AWS Lambda function, which
processes a JSON file in an Amazon S3 bucket. After you run this state machine, the Lambda
function reads the contents of the JSON file, and returns the file contents as output.

Create the Lambda function

Use Amazon S3 ARNs instead of passing large payloads 625

AWS Step Functions Developer Guide

The following Lambda function named pass-large-payload reads the contents of a JSON file
stored in a specific Amazon S3 bucket.

Note

After you create this Lambda function, make sure you provide its IAM role the
appropriate permission to read from an Amazon S3 bucket. For example, attach the
AmazonS3ReadOnlyAccess permission to the Lambda function's role.

import json
import boto3
import io
import os

s3 = boto3.client('s3')

def lambda_handler(event, context):
 event = event['Input']
 final_json = str()

 s3 = boto3.resource('s3')
 bucket = event['bucket'].split(':')[-1]
 filename = event['key']
 directory = "/tmp/{}".format(filename)

 s3.Bucket(bucket).download_file(filename, directory)

 with open(directory, "r") as jsonfile:

 final_json = json.load(jsonfile)

 os.popen("rm -rf /tmp")

 return final_json

Create the state machine

The following state machine invokes the Lambda function you previously created.

{
 "StartAt":"Invoke Lambda function",

Use Amazon S3 ARNs instead of passing large payloads 626

AWS Step Functions Developer Guide

 "States":{
 "Invoke Lambda function":{
 "Type":"Task",
 "Resource":"arn:aws:states:::lambda:invoke",
 "Parameters":{
 "FunctionName":"arn:aws:lambda:us-east-2:123456789012:function:pass-large-
payload",
 "Payload":{
 "Input.$":"$"
 }
 },
 "OutputPath": "$.Payload",
 "End":true
 }
 }
}

Rather than pass a large amount of data in the input, you could save that data in an Amazon S3
bucket, and pass the Amazon Resource Name (ARN) of the bucket in the Payload parameter to get
the bucket name and key value. Your Lambda function can then use that ARN to access the data
directly. The following is example input for the state machine execution, where the data is stored in
data.json in an Amazon S3 bucket named large-payload-json.

{
 "key": "data.json",
 "bucket": "arn:aws:s3:::large-payload-json"
}

Avoid reaching the history quota

AWS Step Functions has a hard quota of 25,000 entries in the execution event history. When an
execution reaches 24,999 events, it waits for the next event to happen.

• If the event number 25,000 is ExecutionSucceeded, the execution finishes successfully.

• If the event number 25,000 isn't ExecutionSucceeded, the ExecutionFailed event is
logged and the state machine execution fails because of reaching the history limit

To avoid reaching this quota for long-running executions, you can try one of the following
workarounds:

Avoid reaching the history quota 627

AWS Step Functions Developer Guide

• Use the Map state in Distributed mode. In this mode, the Map state runs each iteration as a child
workflow execution, which enables high concurrency of up to 10,000 parallel child workflow
executions. Each child workflow execution has its own, separate execution history from that of
the parent workflow.

• Start a new state machine execution directly from the Task state of a running execution. To start
such nested workflow executions, use Step Functions' StartExecution API action in the parent
state machine along with the necessary parameters. For more information about using nested
workflows, see Start Workflow Executions from a Task State or Using a Step Functions API action
to continue a new execution tutorial.

Tip

To deploy an example of a nested workflow to your AWS account, see Module 13 -
Nested Express Workflows.

• Implement a pattern that uses an AWS Lambda function that can start a new execution of your
state machine to split ongoing work across multiple workflow executions. For more information,
see the Using a Lambda function to continue a new execution tutorial.

Handle Lambda service exceptions

AWS Lambda can occasionally experience transient service errors. In this case, invoking Lambda
results in a 500 error, such as ClientExecutionTimeoutException, ServiceException,
AWSLambdaException, or SdkClientException. As a best practice, proactively handle these
exceptions in your state machine to Retry invoking your Lambda function, or to Catch the error.

Lambda errors are reported as Lambda.ErrorName. To retry a Lambda service exception error, you
could use the following Retry code.

"Retry": [{
 "ErrorEquals": ["Lambda.ClientExecutionTimeoutException",
 "Lambda.ServiceException", "Lambda.AWSLambdaException", "Lambda.SdkClientException"],
 "IntervalSeconds": 2,
 "MaxAttempts": 6,
 "BackoffRate": 2
}]

Handle Lambda service exceptions 628

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://s12d.com/sfn-ws-nested-workflows
https://s12d.com/sfn-ws-nested-workflows

AWS Step Functions Developer Guide

Note

Unhandled errors in Lambda are reported as Lambda.Unknown in the error output. These
include out-of-memory errors and function timeouts. You can match on Lambda.Unknown,
States.ALL, or States.TaskFailed to handle these errors. When Lambda hits the
maximum number of invocations, the error is Lambda.TooManyRequestsException. For
more information about Lambda function errors, see Error handling and automatic retries
in the AWS Lambda Developer Guide.

For more information, see the following:

• Retrying after an error

• Handling error conditions using a Step Functions state machine

• Lambda Invoke Errors

Avoid latency when polling for activity tasks

The GetActivityTask API is designed to provide a taskToken exactly once. If a taskToken is
dropped while communicating with an activity worker, a number of GetActivityTask requests
can be blocked for 60 seconds waiting for a response until GetActivityTask times out.

If you only have a small number of polls waiting for a response, it's possible that all requests
will queue up behind the blocked request and stop. However, if you have a large number of
outstanding polls for each activity Amazon Resource Name (ARN), and some percentage of your
requests are stuck waiting, there will be many more that can still get a taskToken and begin to
process work.

For production systems, we recommend at least 100 open polls per activity ARN's at each point
in time. If one poll gets blocked, and a portion of those polls queue up behind it, there are still
many more requests that will receive a taskToken to process work while the GetActivityTask
request is blocked.

To avoid these kinds of latency problems when polling for tasks:

• Implement your pollers as separate threads from the work in your activity worker
implementation.

Avoid latency when polling for activity tasks 629

https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_Errors
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html#StepFunctions-GetActivityTask-response-taskToken

AWS Step Functions Developer Guide

• Have at least 100 open polls per activity ARN at each point in time.

Note

Scaling to 100 open polls per ARN can be expensive. For example, 100 Lambda functions
polling per ARN is 100 times more expensive than having a single Lambda function with
100 polling threads. To both reduce latency and minimize cost, use a language that has
asynchronous I/O, and implement multiple polling threads per worker. For an example
activity worker where the poller threads are separate from the work threads, see Example
Activity Worker in Ruby.

For more information on activities and activity workers see Activities.

Choosing Standard or Express Workflows

AWS Step Functions offers Standard Workflows as the default workflow type, with the option to
choose Express Workflows.

You can choose Standard Workflows when you need long-running, durable, and auditable
workflows, or Express Workflows for high-volume, event processing workloads. Your state machine
executions will behave differently, depending on which Type you select. The Type you choose
cannot be changed after your state machine has been created.

• For detailed information about the differences between Standard and Express Workflows, see
Standard vs. Express Workflows.

• For information about optimizing cost while building serverless workflows using Step Functions,
see Cost-optimization using Express Workflows.

Amazon CloudWatch Logs resource policy size restrictions

CloudWatch Logs resource policies are limited to 5120 characters. When CloudWatch Logs detects
that a policy approaches this size limit, it automatically enables log groups that start with /aws/
vendedlogs/.

When you create a state machine with logging enabled, Step Functions must update your
CloudWatch Logs resource policy with the log group you specify. To avoid reaching the CloudWatch

Choosing Standard or Express Workflows 630

AWS Step Functions Developer Guide

Logs resource policy size limit, prefix your CloudWatch Logs log group names with /aws/
vendedlogs/. When you create a log group in the Step Functions console, the log group names
are prefixed with /aws/vendedlogs/states. For more information, see Enabling Logging from
Certain AWS Services.

If you're unable to access the CloudWatch Logs, see Unable to access the CloudWatch Logs for
information.

Amazon CloudWatch Logs resource policy size restrictions 631

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html

AWS Step Functions Developer Guide

Using AWS Step Functions with other services

Learn about coordinating other AWS services or calling third-party APIs with AWS Step Functions.

Topics

• Call other AWS services

• AWS SDK service integrations

• Optimized integrations for Step Functions

• Call third-party APIs

• Service integration patterns

• Pass parameters to a service API

• Change log for supported AWS SDK integrations

Call other AWS services

AWS Step Functions integrates with AWS services, letting you call each service's API actions from
your workflow. You can use Step Functions' AWS SDK integrations to call any of the over two
hundred AWS services directly from your state machine, giving you access to over nine thousand
API actions. Or you can use Step Functions' Optimized integrations, each of which has been
customized to provide special functionality for your workflow. Some API actions are available in
both types of integration. In this case, it's recommended that you use the Optimized integration.

You coordinate these services directly from a Task state in the Amazon States Language. For
example, using Step Functions, you can call other services to:

• Invoke an AWS Lambda function.

• Run an AWS Batch job and then perform different actions based on the results.

• Insert or get an item from Amazon DynamoDB.

• Run an Amazon Elastic Container Service (Amazon ECS) task and wait for it to complete.

• Publish to a topic in Amazon Simple Notification Service (Amazon SNS).

• Send a message in Amazon Simple Queue Service (Amazon SQS).

• Manage a job for AWS Glue or Amazon SageMaker.

• Build workflows for executing Amazon EMR jobs.

• Launch an AWS Step Functions workflow execution.

Call other AWS services 632

AWS Step Functions Developer Guide

Optimized integrations

Optimized integrations have been customized by Step Functions to provide special functionality
for a workflow context. For example, Lambda Invoke converts its API output from an escaped
JSON to a JSON object. AWS BatchSubmitJob lets you pause execution until the job is complete.
The first set of optimized integrations was released in 2018, and there are now over fifty APIs.

AWS SDK integrations

AWS SDK integrations work exactly like a standard API call using the AWS SDK. They provide the
ability to call over nine thousand APIs across the more than two hundred AWS services directly
from your state machine definition. AWS SDK integrations were released in 2021.

Integration pattern support

Standard Workflows and Express Workflows support the same integrations but not the same
integration patterns.

• Optimized integrations pattern support is different for each integration.

• Express Workflows do not support Run a Job (.sync) or Wait for Callback (.waitForTaskToken).

• For more information, see Standard vs. Express Workflows.

Standard Workflows

Supported service integrations

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon API Gateway ✓ ✓

Amazon Athena ✓ ✓

AWS Batch ✓ ✓

Optimized
integrati
ons

Amazon Bedrock ✓ ✓ ✓

Optimized integrations 633

AWS Step Functions Developer Guide

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

AWS CodeBuild ✓ ✓

Amazon DynamoDB ✓

Amazon ECS/Fargate ✓ ✓ ✓

Amazon EKS ✓ ✓ ✓

Amazon EMR ✓ ✓

Amazon EMR on EKS ✓ ✓

Amazon EMR Serverless ✓ ✓

Amazon EventBridge ✓ ✓

AWS Glue ✓ ✓

AWS Glue DataBrew ✓ ✓

AWS Lambda ✓ ✓

Amazon SageMaker ✓ ✓

Amazon SNS ✓ ✓

Amazon SQS ✓ ✓

AWS Step Functions ✓ ✓ ✓

AWS
SDK
integrati
ons

Over two hundred ✓ ✓

Integration pattern support 634

AWS Step Functions Developer Guide

Express Workflows

Supported service integrations

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon API Gateway ✓

Amazon Athena ✓

AWS Batch ✓

Amazon Bedrock ✓

AWS CodeBuild ✓

Amazon DynamoDB ✓

Amazon ECS/Fargate ✓

Amazon EKS ✓

Amazon EMR ✓

Amazon EMR on EKS ✓

Amazon EMR Serverless ✓

Amazon EventBridge ✓

AWS Glue ✓

AWS Glue DataBrew ✓

AWS Lambda ✓

Amazon SageMaker ✓

Optimized
integrati
ons

Amazon SNS ✓

Integration pattern support 635

AWS Step Functions Developer Guide

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon SQS ✓

AWS Step Functions ✓

AWS
SDK
integrati
ons

Over two hundred ✓

Cross-account access

Step Functions provides cross-account access to resources configured in different AWS accounts in
your workflows. Using Step Functions service integrations, you can invoke any cross-account AWS
resource even if that AWS service doesn’t support resource-based policies or cross-account calls.

For more information, see Accessing resources in other AWS accounts in your workflows.

AWS SDK service integrations

AWS Step Functions integrates with AWS services, letting you call each service's API actions from
your workflow. You can use Step Functions' AWS SDK integrations to call almost any AWS service's
API actions from your state machine. You can also use Step Functions' Optimized integrations, each
of which has been customized to provide special functionality for your workflow.

Some services or SDKs may not be available as AWS SDK integrations, either temporarily or
permanently. Recently released services may not have SDK interactions available until a later
update. Some services require customized configuration, such as specifying a customer-specific
endpoint, which may be more suitable for an optimized integration. Other SDKs are unsuitable
for use in a workflow, such as those for streaming audio or video. Finally, some services may be
withheld until they pass certain internal validations performed by Step Functions.

Cross-account access 636

AWS Step Functions Developer Guide

Tip

To deploy an example of a workflow that uses AWS SDK integrations to your AWS account,
see Module 9 - AWS SDK service integrations in The AWS Step Functions Workshop.

Topics

• Using AWS SDK service integrations

• Supported AWS SDK service integrations

• Unsupported API actions for supported services

• Deprecated AWS SDK service integrations

Using AWS SDK service integrations

To use AWS SDK integrations, you specify the service name and API call and, optionally, a service
integration pattern.

Note

• Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

• For API actions that accept enumerated parameters, such as the
DescribeLaunchTemplateVersions API action for Amazon EC2, specify a plural
version of the parameter name. For example, specify Filters for the Filter.N
parameter of the DescribeLaunchTemplateVersions API action.

You can call AWS SDK services directly from the Amazon States Language in the Resource field of
a task state. To do this, use the following syntax:

arn:aws:states:::aws-sdk:serviceName:apiAction.[serviceIntegrationPattern]

For example, for Amazon EC2, you might use arn:aws:states:::aws-
sdk:ec2:describeInstances. This would return output as defined for the Amazon EC2
describeInstances API call.

Using AWS SDK service integrations 637

https://s12d.com/sfn-ws-sdk-integrations
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeLaunchTemplateVersions.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html#API_DescribeInstances_ResponseElements
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeInstances.html#API_DescribeInstances_ResponseElements

AWS Step Functions Developer Guide

If an AWS SDK integration encounters an error, the resulting Error field will be composed of the
service name and the error name, separated by a period character: ServiceName.ErrorName.
Both the service name and error name are in Pascal case. You can also see the service name, in
lowercase, in the Task state's Resource field. You can find the potential error names in the target
service's API reference documentation.

For example, you might use the arn:aws:states:::aws-
sdk:acmpca:deleteCertificateAuthority AWS SDK integration. The AWS Private Certificate
Authority API Reference indicates that the DeleteCertificateAuthority API action can result
in a ResourceNotFoundException, for example. To handle this error, you would thus specify the
Error AcmPca.ResourceNotFoundException in your Task state's Retriers or Catchers. For more
information on error handling in Step Functions, see Error handling in Step Functions.

Step Functions can't autogenerate IAM policies for AWS SDK integrations. After you create your
state machine, you will need to navigate to the IAM console and configure your role policies. See
IAM Policies for integrated services for more information.

See the Gather Amazon S3 bucket info using AWS SDK service integrations tutorial for an example
of how to use AWS SDK integrations.

Supported AWS SDK service integrations

The following table lists the AWS SDK service integrations supported by Step Functions. The Task
state resource column lists the syntax to call a specific API action when using the integration for
the service specified in the Service name column on the left. The Date supported column provides
information about the dates on which the service integration was supported. In addition, the
Exception prefix column on the right, lists the exception prefixes for each service integration. These
exception prefixes are present in the exceptions that are generated when you erroneously perform
an AWS SDK service integration with Step Functions.

Note

• Services marked with *** have API actions that are not supported by Step Functions at
this time. For information about the actions that aren't supported for a service, see the
Unsupported API actions for supported services table.

• For information about the updates made with each launch to expand the support for
AWS SDK integrations, see Change log for supported AWS SDK integrations.

Supported services 638

https://docs.aws.amazon.com/privateca/latest/APIReference/API_DeleteCertificateAuthority.html#API_DeleteCertificateAuthority_Errors
https://docs.aws.amazon.com/privateca/latest/APIReference/API_DeleteCertificateAuthority.html#API_DeleteCertificateAuthority_Errors

AWS Step Functions Developer Guide

Important

API action support is released on a quarterly cadence. Updates to already supported
actions, such as new parameters, may not be immediately available.

Service name Task state resource Date supported Exception prefix

AWS AppFabric arn:aws:states:::a
ws-sdk:ap
pfabric: [apiAction]

January 18, 2024 AppFabric

B2B Data
Interchange

arn:aws:states:::a
ws-sdk:b2
bi: [apiAction]

January 18, 2024 B2Bi

AWS Data Exports arn:aws:states:::a
ws-sdk:bcmdataexpo
rts: [apiAction]

January 18, 2024 BcmDataExports

Amazon Bedrock arn:aws:states:::a
ws-sdk:be
drock: [apiAction]

January 18, 2024 Bedrock

Amazon Bedrock
Agents

arn:aws:states:::a
ws-sdk:bedrockagen
t: [apiAction]

January 18, 2024 BedrockAgent

Amazon Bedrock
Runtime Agents

arn:aws:states:::a
ws-sdk:bedrockagen
truntime: [apiActio
n]

January 18, 2024 BedrockAg
entRuntime

Amazon Bedrock
Runtime

arn:aws:states:::a
ws-sdk:bedrockrunt
ime: [apiAction]

January 18, 2024 BedrockRuntime

Supported services 639

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Clean Rooms arn:aws:states:::a
ws-sdk:cleanroomsm
l: [apiAction]

January 18, 2024 CleanRoomsMl

Amazon CloudFron
t KeyValueStore

arn:aws:states:::a
ws-sdk:cl
oudfrontkeyvaluest
ore: [apiAction]

January 18, 2024 CloudFron
tKeyValueStore

CodeGuru Security arn:aws:states:::a
ws-sdk:codegurusec
urity: [apiAction]

January 18, 2024 CodeGuruSecurity

AWS Cost
Optimization Hub

arn:aws:states:::a
ws-sdk:costoptimiz
ationhub: [apiActio
n]

January 18, 2024 CostOptim
izationHub

Amazon DataZone arn:aws:states:::a
ws-sdk:da
tazone: [apiAction]

January 18, 2024 DataZone

Amazon EKS Auth arn:aws:states:::a
ws-sdk:ek
sauth: [apiAction]

January 18, 2024 EksAuth

AWS Entity
Resolution

arn:aws:states:::a
ws-sdk:entityresol
ution: [apiAction]

January 18, 2024 EntityResolution

AWS Free Tier arn:aws:states:::a
ws-sdk:fr
eetier: [apiAction]

January 18, 2024 FreeTier

Supported services 640

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Inspector
Scan

arn:aws:states:::a
ws-sdk:inspectorsc
an: [apiAction]

January 18, 2024 InspectorScan

AWS Launch
Wizard

arn:aws:states:::a
ws-sdk:launchwizar
d: [apiAction]

January 18, 2024 LaunchWizard

Amazon Managed
Blockchain Query

arn:aws:states:::a
ws-sdk:ma
nagedblockchainque
ry: [apiAction]

January 18, 2024 ManagedBl
ockchainQuery

AWS Elemental
MediaPackage V2

arn:aws:states:::a
ws-sdk:mediapackag
ev2: [apiAction]

January 18, 2024 MediaPackageV2

AWS HealthIma
ging

arn:aws:states:::a
ws-sdk:medicalimag
ing: [apiAction]

January 18, 2024 MedicalImaging

Network Manager arn:aws:states:::a
ws-sdk:networkmana
ger: [apiAction]

January 18, 2024 NetworkManager

AWS Payment
Cryptography

arn:aws:states:::a
ws-sdk:paymentcryp
tography: [apiActio
n]

January 18, 2024 PaymentCr
yptography

AWS Payment
Cryptography Data

arn:aws:states:::a
ws-sdk:pa
ymentcryptographyd
ata: [apiAction]

January 18, 2024 PaymentCr
yptographyData

Supported services 641

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Private CA
Connector for
Active Directory

arn:aws:states:::a
ws-sdk:pcaconnecto
rad: [apiAction]

January 18, 2024 PcaConnectorAd

Amazon Q
Business

arn:aws:states:::a
ws-sdk:qb
usiness: [apiAction]

January 18, 2024 QBusiness

Amazon Q
Connect

arn:aws:states:::a
ws-sdk:qc
onnect: [apiAction]

January 18, 2024 QConnect

AWS re:Post arn:aws:states:::a
ws-sdk:repostspace
: [apiAction]

January 18, 2024 Repostspace

Amazon Timestrea
m Query

arn:aws:states:::a
ws-sdk:timestreamq
uery: [apiAction]

January 18, 2024 TimestreamQuery

Amazon Timestrea
m Write

arn:aws:states:::a
ws-sdk:timestreamw
rite: [apiAction]

January 18, 2024 TimestreamWrite

Trusted Advisor arn:aws:states:::a
ws-sdk:trustedadvi
sor: [apiAction]

January 18, 2024 TrustedAdvisor

Verified Permissio
ns

arn:aws:states:::a
ws-sdk:verifiedper
missions: [apiActio
n]

January 18, 2024 VerifiedPermission
s

Supported services 642

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon
WorkSpaces Thin
Client

arn:aws:states:::a
ws-sdk:workspacest
hinclient: [apiActio
n]

January 18, 2024 WorkSpace
sThinClient

AWS CloudTrail
Data

arn:aws:states:::a
ws-sdk:cloudtraild
ata: [apiAction]

June 16, 2023 CloudTrailData

Amazon
CloudWatch
Internet Monitor

arn:aws:states:::a
ws-sdk:internetmon
itor: [apiAction]

June 16, 2023 InternetMonitor

Amazon Interacti
ve Video Service
RealTime

arn:aws:states:::a
ws-sdk:ivsrealtime
: [apiAction]

June 16, 2023 IvsRealTime

AWS IoT
TwinMaker

arn:aws:states:::a
ws-sdk:iottwinmake
r: [apiAction]

June 16, 2023 IoTTwinMaker

Amazon
OpenSearch
Ingestion

arn:aws:states:::a
ws-sdk:os
is: [apiAction]

June 16, 2023 Osis

AWS Telco
Network Builder

arn:aws:states:::a
ws-sdk: tnb:[apiActio
n]

June 16, 2023 Tnb

Amazon VPC
Lattice

arn:aws:states:::a
ws-sdk:vpclattice:
[apiAction]

June 16, 2023 VpcLattice

Supported services 643

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Chime
Media Pipelines

arn:aws:states:::a
ws-sdk:ch
imesdkmediapipelin
es: [apiAction]

February 17, 2023 ChimeSdkM
ediaPipelines

Amazon Chime
Voice

arn:aws:states:::a
ws-sdk:chimesdkvoi
ce: [apiAction]

February 17, 2023 ChimeSdkVoice

Amazon CodeCatal
yst

arn:aws:states:::a
ws-sdk:codecatalys
t: [apiAction]

February 17, 2023 CodeCatalyst

Amazon Connect
Cases

arn:aws:states:::a
ws-sdk:connectcase
s: [apiAction]

February 17, 2023 ConnectCases

Amazon
DocumentDB
Elastic Clusters

arn:aws:states:::a
ws-sdk:docdbelasti
c: [apiAction]

February 17, 2023 DocDbElastic

Amazon EMR
Serverless

arn:aws:states:::a
ws-sdk:emrserverle
ss: [apiAction]

February 17, 2023 EmrServerless

Amazon IVS Chat arn:aws:states:::a
ws-sdk:ivs: [apiActio
n]

February 17, 2023 Ivs

Amazon Kendra
Intelligent Ranking

arn:aws:states:::a
ws-sdk:kendraranki
ng: [apiAction]

February 17, 2023 KendraRanking

AWS HealthOmics arn:aws:states:::a
ws-sdk:om
ics: [apiAction]

February 17, 2023 Omics

Supported services 644

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Redshift
Serverless

arn:aws:states:::a
ws-sdk:redshiftser
verless: [apiAction]

February 17, 2023 RedshiftServerless

Amazon Security
Lake

arn:aws:states:::a
ws-sdk:securitylak
e: [apiAction]

February 17, 2023 SecurityLake

AWS Backup
Storage

arn:aws:states:::a
ws-sdk:backupstora
ge: [apiAction]

February 17, 2023 BackupStorage

AWS Clean Rooms arn:aws:states:::a
ws-sdk:cleanrooms:
[apiAction]

February 17, 2023 CleanRooms

AWS Control
Tower

arn:aws:states:::a
ws-sdk:controltowe
r: [apiAction]

February 17, 2023 ControlTower

AWS Health arn:aws:states:::a
ws-sdk:he
alth: [apiAction]

February 17, 2023 Health

AWS IoT FleetWise arn:aws:states:::a
ws-sdk:iotfleetwis
e: [apiAction]

February 17, 2023 IotFleetWise

AWS IoT
RoboRunner

arn:aws:states:::a
ws-sdk:iotroborunn
er: [apiAction]

February 17, 2023 IotRoboRunner

AWS Mainframe
Modernization

arn:aws:states:::a
ws-sdk:m2: [apiActio
n]

February 17, 2023 M2

Supported services 645

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Migration
Hub Orchestrator

arn:aws:states:::a
ws-sdk:mi
grationhuborchestr
ator: [apiAction]

February 17, 2023 Migration
HubOrchestrator

AWS Private 5G arn:aws:states:::a
ws-sdk:privatenetw
orks: [apiAction]

February 17, 2023 PrivateNetworks

AWS Resource
Explorer

arn:aws:states:::a
ws-sdk:resourceexp
lorer2: [apiAction]

February 17, 2023 ResourceExplorer2

AWS SimSpace
Weaver

arn:aws:states:::a
ws-sdk:simspacewea
ver: [apiAction]

February 17, 2023 SimSpaceWeaver

AWS Support App arn:aws:states:::a
ws-sdk:supportapp:
[apiAction]

February 17, 2023 SupportApp

CloudWatch
Observability
Access Manager

arn:aws:states:::a
ws-sdk:oam: [apiActio
n]

February 17, 2023 Oam

EventBridge Pipes arn:aws:states:::a
ws-sdk:pi
pes: [apiAction]

February 17, 2023 Pipes

EventBridge
Scheduler

arn:aws:states:::a
ws-sdk:sc
heduler: [apiAction]

February 17, 2023 Scheduler

IAM Roles
Anywhere

arn:aws:states:::a
ws-sdk:rolesanywhe
re: [apiAction]

February 17, 2023 RolesAnywhere

Supported services 646

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Kinesis Video
WebRTC Storage

arn:aws:states:::a
ws-sdk:ki
nesisvideowebrtcst
orage: [apiAction]

February 17, 2023 KinesisVi
deoWebRtc
Storage

License Manager
Linux Subscript
ions

arn:aws:states:::a
ws-sdk:licensemana
gerlinuxsubscripti
ons: [apiAction]

February 17, 2023 LicenseMa
nagerLinu
xSubscriptions

License Manager
User Subscriptions

arn:aws:states:::a
ws-sdk:licensemana
gerusersubscriptio
ns: [apiAction]

February 17, 2023 LicenseMa
nagerUser
Subscriptions

OpenSearch
Serverless

arn:aws:states:::a
ws-sdk:opensearchs
erverless: [apiActio
n]

February 17, 2023 OpenSearc
hServerless

Route 53 ARC
Zonal Shift

arn:aws:states:::a
ws-sdk:arczonalshi
ft: [apiAction]

February 17, 2023 ArcZonalShift

SageMaker
Geospatial

arn:aws:states:::a
ws-sdk:sagemakerge
ospatial: [apiActio
n]

February 17, 2023 SageMaker
Geospatial

SageMaker Metrics arn:aws:states:::a
ws-sdk:sagemakerme
trics: [apiAction]

February 17, 2023 SageMakerMetrics

Systems Manager
for SAP

arn:aws:states:::a
ws-sdk:ss
msap: [apiAction]

February 17, 2023 SsmSap

Supported services 647

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Account
Management

arn:aws:states:::a
ws-sdk:ac
count: [apiAction]

April 19, 2022 Account

AWS Amplify arn:aws:states:::a
ws-sdk:am
plify: [apiAction]

September 30,
2021

Amplify

AWS App Mesh arn:aws:states:::a
ws-sdk:ap
pmesh: [apiAction]

September 30,
2021

AppMesh

AWS App Runner arn:aws:states:::a
ws-sdk:ap
prunner: [apiAction]

September 30,
2021

AppRunner

AWS AppConfig arn:aws:states:::a
ws-sdk:ap
pconfig: [apiAction]

September 30,
2021

AppConfig

AWS AppConfig
Data

arn:aws:states:::a
ws-sdk:appconfigda
ta: [apiAction]

April 19, 2022 AppConfigData

AWS AppSync arn:aws:states:::a
ws-sdk:ap
psync: [apiAction]

September 30,
2021

AppSync

AWS Application
Discovery Service

arn:aws:states:::a
ws-sdk:application
discovery: [apiActio

n] ***

September 30,
2021

ApplicationDiscove
ry

AWS Application
Migration Service

arn:aws:states:::a
ws-sdk:mgn: [apiActio
n]

September 30,
2021

Mgn

Supported services 648

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Audit
Manager

arn:aws:states:::a
ws-sdk:auditmanage
r: [apiAction]

September 30,
2021

AuditManager

AWS Auto Scaling
Plans

arn:aws:states:::a
ws-sdk:autoscaling
plans: [apiAction]

September 30,
2021

AutoScalingPlans

AWS Backup arn:aws:states:::a
ws-sdk:ba
ckup: [apiAction]

September 30,
2021

Backup

AWS Backup
gateway

arn:aws:states:::a
ws-sdk:backupgatew
ay: [apiAction]

April 19, 2022 BackupGateway

AWS Batch arn:aws:states:::a
ws-sdk:ba
tch: [apiAction]

September 30,
2021

Batch

AWS Billing
Conductor

arn:aws:states:::a
ws-sdk:billingcond
uctor: [apiAction]

July 26, 2022 Billingconductor

AWS Budgets arn:aws:states:::a
ws-sdk:bu
dgets: [apiAction]

September 30,
2021

Budgets

AWS Certificate
Manager

arn:aws:states:::a
ws-sdk:acm: [apiActio
n]

September 30,
2021

Acm

AWS Private
Certificate
Authority

arn:aws:states:::a
ws-sdk:ac
mpca: [apiAction]

September 30,
2021

AcmPca

Supported services 649

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Cloud Map arn:aws:states:::a
ws-sdk:servicedisc
overy: [apiAction]

September 30,
2021

ServiceDiscovery

AWS Cloud9 arn:aws:states:::a
ws-sdk:cl
oud9: [apiAction]

September 30,
2021

Cloud9

AWS CloudForm
ation

arn:aws:states:::a
ws-sdk:cloudformat
ion: [apiAction]

September 30,
2021

CloudFormation

AWS CloudHSM arn:aws:states:::a
ws-sdk:cl
oudhsm: [apiAction]

September 30,
2021

CloudHsm

AWS CloudHSM arn:aws:states:::a
ws-sdk:cloudhsmv2:
[apiAction]

September 30,
2021

CloudHsmV2

AWS CloudTrail arn:aws:states:::a
ws-sdk:cloudtrail:
[apiAction]

September 30,
2021

CloudTrail

AWS Cloud Control arn:aws:states:::a
ws-sdk:cloudcontro
l: [apiAction]

April 19, 2022 CloudControl

AWS CodeBuild arn:aws:states:::a
ws-sdk:co
debuild: [apiAction]

September 30,
2021

CodeBuild

AWS CodeCommit arn:aws:states:::a
ws-sdk:codecommit:
[apiAction]

September 30,
2021

CodeCommit

Supported services 650

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS CodeDeploy arn:aws:states:::a
ws-sdk:codedeploy:

[apiAction] ***

September 30,
2021

CodeDeploy

AWS CodePipeline arn:aws:states:::a
ws-sdk:codepipelin
e: [apiAction]

September 30,
2021

CodePipeline

AWS CodeStar arn:aws:states:::a
ws-sdk:co
destar: [apiAction]

September 30,
2021

CodeStar

AWS CodeStar arn:aws:states:::a
ws-sdk:codestarnot
ifications: [apiActio
n]

September 30,
2021

CodestarNotificati
ons

AWS CodeStar arn:aws:states:::a
ws-sdk:codestarcon
nections: [apiActio
n]

September 30,
2021

CodeStarC
onnections

AWS Compute
Optimizer

arn:aws:states:::a
ws-sdk:computeopti
mizer: [apiAction]

September 30,
2021

ComputeOptimizer

AWS Config arn:aws:states:::a
ws-sdk:co
nfig: [apiAction]

September 30,
2021

Config

AWS Cost Explorer
Service

arn:aws:states:::a
ws-sdk:costexplore
r: [apiAction]

September 30,
2021

CostExplorer

Supported services 651

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Cost and
Usage Report

arn:aws:states:::a
ws-sdk:costandusag
ereport: [apiAction]

September 30,
2021

CostAndUs
ageReport

AWS Data
Exchange

arn:aws:states:::a
ws-sdk:dataexchang
e: [apiAction]

September 30,
2021

DataExchange

AWS Data Pipeline arn:aws:states:::a
ws-sdk:datapipelin
e: [apiAction]

September 30,
2021

DataPipeline

AWS DataSync arn:aws:states:::a
ws-sdk:da
tasync: [apiAction]

September 30,
2021

DataSync

AWS Database
Migration Service

arn:aws:states:::a
ws-sdk:databasemig
ration: [apiAction]

September 30,
2021

DatabaseMigration

AWS Device Farm arn:aws:states:::a
ws-sdk:devicefarm:
[apiAction]

September 30,
2021

DeviceFarm

AWS Direct
Connect

arn:aws:states:::a
ws-sdk:directconne

ct: [apiAction] ***

September 30,
2021

DirectConnect

AWS Directory
Service

arn:aws:states:::a
ws-sdk:di
rectory: [apiAction]

September 30,
2021

Directory

AWS EC2 Instance
Connect

arn:aws:states:::a
ws-sdk:ec2instance
connect: [apiAction]

September 30,
2021

Ec2Instan
ceConnect

Supported services 652

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Elastic
Beanstalk

arn:aws:states:::a
ws-sdk:elasticbean
stalk: [apiAction]

September 30,
2021

ElasticBeanstalk

AWS Elemental
MediaLive

arn:aws:states:::a
ws-sdk:me
dialive: [apiAction]

September 30,
2021

MediaLive

AWS Elemental
MediaPackage

arn:aws:states:::a
ws-sdk:mediapackag

e: [apiAction] ***

September 30,
2021

MediaPackage

AWS Elemental
MediaPackage
VOD

arn:aws:states:::a
ws-sdk:mediapackag
evod: [apiAction]

September 30,
2021

MediaPackageVod

AWS Elemental
MediaStore

arn:aws:states:::a
ws-sdk:mediastore:
[apiAction]

September 30,
2021

MediaStore

AWS Fault
Injection Service

arn:aws:states:::a
ws-sdk:fis: [apiActio
n]

September 30,
2021

Fis

AWS Firewall
Manager

arn:aws:states:::a
ws-sdk:fms: [apiActio
n]

September 30,
2021

Fms

AWS Glue arn:aws:states:::a
ws-sdk:gl
ue: [apiAction]

September 30,
2021

Glue

AWS Glue
DataBrew

arn:aws:states:::a
ws-sdk:da
tabrew: [apiAction]

September 30,
2021

DataBrew

Supported services 653

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS IoT Greengras
s

arn:aws:states:::a
ws-sdk:greengrass:
[apiAction]

September 30,
2021

Greengrass

AWS Ground
Station

arn:aws:states:::a
ws-sdk:groundstati
on: [apiAction]

September 30,
2021

GroundStation

AWS Identity
and Access
Management

arn:aws:states:::a
ws-sdk:iam: [apiActio
n]

September 30,
2021

Iam

AWS IoT arn:aws:states:::a
ws-sdk:iot: [apiActio

n] ***

September 30,
2021

Iot

AWS IoT 1-Click arn:aws:states:::a
ws-sdk:iot1clickpr
ojects: [apiAction]

September 30,
2021

Iot1ClickProjects

AWS IoT Analytics arn:aws:states:::a
ws-sdk:iotanalytic
s: [apiAction]

September 30,
2021

IoTAnalytics

AWS IoT Core
Device Advisor

arn:aws:states:::a
ws-sdk:iotdevicead

visor: [apiAction] ***

September 30,
2021

IotDeviceAdvisor

AWS IoT Events arn:aws:states:::a
ws-sdk:io
tevents: [apiAction]

September 30,
2021

IotEvents

AWS IoT Events
Data

arn:aws:states:::a
ws-sdk:ioteventsda
ta: [apiAction]

September 30,
2021

IotEventsData

Supported services 654

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS IoT Fleet Hub arn:aws:states:::a
ws-sdk:iotfleethub
: [apiAction]

September 30,
2021

IoTFleetHub

AWS IoT Greengras
s Version 2

arn:aws:states:::a
ws-sdk:greengrassv
2: [apiAction]

September 30,
2021

GreengrassV2

AWS IoT jobs data
Plane

arn:aws:states:::a
ws-sdk:iotjobsdata
plane: [apiAction]

September 30,
2021

IotJobsDataPlane

AWS IoT Secure
Tunneling

arn:aws:states:::a
ws-sdk:iotsecuretu
nneling: [apiAction]

September 30,
2021

IoTSecure
Tunneling

AWS IoT SiteWise arn:aws:states:::a
ws-sdk:iotsitewise
: [apiAction]

September 30,
2021

IoTSiteWise

AWS IoT Wireless arn:aws:states:::a
ws-sdk:iotwireless
: [apiAction]

September 30,
2021

IotWireless

AWS Key
Management
Service

arn:aws:states:::a
ws-sdk:kms: [apiActio
n]

September 30,
2021

Kms

AWS Lake
Formation

arn:aws:states:::a
ws-sdk:lakeformati
on: [apiAction]

September 30,
2021

LakeFormation

AWS Lambda arn:aws:states:::a
ws-sdk:la

mbda: [apiAction] ***

September 30,
2021

Lambda

Supported services 655

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS License
Manager

arn:aws:states:::a
ws-sdk:licensemana
ger: [apiAction]

September 30,
2021

LicenseManager

AWS Marketplace arn:aws:states:::a
ws-sdk:marketplace
catalog: [apiAction]

September 30,
2021

Marketpla
ceCatalog

AWS Marketpla
ce Commerce
Analytics

arn:aws:states:::a
ws-sdk:marketplace
commerceanalytics:
[apiAction]

September 30,
2021

Marketpla
ceCommerc
eAnalytics

AWS Marketpla
ce Entitlement
Service

arn:aws:states:::a
ws-sdk:ma
rketplaceentitleme
nt: [apiAction]

September 30,
2021

MarketplaceEntitle
ment

AWS Elemental
MediaTailor

arn:aws:states:::a
ws-sdk:mediatailor
: [apiAction]

September 30,
2021

MediaTailor

AWS Migration
Hub

arn:aws:states:::a
ws-sdk:migrationhu
b: [apiAction]

September 30,
2021

MigrationHub

AWS Migration
Hub Config

arn:aws:states:::a
ws-sdk:migrationhu
bconfig: [apiAction]

September 30,
2021

Migration
HubConfig

AWS Migration
Hub Strategy
Recommendations

arn:aws:states:::a
ws-sdk:migrationhu
bstrategy: [apiActio
n]

April 19, 2022 Migration
HubStrategy

Supported services 656

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Mobile arn:aws:states:::a
ws-sdk:mo
bile: [apiAction]

September 30,
2021

AWS Network
Firewall

arn:aws:states:::a
ws-sdk:networkfire
wall: [apiAction]

September 30,
2021

NetworkFirewall

AWS OpsWorks arn:aws:states:::a
ws-sdk:op
sworks: [apiAction]

September 30,
2021

OpsWorks

AWS OpsWorks CM arn:aws:states:::a
ws-sdk:opsworkscm:
[apiAction]

September 30,
2021

OpsWorksCm

AWS Organizations arn:aws:states:::a
ws-sdk:organizatio
ns: [apiAction]

September 30,
2021

Organizations

AWS Outposts arn:aws:states:::a
ws-sdk:ou
tposts: [apiAction]

September 30,
2021

Outposts

AWS Panorama arn:aws:states:::a
ws-sdk:pa
norama: [apiAction]

April 19, 2022 Panorama

Amazon Relationa
l Database Service
Performance
Insights

arn:aws:states:::a
ws-sdk:pi: [apiActio
n]

September 30,
2021

Pi

AWS Price List arn:aws:states:::a
ws-sdk:pr
icing: [apiAction]

September 30,
2021

Pricing

Supported services 657

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Relational
Database Service

arn:aws:states:::a
ws-sdk:rd

sdata: [apiAction] ***

September 30,
2021

RdsData

AWS Resilience
Hub

arn:aws:states:::a
ws-sdk:resilienceh
ub: [apiAction]

April 19, 2022 Resiliencehub

AWS Resource
Access Manager

arn:aws:states:::a
ws-sdk:ram: [apiActio
n]

September 30,
2021

Ram

AWS Resource
Groups

arn:aws:states:::a
ws-sdk:resourcegro
ups: [apiAction]

September 30,
2021

ResourceGroups

AWS Resource
Groups Tagging
API

arn:aws:states:::a
ws-sdk:re
sourcegroupstaggin
gapi: [apiAction]

September 30,
2021

ResourceG
roupsTaggingApi

AWS RoboMaker arn:aws:states:::a
ws-sdk:ro
bomaker: [apiAction]

September 30,
2021

RoboMaker

AWS IAM Identity
Center

arn:aws:states:::a
ws-sdk:identitysto
re: [apiAction]

September 30,
2021

Identitystore

IAM Identity
Center OIDC

arn:aws:states:::a
ws-sdk:ss
ooidc: [apiAction]

September 30,
2021

SsoOidc

AWS Secrets
Manager

arn:aws:states:::a
ws-sdk:secretsmana
ger: [apiAction]

September 30,
2021

SecretsManager

Supported services 658

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Security
Token Service

arn:aws:states:::a
ws-sdk:sts: [apiActio

n] ***

September 30,
2021

Sts

AWS Security Hub arn:aws:states:::a
ws-sdk:securityhub
: [apiAction]

September 30,
2021

SecurityHub

AWS Server
Migration Service

arn:aws:states:::a
ws-sdk:sms: [apiActio
n]

September 30,
2021

Sms

AWS Service
Catalog

arn:aws:states:::a
ws-sdk:servicecata
log: [apiAction]

September 30,
2021

ServiceCatalog

AWS Service
Catalog AppRegist
ry

arn:aws:states:::a
ws-sdk:se
rvicecatalogappreg
istry: [apiAction]

September 30,
2021

ServiceCa
talogAppRegistry

AWS Shield arn:aws:states:::a
ws-sdk:sh

ield: [apiAction] ***

September 30,
2021

Shield

AWS Signer arn:aws:states:::a
ws-sdk:si
gner: [apiAction]

September 30,
2021

Signer

IAM Identity
Center

arn:aws:states:::a
ws-sdk:sso: [apiActio
n]

September 30,
2021

Sso

IAM Identity
Center Admin

arn:aws:states:::a
ws-sdk:ss
oadmin: [apiAction]

September 30,
2021

SsoAdmin

Supported services 659

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS Step
Functions

arn:aws:states:::a
ws-sdk:sfn: [apiActio
n]

September 30,
2021

Sfn

AWS Storage
Gateway

arn:aws:states:::a
ws-sdk:storagegate
way: [apiAction]

September 30,
2021

StorageGateway

AWS Support arn:aws:states:::a
ws-sdk:su
pport: [apiAction]

September 30,
2021

Support

AWS Systems
Manager Incident
Manager

arn:aws:states:::a
ws-sdk:ssmincident
s: [apiAction]

 SsmIncidents

AWS Transfer
Family

arn:aws:states:::a
ws-sdk:tr
ansfer: [apiAction]

September 30,
2021

Transfer

AWS WAF arn:aws:states:::a
ws-sdk:waf: [apiActio
n]

September 30,
2021

Waf

AWS WAF Regional arn:aws:states:::a
ws-sdk:wafregional
: [apiAction]

September 30,
2021

WafRegional

AWS WAFV2 arn:aws:states:::a
ws-sdk:wa
fv2: [apiAction]

September 30,
2021

Wafv2

AWS Well-Arch
itected Tool

arn:aws:states:::a
ws-sdk:wellarchite
cted: [apiAction]

September 30,
2021

WellArchitected

Supported services 660

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

AWS X-Ray arn:aws:states:::a
ws-sdk:xr
ay: [apiAction]

September 30,
2021

XRay

AWS Marketplace
Metering Service

arn:aws:states:::a
ws-sdk:marketplace
metering: [apiActio
n]

September 30,
2021

Marketpla
ceMetering

AWS Serverles
s Application
Repository

arn:aws:states:::a
ws-sdk:serverlessa
pplicationreposito
ry: [apiAction]

September 30,
2021

ServerlessApplicat
ionRepository

AWS Identity
and Access
Management
Access Analyzer

arn:aws:states:::a
ws-sdk:accessanaly
zer: [apiAction]

September 30,
2021

AccessAnalyzer

Alexa for Business arn:aws:states:::a
ws-sdk:alexaforbus
iness: [apiAction]

September 30,
2021

AlexaForBusiness

Amazon API
Gateway

arn:aws:states:::a
ws-sdk:apigateway:
[apiAction]

September 30,
2021

ApiGateway

Amazon API
Gateway

arn:aws:states:::a
ws-sdk:apigatewayv
2: [apiAction]

September 30,
2021

ApiGatewayV2

Amazon AppIntegr
ations

arn:aws:states:::a
ws-sdk:appintegrat
ions: [apiAction]

September 30,
2021

AppIntegrations

Supported services 661

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon
AppStream 2.0

arn:aws:states:::a
ws-sdk:ap
pstream: [apiAction]

September 30,
2021

AppStream

Amazon AppFlow arn:aws:states:::a
ws-sdk:ap
pflow: [apiAction]

September 30,
2021

Appflow

Amazon Athena arn:aws:states:::a
ws-sdk:at
hena: [apiAction]

September 30,
2021

Athena

Amazon
Augmented AI

arn:aws:states:::a
ws-sdk:sagemakera2
iruntime: [apiActio
n]

September 30,
2021

SageMaker
A2IRuntime

Amazon Braket arn:aws:states:::a
ws-sdk:br
aket: [apiAction]

September 30,
2021

Braket

Amazon Chime arn:aws:states:::a
ws-sdk:ch
ime: [apiAction]

September 30,
2021

Chime

Amazon Chime
Meetings

arn:aws:states:::a
ws-sdk:chimesdkmee
tings: [apiAction]

April 19, 2022 ChimeSdkMeetings

Amazon Cloud
Directory

arn:aws:states:::a
ws-sdk:clouddirect
ory: [apiAction]

September 30,
2021

CloudDirectory

Amazon CloudFron
t

arn:aws:states:::a
ws-sdk:cloudfront:
[apiAction]

September 30,
2021

CloudFront

Supported services 662

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon CloudSear
ch

arn:aws:states:::a
ws-sdk:cloudsearch
: [apiAction]

September 30,
2021

CloudSearch

Amazon
CloudWatch

arn:aws:states:::a
ws-sdk:cloudwatch:
[apiAction]

September 30,
2021

CloudWatch

Amazon
CloudWatch
Application
Insights

arn:aws:states:::a
ws-sdk:application
insights: [apiActio
n]

September 30,
2021

ApplicationInsights

CloudWatch
Evidently

arn:aws:states:::a
ws-sdk:ev
idently: [apiAction]

April 19, 2022 Evidently

Amazon
CloudWatch Logs

arn:aws:states:::a
ws-sdk:cloudwatchl
ogs: [apiAction]

September 30,
2021

CloudWatchLogs

Amazon
CloudWatch RUM

arn:aws:states:::a
ws-sdk:rum: [apiActio
n]

April 19, 2022 Rum

Amazon
CloudWatch
Synthetics

arn:aws:states:::a
ws-sdk:synthetics:
[apiAction]

September 30,
2021

Synthetics

Amazon CodeGuru
Profiler

arn:aws:states:::a
ws-sdk:codegurupro
filer: [apiAction]

September 30,
2021

CodeGuruProfiler

Amazon CodeGuru
Reviewer

arn:aws:states:::a
ws-sdk:codegururev
iewer: [apiAction]

September 30,
2021

CodeGuruReviewer

Supported services 663

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Cognito arn:aws:states:::a
ws-sdk:cognitoiden
tity: [apiAction]

September 30,
2021

CognitoIdentity

Amazon Cognito
Identity Provider

arn:aws:states:::a
ws-sdk:co
gnitoidentityprovi
der: [apiAction]

September 30,
2021

CognitoIdentityPro
vider

Amazon Cognito
Sync

arn:aws:states:::a
ws-sdk:cognitosync
: [apiAction]

September 30,
2021

CognitoSync

Amazon
Comprehend

arn:aws:states:::a
ws-sdk:comprehend:
[apiAction]

September 30,
2021

Comprehend

Amazon
Comprehend
Medical

arn:aws:states:::a
ws-sdk:comprehendm

edical: [apiAction] ***

September 30,
2021

Comprehen
dMedical

Amazon Connect
Contact Lens

arn:aws:states:::a
ws-sdk:connectcont
actlens: [apiAction]

September 30,
2021

ConnectCo
ntactLens

Amazon Connect
Participant Service

arn:aws:states:::a
ws-sdk:connectpart
icipant: [apiAction]

September 30,
2021

ConnectPa
rticipant

Amazon Connect arn:aws:states:::a
ws-sdk:co
nnect: [apiAction]

September 30,
2021

Connect

Amazon Connect
Voice ID

arn:aws:states:::a
ws-sdk:vo
iceid: [apiAction]

April 19, 2022 VoiceId

Supported services 664

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Connect
Wisdom

arn:aws:states:::a
ws-sdk:wi
sdom: [apiAction]

April 19, 2022 Wisdom

Amazon Data
Lifecycle Manager

arn:aws:states:::a
ws-sdk:dlm: [apiActio
n]

September 30,
2021

Dlm

Amazon Detective arn:aws:states:::a
ws-sdk:de
tective: [apiAction]

September 30,
2021

Detective

Amazon
DevOps Guru

arn:aws:states:::a
ws-sdk:devopsguru:
[apiAction]

September 30,
2021

DevOpsGuru

Amazon
DocumentDB
(with MongoDB
compatibility)

arn:aws:states:::a
ws-sdk:do
cdb: [apiAction]

September 30,
2021

DocDb

Amazon
DynamoDB

arn:aws:states:::a
ws-sdk:dy
namodb: [apiAction]

September 30,
2021

DynamoDb

Amazon
DynamoDB
Streams

arn:aws:states:::a
ws-sdk:dynamodbstr
eams: [apiAction]

September 30,
2021

DynamoDbS
treams

Amazon EC2
Container Registry

arn:aws:states:::a
ws-sdk:ecr: [apiActio
n]

September 30,
2021

Ecr

Amazon EC2
Container Service

arn:aws:states:::a
ws-sdk:ecs: [apiActio
n]

September 30,
2021

Ecs

Supported services 665

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon EC2
Systems Manager

arn:aws:states:::a
ws-sdk:ssm: [apiActio
n]

September 30,
2021

Ssm

Amazon EMR arn:aws:states:::a
ws-sdk:emrcontaine

rs: [apiAction] ***

September 30,
2021

EmrContainers

Amazon ElastiCac
he

arn:aws:states:::a
ws-sdk:elasticache
: [apiAction]

September 30,
2021

ElastiCache

Amazon Elastic
Inference

arn:aws:states:::a
ws-sdk:elasticinfe
rence: [apiAction]

September 30,
2021

ElasticInference

Amazon Elastic
Block Store

arn:aws:states:::a
ws-sdk:ebs: [apiActio
n]

September 30,
2021

Ebs

Amazon Elastic
Compute Cloud

arn:aws:states:::a
ws-sdk:ec2: [apiActio
n]

September 30,
2021

Ec2

Amazon Elastic
Container Registry
Public

arn:aws:states:::a
ws-sdk:ec
rpublic: [apiAction]

September 30,
2021

EcrPublic

Amazon Elastic
File System

arn:aws:states:::a
ws-sdk:efs: [apiActio

n] ***

September 30,
2021

Efs

Amazon Elastic
Kubernetes Service

arn:aws:states:::a
ws-sdk:eks: [apiActio
n]

September 30,
2021

Eks

Supported services 666

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon EMR arn:aws:states:::a
ws-sdk:emr: [apiActio
n]

September 30,
2021

Emr

Amazon Elastic
Transcoder

arn:aws:states:::a
ws-sdk:elastictran

scoder: [apiAction] ***

September 30,
2021

ElasticTranscoder

Amazon
OpenSearch
Service

arn:aws:states:::a
ws-sdk:elasticsear
ch: [apiAction]

September 30,
2021

Elasticsearch

Amazon
OpenSearch
Service

arn:aws:states:::a
ws-sdk:opensearch:
[apiAction]

April 19, 2022 OpenSearch

Amazon EventBrid
ge

arn:aws:states:::a
ws-sdk:eventbridge
: [apiAction]

September 30,
2021

EventBridge

Amazon FSx arn:aws:states:::a
ws-sdk:fsx: [apiActio
n]

September 30,
2021

FSx

Amazon Forecast
Query

arn:aws:states:::a
ws-sdk:forecastque
ry: [apiAction]

September 30,
2021

Forecastquery

Amazon Forecast
Service

arn:aws:states:::a
ws-sdk:fo
recast: [apiAction]

September 30,
2021

Forecast

Amazon Fraud
Detector

arn:aws:states:::a
ws-sdk:frauddetect
or: [apiAction]

September 30,
2021

FraudDetector

Supported services 667

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon GameLift arn:aws:states:::a
ws-sdk:ga
melift: [apiAction]

September 30,
2021

Amazon GameLift

Amazon
GameSparks

arn:aws:states:::a
ws-sdk:gamesparks:
[apiAction]

July 27, 2022 GameSparks

Amazon S3 Glacier arn:aws:states:::a
ws-sdk:gl
acier: [apiAction]

September 30,
2021

Glacier

Amazon
GuardDuty

arn:aws:states:::a
ws-sdk:gu
ardduty: [apiAction]

September 30,
2021

GuardDuty

AWS HealthLake arn:aws:states:::a
ws-sdk:healthlake:
[apiAction]

September 30,
2021

HealthLake

Amazon
Honeycode

arn:aws:states:::a
ws-sdk:ho
neycode: [apiAction]

September 30,
2021

Honeycode

Amazon Inspector arn:aws:states:::a
ws-sdk:in
spector: [apiAction]

September 30,
2021

Inspector

Amazon Inspector
V2

arn:aws:states:::a
ws-sdk:inspector2:
[apiAction]

April 19, 2022 Inspector2

Amazon Interacti
ve Video Service

arn:aws:states:::a
ws-sdk:ivs: [apiActio
n]

September 30,
2021

Ivs

Supported services 668

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Kendra arn:aws:states:::a
ws-sdk:ke
ndra: [apiAction]

September 30,
2021

Kendra

Amazon Kinesis arn:aws:states:::a
ws-sdk:ki

nesis: [apiAction] ***

September 30,
2021

Kinesis

Amazon Kinesis
Analytics

arn:aws:states:::a
ws-sdk:kinesisanal
ytics: [apiAction]

September 30,
2021

KinesisAnalytics

Amazon Kinesis
Analytics V2

arn:aws:states:::a
ws-sdk:kinesisanal
yticsv2: [apiAction]

September 30,
2021

KinesisAnalyticsV2

Amazon Kinesis
Firehose

arn:aws:states:::a
ws-sdk:fi
rehose: [apiAction]

September 30,
2021

Firehose

Amazon Kinesis
Video Signaling
Channels

arn:aws:states:::a
ws-sdk:kinesisvide
osignaling: [apiActio
n]

September 30,
2021

KinesisVideoSignal
ing

Amazon Kinesis
Video Streams

arn:aws:states:::a
ws-sdk:kinesisvide
o: [apiAction]

September 30,
2021

KinesisVideo

Amazon Kinesis
Video Streams
Archived Media

arn:aws:states:::a
ws-sdk:ki
nesisvideoarchived
media: [apiAction]

September 30,
2021

KinesisVideoArchiv
edMedia

Supported services 669

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Kinesis
video stream

arn:aws:states:::a
ws-sdk:kinesisvide
omedia: [apiAction]

September 30,
2021

KinesisVideoMedia

Amazon Lex Model
Building Service

arn:aws:states:::a
ws-sdk:lexmodelbui
lding: [apiAction]

September 30,
2021

LexModelBuilding

Amazon Lex Model
Building Service
V2

arn:aws:states:::a
ws-sdk:lexmodelsv2
: [apiAction]

September 30,
2021

LexModelsV2

Amazon Lex arn:aws:states:::a
ws-sdk:lexruntime:
[apiAction]

September 30,
2021

LexRuntime

Amazon Lex
Runtime V2

arn:aws:states:::a
ws-sdk:lexruntimev

2: [apiAction] ***

September 30,
2021

LexRuntimeV2

Amazon Lightsail arn:aws:states:::a
ws-sdk:li
ghtsail: [apiAction]

September 30,
2021

Lightsail

Amazon Location
Service

arn:aws:states:::a
ws-sdk:lo
cation: [apiAction]

September 30,
2021

Location

Amazon Lookout
for Equipment

arn:aws::states:::
aws-sdk:lookoutequ
ipment: [apiAction]

September 30,
2021

LookoutEquipment

Amazon Lookout
for Metrics

arn:aws:states:::a
ws-sdk:lookoutmetr
ics: [apiAction]

September 30,
2021

LookoutMetrics

Supported services 670

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Lookout
for Vision

arn:aws:states:::a
ws-sdk:lookoutvisi
on: [apiAction]

September 30,
2021

LookoutVision

Amazon MQ arn:aws:states:::a
ws-sdk:mq: [apiActio
n]

September 30,
2021

Mq

Amazon Macie arn:aws:states:::a
ws-sdk:ma
cie: [apiAction]

September 30,
2021

Amazon Macie 2 arn:aws:states:::a
ws-sdk:ma
cie2: [apiAction]

September 30,
2021

Macie2

Amazon Managed
Blockchain

arn:aws:states:::a
ws-sdk:managedbloc
kchain: [apiAction]

September 30,
2021

ManagedBl
ockchain

Amazon Managed
Grafana

arn:aws:states:::a
ws-sdk:gr
afana: [apiAction]

April 19, 2022 Grafana

Amazon Managed
Service for
Prometheus

arn:aws:states:::a
ws-sdk:amp: [apiActio
n]

September 30,
2021

Amp

Amazon Managed
Streaming for
Apache Kafka

arn:aws:states:::a
ws-sdk:ka
fka: [apiAction]

September 30,
2021

Kafka

Amazon MSK
Connect

arn:aws:states:::a
ws-sdk:kafkaconnec
t: [apiAction]

April 19, 2022 KafkaConnect

Supported services 671

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Managed
Workflows for
Apache Airflow

arn:aws:states:::a
ws-sdk:mw
aa: [apiAction]

September 30,
2021

Mwaa

Amazon
Mechanical Turk

arn:aws:states:::a
ws-sdk:mt
urk: [apiAction]

September 30,
2021

MTurk

Amazon
MemoryDB for
Redis

arn:aws:states:::a
ws-sdk:me
morydb: [apiAction]

April 19, 2022 MemoryDB

Amazon Nimble
Studio

arn:aws:states:::a
ws-sdk:ni
mble: [apiAction]

September 30,
2021

Nimble

Amazon Personali
ze

arn:aws:states:::a
ws-sdk:personalize
: [apiAction]

September 30,
2021

Personalize

Amazon Personali
ze Events

arn:aws:states:::a
ws-sdk:personalize
events: [apiAction]

September 30,
2021

PersonalizeEvents

Amazon Personali
ze Runtime

arn:aws:states:::a
ws-sdk:personalize
runtime: [apiAction]

September 30,
2021

Personali
zeRuntime

Amazon Pinpoint arn:aws:states:::a
ws-sdk:pi
npoint: [apiAction]

September 30,
2021

Pinpoint

Amazon Pinpoint
Email Service

arn:aws:states:::a
ws-sdk:pinpointema
il: [apiAction]

September 30,
2021

PinpointEmail

Supported services 672

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Pinpoint
SMS and Voice
Service

arn:aws:states:::a
ws-sdk:pinpointsms
voice: [apiAction]

September 30,
2021

PinpointSmsVoice

Amazon Pinpoint
SMS and Voice V2
Service

arn:aws:states:::a
ws-sdk:pinpointsms
voicev2: [apiAction]

July 27, 2022 PinpointS
msVoiceV2

Amazon Polly arn:aws:states:::a
ws-sdk:po
lly: [apiAction]

September 30,
2021

Polly

Amazon QLDB arn:aws:states:::a
ws-sdk:ql
db: [apiAction]

September 30,
2021

Qldb

Amazon QLDB
Session

arn:aws:states:::a
ws-sdk:qldbsession
: [apiAction]

September 30,
2021

QldbSession

Amazon QuickSigh
t

arn:aws:states:::a
ws-sdk:quicksight:
[apiAction]

September 30,
2021

QuickSight

Amazon Redshift arn:aws:states:::a
ws-sdk:re
dshift: [apiAction]

September 30,
2021

Redshift

Amazon Redshift
Data API

arn:aws:states:::a
ws-sdk:redshiftdat
a: [apiAction]

September 30,
2021

RedshiftData

Amazon Rekogniti
on

arn:aws:states:::a
ws-sdk:rekognition
: [apiAction]

September 30,
2021

Rekognition

Supported services 673

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Relational
Database Service

arn:aws:states:::a
ws-sdk:rds: [apiActio
n]

September 30,
2021

Rds

Amazon Route 53 arn:aws:states:::a
ws-sdk:ro
ute53: [apiAction]

September 30,
2021

Route53

Amazon Route 53
Recovery Control
Config

arn:aws:states:::a
ws-sdk:route53reco
verycontrolconfig:
[apiAction]

September 30,
2021

Route53Re
coveryCon
trolConfig

Amazon Route 53
Domains

arn:aws:states:::a
ws-sdk:route53doma
ins: [apiAction]

September 30,
2021

Route53Domains

Amazon Route 53
Resolver

arn:aws:states:::a
ws-sdk:route53reso
lver: [apiAction]

September 30,
2021

Route53Resolver

Amazon S3 on
Outposts

arn:aws:states:::a
ws-sdk:s3outposts:
[apiAction]

September 30,
2021

S3Outposts

Amazon
SageMaker
Runtime Feature
Store Runtime

arn:aws:states:::a
ws-sdk:sagemakerfe
aturestoreruntime:
[apiAction]

September 30,
2021

SageMaker
RuntimeFe
atureStoreRuntime

Amazon
SageMaker
Runtime Runtime

arn:aws:states:::a
ws-sdk:sagemakerru
ntime: [apiAction]

September 30,
2021

SageMaker
RuntimeRuntime

Supported services 674

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon
SageMaker

arn:aws:states:::a
ws-sdk:sa
gemaker: [apiAction]

September 30,
2021

SageMaker
Runtime

Amazon
SageMaker Edge
Manager

arn:aws:states:::a
ws-sdk:sagemakered
ge: [apiAction]

September 30,
2021

SagemakerEdge

Amazon Simple
Email Service

arn:aws:states:::a
ws-sdk:ses: [apiActio
n]

September 30,
2021

Ses

Amazon Simple
Email Service V2

arn:aws:states:::a
ws-sdk:se
sv2: [apiAction]

September 30,
2021

SesV2

Amazon Simple
Notification
Service

arn:aws:states:::a
ws-sdk:sns: [apiActio
n]

September 30,
2021

Sns

Amazon Simple
Queue Service

arn:aws:states:::a
ws-sdk:sqs: [apiActio
n]

September 30,
2021

Sqs

Amazon Simple
Storage Service

arn:aws:states:::a
ws-sdk:s3: [apiActio

n] ***

September 30,
2021

S3

Amazon Simple
Workflow Service

arn:aws:states:::a
ws-sdk:swf: [apiActio
n]

September 30,
2021

Swf

Amazon Textract arn:aws:states:::a
ws-sdk:te
xtract: [apiAction]

September 30,
2021

Textract

Supported services 675

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Amazon Transcribe arn:aws:states:::a
ws-sdk:transcribe:
[apiAction]

September 30,
2021

Transcribe

Amazon Translate arn:aws:states:::a
ws-sdk:tr
anslate: [apiAction]

September 30,
2021

Translate

Amazon WorkDocs arn:aws:states:::a
ws-sdk:wo
rkdocs: [apiAction]

September 30,
2021

WorkDocs

Amazon WorkMail arn:aws:states:::a
ws-sdk:wo
rkmail: [apiAction]

September 30,
2021

WorkMail

Amazon WorkMail
Message Flow

arn:aws:states:::a
ws-sdk:workmailmes
sageflow: [apiActio
n]

September 30,
2021

WorkMailM
essageFlow

Amazon
WorkSpaces

arn:aws:states:::a
ws-sdk:workspaces:
[apiAction]

September 30,
2021

WorkSpaces

Amazon
WorkSpaces Web

arn:aws:states:::a
ws-sdk:workspacesw
eb: [apiAction]

April 19, 2022 WorkSpacesWeb

Amplify arn:aws:states:::a
ws-sdk:amplifyback
end: [apiAction]

September 30,
2021

AmplifyBackend

Amplify UI Builder arn:aws:states:::a
ws-sdk:amplifyuibu
ilder: [apiAction]

April 19, 2022 AmplifyUiBuilder

Supported services 676

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

Application Auto
Scaling

arn:aws:states:::a
ws-sdk:ap
plicationautoscali
ng: [apiAction]

September 30,
2021

Applicati
onAutoScaling

Amazon EC2 Auto
Scaling

arn:aws:states:::a
ws-sdk:autoscaling
: [apiAction]

September 30,
2021

Auto Scaling

CodeArtifact arn:aws:states:::a
ws-sdk:codeartifac
t: [apiAction]

September 30,
2021

Codeartifact

DynamoDB
Accelerator

arn:aws:states:::a
ws-sdk:dax: [apiActio
n]

September 30,
2021

Dax

EC2 Image Builder arn:aws:states:::a
ws-sdk:imagebuilde
r: [apiAction]

September 30,
2021

Imagebuilder

AWS Elastic
Disaster Recovery

arn:aws:states:::a
ws-sdk:drs: [apiActio
n]

April 19, 2022 Drs

Elastic Load
Balancing

arn:aws:states:::a
ws-sdk:elasticload
balancing: [apiActio
n]

September 30,
2021

ElasticLoadBalanci
ng

Elastic Load
Balancing V2

arn:aws:states:::a
ws-sdk:el
asticloadbalancing
v2: [apiAction]

September 30,
2021

ElasticLoadBalanci
ngV2

Supported services 677

AWS Step Functions Developer Guide

Service name Task state resource Date supported Exception prefix

MediaConnect arn:aws:states:::a
ws-sdk:mediaconnec
t: [apiAction]

September 30,
2021

MediaConnect

Amazon S3
Control

arn:aws:states:::a
ws-sdk:s3
control: [apiAction]

September 30,
2021

S3Control

Recycle Bin for
Amazon EBS

arn:aws:states:::a
ws-sdk:rb
in: [apiAction]

April 19, 2022 Rbin

Savings Plans arn:aws:states:::a
ws-sdk:savingsplan
s: [apiAction]

September 30,
2021

Savingsplans

Amazon EventBrid
ge Schema
Registry

arn:aws:states:::a
ws-sdk:sc
hemas: [apiAction]

September 30,
2021

Schemas

Service Quotas arn:aws:states:::a
ws-sdk:servicequot
as: [apiAction]

September 30,
2021

ServiceQuotas

AWS Snowball arn:aws:states:::a
ws-sdk:sn
owball: [apiAction]

September 30,
2021

Snowball

Unsupported API actions for supported services

The following table lists the unsupported API actions for AWS SDK service integrations. The right
column contains the API actions that are currently not supported for the service listed in the left
column.

Unsupported API actions for supported services 678

AWS Step Functions Developer Guide

Service name Unsupported API action

AWS Application Discovery Service • DescribeExportConfigurations

• ExportConfigurations

Amazon Bedrock • InvokeModelWithResponseStream

Agents for Amazon Bedrock Runtime • InvokeAgent

AWS CodeDeploy • BatchGetDeploymentInstances

• GetDeploymentInstance

• ListDeploymentInstances

• SkipWaitTimeForInstanceTerm
ination

Amazon Comprehend Medical • DetectEntities

AWS Direct Connect • AllocateConnectionOnInterco
nnect

• DescribeConnectionLoa

• DescribeConnectionsOnInterc
onnect

• DescribeInterconnectLoa

Amazon Elastic File System • CreateTags

Amazon Elastic Transcoder • TestRole

Amazon EMR • DescribeJobFlows

AWS IoT • AttachPrincipalPolicy

• ListPrincipalPolicies

• DetachPrincipalPolicy

• ListPolicyPrincipals

• DetachPrincipalPolicy

Unsupported API actions for supported services 679

AWS Step Functions Developer Guide

Service name Unsupported API action

AWS IoT Core Device Advisor • ListTestCases

Amazon Kinesis • SubscribeToShard

AWS Lambda • InvokeAsync

• InvokeWithResponseStream

Amazon Lex Runtime V2 • StartConversation

AWS Elemental MediaPackage • RotateChannelCredentials

Amazon Relational Database Service • ExecuteSql

Amazon Simple Storage Service • SelectObjectContent

Amazon S3 Control • SelectObjectContent

AWS Shield • DeleteSubscription

AWS Security Token Service • AssumeRole

• AssumeRoleWithSAML

• AssumeRoleWithWebIdentity

Deprecated AWS SDK service integrations

The following AWS SDK service integrations are now deprecated:

• AWS Mobile

• Amazon Macie

Optimized integrations for Step Functions

The following topics include the supported APIs, parameters, and request/response syntax in the
Amazon States Language for coordinating other AWS services. The topics also provide example
code. You can call Optimized integrations services directly from the Amazon States Language in
the Resource field of a Task state.

Deprecated AWS SDK service integrations 680

AWS Step Functions Developer Guide

You can use three service integration patterns:

• Request a Response (default) - wait for HTTP response, then go to the next state

• Run a Job (.sync) - wait for the job to complete

• Wait for Callback (.waitForTaskToken) - pause a workflow until a task token is returned

Standard Workflows and Express Workflows support the same integrations but not the same
integration patterns.

• Optimized integrations pattern support is different for each integration.

• Express Workflows do not support Run a Job (.sync) or Wait for Callback (.waitForTaskToken).

• For more information, see Standard vs. Express Workflows.

Standard Workflows

Supported service integrations

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon API Gateway ✓ ✓

Amazon Athena ✓ ✓

AWS Batch ✓ ✓

Amazon Bedrock ✓ ✓ ✓

AWS CodeBuild ✓ ✓

Amazon DynamoDB ✓

Amazon ECS/Fargate ✓ ✓ ✓

Amazon EKS ✓ ✓ ✓

Optimized
integrati
ons

Amazon EMR ✓ ✓

Optimized integrations 681

AWS Step Functions Developer Guide

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon EMR on EKS ✓ ✓

Amazon EMR Serverless ✓ ✓

Amazon EventBridge ✓ ✓

AWS Glue ✓ ✓

AWS Glue DataBrew ✓ ✓

AWS Lambda ✓ ✓

Amazon SageMaker ✓ ✓

Amazon SNS ✓ ✓

Amazon SQS ✓ ✓

AWS Step Functions ✓ ✓ ✓

AWS
SDK
integrati
ons

Over two hundred ✓ ✓

Optimized integrations 682

AWS Step Functions Developer Guide

Express Workflows

Supported service integrations

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon API Gateway ✓

Amazon Athena ✓

AWS Batch ✓

Amazon Bedrock ✓

AWS CodeBuild ✓

Amazon DynamoDB ✓

Amazon ECS/Fargate ✓

Amazon EKS ✓

Amazon EMR ✓

Amazon EMR on EKS ✓

Amazon EMR Serverless ✓

Amazon EventBridge ✓

AWS Glue ✓

AWS Glue DataBrew ✓

AWS Lambda ✓

Amazon SageMaker ✓

Optimized
integrati
ons

Amazon SNS ✓

Optimized integrations 683

AWS Step Functions Developer Guide

 Service Request
Response

Run
a Job
(.sync)

Wait for
Callback
(.waitForT
askToken)

Amazon SQS ✓

AWS Step Functions ✓

AWS
SDK
integrati
ons

Over two hundred ✓

Call API Gateway with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized API Gateway integration is different than the API Gateway AWS SDK
integration

• apigateway:invoke: has no equivalent in the AWS SDK service integration. Instead,
the Optimized API Gateway service calls your API Gateway endpoint directly.

You use Amazon API Gateway to create, publish, maintain, and monitor HTTP and REST APIs.
To integrate with API Gateway, you define a Task state in Step Functions that directly calls an
API Gateway HTTP or API Gateway REST endpoint, without writing code or relying on other
infrastructure. A Task state definition includes all the necessary information for the API call. You
can also select different authorization methods.

Note

Step Functions supports the ability to call HTTP endpoints through API Gateway, but does
not currently support the ability to call generic HTTP endpoints.

Amazon API Gateway 684

AWS Step Functions Developer Guide

API Gateway feature support

The Step Functions API Gateway integration supports some, but not all API Gateway features. For a
more detailed list of supported features, see the following.

• Supported by both the Step Functions API Gateway REST API and API Gateway HTTP API
integrations:

• Authorizers: IAM (using Signature Version 4), No Auth, Lambda Authorizers (request-
parameter based and token-based with custom header)

• API types: Regional

• API management: API Gateway API domain names, API stage, Path, Query Parameters,
Request Body

• Supported by the Step Functions API Gateway HTTP API integration. The Step Functions
API Gateway REST API integration that provides the option for Edge-optimized APIs are not
supported.

• Unsupported by the Step Functions API Gateway integration:

• Authorizers: Amazon Cognito, Native Open ID Connect / OAuth 2.0, Authorization header for
token-based Lambda authorizers

• API types: Private

• API management: Custom domain names

For more information about API Gateway and its HTTP and REST APIs, see the following.

• The Amazon API Gateway concepts page.

• Choosing between HTTP APIs and REST APIs in the API Gateway developer guide.

Request format

When you create your Task state definition, Step Functions validates the parameters, builds the
necessary URL to perform the call, then calls the API. The response includes the HTTP status code,
headers and response body. The request format has both required and optional parameters.

Required request parameters

• ApiEndpoint

• Type: String

Amazon API Gateway 685

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-basic-concept.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html

AWS Step Functions Developer Guide

• The hostname of an API Gateway URL. The format is <API ID>.execute-
api.<region>.amazonaws.com.

The API ID can only contain a combination of the following alphanumeric characters:
0123456789abcdefghijklmnopqrstuvwxyz

• Method

• Type: Enum

• The HTTP method, which must be one of the following:

• GET

• POST

• PUT

• DELETE

• PATCH

• HEAD

• OPTIONS

Optional request parameters

• Headers

• Type: JSON

• HTTP headers allow a list of values associated with the same key.

• Stage

• Type: String

• The name of the stage where the API is deployed to in API Gateway. It's optional for any HTTP
API that uses the $default stage.

• Path

• Type: String

• Path parameters that are appended after the API endpoint.

• QueryParameters

• Type: JSON

• Query strings only allow a list of values associated with the same key.

• RequestBody
Amazon API Gateway 686

AWS Step Functions Developer Guide

• Type: JSON or String

• The HTTP Request body. Its type can be either a JSON object or String. RequestBody is only
supported for PATCH, POST, and PUT HTTP methods.

• AllowNullValues

• Type: BOOLEAN

• Setting AllowNullValues to true will allow you to pass null values such as the following:

{
 "NewPet": {
 "type": "turtle",
 "price": 123,
 "name": null
 }
}

• AuthType

• Type: JSON

• The authentication method. The default method is NO_AUTH. The allowed values are:

• NO_AUTH

• IAM_ROLE

• RESOURCE_POLICY

See Authentication and authorization for more information.

Note

For security considerations, the following HTTP header keys are not currently permitted:

• Anything prefixed with X-Forwarded, X-Amz or X-Amzn.

• Authorization

• Connection

• Content-md5

• Expect

• Host

• Max-ForwardsAmazon API Gateway 687

AWS Step Functions Developer Guide

• Proxy-Authenticate

• Server

• TE

• Transfer-Encoding

• Trailer

• Upgrade

• Via

• Www-Authenticate

The following code example shows how to invoke API Gateway using Step Functions.

{
 "Type": "Task",
 "Resource":"arn:aws:states:::apigateway:invoke",
 "Parameters": {
 "ApiEndpoint": "example.execute-api.us-east-1.amazonaws.com",
 "Method": "GET",
 "Headers": {
 "key": ["value1", "value2"]
 },
 "Stage": "prod",
 "Path": "bills",
 "QueryParameters": {
 "billId": ["123456"]
 },
 "RequestBody": {},
 "AuthType": "NO_AUTH"
 }
}

Authentication and authorization

You can use the following authentication methods:

• No authorization: Call the API directly with no authorization method.

• IAM role: With this method, Step Functions assumes the role of the state machine, signs the
request with Signature Version 4 (SigV4), then calls the API.

Amazon API Gateway 688

https://docs.aws.amazon.com/general/latest/gr/sigv4_signing.html

AWS Step Functions Developer Guide

• Resource policy: Step Functions authenticates the request, and then calls the API. You must
attach a resource policy to the API which specifies the following:

1. The state machine that will invoke API Gateway.

Important

You must specify your state machine to limit access to it. If you do not, then any
state machine that authenticates its API Gateway request with Resource policy
authentication to your API will be granted access.

2. That Step Functions is the service calling API Gateway: "Service":
"states.amazonaws.com".

3. The resource you want to access, including:

• The region.

• The account-id in the specified region.

• The api-id.

• The stage-name.

• The HTTP-VERB (method).

• The resource-path-specifier.

For an example resource policy, see IAM policies for Step Functions and API Gateway.

For more information on the resource format, see Resource format of permissions for executing
API in API Gateway in the API Gateway Developer Guide.

Note

Resource policies are only supported for the REST API.

Service integration patterns

The API Gateway integration supports two service integration patterns:

• Request Response, which is the default integration pattern. It lets Step Functions progress to the
next step immediately after it receives an HTTP response.

Amazon API Gateway 689

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-control-access-using-iam-policies-to-invoke-api.html#api-gateway-iam-policy-resource-format-for-executing-api
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-control-access-using-iam-policies-to-invoke-api.html#api-gateway-iam-policy-resource-format-for-executing-api

AWS Step Functions Developer Guide

• Wait for a Callback with the Task Token (.waitForTaskToken), which waits until a task token is
returned with a payload. To use the .waitForTaskToken pattern, append .waitForTaskToken to
the end of the Resource field of your task definition as shown in the following example:

{
 "Type": "Task",
 "Resource":"arn:aws:states:::apigateway:invoke.waitForTaskToken",
 "Parameters": {
 "ApiEndpoint": "example.execute-api.us-east-1.amazonaws.com",
 "Method": "POST",
 "Headers": {
 "TaskToken.$": "States.Array($$.Task.Token)"
 },
 "Stage": "prod",
 "Path": "bills/add",
 "QueryParameters": {},
 "RequestBody": {
 "billId": "my-new-bill"
 },
 "AuthType": "IAM_ROLE"
 }
}

Output format

The following output parameters are provided:

Name Type Description

ResponseBody JSON or String The response body of the API
call.

Headers JSON The response headers.

StatusCode Integer The HTTP status code of the
response.

StatusText String The status text of the
response.

Amazon API Gateway 690

AWS Step Functions Developer Guide

An example response:

{
 "ResponseBody": {
 "myBills": []
 },
 "Headers": {
 "key": ["value1", "value2"]
 },
 "StatusCode": 200,
 "StatusText": "OK"
}

Error handling

When an error occurs, an error and cause is returned as follows:

• If the HTTP status code is available, then the error will be returned in the format
ApiGateway.<HTTP Status Code>.

• If the HTTP status code is not available, then the error will be returned in the format
ApiGateway.<Exception>.

In both cases, the cause is returned as a string.

The following example shows a response where an error has occurred:

{
 "error": "ApiGateway.403",
 "cause": "{\"message\":\"Missing Authentication Token\"}"
}

Note

A status code of 2XX indicates success, and no error will be returned. All other status codes
or thrown exceptions will result in an error.

For more information see:

• Amazon API Gateway concepts in the API Gateway Developer Guide.

Amazon API Gateway 691

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-basic-concept.html

AWS Step Functions Developer Guide

• IAM policies for Amazon API Gateway

• A sample project that shows how to Make a call to API Gateway

Amazon API Gateway concepts in the API Gateway Developer Guide.

Call Athena with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Athena integration is different than the Athena AWS SDK
integration

• The Run a Job (.sync) integration pattern is supported.

• There are no optimizations for the Request Response integration pattern.

• The Wait for a Callback with the Task Token integration pattern is not supported.

The AWS Step Functions service integration with Amazon Athena enables you to use Step
Functions to start and stop query execution, and get query results. Using Step Functions, you can
run ad-hoc or scheduled data queries, and retrieve results targeting your S3 data lakes. Athena is
serverless, so there is no infrastructure to set up or manage, and you pay only for the queries you
run.

To integrate AWS Step Functions with Amazon Athena, you use the provided Athena service
integration APIs.

The service integration APIs are the same as the corresponding Athena APIs. Not all APIs support
all integration patterns, as shown in the following table.

API Request Response Run a Job (.sync)

StartQueryExecution ✓ ✓

StopQueryExecution ✓

GetQueryExecution ✓

Amazon Athena 692

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-basic-concept.html

AWS Step Functions Developer Guide

API Request Response Run a Job (.sync)

GetQueryResults ✓

Supported Amazon Athena APIs:

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

• StartQueryExecution

• Request syntax

• Supported parameters:

• ClientRequestToken

• ExecutionParameters

• QueryExecutionContext

• QueryString

• ResultConfiguration

• WorkGroup

• Response syntax

• StopQueryExecution

• Request syntax

• Supported parameters:

• QueryExecutionId

• GetQueryExecution

• Request syntax

• Supported parameters:

• QueryExecutionId

• Response syntaxAmazon Athena 693

https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_RequestSyntax
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#athena-StartQueryExecution-request-ExecutionParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_StartQueryExecution.html#API_StartQueryExecution_ResponseSyntax
https://docs.aws.amazon.com/athena/latest/APIReference/API_StopQueryExecution.html
https://docs.aws.amazon.com/athena/latest/APIReference/API_StopQueryExecution.html#API_StopQueryExecution_RequestSyntax
https://docs.aws.amazon.com/athena/latest/APIReference/API_StopQueryExecution.html#API_StopQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryExecution.html
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryExecution.html#API_GetQueryExecution_RequestSyntax
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryExecution.html#API_GetQueryExecution_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryExecution.html#API_GetQueryExecution_ResponseSyntax

AWS Step Functions Developer Guide

• GetQueryResults

• Request syntax

• Supported parameters:

• MaxResults

• NextToken

• QueryExecutionId

• Response syntax

The following includes a Task state that starts an Athena query.

"Start an Athena query": {
 "Type": "Task",
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "SELECT * FROM \"myDatabase\".\"myTable\" limit 1",
 "WorkGroup": "primary",
 "ResultConfiguration": {
 "OutputLocation": "s3://athenaQueryResult"
 }
 },
 "Next": "Get results of the query"
}

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Manage AWS Batch with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized AWS Batch integration is different than the AWS BatchAWS SDK
integration

• The Run a Job (.sync) integration pattern is available.

AWS Batch 694

https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryResults.html
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryExecution.html#API_GetQueryExecution_RequestSyntax
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryResults.html#API_GetQueryResults_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryResults.html#API_GetQueryResults_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryResults.html#API_GetQueryResults_RequestParameters
https://docs.aws.amazon.com/athena/latest/APIReference/API_GetQueryResults.html#API_GetQueryResults_ResponseSyntax

AWS Step Functions Developer Guide

Note that there are no optimizations for the Request Response or Wait for a Callback with
the Task Token integration patterns.

Supported AWS Batch APIs:

• SubmitJob

• Request syntax

• Supported parameters:

• ArrayProperties

• ContainerOverrides

• DependsOn

• JobDefinition

• JobName

• JobQueue

• Parameters

• RetryStrategy

• Timeout

• Tags

• Response syntax

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

The following includes a Task state that submits an AWS Batch job and waits for it to complete.

{
 "StartAt": "BATCH_JOB",
 "States": {

AWS Batch 695

https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#API_SubmitJob_RequestSyntax
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-arrayProperties
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-containerOverrides
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-dependsOn
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-jobDefinition
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-jobName
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-jobQueue
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-parameters
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-retryStrategy
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-timeout
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#Batch-SubmitJob-request-tags
https://docs.aws.amazon.com/batch/latest/APIReference/API_SubmitJob.html#API_SubmitJob_ResponseSyntax

AWS Step Functions Developer Guide

 "BATCH_JOB": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobDefinition": "preprocessing",
 "JobName": "PreprocessingBatchJob",
 "JobQueue": "SecondaryQueue",
 "Parameters.$": "$.batchjob.parameters",
 "ContainerOverrides": {
 "ResourceRequirements": [
 {
 "Type": "VCPU",
 "Value": "4"
 }
]
 }
 },
 "End": true
 }
 }
}

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Call Amazon Bedrock with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

Topics

• Amazon Bedrock service integration APIs

• Task state definition for Amazon Bedrock integration

Amazon Bedrock service integration APIs

To integrate AWS Step Functions with Amazon Bedrock, you can use the following APIs. These APIs
are similar to the corresponding Amazon Bedrock APIs, with some differences in the request fields
that are passed.

Amazon Bedrock 696

AWS Step Functions Developer Guide

The following table describes the differences between each service integration API and its
corresponding Amazon Bedrock API.

Amazon Bedrock service integration APIs and corresponding Amazon Bedrock APIs

Amazon Bedrock service
integration API

Corresponding Amazon
Bedrock API

Differences

InvokeModel

Invokes the specified Amazon
Bedrock model to run
inference using the input
you provide in the request
body. You use InvokeMod
el to run inference for text
models, image models, and
embedding models.

InvokeModel The Amazon Bedrock service
integration API request
body includes the following
additional parameters.

• Body – Specifies input data
in the format specified in
the content-type request
header. Body contains
parameters specific to the
target model.

If you use the InvokeMod
el API, you must specify
the Body parameter. Step
Functions doesn't validate
the input you provide in
Body.

When you specify Body
using the Amazon Bedrock
optimized integration,
you can specify a payload
of up to 256 KB. If your
payload exceeds 256 KB, we
recommend that you use
Input.

• Input – Specifies the
source to retrieve the input
data from. This optional

Amazon Bedrock 697

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html

AWS Step Functions Developer Guide

Amazon Bedrock service
integration API

Corresponding Amazon
Bedrock API

Differences

field is specific to Amazon
Bedrock optimized integrati
on with Step Functions. In
this field, you can specify
an S3Uri.

You can specify either
Body in the Parameters or
Input, but not both.

When you specify Input
without specifying
ContentType , the
content type of the input
data source becomes the
value for ContentType .

• Output – Specifies the
destination where the API
response is written. This
optional field is specific to
Amazon Bedrock optimized
integration with Step
Functions. In this field, you
can specify an S3Uri.

If you specify this field,
the API response body is
replaced with a reference to
the Amazon S3 location of
the original output.

The following example shows
the syntax for InvokeMod

Amazon Bedrock 698

AWS Step Functions Developer Guide

Amazon Bedrock service
integration API

Corresponding Amazon
Bedrock API

Differences

el API for Amazon Bedrock
integration.

{
 "ModelId": String,
 // required
 "Accept": String,
 // default: applicati
on/json
 "ContentType":
 String, // default:
 application/json
 "Input": { // not
 from Bedrock API
 "S3Uri": String
 },
 "Output": { // not
 from Bedrock API
 "S3Uri": String
 }
}

CreateModelCustomizationJob

Creates a fine-tuning job to
customize a base model.

CreateModelCustomi
zationJob

None

CreateModelCustomizationJob
.sync

Creates a fine-tuning job to
customize a base model.

CreateModelCustomi
zationJob

None

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Amazon Bedrock 699

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

AWS Step Functions Developer Guide

Task state definition for Amazon Bedrock integration

The following Task state definition shows how you can integrate with Amazon Bedrock in your
state machines. This example shows a Task state that extracts the full result of model invocation
specified by the path, result_one. This is based on Inference parameters for foundation models.
This example uses the Cohere Command large language model (LLM).

{
 "Type": "Task",
 "Resource": "arn:aws:states:::bedrock:invokeModel",
 "Parameters": {
 "ModelId": "cohere.command-text-v14",
 "Body": {
 "prompt.$": "$.prompt_one",
 "max_tokens": 250
 },
 "ContentType": "application/json",
 "Accept": "*/*"
 },
 "ResultPath": "$.result_one",
 "ResultSelector": {
 "result_one.$": "$.Body.generations[0].text"
 },
 "End": true
}

Tip

To deploy an example of a state machine that integrates with Amazon Bedrock to your
AWS account, see Perform AI prompt-chaining with Amazon Bedrock.

Call AWS CodeBuild with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

AWS CodeBuild 700

https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html

AWS Step Functions Developer Guide

How the Optimized CodeBuild integration is different than the CodeBuild AWS SDK
integration

• The Run a Job (.sync) integration pattern is supported.

• After you call StopBuild or StopBuildBatch, the build or build batch is not
immediately deletable until some internal work is completed within CodeBuild to
finalize the state of the build or builds. If you attempt to use BatchDeleteBuilds or
DeleteBuildBatch during this period, the build or build batch may not be deleted.
The optimized service integrations for BatchDeleteBuilds and DeleteBuildBatch
include an internal retry to simplify the use case of deleting immediately after stopping.

The AWS Step Functions service integration with AWS CodeBuild enables you to use Step Functions
to trigger, stop, and manage builds, and to share build reports. Using Step Functions, you
can design and run continuous integration pipelines for validating your software changes for
applications.

Not all APIs support all integration patterns, as shown in the following table.

API Request Response Run a Job (.sync)

StartBuild ✓ ✓

StopBuild ✓

BatchDeleteBuilds ✓

BatchGetReports ✓

StartBuildBatch ✓ ✓

StopBuildBatch ✓

RetryBuildBatch ✓ ✓

DeleteBuildBatch ✓

AWS CodeBuild 701

AWS Step Functions Developer Guide

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

Supported CodeBuild APIs and syntax:

• StartBuild

• Request syntax

• Supported parameters:

• ProjectName

• ArtifactsOverride

• BuildspecOverride

• CacheOverride

• CertificateOverride

• ComputeTypeOverride

• EncryptionKeyOverride

• EnvironmentTypeOverride

• EnvironmentVariablesOverride

• GitCloneDepthOverride

• GitSubmodulesConfigOverride

• IdempotencyToken

• ImageOverride

• ImagePullCredentialsTypeOverride

• InsecureSslOverride

• LogsConfigOverride

• PrivilegedModeOverride

• QueuedTimeoutInMinutesOverride

• RegistryCredentialOverride

• ReportBuildStatusOverride
AWS CodeBuild 702

https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_CreateEndpoint_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters

AWS Step Functions Developer Guide

• SecondaryArtifactsOverride

• SecondarySourcesOverride

• SecondarySourcesVersionOverride

• ServiceRoleOverride

• SourceAuthOverride

• SourceLocationOverride

• SourceTypeOverride

• SourceVersion

• TimeoutInMinutesOverride

• Response syntax

• StopBuild

• Request syntax

• Supported parameters:

• Id

• Response syntax

• BatchDeleteBuilds

• Request syntax

• Supported parameters:

• Ids

• Response syntax

• BatchGetReports

• Request syntax

• Supported parameters:

• ReportArns

• Response syntax

• StartBuildBatch

• Request syntax

• Supported parameters:

• ProjectName

• ArtifactsOverride

AWS CodeBuild 703

https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuild.html#API_StartBuild_ResponseSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuild.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuild.html#API_StopBuild_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuild.html#API_StopBuild_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuild.html#API_StopBuild_ResponseSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchDeleteBuilds.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchDeleteBuilds.html#API_BatchDeleteBuilds_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchDeleteBuilds.html#API_BatchDeleteBuildss_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchDeleteBuilds.html#API_BatchDeleteBuilds_ResponseSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchGetReports.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchGetReports.html#API_BatchGetReports_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchGetReports.html#API_BatchGetReports_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_BatchGetReports.html#API_BatchGetReports_ResponseSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters

AWS Step Functions Developer Guide

• BuildBatchConfigOverride

• BuildspecOverride

• BuildTimeoutInMinutesOverride

• CacheOverride

• CertificateOverride

• ComputeTypeOverride

• DebugSessionEnabled

• EncryptionKeyOverride

• EnvironmentTypeOverride

• EnvironmentVariablesOverride

• GitCloneDepthOverride

• GitSubmodulesConfigOverride

• IdempotencyToken

• ImageOverride

• ImagePullCredentialsTypeOverride

• InsecureSslOverride

• LogsConfigOverride

• PrivilegedModeOverride

• QueuedTimeoutInMinutesOverride

• RegistryCredentialOverride

• ReportBuildBatchStatusOverride

• SecondaryArtifactsOverride

• SecondarySourcesOverride

• SecondarySourcesVersionOverride

• ServiceRoleOverride

• SourceAuthOverride

• SourceLocationOverride

• SourceTypeOverride

• SourceVersion

• Response syntax

AWS CodeBuild 704

https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StartBuildBatch.html#API_StartBuildBatch_ResponseSyntax

AWS Step Functions Developer Guide

• StopBuildBatch

• Request syntax

• Supported parameters:

• Id

• Response syntax

• RetryBuildBatch

• Request syntax

• Supported parameters:

• Id

• IdempotencyToken

• RetryType

• Response syntax

• DeleteBuildBatch

• Request syntax

• Supported parameters:

• Id

• Response syntax

Note

You can use the JSONPath recursive descent (..) operator for BatchDeleteBuilds. This
returns an array, and enables you to turn the Arn field from StartBuild into a plural Ids
parameter, as shown in the following example.

"BatchDeleteBuilds": {
 "Type": "Task",
 "Resource": "arn:aws:states:::codebuild:batchDeleteBuilds",
 "Parameters": {
 "Ids.$": "$.Build..Arn"
 },
 "Next": "MyNextState"
},

AWS CodeBuild 705

https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuildBatch.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuildBatch.html#API_StopBuildBatch_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuildBatch.html#API_StopBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_StopBuildBatch.html#API_StopBuildBatch_ResponseSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_RetryBuildBatch.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_RetryBuildBatch.html#API_RetryBuildBatch_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_RetryBuildBatch.html#API_RetryBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_RetryBuildBatch.html#API_RetryBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_RetryBuildBatch.html#API_RetryBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_RetryBuildBatch.html#API_RetryBuildBatch_ResponseSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_DeleteBuildBatch.html
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_DeleteBuildBatch.html#API_DeleteBuildBatch_RequestSyntax
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_DeleteBuildBatch.html#API_DeleteBuildBatch_RequestParameters
https://docs.aws.amazon.com/codebuild/latest/APIReference/API_DeleteBuildBatch.html#API_DeleteBuildBatch_ResponseSyntax

AWS Step Functions Developer Guide

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Call DynamoDB APIs with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

How the optimized DynamoDB integration is different than the DynamoDB AWS SDK
integration

• There is no optimization for the Request Response integration pattern.

• The Wait for a Callback with the Task Token integration pattern is not supported.

• Only GetItem, PutItem, UpdateItem, and DeleteItem API actions are available
through optimized integration. Other API actions, such as CreateTable are available
using the DynamoDB AWS SDK integration.

Supported Amazon DynamoDB APIs and syntax:

• GetItem

• Request syntax

• Supported parameters:

• Key

• TableName

• AttributesToGet

• ConsistentRead

• ExpressionAttributeNames
Amazon DynamoDB 706

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_CreateTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#API_GetItem_RequestSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-Key
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-TableName
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-AttributesToGet
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-ConsistentRead
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-ExpressionAttributeNames

AWS Step Functions Developer Guide

• ProjectionExpression

• ReturnConsumedCapacity

• Response syntax

• PutItem

• Request syntax

• Supported parameters:

• Item

• TableName

• ConditionalOperator

• ConditionExpression

• Expected

• ExpressionAttributeNames

• ExpressionAttributeValues

• ReturnConsumedCapacity

• ReturnItemCollectionMetrics

• ReturnValues

• Response syntax

• DeleteItem

• Request syntax

• Supported parameters:

• Key

• TableName

• ConditionalOperator

• ConditionExpression

• Expected

• ExpressionAttributeNames

• ExpressionAttributeValues

• ReturnConsumedCapacity

• ReturnItemCollectionMetrics

• ReturnValues

Amazon DynamoDB 707

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-ProjectionExpression
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#DDB-GetItem-request-ReturnConsumedCapacity
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_GetItem.html#API_GetItem_ResponseSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#API_PutItem_RequestSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-Item
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-TableName
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ConditionalOperator
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ConditionExpression
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-Expected
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ExpressionAttributeNames
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ExpressionAttributeValues
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ReturnConsumedCapacity
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ReturnItemCollectionMetrics
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#DDB-PutItem-request-ReturnValues
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_PutItem.html#API_PutItem_ResponseSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_RequestParameters

AWS Step Functions Developer Guide

• Response syntax

• UpdateItem

• Request syntax

• Supported parameters:

• Key

• TableName

• AttributeUpdates

• ConditionalOperator

• ConditionExpression

• Expected

• ExpressionAttributeNames

• ExpressionAttributeValues

• ReturnConsumedCapacity

• ReturnItemCollectionMetrics

• ReturnValues

• UpdateExpression

• Response syntax

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

The following is a Task state that retrieves a message from DynamoDB.

 "Read Next Message from DynamoDB": {
 "Type": "Task",
 "Resource": "arn:aws:states:::dynamodb:getItem",
 "Parameters": {
 "TableName": "TransferDataRecords-DDBTable-3I41R5L5EAGT",
 "Key": {
 "MessageId": {"S.$": "$.List[0]"}

Amazon DynamoDB 708

https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_DeleteItem.html#API_DeleteItem_ResponseSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestSyntax
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_RequestParameters
https://docs.aws.amazon.com/amazondynamodb/latest/APIReference/API_UpdateItem.html#API_UpdateItem_ResponseSyntax

AWS Step Functions Developer Guide

 }
 },
 "ResultPath": "$.DynamoDB",
 "Next": "Send Message to SQS"
 },

To see this state in a working example, see the Transfer data records (Lambda, DynamoDB, Amazon
SQS) sample project.

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Manage Amazon ECS or Fargate Tasks with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Amazon ECS/Fargate integration is different than the Amazon ECS
or Fargate AWS SDK integration

• The Run a Job (.sync) integration pattern is supported.

• ecs:runTask can return an HTTP 200 response, but have a non-empty Failures field
as follows:

• Request Response: Return the response and do not fail the task. This is the same as no
optimization.

• Run a Job or Task Token: If a non-empty Failures field is encountered, the task is
failed with an AmazonECS.Unknown error.

Supported Amazon ECS/Fargate APIs and syntax:

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

Amazon ECS/Fargate 709

AWS Step Functions Developer Guide

• RunTask starts a new task using the specified task definition.

• Request syntax

• Supported parameters:

• Cluster

• Group

• LaunchType

• NetworkConfiguration

• Overrides

• PlacementConstraints

• PlacementStrategy

• PlatformVersion

• PropagateTags

• TaskDefinition

• EnableExecuteCommand

• Response syntax

Passing Data to an Amazon ECS Task

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

You can use overrides to override the default command for a container, and pass input to your
Amazon ECS tasks. See ContainerOverride. In the example, we have used JsonPath to pass
values to the Task from the input to the Task state.

The following includes a Task state that runs an Amazon ECS task and waits for it to complete.

{
 "StartAt": "Run an ECS Task and wait for it to complete",
 "States": {
 "Run an ECS Task and wait for it to complete": {
 "Type": "Task",
 "Resource": "arn:aws:states:::ecs:runTask.sync",
 "Parameters": {
 "Cluster": "cluster-arn",
 "TaskDefinition": "job-id",

Amazon ECS/Fargate 710

https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#API_RunTask_RequestSyntax
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-cluster
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-group
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-launchType
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-networkConfiguration
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-overrides
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-placementConstraints
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-placementStrategy
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-platformVersion
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-propagateTags
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-taskDefinition
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#ECS-RunTask-request-enableExecuteCommand
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_RunTask.html#API_RunTask_ResponseSyntax
https://docs.aws.amazon.com/AmazonECS/latest/APIReference/API_ContainerOverride.html

AWS Step Functions Developer Guide

 "Overrides": {
 "ContainerOverrides": [
 {
 "Name": "container-name",
 "Command.$": "$.commands"
 }
]
 }
 },
 "End": true
 }
 }
}

The "Command.$": "$.commands" line in ContainerOverrides passes the commands from
the state input to the container.

For the previous example, each of the commands will be passed as a container override if the input
to the execution is the following.

{
 "commands": [
 "test command 1",
 "test command 2",
 "test command 3"
]
}

The following includes a Task state that runs an Amazon ECS task, and then waits for the task
token to be returned. See Wait for a Callback with the Task Token.

{
 "StartAt":"Manage ECS task",
 "States":{
 "Manage ECS task":{
 "Type":"Task",
 "Resource":"arn:aws:states:::ecs:runTask.waitForTaskToken",
 "Parameters":{
 "LaunchType":"FARGATE",
 "Cluster":"cluster-arn",
 "TaskDefinition":"job-id",
 "Overrides":{

Amazon ECS/Fargate 711

AWS Step Functions Developer Guide

 "ContainerOverrides":[
 {
 "Name":"container-name",
 "Environment":[
 {
 "Name":"TASK_TOKEN_ENV_VARIABLE",
 "Value.$":"$$.Task.Token"
 }
]
 }
]
 }
 },
 "End":true
 }
 }
}

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Call Amazon EMR with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Amazon EMR integration is different than the Amazon EMR AWS
SDK integration

The Optimized Amazon EMR service integration has a customized set of APIs that wrap the
underlying Amazon EMR APIs, described below. Because of this, it differs significantly from
the Amazon EMR AWS SDK service integration. In addition, the Run a Job (.sync) integration
pattern is supported.

To integrate AWS Step Functions with Amazon EMR, you use the provided Amazon EMR service
integration APIs. The service integration APIs are similar to the corresponding Amazon EMR APIs,
with some differences in the fields that are passed and in the responses that are returned.

Step Functions does not terminate an Amazon EMR cluster automatically if execution is stopped.
If your state machine stops before your Amazon EMR cluster has terminated, your cluster may

Amazon EMR 712

AWS Step Functions Developer Guide

continue running indefinitely, and can accrue additional charges. To avoid this, ensure that any
Amazon EMR cluster you create is terminated properly. For more information, see:

• Control Cluster Termination in the Amazon EMR User Guide.

• The Service Integration Patterns Run a Job (.sync) section.

Note

As of emr-5.28.0, you can specify the parameter StepConcurrencyLevel when
creating a cluster to allow multiple steps to run in parallel on a single cluster. You can use
the Step Functions Map and Parallel states to submit work in parallel to the cluster.

The availability of Amazon EMR service integration is subject to the availability of Amazon EMR
APIs. Please check the Amazon EMR documentation for limitations in special regions.

Note

For integration with Amazon EMR, Step Functions has a hard-coded 60 seconds job polling
frequency for the first 10 minutes and 300 seconds after that.

The following table describes the differences between each service integration API and its
corresponding Amazon EMR API.

Amazon EMR Service Integration APIs and Corresponding Amazon EMR APIs

Amazon EMR Service
Integration API

Corresponding EMR API Differences

createCluster

Creates and starts running a
cluster (job flow).

Amazon EMR is linked directly
to a unique type of IAM
role known as a service-l
inked role. For createClu

runJobFlow createCluster uses
the same request syntax as
runJobFlow, except for the
following:

• The field Instances
.KeepJobFlowAliveW
henNoSteps is

Amazon EMR 713

https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-termination.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-emr.html
https://docs.aws.amazon.com/emr/latest/APIReference/API_RunJobFlow.html
https://docs.aws.amazon.com/emr/latest/APIReference/API_RunJobFlow.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

ster and createClu
ster.sync to work, you
must have configured the
necessary permissions to
create the service-linked role
AWSServiceRoleForE
MRCleanup . For more
information about this,
including a statement you can
add to your IAM permissions
policy, see Using the Service-L
inked Role for Amazon EMR.

mandatory, and must have
the Boolean value TRUE.

• The field Steps is not
allowed.

• The field Instances
.InstanceFleets[in
dex].Name should
be provided and must
be unique if the optional
modifyInstanceFlee
tByName connector API is
used.

• The field Instances
.InstanceGroups[in
dex].Name should
be provided and must
be unique if the optional
modifyInstanceGrou
pByName API is used.

Response is this:

{
 "ClusterId": "string"
}

Amazon EMR uses this:

{
 "JobFlowId": "string"
}

Amazon EMR 714

https://docs.aws.amazon.com/emr/latest/ManagementGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/emr/latest/ManagementGuide/using-service-linked-roles.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

createCluster.sync

Creates and starts running a
cluster (job flow).

runJobFlow The same as createClu
ster , but waits for the
cluster to reach the WAITING
state.

setClusterTerminationProtec
tion

Locks a cluster (job flow)
so the EC2 instances in the
cluster cannot be terminate
d by user intervention, an API
call, or a job-flow error.

setTerminationProtection Request uses this:

{
 "ClusterId": "string"
}

Amazon EMR uses this:

{
 "JobFlowIds":
 ["string"]
}

terminateCluster

Shuts down a cluster (job
flow).

terminateJobFlows Request uses this:

{
 "ClusterId": "string"
}

Amazon EMR uses this:

{
 "JobFlowIds":
 ["string"]
}

terminateCluster.sync

Shuts down a cluster (job
flow).

terminateJobFlows The same as terminate
Cluster , but waits for the
cluster to terminate.

Amazon EMR 715

https://docs.aws.amazon.com/emr/latest/APIReference/API_RunJobFlow.html
https://docs.aws.amazon.com/emr/latest/APIReference/API_SetTerminationProtection.html
https://docs.aws.amazon.com/emr/latest/APIReference/API_TerminateJobFlows.html
https://docs.aws.amazon.com/emr/latest/APIReference/API_TerminateJobFlows.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

addStep

Adds a new step to a running
cluster.

Optionally, you can also
specify the Execution
RoleArn parameter while
using this API.

addJobFlowSteps Request uses the key
"ClusterId" . Amazon EMR
uses "JobFlowId" . Request
uses a single step.

{
 "Step": <"StepConfig
 object">
}

Amazon EMR uses this:

{
 "Steps": [<StepConfig
 objects>]
}

Response is this:

{
 "StepId": "string"
}

Amazon EMR returns this:

{
 "StepIds": [<strings
>]
}

Amazon EMR 716

https://docs.aws.amazon.com/emr/latest/APIReference/API_AddJobFlowSteps.html#EMR-AddJobFlowSteps-request-ExecutionRoleArn
https://docs.aws.amazon.com/emr/latest/APIReference/API_AddJobFlowSteps.html#EMR-AddJobFlowSteps-request-ExecutionRoleArn
https://docs.aws.amazon.com/emr/latest/APIReference/API_AddJobFlowSteps.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

addStep.sync

Adds a new step to a running
cluster.

Optionally, you can also
specify the Execution
RoleArn parameter while
using this API.

addJobFlowSteps The same as addStep,
but waits for the step to
complete.

Amazon EMR 717

https://docs.aws.amazon.com/emr/latest/APIReference/API_AddJobFlowSteps.html#EMR-AddJobFlowSteps-request-ExecutionRoleArn
https://docs.aws.amazon.com/emr/latest/APIReference/API_AddJobFlowSteps.html#EMR-AddJobFlowSteps-request-ExecutionRoleArn
https://docs.aws.amazon.com/emr/latest/APIReference/API_AddJobFlowSteps.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

cancelStep

Cancels a pending step in a
running cluster.

cancelSteps Request uses this:

{
 "StepId": "string"
}

Amazon EMR uses this:

{
 "StepIds": [<strings
>]
}

Response is this:

{
 "CancelStepsInfo":
 <CancelStepsInfo
 object>
}

Amazon EMR uses this:

{
 "CancelStepsInfoLi
st": [<CancelStepsInfo
 objects>]
}

Amazon EMR 718

https://docs.aws.amazon.com/emr/latest/APIReference/API_CancelSteps.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

modifyInstanceFleetByName

Modifies the target On-
Demand and target Spot
capacities for the instance
fleet with the specified
 InstanceFleetName .

modifyInstanceFleet Request is the same as for
modifyInstanceFleet ,
except for the following:

• The field Instance.
InstanceFleetId is
not allowed.

• At runtime the InstanceF
leetId is determined
automatically by the service
integration by calling
ListInstanceFleets
and parsing the result.

Amazon EMR 719

https://docs.aws.amazon.com/emr/latest/APIReference/API_ModifyInstanceFleet.html

AWS Step Functions Developer Guide

Amazon EMR Service
Integration API

Corresponding EMR API Differences

modifyInstanceGroupByName

Modifies the number of nodes
and configuration settings of
an instance group.

modifyInstanceGroups Request is this:

{
 "ClusterId":
 "string",
 "InstanceGroup":
 <InstanceGroupModi
fyConfig object>
}

Amazon EMR uses a list:

{
 "ClusterId":
 ["string"],
 "InstanceGroups":
 [<InstanceGroupMod
ifyConfig objects>]
}

Within the InstanceG
roupModifyConfig
object, the field InstanceG
roupId is not allowed.

A new field, InstanceG
roupName , has been added.
At runtime the InstanceG
roupId is determine
d automatically by the
service integration by calling
ListInstanceGroups
and parsing the result.

The following includes a Task state that creates a cluster.

Amazon EMR 720

https://docs.aws.amazon.com/emr/latest/APIReference/API_ModifyInstanceGroups.html

AWS Step Functions Developer Guide

"Create_Cluster": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:createCluster.sync",
 "Parameters": {
 "Name": "MyWorkflowCluster",
 "VisibleToAllUsers": true,
 "ReleaseLabel": "emr-5.28.0",
 "Applications": [
 {
 "Name": "Hive"
 }
],
 "ServiceRole": "EMR_DefaultRole",
 "JobFlowRole": "EMR_EC2_DefaultRole",
 "LogUri": "s3n://aws-logs-123456789012-us-east-1/elasticmapreduce/",
 "Instances": {
 "KeepJobFlowAliveWhenNoSteps": true,
 "InstanceFleets": [
 {
 "InstanceFleetType": "MASTER",
 "Name": "MASTER",
 "TargetOnDemandCapacity": 1,
 "InstanceTypeConfigs": [
 {
 "InstanceType": "m4.xlarge"
 }
]
 },
 {
 "InstanceFleetType": "CORE",
 "Name": "CORE",
 "TargetOnDemandCapacity": 1,
 "InstanceTypeConfigs": [
 {
 "InstanceType": "m4.xlarge"
 }
]
 }
]
 }
 },
 "End": true
}

Amazon EMR 721

AWS Step Functions Developer Guide

The following includes a Task state that enables termination protection.

"Enable_Termination_Protection": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:setClusterTerminationProtection",
 "Parameters": {
 "ClusterId.$": "$.ClusterId",
 "TerminationProtected": true
 },
 "End": true
}

The following includes a Task state that submits a step to a cluster.

"Step_One": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:addStep.sync",
 "Parameters": {
 "ClusterId.$": "$.ClusterId",
 "ExecutionRoleArn": "arn:aws:iam::123456789012:role/myEMR-execution-role",
 "Step": {
 "Name": "The first step",
 "ActionOnFailure": "CONTINUE",
 "HadoopJarStep": {
 "Jar": "command-runner.jar",
 "Args": [
 "hive-script",
 "--run-hive-script",
 "--args",
 "-f",
 "s3://<region>.elasticmapreduce.samples/cloudfront/code/
Hive_CloudFront.q",
 "-d",
 "INPUT=s3://<region>.elasticmapreduce.samples",
 "-d",
 "OUTPUT=s3://<mybucket>/MyHiveQueryResults/"
]
 }
 }
 },
 "End": true
}

Amazon EMR 722

AWS Step Functions Developer Guide

The following includes a Task state that cancels a step.

"Cancel_Step_One": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:cancelStep",
 "Parameters": {
 "ClusterId.$": "$.ClusterId",
 "StepId.$": "$.AddStepsResult.StepId"
 },
 "End": true
}

The following includes a Task state that terminates a cluster.

"Terminate_Cluster": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:terminateCluster.sync",
 "Parameters": {
 "ClusterId.$": "$.ClusterId"
 },
 "End": true
}

The following includes a Task state that scales a cluster up or down for an instance group.

"ModifyInstanceGroupByName": {
 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:modifyInstanceGroupByName",
 "Parameters": {
 "ClusterId": "j-1234567890123",
 "InstanceGroupName": "MyCoreGroup",
 "InstanceGroup": {
 "InstanceCount": 8
 }
 },
 "End": true
}

The following includes a Task state that scales a cluster up or down for an instance fleet.

"ModifyInstanceFleetByName": {

Amazon EMR 723

AWS Step Functions Developer Guide

 "Type": "Task",
 "Resource": "arn:aws:states:::elasticmapreduce:modifyInstanceFleetByName",
 "Parameters": {
 "ClusterId": "j-1234567890123",
 "InstanceFleetName": "MyCoreFleet",
 "InstanceFleet": {
 "TargetOnDemandCapacity": 8,
 "TargetSpotCapacity": 0
 }
 },
 "End": true
}

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Call Amazon EMR on EKS with AWS Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Amazon EMR on EKS integration is different than the Amazon EMR
on EKS AWS SDK integration

• The Run a Job (.sync) integration pattern is supported.

• There are no optimizations for the Request Response integration pattern.

• The Wait for a Callback with the Task Token integration pattern is not supported.

Note

For integration with Amazon EMR, Step Functions has a hard-coded 60 seconds job polling
frequency for the first 10 minutes and 300 seconds after that.

To integrate AWS Step Functions with Amazon EMR on EKS, use the Amazon EMR on EKS service
integration APIs. The service integration APIs are the same as the corresponding Amazon EMR on
EKS APIs, but not all APIs support all integration patterns, as shown in the following table.

Amazon EMR on EKS 724

AWS Step Functions Developer Guide

API Request response Run a job (.sync)

CreateVirtualCluster ✓

DeleteVirtualCluster ✓ ✓

StartJobRun ✓ ✓

Supported Amazon EMR on EKS APIs:

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

• CreateVirtualCluster

• Request syntax

• Supported parameters

• Response syntax

• DeleteVirtualCluster

• Request syntax

• Supported parameters

• Response syntax

• StartJobRun

• Request syntax

• Supported parameters

• Response syntax

The following includes a Task state that creates a virtual cluster.

"Create_Virtual_Cluster": {
 "Type": "Task",

Amazon EMR on EKS 725

https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateVirtualCluster.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateVirtualCluster.html#API_CreateVirtualCluster_RequestSyntax
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateVirtualCluster.html#API_CreateVirtualCluster_RequestBody
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateVirtualCluster.html#API_CreateVirtualCluster_ResponseSyntax
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_DeleteVirtualCluster.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_DeleteVirtualCluster.html#API_DeleteVirtualCluster_RequestSyntax
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_DeleteVirtualCluster.html#API_DeleteVirtualCluster_RequestParameters
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_CreateVirtualCluster.html#API_CreateVirtualCluster_ResponseSyntax
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html#API_StartJobRun_RequestSyntax
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html#API_StartJobRun_RequestParameters
https://docs.aws.amazon.com/emr-on-eks/latest/APIReference/API_StartJobRun.html#API_StartJobRun_ResponseSyntax

AWS Step Functions Developer Guide

 "Resource": "arn:aws:states:::emr-containers:createVirtualCluster",
 "Parameters": {
 "Name": "MyVirtualCluster",
 "ContainerProvider": {
 "Id": "EKSClusterName",
 "Type": "EKS",
 "Info": {
 "EksInfo": {
 "Namespace": "Namespace"
 }
 }
 }
 },
 "End": true
}

The following includes a Task state that submits a job to a virtual cluster and waits for it to
complete.

"Submit_Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-containers:startJobRun.sync",
 "Parameters": {
 "Name": "MyJobName",
 "VirtualClusterId.$": "$.VirtualClusterId",
 "ExecutionRoleArn": "arn:aws:iam::<accountId>:role/job-execution-role",
 "ReleaseLabel": "emr-6.2.0-latest",
 "JobDriver": {
 "SparkSubmitJobDriver": {
 "EntryPoint": "s3://<mybucket>/jobs/trip-count.py",
 "EntryPointArguments": [
 "60"
],
 "SparkSubmitParameters": "--conf spark.driver.cores=2 --conf
 spark.executor.instances=10 --conf spark.kubernetes.pyspark.pythonVersion=3 --conf
 spark.executor.memory=10G --conf spark.driver.memory=10G --conf spark.executor.cores=1
 --conf spark.dynamicAllocation.enabled=false"
 }
 },
 "ConfigurationOverrides": {
 "ApplicationConfiguration": [
 {
 "Classification": "spark-defaults",

Amazon EMR on EKS 726

AWS Step Functions Developer Guide

 "Properties": {
 "spark.executor.instances": "2",
 "spark.executor.memory": "2G"
 }
 }
],
 "MonitoringConfiguration": {
 "PersistentAppUI": "ENABLED",
 "CloudWatchMonitoringConfiguration": {
 "LogGroupName": "MyLogGroupName",
 "LogStreamNamePrefix": "MyLogStreamNamePrefix"
 },
 "S3MonitoringConfiguration": {
 "LogUri": "s3://<mylogsbucket>"
 }
 }
 },
 "Tags": {
 "taskType": "jobName"
 }
 },
 "End": true
}

The following includes a Task state that deletes a virtual cluster and waits for the deletion to
complete.

"Delete_Virtual_Cluster": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-containers:deleteVirtualCluster.sync",
 "Parameters": {
 "Id.$": "$.VirtualClusterId"
 },
 "End": true
}

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Amazon EMR on EKS 727

AWS Step Functions Developer Guide

Call Amazon EKS with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Amazon EKS integration is different than the Amazon EKS AWS SDK
integration

• The Run a Job (.sync) integration pattern is supported.

• There are no optimizations for the Request Response integration pattern.

• The Wait for a Callback with the Task Token integration pattern is not supported.

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Step Functions provides two types of service integration APIs for integrating with Amazon Elastic
Kubernetes Service. One lets you use the Amazon EKS APIs to create and manage an Amazon
EKS cluster. The other lets you interact with your cluster using the Kubernetes API and run jobs
as part of your application’s workflow. You can use the Kubernetes API integrations with Amazon
EKS clusters created using Step Functions, with Amazon EKS clusters created by the eksctl tool or
the Amazon EKS console, or similar methods. For more information, see Creating an Amazon EKS
cluster in the Amazon EKS User Guide.

Note

The Step Functions EKS integration supports only Kubernetes APIs with public endpoint
access. By default, EKS clusters API server endpoints have public access. For more
information, see Amazon EKS cluster endpoint access control in the Amazon EKS User
Guide.

Step Functions does not terminate an Amazon EKS cluster automatically if execution is stopped.
If your state machine stops before your Amazon EKS cluster has terminated, your cluster may
continue running indefinitely, and can accrue additional charges. To avoid this, ensure that any
Amazon EKS cluster you create is terminated properly. For more information, see:

• Deleting a cluster in the Amazon EKS User Guide.

Amazon EKS 728

https://console.aws.amazon.com/eks/home
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-endpoint.html
https://docs.aws.amazon.com/eks/latest/userguide/create-cluster.html

AWS Step Functions Developer Guide

• Run a Job (.sync) in Service Integration Patterns.

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

Kubernetes API integrations

Step Functions supports the following Kubernetes APIs:

RunJob

The eks:runJob service integration allows you to run a job on your Amazon EKS cluster. The
eks:runJob.sync variant allows you to wait for the job to complete, and, optionally retrieve
logs.

Your Kubernetes API server must grant permissions to the IAM role used by your state machine. For
more information, see Permissions.

For the Run a Job (.sync) pattern, the status of the job is determined by polling. Step Functions
initially polls at a rate of approximately 1 poll per minute. This rate eventually slows to
approximately 1 poll every 5 minutes. If you require more frequent polling, or require more control
over the polling strategy, you can use the eks:call integration to query the status of the job.

The eks:runJob integration is specific to batch/v1 Kubernetes Jobs. For more information,
see Jobs in the Kubernetes documentation. If you want to manage other Kubernetes resources,
including custom resources, use the eks:call service integration. You can use Step Functions to
build polling loops, as demonstrated in the the section called “Poll for Job Status (Lambda, AWS
Batch) ” sample project.

Supported parameters include:

• ClusterName: The name of the Amazon EKS cluster you want to call.

• Type: String

• Required: yes

Amazon EKS 729

https://kubernetes.io/docs/concepts/workloads/controllers/job/

AWS Step Functions Developer Guide

• CertificateAuthority: The Base64-encoded certificate data required to communicate with
your cluster. You can obtain this value from the Amazon EKS console or by using the Amazon
EKS DescribeCluster API.

• Type: String

• Required: yes

• Endpoint: The endpoint URL for your Kubernetes API server. You can obtain this value from the
Amazon EKS console or by using the Amazon EKS DescribeCluster API.

• Type: String

• Required: yes

• Namespace: The namespace in which to run the job. If not provided, the namespace default is
used.

• Type: String

• Required: no

• Job: The definition of the Kubernetes Job. See Jobs in the Kubernetes documentation.

• Type: JSON or String

• Required: yes

• LogOptions: A set of options to control the optional retrieval of logs. Only applicable if the Run
a Job (.sync) service integration pattern is used to wait for the completion of the job.

• Type: JSON

• Required: no

• Logs are included in the response under the key logs. There may be multiple pods within the
job, each with multiple containers.

{
 ...
 "logs": {
 "pods": {
 "pod1": {
 "containers": {
 "container1": {
 "log": <log>
 },
 ...
 }
 },

Amazon EKS 730

https://console.aws.amazon.com/eks/home
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html
https://console.aws.amazon.com/eks/home
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html
https://kubernetes.io/docs/concepts/workloads/controllers/job/

AWS Step Functions Developer Guide

 ...
 }
 }

• Log retrieval is performed on a best-effort basis. If there is an error retrieving a log, in place of
the log field there will be the fields error and cause.

• LogOptions.RetrieveLogs: Enable log retrieval after the job completes. By default, logs are
not retrieved.

• Type: Boolean

• Required: no

• LogOptions.RawLogs: If RawLogs is set to true, logs will be returned as raw strings without
attempting to parse them into JSON. By default, logs are deserialized into JSON if possible.
In some cases such parsing can introduce unwanted changes, such as limiting the precision of
numbers containing many digits.

• Type: Boolean

• Required: no

• LogOptions.LogParameters: The Kubernetes API’s Read Log API supports query parameters
to control log retrieval. For example, you can use tailLines or limitBytes to limit the size of
retrieved logs and remain within the Step Functions data size quota. For more information, see
the Read Log section of the Kubernetes API Reference.

• Type: Map of String to List of Strings

• Required: no

• Example:

"LogParameters": {
 "tailLines": ["6"]
}

The following example includes a Task state that runs a job, waits for it to complete, then retrieves
the job’s logs:

{
 "StartAt": "Run a job on EKS",
 "States": {
 "Run a job on EKS": {
 "Type": "Task",

Amazon EKS 731

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.27/#read-log-pod-v1-core

AWS Step Functions Developer Guide

 "Resource": "arn:aws:states:::eks:runJob.sync",
 "Parameters": {
 "ClusterName": "MyCluster",
 "CertificateAuthority": "ANPAJ2UCCR6DPCEXAMPLE",
 "Endpoint": "https://AKIAIOSFODNN7EXAMPLE.yl4.us-east-1.eks.amazonaws.com",
 "LogOptions": {
 "RetrieveLogs": true
 },
 "Job": {
 "apiVersion": "batch/v1",
 "kind": "Job",
 "metadata": {
 "name": "example-job"
 },
 "spec": {
 "backoffLimit": 0,
 "template": {
 "metadata": {
 "name": "example-job"
 },
 "spec": {
 "containers": [
 {
 "name": "pi-2000",
 "image": "perl",
 "command": ["perl"],
 "args": [
 "-Mbignum=bpi",
 "-wle",
 "print bpi(2000)"
]
 }
],
 "restartPolicy": "Never"
 }
 }
 }
 }
 },
 "End": true
 }
 }
}

Amazon EKS 732

AWS Step Functions Developer Guide

Call

The eks:call service integration allows you to use the Kubernetes API to read and write
Kubernetes resource objects via a Kubernetes API endpoint.

Your Kubernetes API server must grant permissions to the IAM role used by your state machine. For
more information, see Permissions.

For more information about the available operations, see the Kubernetes API Reference.

Supported parameters for Call include:

• ClusterName: The name of the Amazon EKS cluster you want to call.

• Type: String

• Required: Yes

• CertificateAuthority: The Base64-encoded certificate data required to communicate with
your cluster. You can obtain this value from the Amazon EKS console or by using the Amazon
EKS DescribeCluster API.

• Type: String

• Required: Yes

• Endpoint: The endpoint URL for your Kubernetes API server. You can find this value on the
Amazon EKS console or by using Amazon EKS’ DescribeCluster API.

• Type: String

• Required: Yes

• Method: The HTTP method of your request. One of: GET, POST, PUT, DELETE, HEAD, or PATCH.

• Type: String

• Required: Yes

• Path: The HTTP path of the Kubernetes REST API operation.

• Type: String

• Required: Yes

• QueryParameters: The HTTP query parameters of the Kubernetes REST API operation.

• Type: Map of String to List of Strings

• Required: No

• Example:
Amazon EKS 733

https://kubernetes.io/docs/reference/kubernetes-api/
https://console.aws.amazon.com/eks/home
https://docs.aws.amazon.com/eks/latest/APIReference/API_DescribeCluster.html
https://console.aws.amazon.com/eks/home

AWS Step Functions Developer Guide

"QueryParameters": {
 "labelSelector": ["job-name=example-job"]
}

• RequestBody: The HTTP message body of the Kubernetes REST API operation.

• Type: JSON or String

• Required: No

The following includes a Task state that uses eks:call to list the pods belonging to the job
example-job.

{
 "StartAt": "Call EKS",
 "States": {
 "Call EKS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:call",
 "Parameters": {
 "ClusterName": "MyCluster",
 "CertificateAuthority": "ANPAJ2UCCR6DPCEXAMPLE",
 "Endpoint": "https://444455556666.yl4.us-east-1.eks.amazonaws.com",
 "Method": "GET",
 "Path": "/api/v1/namespaces/default/pods",
 "QueryParameters": {
 "labelSelector": [
 "job-name=example-job"
]
 }
 },
 "End": true
 }
 }
}

The following includes a Task state that uses eks:call to delete the job example-job, and sets
the propagationPolicy to ensure the job's pods are also deleted.

{
 "StartAt": "Call EKS",
 "States": {

Amazon EKS 734

AWS Step Functions Developer Guide

 "Call EKS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:call",
 "Parameters": {
 "ClusterName": "MyCluster",
 "CertificateAuthority": "ANPAJ2UCCR6DPCEXAMPLE",
 "Endpoint": "https://444455556666.yl4.us-east-1.eks.amazonaws.com",
 "Method": "DELETE",
 "Path": "/apis/batch/v1/namespaces/default/jobs/example-job",
 "QueryParameters": {
 "propagationPolicy": [
 "Foreground"
]
 }
 },
 "End": true
 }
 }
}

Supported Amazon EKS APIs

Supported Amazon EKS APIs and syntax include:

• CreateCluster

• Request syntax

• Response syntax

When an Amazon EKS cluster is created using the eks:createCluster service integration,
the IAM role is added to the Kubernetes RBAC authorization table as the administrator (with
system:masters permissions). Initially, only that IAM entity can make calls to the Kubernetes
API server. For more information, see:

• Managing users or IAM roles for your cluster in the Amazon EKS User Guide

• The Permissions section

Amazon EKS uses service-linked roles which contain the permissions Amazon EKS requires
to call other services on your behalf. If these service-linked roles do not exist in your account
already, you must add the iam:CreateServiceLinkedRole permission to the IAM role used
by Step Functions. For more information, see Using Service-Linked Roles in the Amazon EKS
User Guide.

Amazon EKS 735

https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html#API_CreateCluster_RequestSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateCluster.html#API_CreateCluster_ResponseSyntax
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles.html

AWS Step Functions Developer Guide

The IAM role used by Step Functions must have iam:PassRole permissions to pass the
cluster IAM role to Amazon EKS. For more information, see Amazon EKS cluster IAM role in the
Amazon EKS User Guide.

• DeleteCluster

• Request syntax

• Response syntax

You must delete any Fargate profiles or node groups before deleting a cluster.

• CreateFargateProfile

• Request syntax

• Response syntax

Amazon EKS uses service-linked roles which contain the permissions Amazon EKS requires
to call other services on your behalf. If these service-linked roles do not exist in your account
already, you must add the iam:CreateServiceLinkedRole permission to the IAM role used
by Step Functions. For more information, see Using Service-Linked Roles in the Amazon EKS
User Guide.

Amazon EKS on Fargate may not be available in all regions. For information on region
availability, see the section on Fargate in the Amazon EKS User Guide.

The IAM role used by Step Functions must have iam:PassRole permissions to pass the
pod execution IAM role to Amazon EKS. For more information, see Pod execution role in the
Amazon EKS User Guide.

• DeleteFargateProfile

• Request syntax

• Response syntax

• CreateNodegroup

• Request syntax

• Response syntax

Amazon EKS uses service-linked role whichs contain the permissions Amazon EKS requires
to call other services on your behalf. If these service-linked roles do not exist in your account
already, you must add the iam:CreateServiceLinkedRole permission to the IAM role used

Amazon EKS 736

https://docs.aws.amazon.com/eks/latest/userguide/service_IAM_role.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteCluster.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteCluster.html#API_DeleteCluster_RequestSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteCluster.html#API_DeleteCluster_ResponseSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateFargateProfile.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateFargateProfile.html#API_CreateFargateProfile_RequestSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateFargateProfile.html#API_CreateFargateProfile_ResponseSyntax
https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate.html
https://docs.aws.amazon.com/eks/latest/userguide/pod-execution-role.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteFargateProfile.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteFargateProfile.html#API_DeleteFargateProfile_RequestSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteFargateProfile.html#API_DeleteFargateProfile_ResponseSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateNodegroup.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateNodegroup.html#API_CreateNodegroup_RequestSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_CreateNodegroup.html#API_CreateNodegroup_ResponseSyntax

AWS Step Functions Developer Guide

by Step Functions. For more information, see Using Service-Linked Roles in the Amazon EKS
User Guide.

The IAM role used by Step Functions must have iam:PassRole permissions to pass the node
IAM role to Amazon EKS. For more information, see Using Service-Linked Roles in the Amazon
EKS User Guide.

• DeleteNodegroup

• Request syntax

• Response syntax

The following includes a Task that creates an Amazon EKS cluster.

{
 "StartAt": "CreateCluster.sync",
 "States": {
 "CreateCluster.sync": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:createCluster.sync",
 "Parameters": {
 "Name": "MyCluster",
 "ResourcesVpcConfig": {
 "SubnetIds": [
 "subnet-053e7c47012341234",
 "subnet-027cfea4b12341234"
]
 },
 "RoleArn": "arn:aws:iam::123456789012:role/MyEKSClusterRole"
 },
 "End": true
 }
 }
}

The following includes a Task state that deletes an Amazon EKS cluster.

{
 "StartAt": "DeleteCluster.sync",
 "States": {
 "DeleteCluster.sync": {
 "Type": "Task",

Amazon EKS 737

https://docs.aws.amazon.com/eks/latest/userguide/using-service-linked-roles.html
https://docs.aws.amazon.com/eks/latest/userguide/create-node-role.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteNodegroup.html
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteNodegroup.html#API_DeleteNodegroup_RequestSyntax
https://docs.aws.amazon.com/eks/latest/APIReference/API_DeleteNodegroup.html#API_DeleteNodegroup_ResponseSyntax

AWS Step Functions Developer Guide

 "Resource": "arn:aws:states:::eks:deleteCluster.sync",
 "Parameters": {
 "Name": "MyCluster"
 },
 "End": true
 }
 }
}

The following includes a Task state that creates a Fargate profile.

{
 "StartAt": "CreateFargateProfile.sync",
 "States": {
 "CreateFargateProfile.sync": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:createFargateProfile.sync",
 "Parameters": {
 "ClusterName": "MyCluster",
 "FargateProfileName": "MyFargateProfile",
 "PodExecutionRoleArn": "arn:aws:iam::123456789012:role/
MyFargatePodExecutionRole",
 "Selectors": [{
 "Namespace": "my-namespace",
 "Labels": { "my-label": "my-value" }
 }]
 },
 "End": true
 }
 }
}

The following includes a Task state that deletes a Fargate profile.

{
 "StartAt": "DeleteFargateProfile.sync",
 "States": {
 "DeleteFargateProfile.sync": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:deleteFargateProfile.sync",
 "Parameters": {
 "ClusterName": "MyCluster",
 "FargateProfileName": "MyFargateProfile"

Amazon EKS 738

AWS Step Functions Developer Guide

 },
 "End": true
 }
 }
}

The following includes a Task state that creates a node group.

{
 "StartAt": "CreateNodegroup.sync",
 "States": {
 "CreateNodegroup.sync": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:createNodegroup.sync",
 "Parameters": {
 "ClusterName": "MyCluster",
 "NodegroupName": "MyNodegroup",
 "NodeRole": "arn:aws:iam::123456789012:role/MyNodeInstanceRole",
 "Subnets": ["subnet-09fb51df01234", "subnet-027cfea4b1234"]
 },
 "End": true
 }
 }
}

The following includes a Task state that deletes a node group.

{
 "StartAt": "DeleteNodegroup.sync",
 "States": {
 "DeleteNodegroup.sync": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:deleteNodegroup.sync",
 "Parameters": {
 "ClusterName": "MyCluster",
 "NodegroupName": "MyNodegroup"
 },
 "End": true
 }
 }
}

Amazon EKS 739

AWS Step Functions Developer Guide

Permissions

When an Amazon EKS cluster is created using the eks:createCluster service integration,
the IAM role is added to the Kubernetes RBAC authorization table as the administrator, with
system:masters permissions. Initially, only that IAM entity can make calls to the Kubernetes
API server. For example, you will not be able to use kubectl to interact with your Kubernetes API
server, unless you assume the same role as your Step Functions state machine, or if you configure
Kubernetes to grant permissions to additional IAM entities. For more information, see Managing
users or IAM roles for your cluster in the Amazon EKS User Guide.

You can add permission for additional IAM entities, such as users or roles, by adding them to the
aws-auth ConfigMap in the kube-system namespace. If you are creating your cluster from Step
Functions, use the eks:call service integration.

The following includes a Task state that creates an aws-auth ConfigMap and grants
system:masters permission to the user arn:aws:iam::123456789012:user/my-user and
the IAM role arn:aws:iam::123456789012:role/my-role.

{
 "StartAt": "Add authorized user",
 "States": {
 "Add authorized user": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:call",
 "Parameters": {
 "ClusterName": "MyCluster",
 "CertificateAuthority": "LS0tLS1CRUd...UtLS0tLQo=",
 "Endpoint": "https://444455556666.yl4.us-east-1.eks.amazonaws.com",
 "Method": "POST",
 "Path": "/api/v1/namespaces/kube-system/configmaps",
 "RequestBody": {
 "apiVersion": "v1",
 "kind": "ConfigMap",
 "metadata": {
 "name": "aws-auth",
 "namespace": "kube-system"
 },
 "data": {
 "mapUsers": "[{ \"userarn\": \"arn:aws:iam::123456789012:user/my-user\",
 \"username\": \"my-user\", \"groups\": [\"system:masters\"] }]",
 "mapRoles": "[{ \"rolearn\": \"arn:aws:iam::123456789012:role/my-role\",
 \"username\": \"my-role\", \"groups\": [\"system:masters\"] }]"

Amazon EKS 740

https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

AWS Step Functions Developer Guide

 }
 }
 },
 "End": true
 }
 }

Note

You may see the ARN for an IAM role displayed in a format that includes the path /service-
role/, such as arn:aws:iam::123456789012:role/service-role/my-role. This
service-role path token should not be included when listing the role in aws-auth.

When your cluster is first created the aws-auth ConfigMap will not exist, but will be added
automatically if you create a Fargate profile. You can retrieve the current value of aws-auth, add
the additional permissions, and PUT a new version. It is usually easier to create aws-auth before
the Fargate profile.

If your cluster was created outside of Step Functions, you can configure kubectl to communicate
with your Kubernetes API server. Then, create a new aws-auth ConfigMap using kubectl apply
-f aws-auth.yaml or edit one that already exists using kubectl edit -n kube-system
configmap/aws-auth. For more information, see:

• Create a kubeconfig for Amazon EKS in the Amazon EKS User Guide.

• Managing users or IAM roles for your cluster in the Amazon EKS User Guide.

If your IAM role does not have sufficient permissions in Kubernetes, the eks:call or eks:runJob
service integrations will fail with the following error:

Error:
EKS.401

Cause:
{
 "ResponseBody": {
 "kind": "Status",
 "apiVersion": "v1",
 "metadata": {},

Amazon EKS 741

https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html
https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html

AWS Step Functions Developer Guide

 "status": "Failure",
 "message": "Unauthorized",
 "reason": "Unauthorized",
 "code": 401
 },
 "StatusCode": 401,
 "StatusText": "Unauthorized"
}

Call Amazon EMR Serverless with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized EMR Serverless integration is different than the EMR Serverless
AWS SDK integration

• The Optimized EMR Serverless service integration has a customized set of APIs that wrap
the underlying EMR Serverless APIs. Because of this customization, the optimized EMR
Serverless integration differs significantly from the EMR Serverless AWS SDK service
integration. In addition, the optimized EMR Serverless integration supports Run a Job
(.sync) integration pattern.

• The Wait for a Callback with the Task Token integration pattern is not supported.

In this topic

• EMR Serverless service integration APIs

• EMR Serverless integration use cases

EMR Serverless service integration APIs

To integrate AWS Step Functions with EMR Serverless, you can use the following six EMR Serverless
service integration APIs. These service integration APIs are similar to the corresponding EMR
Serverless APIs, with some differences in the fields that are passed and in the responses that are
returned.

Amazon EMR Serverless 742

AWS Step Functions Developer Guide

The following table describes the differences between each service integration API and its
corresponding EMR Serverless API.

EMR Serverless service integration APIs and corresponding EMR Serverless APIs

EMR Serverless service
integration API

Corresponding EMR
Serverless API

Differences

createApplication

Creates an application.

EMR Serverless is linked
to a unique type of IAM
role known as a service-l
inked role. For createApp
lication and createApp
lication.sync to work,
you must have configured
the necessary permissions
to create the service-linked
role AWSServiceRoleForA
mazonEMRServerless .
For more information about
this, including a statement
you can add to your IAM
permissions policy, see Using
service-linked roles for EMR
Serverless.

CreateApplication None

createApplication.sync

Creates an application.

CreateApplication No differences between the
requests and responses of the
EMR Serverless API and EMR
Serverless service integrati
on API. However, createApp
lication.sync waits for the
application to reach the
CREATED state.

Amazon EMR Serverless 743

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CreateApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CreateApplication.html

AWS Step Functions Developer Guide

EMR Serverless service
integration API

Corresponding EMR
Serverless API

Differences

startApplication

Starts a specified application
and initializes the applicati
on's initial capacity if
configured.

StartApplication The EMR Serverless API
response doesn't contain
any data, but the EMR
Serverless service integrati
on API response includes the
following data.

{
 "ApplicationId":
 "string"
}

startApplication.sync

Starts a specified applicati
on and initializes the initial
capacity if configured.

StartApplication The EMR Serverless API
response doesn't contain
any data, but the EMR
Serverless service integrati
on API response includes the
following data.

{
 "ApplicationId":
 "string"
}

Also, startApplication.sync
waits for the application to
reach the STARTED state.

Amazon EMR Serverless 744

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartApplication.html

AWS Step Functions Developer Guide

EMR Serverless service
integration API

Corresponding EMR
Serverless API

Differences

stopApplication

Stops a specified application
and releases initial capacity
if configured. All scheduled
and running jobs must be
completed or cancelled
before stopping an applicati
on.

StopApplication The EMR Serverless API
response doesn't contain
any data, but the EMR
Serverless service integrati
on API response includes the
following data.

{
 "ApplicationId":
 "string"
}

stopApplication.sync

Stops a specified application
and releases initial capacity
if configured. All scheduled
and running jobs must be
completed or cancelled
before stopping an applicati
on.

StopApplication The EMR Serverless API
response doesn't contain
any data, but the EMR
Serverless service integrati
on API response includes the
following data.

{
 "ApplicationId":
 "string"
}

Also, stopApplication.sync
waits for the application to
reach the STOPPED state.

Amazon EMR Serverless 745

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StopApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StopApplication.html

AWS Step Functions Developer Guide

EMR Serverless service
integration API

Corresponding EMR
Serverless API

Differences

deleteApplication

Deletes an application. An
application must be in the
STOPPED or CREATED state in
order to be deleted.

DeleteApplication The EMR Serverless API
response doesn't contain
any data, but the EMR
Serverless service integrati
on API response includes the
following data.

{
 "ApplicationId":
 "string"
}

deleteApplication.sync

Deletes an application. An
application must be in the
STOPPED or CREATED state in
order to be deleted.

DeleteApplication The EMR Serverless API
response doesn't contain
any data, but the EMR
Serverless service integrati
on API response includes the
following data.

{
 "ApplicationId":
 "string"
}

Also, stopApplication.sync
waits for the application to
reach the TERMINATED
state.

startJobRun

Starts a job run.

StartJobRun None

Amazon EMR Serverless 746

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_DeleteApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_DeleteApplication.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html

AWS Step Functions Developer Guide

EMR Serverless service
integration API

Corresponding EMR
Serverless API

Differences

startJobRun.sync

Starts a job run.

StartJobRun No differences between the
requests and responses of the
EMR Serverless API and EMR
Serverless service integrati
on API. However, startJobR
un.sync waits for the applicati
on to reach the SUCCESS
state.

cancelJobRun

Cancels a job run.

CancelJobRun None

cancelJobRun.sync

Cancels a job run.

CancelJobRun No differences between
the requests and responses
of the EMR Serverless API
and EMR Serverless service
integration API. However,
cancelJobRun.sync waits for
the application to reach the
CANCELLED state.

EMR Serverless integration use cases

For the Optimized EMR Serverless service integration, we recommend that you create a single
application, and then use that application to run multiple jobs. For example, in a single state
machine, you can include multiple startJobRun requests, all of which use the same application.
The following Task state examples show use cases to integrate EMR Serverless APIs with Step
Functions. For information about other use cases of EMR Serverless, see What is Amazon EMR
Serverless.

Amazon EMR Serverless 747

https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CancelJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CancelJobRun.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_StartJobRun.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html
https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/emr-serverless.html

AWS Step Functions Developer Guide

Tip

To deploy an example of a state machine that integrates with EMR Serverless for running
multiple jobs to your AWS account, see Run an EMR Serverless job.

• Create an application

• Start an application

• Stop an application

• Delete an application

• Start a job in an application

• Cancel a job in an application

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

In the examples shown in the following use cases, replace the italicized text with your
resource-specific information. For example, replace yourApplicationId with the ID of your EMR
Serverless application, such as 00yv7iv71inak893.

Create an application

The following Task state example creates an application using the createApplication.sync service
integration API.

"Create_Application": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-serverless:createApplication.sync",
 "Parameters": {
 "Name": "MyApplication",
 "ReleaseLabel": "emr-6.9.0",
 "Type": "SPARK"
 },
 "End": true
}

Amazon EMR Serverless 748

AWS Step Functions Developer Guide

Start an application

The following Task state example starts an application using the startApplication.sync service
integration API.

"Start_Application": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-serverless:startApplication.sync",
 "Parameters": {
 "ApplicationId": "yourApplicationId"
 },
 "End": true
}

Stop an application

The following Task state example stops an application using the stopApplication.sync service
integration API.

"Stop_Application": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-serverless:stopApplication.sync",
 "Parameters": {
 "ApplicationId": "yourApplicationId"
 },
 "End": true
}

Delete an application

The following Task state example deletes an application using the deleteApplication.sync service
integration API.

"Delete_Application": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-serverless:deleteApplication.sync",
 "Parameters": {
 "ApplicationId": "yourApplicationId"
 },
 "End": true
}

Amazon EMR Serverless 749

AWS Step Functions Developer Guide

Start a job in an application

The following Task state example starts a job in an application using the startJobRun.sync service
integration API.

"Start_Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-serverless:startJobRun.sync",
 "Parameters": {
 "ApplicationId": "yourApplicationId",
 "ExecutionRoleArn": "arn:aws:iam::123456789012:role/myEMRServerless-execution-
role",
 "JobDriver": {
 "SparkSubmit": {
 "EntryPoint": "s3://<mybucket>/sample.py",
 "EntryPointArguments": ["1"],
 "SparkSubmitParameters": "--conf spark.executor.cores=4 --conf
 spark.executor.memory=4g --conf spark.driver.cores=2 --conf spark.driver.memory=4g --
conf spark.executor.instances=1"
 }
 }
 },
 "End": true
}

Cancel a job in an application

The following Task state example cancels a job in an application using the cancelJobRun.sync
service integration API.

"Cancel_Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::emr-serverless:cancelJobRun.sync",
 "Parameters": {
 "ApplicationId.$": "$.ApplicationId",
 "JobRunId.$": "$.JobRunId"
 },
 "End": true
}

Amazon EMR Serverless 750

AWS Step Functions Developer Guide

Call EventBridge with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized EventBridge integration is different than the EventBridge AWS SDK
integration

• The execution ARN and the state machine ARN are automatically appended to the
Resources field of each PutEventsRequestEntry.

• If the response from PutEvents contains a non-zero FailedEntryCount then the
Task state fails with the error EventBridge.FailedEntry.

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Step Functions provides a service integration API for integrating with Amazon EventBridge. This
lets you build event-driven applications by sending custom events directly from Step Functions
workflows.

To use the PutEvents API, you will need to create an EventBridge rule in your account that
matches the specific pattern of the events you will send. For example, you could:

• Create a Lambda function in your account that receives and prints an event that matches an
EventBridge rule.

• Create an EventBridge rule in your account on the default event bus that matches a specific
event pattern and targets the Lambda function.

For more information, see:

• Adding Amazon EventBridge events with PutEvents in the EventBridge User Guide.

• Wait for a Callback with the Task Token in Service Integration Patterns.

Amazon EventBridge 751

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-putevents.html

AWS Step Functions Developer Guide

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

Supported EventBridge API

Supported EventBridge API and syntax include:

• PutEvents

• Request syntax

• Supported parameter:

• Entries

• Response syntax

The following includes a Task that sends a custom event:

{
 "Type": "Task",
 "Resource": "arn:aws:states:::events:putEvents",
 "Parameters": {
 "Entries": [
 {
 "Detail": {
 "Message": "MyMessage"
 },
 "DetailType": "MyDetailType",
 "EventBusName": "MyEventBus",
 "Source": "my.source"
 }
]
 },
 "End": true
}

Amazon EventBridge 752

https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html#API_PutEvents_RequestSyntax
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html#eventbridge-PutEvents-request-Entries
https://docs.aws.amazon.com/eventbridge/latest/APIReference/API_PutEvents.html#API_PutEvents_ResponseSyntax

AWS Step Functions Developer Guide

Error handling

The PutEvents API accepts an array of entries as input, then returns an array of result entries.
As long as the PutEvents action was successful, PutEvents will return an HTTP 200 response,
even if one or more entries failed. PutEvents returns the number of failed entries in the
FailedEntryCount field.

Step Functions checks whether the FailedEntryCount is greater than zero. If it is greater than
zero, Step Functions fails the state with the error EventBridge.FailedEntry. This lets you use
the built-in error handling of Step Functions on task states to catch or retry when there are failed
entries, rather than needing to use an additional state to analyze the FailedEntryCount from
the response.

Note

If you have implemented idempotency and can safely retry on all entries, you can use
Step Functions' retry logic. Step Functions does not remove successful entries from the
PutEvents input array before retrying. Instead, it retries with the original array of entries.

Manage AWS Glue Jobs with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized AWS Glue integration is different than the AWS GlueAWS SDK
integration

• The Run a Job (.sync) integration pattern is available.

• The JobName field is extracted from the request and inserted into the response, which
normally only contains JobRunID.

Supported AWS Glue API:

• StartJobRun

AWS Glue 753

https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-jobs-runs.html#aws-glue-api-jobs-runs-StartJobRun

AWS Step Functions Developer Guide

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

The following includes a Task state that starts an AWS Glue job.

"Glue StartJobRun": {
 "Type": "Task",
 "Resource": "arn:aws:states:::glue:startJobRun.sync",
 "Parameters": {
 "JobName": "GlueJob-JTrRO5l98qMG"
 },
 "Next": "ValidateOutput"
 },

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Manage AWS Glue DataBrew Jobs with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

You can use the DataBrew integration to add data cleaning and data normalization steps into your
analytics and machine learning workflows.

Supported DataBrew API:

• StartJobRun

The following includes a Task state that starts a request-response DataBrew job.

"DataBrew StartJobRun": {
 "Type": "Task",
 "Resource": "arn:aws:states:::databrew:startJobRun",
 "Parameters": {
 "Name": "sample-proj-job-1"

AWS Glue DataBrew 754

https://docs.aws.amazon.com/databrew/latest/dg/API_StartJobRun.html

AWS Step Functions Developer Guide

 },
 "Next": "NEXT_STATE"
 },

The following includes a Task state that starts a sync DataBrew job.

"DataBrew StartJobRun": {
 "Type": "Task",
 "Resource": "arn:aws:states:::databrew:startJobRun.sync",
 "Parameters": {
 "Name": "sample-proj-job-1"
 },
 "Next": "NEXT_STATE"
 },

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Invoke Lambda with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Lambda integration is different than the Lambda AWS SDK
integration

• The Payload field of the response is parsed from escaped Json to Json.

• If the response contains the field FunctionError or an exception is raised within the
Lambda function, the task fails.

For more information about managing state input, output, and results, see Input and Output
Processing in Step Functions.

Supported AWS Lambda APIs:

• Invoke

AWS Lambda 755

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

AWS Step Functions Developer Guide

• Request Syntax

• Supported Parameters

• ClientContext

• FunctionName

• InvocationType

• Qualifier

• Payload

• Response syntax

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

The following includes a Task state that invokes a Lambda function.

{
 "StartAt":"CallLambda",
 "States":{
 "CallLambda":{
 "Type":"Task",
 "Resource":"arn:aws:states:::lambda:invoke",
 "Parameters":{
 "FunctionName":"arn:aws:lambda:us-east-1:123456789012:function:MyFunction"
 },
 "End":true
 }
 }
}

The following includes a Task state that implements the callback service integration pattern.

{
 "StartAt":"GetManualReview",
 "States":{

AWS Lambda 756

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_RequestParameters
https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html#API_Invoke_ResponseSyntax

AWS Step Functions Developer Guide

 "GetManualReview":{
 "Type":"Task",
 "Resource":"arn:aws:states:::lambda:invoke.waitForTaskToken",
 "Parameters":{
 "FunctionName":"arn:aws:lambda:us-east-1:123456789012:function:get-model-
review-decision",
 "Payload":{
 "model.$":"$.new_model",
 "token.$":"$$.Task.Token"
 },
 "Qualifier":"prod-v1"
 },
 "End":true
 }
 }
}

When you invoke a Lambda function, the execution will wait for the function to complete. If you
invoke the Lambda function with a callback task, the heartbeat timeout doesn't start counting until
after the Lambda function has completed executing and returned a result. As long as the Lambda
function executes, the heartbeat timeout is not enforced.

It is also possible to call Lambda asynchronously using the InvocationType parameter, as seen in
the following example:

Note

For asynchronous invocations of Lambda functions, the heartbeat timeout period starts
immediately.

{

 "Comment": "A Hello World example of the Amazon States Language using Pass states",
 "StartAt": "Hello",
 "States": {
 "Hello": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-east-1:123456789012:function:echo",

AWS Lambda 757

AWS Step Functions Developer Guide

 "InvocationType": "Event"
 },
 "End": true
 }
 }
}

When the Task result is returned, the function output is nested inside a dictionary of metadata.
For example:

{

 "ExecutedVersion":"$LATEST",
 "Payload":"FUNCTION OUTPUT",
 "SdkHttpMetadata":{
 "HttpHeaders":{
 "Connection":"keep-alive",
 "Content-Length":"4",
 "Content-Type":"application/json",
 "Date":"Fri, 26 Mar 2021 07:42:02 GMT",
 "X-Amz-Executed-Version":"$LATEST",
 "x-amzn-Remapped-Content-Length":"0",
 "x-amzn-RequestId":"0101aa0101-1111-111a-aa55-1010aaa1010",
 "X-Amzn-Trace-Id":"root=1-1a1a000a2a2-fe0101aa10ab;sampled=0"
 },
 "HttpStatusCode":200
 },
 "SdkResponseMetadata":{
 "RequestId":"6b3bebdb-9251-453a-ae45-512d9e2bf4d3"
 },
 "StatusCode":200
}

Alternatively, you can invoke a Lambda function by specifying a function ARN directly in
the "Resource" field. When you invoke a Lambda function in this way, you can't specify
.waitForTaskToken, and the task result contains only the function output.

{
 "StartAt":"CallFunction",
 "States":{
 "CallFunction": {
 "Type":"Task",

AWS Lambda 758

AWS Step Functions Developer Guide

 "Resource":"arn:aws:lambda:us-east-1:123456789012:function:HelloFunction",
 "End": true
 }
 }
}

You can invoke a specific Lambda function version or alias by specifying those options in the ARN
in the Resource field. See the following in the Lambda documentation:

• AWS Lambda versioning

• AWS Lambda aliases

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Manage SageMaker with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized SageMaker integration is different than the SageMaker AWS SDK
integration

• The Run a Job (.sync) integration pattern is supported.

• There are no optimizations for the Request Response integration pattern.

• The Wait for a Callback with the Task Token integration pattern is not supported.

Supported SageMaker APIs and syntax:

• CreateEndpoint

• Request syntax

• Supported parameters:

• EndpointConfigName

• EndpointName

• Tags

Amazon SageMaker 759

https://docs.aws.amazon.com/lambda/latest/dg/versioning-intro.html
https://docs.aws.amazon.com/lambda/latest/dg/aliases-intro.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html#API_CreateEndpoint_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html#API_CreateEndpoint_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html#API_CreateEndpoint_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html#API_CreateEndpoint_RequestParameters

AWS Step Functions Developer Guide

• Response syntax

• CreateEndpointConfig

• Request syntax

• Supported parameters:

• EndpointConfigName

• KmsKeyId

• ProductionVariants

• Tags

• Response syntax

• CreateHyperParameterTuningJob

Note

This API action supports the .sync integration pattern.

• Request syntax

• Supported parameters:

• HyperParameterTuningJobConfig

• HyperParameterTuningJobName

• Tags

• TrainingJobDefinition

• WarmStartConfig

• Response syntax

• CreateLabelingJob

Note

This API action supports the .sync integration pattern.

• Request syntax

• Supported parameters:Amazon SageMaker 760

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpoint.html#API_CreateEndpoint_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html#API_CreateEndpointConfig_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html#API_CreateEndpointConfig_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html#API_CreateEndpointConfig_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html#API_CreateEndpointConfig_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html#API_CreateEndpointConfig_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateEndpointConfig.html#API_CreateEndpointConfig_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateHyperParameterTuningJob.html#API_CreateHyperParameterTuningJob_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestSyntax

AWS Step Functions Developer Guide

• HumanTaskConfig

• InputConfig

• LabelAttributeName

• LabelCategoryConfigS3Uri

• LabelingJobAlgorithmsConfig

• LabelingJobName

• OutputConfig

• RoleArn

• StoppingConditions

• Tags

• Response syntax

• CreateModel

• Request syntax

• Supported parameters:

• Containers

• EnableNetworkIsolation

• ExecutionRoleArn

• ModelName

• PrimaryContainer

• Tags

• VpcConfig

• CreateProcessingJob

Note

This API action supports the .sync integration pattern.

• Request syntax

• Supported parameters:

• AppSpecification

• Environment

Amazon SageMaker 761

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateLabelingJob.html#API_CreateLabelingJob_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateModel.html#API_CreateModel_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters

AWS Step Functions Developer Guide

• ExperimentConfig

• NetworkConfig

• ProcessingInputs

• ProcessingJobName

• ProcessingOutputConfig

• ProcessingResources

• RoleArn

• StoppingCondition

• Tags

• Response syntax

• CreateTrainingJob

Note

This API action supports the .sync integration pattern.

• Request syntax

• Supported parameters:

• AlgorithmSpecification

• HyperParameters

• InputDataConfig

• OutputDataConfig

• ResourceConfig

• RoleArn

• StoppingCondition

• Tags

• TrainingJobName

• VpcConfig

• Response syntax

• CreateTransformJobAmazon SageMaker 762

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateProcessingJob.html#API_CreateProcessingJob_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTrainingJob.html#API_CreateTrainingJob_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html

AWS Step Functions Developer Guide

Note

This API action supports the .sync integration pattern.

Note

AWS Step Functions will not automatically create a policy for CreateTransformJob.
You must attach an inline policy to the created role. For more information, see this
example IAM policy: CreateTrainingJob.

• Request syntax

• Supported parameters:

• BatchStrategy

• Environment

• MaxConcurrentTransforms

• MaxPayloadInMB

• ModelName

• Tags

• TransformInput

• TransformJobName

• TransformOutput

• TransformResources

• Response syntax

• UpdateEndpoint

• Request syntax

• Supported parameters:

• EndpointConfigName

• EndpointName

• Response syntax

Amazon SageMaker 763

https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_CreateTransformJob.html#API_CreateTransformJob_ResponseSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpoint.html
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpoint.html#API_UpdateEndpoint_RequestSyntax
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpoint.html#API_UpdateEndpoint_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpoint.html#API_UpdateEndpoint_RequestParameters
https://docs.aws.amazon.com/sagemaker/latest/dg/API_UpdateEndpoint.html#API_UpdateEndpoint_ResponseSyntax

AWS Step Functions Developer Guide

SageMaker Transform Job Example

The following includes a Task state that creates an Amazon SageMaker transform job, specifying
the Amazon S3 location for DataSource and TransformOutput.

{
"SageMaker CreateTransformJob": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sagemaker:createTransformJob.sync",
 "Parameters": {
 "ModelName": "SageMakerCreateTransformJobModel-9iFBKsYti9vr",
 "TransformInput": {
 "CompressionType": "None",
 "ContentType": "text/csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://my-s3bucket-example-1/TransformJobDataInput.txt"
 }
 }
 },
 "TransformOutput": {
 "S3OutputPath": "s3://my-s3bucket-example-1/TransformJobOutputPath"
 },
 "TransformResources": {
 "InstanceCount": 1,
 "InstanceType": "ml.m4.xlarge"
 },
 "TransformJobName": "sfn-binary-classification-prediction"
 },
 "Next": "ValidateOutput"
},

SageMaker Training Job Example

The following includes a Task state that creates an Amazon SageMaker training job.

{
 "SageMaker CreateTrainingJob":{
 "Type":"Task",
 "Resource":"arn:aws:states:::sagemaker:createTrainingJob.sync",
 "Parameters":{
 "TrainingJobName":"search-model",

Amazon SageMaker 764

AWS Step Functions Developer Guide

 "ResourceConfig":{
 "InstanceCount":4,
 "InstanceType":"ml.c4.8xlarge",
 "VolumeSizeInGB":20
 },
 "HyperParameters":{
 "mode":"batch_skipgram",
 "epochs":"5",
 "min_count":"5",
 "sampling_threshold":"0.0001",
 "learning_rate":"0.025",
 "window_size":"5",
 "vector_dim":"300",
 "negative_samples":"5",
 "batch_size":"11"
 },
 "AlgorithmSpecification":{
 "TrainingImage":"...",
 "TrainingInputMode":"File"
 },
 "OutputDataConfig":{
 "S3OutputPath":"s3://bucket-name/doc-search/model"
 },
 "StoppingCondition":{
 "MaxRuntimeInSeconds":100000
 },
 "RoleArn":"arn:aws:iam::123456789012:role/docsearch-stepfunction-iam-role",
 "InputDataConfig":[
 {
 "ChannelName":"train",
 "DataSource":{
 "S3DataSource":{
 "S3DataType":"S3Prefix",
 "S3Uri":"s3://bucket-name/doc-search/interim-data/training-data/",
 "S3DataDistributionType":"FullyReplicated"
 }
 }
 }
]
 },
 "Retry":[
 {
 "ErrorEquals":[
 "SageMaker.AmazonSageMakerException"

Amazon SageMaker 765

AWS Step Functions Developer Guide

],
 "IntervalSeconds":1,
 "MaxAttempts":100,
 "BackoffRate":1.1
 },
 {
 "ErrorEquals":[
 "SageMaker.ResourceLimitExceededException"
],
 "IntervalSeconds":60,
 "MaxAttempts":5000,
 "BackoffRate":1
 },
 {
 "ErrorEquals":[
 "States.Timeout"
],
 "IntervalSeconds":1,
 "MaxAttempts":5,
 "BackoffRate":1
 }
],
 "Catch":[
 {
 "ErrorEquals":[
 "States.ALL"
],
 "ResultPath":"$.cause",
 "Next":"Sagemaker Training Job Error"
 }
],
 "Next":"Delete Interim Data Job"
 }
}

SageMaker Labeling Job Example

The following includes a Task state that creates an Amazon SageMaker labeling job.

{
 "StartAt": "SageMaker CreateLabelingJob",

Amazon SageMaker 766

AWS Step Functions Developer Guide

 "TimeoutSeconds": 3600,
 "States": {
 "SageMaker CreateLabelingJob": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sagemaker:createLabelingJob.sync",
 "Parameters": {
 "HumanTaskConfig": {
 "AnnotationConsolidationConfig": {
 "AnnotationConsolidationLambdaArn": "arn:aws:lambda:us-
west-2:123456789012:function:ACS-TextMultiClass"
 },
 "NumberOfHumanWorkersPerDataObject": 1,
 "PreHumanTaskLambdaArn": "arn:aws:lambda:us-west-2:123456789012:function:PRE-
TextMultiClass",
 "TaskDescription": "Classify the following text",
 "TaskKeywords": [
 "tc",
 "Labeling"
],
 "TaskTimeLimitInSeconds": 300,
 "TaskTitle": "Classify short bits of text",
 "UiConfig": {
 "UiTemplateS3Uri": "s3://s3bucket-example/TextClassification.template"
 },
 "WorkteamArn": "arn:aws:sagemaker:us-west-2:123456789012:workteam/private-
crowd/ExampleTesting"
 },
 "InputConfig": {
 "DataAttributes": {
 "ContentClassifiers": [
 "FreeOfPersonallyIdentifiableInformation",
 "FreeOfAdultContent"
]
 },
 "DataSource": {
 "S3DataSource": {
 "ManifestS3Uri": "s3://s3bucket-example/manifest.json"
 }
 }
 },
 "LabelAttributeName": "Categories",
 "LabelCategoryConfigS3Uri": "s3://s3bucket-example/labelcategories.json",
 "LabelingJobName": "example-job-name",
 "OutputConfig": {

Amazon SageMaker 767

AWS Step Functions Developer Guide

 "S3OutputPath": "s3://s3bucket-example/output"
 },
 "RoleArn": "arn:aws:iam::123456789012:role/service-role/AmazonSageMaker-
ExecutionRole",
 "StoppingConditions": {
 "MaxHumanLabeledObjectCount": 10000,
 "MaxPercentageOfInputDatasetLabeled": 100
 }
 },
 "Next": "ValidateOutput"
 },
 "ValidateOutput": {
 "Type": "Choice",
 "Choices": [
 {
 "Not": {
 "Variable": "$.LabelingJobArn",
 "StringEquals": ""
 },
 "Next": "Succeed"
 }
],
 "Default": "Fail"
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail",
 "Error": "InvalidOutput",
 "Cause": "Output is not what was expected. This could be due to a service outage
 or a misconfigured service integration."
 }
 }
}

SageMaker Processing Job Example

The following includes a Task state that creates an Amazon SageMaker processing job.

{
 "StartAt": "SageMaker CreateProcessingJob Sync",
 "TimeoutSeconds": 3600,

Amazon SageMaker 768

AWS Step Functions Developer Guide

 "States": {
 "SageMaker CreateProcessingJob Sync": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sagemaker:createProcessingJob.sync",
 "Parameters": {
 "AppSpecification": {
 "ImageUri": "737474898029.dkr.ecr.sa-east-1.amazonaws.com/sagemaker-scikit-
learn:0.20.0-cpu-py3"
 },
 "ProcessingResources": {
 "ClusterConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.t3.medium",
 "VolumeSizeInGB": 10
 }
 },
 "RoleArn": "arn:aws:iam::123456789012:role/SM-003-
CreateProcessingJobAPIExecutionRole",
 "ProcessingJobName.$": "$.id"
 },
 "Next": "ValidateOutput"
 },
 "ValidateOutput": {
 "Type": "Choice",
 "Choices": [
 {
 "Not": {
 "Variable": "$.ProcessingJobArn",
 "StringEquals": ""
 },
 "Next": "Succeed"
 }
],
 "Default": "Fail"
 },
 "Succeed": {
 "Type": "Succeed"
 },
 "Fail": {
 "Type": "Fail",
 "Error": "InvalidConnectorOutput",
 "Cause": "Connector output is not what was expected. This could be due to a
 service outage or a misconfigured connector."
 }

Amazon SageMaker 769

AWS Step Functions Developer Guide

 }
}

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Call Amazon SNS with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Amazon SNS integration is different than the Amazon SNS AWS SDK
integration

There are no optimizations for the Request Response or Wait for a Callback with the Task
Token integration patterns.

Supported Amazon SNS APIs:

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

• Publish

• Request syntax

• Supported Parameters

• Message

• MessageAttributes

• MessageStructure

• PhoneNumber

• Subject

• TargetArn

Amazon SNS 770

https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_Example_1_Request
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters

AWS Step Functions Developer Guide

• TopicArn

• Response syntax

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

The following includes a Task state that publishes to an Amazon Simple Notification Service
(Amazon SNS) topic.

{
 "StartAt": "Publish to SNS",
 "States": {
 "Publish to SNS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "TopicArn": "arn:aws:sns:us-east-1:123456789012:myTopic",
 "Message.$": "$.input.message",
 "MessageAttributes": {
 "my_attribute_no_1": {
 "DataType": "String",
 "StringValue": "value of my_attribute_no_1"
 },
 "my_attribute_no_2": {
 "DataType": "String",
 "StringValue": "value of my_attribute_no_2"
 }
 }
 },
 "End": true
 }
 }
}

Passing dynamic values. You can modify the above example to dynamically pass an attribute from
this JSON payload:

Amazon SNS 771

https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_RequestParameters
https://docs.aws.amazon.com/sns/latest/api/API_Publish.html#API_Publish_Example_1_Response

AWS Step Functions Developer Guide

{
"input": {
 "message": "Hello world"
},
"SNSDetails": {
 "attribute1": "some value",
 "attribute2": "some other value",
}
}

Append the .$ to the StringValue field:

"MessageAttributes": {
 "my_attribute_no_1": {
 "DataType": "String",
 "StringValue.$": "$.SNSDetails.attribute1"
 },
 "my_attribute_no_2": {
 "DataType": "String",
 "StringValue.$": "$.SNSDetails.attribute2"
 }

The following includes a Task state that publishes to an Amazon SNS topic, and then waits for the
task token to be returned. See Wait for a Callback with the Task Token.

{
 "StartAt":"Send message to SNS",
 "States":{
 "Send message to SNS":{
 "Type":"Task",
 "Resource":"arn:aws:states:::sns:publish.waitForTaskToken",
 "Parameters":{
 "TopicArn":"arn:aws:sns:us-east-1:123456789012:myTopic",
 "Message":{
 "Input.$":"$",
 "TaskToken.$":"$$.Task.Token"
 }
 },
 "End":true
 }
 }
}

Amazon SNS 772

AWS Step Functions Developer Guide

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Call Amazon SQS with Step Functions

Step Functions can control certain AWS services directly from Amazon States Language (ASL). To
learn more, see Working with other services and Pass parameters to a service API.

How the Optimized Amazon SQS integration is different than the Amazon SQS AWS
SDK integration

There are no optimizations for the Request Response or Wait for a Callback with the Task
Token integration patterns.

Supported Amazon SQS APIs:

Note

There is a quota for the maximum input or result data size for a task in Step Functions. This
restricts you to 256 KB of data as a UTF-8 encoded string when you send to, or receive data
from, another service. See Quotas related to state machine executions.

• SendMessage

Supported parameters:

• DelaySeconds

• MessageAttribute

• MessageBody

• MessageDeduplicationId

• MessageGroupId

• QueueUrl

• Response syntax

Amazon SQS 773

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestParameters
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestParameters
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestParameters
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestParameters
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestParameters
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_RequestParameters
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html#API_SendMessage_ResponseElements

AWS Step Functions Developer Guide

Note

Parameters in Step Functions are expressed in PascalCase, even if the native service
API is in camelCase. For example, you could use the Step Functions API action
startSyncExecution and specify its parameter as StateMachineArn.

The following includes a Task state that sends an Amazon Simple Queue Service (Amazon SQS)
message.

{
 "StartAt": "Send to SQS",
 "States": {
 "Send to SQS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage",
 "Parameters": {
 "QueueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/myQueue",
 "MessageBody.$": "$.input.message",
 "MessageAttributes": {
 "my_attribute_no_1": {
 "DataType": "String",
 "StringValue": "attribute1"
 },
 "my_attribute_no_2": {
 "DataType": "String",
 "StringValue": "attribute2"
 }
 }
 },
 "End": true
 }
 }
}

The following includes a Task state that publishes to an Amazon SQS queue, and then waits for
the task token to be returned. See Wait for a Callback with the Task Token.

{
 "StartAt":"Send message to SQS",
 "States":{

Amazon SQS 774

AWS Step Functions Developer Guide

 "Send message to SQS":{
 "Type":"Task",
 "Resource":"arn:aws:states:::sqs:sendMessage.waitForTaskToken",
 "Parameters":{
 "QueueUrl":"https://sqs.us-east-1.amazonaws.com/123456789012/myQueue",
 "MessageBody":{
 "Input.$":"$",
 "TaskToken.$":"$$.Task.Token"
 }
 },
 "End":true
 }
 }
}

To learn more about receiving messages in Amazon SQS, see Receive and Delete Your Message in
the Amazon Simple Queue Service Developer Guide.

For information about how to configure IAM permissions when using Step Functions with other
AWS services, see IAM Policies for integrated services.

Manage AWS Step Functions Executions as an Integrated Service

Step Functions integrates with its own API as a service integration. This allows Step Functions to
start a new execution of a state machine directly from the task state of a running execution. When
building new workflows, use nested workflow executions to reduce the complexity of your main
workflows and to reuse common processes.

How the Optimized Step Functions integration is different than the Step Functions AWS
SDK integration

• The Run a Job (.sync) integration pattern is available.

Note that there are no optimizations for the Request Response or Wait for a Callback with
the Task Token integration patterns.

For more information, see the following:

• Start Executions from a Task

AWS Step Functions 775

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-getting-started.html#step-receive-delete-message

AWS Step Functions Developer Guide

• Working with other services

• Pass parameters to a service API

Supported Step Functions APIs and syntax:

• StartExecution

• Request Syntax

• Supported Parameters

• Input

• Name

• StateMachineArn

• Response syntax

The following includes a Task state that starts an execution of another state machine and waits
for it to complete.

{
 "Type":"Task",
 "Resource":"arn:aws:states:::states:startExecution.sync:2",
 "Parameters":{
 "Input":{
 "Comment": "Hello world!"
 },
 "StateMachineArn":"arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",
 "Name":"ExecutionName"
 },
 "End":true
}

The following includes a Task state that starts an execution of another state machine.

{
 "Type":"Task",
 "Resource":"arn:aws:states:::states:startExecution",
 "Parameters":{
 "Input":{
 "Comment": "Hello world!"

AWS Step Functions 776

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestSyntax
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_ResponseSyntax

AWS Step Functions Developer Guide

 },
 "StateMachineArn":"arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",
 "Name":"ExecutionName"
 },
 "End":true
}

The following includes a Task state that implements the callback service integration pattern.

{
 "Type":"Task",
 "Resource":"arn:aws:states:::states:startExecution.waitForTaskToken",
 "Parameters":{
 "Input":{
 "Comment": "Hello world!",
 "token.$": "$$.Task.Token"
 },
 "StateMachineArn":"arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",
 "Name":"ExecutionName"
 },
 "End":true
}

To associate a nested workflow execution with the parent execution that started it, pass a specially
named parameter that includes the execution ID pulled from the context object. When starting a
nested execution, use a parameter named AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.
Pass the execution ID by appending .$ to the parameter name, and referencing the ID in the
context object with $$.Execution.Id. For more information, see Accessing the Context Object.

{
 "Type":"Task",
 "Resource":"arn:aws:states:::states:startExecution.sync",
 "Parameters":{
 "Input":{
 "Comment": "Hello world!",
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
 },
 "StateMachineArn":"arn:aws:states:us-
east-1:123456789012:stateMachine:HelloWorld",

AWS Step Functions 777

AWS Step Functions Developer Guide

 "Name":"ExecutionName"
 },
 "End":true
}

Nested state machines return the following:

Resource Output

startExecution.sync String

startExecution.sync:2 JSON

Both will wait for the nested state machine to complete, but they return different Output formats.
For example, if you create a Lambda function that returns the object { "MyKey": "MyValue" },
you would get the following responses:

For startExecution.sync:

{
 <other fields>
 "Output": "{ \"MyKey\": \"MyValue\" }"
}

For startExecution.sync:2:

{
 <other fields>
 "Output": {
 "MyKey": "MyValue"
 }
}

Configuring IAM permissions for nested state machines

A parent state machine determines if a child state machine has completed execution using
polling and events. Polling requires permission for states:DescribeExecution while events
sent through EventBridge to Step Functions require permissions for events:PutTargets,
events:PutRule, and events:DescribeRule. If these permissions are missing from your IAM

AWS Step Functions 778

AWS Step Functions Developer Guide

role, there may be a delay before a parent state machine becomes aware of the completion of the
child state machine's execution.

For a state machine that calls StartExecution for a single nested workflow execution, use an
IAM policy that limits permissions to that state machine.

For more information, see IAM permissions for Step Functions.

Call third-party APIs

An HTTP Task is a type of Task state that lets you call any public, third-party API, such as
Salesforce and Stripe, in your workflows. To call a third-party API, use the Task state with the
arn:aws:states:::http:invoke resource. Then, provide the API endpoint configuration
details, such as the API URL, method you want to use, and authentication details.

If you use Workflow Studio to build your state machine that contains an HTTP Task, Workflow
Studio automatically generates an execution role with IAM policies for the HTTP Task. For more
information, see Role for testing HTTP Tasks in Workflow Studio.

Topics

• HTTP Task definition

• HTTP Task fields

• Authentication for an HTTP Task

• Merging EventBridge connection and HTTP Task definition data

• Applying URL-encoding on request body

• IAM permissions to run an HTTP Task

• HTTP Task example

• Testing an HTTP Task

• Unsupported HTTP Task responses

HTTP Task definition

The ASL definition represents an HTTP Task with http:invoke resource. The following HTTP Task
definition invokes a Stripe API that returns a list of all customers.

"Call third-party API": {

Call third-party APIs 779

AWS Step Functions Developer Guide

 "Type": "Task",
 "Resource": "arn:aws:states:::http:invoke",
 "Parameters": {
 "ApiEndpoint": "https://api.stripe.com/v1/customers",
 "Authentication": {
 "ConnectionArn": "arn:aws:events:us-east-2:123456789012:connection/
Stripe/81210c42-8af1-456b-9c4a-6ff02fc664ac"
 },
 "Method": "GET"
 },
 "End": true
}

HTTP Task fields

An HTTP Task includes the following fields in its definition.

Resource (Required)

To specify a task type, provide its ARN in the Resource field. For an HTTP Task, you specify the
Resource field as follows.

"Resource": "arn:aws:states:::http:invoke"

Parameters (Required)

Contains the ApiEndpoint, Method, and ConnectionArn fields that provide information
about the third-party API you want to call. Parameters also contains optional fields, such as
Headers and QueryParameters.

You can specify a combination of static JSON and JsonPath syntax as Parameters in the
Parameters field. For more information, see Pass parameters to a service API.

ApiEndpoint (Required)

Specifies the URL of the third-party API you want to call. To append query parametrs to the
URL, use the QueryParameters field. The following example shows how you can call a
Stripe API to fetch the list of all customers.

"ApiEndpoint":"https://api.stripe.com/v1/customers"

HTTP Task fields 780

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

You can also specify a reference path using the JsonPath syntax to select the JSON node
that contains the third-party API URL. For example, say you want to call one of Stripe’s APIs
using a specific customer ID. Imagine that you've provided the following state input.

{
 "customer_id": "1234567890",
 "name": "John Doe"
}

To retrieve the details of this customer ID using a Stripe API, specify the ApiEndpoint as
shown in the following example. This example uses an intrinsic function and a reference
path.

"ApiEndpoint.$":"States.Format('https://api.stripe.com/v1/customers/{}',
 $.customer_id)"

At runtime, Step Functions resolves the value of ApiEndpoint as follows.

https://api.stripe.com/v1/customers/1234567890

Method (Required)

Specifies the HTTP method you want to use for calling a third-party API. You can specify one
of these methods in your HTTP Task: GET, POST, PUT, DELETE, PATCH, OPTIONS, or HEAD.

For example, to use the GET method, specify the Method field as follows.

"Method": "GET"

You can also use a reference path to specify the method at runtime. For example, "Method.
$": "$.myHTTPMethod".

Authentication (Required)

Contains the ConnectionArn field that specifies how to authenticate a third-party API call.
Step Functions supports authentication for a specified ApiEndpoint using the connection
resource of Amazon EventBridge.

ConnectionArn (Required)

Specifies the EventBridge connection ARN.

HTTP Task fields 781

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

An HTTP Task requires an EventBridge connection, which securely manages the
authentication credentials of an API provider. A connection specifies the authorization
type and credentials to use for authorizing a third-party API. Using a connection helps
you avoid hard-coding secrets, such as API keys, into your state machine definition. In
a connection, you can also specify Headers, QueryParameters, and RequestBody
parameters.

When you create an EventBridge connection, you provide your authentication details. For
more information about how authentication works for an HTTP Task, see Authentication
for an HTTP Task.

The following example shows how you can specify the Authentication field in your HTTP
Task definition.

"Authentication": {
 "ConnectionArn": "arn:aws:events:us-east-2:123456789012:connection/
Stripe/81210c42-8af1-456b-9c4a-6ff02fc664ac"
}

Headers (Optional)

Provides additional context and metadata to the API endpoint. You can specify headers as a
string or JSON array.

You can specify headers in the EventBridge connection and the Headers field in an HTTP
Task. We recommend that you do not include authentication details to your API providers
in the Headers field. We recommend that you include these details into your EventBridge
connection.

Step Functions adds the headers that you specify in the EventBridge connection to the
headers that you specify in the HTTP Task definition. If the same header keys are present in
the definition and connection, Step Functions uses the corresponding values specified in the
EventBridge connection for those headers. For more information about how Step Functions
performs data merging, see Merging EventBridge connection and HTTP Task definition data.

The following example specifies a header that will be included in a third-party API call:
content-type.

"Headers": {
 "content-type": "application/json"

HTTP Task fields 782

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destinations.html#eb-api-destination-connection

AWS Step Functions Developer Guide

}

You can also use a reference path to specify the headers at runtime. For example,
"Headers.$": "$.myHTTPHeaders".

Step Functions sets the User-Agent, Range, and Host headers. Step Functions sets the
value of the Host header based on the API you're calling. The following is an example of
these headers.

User-Agent: Amazon|StepFunctions|HttpInvoke|us-east-1,
Range: bytes=0-262144,
Host: api.stripe.com

You can't use the following headers in your HTTP Task definition. If you use these headers,
the HTTP Task fails with the States.Runtime error.

• A-IM

• Accept-Charset

• Accept-Datetime

• Accept-Encoding

• Cache-Control

• Connection

• Content-Encoding

• Content-MD5

• Date

• Expect

• Forwarded

• From

• Host

• HTTP2-Settings

• If-Match

• If-Modified-Since

• If-None-Match

• If-Range

HTTP Task fields 783

AWS Step Functions Developer Guide

• If-Unmodified-Since

• Max-Forwards

• Origin

• Pragma

• Proxy-Authorization

• Referer

• Server

• TE

• Trailer

• Transfer-Encoding

• Upgrade

• Via

• Warning

• x-forwarded-*

• x-amz-*

• x-amzn-*

QueryParameters (Optional)

Inserts key-value pairs at the end of an API URL. You can specify query parameters as a
string, JSON array, or a JSON object. Step Functions automatically URL-encodes query
parameters when it calls a third-party API.

For example, say that you want to call the Stripe API to search for customers that do
their transactions in US dollars (USD). Imagine that you've provided the following
QueryParameters as state input.

"QueryParameters": {
 "currency": "usd"
}

At runtime, Step Functions appends the QueryParameters to the API URL as follows.

https://api.stripe.com/v1/customers/search?currency=usd

HTTP Task fields 784

AWS Step Functions Developer Guide

You can also use a reference path to specify the query parameters at runtime. For example,
"QueryParameters.$": "$.myQueryParameters".

If you’ve specified query parameters in your EventBridge connection, Step Functions
adds these query parameters to the query parameters that you specify in the HTTP Task
definition. If the same query parameters keys are present in the definition and connection,
Step Functions uses the corresponding values specified in the EventBridge connection for
those headers. For more information about how Step Functions performs data merging, see
Merging EventBridge connection and HTTP Task definition data.

Transform (Optional)

Contains the RequestBodyEncoding and RequestEncodingOptions fields. By default,
Step Functions sends the request body as JSON data to an API endpoint.

If your API provider accepts form-urlencoded request bodies, use the Transform field
to specify URL-encoding for the request bodies. You must also specify the content-type
header as application/x-www-form-urlencoded. Step Functions then automatically
URL-encodes your request body.

RequestBodyEncoding

Specifies URL-encoding of your request body. You can specify one these values: NONE or
URL_ENCODED.

• NONE – The HTTP request body will be the serialized JSON of the RequestBody field.
This is the default value.

• URL_ENCODED – The HTTP request body will be the URL-encoded form data of the
RequestBody field.

RequestEncodingOptions

Determines the encoding option to use for arrays in your request body if you set
RequestBodyEncoding to URL_ENCODED.

Step Functions supports the following array encoding options. For more information
about these options and their examples, see Applying URL-encoding on request body.

• INDICES – Encodes arrays using the index value of array elements. By default, Step
Functions uses this encoding option.

• REPEAT – Repeats a key for each item in an array.

HTTP Task fields 785

AWS Step Functions Developer Guide

• COMMAS – Encodes all the values in a key as a comma-delimited list of values.

• BRACKETS – Repeats a key for each item in an array and appends a bracket, [], to the
key to indicate that it is an array.

The following example sets URL-encoding for the request body data. It also specifies to use
the COMMAS encoding option for arrays in the request body.

"Transform": {
 "RequestBodyEncoding": "URL_ENCODED",
 "RequestEncodingOptions": {
 "ArrayFormat": "COMMAS"
 }
}

RequestBody (Optional)

Accepts JSON data that you provide in the state input. In RequestBody, you can specify
a combination of static JSON and JsonPath syntax. For example, say that you provide the
following state input:

{
 "CardNumber": "1234567890",
 "ExpiryDate": "09/25"
}

To use these values of CardNumber and ExpiryDate in your request body at runtime, you
can specify the following JSON data in your request body.

"RequestBody": {
 "Card": {
 "Number.$": "$.CardNumber",
 "Expiry.$": "$.ExpiryDate",
 "Name": "John Doe",
 "Address": "123 Any Street, Any Town, USA"
 }
}

If the third-party API you want to call requires form-urlencoded request bodies, you must
specify URL-encoding for your request body data. For more information, see Applying URL-
encoding on request body.

HTTP Task fields 786

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

Authentication for an HTTP Task

An HTTP Task requires an EventBridge connection, which securely manages the authentication
credentials of an API provider. A connection specifies the authorization type and credentials to use
for authorizing a third-party API. Using a connection helps you avoid hard-coding secrets, such as
API keys, into your state machine definition. An EventBridge connection supports the Basic, OAuth,
and API Key authorization schemes.

When you create an EventBridge connection, you provide your authentication details. You can also
include the header, body, and query parameters that are required for authorization with an API.
You must include the connection ARN in any HTTP Task that calls a third-party API.

When you create a connection and add authorization parameters, EventBridge creates a secret
in AWS Secrets Manager. In this secret, EventBridge stores the connection and authorization
parameters in an encrypted form. To successfully create or update a connection, you must use an
AWS account that has permission to use Secrets Manager. For more information about the IAM
permissions your state machine needs to access an EventBridge connection, see IAM permissions to
run an HTTP Task.

The following image shows how Step Functions handles authentication for third-party API calls
using an EventBridge connection.

Merging EventBridge connection and HTTP Task definition data

When you invoke an HTTP Task, you can specify data in your EventBridge connection and your
HTTP Task definition. This data includes Headers, QueryParameters, and RequestBody

Authentication for an HTTP Task 787

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-api-destinations.html#eb-api-destination-connection
https://docs.aws.amazon.com/secretsmanager/latest/userguide/managing-secrets.html

AWS Step Functions Developer Guide

parameters. Before calling a third-party API, Step Functions merges the request body with the
connection body parameters in all cases except if your request body is a string and the connection
body parameters is non-empty. In this case, the HTTP Task fails with the States.Runtime error.

If there are any duplicate keys specified in the HTTP Task definition and the EventBridge
connection, Step Functions overwrites the values in the HTTP Task with the values in the
connection.

The following list describes how Step Functions merges data before calling a third-party API:

• Headers – Step Functions adds any headers you specified in the connection to the headers in the
Headers field of the HTTP Task. If there is a conflict between the header keys, Step Functions
uses the values specified in the connection for those headers. For example, if you specified the
content-type header in both the HTTP Task definition and EventBridge connection, Step
Functions uses the content-type header value specified in the connection.

• Query parameters – Step Functions adds any query parameters you specified in the connection
to the query parameters in the QueryParameters field of the HTTP Task. If there is a conflict
between the query parameter keys, Step Functions uses the values specified in the connection
for those query parameters. For example, if you specified the maxItems query parameter in both
the HTTP Task definition and EventBridge connection, Step Functions uses the maxItems query
parameter value specified in the connection.

• Body parameters

• Step Functions adds any request body values specified in the connection to the request body
in the RequestBody field of the HTTP Task. If there is a conflict between the request body
keys, Step Functions uses the values specified in the connection for the request body. For
example, say that you specified a Mode field in the RequestBody of both the HTTP Task
definition and EventBridge connection. Step Functions uses the Mode field value you specified
in the connection.

• If you specify the request body as a string instead of a JSON object, and the EventBridge
connection also contains request body, Step Functions can't merge the request body specified
in both these places. It fails the HTTP Task with the States.Runtime error.

Step Functions applies all transformations and serializes the request body after it completes the
merging of the request body.

The following example sets the Headers, QueryParameters, and RequestBody fields in both
the HTTP Task and EventBridge connection.

Merging EventBridge connection and HTTP Task definition data 788

AWS Step Functions Developer Guide

HTTP Task definition

{
 "Comment": "Data merging example for HTTP Task and EventBridge connection",
 "StartAt": "ListCustomers",
 "States": {
 "ListCustomers": {
 "Type": "Task",
 "Resource": "arn:aws:states:::http:invoke",
 "Parameters": {
 "Authentication": {
 "ConnectionArn": "arn:aws:events:us-
east-1:123456789012:connection/Example/81210c42-8af1-456b-9c4a-6ff02fc664ac"
 },
 "ApiEndpoint": "https:/example.com/path",
 "Method": "GET",
 "Headers": {
 "Request-Id": "my_request_id",
 "Header-Param": "state_machine_header_param"
 },
 "RequestBody": {
 "Job": "Software Engineer",
 "Company": "AnyCompany",
 "BodyParam": "state_machine_body_param"
 },
 "QueryParameters": {
 "QueryParam": "state_machine_query_param"
 }
 }
 }
 }
}

EventBridge connection

{
 "AuthorizationType": "API_KEY",
 "AuthParameters": {
 "ApiKeyAuthParameters": {
 "ApiKeyName": "ApiKey",
 "ApiKeyValue": "key_value"
 },
 "InvocationHttpParameters": {

Merging EventBridge connection and HTTP Task definition data 789

AWS Step Functions Developer Guide

 "BodyParameters": [
 {
 "Key": "BodyParam",
 "Value": "connection_body_param"
 }
],
 "HeaderParameters": [
 {
 "Key": "Header-Param",
 "Value": "connection_header_param"
 }
],
 "QueryStringParameters": [
 {
 "Key": "QueryParam",
 "Value": "connection_query_param"
 }
]
 }
 }
}

In this example, duplicate keys are specified in the HTTP Task and EventBridge connection.
Therefore, Step Functions overwrites the values in the HTTP Task with the values in the connection.
The following code snippet shows the HTTP request that Step Functions sends to the third-party
API.

POST /path?QueryParam=connection_query_param HTTP/1.1
Apikey: key_value
Content-Length: 79
Content-Type: application/json; charset=UTF-8
Header-Param: connection_header_param
Host: example.com
Range: bytes=0-262144
Request-Id: my_request_id
User-Agent: Amazon|StepFunctions|HttpInvoke|us-east-1

{"Job":"Software Engineer","Company":"AnyCompany","BodyParam":"connection_body_param"}

Merging EventBridge connection and HTTP Task definition data 790

AWS Step Functions Developer Guide

Applying URL-encoding on request body

By default, Step Functions sends the request body as JSON data to an API endpoint. If your third-
party API provider requires form-urlencoded request bodies, you must specify URL-encoding for
the request bodies. Step Functions then automatically URL-encodes the request body based on the
URL-encoding option you select.

You specify URL-encoding using the Transform field. This field contains the
RequestBodyEncoding field that specifies whether or not you want to apply URL-encoding for
your request bodies. When you specify the RequestBodyEncoding field, Step Functions converts
your JSON request body to form-urlencoded request body before calling the third-party API.
You must also specify the content-type header as application/x-www-form-urlencoded
because APIs that accept URL-encoded data expect the content-type header.

To encode arrays in your request body, Step Functions provides the following array encoding
options.

• INDICES – Repeats a key for each item in an array and appends a bracket, [], to the key to
indicate that it is an array. This bracket contains the index of the array element. Adding the index
helps you specify the order of the array elements. By default, Step Functions uses this encoding
option.

For example, if your request body contains the following array.

{"array": ["a","b","c","d"]}

Step Functions encodes this array to the following string.

array[0]=a&array[1]=b&array[2]=c&array[3]=d

• REPEAT – Repeats a key for each item in an array.

For example, if your request body contains the following array.

{"array": ["a","b","c","d"]}

Step Functions encodes this array to the following string.

array=a&array=b&array=c&array=d

Applying URL-encoding on request body 791

AWS Step Functions Developer Guide

• COMMAS – Encodes all the values in a key as a comma-delimited list of values.

For example, if your request body contains the following array.

{"array": ["a","b","c","d"]}

Step Functions encodes this array to the following string.

array=a,b,c,d

• BRACKETS – Repeats a key for each item in an array and appends a bracket, [], to the key to
indicate that it is an array.

For example, if your request body contains the following array.

{"array": ["a","b","c","d"]}

Step Functions encodes this array to the following string.

array[]=a&array[]=b&array[]=c&array[]=d

IAM permissions to run an HTTP Task

Your state machine execution role must have the states:InvokeHTTPEndpoint,
events:RetrieveConnectionCredentials, secretsmanager:GetSecretValue, and
secretsmanager:DescribeSecret permissions for an HTTP Task to call a third-party API. The
following IAM policy example grants the least privileges required to your state machine role for
calling Stripe APIs. This IAM policy also grants permission to the state machine role to access a
specific EventBridge connection, including the secret for this connection that is stored in Secrets
Manager.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "Statement1",
 "Effect": "Allow",
 "Action": "states:InvokeHTTPEndpoint",

IAM permissions to run an HTTP Task 792

AWS Step Functions Developer Guide

 "Resource": "arn:aws:states:us-
east-2:123456789012:stateMachine:myStateMachine",
 "Condition": {
 "StringEquals": {
 "states:HTTPMethod": "GET"
 },
 "StringLike": {
 "states:HTTPEndpoint": "https://api.stripe.com/*"
 }
 }
 },
 {
 "Sid": "Statement2",
 "Effect": "Allow",
 "Action": [
 "events:RetrieveConnectionCredentials",
],
 "Resource": "arn:aws:events:us-
east-2:123456789012:connection/oauth_connection/aeabd89e-d39c-4181-9486-9fe03e6f286a"
 },
 {
 "Sid": "Statement3",
 "Effect": "Allow",
 "Action": [
 "secretsmanager:GetSecretValue",
 "secretsmanager:DescribeSecret"
],
 "Resource": "arn:aws:secretsmanager:*:*:secret:events!connection/*"
 }
]
}

HTTP Task example

The following state machine definition shows an HTTP Task that includes the Headers,
QueryParameters, Transform, and RequestBody parameters. The HTTP Task calls a Stripe
API, https://api.stripe.com/v1/invoices, to generate an invoice. The HTTP Task also specifies URL-
encoding for the request body using the INDICES encoding option.

Make sure that you've created an EventBridge connection. The following example shows a
connection created using BASIC auth type.

HTTP Task example 793

AWS Step Functions Developer Guide

{
 "Type": "BASIC",
 "AuthParameters": {
 "BasicAuthParameters": {
 "Password": "myPassword",
 "Username": "myUsername"
 },
 }
}

Remember to replace the italicized text with your resource-specific information.

{
 "Comment": "A state machine that uses HTTP Task",
 "StartAt": "CreateInvoiceAPI",
 "States": {
 "CreateInvoiceAPI": {
 "Type": "Task",
 "Resource": "arn:aws:states:::http:invoke",
 "Parameters": {
 "ApiEndpoint": "https://api.stripe.com/v1/invoices",
 "Method": "POST",
 "Authentication": {
 "ConnectionArn": ""arn:aws:events:us-east-2:123456789012:connection/
Stripe/81210c42-8af1-456b-9c4a-6ff02fc664ac"
 },
 "Headers": {
 "Content-Type": "application/x-www-form-urlencoded"
 },
 "RequestBody": {
 "customer.$": "$.customer_id",
 "description": "Monthly subscription",
 "metadata": {
 "order_details": "monthly report data"
 }
 },
 "Transform": {
 "RequestBodyEncoding": "URL_ENCODED",
 "RequestEncodingOptions": {
 "ArrayFormat": "INDICES"
 }
 }
 },

HTTP Task example 794

AWS Step Functions Developer Guide

 "Retry": [
 {
 "ErrorEquals": [
 "States.Http.StatusCode.429",
 "States.Http.StatusCode.503",
 "States.Http.StatusCode.504",
 "States.Http.StatusCode.502"
],
 "BackoffRate": 2,
 "IntervalSeconds": 1,
 "MaxAttempts": 3,
 "JitterStrategy": "FULL"
 }
],
 "Catch": [
 {
 "ErrorEquals": [
 "States.Http.StatusCode.404",
 "States.Http.StatusCode.400",
 "States.Http.StatusCode.401",
 "States.Http.StatusCode.409",
 "States.Http.StatusCode.500"
],
 "Comment": "Handle all non 200 ",
 "Next": "HandleInvoiceFailure"
 }
],
 "End": true
 }
 }
}

To run this state machine, provide the customer ID as the input as shown in the following example:

{
 "customer_id": "1234567890"
}

The following example shows the HTTP request that Step Functions sends to the Stripe API.

POST /v1/invoices HTTP/1.1
Authorization: Basic <base64 of username and password>
Content-Type: application/x-www-form-urlencoded

HTTP Task example 795

AWS Step Functions Developer Guide

Host: api.stripe.com
Range: bytes=0-262144
Transfer-Encoding: chunked
User-Agent: Amazon|StepFunctions|HttpInvoke|us-east-1

description=Monthly%20subscription&metadata%5Border_details%5D=monthly%20report
%20data&customer=1234567890

Testing an HTTP Task

You can use the TestState API through the console, SDK, or the AWS CLI to test an HTTP Task. The
following procedure describes how to use the TestState API in the Step Functions console. You
can iteratively test the API request, response, and authentication details until your HTTP Task is
working as expected.

Test an HTTP Task state in Step Functions console

1. Open the Step Functions console.

2. Choose Create state machine to start creating a state machine or choose an existing state
machine that contains an HTTP Task.

Refer Step 4 if you're testing the task in an existing state machine.

3. In the Design mode of Workflow Studio, configure an HTTP Task visually. Or choose the Code
mode to copy-paste the state machine definition from your local development environment.

4. In Design mode, choose Test state in the Inspector panel of Workflow Studio.

5. In the Test state dialog box, do the following:

a. For Execution role, choose an execution role to test the state. If you don't have a role
with sufficient permissions for an HTTP Task, see Role for testing HTTP Tasks in Workflow
Studio to create a role.

b. (Optional) Provide any JSON input that your selected state needs for the test.

c. For Inspection level, keep the default selection of INFO. This level shows you the status of
the API call and the state output. This is useful for quickly checking the API response.

d. Choose Start test.

e. If the test succeeds, the state output appears on the right side of the Test state dialog
box. If the test fails, an error appears.

Testing an HTTP Task 796

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

In the State details tab of the dialog box, you can see the state definition and a link to
your EventBridge connection.

f. Change the Inspection level to TRACE. This level shows you the raw HTTP request and
response, and is useful for verifying headers, query parameters, and other API-specific
details.

g. Choose the Reveal secrets checkbox. In combination with TRACE, this setting lets you
see the sensitive data that the EventBridge connection inserts, such as API keys. The IAM
user identity that you use to access the console must have permission to perform the
states:RevealSecrets action. Without this permission, Step Functions throws an
access denied error when you start the test. For an example of an IAM policy that sets the
states:RevealSecrets permission, see IAM permissions for using TestState API.

The following image shows a test for an HTTP Task that succeeds. The Inspection level for
this state is set to TRACE. The HTTP request & response tab in the following image shows
the result of the third-party API call.

Testing an HTTP Task 797

AWS Step Functions Developer Guide

h. Choose Start test.

i. If the test succeeds, you can see your HTTP details under the HTTP request & response
tab.

Unsupported HTTP Task responses

An HTTP Task fails with the States.Runtime error if one of the following conditions is true for
the response returned:

• The response contains a content-type header of application/octet-stream, image/*,
video/*, or audio/*.

• The response can't be read as a valid string. For example, binary or image data.

Unsupported HTTP Task responses 798

AWS Step Functions Developer Guide

Service integration patterns

AWS Step Functions integrates with services directly in the Amazon States Language. You can
control these AWS services using three service integration patterns:

• Call a service and let Step Functions progress to the next state immediately after it gets an HTTP
response.

• Call a service and have Step Functions wait for a job to complete.

• Call a service with a task token and have Step Functions wait until that token is returned with a
payload.

Each of these service integration patterns is controlled by how you create a URI in the "Resource"
field of your task definition.

Ways to Call an Integrated Service

• Request Response

• Run a Job (.sync)

• Wait for a Callback with the Task Token

For information about configuring AWS Identity and Access Management (IAM) for integrated
services, see IAM Policies for integrated services.

Request Response

When you specify a service in the "Resource" string of your task state, and you only provide the
resource, Step Functions will wait for an HTTP response and then progress to the next state. Step
Functions will not wait for a job to complete.

The following example shows how you can publish an Amazon SNS topic.

"Send message to SNS":{
 "Type":"Task",
 "Resource":"arn:aws:states:::sns:publish",
 "Parameters":{
 "TopicArn":"arn:aws:sns:us-east-1:123456789012:myTopic",
 "Message":"Hello from Step Functions!"
 },

Service integration patterns 799

AWS Step Functions Developer Guide

 "Next":"NEXT_STATE"
}

This example references the Publish API of Amazon SNS. The workflow progresses to the next state
after calling the Publish API.

Tip

To deploy a sample workflow that uses the Request Response service integration pattern to
your AWS account, see Module 2 - Request Response of The AWS Step Functions Workshop.

Run a Job (.sync)

For integrated services such as AWS Batch and Amazon ECS, Step Functions can wait for a request
to complete before progressing to the next state. To have Step Functions wait, specify the
"Resource" field in your task state definition with the .sync suffix appended after the resource
URI.

For example, when submitting an AWS Batch job, use the "Resource" field in the state machine
definition as shown in this example.

"Manage Batch task": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobDefinition": "arn:aws:batch:us-east-2:123456789012:job-definition/
testJobDefinition",
 "JobName": "testJob",
 "JobQueue": "arn:aws:batch:us-east-2:123456789012:job-queue/testQueue"
 },
 "Next": "NEXT_STATE"
}

Having the .sync portion appended to the resource Amazon Resource Name (ARN) means
that Step Functions waits for the job to complete. After calling AWS Batch submitJob, the
workflow pauses. When the job is complete, Step Functions progresses to the next state. For more
information, see the AWS Batch sample project: Manage a batch job (AWS Batch, Amazon SNS).

Run a Job (.sync) 800

https://docs.aws.amazon.com/sns/latest/api/API_Publish.html
https://s12d.com/sfn-ws-request-response

AWS Step Functions Developer Guide

If a task using this (.sync) service integration pattern is aborted, and Step Functions is unable
to cancel the task, you might incur additional charges from the integrated service. A task can be
aborted if:

• The state machine execution is stopped.

• A different branch of a Parallel state fails with an uncaught error.

• An iteration of a Map state fails with an uncaught error.

Step Functions will make a best-effort attempt to cancel the task. For example, if a Step Functions
states:startExecution.sync task is aborted, it will call the Step Functions StopExecution
API action. However, it is possible that Step Functions will be unable to cancel the task. Reasons for
this include, but are not limited to:

• Your IAM execution role lacks permission to make the corresponding API call.

• A temporary service outage occurred.

When you use the .sync service integration pattern, Step Functions uses polling that consumes
your assigned quota and events to monitor a job's status. For .sync invocations within the same
account, Step Functions uses EventBridge events and polls the APIs that you specify in the Task
state. For cross-account .sync invocations, Step Functions only uses polling. For example, for
states:StartExecution.sync, Step Functions performs polling on the DescribeExecution API
and uses your assigned quota.

Tip

To deploy a sample workflow that uses the Run a Job (.sync) service integration pattern to
your AWS account, see Module 3 - Run a Job (.sync) of The AWS Step Functions Workshop.

To see a list of what integrated services support waiting for a job to complete (.sync), see
Optimized integrations for Step Functions.

Note

Service integrations that use the .sync pattern require additional IAM permissions. For
more information, see IAM Policies for integrated services.

Run a Job (.sync) 801

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://s12d.com/sfn-ws-run-job-sync

AWS Step Functions Developer Guide

In some cases, you may want Step Functions to continue your workflow before the job is fully
complete. You can achieve this in the same way as when using the Wait for a Callback with the Task
Token service integration pattern. To do this, pass a task token to your job, then return it using a
SendTaskSuccess or SendTaskFailure API call. Step Functions will use the data you provide in
that call to complete the task, stop monitoring the job, and continue the workflow.

Wait for a Callback with the Task Token

Callback tasks provide a way to pause a workflow until a task token is returned. A task might need
to wait for a human approval, integrate with a third party, or call legacy systems. For tasks like
these, you can pause Step Functions until the workflow execution reaches the one year service
quota (see, Quotas related to state throttling), and wait for an external process or workflow to
complete. For these situations Step Functions allows you to pass a task token to the AWS SDK
service integrations, and also to some Optimized service integrations. The task will pause until it
receives that task token back with a SendTaskSuccess or SendTaskFailure call.

If a Task state using the callback task token times out, a new random token is generated. You can
access the task tokens from the context object.

Note

A task token must contain at least one character, and cannot exceed 1024 characters.

To use .waitForTaskToken with an AWS SDK integration, the API you use must have a
parameter field in which to place the task token.

Note

You must pass task tokens from principals within the same AWS account. The tokens won't
work if you send them from principals in a different AWS account.

Tip

To deploy a sample workflow that uses a callback task token service integration pattern to
your AWS account, see Module 4 - Wait for a Callback with the Task Token of The AWS Step
Functions Workshop.

Wait for a Callback with the Task Token 802

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://s12d.com/sfn-ws-callback-token

AWS Step Functions Developer Guide

To see a list of what integrated services support waiting for a task token (.waitForTaskToken),
see Optimized integrations for Step Functions.

Topics

• Task Token Example

• Get a Token from the Context Object

• Configure a Heartbeat Timeout for a Waiting Task

Task Token Example

In this example, a Step Functions workflow needs to integrate with an external microservice to
perform a credit check as a part of an approval workflow. Step Functions publishes an Amazon SQS
message that includes a task token as a part of the message. An external system integrates with
Amazon SQS, and pulls the message off the queue. When that's finished, it returns the result and
the original task token. Step Functions then continues with its workflow.

Wait for a Callback with the Task Token 803

AWS Step Functions Developer Guide

The "Resource" field of the task definition that references Amazon SQS includes
.waitForTaskToken appended to the end.

"Send message to SQS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage.waitForTaskToken",
 "Parameters": {
 "QueueUrl": "https://sqs.us-east-2.amazonaws.com/123456789012/myQueue",
 "MessageBody": {
 "Message": "Hello from Step Functions!",
 "TaskToken.$": "$$.Task.Token"
 }
 },
 "Next": "NEXT_STATE"
}

This tells Step Functions to pause and wait for the task token. When you specify a resource using
.waitForTaskToken, the task token can be accessed in the "Parameters" field of your state
definition with a special path designation ($$.Task.Token). The initial $$. designates that
the path accesses the context object, and gets the task token for the current task in a running
execution.

When it's complete, the external service calls SendTaskSuccess or SendTaskFailure with the
taskToken included. Only then does the workflow continue to the next state.

Note

To avoid waiting indefinitely if a process fails to send the task token with
SendTaskSuccess or SendTaskFailure, see Configure a Heartbeat Timeout for a
Waiting Task.

Get a Token from the Context Object

The context object is an internal JSON object that contains information about your execution. Like
state input, it can be accessed with a path from the "Parameters" field during an execution.
When accessed from within a task definition, it includes information about the specific execution,
including the task token.

{

Wait for a Callback with the Task Token 804

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html

AWS Step Functions Developer Guide

 "Execution": {
 "Id": "arn:aws:states:us-
east-1:123456789012:execution:stateMachineName:executionName",
 "Input": {
 "key": "value"
 },
 "Name": "executionName",
 "RoleArn": "arn:aws:iam::123456789012:role...",
 "StartTime": "2019-03-26T20:14:13.192Z"
 },
 "State": {
 "EnteredTime": "2019-03-26T20:14:13.192Z",
 "Name": "Test",
 "RetryCount": 3
 },
 "StateMachine": {
 "Id": "arn:aws:states:us-east-1:123456789012:stateMachine:stateMachineName",
 "Name": "name"
 },
 "Task": {
 "Token": "h7XRiCdLtd/83p1E0dMccoxlzFhglsdkzpK9mBVKZsp7d9yrT1W"
 }
}

You can access the task token by using a special path from inside the "Parameters" field of your
task definition. To access the input or the context object, you first specify that the parameter will
be a path by appending a .$ to the parameter name. The following specifies nodes from both the
input and the context object in a "Parameters" specification.

"Parameters": {
 "Input.$": "$",
 "TaskToken.$": "$$.Task.Token"
 },

In both cases, appending .$ to the parameter name tells Step Functions to expect a path. In the
first case, "$" is a path that includes the entire input. In the second case, $$. specifies that the
path will access the context object, and $$.Task.Token sets the parameter to the value of the
task token in the context object of a running execution.

Wait for a Callback with the Task Token 805

AWS Step Functions Developer Guide

In the Amazon SQS example, .waitForTaskToken in the "Resource" field tells Step Functions
to wait for the task token to be returned. The "TaskToken.$": "$$.Task.Token" parameter
passes that token as a part of the Amazon SQS message.

"Send message to SQS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage.waitForTaskToken",
 "Parameters": {
 "QueueUrl": "https://sqs.us-east-2.amazonaws.com/123456789012/myQueue",
 "MessageBody": {
 "Message": "Hello from Step Functions!",
 "TaskToken.$": "$$.Task.Token"
 }
 },
 "Next": "NEXT_STATE"
}

For more information about the context object, see Context object in the Input and Output
Processing section in this guide.

Configure a Heartbeat Timeout for a Waiting Task

A task that is waiting for a task token will wait until the execution reaches the one year service
quota (see, Quotas related to state throttling). To avoid stuck executions you can configure a
heartbeat timeout interval in your state machine definition. Use the HeartbeatSeconds field to
specify the timeout interval.

{
 "StartAt": "Push to SQS",
 "States": {
 "Push to SQS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage.waitForTaskToken",
 "HeartbeatSeconds": 600,
 "Parameters": {
 "MessageBody": { "myTaskToken.$": "$$.Task.Token" },
 "QueueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/push-based-queue"
 },
 "ResultPath": "$.SQS",
 "End": true
 }
 }

Wait for a Callback with the Task Token 806

AWS Step Functions Developer Guide

}

In this state machine definition, a task pushes a message to Amazon SQS and waits for an external
process to call back with the provided task token. The "HeartbeatSeconds": 600 field sets the
heartbeat timeout interval to 10 minutes. The task will wait for the task token to be returned with
one of these API actions:

• SendTaskSuccess

• SendTaskFailure

• SendTaskHeartbeat

If the waiting task doesn't receive a valid task token within that 10-minute period, the task fails
with a States.Timeout error name.

For more information, see the callback task sample project Callback Pattern Example (Amazon
SQS, Amazon SNS, Lambda) .

Pass parameters to a service API

Use the Parameters field in a Task state to control what parameters are passed to a service API.

Inside the Parameters field, you must use the plural form of the array parameters in an API
action. For example, if you use the Filter field of the DescribeSnapshots API action for
integrating with Amazon EC2, you must define the field as Filters. If you don't use the plural
form, Step Functions returns the following error:

The field Filter is not supported by Step Functions.

Pass static JSON as parameters

You can include a JSON object directly in your state machine definition to pass as a parameter to a
resource.

For example, to set the RetryStrategy parameter for the SubmitJob API for AWS Batch, you
could include the following in your parameters.

"RetryStrategy": {
 "attempts": 5

Pass parameters to a service API 807

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskFailure.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_DescribeSnapshots.html#API_DescribeSnapshots_RequestParameters

AWS Step Functions Developer Guide

}

You can also pass multiple parameters with static JSON. As a more complete example, the
following are the Resource and Parameters fields of the specification of a task that publishes to
an Amazon SNS topic named myTopic.

"Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "TopicArn": "arn:aws:sns:us-east-2:123456789012:myTopic",
 "Message": "test message",
 "MessageAttributes": {
 "my attribute no 1": {
 "DataType": "String",
 "StringValue": "value of my attribute no 1"
 },
 "my attribute no 2": {
 "DataType": "String",
 "StringValue": "value of my attribute no 2"
 }
 }
 },

Pass state input as parameters using Paths

You can pass portions of the state input as parameters by using paths. A path is a string, beginning
with $, that's used to identify components within JSON text. Step Functions paths use JsonPath
syntax.

To specify that a parameter use a path, end the parameter name with .$. For example, if your state
input contains text within a node named message, you could pass that text as a parameter using a
path.

Consider the following state input:

{
 "comment": "A message in the state input",
 "input": {
 "message": "foo",
 "otherInfo": "bar"
 },
 "data": "example"

Pass state input as parameters using Paths 808

https://datatracker.ietf.org/wg/jsonpath/about/

AWS Step Functions Developer Guide

}

To pass the value of the node named message as a parameter, specify the following syntax:

"Parameters": {"myMessage.$": "$.input.message"},

Step Functions then passes the value foo as a parameter.

For more information about using parameters in Step Functions, see the following:

• Input and Output Processing

• InputPath, Parameters and ResultSelector

Pass Context Object Nodes as Parameters

In addition to static content, and nodes from the state input, you can pass nodes from the context
object as parameters. The context object is dynamic JSON data that exists during a state machine
execution. It includes information about your state machine and the current execution. You can
access the context object using a path in the "Parameters" field of a state definition.

For more information about the context object and how to access that data from a "Parameters"
field, see the following:

• Context object

• Accessing the Context Object

• Get a Token from the Context Object

Change log for supported AWS SDK integrations

The following table summarizes when services are initially integrated with Step Functions and
when their integration API was most recently updated. For details on using integrations, see AWS
SDK service integrations.

Important

API action support is released on a quarterly cadence. Updates to already supported
actions, such as new parameters, may not be immediately available.

Pass Context Object Nodes as Parameters 809

AWS Step Functions Developer Guide

Service Initial support Updated

AWS AppFabric January 18, 2024

B2B Data Interchange January 18, 2024

AWS Data Exports January 18, 2024

Amazon Bedrock January 18, 2024

Amazon Bedrock
Agents

January 18, 2024

Amazon Bedrock
Runtime Agents

January 18, 2024

Amazon Bedrock
Runtime

January 18, 2024

Amazon CloudFront
KeyValueStore

January 18, 2024

Amazon CodeGuru
Security

January 18, 2024

AWS Cost Optimizat
ion Hub

January 18, 2024

Amazon DataZone January 18, 2024

Amazon EKS Auth January 18, 2024

AWS Entity Resolutio
n

January 18, 2024

AWS Free Tier January 18, 2024

Amazon Inspector
Scan

January 18, 2024

Change log for integrations 810

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Launch Wizard January 18, 2024

Amazon Managed
Blockchain Query

January 18, 2024

AWS Elemental
MediaPackage V2

January 18, 2024

AWS HealthImaging January 18, 2024

Network Manager January 18, 2024

AWS Payment
Cryptography

January 18, 2024

AWS Payment
Cryptography Data

January 18, 2024

AWS Private CA
Connector for Active
Directory

January 18, 2024

Amazon Q Business January 18, 2024

Amazon Q Connect January 18, 2024

AWS re:Post January 18, 2024

Amazon Timestream
Query

January 18, 2024

Amazon Timestream
Write

January 18, 2024

Trusted Advisor January 18, 2024

Verified Permissions January 18, 2024

Change log for integrations 811

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon WorkSpaces
Thin Client

January 18, 2024

AWS CloudTrail Data June 16, 2023

Amazon CloudWatch
Internet Monitor

June 16, 2023

Amazon Interacti
ve Video Service
RealTime

June 16, 2023

AWS IoT TwinMaker June 16, 2023

Amazon OpenSearch
Ingestion

June 16, 2023

AWS Telco Network
Builder

June 16, 2023

Amazon VPC Lattice June 16, 2023

AWS Backup Storage February 17, 2023

Amazon Chime Media
Pipelines

February 17, 2023

Amazon Chime Voice February 17, 2023

AWS Clean Rooms February 17, 2023 January 18, 2024

Amazon CodeCatalyst February 17, 2023

Amazon Connect
Cases

February 17, 2023

AWS Control Tower February 17, 2023

Change log for integrations 812

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon DocumentD
B Elastic Clusters

February 17, 2023

Amazon EMR
Serverless

February 17, 2023

Amazon IVS Chat February 17, 2023

Amazon Kendra
Intelligent Ranking

February 17, 2023

AWS HealthOmics February 17, 2023

Amazon Redshift
Serverless

February 17, 2023

Amazon Security
Lake

February 17, 2023

AWS Health February 17, 2023

AWS IoT FleetWise February 17, 2023

AWS IoT RoboRunner February 17, 2023

AWS Mainframe
Modernization

February 17, 2023

AWS Migration Hub
Orchestrator

February 17, 2023

AWS Private 5G February 17, 2023

AWS Resource
Explorer

February 17, 2023

AWS SimSpace
Weaver

February 17, 2023

Change log for integrations 813

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Support App February 17, 2023

CloudWatch
Observability Access
Manager

February 17, 2023

EventBridge Pipes February 17, 2023

EventBridge
Scheduler

February 17, 2023

IAM Roles Anywhere February 17, 2023

Kinesis Video
WebRTC Storage

February 17, 2023

License Manager
Linux Subscriptions

February 17, 2023

License Manager User
Subscriptions

February 17, 2023

OpenSearch Serverles
s

February 17, 2023

Route 53 ARC Zonal
Shift

February 17, 2023

SageMaker Geospatia
l

February 17, 2023

SageMaker Metrics February 17, 2023

Systems Manager for
SAP

February 17, 2023

AWS Account
Management

April 19, 2022

Change log for integrations 814

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Amplify September 30, 2021

AWS App Mesh September 30, 2021

AWS App Runner September 30, 2021 February 17, 2023

AWS AppConfig September 30, 2021

AWS AppConfig Data April 19, 2022

AWS AppSync September 30, 2021 February 17, 2023

AWS Application
Discovery Service

September 30, 2021

AWS Application
Migration Service

September 30, 2021

AWS Audit Manager September 30, 2021

AWS Auto Scaling
Plans

September 30, 2021

AWS Backup September 30, 2021 February 17, 2023

AWS Backup gateway April 19, 2022 February 17, 2023

AWS Batch September 30, 2021 February 17, 2023

AWS Billing
Conductor

July 26, 2022 February 17, 2023

AWS Budgets September 30, 2021

AWS Certificate
Manager

September 30, 2021

AWS Private Certifica
te Authority

September 30, 2021

Change log for integrations 815

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Cloud Map September 30, 2021

AWS Cloud9 September 30, 2021

AWS CloudFormation September 30, 2021 February 17, 2023

AWS CloudHSM September 30, 2021

AWS CloudHSM September 30, 2021

AWS CloudTrail September 30, 2021 February 17, 2023

AWS Cloud Control April 19, 2022

AWS CodeBuild September 30, 2021

AWS CodeCommit September 30, 2021 February 17, 2023

AWS CodeDeploy September 30, 2021

AWS CodePipeline September 30, 2021

AWS CodeStar September 30, 2021

AWS CodeStar September 30, 2021

AWS CodeStar September 30, 2021

AWS Compute
Optimizer

September 30, 2021 February 17, 2023

AWS Config September 30, 2021 July 26, 2022

AWS Cost Explorer
Service

September 30, 2021 February 17, 2023

AWS Cost and Usage
Report

September 30, 2021

AWS Data Exchange September 30, 2021 July 26, 2022

Change log for integrations 816

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Data Pipeline September 30, 2021

AWS DataSync September 30, 2021 July 26, 2022

AWS Database
Migration Service

September 30, 2021

AWS Device Farm September 30, 2021

AWS Direct Connect September 30, 2021

AWS Directory
Service

September 30, 2021 February 17, 2023

AWS EC2 Instance
Connect

September 30, 2021

AWS Elastic Beanstalk September 30, 2021

AWS Elemental
MediaLive

September 30, 2021

AWS Elemental
MediaPackage

September 30, 2021

AWS Elemental
MediaPackage VOD

September 30, 2021

AWS Elemental
MediaStore

September 30, 2021

AWS Fault Injection
Service

September 30, 2021

AWS Firewall
Manager

September 30, 2021 February 17, 2023

AWS Glue September 30, 2021 February 17, 2023

Change log for integrations 817

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Glue DataBrew September 30, 2021

AWS IoT Greengrass September 30, 2021

AWS Ground Station September 30, 2021 February 17, 2023

AWS Identity and
Access Management

September 30, 2021

AWS IoT September 30, 2021 February 17, 2023

AWS IoT 1-Click September 30, 2021

AWS IoT Analytics September 30, 2021

AWS IoT Core Device
Advisor

September 30, 2021

AWS IoT Events September 30, 2021

AWS IoT Events Data September 30, 2021

AWS IoT Fleet Hub September 30, 2021

AWS IoT Greengrass
Version 2

September 30, 2021

AWS IoT Jobs Data
Plane

September 30, 2021

AWS IoT Secure
Tunneling

September 30, 2021

AWS IoT SiteWise September 30, 2021 February 17, 2023

AWS IoT Things
Graph

September 30, 2021

AWS IoT Wireless September 30, 2021 February 17, 2023

Change log for integrations 818

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Key Managemen
t Service

September 30, 2021 July 26, 2022

AWS Lake Formation September 30, 2021 February 17, 2023

AWS Lambda September 30, 2021 February 17, 2023

AWS License Manager September 30, 2021 February 17, 2023

AWS Marketplace September 30, 2021 February 17, 2023

AWS Marketplace
Commerce Analytics

September 30, 2021

AWS Marketplace
Entitlement Service

September 30, 2021

AWS Elemental
MediaTailor

September 30, 2021 July 26, 2022

AWS Migration Hub September 30, 2021

AWS Migration Hub
Config

September 30, 2021

AWS Migration Hub
Strategy Recommend
ations

April 19, 2022 February 17, 2023

AWS Mobile September 30, 2021

AWS Network
Firewall

September 30, 2021

AWS OpsWorks September 30, 2021

AWS OpsWorks CM September 30, 2021

AWS Organizations September 30, 2021 February 17, 2023

Change log for integrations 819

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Outposts September 30, 2021

AWS Panorama April 19, 2022 February 17, 2023

Amazon Relationa
l Database Service
Performance Insights

September 30, 2021

AWS Price List September 30, 2021

Amazon Relational
Database Service

September 30, 2021

AWS Resilience Hub April 19, 2022

AWS Resource Access
Manager

September 30, 2021

AWS Resource Groups September 30, 2021 February 17, 2023

AWS Resource Groups
Tagging API

September 30, 2021

AWS RoboMaker September 30, 2021

AWS IAM Identity
Center

September 30, 2021 February 17, 2023

AWS SSO OIDC September 30, 2021

AWS Secrets Manager September 30, 2021

AWS Security Token
Service

September 30, 2021

AWS Security Hub September 30, 2021

AWS Server Migration
Service

September 30, 2021

Change log for integrations 820

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Service Catalog September 30, 2021

AWS Service Catalog
AppRegistry

September 30, 2021 February 17, 2023

AWS Shield September 30, 2021

AWS Signer September 30, 2021

AWS IAM Identity
Center

September 30, 2021

AWS IAM Identity
Center Admin

September 30, 2021

AWS Step Functions September 30, 2021 February 17, 2023

AWS Storage
Gateway

September 30, 2021

AWS Support September 30, 2021

AWS Transfer Family September 30, 2021 February 17, 2023

AWS WAF September 30, 2021

AWS WAF Regional September 30, 2021

AWS WAFV2 September 30, 2021

AWS Well-Architected
Tool

September 30, 2021 February 17, 2023

AWS X-Ray September 30, 2021 February 17, 2023

AWS Marketplace
Metering Service

September 30, 2021

Change log for integrations 821

AWS Step Functions Developer Guide

Service Initial support Updated

AWS Serverless
Application Repositor
y

September 30, 2021

AWS Identity and
Access Management
Access Analyzer

September 30, 2021

Alexa for Business September 30, 2021

Amazon API Gateway September 30, 2021 February 17, 2023

Amazon API Gateway September 30, 2021

Amazon AppIntegr
ations

September 30, 2021

Amazon AppStream
2.0

September 30, 2021

Amazon AppFlow September 30, 2021 February 17, 2023

Amazon Athena September 30, 2021 February 17, 2023

Amazon Augmented
AI

September 30, 2021

Amazon Braket September 30, 2021

Amazon Chime September 30, 2021

Amazon Chime
Meetings

April 19, 2022 February 17, 2023

Amazon Cloud
Directory

September 30, 2021

Amazon CloudFront September 30, 2021 February 17, 2023

Change log for integrations 822

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon CloudSearch September 30, 2021

Amazon CloudWatch September 30, 2021 February 17, 2023

Amazon CloudWatch
Application Insights

September 30, 2021

CloudWatch
Evidently

April 19, 2022

Amazon CloudWatch
Logs

September 30, 2021

Amazon CloudWatch
RUM

April 19, 2022 February 17, 2023

Amazon CloudWatch
Synthetics

September 30, 2021

Amazon CodeGuru
Profiler

September 30, 2021

Amazon CodeGuru
Reviewer

September 30, 2021

Amazon Cognito September 30, 2021

Amazon Cognito
Identity Provider

September 30, 2021

Amazon Cognito Sync September 30, 2021

Amazon Comprehend September 30, 2021 February 17, 2023

Amazon Comprehend
Medical

September 30, 2021

Change log for integrations 823

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon Connect
Contact Lens

September 30, 2021

Amazon Connect
Participant Service

September 30, 2021

Amazon Connect September 30, 2021 February 17, 2023

Amazon Connect
Voice ID

April 19, 2022

Amazon Connect
Wisdom

April 19, 2022

Amazon Data
Lifecycle Manager

September 30, 2021

Amazon Detective September 30, 2021

Amazon
DevOps Guru

September 30, 2021 July 26, 2022

Amazon DocumentD
B (with MongoDB
compatibility)

September 30, 2021

Amazon DynamoDB September 30, 2021 February 17, 2023

Amazon DynamoDB
Streams

September 30, 2021

Amazon EC2
Container Registry

September 30, 2021

Amazon EC2
Container Service

September 30, 2021 February 17, 2023

Change log for integrations 824

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon EC2 Systems
Manager

September 30, 2021 February 17, 2023

Amazon EMR September 30, 2021 February 17, 2023

Amazon ElastiCache September 30, 2021

Amazon Elastic
Inference

September 30, 2021

Amazon Elastic Block
Store

September 30, 2021

Amazon Elastic
Compute Cloud

September 30, 2021 February 17, 2023

Amazon Elastic
Container Registry
Public

September 30, 2021

Amazon Elastic File
System

September 30, 2021

Amazon Elastic
Kubernetes Service

September 30, 2021 February 17, 2023

Amazon EMR September 30, 2021

Amazon Elastic
Transcoder

September 30, 2021

Amazon OpenSearch
Service

September 30, 2021 February 17, 2023

Amazon OpenSearch
Service

April 19, 2022 February 17, 2023

Amazon EventBridge September 30, 2021 February 17, 2023

Change log for integrations 825

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon FSx September 30, 2021 February 17, 2023

Amazon Forecast
Query

September 30, 2021 February 17, 2023

Amazon Forecast
Service

September 30, 2021 February 17, 2023

Amazon Fraud
Detector

September 30, 2021

Amazon GameLift September 30, 2021 February 17, 2023

Amazon GameSparks July 26, 2022

Amazon S3 Glacier September 30, 2021

Amazon GuardDuty September 30, 2021

AWS HealthLake September 30, 2021

Amazon Honeycode September 30, 2021

Amazon Inspector September 30, 2021

Amazon Inspector V2 April 19, 2022

Amazon Interactive
Video Service

September 30, 2021

Amazon Kendra September 30, 2021

Amazon Kinesis September 30, 2021

Amazon Kinesis
Analytics

September 30, 2021

Change log for integrations 826

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon Kinesis
Analytics V2

September 30, 2021

Amazon Kinesis
Firehose

September 30, 2021

Amazon Kinesis Video
Signaling Channels

September 30, 2021

Amazon Kinesis Video
Streams

September 30, 2021 February 17, 2023

Amazon Kinesis Video
Streams Archived
Media

September 30, 2021

Amazon Kinesis video
stream

September 30, 2021

Amazon Lex Model
Building Service

September 30, 2021

Amazon Lex Model
Building Service V2

September 30, 2021 February 17, 2023

Amazon Lex September 30, 2021

Amazon Lex Runtime
V2

September 30, 2021

Amazon Lightsail September 30, 2021 February 17, 2023

Amazon Location
Service

September 30, 2021 February 17, 2023

Amazon Lookout for
Equipment

September 30, 2021

Change log for integrations 827

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon Lookout for
Metrics

September 30, 2021 February 17, 2023

Amazon Lookout for
Vision

September 30, 2021

Amazon MQ September 30, 2021

Amazon Macie September 30, 2021

Amazon Macie 2 September 30, 2021 February 17, 2023

Amazon Managed
Blockchain

September 30, 2021 February 17, 2023

Amazon Managed
Grafana

April 19, 2022 February 17, 2023

Amazon Managed
Service for
Prometheus

September 30, 2021 February 17, 2023

Amazon Managed
Streaming for Apache
Kafka

September 30, 2021 February 17, 2023

Amazon Managed
Streaming for Apache
Kafkax

April 19, 2022

Amazon Managed
Workflows for
Apache Airflow

September 30, 2021

Amazon Mechanical
Turk

September 30, 2021

Change log for integrations 828

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon MemoryDB
for Redis

April 19, 2022 February 17, 2023

Amazon Nimble
Studio

September 30, 2021

Amazon Personalize September 30, 2021 February 17, 2023

Amazon Personalize
Events

September 30, 2021

Amazon Personalize
Runtime

September 30, 2021

Amazon Pinpoint September 30, 2021

Amazon Pinpoint
Email Service

September 30, 2021

Amazon Pinpoint
SMS and Voice
Service

September 30, 2021

Amazon Pinpoint
SMS and Voice V2
Service

July 26, 2022

Amazon Polly September 30, 2021

Amazon QLDB September 30, 2021

Amazon QLDB
Session

September 30, 2021

Amazon QuickSight September 30, 2021 February 17, 2023

Amazon Redshift September 30, 2021

Change log for integrations 829

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon Redshift
Data API

September 30, 2021

Amazon Rekognition September 30, 2021 February 17, 2023

Amazon Relational
Database Service

September 30, 2021 February 17, 2023

Amazon Route 53 September 30, 2021

Amazon Route 53
Recovery Control
Config

September 30, 2021 July 26, 2022

Amazon Route 53
Domains

September 30, 2021 February 17, 2023

Amazon Route 53
Resolver

September 30, 2021

Amazon S3 on
Outposts

September 30, 2021 July 26, 2022

Amazon SageMaker
Runtime Feature
Store Runtime

September 30, 2021

Amazon SageMaker
Runtime Runtime

September 30, 2021

Amazon SageMaker September 30, 2021 February 17, 2023

Amazon SageMaker
Edge Manager

September 30, 2021

Amazon Simple Email
Service

September 30, 2021

Change log for integrations 830

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon Simple Email
Service V2

September 30, 2021 February 17, 2023

Amazon Simple
Notification Service

September 30, 2021 February 17, 2023

Amazon Simple
Queue Service

September 30, 2021 February 17, 2023

Amazon Simple
Storage Service

September 30, 2021 February 17, 2023

Amazon Simple
Workflow Service

September 30, 2021

Amazon Textract September 30, 2021 February 17, 2023

Amazon Transcribe September 30, 2021

Amazon Translate September 30, 2021 February 17, 2023

Amazon WorkDocs September 30, 2021 February 17, 2023

Amazon WorkMail September 30, 2021 February 17, 2023

Amazon WorkMail
Message Flow

September 30, 2021

Amazon WorkSpaces September 30, 2021 February 17, 2023

Amazon WorkSpaces
Web

April 19, 2022 February 17, 2023

Amplify September 30, 2021

Amplify UI Builder April 19, 2022 February 17, 2023

Application Auto
Scaling

September 30, 2021

Change log for integrations 831

AWS Step Functions Developer Guide

Service Initial support Updated

Amazon EC2 Auto
Scaling

September 30, 2021 February 17, 2023

CodeArtifact September 30, 2021

DynamoDB Accelerat
or

September 30, 2021

EC2 Image Builder September 30, 2021

AWS Elastic Disaster
Recovery

April 19, 2022 February 17, 2023

Elastic Load
Balancing

September 30, 2021

Elastic Load
Balancing V2

September 30, 2021

MediaConnect September 30, 2021

Amazon S3 Control September 30, 2021 February 17, 2023

Recycle Bin for
Amazon EBS

April 19, 2022 February 17, 2023

Savings Plans September 30, 2021

Amazon EventBridge
Schema Registry

September 30, 2021

Service Quotas September 30, 2021

AWS Snowball September 30, 2021

Change log for integrations 832

AWS Step Functions Developer Guide

Sample projects for Step Functions

In the AWS Step Functions console, you can choose one of the following starter templates to
deploy state machines to your AWS accounts. These starter templates are ready-to-run sample
projects that automatically create the workflow proptotype and definition, and all related AWS
resources for the project.

You can use these sample projects to deploy and run them as is, or use the workflow prototypes
to build on them. If you build upon these projects, Step Functions creates the workflow prototype,
but doesn't deploy the resources listed in the workflow definition.

When you deploy the sample projects, they provision a fully functional state machine, and create
the related resources for the state machine to run. When you create a sample project, Step
Functions uses AWS CloudFormation to create the related resources referenced by the state
machine.

Topics

• Manage a batch job (AWS Batch, Amazon SNS)

• Manage a container task (Amazon ECS, Amazon SNS)

• Transfer data records (Lambda, DynamoDB, Amazon SQS)

• Poll for Job Status (Lambda, AWS Batch)

• Task Timer (Lambda, Amazon SNS)

• Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda)

• Manage an Amazon EMR Job

• Run an EMR Serverless job

• Start a Workflow within a Workflow (Step Functions, Lambda)

• Dynamically process data with a Map state

• Process a CSV file with Distributed Map

• Process data in an Amazon S3 bucket with Distributed Map

• Train a Machine Learning Model

• Tune a Machine Learning Model

• Process High-Volume Messages from Amazon SQS (Express Workflows)

833

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• Selective Checkpointing Example (Express Workflows)

• Build an AWS CodeBuild Project (CodeBuild, Amazon SNS)

• Preprocess data and train a machine learning model

• Lambda orchestration example

• Start an Athena query

• Execute multiple queries (Amazon Athena, Amazon SNS)

• Query large datasets (Amazon Athena, Amazon S3, AWS Glue, Amazon SNS)

• Keep data up to date (Amazon Athena, Amazon S3, AWS Glue)

• Manage an Amazon EKS cluster

• Make a call to API Gateway

• Call a microservice running on Fargate using API Gateway integration

• Send a custom event to EventBridge

• Invoke Synchronous Express Workflows

• Run ETL/ELT workflows using Amazon Redshift (Lambda, Amazon Redshift Data API)

• Use Step Functions and AWS Batch with error handling

• Fan out an AWS Batch job

• AWS Batch with Lambda

• Perform AI prompt-chaining with Amazon Bedrock

Manage a batch job (AWS Batch, Amazon SNS)

This sample project demonstrates how to submit an AWS Batch job, and then send an Amazon SNS
notification based on whether that job succeeds or fails. Deploying this sample project creates an
AWS Step Functions state machine, an AWS Batch job, and an Amazon SNS topic.

In this project, Step Functions uses a state machine to call the AWS Batch job synchronously. It
then waits for the job to succeed or fail, and it sends an Amazon SNS topic with a message about
whether the job succeeded or failed.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

Manage a batch job (AWS Batch, Amazon SNS) 834

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

2. Type Manage a batch job in the search box, and then choose Manage a batch job from the
search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• A AWS Batch job

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Manage a batch job sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)

Step 1: Create the state machine and provision resources 835

AWS Step Functions Developer Guide

definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

Step 2: Run the state machine 836

AWS Step Functions Developer Guide

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with AWS Batch and Amazon SNS by passing
parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls AWS Batch and
Amazon SNS by connecting to the Amazon Resource Name (ARN) in the Resource field, and by
passing Parameters to the service API.

Example State Machine Code 837

AWS Step Functions Developer Guide

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for notification on an AWS Batch
 job completion",
 "StartAt": "Submit Batch Job",
 "TimeoutSeconds": 3600,
 "States": {
 "Submit Batch Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobName": "BatchJobNotification",
 "JobQueue": "arn:aws:batch:us-east-1:123456789012:job-queue/
BatchJobQueue-7049d367474b4dd",
 "JobDefinition": "arn:aws:batch:us-east-1:123456789012:job-definition/
BatchJobDefinition-74d55ec34c4643c:1"
 },
 "Next": "Notify Success",
 "Catch": [
 {
 "ErrorEquals": ["States.ALL"],
 "Next": "Notify Failure"
 }
]
 },
 "Notify Success": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "Batch job submitted through Step Functions succeeded",
 "TopicArn": "arn:aws:sns:us-east-1:123456789012:batchjobnotificatiointemplate-
SNSTopic-1J757CVBQ2KHM"
 },
 "End": true
 },
 "Notify Failure": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "Batch job submitted through Step Functions failed",

Example State Machine Code 838

AWS Step Functions Developer Guide

 "TopicArn": "arn:aws:sns:us-east-1:123456789012:batchjobnotificatiointemplate-
SNSTopic-1J757CVBQ2KHM"
 },
 "End": true
 }
 }
}

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:ap-northeast-1:123456789012:ManageBatchJob-SNSTopic-
JHLYYG7AZPZI"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "batch:SubmitJob",
 "batch:DescribeJobs",
 "batch:TerminateJob"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [

IAM Example 839

AWS Step Functions Developer Guide

 "arn:aws:events:ap-northeast-1:123456789012:rule/
StepFunctionsGetEventsForBatchJobsRule"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Manage a container task (Amazon ECS, Amazon SNS)

This sample project demonstrates how to run an AWS Fargate task, and then send an Amazon SNS
notification based on whether that job succeeds or fails. Deploying this sample project will create
an AWS Step Functions state machine, a Fargate cluster, and an Amazon SNS topic.

In this project, Step Functions uses a state machine to call the Fargate task synchronously. It then
waits for the task to succeed or fail, and it sends an Amazon SNS topic with a message about
whether the job succeeded or failed.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Manage a container task in the search box, and then choose Manage a container
task from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An AWS Fargate cluster

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

Manage a container task (Amazon ECS, Amazon SNS) 840

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

The following image shows the workflow graph for the Manage a container task sample
project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Step 1: Create the state machine and provision resources 841

AWS Step Functions Developer Guide

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

Step 2: Run the state machine 842

AWS Step Functions Developer Guide

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with AWS Fargate and Amazon SNS by passing
parameters directly to those resources. Browse through this example state machine to see how
Step Functions uses a state machine to call the Fargate task synchronously, waits for the task to
succeed or fail, and sends an Amazon SNS topic with a message about whether the job succeeded
or failed.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for notification on an AWS
 Fargate task completion",
 "StartAt": "Run Fargate Task",
 "TimeoutSeconds": 3600,
 "States": {
 "Run Fargate Task": {
 "Type": "Task",
 "Resource": "arn:aws:states:::ecs:runTask.sync",
 "Parameters": {
 "LaunchType": "FARGATE",

Example State Machine Code 843

AWS Step Functions Developer Guide

 "Cluster": "arn:aws:ecs:ap-northeast-1:123456789012:cluster/
FargateTaskNotification-ECSCluster-VHLR20IF9IMP",
 "TaskDefinition": "arn:aws:ecs:ap-northeast-1:123456789012:task-definition/
FargateTaskNotification-ECSTaskDefinition-13YOJT8Z2LY5Q:1",
 "NetworkConfiguration": {
 "AwsvpcConfiguration": {
 "Subnets": [
 "subnet-07e1ad3abcfce6758",
 "subnet-04782e7f34ae3efdb"
],
 "AssignPublicIp": "ENABLED"
 }
 }
 },
 "Next": "Notify Success",
 "Catch": [
 {
 "ErrorEquals": ["States.ALL"],
 "Next": "Notify Failure"
 }
]
 },
 "Notify Success": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "AWS Fargate Task started by Step Functions succeeded",
 "TopicArn": "arn:aws:sns:ap-northeast-1:123456789012:FargateTaskNotification-
SNSTopic-1XYW5YD5V0M7C"
 },
 "End": true
 },
 "Notify Failure": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "AWS Fargate Task started by Step Functions failed",
 "TopicArn": "arn:aws:sns:ap-northeast-1:123456789012:FargateTaskNotification-
SNSTopic-1XYW5YD5V0M7C"
 },
 "End": true
 }
 }

Example State Machine Code 844

AWS Step Functions Developer Guide

}

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. It's a best
practice to include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:ap-northeast-1:123456789012:FargateTaskNotification-
SNSTopic-1XYW5YD5V0M7C"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:ap-northeast-1:123456789012:task-definition/
FargateTaskNotification-ECSTaskDefinition-13YOJT8Z2LY5Q:1"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "ecs:StopTask",
 "ecs:DescribeTasks"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",

IAM Example 845

AWS Step Functions Developer Guide

 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:ap-northeast-1:123456789012:rule/
StepFunctionsGetEventsForECSTaskRule"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Transfer data records (Lambda, DynamoDB, Amazon SQS)

This sample project demonstrates how to iteratively read items from an Amazon DynamoDB table
and send these items to an Amazon SQS queue using a Step Functions state machine. Deploying
this sample project will create a Step Functions state machine, a DynamoDB table, an AWS Lambda
function, and an Amazon SQS queue.

In this project, Step Functions uses the Lambda function to populate the DynamoDB table. The
state machine also uses a for loop to read each of the entries, and then sends each entry to an
Amazon SQS queue.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Transfer data records in the search box, and then choose Transfer data records
from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• A Lambda function for seeding the DynamoDB table

Transfer data records (Lambda, DynamoDB, Amazon SQS) 846

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• An Amazon SQS queue

• A DynamoDB table

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Transfer data records sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)

Step 1: Create the state machine and provision resources 847

AWS Step Functions Developer Guide

definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

Step 2: Run the state machine 848

AWS Step Functions Developer Guide

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with DynamoDB and Amazon SQS by passing
parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls DynamoDB and
Amazon SQS by connecting to the Amazon Resource Name (ARN) in the Resource field, and by
passing Parameters to the service API.

Example State Machine Code 849

AWS Step Functions Developer Guide

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment" : "An example of the Amazon States Language for reading messages from a
 DynamoDB table and sending them to SQS",
 "StartAt": "Seed the DynamoDB Table",
 "TimeoutSeconds": 3600,
 "States": {
 "Seed the DynamoDB Table": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:123456789012:function:sqsconnector-
SeedingFunction-T3U43VYDU5OQ",
 "ResultPath": "$.List",
 "Next": "For Loop Condition"
 },
 "For Loop Condition": {
 "Type": "Choice",
 "Choices": [
 {
 "Not": {
 "Variable": "$.List[0]",
 "StringEquals": "DONE"
 },
 "Next": "Read Next Message from DynamoDB"
 }
],
 "Default": "Succeed"
 },
 "Read Next Message from DynamoDB": {
 "Type": "Task",
 "Resource": "arn:aws:states:::dynamodb:getItem",
 "Parameters": {
 "TableName": "sqsconnector-DDBTable-1CAFOJWP8QD6I",
 "Key": {
 "MessageId": {"S.$": "$.List[0]"}
 }
 },
 "ResultPath": "$.DynamoDB",
 "Next": "Send Message to SQS"
 },
 "Send Message to SQS": {
 "Type": "Task",

Example State Machine Code 850

AWS Step Functions Developer Guide

 "Resource": "arn:aws:states:::sqs:sendMessage",
 "Parameters": {
 "MessageBody.$": "$.DynamoDB.Item.Message.S",
 "QueueUrl": "https://sqs.us-east-1.amazonaws.com/123456789012/sqsconnector-
SQSQueue-QVGQBW134PWK"
 },
 "ResultPath": "$.SQS",
 "Next": "Pop Element from List"
 },
 "Pop Element from List": {
 "Type": "Pass",
 "Parameters": {
 "List.$": "$.List[1:]"
 },
 "Next": "For Loop Condition"
 },
 "Succeed": {
 "Type": "Succeed"
 }
 }
}

For more information about passing parameters and managing results, see the following:

• Pass parameters to a service API

• ResultPath

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. It's a best
practice to include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "dynamodb:GetItem"
],
 "Resource": [

IAM Example 851

AWS Step Functions Developer Guide

 "arn:aws:dynamodb:ap-northeast-1:123456789012:table/
TransferDataRecords-DDBTable-3I41R5L5EAGT"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "sqs:SendMessage"
],
 "Resource": [
 "arn:aws:sqs:ap-northeast-1:123456789012:TransferDataRecords-SQSQueue-
BKWXTS09LIW1"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "lambda:invokeFunction"
],
 "Resource": [
 "arn:aws:lambda:ap-
northeast-1:123456789012:function:TransferDataRecords-SeedingFunction-VN4KY2TPAZSR"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Poll for Job Status (Lambda, AWS Batch)

This sample project creates an AWS Batch job poller. It implements an AWS Step Functions state
machine that uses AWS Lambda to create a Wait state loop that checks on an AWS Batch job.

This sample project creates and configures all resources so that your Step Functions workflow will
submit an AWS Batch job, and will wait for that job to complete before ending successfully.

Poll for Job Status (Lambda, AWS Batch) 852

AWS Step Functions Developer Guide

Note

You can also implement this pattern without using a Lambda function. For information
about controlling AWS Batch directly, see Using AWS Step Functions with other services.

This sample project creates the state machine, two Lambda functions, and an AWS Batch queue,
and configures the related IAM permissions.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Job Poller in the search box, and then choose Job Poller from the search results that
are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• Three Lambda functions to submit an AWS Batch job, get the current status of the
submitted AWS Batch job, and the final job completion status.

• An AWS Batch job

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Job Poller sample project:

Step 1: Create the state machine and provision resources 853

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)

Step 1: Create the state machine and provision resources 854

AWS Step Functions Developer Guide

definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

After all the resources are provisioned and deployed, the Start execution dialog box is displayed
with example input similar to the following.

{
 "jobName": "my-job",

Step 2: Run the state machine 855

AWS Step Functions Developer Guide

 "jobDefinition": "arn:aws:batch:us-east-2:123456789012:job-definition/
SampleJobDefinition-343f54b445d5312:1",
 "jobQueue": "arn:aws:batch:us-east-2:123456789012:job-queue/
SampleJobQueue-4d9d696031e1449",
 "wait_time": 60
 }

Note

wait_time instructs the Wait state to loop every 60 seconds.

• In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

Step 2: Run the state machine 856

AWS Step Functions Developer Guide

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

For example, to view the changing status of your AWS Batch job and the looping results of
your execution, choose the Output tab.

The following image shows the execution status graph in the Graph view. It also shows the
execution output for the selected step in the Output tab.

Example State Machine Code

The state machine in this sample project integrates with AWS Lambda to submit an AWS Batch job.
Browse through this example state machine to see how Step Functions controls Lambda and AWS
Batch.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Example State Machine Code 857

AWS Step Functions Developer Guide

{
 "Comment": "An example of the Amazon States Language that runs an AWS Batch job and
 monitors the job until it completes.",
 "StartAt": "Submit Job",
 "States": {
 "Submit Job": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-
east-1:111122223333:function:StepFunctionsSample-JobStatusPol-SubmitJobFunction-
jDaYcl4cx55r",
 "ResultPath": "$.guid",
 "Next": "Wait X Seconds"
 },
 "Wait X Seconds": {
 "Type": "Wait",
 "SecondsPath": "$.wait_time",
 "Next": "Get Job Status"
 },
 "Get Job Status": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-
east-1:111122223333:function:StepFunctionsSample-JobStatusPoll-
CheckJobFunction-1JkJwY10vonI",
 "Next": "Job Complete?",
 "InputPath": "$.guid",
 "ResultPath": "$.status"
 },
 "Job Complete?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.status",
 "StringEquals": "FAILED",
 "Next": "Job Failed"
 },
 {
 "Variable": "$.status",
 "StringEquals": "SUCCEEDED",
 "Next": "Get Final Job Status"
 }
],
 "Default": "Wait X Seconds"
 },

Example State Machine Code 858

AWS Step Functions Developer Guide

 "Job Failed": {
 "Type": "Fail",
 "Cause": "AWS Batch Job Failed",
 "Error": "DescribeJob returned FAILED"
 },
 "Get Final Job Status": {
 "Type": "Task",
 "Resource": "arn:aws::lambda:us-
east-1:111122223333:function:StepFunctionsSample-JobStatusPoll-
CheckJobFunction-1JkJwY10vonI",
 "InputPath": "$.guid",
 "End": true
 }
 }
 }

Task Timer (Lambda, Amazon SNS)

This sample project creates a task timer. It implements an AWS Step Functions state machine
that implements a Wait state, and uses an AWS Lambda function that sends an Amazon Simple
Notification Service (Amazon SNS) notification. A Wait state is a state type that waits for a trigger
to perform a single unit of work.

Note

This sample project implements an AWS Lambda function to send an Amazon Simple
Notification Service (Amazon SNS) notification. You can also send an Amazon SNS
notification directly from the Amazon States Language. See Using AWS Step Functions with
other services.

This sample project creates the state machine, a Lambda function, and an Amazon SNS topic,
and configures the related AWS Identity and Access Management (IAM) permissions. For more
information about the resources that are created with the Task Timer sample project, see the
following:

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

• AWS CloudFormation User Guide

Task Timer (Lambda, Amazon SNS) 859

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/

AWS Step Functions Developer Guide

• Amazon Simple Notification Service Developer Guide

• AWS Lambda Developer Guide

• IAM Getting Started Guide

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Task Timer in the search box, and then choose Task Timer from the search results that
are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• a Lambda function that sends an Amazon SNS notification.

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Task Timer sample project:

Step 1: Create the state machine and provision resources 860

https://docs.aws.amazon.com/sns/latest/dg/
https://docs.aws.amazon.com/lambda/latest/dg/
https://docs.aws.amazon.com/IAM/latest/GettingStartedGuide/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

Step 1: Create the state machine and provision resources 861

AWS Step Functions Developer Guide

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

After all the resources are provisioned and deployed, the Start execution dialog box is displayed
with example input similar to the following.

{
 "jobName": "my-job",{
 "topic": "arn:aws:sns:us-east-2:123456789012:StepFunctionsSample-TaskTimercc68840e-
c3d3-42a8-911e-821b7ce248e5-SNSTopic-44UjcFxzhACT",
 "message": "HelloWorld",
 "timer_seconds": 10
}

• In the Start execution dialog box, do the following:

Step 2: Run the state machine 862

AWS Step Functions Developer Guide

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

For example, the following image shows the output of the selected step Wait for Timestamp.
The output of this step is passed as input to the Send SNS Message step.

Step 2: Run the state machine 863

AWS Step Functions Developer Guide

Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda)

This sample project demonstrates how to have AWS Step Functions pause during a task, and wait
for an external process to return a task token that was generated when the task started.

When this sample project is deployed and an execution is started, the following steps occur:

1. Step Functions passes a message that includes a task token to an Amazon Simple Queue Service
(Amazon SQS) queue.

2. Step Functions then pauses, waiting for that token to be returned.

3. The Amazon SQS queue triggers an AWS Lambda function that calls SendTaskSuccess with
that same task token.

4. When the task token is received, the workflow continues.

5. The "Notify Success" task publishes an Amazon Simple Notification Service (Amazon SNS)
message that the callback was received.

To learn how to implement the callback pattern in Step Functions, see Wait for a Callback with the
Task Token.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda) 864

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

2. Type Callback pattern example in the search box, and then choose Callback pattern
example from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon SQS message queue.

• A Lambda function that calls the Step Functions API action SendTaskSuccess.

• An Amazon SNS topic to notify about the success or failure of a task indicating whether or
not the workflow can continue.

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Callback pattern example sample
project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

Step 1: Create the state machine and provision resources 865

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

Step 2: Run the state machine 866

AWS Step Functions Developer Guide

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

For example, to review how Step Functions progressed through the workflow and received a
callback from Amazon SQS, review the entries in the Events table. The following image shows
the execution output for the Notify Success step. It also shows the first five events from the
execution event history. Expand each event to view more details about that event.

Step 2: Run the state machine 867

AWS Step Functions Developer Guide

Lambda Callback Example

To see how the components of this sample project work together, see the resources that were
deployed in your AWS account. For example, here is the Lambda function that calls Step Functions
with the task token.

console.log('Loading function');
const aws = require('aws-sdk');

exports.lambda_handler = (event, context, callback) => {
 const stepfunctions = new aws.StepFunctions();

 for (const record of event.Records) {
 const messageBody = JSON.parse(record.body);
 const taskToken = messageBody.TaskToken;

 const params = {
 output: "\"Callback task completed successfully.\"",
 taskToken: taskToken
 };

Lambda Callback Example 868

AWS Step Functions Developer Guide

 console.log(`Calling Step Functions to complete callback task with params
 ${JSON.stringify(params)}`);

 stepfunctions.sendTaskSuccess(params, (err, data) => {
 if (err) {
 console.error(err.message);
 callback(err.message);
 return;
 }
 console.log(data);
 callback(null);
 });
 }
};

Manage an Amazon EMR Job

This sample project demonstrates Amazon EMR and AWS Step Functions integration.

It shows how to create an Amazon EMR cluster, add multiple steps and run them, and then
terminate the cluster.

Important

Amazon EMR does not have a free pricing tier. Running the sample project will incur costs.
You can find pricing information on the Amazon EMR pricing page. The availability of
Amazon EMR service integration is subject to the availability of Amazon EMR APIs. Because
of this, this sample project might not work correctly in some AWS Regions. See the Amazon
EMR documentation for limitations in special Regions.

Step 1: Create the State Machine and Provision Resources

1. Open the Step Functions console and choose Create state machine.

2. Type Manage an EMR job in the search box, and then choose Manage an EMR job from the
search results that are returned.

3. Choose Next to continue.

Manage an Amazon EMR Job 869

https://aws.amazon.com/emr/pricing/
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-emr.html
https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/govcloud-emr.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon S3 bucket

• An Amazon EMR cluster

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Manage an EMR job sample project:

Step 1: Create the State Machine and Provision Resources 870

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Step 1: Create the State Machine and Provision Resources 871

AWS Step Functions Developer Guide

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including

Step 2: Run the state machine 872

AWS Step Functions Developer Guide

input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with Amazon EMR by passing parameters
directly to those resources. Browse through this example state machine to see how Step Functions
uses a state machine to call the Amazon EMR task synchronously, waits for the task to succeed or
fail, and terminates the cluster.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for running jobs on Amazon EMR",
 "StartAt": "Create an EMR cluster",
 "States": {
 "Create an EMR cluster": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::elasticmapreduce:createCluster.sync",
 "Parameters": {
 "Name": "ExampleCluster",
 "VisibleToAllUsers": true,
 "ReleaseLabel": "emr-5.26.0",
 "Applications": [
 { "Name": "Hive" }
],
 "ServiceRole": "<EMR_SERVICE_ROLE>",
 "JobFlowRole": "<EMR_EC2_INSTANCE_PROFILE>",
 "LogUri": "s3://<EMR_LOG_S3_BUCKET>/logs/",
 "Instances": {
 "KeepJobFlowAliveWhenNoSteps": true,
 "InstanceFleets": [
 {
 "Name": "MyMasterFleet",
 "InstanceFleetType": "MASTER",
 "TargetOnDemandCapacity": 1,
 "InstanceTypeConfigs": [
 {
 "InstanceType": "m5.xlarge"
 }
]

Example State Machine Code 873

AWS Step Functions Developer Guide

 },
 {
 "Name": "MyCoreFleet",
 "InstanceFleetType": "CORE",
 "TargetOnDemandCapacity": 1,
 "InstanceTypeConfigs": [
 {
 "InstanceType": "m5.xlarge"
 }
]
 }
]
 }
 },
 "ResultPath": "$.cluster",
 "Next": "Run first step"
 },
 "Run first step": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::elasticmapreduce:addStep.sync",
 "Parameters": {
 "ClusterId.$": "$.cluster.ClusterId",
 "Step": {
 "Name": "My first EMR step",
 "ActionOnFailure": "CONTINUE",
 "HadoopJarStep": {
 "Jar": "command-runner.jar",
 "Args": ["<COMMAND_ARGUMENTS>"]
 }
 }
 },
 "Retry" : [
 {
 "ErrorEquals": ["States.ALL"],
 "IntervalSeconds": 1,
 "MaxAttempts": 3,
 "BackoffRate": 2.0
 }
],
 "ResultPath": "$.firstStep",
 "Next": "Run second step"
 },
 "Run second step": {
 "Type": "Task",

Example State Machine Code 874

AWS Step Functions Developer Guide

 "Resource": "arn:<PARTITION>:states:::elasticmapreduce:addStep.sync",
 "Parameters": {
 "ClusterId.$": "$.cluster.ClusterId",
 "Step": {
 "Name": "My second EMR step",
 "ActionOnFailure": "CONTINUE",
 "HadoopJarStep": {
 "Jar": "command-runner.jar",
 "Args": ["<COMMAND_ARGUMENTS>"]
 }
 }
 },
 "Retry" : [
 {
 "ErrorEquals": ["States.ALL"],
 "IntervalSeconds": 1,
 "MaxAttempts": 3,
 "BackoffRate": 2.0
 }
],
 "ResultPath": "$.secondStep",
 "Next": "Terminate Cluster"
 },
 "Terminate Cluster": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::elasticmapreduce:terminateCluster",
 "Parameters": {
 "ClusterId.$": "$.cluster.ClusterId"
 },
 "End": true
 }
 }
}

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. It's a best
practice to include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [

IAM Example 875

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:RunJobFlow",
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:TerminateJobFlows"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::123456789012:role/StepFunctionsSample-EMRJobManagement-
EMRServiceRole-ANPAJ2UCCR6DPCEXAMPLE",
 "arn:aws:iam::123456789012:role/StepFunctionsSample-
EMRJobManagementWJALRXUTNFEMI-ANPAJ2UCCR6DPCEXAMPLE-
EMREc2InstanceProfile-1ANPAJ2UCCR6DPCEXAMPLE"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:sa-east-1:123456789012:rule/
StepFunctionsGetEventForEMRRunJobFlowRule"
]
 }
]
}

The following policy ensures that addStep has sufficient permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

IAM Example 876

AWS Step Functions Developer Guide

 "elasticmapreduce:AddJobFlowSteps",
 "elasticmapreduce:DescribeStep",
 "elasticmapreduce:CancelSteps"
],
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:sa-east-1:123456789012:rule/
StepFunctionsGetEventForEMRAddJobFlowStepsRule"
]
 }
]
}
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Run an EMR Serverless job

This sample project demonstrates how you can create and start an EMR Serverless application. This
project also shows how you can run multiple jobs within that application.

This sample project creates the state machine, the supporting AWS resources, and configures the
related IAM permissions. Explore this sample project to learn about running EMR Serverless jobs
using Step Functions state machines, or use it as a starting point for your own projects.

Important

EMR Serverless does not have a free pricing tier. Running the sample project will incur
costs. You can find pricing information on the Amazon EMR Serverless pricing page.
In addition, the availability of EMR Serverless service integration is subject to the
availability of EMR Serverless APIs. Because of this, this sample project might not work

Run an EMR Serverless job 877

https://aws.amazon.com/emr/pricing/

AWS Step Functions Developer Guide

correctly or be available in some AWS Regions. See the Other considerations topic for
information about availability of EMR Serverless in AWS Regions.

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:

• A Step Functions state machine.

• Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the EMR Serverless CreateApplication
action.

• Job execution role for EMR Serverless. This role grants the permissions that an EMR Serverless
job run can assume when it calls other services on your behalf.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type EMR Serverless in the search box, and then choose Run an EMR Serverless job from
the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• A Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Run an EMR Serverless job sample
project:

AWS CloudFormation template and additional resources 878

https://docs.aws.amazon.com/emr/latest/EMR-Serverless-UserGuide/considerations.html
https://docs.aws.amazon.com/emr-serverless/latest/APIReference/API_CreateApplication.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 879

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Step 2: Run the state machine 880

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Start a Workflow within a Workflow (Step Functions, Lambda)

This sample project demonstrates how to use an AWS Step Functions state machine to start other
state machine executions. For information about starting state machine executions from another
state machine, see Start Workflow Executions from a Task State.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Start a workflow within a workflow in the search box, and then choose Start a
workflow within a workflow from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

Start a Workflow within a Workflow (Step Functions, Lambda) 881

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

This sample project deploys the following resources:

• An additional state machine. The execution of this state machine is started by the state
machine that you run.

• A callback Lambda function. This function is used in the additional state machine to
implement the callback mechanism.

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Start a workflow within a workflow
sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

Step 1: Create the state machine and provision resources 882

AWS Step Functions Developer Guide

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

Step 2: Run the state machine 883

AWS Step Functions Developer Guide

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates another state machine and AWS Lambda by
passing parameters directly to those resources.

Example State Machine Code 884

AWS Step Functions Developer Guide

Browse through this example state machine to see how Step Functions calls the StartExecution
API action for the other state machine. It launches two instances of the other state machine in
parallel: one using the Run a Job (.sync) pattern and one using the Wait for a Callback with the
Task Token pattern.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of combining workflows using a Step Functions StartExecution
 task state with various integration patterns.",
 "StartAt": "Start new workflow and continue",
 "States": {
 "Start new workflow and continue": {
 "Comment": "Start an execution of another Step Functions state machine and
 continue",
 "Type": "Task",
 "Resource": "arn:aws:states:::states:startExecution",
 "Parameters": {
 "StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:NestingPatternAnotherStateMachine-HZ9gtgspmdun",
 "Input": {
 "NeedCallback": false,
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
 }
 },
 "Next": "Start in parallel"
 },
 "Start in parallel": {
 "Comment": "Start two executions of the same state machine in parallel",
 "Type": "Parallel",
 "End": true,
 "Branches": [
 {
 "StartAt": "Start new workflow and wait for completion",
 "States": {
 "Start new workflow and wait for completion": {
 "Comment": "Start an execution of the same
 'NestingPatternAnotherStateMachine' and wait for its completion",
 "Type": "Task",
 "Resource": "arn:aws:states:::states:startExecution.sync",
 "Parameters": {

Example State Machine Code 885

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

 "StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:NestingPatternAnotherStateMachine-HZ9gtgspmdun",
 "Input": {
 "NeedCallback": false,
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
 }
 },
 "OutputPath": "$.Output",
 "End": true
 }
 }
 },
 {
 "StartAt": "Start new workflow and wait for callback",
 "States": {
 "Start new workflow and wait for callback": {
 "Comment": "Start an execution and wait for it to call back with a task
 token",
 "Type": "Task",
 "Resource": "arn:aws:states:::states:startExecution.waitForTaskToken",
 "Parameters": {
 "StateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:NestingPatternAnotherStateMachine-HZ9gtgspmdun",
 "Input": {
 "NeedCallback": true,
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id",
 "TaskToken.$": "$$.Task.Token"
 }
 },
 "End": true
 }
 }
 }
]
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Example State Machine Code 886

AWS Step Functions Developer Guide

Dynamically process data with a Map state

This sample project demonstrates dynamic parallelism using a Map state.

In this project, Step Functions uses an AWS Lambda function to pull messages off an Amazon SQS
queue, and pass a JSON array of those message to a Map state. For each message in the queue, the
state machine writes the message to DynamoDB, invokes the other Lambda function to remove the
message from Amazon SQS, and then publishes the message to the Amazon SNS topic.

For more information on Map states and Step Functions service integrations, see the following:

• Map

• Using AWS Step Functions with other services

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Dynamically process data with a Map state in the search box, and then choose
Dynamically process data with a Map state from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon SQS queue from which the Map state reads and removes messages iteratively.

• A DynamoDB table to which the Map state writes messages iteratively.

• An Amazon SNS topic to which Step Functions publishes the messages it reads from the
Amazon SQS queue.

• Two AWS Lambda functions

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

Dynamically process data with a Map state 887

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

The following image shows the workflow graph for the Dynamically process data with a Map
state sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

Step 1: Create the state machine and provision resources 888

AWS Step Functions Developer Guide

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 1: Create the state machine and provision resources 889

AWS Step Functions Developer Guide

After the resources of the sample project are deployed, you must add items to the Amazon SQS
queue and subscribe to the Amazon SNS topic before you run the state machine.

Step 2: Subscribe to the Amazon SNS topic

1. Open the Amazon SNS console.

2. Choose Topics and choose the topic that was created by the Map state sample project.

The name will be similar to MapSampleProj-SNSTopic-1CQO4HQ3IR1KN.

3. Choose Create subscription.

The Create subscription page is displayed, listing the Topic ARN for the topic.

4. Under Protocol, choose Email.

5. Under Endpoint, enter an email address to subscribe to the topic.

6. Choose Create subscription.

Note

You must confirm the subscription in your email before it is active.

7. Open the Subscription Confirmation email in the related account and open the Confirm
subscription URL.

The Subscription confirmed! page is displayed.

Step 3: Add messages to the Amazon SQS queue

1. Open the Amazon SQS console.

2. Choose the queue that was created by the Map state sample project.

The name will be similar to MapSampleProj-SQSQueue-1UDIC9VZDORN7.

3. Choose Send and receive messages.

4. On the Send and receive messages page, enter a message and choose Send message.

5. Entering another message and choose Send message. Continue entering more messages until
you have several in the Amazon SQS queue.

Step 2: Subscribe to the Amazon SNS topic 890

https://console.aws.amazon.com/sns/home
https://console.aws.amazon.com/sqs/home

AWS Step Functions Developer Guide

Step 4: Run the state machine

Note

Queues in Amazon SNS are eventually consistent. For best results, wait a few minutes
between populating your queue and running an execution of your state machine.

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including

Step 4: Run the state machine 891

AWS Step Functions Developer Guide

input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example state machine code

The state machine in this sample project integrates with Amazon SQS, Amazon SNS, and Lambda
by passing parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls Lambda,
DynamoDB, Amazon SNS by connecting to the Amazon Resource Name (ARN) in the Resource
field, and by passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for reading messages from an SQS
 queue and iteratively processing each message.",
 "StartAt": "Read messages from SQS Queue",
 "States": {
 "Read messages from SQS Queue": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "MapSampleProj-ReadFromSQSQueueLambda-1MY3M63RMJVA9"
 },
 "Next": "Are there messages to process?"
 },
 "Are there messages to process?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$",
 "StringEquals": "No messages",
 "Next": "Finish"
 }
],
 "Default": "Process messages"
 },
 "Process messages": {
 "Type": "Map",

Example state machine code 892

AWS Step Functions Developer Guide

 "Next": "Finish",
 "ItemsPath": "$",
 "Parameters": {
 "MessageNumber.$": "$$.Map.Item.Index",
 "MessageDetails.$": "$$.Map.Item.Value"
 },
 "Iterator": {
 "StartAt": "Write message to DynamoDB",
 "States": {
 "Write message to DynamoDB": {
 "Type": "Task",
 "Resource": "arn:aws:states:::dynamodb:putItem",
 "ResultPath": null,
 "Parameters": {
 "TableName": "MapSampleProj-DDBTable-YJDJ1MKIN6C5",
 "ReturnConsumedCapacity": "TOTAL",
 "Item": {
 "MessageId": {
 "S.$": "$.MessageDetails.MessageId"
 },
 "Body": {
 "S.$": "$.MessageDetails.Body"
 }
 }
 },
 "Next": "Remove message from SQS queue"
 },
 "Remove message from SQS queue": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "InputPath": "$.MessageDetails",
 "ResultPath": null,
 "Parameters": {
 "FunctionName": "MapSampleProj-DeleteFromSQSQueueLambda-198J2839ZO5K2",
 "Payload": {
 "ReceiptHandle.$": "$.ReceiptHandle"
 }
 },
 "Next": "Publish message to SNS topic"
 },
 "Publish message to SNS topic": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "InputPath": "$.MessageDetails",

Example state machine code 893

AWS Step Functions Developer Guide

 "Parameters": {
 "Subject": "Message from Step Functions!",
 "Message.$": "$.Body",
 "TopicArn": "arn:aws:sns:us-east-1:012345678910:MapSampleProj-
SNSTopic-1CQO4HQ3IR1KN"
 },
 "End": true
 }
 }
 }
 },
 "Finish": {
 "Type": "Succeed"
 }
 }
}

IAM example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-1:012345678901:function:MapSampleProj-
ReadFromSQSQueueLambda-1MY3M63RMJVA9",
 "arn:aws:lambda:us-east-1:012345678901:function:MapSampleProj-
DeleteFromSQSQueueLambda-198J2839ZO5K2"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "dynamodb:PutItem"
],
 "Resource": [

IAM example 894

AWS Step Functions Developer Guide

 "arn:aws:dynamodb:us-east-1:012345678901:table/MapSampleProj-DDBTable-
YJDJ1MKIN6C5"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-1:012345678901:MapSampleProj-
SNSTopic-1CQO4HQ3IR1KN"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Process a CSV file with Distributed Map

This sample project demonstrates how you can use the Distributed Map state to iterate over 10,000
rows of a CSV file that is generated using a Lambda function. The CSV file contains shipping
information of customer orders and is stored in an Amazon S3 bucket. The Distributed Map iterates
over a batch of 10 rows in the CSV file for data analysis.

The Distributed Map contains a Lambda function to detect any delayed orders. The Distributed
Map also contains an Inline Map to process the delayed orders in a batch and returns these delayed
orders in an array. For each delayed order, the Inline Map sends a message to an Amazon SQS
queue. Finally, this sample project stores the Map Run results to another Amazon S3 bucket in your
AWS account.

With Distributed Map, you can run up to 10,000 parallel child workflow executions at a time. In this
sample project, the maximum concurrency of Distributed Map is set at 1000 that limits it to 1000
parallel child workflow executions.

This sample project creates the state machine, the supporting AWS resources, and configures the
related IAM permissions. Explore this sample project to learn about using the Distributed Map for
orchestrating large-scale, parallel workloads, or use it as a starting point for your own projects.

Process a CSV file with Distributed Map 895

AWS Step Functions Developer Guide

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:

• A Step Functions state machine.

• Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the Lambda function's Invoke action.

• A Lambda function named CSVGeneratorFunction that generates a CSV file which contains
the customer order details.

• Execution role for the CSV generator Lambda function. This role grants the function permission
to access other AWS services.

• An Amazon S3 input bucket to store the generated CSV file.

• A delayed order detection Lambda function that analyzes the CSV file data and detects any
delayed orders.

• Execution role for the delayed order Lambda function. This role grants the function permission
to access other AWS services.

• An Amazon S3 output bucket to store the analysis results of the customer orders.

• An Amazon SQS queue to which Step Functions sends messages for every delayed order. These
messages contain the IDs of the customers and their orders.

• A CloudWatch log group that stores information related to the state machine’s execution history.

Important

Standard charges apply for each service.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Distributed Map to process a CSV file in S3 in the search box, and then
choose Distributed Map to process a CSV file in S3 from the search results that are returned.

3. Choose Next to continue.

AWS CloudFormation template and additional resources 896

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

For information about the resources that will be created for this sample project, see AWS
CloudFormation template and additional resources.

The following image shows the workflow graph for the Distributed Map to process a CSV file
in S3 sample project:

Step 1: Create the state machine and provision resources 897

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Step 1: Create the state machine and provision resources 898

AWS Step Functions Developer Guide

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

After all the resources are provisioned and deployed, you can run the state machine.

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

a. (Optional) Enter input values in JSON format to run your sample project.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

b. Choose Start execution.

c. (Optional) The Step Functions console directs you to a page that's titled with your
execution ID. This page is known as the Execution Details page. On this page, you can
review the execution results as the execution progresses or after it's complete.

After the execution is complete, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively.

• For details about the execution information you can view on the Execution Details page,
see Execution Details page – Interface overview.

• For more information about viewing a Distributed Map state's execution in the console,
see Examining Map Run.

Step 2: Run the state machine 899

AWS Step Functions Developer Guide

d. (Optional) Review the execution results exported to the Amazon S3 bucket. These results
include data, such as execution input and output, ARN, and execution status. For more
information, see ResultWriter.

Process data in an Amazon S3 bucket with Distributed Map

This sample project demonstrates how you can use the Distributed Map state to process large-scale
data, for example, analyze historical weather data and identify the weather station that has the
higest average temperature on the planet each month. The weather data is recorded in over 12,000
CSV files, which in turn are stored in an Amazon S3 bucket.

This sample project includes two Distributed Map states named Distributed S3 copy NOA Data and
ProcessNOAAData. Distributed S3 copy NOA Data iterates over the CSV files in a public Amazon
S3 bucket named noaa-gsod-pds and copies them to an Amazon S3 bucket in your AWS account.
ProcessNOAAData iterates over the copied files and includes a Lambda function that performs the
temperature analysis.

The sample project first checks the contents of the Amazon S3 bucket with a call to the
ListObjectsV2 API action. Based on the number of keys returned in response to this call, the sample
project takes one of the following decisions:

• If the key count is more than or equal to 1, the project transitions to the ProcessNOAAData
state. This Distributed Map state includes a Lambda function named TemperatureFunction that
finds the weather station that had the highest average temperature each month. This function
returns a dictionary with year-month as the key and a dictionary that contains information
about the weather station as the value.

• If the returned key count doesn't exceed 1, the Distributed S3 copy NOA Data state lists all
objects from the public bucket noaa-gsod-pds and iteratively copies the individual objects to
another bucket in your account in batches of 100. An Inline Map performs the iterative copying
of the objects.

After all objects are copied, the project transitions to the ProcessNOAAData state for processing
the weather data.

The sample project finally transitions to a reducer Lambda function that performs a final
aggregation of the results returned by the TemperatureFunction function and writes the results to
an Amazon DynamoDB table.

Process data in an Amazon S3 bucket with Distributed Map 900

https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html#AmazonS3-ListObjectsV2-response-MaxKeys

AWS Step Functions Developer Guide

With Distributed Map, you can run up to 10,000 parallel child workflow executions at a time. In this
sample project, the maximum concurrency of ProcessNOAAData Distributed Map is set at 3000
that limits it to 3000 parallel child workflow executions.

This sample project creates the state machine, the supporting AWS resources, and configures the
related IAM permissions. Explore this sample project to learn about using the Distributed Map for
orchestrating large-scale, parallel workloads, or use it as a starting point for your own projects.

Important

This sample project is only available in the US East (N. Virginia) Region.

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:

• A Step Functions state machine.

• Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the Lambda function's Invoke action.

• An Amazon S3 bucket named NOAADataBucket. This bucket contains the CSV files with weather
data.

• A Lambda function named ReducerFunction that performs a final aggregation of the weather
data and writes the results to an Amazon DynamoDB table.

• Execution role for the reducer Lambda function. This role grants the function permission to
access other AWS services.

• An Amazon S3 output bucket named ResultsBucket to store the weather analysis results.

• A DynamoDB table named ResultsDynamoDBTable that contains the results returned by the
ReducerFunction.

• A Lambda function named TemperatureFunction that finds the highest monthly average
temperature.

• Execution role for the Lambda function. This role grants the function permission to access other
AWS services.

• A CloudWatch log group that stores information related to the state machine’s execution history.

AWS CloudFormation template and additional resources 901

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html

AWS Step Functions Developer Guide

Important

Standard charges apply for each service.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Distributed Map to process files in S3 in the search box, and then choose
Distributed Map to process files in S3 from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

For information about the resources that will be created for this sample project, see AWS
CloudFormation template and additional resources.

The following image shows the workflow graph for the Distributed Map to process files in S3
sample project:

Step 1: Create the state machine and provision resources 902

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

Step 1: Create the state machine and provision resources 903

AWS Step Functions Developer Guide

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 1: Create the state machine and provision resources 904

AWS Step Functions Developer Guide

Step 2: Run the state machine

After all the resources are provisioned and deployed, you can run the state machine.

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

a. (Optional) Enter input values in JSON format to run your sample project.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

b. Choose Start execution.

c. (Optional) The Step Functions console directs you to a page that's titled with your
execution ID. This page is known as the Execution Details page. On this page, you can
review the execution results as the execution progresses or after it's complete.

After the execution is complete, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively.

• For details about the execution information you can view on the Execution Details page,
see Execution Details page – Interface overview.

• For more information about viewing a Distributed Map state's execution in the console,
see Examining Map Run.

d. (Optional) Review the execution results exported to the Amazon S3 bucket. These results
include data, such as execution input and output, ARN, and execution status. For more
information, see ResultWriter.

Step 2: Run the state machine 905

AWS Step Functions Developer Guide

Train a Machine Learning Model

This sample project demonstrates how to use SageMaker and AWS Step Functions to train a
machine learning model and how to batch transform a test dataset.

In this project, Step Functions uses a Lambda function to seed an Amazon S3 bucket with a test
dataset. It then trains a machine learning model and performs a batch transform, using the
SageMaker service integration.

For more information about SageMaker and Step Functions service integrations, see the following:

• Using AWS Step Functions with other services

• Manage SageMaker with Step Functions

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
SageMaker Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Train a machine learning model in the search box, and then choose Train a
machine learning model from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An AWS Lambda function

• An Amazon Simple Storage Service (Amazon S3) bucket

Train a Machine Learning Model 906

https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Train a machine learning model
sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 907

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Step 2: Run the state machine 908

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with SageMaker and AWS Lambda by passing
parameters directly to those resources, and uses an Amazon S3 bucket for the training data source
and output.

Browse through this example state machine to see how Step Functions controls Lambda and
SageMaker.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Example State Machine Code 909

AWS Step Functions Developer Guide

{
 "StartAt": "Generate dataset",
 "States": {
 "Generate dataset": {
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:TrainAndBatchTransform-SeedingFunction-17RNSOTG97HPV",
 "Type": "Task",
 "Next": "Train model (XGBoost)"
 },
 "Train model (XGBoost)": {
 "Resource": "arn:aws:states:::sagemaker:createTrainingJob.sync",
 "Parameters": {
 "AlgorithmSpecification": {
 "TrainingImage": "433757028032.dkr.ecr.us-west-2.amazonaws.com/
xgboost:latest",
 "TrainingInputMode": "File"
 },
 "OutputDataConfig": {
 "S3OutputPath": "s3://trainandbatchtransform-s3bucket-1jn1le6gadwfz/models"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 },
 "ResourceConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m4.xlarge",
 "VolumeSizeInGB": 30
 },
 "RoleArn": "arn:aws:iam::123456789012:role/TrainAndBatchTransform-
SageMakerAPIExecutionRole-Y9IX3DLF6EUO",
 "InputDataConfig": [
 {
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "ShardedByS3Key",
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://trainandbatchtransform-s3bucket-1jn1le6gadwfz/csv/
train.csv"
 }
 },
 "ChannelName": "train",
 "ContentType": "text/csv"
 }

Example State Machine Code 910

AWS Step Functions Developer Guide

],
 "HyperParameters": {
 "objective": "reg:logistic",
 "eval_metric": "rmse",
 "num_round": "5"
 },
 "TrainingJobName.$": "$$.Execution.Name"
 },
 "Type": "Task",
 "Next": "Save Model"
 },
 "Save Model": {
 "Parameters": {
 "PrimaryContainer": {
 "Image": "433757028032.dkr.ecr.us-west-2.amazonaws.com/xgboost:latest",
 "Environment": {},
 "ModelDataUrl.$": "$.ModelArtifacts.S3ModelArtifacts"
 },
 "ExecutionRoleArn": "arn:aws:iam::123456789012:role/TrainAndBatchTransform-
SageMakerAPIExecutionRole-Y9IX3DLF6EUO",
 "ModelName.$": "$.TrainingJobName"
 },
 "Resource": "arn:aws:states:::sagemaker:createModel",
 "Type": "Task",
 "Next": "Batch transform"
 },
 "Batch transform": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sagemaker:createTransformJob.sync",
 "Parameters": {
 "ModelName.$": "$$.Execution.Name",
 "TransformInput": {
 "CompressionType": "None",
 "ContentType": "text/csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://trainandbatchtransform-s3bucket-1jn1le6gadwfz/csv/
test.csv"
 }
 }
 },
 "TransformOutput": {
 "S3OutputPath": "s3://trainandbatchtransform-s3bucket-1jn1le6gadwfz/output"

Example State Machine Code 911

AWS Step Functions Developer Guide

 },
 "TransformResources": {
 "InstanceCount": 1,
 "InstanceType": "ml.m4.xlarge"
 },
 "TransformJobName.$": "$$.Execution.Name"
 },
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*",
 "Effect": "Allow"
 }

IAM Example 912

AWS Step Functions Developer Guide

]
}

The following policy allows the Lambda function to seed the Amazon S3 bucket with sample data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::trainandbatchtransform-s3bucket-1jn1le6gadwfz/*",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Tune a Machine Learning Model

This sample project demonstrates using SageMaker to tune the hyperparameters of a machine
learning model, and to batch transform a test dataset.

In this project, Step Functions uses a Lambda function to seed an Amazon S3 bucket with a test
dataset. It then creates a hyperparameter tuning job using the SageMaker service integration. It
then uses a Lambda function to extract the data path, saves the tuning model, extracts the model
name, and then runs a batch transform job to perform inference in SageMaker.

For more information about SageMaker and Step Functions service integrations, see the following:

• Using AWS Step Functions with other services

• Manage SageMaker with Step Functions

Note

This sample project may incur charges.

Tune a Machine Learning Model 913

AWS Step Functions Developer Guide

For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
SageMaker Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Tune a machine learning model in the search box, and then choose Tune a
machine learning model from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• Three AWS Lambda functions

• An Amazon Simple Storage Service (Amazon S3) bucket

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Tune a machine learning model
sample project:

Step 1: Create the state machine and provision resources 914

https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 915

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Step 2: Run the state machine 916

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with SageMaker and AWS Lambda by passing
parameters directly to those resources, and uses an Amazon S3 bucket for the training data source
and output.

Browse through this example state machine to see how Step Functions controls Lambda and
SageMaker.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Example State Machine Code 917

AWS Step Functions Developer Guide

{
 "StartAt": "Generate Training Dataset",
 "States": {
 "Generate Training Dataset": {
 "Resource": "arn:aws:lambda:us-
west-2:012345678912:function:StepFunctionsSample-SageMa-
LambdaForDataGeneration-1TF67BUE5A12U",
 "Type": "Task",
 "Next": "HyperparameterTuning (XGBoost)"
 },
 "HyperparameterTuning (XGBoost)": {
 "Resource":
 "arn:aws:states:::sagemaker:createHyperParameterTuningJob.sync",
 "Parameters": {
 "HyperParameterTuningJobName.$": "$.body.jobName",
 "HyperParameterTuningJobConfig": {
 "Strategy": "Bayesian",
 "HyperParameterTuningJobObjective": {
 "Type": "Minimize",
 "MetricName": "validation:rmse"
 },
 "ResourceLimits": {
 "MaxNumberOfTrainingJobs": 2,
 "MaxParallelTrainingJobs": 2
 },
 "ParameterRanges": {
 "ContinuousParameterRanges": [{
 "Name": "alpha",
 "MinValue": "0",
 "MaxValue": "1000",
 "ScalingType": "Auto"
 },
 {
 "Name": "gamma",
 "MinValue": "0",
 "MaxValue": "5",
 "ScalingType": "Auto"
 }
],
 "IntegerParameterRanges": [{
 "Name": "max_delta_step",
 "MinValue": "0",
 "MaxValue": "10",

Example State Machine Code 918

AWS Step Functions Developer Guide

 "ScalingType": "Auto"
 },
 {
 "Name": "max_depth",
 "MinValue": "0",
 "MaxValue": "10",
 "ScalingType": "Auto"
 }
]
 }
 },
 "TrainingJobDefinition": {
 "AlgorithmSpecification": {
 "TrainingImage": "433757028032.dkr.ecr.us-west-2.amazonaws.com/
xgboost:latest",
 "TrainingInputMode": "File"
 },
 "OutputDataConfig": {
 "S3OutputPath": "s3://stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/models"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 },
 "ResourceConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m4.xlarge",
 "VolumeSizeInGB": 30
 },
 "RoleArn": "arn:aws:iam::012345678912:role/StepFunctionsSample-
SageM-SageMakerAPIExecutionRol-1MNH1VS5CGGOG",
 "InputDataConfig": [{
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/csv/train.csv"
 }
 },
 "ChannelName": "train",
 "ContentType": "text/csv"
 },
 {

Example State Machine Code 919

AWS Step Functions Developer Guide

 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "FullyReplicated",
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/csv/validation.csv"
 }
 },
 "ChannelName": "validation",
 "ContentType": "text/csv"
 }],
 "StaticHyperParameters": {
 "precision_dtype": "float32",
 "num_round": "2"
 }
 }
 },
 "Type": "Task",
 "Next": "Extract Model Path"
 },
 "Extract Model Path": {
 "Resource": "arn:aws:lambda:us-
west-2:012345678912:function:StepFunctionsSample-SageM-LambdaToExtractModelPath-
V0R37CVARUS9",
 "Type": "Task",
 "Next": "HyperparameterTuning - Save Model"
 },
 "HyperparameterTuning - Save Model": {
 "Parameters": {
 "PrimaryContainer": {
 "Image": "433757028032.dkr.ecr.us-west-2.amazonaws.com/
xgboost:latest",
 "Environment": {},
 "ModelDataUrl.$": "$.body.modelDataUrl"
 },
 "ExecutionRoleArn": "arn:aws:iam::012345678912:role/
StepFunctionsSample-SageM-SageMakerAPIExecutionRol-1MNH1VS5CGGOG",
 "ModelName.$": "$.body.bestTrainingJobName"
 },
 "Resource": "arn:aws:states:::sagemaker:createModel",
 "Type": "Task",
 "Next": "Extract Model Name"
 },
 "Extract Model Name": {

Example State Machine Code 920

AWS Step Functions Developer Guide

 "Resource": "arn:aws:lambda:us-
west-2:012345678912:function:StepFunctionsSample-SageM-
LambdaToExtractModelName-8FUOB30SM5EM",
 "Type": "Task",
 "Next": "Batch transform"
 },
 "Batch transform": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sagemaker:createTransformJob.sync",
 "Parameters": {
 "ModelName.$": "$.body.jobName",
 "TransformInput": {
 "CompressionType": "None",
 "ContentType": "text/csv",
 "DataSource": {
 "S3DataSource": {
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/csv/test.csv"
 }
 }
 },
 "TransformOutput": {
 "S3OutputPath": "s3://stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/output"
 },
 "TransformResources": {
 "InstanceCount": 1,
 "InstanceType": "ml.m4.xlarge"
 },
 "TransformJobName.$": "$.body.jobName"
 },
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Example State Machine Code 921

AWS Step Functions Developer Guide

IAM Examples

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

The following IAM policy is attached to the state machine, and allows the state machine execution
to access necessary SageMaker, Lambda, and Amazon S3 resources.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sagemaker:CreateHyperParameterTuningJob",
 "sagemaker:DescribeHyperParameterTuningJob",
 "sagemaker:StopHyperParameterTuningJob",
 "sagemaker:ListTags",
 "sagemaker:CreateModel",
 "sagemaker:CreateTransformJob",
 "iam:PassRole"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-west-2:012345678912:function:StepFunctionsSample-
SageMa-LambdaForDataGeneration-1TF67BUE5A12U",
 "arn:aws:lambda:us-west-2:012345678912:function:StepFunctionsSample-
SageM-LambdaToExtractModelPath-V0R37CVARUS9",
 "arn:aws:lambda:us-west-2:012345678912:function:StepFunctionsSample-
SageM-LambdaToExtractModelName-8FUOB30SM5EM"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",

IAM Examples 922

AWS Step Functions Developer Guide

 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:*:*:rule/
StepFunctionsGetEventsForSageMakerTrainingJobsRule",
 "arn:aws:events:*:*:rule/
StepFunctionsGetEventsForSageMakerTransformJobsRule",
 "arn:aws:events:*:*:rule/
StepFunctionsGetEventsForSageMakerTuningJobsRule"
],
 "Effect": "Allow"
 }
]
}

The following IAM policy is referenced in the TrainingJobDefinition and
HyperparameterTuning fields of the HyperparameterTuning state.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "sagemaker:DescribeHyperParameterTuningJob",
 "sagemaker:StopHyperParameterTuningJob",
 "sagemaker:ListTags"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:GetObject",
 "s3:PutObject"

IAM Examples 923

AWS Step Functions Developer Guide

],
 "Resource": "arn:aws:s3:::stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:ListBucket"
],
 "Resource": "arn:aws:s3:::stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f",
 "Effect": "Allow"
 }
]
}

The following IAM policy allows the Lambda function to seed the Amazon S3 bucket with sample
data.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::stepfunctionssample-sagemak-
bucketformodelanddata-80fblmdlcs9f/*",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Process High-Volume Messages from Amazon SQS (Express
Workflows)

This sample project demonstrates how to use an AWS Step Functions Express Workflow to process
messages or data from a high-volume event source, such as Amazon Simple Queue Service

Process High-Volume Messages from Amazon SQS (Express Workflows) 924

AWS Step Functions Developer Guide

(Amazon SQS). Because Express Workflows can be started at a very high rate, they are ideal for
high-volume event processing or streaming data workloads.

Here are two commonly used methods to execute your state machine from an event source:

• Configure an Amazon CloudWatch Events rule to start a state machine execution whenever
the event source emits an event. For more information, see Creating a CloudWatch Events Rule
That Triggers on an Event.

• Map the event source to a Lambda function, and write function code to execute your state
machine. The AWS Lambda function is invoked each time your event source emits an event,
in turn starting a state machine execution. For more information see Using AWS Lambda with
Amazon SQS.

This sample project uses the second method to start an execution each time the Amazon SQS
queue sends a message. You can use a similar configuration to trigger Express Workflows
execution from other event sources, such as Amazon Simple Storage Service (Amazon S3), Amazon
DynamoDB, and Amazon Kinesis.

For more information about Express Workflows and Step Functions service integrations, see the
following:

• Standard vs. Express Workflows

• Using AWS Step Functions with other services

• Quotas

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Process high-volume messages from SQS in the search box, and then choose
Process high-volume messages from SQS from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

Step 1: Create the state machine and provision resources 925

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/Create-CloudWatch-Events-Rule.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://docs.aws.amazon.com/lambda/latest/dg/with-sqs.html
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• Four Lambda function

• An Amazon SQS queue

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Process high-volume messages from
SQS sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)

Step 1: Create the state machine and provision resources 926

AWS Step Functions Developer Guide

definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Trigger the state machine execution

1. Open the Amazon SQS console.

2. Select the queue that was created by the sample project.

The name will be similar to Example-SQSQueue-wJalrXUtnFEMI.

Step 2: Trigger the state machine execution 927

https://console.aws.amazon.com/sqs

AWS Step Functions Developer Guide

3. In the Queue Actions list, select Send a Message.

4. Use the copy button to copy the following message, and on the Send a Message window,
enter it, and choose Send Message.

Note

In this sample message, the input: line has been formatted with line breaks to fit the
page. Use the copy button or otherwise ensure that it is entered as a single line with no
breaks.

{
 "input":
 "QW5kIGxpa2UgdGhlIGJhc2VsZXNzIGZhYnJpYyBvZiB0aGlzIHZpc2lvbiwgVGhlIGNsb3VkLWNhcHBlZCB0b3dlcnMsIHRoZSBnb3JnZW

 91cyBwYWxhY2VzLCBUaGUgc29sZW1uIHRlbXBsZXMsIHRoZSBncmVhdCBnbG9iZSBpdHNlbGbigJQgWWVhLCBhbGwgd2hpY2ggaXQgaW5o

 ZXJpdOKAlHNoYWxsIGRpc3NvbHZlLCBBbmQgbGlrZSB0aGlzIGluc3Vic3RhbnRpYWwgcGFnZWFudCBmYWRlZCwgTGVhdmUgbm90IGEgcm

 FjayBiZWhpbmQuIFdlIGFyZSBzdWNoIHN0dWZmIEFzIGRyZWFtcyBhcmUgbWFkZSBvbiwgYW5kIG91ciBsaXR0bGUgbGlmZSBJcyByb3Vu

 ZGVkIHdpdGggYSBzbGVlcC4gU2lyLCBJIGFtIHZleGVkLiBCZWFyIHdpdGggbXkgd2Vha25lc3MuIE15IG9sZCBicmFpbiBpcyB0cm91Ym

 xlZC4gQmUgbm90IGRpc3R1cmJlZCB3aXRoIG15IGluZmlybWl0eS4gSWYgeW91IGJlIHBsZWFzZWQsIHJldGlyZSBpbnRvIG15IGNlbGwg

 QW5kIHRoZXJlIHJlcG9zZS4gQSB0dXJuIG9yIHR3byBJ4oCZbGwgd2FsayBUbyBzdGlsbCBteSBiZWF0aW5nIG1pbmQu"
}

5. Choose Close.

6. Open the Step Functions console.

7. Go to your Amazon CloudWatch Logs log group and inspect the logs. The name of the log
group will look like example-ExpressLogGroup-wJalrXUtnFEMI.

Example Lambda Function Code

The following is Lambda function code that shows how the initiating Lambda function starts a
state machine execution using the AWS SDK.

import boto3

Example Lambda Function Code 928

https://console.aws.amazon.com/cloudwatch/home?#logs:

AWS Step Functions Developer Guide

def lambda_handler(event, context):
 message_body = event['Records'][0]['body']
 client = boto3.client('stepfunctions')
 response = client.start_execution(
 stateMachineArn='${ExpressStateMachineArn}',
 input=message_body
)

Example State Machine Code

The Express Workflow in this sample project consists of a set of Lambda functions for text
processing.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of using Express workflows to run text processing for each
 message sent from an SQS queue.",
 "StartAt": "Decode base64 string",
 "States": {
 "Decode base64 string": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "<BASE64_DECODER_LAMBDA_FUNCTION_NAME>",
 "Payload.$": "$"
 },
 "Next": "Generate statistics"
 },
 "Generate statistics": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "<TEXT_STATS_GENERATING_LAMBDA_FUNCTION_NAME>",
 "Payload.$": "$"
 },
 "Next": "Remove special characters"
 },
 "Remove special characters": {

Example State Machine Code 929

AWS Step Functions Developer Guide

 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "<STRING_CLEANING_LAMBDA_FUNCTION_NAME>",
 "Payload.$": "$"
 },
 "Next": "Tokenize and count"
 },
 "Tokenize and count": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "<TOKENIZING_AND_WORD_COUNTING_LAMBDA_FUNCTION_NAME>",
 "Payload.$": "$"
 },
 "End": true
 }
 }
}

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-1:123456789012:function:example-
Base64DecodeLambda-wJalrXUtnFEMI",
 "arn:aws:lambda:us-east-1:123456789012:function:example-
StringCleanerLambda-je7MtGbClwBF",
 "arn:aws:lambda:us-east-1:123456789012:function:example-
TokenizerCounterLambda-wJalrXUtnFEMI",

IAM Example 930

AWS Step Functions Developer Guide

 "arn:aws:lambda:us-east-1:123456789012:function:example-
GenerateStatsLambda-je7MtGbClwBF"
],
 "Effect": "Allow"
 }
]
}

The folowing policy ensures that there are sufficient permissions for CloudWatch Logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Selective Checkpointing Example (Express Workflows)

This sample project demonstrates how to combine Standard and Express Workflows by running
a mock e-commerce workflow that does selective checkpointing. Deploying this sample project
creates a Standard workflows state machine, a nested Express Workflows state machine, an AWS

Selective Checkpointing Example (Express Workflows) 931

AWS Step Functions Developer Guide

Lambda function, an Amazon Simple Queue Service (Amazon SQS) queue, and an Amazon Simple
Notification Service (Amazon SNS) topic.

For more information about Express Workflows, nested workflows, and Step Functions service
integrations, see the following:

• Standard vs. Express Workflows

• Start Workflow Executions from a Task State

• Using AWS Step Functions with other services

Step 1: Create the State Machine and Provision Resources

1. Open the Step Functions console and choose Create state machine.

2. Type Selective checkpointing example in the search box, and then choose Selective
checkpointing example from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An AWS Lambda function

• An Amazon SQS queue

• An Amazon SNS topic

• An AWS Step Functions state machine of type Standard

• A Step Functions state machine of type Express

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Selective checkpointing example
sample project:

Step 1: Create the State Machine and Provision Resources 932

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the State Machine and Provision Resources 933

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

After the resources of the sample project are deployed do the following.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

Step 2: Run the state machine 934

AWS Step Functions Developer Guide

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

4. Go to your CloudWatch Logs log group and inspect the logs. The name of the log group will
look like example-ExpressLogGroup-wJalrXUtnFEMI.

Example State Machine Code for the Parent (Standard Workflows)

The state machine in this sample project integrates with Amazon SQS , Amazon SNS, and Step
Functions Express Workflows.

Example State Machine Code for the Parent (Standard Workflows) 935

https://console.aws.amazon.com/cloudwatch/home?#logs:

AWS Step Functions Developer Guide

Browse through this example state machine to see how Step Functions processes input from
Amazon SQS and Amazon SNS, and then uses a nested Express Workflows state machine to update
backend systems.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of combining standard and express workflows to run a mock e-
commerce workflow that does selective checkpointing.",
 "StartAt": "Approve Order Request",
 "States": {
 "Approve Order Request": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sqs:sendMessage.waitForTaskToken",
 "Parameters": {
 "QueueUrl": "<SQS_QUEUE_URL>",
 "MessageBody": {
 "MessageTitle": "Order Request received. Pausing workflow to wait
 for manual approval. ",
 "TaskToken.$": "$$.Task.Token"
 }
 },
 "Next": "Notify Order Success",
 "Catch": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "Next": "Notify Order Failure"
 }
]
 },
 "Notify Order Success": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Order has been approved. Resuming workflow.",
 "TopicArn": "<SNS_ARN>"
 },
 "Next": "Process Payment"
 },
 "Notify Order Failure": {

Example State Machine Code for the Parent (Standard Workflows) 936

AWS Step Functions Developer Guide

 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Order not approved. Order failed.",
 "TopicArn": "<SNS_ARN>"
 },
 "End": true
 },
 "Process Payment": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sqs:sendMessage.waitForTaskToken",
 "Parameters": {
 "QueueUrl": "<SQS_QUEUE_URL>",
 "MessageBody": {
 "MessageTitle": "Payment sent to third-party for processing.
 Pausing workflow to wait for response.",
 "TaskToken.$": "$$.Task.Token"
 }
 },
 "Next": "Notify Payment Success",
 "Catch": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "Next": "Notify Payment Failure"
 }
]
 },
 "Notify Payment Success": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Payment processing succeeded. Resuming workflow.",
 "TopicArn": "<SNS_ARN>"
 },
 "Next": "Workflow to Update Backend Systems"
 },
 "Notify Payment Failure": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Payment processing failed.",
 "TopicArn": "<SNS_ARN>"

Example State Machine Code for the Parent (Standard Workflows) 937

AWS Step Functions Developer Guide

 },
 "End": true
 },
 "Workflow to Update Backend Systems": {
 "Comment": "Starting an execution of an Express workflow to handle backend
 updates. Express workflows are fast and cost-effective for steps where checkpointing
 isn't required.",
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::states:startExecution.sync",
 "Parameters": {
 "StateMachineArn": "<UPDATE_DATABASE_EXPRESS_STATE_MACHINE_ARN>",
 "Input": {
 "AWS_STEP_FUNCTIONS_STARTED_BY_EXECUTION_ID.$": "$$.Execution.Id"
 }
 },
 "Next": "Ship the Package"
 },
 "Ship the Package": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Order and payment received, database is updated and the
 package is ready to ship.",
 "TopicArn": "<SNS_ARN>"
 },
 "End": true
 }
 }
}

Example IAM Role for the Parent State Machine

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

Amazon SNS policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [

Example IAM Role for the Parent State Machine 938

AWS Step Functions Developer Guide

 "sns:Publish"
],
 "Resource": "arn:aws:sns:us-east-1:123456789012:Checkpoint-SNSTopic-
wJalrXUtnFEMI",
 "Effect": "Allow"
 }
]
}

Amazon SQS policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sqs:SendMessage"
],
 "Resource": "arn:aws:sqs:us-east-1:123456789012:Checkpoint-SQSQueue-
je7MtGbClwBF",
 "Effect": "Allow"
 }
]
}

States execution policy:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "states:StartExecution",
 "states:DescribeExecution",
 "states:StopExecution"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",

Example IAM Role for the Parent State Machine 939

AWS Step Functions Developer Guide

 "events:DescribeRule"
],
 "Resource": "arn:aws:events:us-east-1:123456789012:rule/
StepFunctionsGetEventsForStepFunctionsExecutionRule",
 "Effect": "Allow"
 }
]
}

Example State Machine Code for the Nested State Machine (Express
Workflows)

The state machine in this sample project updates backend information when called by the parent
state machine.

Browse through this example state machine to see how Step Functions updates the different
components of the mock e-commerce backend systems.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{

Example State Machine Code for the Nested State Machine (Express Workflows) 940

AWS Step Functions Developer Guide

 "StartAt": "Update Order History",
 "States": {
 "Update Order History": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "Checkpoint-UpdateDatabaseLambdaFunction-wJalrXUtnFEMI",
 "Payload": {
 "Message": "Update order history."
 }
 },
 "Next": "Update Data Warehouse"
 },
 "Update Data Warehouse": {
 "Type" : "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "Checkpoint-UpdateDatabaseLambdaFunction-wJalrXUtnFEMI",
 "Payload": {
 "Message": "Update data warehouse."
 }
 },
 "Next": "Update Customer Profile"
 },
 "Update Customer Profile": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "Checkpoint-UpdateDatabaseLambdaFunction-wJalrXUtnFEMI",
 "Payload": {
 "Message": "Update customer profile."
 }
 },
 "Next": "Update Inventory"
 },
 "Update Inventory": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Parameters": {
 "FunctionName": "Checkpoint-UpdateDatabaseLambdaFunction-wJalrXUtnFEMI",
 "Payload": {
 "Message": "Update inventory."
 }
 },

Example State Machine Code for the Nested State Machine (Express Workflows) 941

AWS Step Functions Developer Guide

 "End": true
 }
 }
}

Example IAM Role for Child State Machine

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-1:123456789012:function:Example-
UpdateDatabaseLambdaFunction-wJalrXUtnFEMI"
],
 "Effect": "Allow"
 }
]
}

The following policy ensures that there are sufficient permissions for CloudWatch Logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"

Example IAM Role for Child State Machine 942

AWS Step Functions Developer Guide

],
 "Resource": [
 "*"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Build an AWS CodeBuild Project (CodeBuild, Amazon SNS)

This sample project demonstrates how to use AWS Step Functions to build an AWS CodeBuild
project, run tests, and then send an Amazon SNS notification.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Start a CodeBuild build in the search box, and then choose Start a CodeBuild
build from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An AWS CodeBuild build

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Start a CodeBuild build sample
project:

Build an AWS CodeBuild Project (CodeBuild, Amazon SNS) 943

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

Step 1: Create the state machine and provision resources 944

AWS Step Functions Developer Guide

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names

Step 2: Run the state machine 945

AWS Step Functions Developer Guide

don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with CodeBuild and Amazon SNS.

Browse through this example state machine to see how Step Functions uses a state machine to
build a CodeBuild project, and then sends an Amazon SNS topic with a message about whether the
job succeeded or failed.

For more information about how Step Functions can control other AWS services, see Using AWS
Step Functions with other services.

{
 "Comment": "An example of using CodeBuild to run tests, get test results and send a
 notification.",
 "StartAt": "Trigger CodeBuild Build",
 "States": {
 "Trigger CodeBuild Build": {

Example State Machine Code 946

AWS Step Functions Developer Guide

 "Type": "Task",
 "Resource": "arn:aws:states:::codebuild:startBuild.sync",
 "Parameters": {
 "ProjectName": "CodeBuildProject-Dtw1jBhEYGDf"
 },
 "Next": "Get Test Results"
 },
 "Get Test Results": {
 "Type": "Task",
 "Resource": "arn:aws:states:::codebuild:batchGetReports",
 "Parameters": {
 "ReportArns.$": "$.Build.ReportArns"
 },
 "Next": "All Tests Passed?"
 },
 "All Tests Passed?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.Reports[0].Status",
 "StringEquals": "SUCCEEDED",
 "Next": "Notify Success"
 }
],
 "Default": "Notify Failure"
 },
 "Notify Success": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "CodeBuild build tests succeeded",
 "TopicArn": "arn:aws:sns:sa-east-1:123456789012:StepFunctionsSample-
CodeBuildExecution3da9ead6-bc1f-4441-99ac-591c140019c4-SNSTopic-EVYLVNGW85JP"
 },
 "End": true
 },
 "Notify Failure": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "CodeBuild build tests failed",
 "TopicArn": "arn:aws:sns:sa-east-1:123456789012:StepFunctionsSample-
CodeBuildExecution3da9ead6-bc1f-4441-99ac-591c140019c4-SNSTopic-EVYLVNGW85JP"
 },

Example State Machine Code 947

AWS Step Functions Developer Guide

 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Preprocess data and train a machine learning model

This sample project demonstrates how to use SageMaker and AWS Step Functions to preprocess
data and train a machine learning model.

In this project, Step Functions uses a Lambda function to seed an Amazon S3 bucket with a test
dataset and a Python script for data processing. It then trains a machine learning model and
performs a batch transform, using the SageMaker service integration.

For more information about SageMaker and Step Functions service integrations, see the following:

• Using AWS Step Functions with other services

• Manage SageMaker with Step Functions

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
SageMaker Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Preprocess data and train a machine learning model in the search box, and
then choose Preprocess data and train a machine learning model from the search results
that are returned.

3. Choose Next to continue.

Preprocess data and train a machine learning model 948

https://aws.amazon.com/sagemaker/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An AWS Lambda function

• An Amazon S3 bucket

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Preprocess data and train a machine
learning model sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

Step 1: Create the state machine and provision resources 949

AWS Step Functions Developer Guide

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 1: Create the state machine and provision resources 950

AWS Step Functions Developer Guide

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 2: Run the state machine 951

AWS Step Functions Developer Guide

Example State Machine Code

The state machine in this sample project integrates with SageMaker and AWS Lambda by passing
parameters directly to those resources, and uses an Amazon S3 bucket for the training data source
and output.

Browse through this example state machine to see how Step Functions controls Lambda and
SageMaker.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "StartAt": "Generate dataset",
 "States": {
 "Generate dataset": {
 "Resource": "arn:aws:lambda:sa-east-1:1234567890:function:FeatureTransform-
LambaForDataGeneration-17M8LX7IO9LUW",
 "Type": "Task",
 "Next": "Standardization: x' = (x - x̄) / σ"
 },
 "Standardization: x' = (x - x̄) / σ": {
 "Resource": "arn:aws:states:::sagemaker:createProcessingJob.sync",
 "Parameters": {
 "ProcessingResources": {
 "ClusterConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m5.xlarge",
 "VolumeSizeInGB": 10
 }
 },
 "ProcessingInputs": [
 {
 "InputName": "input-1",
 "S3Input": {
 "S3Uri": "s3://featuretransform-bucketforcodeanddata-1jn1le6gadwfz/
input/raw.csv",
 "LocalPath": "/opt/ml/processing/input",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "S3DataDistributionType": "FullyReplicated",
 "S3CompressionType": "None"
 }

Example State Machine Code 952

AWS Step Functions Developer Guide

 },
 {
 "InputName": "code",
 "S3Input": {
 "S3Uri": "s3://featuretransform-bucketforcodeanddata-1jn1le6gadwfz/
code/transform.py",
 "LocalPath": "/opt/ml/processing/input/code",
 "S3DataType": "S3Prefix",
 "S3InputMode": "File",
 "S3DataDistributionType": "FullyReplicated",
 "S3CompressionType": "None"
 }
 }
],
 "ProcessingOutputConfig": {
 "Outputs": [
 {
 "OutputName": "train_data",
 "S3Output": {
 "S3Uri": "s3://featuretransform-
bucketforcodeanddata-1jn1le6gadwfz/train",
 "LocalPath": "/opt/ml/processing/output/train",
 "S3UploadMode": "EndOfJob"
 }
 }
]
 },
 "AppSpecification": {
 "ImageUri": "737474898029.dkr.ecr.sa-east-1.amazonaws.com/sagemaker-scikit-
learn:0.20.0-cpu-py3",
 "ContainerEntrypoint": [
 "python3",
 "/opt/ml/processing/input/code/transform.py"
]
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 300
 },
 "RoleArn": "arn:aws:iam::1234567890:role/SageMakerAPIExecutionRole-
AIDACKCEVSQ6C2EXAMPLE",
 "ProcessingJobName.$": "$$.Execution.Name"
 },
 "Type": "Task",
 "Next": "Train model (XGBoost)"

Example State Machine Code 953

AWS Step Functions Developer Guide

 },
 "Train model (XGBoost)": {
 "Resource": "arn:aws:states:::sagemaker:createTrainingJob.sync",
 "Parameters": {
 "AlgorithmSpecification": {
 "TrainingImage": "855470959533.dkr.ecr.sa-east-1.amazonaws.com/
xgboost:latest",
 "TrainingInputMode": "File"
 },
 "OutputDataConfig": {
 "S3OutputPath": "s3://featuretransform-bucketforcodeanddata-1jn1le6gadwfz/
models"
 },
 "StoppingCondition": {
 "MaxRuntimeInSeconds": 86400
 },
 "ResourceConfig": {
 "InstanceCount": 1,
 "InstanceType": "ml.m5.xlarge",
 "VolumeSizeInGB": 30
 },
 "RoleArn": "arn:aws:iam::1234567890:role/SageMakerAPIExecutionRole-
AIDACKCEVSQ6C2EXAMPLE",
 "InputDataConfig": [
 {
 "DataSource": {
 "S3DataSource": {
 "S3DataDistributionType": "ShardedByS3Key",
 "S3DataType": "S3Prefix",
 "S3Uri": "s3://featuretransform-bucketforcodeanddata-1jn1le6gadwfz"
 }
 },
 "ChannelName": "train",
 "ContentType": "text/csv"
 }
],
 "HyperParameters": {
 "objective": "reg:logistic",
 "eval_metric": "rmse",
 "num_round": "5"
 },
 "TrainingJobName.$": "$$.Execution.Name"
 },
 "Type": "Task",

Example State Machine Code 954

AWS Step Functions Developer Guide

 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "cloudwatch:PutMetricData",
 "logs:CreateLogStream",
 "logs:PutLogEvents",
 "logs:CreateLogGroup",
 "logs:DescribeLogStreams",
 "s3:GetObject",
 "s3:PutObject",
 "s3:ListBucket",
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

The following policy allows the Lambda function to seed the Amazon S3 bucket with sample data.

{
 "Version": "2012-10-17",

IAM Example 955

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Action": [
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::featuretransform-
bucketforcodeanddata-1jn1le6gadwfz/*",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Lambda orchestration example

This sample project demonstrates how to integrate AWS Lambda functions in Step Functions state
machines.

In this project, Step Functions uses Lambda functions to check a stock price and determine a buy
or sell trading recommendation. The user is then provided this recommendation and can choose
whether to buy or sell the stock. The result of the trade is returned using an SNS topic.

For more information about Step Functions service integrations, see the following:

• Using AWS Step Functions with other services

• IAM policies for:

• IAM policies for AWS Lambda

• IAM policies for Amazon SQS

• IAM policies for Amazon SNS

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below a
certain level of usage. For more information about AWS costs and the free tier, see Pricing.

Lambda orchestration example 956

https://aws.amazon.com/step-functions/pricing

AWS Step Functions Developer Guide

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Orchestrate Lambda functions in the search box, and then choose Orchestrate
Lambda functions from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• Five Lambda functions

• An Amazon Simple Queue Service queue

• An Amazon Simple Notification Service topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Orchestrate Lambda functions sample
project:

Step 1: Create the state machine and provision resources 957

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 958

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

After all the resources are provisioned and deployed, the Start execution dialog box is displayed.

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

Step 2: Run the state machine 959

AWS Step Functions Developer Guide

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

About the state machine and its execution

The state machine in this sample project integrates with AWS Lambda by passing parameters
directly to those resources, uses an Amazon SQS queue to manage the request for human approval,
and uses an Amazon SNS topic to return the results of the query.

A Step Functions execution receives a JSON text as input and passes that input to the first state in
the workflow. Individual states receive JSON data as input and usually pass JSON data as output

About the state machine and its execution 960

AWS Step Functions Developer Guide

to the next state. In this sample project, the output of each step is passed as input to the next
step in the workflow. For example, the Generate Buy/Sell recommendation step receives the
output of the Check Stock Price step as input. Further, the output of the Generate Buy/Sell
recommendation step is passed as input to the next step, Request Human Approval, which mimics
a human approval step.

Note

To view the output returned by a step and the input passed on to a step, open the
Execution Details page for your workflow execution. In the Step details section, view the
input and output for each step you select in the View mode.

To implement a human approval step, you typically pause the workflow execution until a task
token is returned. In this sample project, a message is passed to an Amazon SQS queue, which is
used as a trigger to the Lambda function defined to handle callback functionality. The message
contains a task token and the output returned by the preceding step. The Lambda function is
invoked with the payload of the message. The workflow execution is paused until it receives the
task token back with a SendTaskSuccess API call. For more information about task tokens, see
Wait for a Callback with the Task Token.

The following code for the StepFunctionsSample-HelloLambda-ApproveSqsLambda
function shows how it is defined to automatically approve any tasks submitted by the Amazon SQS
queue through the Step Functions state machine.

Sample Lambda function code to handle callback functionality and return the task token

exports.lambdaHandler = (event, context, callback) => {
 const stepfunctions = new aws.StepFunctions();

 // For every record in sqs queue
 for (const record of event.Records) {
 const messageBody = JSON.parse(record.body);
 const taskToken = messageBody.TaskToken;

 const params = {
 output: "\"approved\"",
 taskToken: taskToken
 };

About the state machine and its execution 961

https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskSuccess.html

AWS Step Functions Developer Guide

 console.log(`Calling Step Functions to complete callback task with params
 ${JSON.stringify(params)}`);

 // Approve
 stepfunctions.sendTaskSuccess(params, (err, data) => {
 if (err) {
 console.error(err.message);
 callback(err.message);
 return;
 }
 console.log(data);
 callback(null);
 });
 }
};

Browse through this example state machine to see how Step Functions controls Lambda and
Amazon SQS.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "StartAt": "Check Stock Price",
 "States": {
 "Check Stock Price": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-HelloLam-
CheckStockPriceLambda-444455556666",
 "Next": "Generate Buy/Sell recommendation"
 },
 "Generate Buy/Sell recommendation": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-Hello-
GenerateBuySellRecommend-123456789012",
 "ResultPath": "$.recommended_type",
 "Next": "Request Human Approval"
 },
 "Request Human Approval": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sqs:sendMessage.waitForTaskToken",

About the state machine and its execution 962

AWS Step Functions Developer Guide

 "Parameters": {
 "QueueUrl": "https://sqs.us-west-1.amazonaws.com/111122223333/
StepFunctionsSample-HelloLambda4444-5555-6666-RequestHumanApprovalSqs-777788889999",
 "MessageBody": {
 "Input.$": "$",
 "TaskToken.$": "$$.Task.Token"
 }
 },
 "ResultPath": null,
 "Next": "Buy or Sell?"
 },
 "Buy or Sell?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.recommended_type",
 "StringEquals": "buy",
 "Next": "Buy Stock"
 },
 {
 "Variable": "$.recommended_type",
 "StringEquals": "sell",
 "Next": "Sell Stock"
 }
]
 },
 "Buy Stock": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-HelloLambda-
BuyStockLambda-000000000000",
 "Next": "Report Result"
 },
 "Sell Stock": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-HelloLambda-
SellStockLambda-111111111111",
 "Next": "Report Result"
 },
 "Report Result": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {

About the state machine and its execution 963

AWS Step Functions Developer Guide

 "TopicArn": "arn:aws:sns:us-west-1:111122223333:StepFunctionsSample-
HelloLambda1111-2222-3333-ReportResultSnsTopic-222222222222",
 "Message": {
 "Input.$": "$"
 }
 },
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Examples

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-HelloLam-
CheckStockPriceLambda-444455556666",
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],

IAM Examples 964

AWS Step Functions Developer Guide

 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-Hello-
GenerateBuySellRecommend-123456789012",
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-HelloLambda-
BuyStockLambda-777788889999",
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:us-
west-1:111122223333:function:StepFunctionsSample-HelloLambda-
SellStockLambda-000000000000",
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "sqs:SendMessage*"
],

IAM Examples 965

AWS Step Functions Developer Guide

 "Resource": "arn:aws:sqs:us-west-1:111122223333:StepFunctionsSample-
HelloLambda4444-5555-6666-RequestHumanApprovalSqs-111111111111",
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": "arn:aws:sns:us-west-1:111122223333:StepFunctionsSample-
HelloLambda1111-2222-3333-ReportResultSnsTopic-222222222222",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Start an Athena query

This sample project, which is based on standard workflows, demonstrates how to use Step
Functions and Amazon Athena to start an Athena query and send a notification with query results.

In this project, Step Functions uses Lambda functions and an AWS Glue crawler to generate a set of
example data. It then performs a query using the Athena service integration and returns the results
using an SNS topic.

For more information about Athena and Step Functions service integrations, see the following:

• Using AWS Step Functions with other services

• Call Athena with Step Functions

Note

This sample project may incur charges.

Start an Athena query 966

AWS Step Functions Developer Guide

For new AWS users, a free usage tier is available. On this tier, services are free below a
certain level of usage. For more information about AWS costs and the Free Tier, see Athena
Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Start an Athena query in the search box, and then choose Start an Athena query
from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon Athena query

• An AWS Glue crawler

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Start an Athena query sample project:

Step 1: Create the state machine and provision resources 967

https://aws.amazon.com/athena/pricing/
https://aws.amazon.com/athena/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 968

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Step 2: Run the state machine 969

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with Athena and AWS Lambda by passing
parameters directly to those resources, and uses an SNS topic to return the results of the query.

Browse through this example state machine to see how Step Functions controls Lambda and
Athena.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{

Example State Machine Code 970

AWS Step Functions Developer Guide

 "StartAt": "Generate example log",
 "States": {
 "Generate example log": {
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:StepFunctionsSample-
Athena-LambdaForDataGeneration-AKIAIOSFODNN7EXAMPLE",
 "Type": "Task",
 "Next": "Run Glue crawler"
 },
 "Run Glue crawler": {
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:StepFunctionsSample-
Athen-LambdaForInvokingCrawler-AKIAI44QH8DHBEXAMPLE",
 "Type": "Task",
 "Next": "Start an Athena query"
 },
 "Start an Athena query": {
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "SELECT * FROM \"athena-sample-project-db-wJalrXUtnFEMI\".\"log
\" limit 1",
 "WorkGroup": "stepfunctions-athena-sample-project-workgroup-wJalrXUtnFEMI"
 },
 "Type": "Task",
 "Next": "Get query results"
 },
 "Get query results": {
 "Resource": "arn:aws:states:::athena:getQueryResults",
 "Parameters": {
 "QueryExecutionId.$": "$.QueryExecution.QueryExecutionId"
 },
 "Type": "Task",
 "Next": "Send query results"
 },
 "Send query results": {
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "TopicArn": "arn:aws:sns:us-east-1:111122223333:StepFunctionsSample-
AthenaDataQueryd1111-2222-3333-777788889999-SNSTopic-ANPAJ2UCCR6DPCEXAMPLE",
 "Message": {
 "Input.$": "$.ResultSet.Rows"
 }
 },
 "Type": "Task",
 "End": true
 }

Example State Machine Code 971

AWS Step Functions Developer Guide

 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-1:111122223333:function:StepFunctionsSample-
Athena-LambdaForDataGeneration-AKIAIOSFODNN7EXAMPLE",
 "arn:aws:lambda:us-east-1:111122223333:function:StepFunctionsSample-
Athen-LambdaForInvokingCrawler-AKIAI44QH8DHBEXAMPLE"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-1:111122223333:StepFunctionsSample-
AthenaDataQueryd1111-2222-3333-777788889999-SNSTopic-ANPAJ2UCCR6DPCEXAMPLE"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "athena:getQueryResults",
 "athena:startQueryExecution",
 "athena:stopQueryExecution",
 "athena:getQueryExecution",

IAM Example 972

AWS Step Functions Developer Guide

 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:us-east-1:111122223333:workgroup/stepfunctions-athena-
sample-project-workgroup-wJalrXUtnFEMI",
 "arn:aws:athena:us-east-1:111122223333:datacatalog/*"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": "arn:aws:s3:::*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"

IAM Example 973

AWS Step Functions Developer Guide

],
 "Resource": [
 "arn:aws:glue:us-east-1:111122223333:database/*",
 "arn:aws:glue:us-east-1:111122223333:table/*",
 "arn:aws:glue:us-east-1:111122223333:catalog"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Execute multiple queries (Amazon Athena, Amazon SNS)

This sample project demonstrates how to run Athena queries in succession and then in parallel,
handle errors and then send an Amazon SNS notification based on whether the queries succeed or
fail.

In this project, Step Functions uses a state machine to run Athena queries synchronously. After the
query results are returned, enter parallel state with two Athena queries executing in parallel. It
then waits for the job to succeed or fail, and it sends an Amazon SNS topic with a message about
whether the job succeeded or failed.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Execute multiple queries in the search box, and then choose Execute multiple
queries from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• Amazon Athena queries

Execute multiple queries (Amazon Athena, Amazon SNS) 974

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Execute multiple queries sample
project:

5. Choose Use template to continue with your selection.

Step 1: Create the state machine and provision resources 975

AWS Step Functions Developer Guide

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Step 1: Create the state machine and provision resources 976

AWS Step Functions Developer Guide

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 2: Run the state machine 977

AWS Step Functions Developer Guide

Example State Machine Code

The state machine in this sample project integrates with Amazon Athena and Amazon SNS by
passing parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls Amazon Athena
and Amazon SNS by connecting to the Amazon Resource Name (ARN) in the Resource field, and
by passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of using Athena to execute queries in sequence and parallel,
 with error handling and notifications.",
 "StartAt": "Generate Example Data",
 "States": {
 "Generate Example Data": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "<ATHENA_FUNCTION_NAME>"
 },
 "Next": "Load Data to Database"
 },
 "Load Data to Database": {
 "Type": "Task",
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "<ATHENA_QUERYSTRING>",
 "WorkGroup": "<ATHENA_WORKGROUP>"
 },
 "Catch": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "Next": "Send query results"
 }
],
 "Next": "Map"
 },

Example State Machine Code 978

AWS Step Functions Developer Guide

 "Map": {
 "Type": "Parallel",
 "ResultSelector": {
 "Query1Result.$": "$[0].ResultSet.Rows",
 "Query2Result.$": "$[1].ResultSet.Rows"
 },
 "Catch": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "Next": "Send query results"
 }
],
 "Branches": [
 {
 "StartAt": "Start Athena query 1",
 "States": {
 "Start Athena query 1": {
 "Type": "Task",
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "<ATHENA_QUERYSTRING>",
 "WorkGroup": "<ATHENA_WORKGROUP>"
 },
 "Next": "Get Athena query 1 results"
 },
 "Get Athena query 1 results": {
 "Type": "Task",
 "Resource": "arn:aws:states:::athena:getQueryResults",
 "Parameters": {
 "QueryExecutionId.$": "$.QueryExecution.QueryExecutionId"
 },
 "End": true
 }
 }
 },
 {
 "StartAt": "Start Athena query 2",
 "States": {
 "Start Athena query 2": {
 "Type": "Task",
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {

Example State Machine Code 979

AWS Step Functions Developer Guide

 "QueryString": "<ATHENA_QUERYSTRING>",
 "WorkGroup": "<ATHENA_WORKGROUP>"
 },
 "Next": "Get Athena query 2 results"
 },
 "Get Athena query 2 results": {
 "Type": "Task",
 "Resource": "arn:aws:states:::athena:getQueryResults",
 "Parameters": {
 "QueryExecutionId.$": "$.QueryExecution.QueryExecutionId"
 },
 "End": true
 }
 }
 }
],
 "Next": "Send query results"
 },
 "Send query results": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message.$": "$",
 "TopicArn": "<SNS_TOPIC_ARN>"
 },
 "End": true
 }
 }
 }

IAM Examples

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

AthenaStartQueryExecution

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM Examples 980

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",
 "athena:stopQueryExecution",
 "athena:getQueryExecution",
 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:us-east-2:123456789012:workgroup/stepfunctions-athena-
sample-project-workgroup-ztuvu9yuix",
 "arn:aws:athena:us-east-2:123456789012:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",

IAM Examples 981

AWS Step Functions Developer Guide

 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws:glue:us-east-2:123456789012:catalog",
 "arn:aws:glue:us-east-2:123456789012:database/*",
 "arn:aws:glue:us-east-2:123456789012:table/*",
 "arn:aws:glue:us-east-2:123456789012:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [
 "*"
]
 }
]
}

AthenaGetQueryResults

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "athena:getQueryResults"
],
 "Resource": [
 "arn:aws:us-east-2:123456789012:workgroup/*"
]
 },
 {

IAM Examples 982

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 }
]
}

SNSPublish

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-2:123456789012:StepFunctionsSample-
AthenaMultipleQueriese1ec229b-5cbe-4754-a8a8-078474bac878-SNSTopic-9AID0HEJT7TH"
]
 }
]
}

LambdaInvokeFunction

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-2:123456789012:function:StepFunctionsSample-
Athen-LambdaForStringGeneratio-GQFQjN7mE9gl:*"

IAM Examples 983

AWS Step Functions Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-2:123456789012:function:StepFunctionsSample-
Athen-LambdaForStringGeneratio-GQFQjN7mE9gl"
]
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Query large datasets (Amazon Athena, Amazon S3, AWS Glue,
Amazon SNS)

This sample project demonstrates how to ingest a large data set in Amazon S3 and partition it
through AWS Glue Crawlers, then execute Amazon Athena queries against that partition.

In this project, the Step Functions state machine invokes an AWS Glue crawler that partitions a
large dataset in Amazon S3. Once the AWS Glue crawler returns a success message, the workflow
executes Athena queries against that partition. Once query execution is successfully complete, an
Amazon SNS notification is sent to an Amazon SNS topic.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Query large datasets in the search box, and then choose Query large datasets from
the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

Query large datasets (Amazon Athena, Amazon S3, AWS Glue, Amazon SNS) 984

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

This sample project deploys the following resources:

• An Amazon S3 bucket

• An AWS Glue crawler

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Query large datasets sample project:

5. Choose Use template to continue with your selection.

Step 1: Create the state machine and provision resources 985

AWS Step Functions Developer Guide

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Step 1: Create the state machine and provision resources 986

AWS Step Functions Developer Guide

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 2: Run the state machine 987

AWS Step Functions Developer Guide

Example State Machine Code

The state machine in this sample project integrates with Amazon S3, AWS Glue, Amazon Athena
and Amazon SNS by passing parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls Amazon S3, AWS
Glue, Amazon Athena and Amazon SNS by connecting to the Amazon Resource Name (ARN) in the
Resource field, and by passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example demonstrates how to ingest a large data set in Amazon S3 and
 partition it through aws Glue Crawlers, then execute Amazon Athena queries against
 that partition.",
 "StartAt": "Start Crawler",
 "States": {
 "Start Crawler": {
 "Type": "Task",
 "Next": "Get Crawler status",
 "Parameters": {
 "Name": "<GLUE_CRAWLER_NAME>"
 },
 "Resource": "arn:aws:states:::aws-sdk:glue:startCrawler"
 },
 "Get Crawler status": {
 "Type": "Task",
 "Parameters": {
 "Name": "<GLUE_CRAWLER_NAME>"
 },
 "Resource": "arn:aws:arn:aws:states:::aws-sdk:glue:getCrawler",
 "Next": "Check Crawler status"
 },
 "Check Crawler status": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.Crawler.State",
 "StringEquals": "RUNNING",
 "Next": "Wait"
 }
],

Example State Machine Code 988

AWS Step Functions Developer Guide

 "Default": "Start an Athena query"
 },
 "Wait": {
 "Type": "Wait",
 "Seconds": 30,
 "Next": "Get Crawler status"
 },
 "Start an Athena query": {
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "<ATHENA_QUERYSTRING>",
 "WorkGroup": "<ATHENA_WORKGROUP>"
 },
 "Type": "Task",
 "Next": "Get query results"
 },
 "Get query results": {
 "Resource": "arn:aws:states:::athena:getQueryResults",
 "Parameters": {
 "QueryExecutionId.$": "$.QueryExecution.QueryExecutionId"
 },
 "Type": "Task",
 "Next": "Send query results"
 },
 "Send query results": {
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "TopicArn": "<SNS_TOPIC_ARN>",
 "Message": {
 "Input.$": "$.ResultSet.Rows"
 }
 },
 "Type": "Task",
 "End": true
 }
 }
 }

IAM Examples

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

IAM Examples 989

AWS Step Functions Developer Guide

AthenaGetQueryResults

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "athena:getQueryResults"
],
 "Resource": [
 "arn:aws:athena:us-east-2:123456789012:workgroup/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 }
]
}

AthenaStartQueryExecution

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",
 "athena:stopQueryExecution",
 "athena:getQueryExecution",
 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:us-east-2:123456789012:workgroup/stepfunctions-athena-
sample-project-workgroup-8v7bshiv70",

IAM Examples 990

AWS Step Functions Developer Guide

 "arn:aws:athena:us-east-2:123456789012:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws:glue:us-east-2:123456789012:catalog",

IAM Examples 991

AWS Step Functions Developer Guide

 "arn:aws:glue:us-east-2:123456789012:database/*",
 "arn:aws:glue:us-east-2:123456789012:table/*",
 "arn:aws:glue:us-east-2:123456789012:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [
 "*"
]
 }
]
}

SNSPublish

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-2:123456789012:StepFunctionsSample-
AthenaIngestLargeDataset92bc4949-abf8-4a1e-9236-5b7c81b3efa3-SNSTopic-8Y5ZLI5AASXV"
]
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Examples 992

AWS Step Functions Developer Guide

Keep data up to date (Amazon Athena, Amazon S3, AWS Glue)

This sample project demonstrates how to query a target table to get current data with AWS Glue
Catalog, then update it with new data from other sources using Amazon Athena.

In this project, the Step Functions state machine calls AWS Glue Catalog to verify if a target table
exists in an Amazon S3 Bucket. If no table is found one, it will create a new table. Then, Step
Functions runs an Athena query to add rows to the target table from a different data source: first
querying the target table to get the most recent date, then querying the source table for more
recent data and inserting it into the target table.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Keep data up to date in the search box, and then choose Keep data up to date from
the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon S3 bucket

• Amazon Athena queries

• An AWS Glue Data Catalog call

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Keep data up to date sample project:

Keep data up to date (Amazon Athena, Amazon S3, AWS Glue) 993

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Step 1: Create the state machine and provision resources 994

AWS Step Functions Developer Guide

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

Step 2: Run the state machine 995

AWS Step Functions Developer Guide

If you chose to Run a demo, you need not provide any execution input.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with Amazon S3, AWS Glue, and Amazon
Athena by passing parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls Amazon S3, AWS
Glue, and Amazon Athena by connecting to the Amazon Resource Name (ARN) in the Resource
field, and by passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example demonstrates how to use Athena to query a target table to
 get current data, then update it with new data from other sources.",
 "StartAt": "Get Target Table",
 "States": {
 "Get Target Table": {
 "Type": "Task",
 "Parameters": {
 "DatabaseName": "<GLUE_DATABASE_NAME>",
 "Name": "target"
 },
 "Catch": [
 {
 "ErrorEquals": [
 "Glue.EntityNotFoundException"
],

Example State Machine Code 996

AWS Step Functions Developer Guide

 "Next": "Create Target Table"
 }
],
 "Resource": "arn:aws:states:::aws-sdk:glue:getTable",
 "Next": "Update Target Table"
 },
 "Create Target Table": {
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "<ATHENA_QUERYSTRING>",
 "WorkGroup": "<ATHENA_WORKGROUP>"
 },
 "Type": "Task",
 "Next": "Update Target Table"
 },
 "Update Target Table": {
 "Resource": "arn:aws:states:::athena:startQueryExecution.sync",
 "Parameters": {
 "QueryString": "<ATHENA_QUERYSTRING>",
 "WorkGroup": "<ATHENA_WORKGROUP>"
 },
 "Type": "Task",
 "End": true
 }
 }
 }

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

AthenaStartQueryExecution

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",

IAM Example 997

AWS Step Functions Developer Guide

 "athena:stopQueryExecution",
 "athena:getQueryExecution",
 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:us-east-2:123456789012:workgroup/stepfunctions-athena-
sample-project-workgroup-26ujlyawxg",
 "arn:aws:athena:us-east-2:123456789012:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",

IAM Example 998

AWS Step Functions Developer Guide

 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws::glue:us-east-2:123456789012:catalog",
 "arn:aws::glue:us-east-2:123456789012:database/*",
 "arn:aws::glue:us-east-2:123456789012:table/*",
 "arn:aws::glue:us-east-2:123456789012:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [
 "*"
]
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Manage an Amazon EKS cluster

This sample project demonstrates how to use Step Functions and Amazon Elastic Kubernetes
Service to create an Amazon EKS cluster with a node group, run a job on Amazon EKS, then
examine the output. When finished, it removes the node groups and Amazon EKS cluster.

For more information about Step Functions and Step Functions service integrations, see the
following:

• Using AWS Step Functions with other services

• Call Amazon EKS with Step Functions

Manage an Amazon EKS cluster 999

AWS Step Functions Developer Guide

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
Amazon EKS Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Manage an EKS cluster in the search box, and then choose Manage an EKS cluster
from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon Elastic Kubernetes Service cluster

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Manage an EKS cluster sample
project:

Step 1: Create the state machine and provision resources 1000

https://aws.amazon.com/eks/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

Step 1: Create the state machine and provision resources 1001

AWS Step Functions Developer Guide

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 1: Create the state machine and provision resources 1002

AWS Step Functions Developer Guide

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 2: Run the state machine 1003

AWS Step Functions Developer Guide

Example State Machine Code

The state machine in this sample project integrates with Amazon EKS by creating an Amazon EKS
cluster and node group, and uses an SNS topic to return results.

Browse through this example state machine to see how Step Functions manages Amazon EKS
clusters and node groups.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for running Amazon EKS Cluster",
 "StartAt": "Create an EKS cluster",
 "States": {
 "Create an EKS cluster": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:createCluster.sync",
 "Parameters": {
 "Name": "ExampleCluster",
 "ResourcesVpcConfig": {
 "SubnetIds": [
 "subnet-0aacf887d9f00e6a7",
 "subnet-0e5fc41e7507194ab"
]
 },
 "RoleArn": "arn:aws:iam::111122223333:role/StepFunctionsSample-EKSClusterManag-
EKSServiceRole-ANPAJ2UCCR6DPCEXAMPLE"
 },
 "Retry": [{
 "ErrorEquals": ["States.ALL"],
 "IntervalSeconds": 30,
 "MaxAttempts": 2,
 "BackoffRate": 2
 }],
 "ResultPath": "$.eks",
 "Next": "Create a node group"
 },
 "Create a node group": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:createNodegroup.sync",
 "Parameters": {
 "ClusterName": "ExampleCluster",

Example State Machine Code 1004

AWS Step Functions Developer Guide

 "NodegroupName": "ExampleNodegroup",
 "NodeRole": "arn:aws:iam::111122223333:role/StepFunctionsSample-EKSClusterMan-
NodeInstanceRole-ANPAJ2UCCR6DPCEXAMPLE",
 "Subnets": [
 "subnet-0aacf887d9f00e6a7",
 "subnet-0e5fc41e7507194ab"]
 },
 "Retry": [{
 "ErrorEquals": ["States.ALL"],
 "IntervalSeconds": 30,
 "MaxAttempts": 2,
 "BackoffRate": 2
 }],
 "ResultPath": "$.nodegroup",
 "Next": "Run a job on EKS"
 },
 "Run a job on EKS": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:runJob.sync",
 "Parameters": {
 "ClusterName": "ExampleCluster",
 "CertificateAuthority.$": "$.eks.Cluster.CertificateAuthority.Data",
 "Endpoint.$": "$.eks.Cluster.Endpoint",
 "LogOptions": {
 "RetrieveLogs": true
 },
 "Job": {
 "apiVersion": "batch/v1",
 "kind": "Job",
 "metadata": {
 "name": "example-job"
 },
 "spec": {
 "backoffLimit": 0,
 "template": {
 "metadata": {
 "name": "example-job"
 },
 "spec": {
 "containers": [
 {
 "name": "pi-20",
 "image": "perl",
 "command": [

Example State Machine Code 1005

AWS Step Functions Developer Guide

 "perl"
],
 "args": [
 "-Mbignum=bpi",
 "-wle",
 "print '{ ' . '\"pi\": '. bpi(20) . ' }';"
]
 }
],
 "restartPolicy": "Never"
 }
 }
 }
 }
 },
 "ResultSelector": {
 "status.$": "$.status",
 "logs.$": "$.logs..pi"
 },
 "ResultPath": "$.RunJobResult",
 "Next": "Examine output"
 },
 "Examine output": {
 "Type": "Choice",
 "Choices": [
 {
 "And": [
 {
 "Variable": "$.RunJobResult.logs[0]",
 "NumericGreaterThan": 3.141
 },
 {
 "Variable": "$.RunJobResult.logs[0]",
 "NumericLessThan": 3.142
 }
],
 "Next": "Send expected result"
 }
],
 "Default": "Send unexpected result"
 },
 "Send expected result": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",

Example State Machine Code 1006

AWS Step Functions Developer Guide

 "Parameters": {
 "TopicArn": "arn:aws:sns:sa-east-1:111122223333:StepFunctionsSample-
EKSClusterManagement123456789012-SNSTopic-ANPAJ2UCCR6DPCEXAMPLE",
 "Message": {
 "Input.$": "States.Format('Saw expected value for pi: {}',
 $.RunJobResult.logs[0])"
 }
 },
 "ResultPath": "$.SNSResult",
 "Next": "Delete job"
 },
 "Send unexpected result": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "TopicArn": "arn:aws:sns:sa-east-1:111122223333:StepFunctionsSample-
EKSClusterManagement123456789012-SNSTopic-ANPAJ2UCCR6DPCEXAMPLE",
 "Message": {
 "Input.$": "States.Format('Saw unexpected value for pi: {}',
 $.RunJobResult.logs[0])"
 }
 },
 "ResultPath": "$.SNSResult",
 "Next": "Delete job"
 },
 "Delete job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:call",
 "Parameters": {
 "ClusterName": "ExampleCluster",
 "CertificateAuthority.$": "$.eks.Cluster.CertificateAuthority.Data",
 "Endpoint.$": "$.eks.Cluster.Endpoint",
 "Method": "DELETE",
 "Path": "/apis/batch/v1/namespaces/default/jobs/example-job"
 },
 "ResultSelector": {
 "status.$": "$.ResponseBody.status"
 },
 "ResultPath": "$.DeleteJobResult",
 "Next": "Delete node group"
 },
 "Delete node group": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:deleteNodegroup.sync",

Example State Machine Code 1007

AWS Step Functions Developer Guide

 "Parameters": {
 "ClusterName": "ExampleCluster",
 "NodegroupName": "ExampleNodegroup"
 },
 "Next": "Delete cluster"
 },
 "Delete cluster": {
 "Type": "Task",
 "Resource": "arn:aws:states:::eks:deleteCluster.sync",
 "Parameters": {
 "Name": "ExampleCluster"
 },
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:CreateCluster"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeCluster",
 "eks:DeleteCluster"
],

IAM Example 1008

AWS Step Functions Developer Guide

 "Resource": "arn:aws:eks:sa-east-1:111122223333:cluster/*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::111122223333:role/StepFunctionsSample-EKSClusterManag-
EKSServiceRole-ANPAJ2UCCR6DPCEXAMPLE"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "eks.amazonaws.com"
 }
 }
 }
]
}

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:sa-east-1:111122223333:StepFunctionsSample-
EKSClusterManagement123456789012-SNSTopic-ANPAJ2UCCR6DPCEXAMPLE"
]
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Make a call to API Gateway

This sample project demonstrates how to use Step Functions to make a call to API Gateway and
checks whether the call succeeded.

Make a call to API Gateway 1009

AWS Step Functions Developer Guide

For more information about API Gateway and Step Functions service integrations, see the
following:

• Using AWS Step Functions with other services

• Call API Gateway with Step Functions

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Make a call to API Gateway in the search box, and then choose Make a call to API
Gateway from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon API Gateway REST API that is called by the state machine.

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Make a call to API Gateway sample
project:

Step 1: Create the state machine and provision resources 1010

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Step 1: Create the state machine and provision resources 1011

AWS Step Functions Developer Guide

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

Step 2: Run the state machine 1012

AWS Step Functions Developer Guide

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with API Gateway by calling the API Gateway
REST API and passing any necessary parameters.

Browse through this example state machine to see how Step Functions interacts with API Gateway.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "Calling APIGW REST Endpoint",
 "StartAt": "Add Pet to Store",
 "States": {
 "Add Pet to Store": {
 "Type": "Task",
 "Resource": "arn:aws:states:::apigateway:invoke",
 "Parameters": {
 "ApiEndpoint": "<POST_PETS_API_ENDPOINT>",
 "Method": "POST",
 "Stage": "default",
 "Path": "pets",

Example State Machine Code 1013

AWS Step Functions Developer Guide

 "RequestBody.$": "$.NewPet",
 "AuthType": "IAM_ROLE"
 },
 "ResultSelector": {
 "ResponseBody.$": "$.ResponseBody"
 },
 "Next": "Pet was Added Successfully?"
 },
 "Pet was Added Successfully?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.ResponseBody.errors",
 "IsPresent": true,
 "Next": "Failure"
 }
],
 "Default": "Retrieve Pet Store Data"
 },
 "Failure": {
 "Type": "Fail"
 },
 "Retrieve Pet Store Data": {
 "Type": "Task",
 "Resource": "arn:aws:states:::apigateway:invoke",
 "Parameters": {
 "ApiEndpoint": "<GET_PETS_API_ENDPOINT>",
 "Method": "GET",
 "Stage": "default",
 "Path": "pets",
 "AuthType": "IAM_ROLE"
 },
 "ResultSelector": {
 "Pets.$": "$.ResponseBody"
 },
 "ResultPath": "$.ExistingPets",
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Example State Machine Code 1014

AWS Step Functions Developer Guide

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-west-1:111122223333:c8hqe4kdg5/default/GET/
pets",
 "arn:aws:execute-api:us-west-1:111122223333:c8hqe4kdg5/default/POST/
pets"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Call a microservice running on Fargate using API Gateway
integration

This sample project demonstrates how to use Step Functions to make a call to API Gateway in
order to interact with a service on AWS Fargate, and also to check whether the call succeeded.

For more information about API Gateway and Step Functions service integrations, see the
following:

• Using AWS Step Functions with other services

• Call API Gateway with Step Functions

IAM Example 1015

AWS Step Functions Developer Guide

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below a
certain level of usage. For more information about AWS costs and the Free Tier, see Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Call a microservice with API Gateway in the search box, and then choose Call a
microservice with API Gateway from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon API Gateway HTTP API that is called by the state machine.

• An Amazon API Gateway Amazon VPC Link.

• An Amazon Virtual Private Cloud.

• An Application Load Balancer.

• A Fargate cluster.

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

• Several additional services that are required to enable these resources to work together.

The following image shows the workflow graph for the Call a microservice with API Gateway
sample project:

Step 1: Create the state machine and provision resources 1016

https://aws.amazon.com/step-functions/pricing
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Step 1: Create the state machine and provision resources 1017

AWS Step Functions Developer Guide

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

Step 2: Run the state machine 1018

AWS Step Functions Developer Guide

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with API Gateway by calling an API Gateway
HTTP API that is connected to a service on Fargate. This is hosted on a private subnet, and accessed
through a private application load balancer.

Browse through this example state machine to see how Step Functions interacts with API Gateway
and returns results.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "Calling APIGW HTTP Endpoint",
 "StartAt": "Call API",
 "States": {
 "Call API": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::apigateway:invoke",
 "Parameters": {
 "ApiEndpoint": "<API_ENDPOINT>",
 "Method": "GET",

Example State Machine Code 1019

AWS Step Functions Developer Guide

 "AuthType": "IAM_ROLE"
 },
 "Next": "Call Successful?"
 },
 "Call Successful?": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.StatusCode",
 "NumericEquals": 200,
 "Next": "Notify Success"
 }
],
 "Default": "Notify Failure"
 },
 "Notify Success": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Call was successful",
 "TopicArn": "<SNS_TOPIC_ARN>"
 },
 "End": true
 },
 "Notify Failure": {
 "Type": "Task",
 "Resource": "arn:<PARTITION>:states:::sns:publish",
 "Parameters": {
 "Message": "Call was not successful",
 "TopicArn": "<SNS_TOPIC_ARN>"
 },
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Example State Machine Code 1020

AWS Step Functions Developer Guide

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-east-1:111122223333:apigw-ecs-sample-2000-
SNSTopic-444455556666"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:aws:execute-api:us-east-1:111122223333:444444444444/*/GET/*"
],
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "ec2:AttachNetworkInterface",
 "ec2:CreateNetworkInterface",
 "ec2:CreateNetworkInterfacePermission",
 "ec2:DeleteNetworkInterface",
 "ec2:DeleteNetworkInterfacePermission",
 "ec2:Describe*",
 "ec2:DetachNetworkInterface",

IAM Example 1021

AWS Step Functions Developer Guide

 "elasticloadbalancing:DeregisterInstancesFromLoadBalancer",
 "elasticloadbalancing:DeregisterTargets",
 "elasticloadbalancing:Describe*",
 "elasticloadbalancing:RegisterInstancesWithLoadBalancer",
 "elasticloadbalancing:RegisterTargets"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

{
 "Statement": [
 {
 "Action": [
 "ecr:GetAuthorizationToken",
 "ecr:BatchCheckLayerAvailability",
 "ecr:GetDownloadUrlForLayer",
 "ecr:BatchGetImage",
 "logs:CreateLogStream",
 "logs:PutLogEvents"
],
 "Resource": "*",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Send a custom event to EventBridge

This sample project demonstrates how to use Step Functions to send a custom event to an event
bus that matches a rule with multiple targets (Amazon EventBridge, AWS Lambda, Amazon Simple
Notification Service, Amazon Simple Queue Service).

For more information about Step Functions and Step Functions service integrations, see the
following:

• Using AWS Step Functions with other services

Send a custom event to EventBridge 1022

AWS Step Functions Developer Guide

• Call EventBridge with Step Functions

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below
a certain level of usage. For more information about AWS costs and the Free Tier, see
EventBridge Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Send a custom event to EventBridge in the search box, and then choose Send a
custom event to EventBridge from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon EventBridge event

• An Amazon SNS topic

• An Amazon SQS queue

• A Lambda function

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Send a custom event to EventBridge
sample project:

Step 1: Create the state machine and provision resources 1023

https://aws.amazon.com/eventbridge/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

Step 1: Create the state machine and provision resources 1024

AWS Step Functions Developer Guide

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Step 2: Run the state machine 1025

AWS Step Functions Developer Guide

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with EventBridge by sending a custom event
to an EventBridge event bus. The event sent to the event bus matches an EventBridge rule that
triggers a Lambda function that sends messages to an Amazon SNS topic and an Amazon SQS
queue.

Browse through this example state machine to see how Step Functions manages EventBridge.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for sending a custom event to
 Amazon EventBridge",
 "StartAt": "Send a custom event",
 "States": {
 "Send a custom event": {
 "Resource": "arn:<PARTITION>:states:::events:putEvents",
 "Type": "Task",
 "Parameters": {
 "Entries": [{
 "Detail": {
 "Message": "Hello from Step Functions!"

Example State Machine Code 1026

AWS Step Functions Developer Guide

 },
 "DetailType": "MessageFromStepFunctions",
 "EventBusName": "<EVENT_BUS_NAME>",
 "Source": "my.statemachine"
 }]
 },
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "events:PutEvents"
],
 "Resource": [
 "arn:aws:events:us-east-1:1234567890:event-bus/stepfunctions-
sampleproject-eventbus"
],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example 1027

AWS Step Functions Developer Guide

Invoke Synchronous Express Workflows

This sample project demonstrates how to invoke Synchronous Express Workflows through Amazon
API Gateway to manage an employee database.

In this project, Step Functions uses API Gateway endpoints to start Step Functions Synchronous
Express Workflows. These then use DynamoDB to search for, add, and remove employees in an
employee database.

For more information about Step Functions Synchronous Express Workflows, see Synchronous and
Asynchronous Express Workflows.

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below a
certain level of usage. For more information about AWS costs and the Free Tier, see Step
Functions Pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Invoke Synchronous Express Workflows through API Gateway in the search
box, and then choose Invoke Synchronous Express Workflows through API Gateway from the
search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon API Gateway HTTPS API that is called by a state machine.

• An Amazon DynamoDB table.

• Three AWS Step Functions state machines.

Invoke Synchronous Express Workflows 1028

https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• Related AWS Identity and Access Management (IAM) roles.

The following image shows the workflow graph for the Invoke Synchronous Express
Workflows through API Gateway sample project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 1029

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Step 2: Run the state machine 1030

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with API Gateway and DynamoDB by using
API Gateway to invoke a Synchronous Express Workflow, which then updates or reads from the
employee database using DynamoDB.

Browse through this example state machine to see how Step Functions reads from DynamoDB to
retrieve employee information.

To understand more about how to invoke Step Functions using API Gateway, see the following.

• Call API Gateway with Step Functions

Example State Machine Code 1031

AWS Step Functions Developer Guide

• How to invoke a private Gateway in the API Gateway Developer Guide.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "This state machine returns an employee entry from DynamoDB",
 "StartAt": "Read From DynamoDB",
 "States": {
 "Read From DynamoDB": {
 "Type": "Task",
 "Resource": "arn:aws:states:::dynamodb:getItem",
 "Parameters": {
 "TableName": "StepFunctionsSample-
SynchronousExpressWorkflowAKIAIOSFODNN7EXAMPLE-DynamoDBTable-ANPAJ2UCCR6DPCEXAMPLE",
 "Key": {
 "EmployeeId": {"S.$": "$.employee"}
 }
 },
 "Retry": [
 {
 "ErrorEquals": [
 "DynamoDB.AmazonDynamoDBException"
],
 "IntervalSeconds": 3,
 "MaxAttempts": 2,
 "BackoffRate": 1.5
 }
],
 "Next": "Is Get Successful"
 },
 "Is Get Successful": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.Item",
 "IsPresent": true,
 "Next": "Succeed Execution"
 }
],
 "Default": "Fail Execution"
 },
 "Succeed Execution": {

Example State Machine Code 1032

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-api-test-invoke-url.html

AWS Step Functions Developer Guide

 "Type": "Pass",
 "Parameters" : {
 "employee.$": "$.Item.EmployeeId.S",
 "jobTitle.$": "$.Item.JobTitle.S"
 },
 "End": true
 },
 "Fail Execution": {
 "Type": "Fail",
 "Error": "EmployeeDoesNotExist"
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Examples

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 }
]
}

IAM Examples 1033

AWS Step Functions Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem"
],
 "Resource": [
 "arn:aws:dynamodb:us-east-1:111122223333:table/Write"
]
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Run ETL/ELT workflows using Amazon Redshift (Lambda,
Amazon Redshift Data API)

This sample project demonstrates how to use Step Functions and the Amazon Redshift Data API to
run an ETL/ELT workflow that loads data into the Amazon Redshift data warehouse.

In this project, Step Functions uses an AWS Lambda function and the Amazon Redshift Data API
to create the required database objects and to generate a set of example data, then executes
two jobs in parallel that perform loading dimension tables, followed by a fact table. Once both
dimension load jobs end successfully, Step Functions executes the load job for the fact table, runs
the validation job, then pauses the Amazon Redshift cluster.

Note

You can modify the ETL logic to receive data from other sources such as Amazon S3, which
can use the COPY command to copy data from Amazon S3 to an Amazon Redshift table.

Run ETL/ELT workflows using Amazon Redshift 1034

https://docs.aws.amazon.com/redshift/latest/dg/r_COPY.html

AWS Step Functions Developer Guide

For more information about Amazon Redshift and Step Functions service integrations, see the
following:

• Using AWS Step Functions with other services

• Using the Amazon Redshift Data API

• Amazon Redshift Data API service

• Creating a Step Functions state machine that uses Lambda

• IAM policies for:

• IAM policies for AWS Lambda

• Authorizing access to the Amazon Redshift Data API

Note

This sample project may incur charges.
For new AWS users, a free usage tier is available. On this tier, services are free below a
certain level of usage. For more information about AWS costs and the Free Tier, see AWS
Step Functions pricing.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type ETL job in Amazon Redshift in the search box, and then choose ETL job in Amazon
Redshift from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An Amazon Redshift cluster

• Two Lambda functions

• An Amazon Redshift schema

Step 1: Create the state machine and provision resources 1035

https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/rds-data.html
https://docs.aws.amazon.com/redshift/latest/mgmt/data-api.html#data-api-access
https://aws.amazon.com/step-functions/pricing/
https://aws.amazon.com/step-functions/pricing/
https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

• Five Amazon Redshift tables

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles.

The following image shows the workflow graph for the ETL job in Amazon Redshift sample
project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

Step 1: Create the state machine and provision resources 1036

AWS Step Functions Developer Guide

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 1: Create the state machine and provision resources 1037

AWS Step Functions Developer Guide

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 2: Run the state machine 1038

AWS Step Functions Developer Guide

Example State Machine Code

The state machine in this sample project integrates with AWS Lambda by passing the ETL logic
as the InputPath directly to those resources and being executed asynchronously using Amazon
Redshift Data API.

Browse through this example state machine to see how Step Functions controls AWS Lambda and
the Amazon Redshift Data API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
"Comment": "A simple ETL workflow for loading dimension and fact tables",
 "StartAt": "InitializeCheckCluster",
 "States": {
 "InitializeCheckCluster": {
 "Type": "Pass",
 "Next": "GetStateOfCluster",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "operation": "status"
 }
 }
 },
 "GetStateOfCluster": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftOperations-AKIAIOSFODNN7EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "IsClusterAvailable",
 "InputPath": "$",
 "ResultPath": "$.clusterStatus"
 },
 "IsClusterAvailable": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "available",
 "Next": "InitializeBuildDB"

Example State Machine Code 1039

AWS Step Functions Developer Guide

 },
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "paused",
 "Next": "InitializeResumeCluster"
 },
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "unavailable",
 "Next": "ClusterUnavailable"
 },
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "resuming",
 "Next": "ClusterWait"
 }
]
 },
 "ClusterWait": {
 "Type": "Wait",
 "Seconds": 720,
 "Next": "InitializeCheckCluster"
 },
 "InitializeResumeCluster": {
 "Type": "Pass",
 "Next": "ResumeCluster",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "operation": "resume"
 }
 }
 },
 "ResumeCluster": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftOperations-AKIAIOSFODNN7EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "ClusterWait",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "InitializeBuildDB": {

Example State Machine Code 1040

AWS Step Functions Developer Guide

 "Type": "Pass",
 "Next": "BuildDB",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "redshift_database": "dev",
 "redshift_user": "awsuser",
 "redshift_schema": "tpcds",
 "action": "build_database",
 "sql_statement": [
 "create schema if not exists {0} authorization {1};",
 "create table if not exists {0}.customer",
 "(c_customer_sk int4 not null encode az64",
 ",c_customer_id char(16) not null encode zstd",
 ",c_current_addr_sk int4 encode az64",
 ",c_first_name char(20) encode zstd",
 ",c_last_name char(30) encode zstd",
 ",primary key (c_customer_sk)",
 ") distkey(c_customer_sk);",
 "--",
 "create table if not exists {0}.customer_address",
 "(ca_address_sk int4 not null encode az64",
 ",ca_address_id char(16) not null encode zstd",
 ",ca_state char(2) encode zstd",
 ",ca_zip char(10) encode zstd",
 ",ca_country varchar(20) encode zstd",
 ",primary key (ca_address_sk)",
 ") distkey(ca_address_sk);",
 "--",
 "create table if not exists {0}.date_dim",
 "(d_date_sk integer not null encode az64",
 ",d_date_id char(16) not null encode zstd",
 ",d_date date encode az64",
 ",d_day_name char(9) encode zstd",
 ",primary key (d_date_sk)",
 ") diststyle all;",
 "--",
 "create table if not exists {0}.item",
 "(i_item_sk int4 not null encode az64",
 ",i_item_id char(16) not null encode zstd",
 ",i_rec_start_date date encode az64",
 ",i_rec_end_date date encode az64",
 ",i_current_price numeric(7,2) encode az64",
 ",i_category char(50) encode zstd",

Example State Machine Code 1041

AWS Step Functions Developer Guide

 ",i_product_name char(50) encode zstd",
 ",primary key (i_item_sk)",
 ") distkey(i_item_sk) sortkey(i_category);",
 "--",
 "create table if not exists {0}.store_sales",
 "(ss_sold_date_sk int4",
 ",ss_item_sk int4 not null encode az64",
 ",ss_customer_sk int4 encode az64",
 ",ss_addr_sk int4 encode az64",
 ",ss_store_sk int4 encode az64",
 ",ss_ticket_number int8 not null encode az64",
 ",ss_quantity int4 encode az64",
 ",ss_net_paid numeric(7,2) encode az64",
 ",ss_net_profit numeric(7,2) encode az64",
 ",primary key (ss_item_sk, ss_ticket_number)",
 ") distkey(ss_item_sk) sortkey(ss_sold_date_sk);"
]
 }
 }
 },
 "BuildDB": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "GetBuildDBStatus",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "GetBuildDBStatus": {
 "Type": "Task",
 "Next": "CheckBuildDBStatus",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "InputPath": "$",
 "ResultPath": "$.status"
 },
 "CheckBuildDBStatus": {
 "Type": "Choice",
 "Choices": [
 {

Example State Machine Code 1042

AWS Step Functions Developer Guide

 "Variable": "$.status",
 "StringEquals": "FAILED",
 "Next": "FailBuildDB"
 },
 {
 "Variable": "$.status",
 "StringEquals": "FINISHED",
 "Next": "InitializeBaselineData"
 }
],
 "Default": "BuildDBWait"
 },
 "BuildDBWait": {
 "Type": "Wait",
 "Seconds": 15,
 "Next": "GetBuildDBStatus"
 },
 "FailBuildDB": {
 "Type": "Fail",
 "Cause": "Database Build Failed",
 "Error": "Error"
 },
 "InitializeBaselineData": {
 "Type": "Pass",
 "Next": "LoadBaselineData",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "redshift_database": "dev",
 "redshift_user": "awsuser",
 "redshift_schema": "tpcds",
 "action": "load_baseline_data",
 "sql_statement": [
 "begin transaction;",
 "truncate table {0}.customer;",
 "insert into {0}.customer
 (c_customer_sk,c_customer_id,c_current_addr_sk,c_first_name,c_last_name)",
 "values",
 "(7550,'AAAAAAAAOHNBAAAA',9264662,'Michelle','Deaton'),",
 "(37079,'AAAAAAAAHNAJAAAA',13971208,'Michael','Simms'),",
 "(40626,'AAAAAAAACLOJAAAA',1959255,'Susan','Ryder'),",
 "(2142876,'AAAAAAAAMJCLACAA',7644556,'Justin','Brown');",
 "analyze {0}.customer;",
 "--",

Example State Machine Code 1043

AWS Step Functions Developer Guide

 "truncate table {0}.customer_address;",
 "insert into {0}.customer_address
 (ca_address_sk,ca_address_id,ca_state,ca_zip,ca_country)",
 "values",
 "(13971208,'AAAAAAAAIAPCFNAA','NE','63451','United States'),",
 "(7644556,'AAAAAAAAMIFKEHAA','SD','58883','United States'),",
 "(9264662,'AAAAAAAAGBOFNIAA','CA','99310','United States');",
 "analyze {0}.customer_address;",
 "--",
 "truncate table {0}.item;",
 "insert into {0}.item
 (i_item_sk,i_item_id,i_rec_start_date,i_rec_end_date,i_current_price,i_category,i_product_name)",
 "values",

 "(3417,'AAAAAAAAIFNAAAAA','1997-10-27',NULL,14.29,'Electronics','ationoughtesepri
 '),",
 "(9615,'AAAAAAAAOIFCAAAA','1997-10-27',NULL,9.68,'Home','antioughtcallyn
 st'),",
 "(3693,'AAAAAAAAMGOAAAAA','2001-03-12',NULL,2.10,'Men','prin
 stcallypri'),",

 "(3630,'AAAAAAAAMCOAAAAA','2001-10-27',NULL,2.95,'Electronics','barpricallypri'),",

 "(16506,'AAAAAAAAIHAEAAAA','2001-10-27',NULL,3.85,'Home','callybaranticallyought'),",

 "(7866,'AAAAAAAAILOBAAAA','2001-10-27',NULL,12.60,'Jewelry','callycallyeingation');",
 "--",
 "analyze {0}.item;",
 "truncate table {0}.date_dim;",
 "insert into {0}.date_dim (d_date_sk,d_date_id,d_date,d_day_name)",
 "values",
 "(2450521,'AAAAAAAAJFEGFCAA','1997-03-13','Thursday'),",
 "(2450749,'AAAAAAAANDFGFCAA','1997-10-27','Monday'),",
 "(2451251,'AAAAAAAADDHGFCAA','1999-03-13','Saturday'),",
 "(2451252,'AAAAAAAAEDHGFCAA','1999-03-14','Sunday'),",
 "(2451981,'AAAAAAAANAKGFCAA','2001-03-12','Monday'),",
 "(2451982,'AAAAAAAAOAKGFCAA','2001-03-13','Tuesday'),",
 "(2452210,'AAAAAAAACPKGFCAA','2001-10-27','Saturday'),",
 "(2452641,'AAAAAAAABKMGFCAA','2003-01-01','Wednesday'),",
 "(2452642,'AAAAAAAACKMGFCAA','2003-01-02','Thursday');",
 "--",
 "analyze {0}.date_dim;",
 "-- commit and End transaction",
 "commit;",

Example State Machine Code 1044

AWS Step Functions Developer Guide

 "end transaction;"
]
 }
 }
 },
 "LoadBaselineData": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "GetBaselineData",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "GetBaselineData": {
 "Type": "Task",
 "Next": "CheckBaselineData",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "InputPath": "$",
 "ResultPath": "$.status"
 },
 "CheckBaselineData": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.status",
 "StringEquals": "FAILED",
 "Next": "FailLoadBaselineData"
 },
 {
 "Variable": "$.status",
 "StringEquals": "FINISHED",
 "Next": "ParallelizeDimensionLoadJob"
 }
],
 "Default": "BaselineDataWait"
 },
 "BaselineDataWait": {
 "Type": "Wait",
 "Seconds": 20,

Example State Machine Code 1045

AWS Step Functions Developer Guide

 "Next": "GetBaselineData"
 },
 "FailLoadBaselineData": {
 "Type": "Fail",
 "Cause": "Load Baseline Data Failed",
 "Error": "Error"
 },
 "ParallelizeDimensionLoadJob": {
 "Type": "Parallel",
 "Next": "InitializeSalesFactLoadJob",
 "ResultPath": "$.status",
 "Branches": [
 {
 "StartAt": "InitializeCustomerAddressDimensionLoadJob",
 "States": {
 "InitializeCustomerAddressDimensionLoadJob": {
 "Type": "Pass",
 "Next": "ExecuteCustomerAddressDimensionLoadJob",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "redshift_database": "dev",
 "redshift_user": "awsuser",
 "redshift_schema": "tpcds",
 "action": "load_customer_address",
 "sql_statement": [
 "begin transaction;",
 "/* Create a staging table to hold the input data. Staging table is
 created with BACKUP NO option for faster inserts and also data temporary */",
 "drop table if exists {0}.stg_customer_address;",
 "create table if not exists {0}.stg_customer_address",
 "(ca_address_id varchar(16) encode zstd",
 ",ca_state varchar(2) encode zstd",
 ",ca_zip varchar(10) encode zstd",
 ",ca_country varchar(20) encode zstd",
 ")",
 "backup no",
 "diststyle even;",
 "/* Ingest data from source */",
 "insert into {0}.stg_customer_address
 (ca_address_id,ca_state,ca_zip,ca_country)",
 "values",
 "('AAAAAAAACFBBAAAA','NE','','United States'),",
 "('AAAAAAAAGAEFAAAA','NE','61749','United States'),",

Example State Machine Code 1046

AWS Step Functions Developer Guide

 "('AAAAAAAAPJKKAAAA','OK','','United States'),",
 "('AAAAAAAAMIHGAAAA','AL','','United States');",
 "/* Perform UPDATE for existing data with refreshed attribute
 values */",
 "update {0}.customer_address",
 " set ca_state = stg_customer_address.ca_state,",
 " ca_zip = stg_customer_address.ca_zip,",
 " ca_country = stg_customer_address.ca_country",
 " from {0}.stg_customer_address",
 " where customer_address.ca_address_id =
 stg_customer_address.ca_address_id;",
 "/* Perform insert for new rows */",
 "insert into {0}.customer_address",
 "(ca_address_sk",
 ",ca_address_id",
 ",ca_state",
 ",ca_zip",
 ",ca_country",
 ")",
 "with max_customer_address_sk as",
 "(select max(ca_address_sk) max_ca_address_sk",
 "from {0}.customer_address)",
 "select row_number() over (order by
 stg_customer_address.ca_address_id) + max_customer_address_sk.max_ca_address_sk as
 ca_address_sk",
 ",stg_customer_address.ca_address_id",
 ",stg_customer_address.ca_state",
 ",stg_customer_address.ca_zip",
 ",stg_customer_address.ca_country",
 "from {0}.stg_customer_address,",
 "max_customer_address_sk",
 "where stg_customer_address.ca_address_id not in (select
 customer_address.ca_address_id from {0}.customer_address);",
 "/* Commit and End transaction */",
 "commit;",
 "end transaction;"
]
 }
 }
 },
 "ExecuteCustomerAddressDimensionLoadJob": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",

Example State Machine Code 1047

AWS Step Functions Developer Guide

 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "GetCustomerAddressDimensionLoadStatus",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "GetCustomerAddressDimensionLoadStatus": {
 "Type": "Task",
 "Next": "CheckCustomerAddressDimensionLoadStatus",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "InputPath": "$",
 "ResultPath": "$.status"
 },
 "CheckCustomerAddressDimensionLoadStatus": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.status",
 "StringEquals": "FAILED",
 "Next": "FailCustomerAddressDimensionLoad"
 },
 {
 "Variable": "$.status",
 "StringEquals": "FINISHED",
 "Next": "CompleteCustomerAddressDimensionLoad"
 }
],
 "Default": "CustomerAddressWait"
 },
 "CustomerAddressWait": {
 "Type": "Wait",
 "Seconds": 5,
 "Next": "GetCustomerAddressDimensionLoadStatus"
 },
 "CompleteCustomerAddressDimensionLoad": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "End": true

Example State Machine Code 1048

AWS Step Functions Developer Guide

 },
 "FailCustomerAddressDimensionLoad": {
 "Type": "Fail",
 "Cause": "ETL Workflow Failed",
 "Error": "Error"
 }
 }
 },
 {
 "StartAt": "InitializeItemDimensionLoadJob",
 "States": {
 "InitializeItemDimensionLoadJob": {
 "Type": "Pass",
 "Next": "ExecuteItemDimensionLoadJob",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "redshift_database": "dev",
 "redshift_user": "awsuser",
 "redshift_schema": "tpcds",
 "action": "load_item",
 "sql_statement": [
 "begin transaction;",
 "/* Create a staging table to hold the input data. Staging table is
 created with BACKUP NO option for faster inserts and also data temporary */",
 "drop table if exists {0}.stg_item;",
 "create table if not exists {0}.stg_item",
 "(i_item_id varchar(16) encode zstd",
 ",i_rec_start_date date encode zstd",
 ",i_rec_end_date date encode zstd",
 ",i_current_price numeric(7,2) encode zstd",
 ",i_category varchar(50) encode zstd",
 ",i_product_name varchar(50) encode zstd",
 ")",
 "backup no",
 "diststyle even;",
 "/* Ingest data from source */",
 "insert into {0}.stg_item",

 "(i_item_id,i_rec_start_date,i_rec_end_date,i_current_price,i_category,i_product_name)",
 "values",

 "('AAAAAAAAABJBAAAA','2000-10-27',NULL,4.10,'Books','ationoughtesecally'),",

Example State Machine Code 1049

AWS Step Functions Developer Guide

 "('AAAAAAAAOPKBAAAA','2001-10-27',NULL,4.22,'Books','ableoughtn
 stcally'),",
 "('AAAAAAAAHGPAAAAA','1997-10-27',NULL,29.30,'Books','priesen
 stpri'),",

 "('AAAAAAAAICMAAAAA','2001-10-27',NULL,1.93,'Books','eseoughtoughtpri'),",

 "('AAAAAAAAGPGBAAAA','2001-10-27',NULL,9.96,'Books','bareingeinganti'),",
 "('AAAAAAAANBEBAAAA','1997-10-27',NULL,2.25,'Music','n
 steseoughtanti'),",

 "('AAAAAAAACLAAAAAA','2001-10-27',NULL,1.71,'Home','bareingought'),",

 "('AAAAAAAAOBBDAAAA','2001-10-27',NULL,5.55,'Books','callyationantiableought');",
 "/
**",
 "** Type 2 is maintained for i_current_price column.",
 "** Update all attributes for the item when the price is not
 changed",
 "** Sunset existing active item record with current i_rec_end_date
 and insert a new record when the price does not match",

 "***/",
 "update {0}.item",
 " set i_category = stg_item.i_category,",
 " i_product_name = stg_item.i_product_name",
 " from {0}.stg_item",
 " where item.i_item_id = stg_item.i_item_id",
 " and item.i_rec_end_date is null",
 " and item.i_current_price = stg_item.i_current_price;",
 "insert into {0}.item",
 "(i_item_sk",
 ",i_item_id",
 ",i_rec_start_date",
 ",i_rec_end_date",
 ",i_current_price",
 ",i_category",
 ",i_product_name",
 ")",
 "with max_item_sk as",
 "(select max(i_item_sk) max_item_sk",
 " from {0}.item)",
 "select row_number() over (order by stg_item.i_item_id) +
 max_item_sk as i_item_sk",

Example State Machine Code 1050

AWS Step Functions Developer Guide

 " ,stg_item.i_item_id",
 " ,trunc(sysdate) as i_rec_start_date",
 " ,null as i_rec_end_date",
 " ,stg_item.i_current_price",
 " ,stg_item.i_category",
 " ,stg_item.i_product_name",
 " from {0}.stg_item, {0}.item, max_item_sk",
 " where item.i_item_id = stg_item.i_item_id",
 " and item.i_rec_end_date is null",
 " and item.i_current_price <> stg_item.i_current_price;",
 "/* Sunset penultimate records that were inserted as type 2 */",
 "update {0}.item",
 " set i_rec_end_date = trunc(sysdate)",
 " from {0}.stg_item",
 " where item.i_item_id = stg_item.i_item_id",
 " and item.i_rec_end_date is null",
 " and item.i_current_price <> stg_item.i_current_price;",
 "/* Commit and End transaction */",
 "commit;",
 "end transaction;"
]
 }
 }
 },
 "ExecuteItemDimensionLoadJob": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "GetItemDimensionLoadStatus",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "GetItemDimensionLoadStatus": {
 "Type": "Task",
 "Next": "CheckItemDimensionLoadStatus",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "InputPath": "$",
 "ResultPath": "$.status"
 },

Example State Machine Code 1051

AWS Step Functions Developer Guide

 "CheckItemDimensionLoadStatus": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.status",
 "StringEquals": "FAILED",
 "Next": "FailItemDimensionLoad"
 },
 {
 "Variable": "$.status",
 "StringEquals": "FINISHED",
 "Next": "CompleteItemDimensionLoad"
 }
],
 "Default": "ItemWait"
 },
 "ItemWait": {
 "Type": "Wait",
 "Seconds": 5,
 "Next": "GetItemDimensionLoadStatus"
 },
 "CompleteItemDimensionLoad": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "End": true
 },
 "FailItemDimensionLoad": {
 "Type": "Fail",
 "Cause": "ETL Workflow Failed",
 "Error": "Error"
 }
 }
 }
]
 },
 "InitializeSalesFactLoadJob": {
 "Type": "Pass",
 "Next": "ExecuteSalesFactLoadJob",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",

Example State Machine Code 1052

AWS Step Functions Developer Guide

 "redshift_database": "dev",
 "redshift_user": "awsuser",
 "redshift_schema": "tpcds",
 "snapshot_date": "2003-01-02",
 "action": "load_sales_fact",
 "sql_statement": [
 "begin transaction;",
 "/* Create a stg_store_sales staging table */",
 "drop table if exists {0}.stg_store_sales;",
 "create table {0}.stg_store_sales",
 "(sold_date date encode zstd",
 ",i_item_id varchar(16) encode zstd",
 ",c_customer_id varchar(16) encode zstd",
 ",ca_address_id varchar(16) encode zstd",
 ",ss_ticket_number integer encode zstd",
 ",ss_quantity integer encode zstd",
 ",ss_net_paid numeric(7,2) encode zstd",
 ",ss_net_profit numeric(7,2) encode zstd",
 ")",
 "backup no",
 "diststyle even;",
 "/* Ingest data from source */",
 "insert into {0}.stg_store_sales",

 "(sold_date,i_item_id,c_customer_id,ca_address_id,ss_ticket_number,ss_quantity,ss_net_paid,ss_net_profit)",
 "values",

 "('2003-01-02','AAAAAAAAIFNAAAAA','AAAAAAAAOHNBAAAA','AAAAAAAAGBOFNIAA',1403191,13,5046.37,150.97),",

 "('2003-01-02','AAAAAAAAIFNAAAAA','AAAAAAAAOHNBAAAA','AAAAAAAAGBOFNIAA',1403191,13,2103.72,-124.08),",

 "('2003-01-02','AAAAAAAAILOBAAAA','AAAAAAAAOHNBAAAA','AAAAAAAAGBOFNIAA',1403191,13,959.10,-1304.70),",

 "('2003-01-02','AAAAAAAAILOBAAAA','AAAAAAAAHNAJAAAA','AAAAAAAAIAPCFNAA',1403191,13,962.65,-475.80),",

 "('2003-01-02','AAAAAAAAMCOAAAAA','AAAAAAAAHNAJAAAA','AAAAAAAAIAPCFNAA',1201746,17,111.60,-241.65),",

 "('2003-01-02','AAAAAAAAMCOAAAAA','AAAAAAAAHNAJAAAA','AAAAAAAAIAPCFNAA',1201746,17,4013.02,-1111.48),",

 "('2003-01-02','AAAAAAAAMCOAAAAA','AAAAAAAAMJCLACAA','AAAAAAAAMIFKEHAA',1201746,17,2689.12,-5572.28),",

 "('2003-01-02','AAAAAAAAMGOAAAAA','AAAAAAAAMJCLACAA','AAAAAAAAMIFKEHAA',193971,18,1876.89,-556.35);",
 "/* Delete any rows from target store_sales for the input date for
 idempotency */",

Example State Machine Code 1053

AWS Step Functions Developer Guide

 "delete from {0}.store_sales where ss_sold_date_sk in (select d_date_sk
 from {0}.date_dim where d_date='{1}');",
 "/* Insert data from staging table to the target table */",
 "insert into {0}.store_sales",
 "(ss_sold_date_sk",
 ",ss_item_sk",
 ",ss_customer_sk",
 ",ss_addr_sk",
 ",ss_ticket_number",
 ",ss_quantity",
 ",ss_net_paid",
 ",ss_net_profit",
 ")",
 "select date_dim.d_date_sk ss_sold_date_sk",
 " ,item.i_item_sk ss_item_sk",
 " ,customer.c_customer_sk ss_customer_sk",
 " ,customer_address.ca_address_sk ss_addr_sk",
 " ,ss_ticket_number",
 " ,ss_quantity",
 " ,ss_net_paid",
 " ,ss_net_profit",
 " from {0}.stg_store_sales as store_sales",
 " inner join {0}.date_dim on store_sales.sold_date = date_dim.d_date",
 " left join {0}.item on store_sales.i_item_id = item.i_item_id and
 item.i_rec_end_date is null",
 " left join {0}.customer on store_sales.c_customer_id =
 customer.c_customer_id",
 " left join {0}.customer_address on store_sales.ca_address_id =
 customer_address.ca_address_id;",
 "/* Drop staging table */",
 "drop table if exists {0}.stg_store_sales;",
 "/* Commit and End transaction */",
 "commit;",
 "end transaction;"
]
 }
 }
 },
 "ExecuteSalesFactLoadJob": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,

Example State Machine Code 1054

AWS Step Functions Developer Guide

 "Next": "GetSalesFactLoadStatus",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "GetSalesFactLoadStatus": {
 "Type": "Task",
 "Next": "CheckSalesFactLoadStatus",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "InputPath": "$",
 "ResultPath": "$.status"
 },
 "CheckSalesFactLoadStatus": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.status",
 "StringEquals": "FAILED",
 "Next": "FailSalesFactLoad"
 },
 {
 "Variable": "$.status",
 "StringEquals": "FINISHED",
 "Next": "SalesETLPipelineComplete"
 }
],
 "Default": "SalesWait"
 },
 "SalesWait": {
 "Type": "Wait",
 "Seconds": 5,
 "Next": "GetSalesFactLoadStatus"
 },
 "FailSalesFactLoad": {
 "Type": "Fail",
 "Cause": "ETL Workflow Failed",
 "Error": "Error"
 },
 "ClusterUnavailable": {
 "Type": "Fail",
 "Cause": "Redshift cluster is not available",
 "Error": "Error"

Example State Machine Code 1055

AWS Step Functions Developer Guide

 },
 "SalesETLPipelineComplete": {
 "Type": "Pass",
 "Next": "ValidateSalesMetric",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "redshift_database": "dev",
 "redshift_user": "awsuser",
 "redshift_schema": "tpcds",
 "snapshot_date": "2003-01-02",
 "action": "validate_sales_metric",
 "sql_statement": [
 "select 1/count(1) from {0}.store_sales where ss_sold_date_sk in (select
 d_date_sk from {0}.date_dim where d_date='{1}')"
]
 }
 }
 },
 "ValidateSalesMetric": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "GetValidateSalesMetricStatus",
 "InputPath": "$",
 "ResultPath": "$"
 },
 "GetValidateSalesMetricStatus": {
 "Type": "Task",
 "Next": "CheckValidateSalesMetricStatus",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftDataApi-AIDACKCEVSQ6C2EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "InputPath": "$",
 "ResultPath": "$.status"
 },
 "CheckValidateSalesMetricStatus": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.status",

Example State Machine Code 1056

AWS Step Functions Developer Guide

 "StringEquals": "FAILED",
 "Next": "FailSalesMetricValidation"
 },
 {
 "Variable": "$.status",
 "StringEquals": "FINISHED",
 "Next": "DataValidationComplete"
 }
],
 "Default": "SalesValidationWait"
 },
 "SalesValidationWait": {
 "Type": "Wait",
 "Seconds": 5,
 "Next": "GetValidateSalesMetricStatus"
 },
 "FailSalesMetricValidation": {
 "Type": "Fail",
 "Cause": "Data Validation Failed",
 "Error": "Error"
 },
 "DataValidationComplete": {
 "Type": "Pass",
 "Next": "InitializePauseCluster"
 },
 "InitializePauseCluster": {
 "Type": "Pass",
 "Next": "PauseCluster",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "operation": "pause"
 }
 }
 },
 "PauseCluster": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftOperations-AKIAIOSFODNN7EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "PauseClusterWait",
 "InputPath": "$",
 "ResultPath": "$.clusterStatus",

Example State Machine Code 1057

AWS Step Functions Developer Guide

 "Catch": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "Next": "ClusterPausedComplete"
 }
]
 },
 "InitializeCheckPauseCluster": {
 "Type": "Pass",
 "Next": "GetStateOfPausedCluster",
 "Result": {
 "input": {
 "redshift_cluster_id": "cfn36-redshiftcluster-AKIAI44QH8DHBEXAMPLE",
 "operation": "status"
 }
 }
 },
 "GetStateOfPausedCluster": {
 "Type": "Task",
 "Resource": "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftOperations-AKIAIOSFODNN7EXAMPLE",
 "TimeoutSeconds": 180,
 "HeartbeatSeconds": 60,
 "Next": "IsClusterPaused",
 "InputPath": "$",
 "ResultPath": "$.clusterStatus"
 },
 "IsClusterPaused": {
 "Type": "Choice",
 "Choices": [
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "available",
 "Next": "InitializePauseCluster"
 },
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "paused",
 "Next": "ClusterPausedComplete"
 },
 {
 "Variable": "$.clusterStatus",

Example State Machine Code 1058

AWS Step Functions Developer Guide

 "StringEquals": "unavailable",
 "Next": "ClusterUnavailable"
 },
 {
 "Variable": "$.clusterStatus",
 "StringEquals": "resuming",
 "Next": "PauseClusterWait"
 }
]
 },
 "PauseClusterWait": {
 "Type": "Wait",
 "Seconds": 720,
 "Next": "InitializeCheckPauseCluster"
 },
 "ClusterPausedComplete": {
 "Type": "Pass",
 "End": true
 }
 }
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project include the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:us-east-1:111122223333:function:CFN36-RedshiftDataApi-
AIDACKCEVSQ6C2EXAMPLE",
 "arn:aws:lambda:us-east-1:111122223333:function:CFN36-
RedshiftOperations-AKIAIOSFODNN7EXAMPLE"

IAM Example 1059

AWS Step Functions Developer Guide

],
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Use Step Functions and AWS Batch with error handling

This sample project demonstrates how to use Step Functions to run an AWS Batch job using a state
machine with error-handling capabilities.

In this project, Step Functions uses a state machine to call the AWS Batch job synchronously. It
then waits for the job to succeed or fail, retries and catches errors when a job fails, then sends an
Amazon SNS topic with a message about whether the job succeeded or failed.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Manage a batch job in the search box, and then choose Manage a batch job from the
search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• A AWS Batch job

• An Amazon SNS topic

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Manage a batch job sample project:

Use Step Functions and AWS Batch with error handling 1060

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

Step 1: Create the state machine and provision resources 1061

AWS Step Functions Developer Guide

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Step 2: Run the state machine 1062

AWS Step Functions Developer Guide

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with AWS Batch and Amazon SNS by passing
parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls AWS Batch and
Amazon SNS by connecting to the Amazon Resource Name (ARN) in the Resource field, and by
passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for notification on an AWS Batch
 job completion",
 "StartAt": "Submit Batch Job",
 "TimeoutSeconds": 3600,
 "States": {
 "Submit Batch Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobName": "BatchJobNotification",

Example State Machine Code 1063

AWS Step Functions Developer Guide

 "JobQueue": "arn:aws:batch:us-west-2:123456789012:job-queue/
BatchJobQueue-123456789abcdef",
 "JobDefinition": "arn:aws:batch:us-west-2:123456789012:job-definition/
BatchJobDefinition-123456789abcdef:1"
 },
 "Next": "Notify Success",
 "Retry": [
 {
 "ErrorEquals": [
 "States.ALL"
],
 "IntervalSeconds": 30,
 "MaxAttempts": 2,
 "BackoffRate": 1.5
 }
],
 "Catch": [
 {
 "ErrorEquals": ["States.ALL"],
 "Next": "Notify Failure"
 }
]
 },
 "Notify Success": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "Batch job submitted through Step Functions succeeded",
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:StepFunctionsSample-
BatchJobManagement12345678-9abc-def0-1234-567890abcdef-SNSTopic-A2B3C4D5E6F7G"
 },
 "End": true
 },
 "Notify Failure": {
 "Type": "Task",
 "Resource": "arn:aws:states:::sns:publish",
 "Parameters": {
 "Message": "Batch job submitted through Step Functions failed",
 "TopicArn": "arn:aws:sns:us-west-2:123456789012:StepFunctionsSample-
BatchJobManagement12345678-9abc-def0-1234-567890abcdef-SNSTopic-A2B3C4D5E6F7G"
 },
 "End": true
 }
 }

Example State Machine Code 1064

AWS Step Functions Developer Guide

}

IAM Example

This example AWS Identity and Access Management (IAM) policy generated by the sample project
includes the least privilege necessary to execute the state machine and related resources. We
recommend that you include only those permissions that are necessary in your IAM policies.

Example BatchJobNotificationAccessPolicy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-west-2:123456789012:StepFunctionsSample-
BatchJobManagement12345678-9abc-def0-1234-567890abcdef-SNSTopic-A2B3C4D5E6F7G"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "batch:SubmitJob",
 "batch:DescribeJobs",
 "batch:TerminateJob"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:us-west-2:123456789012:rule/
StepFunctionsGetEventsForBatchJobsRule"
],
 "Effect": "Allow"

IAM Example 1065

AWS Step Functions Developer Guide

 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

Fan out an AWS Batch job

This sample project demonstrates how to use Step Functions’s Map state to fan out AWS Batch
jobs.

In this project, Step Functions uses a state machine to invoke a Lambda function to do simple pre-
processing, then invokes multiple AWS Batch jobs in parallel using the Map state.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type Fan out a batch job in the search box, and then choose Fan out a batch job from
the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• A Lambda function

• An AWS Batch job queue

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Fan out a batch job sample project:

Fan out an AWS Batch job 1066

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 1067

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Step 2: Run the state machine 1068

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with AWS Batch and Amazon SNS by passing
parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls AWS Batch and
Amazon SNS by connecting to the Amazon Resource Name (ARN) in the Resource field, and by
passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Example State Machine Code 1069

AWS Step Functions Developer Guide

{
 "Comment": "An example of the Amazon States Language for fanning out AWS Batch job",
 "StartAt": "Generate batch job input",
 "TimeoutSeconds": 3600,
 "States": {
 "Generate batch job input": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.Payload",
 "Parameters": {
 "FunctionName": "<GENERATE_BATCH_JOB_INPUT_LAMBDA_FUNCTION_NAME>"
 },
 "Next": "Fan out batch jobs"
 },
 "Fan out batch jobs": {
 "Comment": "Start multiple executions of batch job depending on pre-processed
 data",
 "Type": "Map",
 "End": true,
 "ItemsPath": "$",
 "Parameters": {
 "BatchNumber.$": "$$.Map.Item.Value"
 },
 "Iterator": {
 "StartAt": "Submit Batch Job",
 "States": {
 "Submit Batch Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobName": "BatchJobFanOut",
 "JobQueue": "<BATCH_QUEUE_ARN>",
 "JobDefinition": "<BATCH_JOB_DEFINITION_ARN>"
 },
 "End": true
 }
 }
 }
 }
 }
}

Example State Machine Code 1070

AWS Step Functions Developer Guide

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project includes the least privilege necessary to execute the state machine and related resources.
We recommend that you include only those permissions that are necessary in your IAM policies.

Example BatchJobFanOutAccessPolicy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "batch:SubmitJob",
 "batch:DescribeJobs",
 "batch:TerminateJob"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:us-west-2:123456789012:rule/
StepFunctionsGetEventsForBatchJobsRule"
],
 "Effect": "Allow"
 }
]
}

Example InvokeGenerateBatchJobMapLambdaPolicy

{
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"

IAM Example 1071

AWS Step Functions Developer Guide

],
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:StepFunctionsSample-BatchJobFa-
GenerateBatchJobMap-444455556666",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

AWS Batch with Lambda

This sample project demonstrates how to use Step Functions to pre-process data with AWS
Lambda functions and then orchestrate AWS Batch jobs.

In this project, Step Functions uses a state machine to invoke a Lambda function to do simple pre-
processing before an AWS Batch job is submitted. Multiple jobs may be invoked depending on the
result or success of the previous one.

Step 1: Create the State Machine and Provision Resources

1. Open the Step Functions console and choose Create state machine.

2. Type Batch job with Lambda in the search box, and then choose Batch job with Lambda
from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• A Lambda function

• An AWS Batch job

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

AWS Batch with Lambda 1072

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

The following image shows the workflow graph for the Batch job with Lambda sample
project:

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Step 1: Create the State Machine and Provision Resources 1073

AWS Step Functions Developer Guide

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions generates a unique execution name automatically.

Note

Step Functions allows you to create names for state machines, executions, and
activities, and labels that contain non-ASCII characters. These non-ASCII names
don't work with Amazon CloudWatch. To ensure that you can track CloudWatch
metrics, choose a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

Step 2: Run the state machine 1074

AWS Step Functions Developer Guide

If you chose to Run a demo, you need not provide any execution input.

Note

If the demo project you deployed contains prepopulated execution input data, use
that input to run the state machine.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Example State Machine Code

The state machine in this sample project integrates with AWS Batch and Amazon SNS by passing
parameters directly to those resources.

Browse through this example state machine to see how Step Functions controls AWS Batch and
Amazon SNS by connecting to the Amazon Resource Name (ARN) in the Resource field, and by
passing Parameters to the service API.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

{
 "Comment": "An example of the Amazon States Language for using batch job with pre-
processing lambda",
 "StartAt": "Generate batch job input",
 "TimeoutSeconds": 3600,
 "States": {
 "Generate batch job input": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "OutputPath": "$.batch_input",

Example State Machine Code 1075

AWS Step Functions Developer Guide

 "Parameters": {
 "FunctionName": "<GENERATE_BATCH_JOB_INPUT_LAMBDA_FUNCTION_NAME>"
 },
 "Next": "Submit Batch Job"
 },
 "Submit Batch Job": {
 "Type": "Task",
 "Resource": "arn:aws:states:::batch:submitJob.sync",
 "Parameters": {
 "JobName": "BatchJobFanOut",
 "JobQueue": "<BATCH_QUEUE_ARN>",
 "JobDefinition": "<BATCH_JOB_DEFINITION_ARN>",
 "Parameters.$": "$.batch_input"
 },
 "End": true
 }
 }
}

IAM Example

These example AWS Identity and Access Management (IAM) policies generated by the sample
project includes the least privilege necessary to execute the state machine and related resources.
We recommend that you include only those permissions that are necessary in your IAM policies.

Example BatchJobWithLambdaAccessPolicy

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:us-west-2:123456789012:ManageBatchJob-SNSTopic-
JHLYYG7AZPZI"
],
 "Effect": "Allow"
 },
 {
 "Action": [
 "batch:SubmitJob",

IAM Example 1076

AWS Step Functions Developer Guide

 "batch:DescribeJobs",
 "batch:TerminateJob"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:us-west-2:123456789012:rule/
StepFunctionsGetEventsForBatchJobsRule"
],
 "Effect": "Allow"
 }
]
}

Example InvokeGenerateBatchJobMapLambdaPolicy

{
 "Statement": [
 {
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": "arn:aws:lambda:us-
west-2:123456789012:function:StepFunctionsSample-BatchWithL-
GenerateBatchJobMap-444455556666",
 "Effect": "Allow"
 }
]
}

For information about how to configure IAM when using Step Functions with other AWS services,
see IAM Policies for integrated services.

IAM Example 1077

AWS Step Functions Developer Guide

Perform AI prompt-chaining with Amazon Bedrock

This sample project demonstrates how you can integrate with Amazon Bedrock to perform AI
prompt-chaining. This sample project shows how you can build high-quality chatbots using
Amazon Bedrock. The project chains together some prompts and resolves them in the sequence
in which they're provided. Chaining of these prompts augments the ability of the language model
being used to deliver a highly-curated response.

This sample project creates the state machine, the supporting AWS resources, and configures
the related IAM permissions. Explore this sample project to learn about using Amazon Bedrock
optimized service integration with Step Functions state machines, or use it as a starting point for
your own projects.

Topics

• AWS CloudFormation template and additional resources

• Prerequisites

• Step 1: Create the state machine and provision resources

• Step 2: Run the state machine

AWS CloudFormation template and additional resources

You use a CloudFormation template to deploy this sample project. This template creates the
following resources in your AWS account:

• A Step Functions state machine.

• Execution role for the state machine. This role grants the permissions that your state machine
needs to access other AWS services and resources such as the Amazon Bedrock InvokeModel
action.

Prerequisites

This sample project uses the Cohere Command large language model (LLM). To successfully run
this sample project, you must add access to this LLM from the Amazon Bedrock console. To add the
model access, do the following:

1. Open the Amazon Bedrock console.

Perform AI prompt-chaining with Amazon Bedrock 1078

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://console.aws.amazon.com/bedrock

AWS Step Functions Developer Guide

2. On the navigation pane, choose Model access.

3. Choose Manage model access.

4. Select the check box next to Cohere.

5. Choose Request access. The Access status for Cohere model shows as Access granted.

Step 1: Create the state machine and provision resources

1. Open the Step Functions console and choose Create state machine.

2. Type bedrock in the search box, and then choose Perform AI prompt-chaining with Bedrock
from the search results that are returned.

3. Choose Next to continue.

4. Step Functions lists the AWS services used in the sample project you selected. It also shows a
workflow graph for the sample project. Deploy this project to your AWS account or use it as a
starting point for building your own projects. Based on how you want to proceed, choose Run
a demo or Build on it.

This sample project deploys the following resources:

• An AWS Step Functions state machine

• Related AWS Identity and Access Management (IAM) roles

The following image shows the workflow graph for the Perform AI prompt-chaining with
Bedrock sample project:

Step 1: Create the state machine and provision resources 1079

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

5. Choose Use template to continue with your selection.

6. Do one of the following:

• If you selected Build on it, Step Functions creates the workflow prototype for the sample
project you selected. Step Functions doesn't deploy the resources listed in the workflow
definition.

In Workflow Studio's Design mode, drag and drop states from the States browser to
continue building your workflow protoype. Or switch to the Code mode that provides an
integrated code editor similar to VS Code for updating the Amazon States Language (ASL)
definition of your state machine within the Step Functions console. For more information
about using Workflow Studio to build your state machines, see Using Workflow Studio.

Step 1: Create the state machine and provision resources 1080

AWS Step Functions Developer Guide

Important

Remember to update the placeholder Amazon Resource Name (ARN) for the
resources used in the sample project before you run your workflow.

• If you selected Run a demo, Step Functions creates a read-only sample project which uses
an AWS CloudFormation template to deploy the AWS resources listed in that template to
your AWS account.

Tip

To view the state machine definition of the sample project, choose Code.

When you're ready, choose Deploy and run to deploy the sample project and create the
resources.

It can take up to 10 minutes for these resources and related IAM permissions to be created.
While your resources are being deployed, you can open the CloudFormation Stack ID link to
see which resources are being provisioned.

After all the resources in the sample project are created, you can see the new sample project
listed on the State machines page.

Important

Standard charges may apply for each service used in the CloudFormation template.

Step 2: Run the state machine

1. On the State machines page, choose your sample project.

2. On the sample project page, choose Start execution.

3. In the Start execution dialog box, do the following:

1. (Optional) To identify your execution, you can specify a name for it in the Name box. By
default, Step Functions automatically generates a unique execution name.

Step 2: Run the state machine 1081

AWS Step Functions Developer Guide

Note

Step Functions allows you to create names for state machines, executions, activities,
and labels that contain non-ASCII characters. These non-ASCII names don't work
with Amazon CloudWatch. To ensure that you can track CloudWatch metrics, choose
a name that uses only ASCII characters.

2. (Optional) In the Input box, enter input values in JSON format to run your workflow.

If you chose to Run a demo, you need not provide any execution input.

3. Choose Start execution.

4. The Step Functions console directs you to a page that's titled with your execution ID. This
page is known as the Execution Details page. On this page, you can review the execution
results as the execution progresses or after it's complete.

To review the execution results, choose individual states on the Graph view, and then
choose the individual tabs on the Step details pane to view each state's details including
input, output, and definition respectively. For details about the execution information you
can view on the Execution Details page, see Execution Details page – Interface overview.

Step 2: Run the state machine 1082

AWS Step Functions Developer Guide

Quotas

AWS Step Functions places quotas on the sizes of certain state machine parameters, such as the
number of API actions during a certain time period or the number of state machines that you
can define. Although these quotas are designed to prevent a misconfigured state machine from
consuming all of the resources of the system, many aren't hard quotas.

To request a service quota increase, you can do one of the following:

• Use the Service Quotas console at https://console.aws.amazon.com/servicequotas/home. For
information about requesting a quota increase using the Service Quotas console, see Requesting
a quota increase in the Service Quotas User Guide.

• Use the Support Center page in the AWS Management Console to request a quota increase for
resources provided by AWS Step Functions on a per-Region basis. For more information, see AWS
service quotas in the AWS General Reference.

Note

If a particular stage of your state machine execution or activity execution takes too long,
you can configure a state machine timeout to cause a timeout event.

Topics

• General quotas

• Quotas related to accounts

• Quotas related to HTTP Task

• Quotas related to state throttling

• Quotas related to API action throttling

• Quotas related to state machine executions

• Quotas related to task executions

• Quotas related to versions and aliases

• Restrictions related to tagging

1083

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html
https://docs.aws.amazon.com/general/latest/gr/aws_service_limits.html

AWS Step Functions Developer Guide

General quotas

Quota Description

Names in Step Functions Names of state machines, executions, and
activity tasks must not exceed 80 character
s in length. These names must be unique for
your account and AWS Region, and must not
contain any of the following:

• Whitespace

• Wildcard characters (? *)

• Bracket characters (< > { } [])

• Special characters (: ; , \ | ^ ~ $ # %
& ` ")

• Control characters (\\u0000 - \\u001f or
\\u007f - \\u009f).

If your state machine is of type Express,
you can provide the same name to multiple
executions of the state machine. Step
Functions generates a unique execution ARN
for each Express state machine execution,
even if multiple executions have the same
name.

Step Functions allows you to create names
for state machines, executions, and activitie
s, and labels that contain non-ASCII character
s. These non-ASCII names don't work with
Amazon CloudWatch. To ensure that you can
track CloudWatch metrics, choose a name that
uses only ASCII characters.

General quotas 1084

AWS Step Functions Developer Guide

Quotas related to accounts

Resource Default quota Can be increased to

Maximum number of
registered state machines

10,000 25,000

Maximum number of
registered activities

10,000 15,000

Maximum request size 1 MB per request. This is
the total data size per Step
Functions API request,
including the request header
and all other associated
request data.

Hard quota

Maximum open executions
per account

1,000,000 executions for
each AWS account in each
AWS Region. Exceeding this
will cause an Execution
LimitExceeded error.
This doesn't apply to Express
Workflows.

Millions

Maximum number of open
Map Runs

An open Map Run is a
Map Run that has started,
but hasn't yet completed.
Scheduled Map Runs wait at
the MapRunStarted event
until the total number of
open Map Runs is less than
the default quota of 1000.

1000

This quota is applicable for
Distributed Map state.

Hard quota

Quotas related to accounts 1085

https://docs.aws.amazon.com/step-functions/latest/apireference/API_MapRunStartedEventDetails.html

AWS Step Functions Developer Guide

Resource Default quota Can be increased to

Maximum redrives of a Map
Run.

1000

This quota is applicable for
Distributed Map state.

Hard quota

Quotas related to HTTP Task

HTTP Tasks are throttled using a token bucket scheme to maintain the Step Functions service
bandwidth. The following table lists the bucket size and refill rate for HTTP Tasks.

Resource Bucket size Refill rate per second

HTTP Task 300 300

The following table lists the quota for an HTTP Task duration.

Resource Default quota

HTTP Task duration

An HTTP Task duration refers to the time
taken by an HTTP Task to send an HTTP
request and receive a response.

60 seconds

This is a hard quota that can't be changed.

Quotas related to state throttling

Step Functions state transitions are throttled using a token bucket scheme to maintain service
bandwidth. Standard Workflows and Express Workflows have different state transition throttling.
Standard Workflows quotas are soft quotas and can be increased.

Quotas related to HTTP Task 1086

AWS Step Functions Developer Guide

Note

Throttling on the StateTransition service metric is reported as ExecutionThrottled
in Amazon CloudWatch. For more information, see the ExecutionThrottled CloudWatch
metric.

Standard Express

Service metric Bucket size Refill rate per
second

Bucket size Refill rate per
second

StateTran
sition —
In US East (N.
Virginia), US
West (Oregon),
and Europe
(Ireland)

5,000 5,000 Unlimited Unlimited

StateTran
sition — All
other regions

800 800 Unlimited Unlimited

Quotas related to API action throttling

Some Step Functions API actions are throttled using a token bucket scheme to maintain service
bandwidth. These quotas are soft quotas and can be increased.

Note

Throttling quotas are per account, per AWS Region. AWS Step Functions may increase both
the bucket size and refill rate at any time.

Quotas related to API action throttling 1087

AWS Step Functions Developer Guide

Standard Express

API name Bucket size Refill rate per
second

Bucket size Refill rate per
second

StartExec
ution — In
US East (N.
Virginia), US
West (Oregon),
and Europe
(Ireland)

1,300 300 6,000 6,000

StartExec
ution — All
other regions

800 150 6,000 6,000

Quota related to TestState API

The following table lists the quota available for TestState API.

API name Quota Can be increased to

TestState 1 transaction per second
(TPS)

Hard quota

Other quotas

These quotas are soft quotas and can be increased.

Quota related to TestState API 1088

https://docs.aws.amazon.com/step-functions/latest/apireference/API_TestState.html

AWS Step Functions Developer Guide

In US East (N. Virginia), US West
(Oregon), and Europe (Ireland)

All other regions

API name Bucket size Refill rate per
second

Bucket size Refill rate per
second

CreateAct
ivity

100 1 100 1

CreateSta
teMachine

100 1 100 1

DeleteAct
ivity

100 1 100 1

DeleteSta
teMachine

100 1 100 1

DescribeA
ctivity

200 1 200 1

DescribeE
xecution

300 15 250 10

DescribeS
tateMachi
ne

200 20 200 20

DescribeS
tateMachi
neForExec
ution

200 1 200 1

GetActivi
tyTask

3,000 500 1,500 300

GetExecut
ionHistory

400 20 400 20

Other quotas 1089

AWS Step Functions Developer Guide

In US East (N. Virginia), US West
(Oregon), and Europe (Ireland)

All other regions

API name Bucket size Refill rate per
second

Bucket size Refill rate per
second

ListActiv
ities

100 10 100 5

ListExecu
tions

200 5 100 2

ListState
Machines

100 5 100 5

ListTagsF
orResource

100 1 100 1

SendTaskF
ailure

3,000 500 1,500 300

SendTaskH
eartbeat

3,000 500 1,500 300

SendTaskS
uccess

3,000 500 1,500 300

Other quotas 1090

AWS Step Functions Developer Guide

In US East (N. Virginia), US West
(Oregon), and Europe (Ireland)

All other regions

API name Bucket size Refill rate per
second

Bucket size Refill rate per
second

StartSync
Execution

Synchrono
us Express
execution API
calls don't
contribute to
existing account
capacity limits.
Step Functions
provides
capacity on
demand and
automatic
ally scales
with sustained
workload.
Surges in
workload may
be throttled
until capacity is
available.

If you experienc
e throttling,
try again after
some time. For
information
about Synchrono
us Express
workflows, see
Synchronous
and Asynchron

Other quotas 1091

AWS Step Functions Developer Guide

In US East (N. Virginia), US West
(Oregon), and Europe (Ireland)

All other regions

API name Bucket size Refill rate per
second

Bucket size Refill rate per
second

ous Express
Workflows.

StopExecu
tion

1,000 200 500 25

TagResource 200 1 200 1

UntagReso
urce

200 1 200 1

UpdateSta
teMachine

100 1 100 1

Quotas related to state machine executions

The following table describes quotas related to state machine executions. State machine execution
quotas are hard quotas that can't be changed, except for the Execution history retention time quota.

Quota Standard Express

Maximum execution time 1 year. If an execution runs
for more than the 1-year
maximum, it will fail with
a States.Timeout error
and emit a Execution
sTimedOut CloudWatch
metric.

5 minutes. If an execution
runs for more than the 5-
minute maximum, it will fail
with a States.Timeout
error and emit a Execution
sTimedOut CloudWatch
metric.

Maximum execution history
size

25,000 events in a single
state machine execution
history. If the execution

Unlimited.

Quotas related to state machine executions 1092

AWS Step Functions Developer Guide

Quota Standard Express

history reaches this quota, the
execution will fail. To avoid
this, see Avoid reaching the
history quota.

Maximum execution idle time 1 year (constrained by the
maximum execution time).

5 minutes (constrained by the
maximum execution time).

Execution history retention
time

90 days after an execution is
closed. After this time, you
can no longer retrieve or view
the execution history. There
is no further quota for the
number of closed executions
that Step Functions retains.

To meet compliance,
organizational, or regulator
y requirements, you can
reduce the execution history
retention period to 30 days by
sending a quota request. To
do this, use the AWS Support
Center Console and create a
new case.

The change to reduce the
retention period to 30 days is
applicable for each account in
a Region.

To see execution history,
Amazon CloudWatch Logs
logging must be configure
d. For more information, see
Logging using CloudWatch
Logs.

Quotas related to state machine executions 1093

AWS Step Functions Developer Guide

Quota Standard Express

Execution redrivable period

Redrivable period refers to
the time during which you
can redrive a given Standard
Workflow execution. This
period starts from the day a
state machine completes its
execution.

14 days.

This hard quota is applicable
for Distributed Map state.

Redrive is currently not
supported for Express
workflows.

Quotas related to task executions

The following table describes quotas related to task executions, and are hard quotas that can't be
changed.

Quota Standard Express

Maximum task execution time 1 year (constrained by the
maximum execution time)

5 minutes (constrained by the
maximum execution time)

Maximum time Step
Functions keeps a task in the
queue

1 year (constrained by the
maximum execution time)

5 minutes (constrained by the
maximum execution time)

Maximum activity pollers
per Amazon Resource Name
(ARN)

1,000 pollers calling
GetActivityTask per
ARN. Exceeding this quota
results in this error: "The
maximum number of workers
concurrently polling for
activity tasks has been
reached."

Does not apply to Express
Workflows.

Maximum input or output size
for a task, state, or execution

256 KB of data as a UTF-8
encoded string. This quota

256 KB of data as a UTF-8
encoded string. This quota

Quotas related to task executions 1094

AWS Step Functions Developer Guide

Quota Standard Express

affects tasks (activity, Lambda
function, or integrated
service), state or execution
output, and input data when
scheduling a task, entering a
state, or starting an execution
.

affects tasks (activity, Lambda
function, or integrated
service), state or execution
output, and input data when
scheduling a task, entering a
state, or starting an execution
.

Quotas related to versions and aliases

Resource Default quota

Maximum number of published state machine
versions

1000 for each state machine.

To request an increase to this soft limit,
use the Support Center page in the AWS
Management Console.

Maximum number of state machine aliases 100 for each state machine.

To request an increase to this soft limit,
use the Support Center page in the AWS
Management Console.

Restrictions related to tagging

Be aware of these restrictions when tagging Step Functions resources.

Note

Tagging restrictions cannot be increased like other quotas.

Quotas related to versions and aliases 1095

https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html

AWS Step Functions Developer Guide

Restriction Description

Maximum number of tags per resource 50

Maximum key length 128 Unicode characters in UTF-8

Maximum value length 256 Unicode characters in UTF-8

Prefix restriction Do not use the aws: prefix in your tag names
or values because it is reserved for AWS use.
You can't edit or delete tag names or values
with this prefix. Tags with this prefix do not
count against your tags per resource quota.

Character restrictions Tags may only contain Unicode letters, digits,
whitespace, or these symbols: _ . : / = +
- @

Restrictions related to tagging 1096

AWS Step Functions Developer Guide

Logging and monitoring in AWS Step Functions

Logging and monitoring are important for maintaining the reliability, availability, and performance
of Step Functions and your AWS solutions. There are several tools available to use with Step
Functions:

Tip

To deploy a sample workflow to your AWS account and learn how to monitor metrics,
logs, and traces of the workflow execution, see Module 12 - Observability of The AWS Step
Functions Workshop.

Topics

• Monitoring Step Functions Using CloudWatch

• EventBridge (CloudWatch Events) for Step Functions execution status changes

• Logging Step Functions Using AWS CloudTrail

• Logging using CloudWatch Logs

• AWS X-Ray and Step Functions

• Using AWS User Notifications with AWS Step Functions

Monitoring Step Functions Using CloudWatch

Monitoring is an important part of maintaining the reliability, availability, and performance of AWS
Step Functions and your AWS solutions. You should collect as much monitoring data from the AWS
services that you use so that you can debug multi-point failures. Before you start monitoring Step
Functions, you should create a monitoring plan that answers the following questions:

• What are your monitoring goals?

• What resources will you monitor?

• How often will you monitor these resources?

• What monitoring tools will you use?

• Who will perform the monitoring tasks?

Amazon CloudWatch Metrics 1097

https://s12d.com/sfn-ws-observability

AWS Step Functions Developer Guide

• Who should be notified when something goes wrong?

The next step is to establish a baseline for normal performance in your environment. To do this,
measure performance at various times and under different load conditions. As you monitor
Step Functions, consider storing historical monitoring data. Such data can give you a baseline
to compare against current performance data, to identify normal performance patterns and
performance anomalies, and to devise ways to address issues.

For example, with Step Functions, you can monitor how many activities or AWS Lambda tasks fail
due to a heartbeat timeout. When performance falls outside your established baseline, you might
have to change your heartbeat interval.

To establish a baseline you should, at a minimum, monitor the following metrics:

• ActivitiesStarted

• ActivitiesTimedOut

• ExecutionsStarted

• ExecutionsTimedOut

• LambdaFunctionsStarted

• LambdaFunctionsTimedOut

The following sections describe metrics that Step Functions provides to Amazon CloudWatch. You
can use these metrics to track your state machines and activities and to set alarms on threshold
values. You can view metrics using the AWS Management Console.

Metrics that report a time interval

Some of the Step Functions CloudWatch metrics are time intervals, always measured in
milliseconds. These metrics generally correspond to stages of your execution for which you can set
state machine, activity, and Lambda function timeouts, with descriptive names.

For example, the ActivityRunTime metric measures the time it takes for an activity to complete
after it begins to execute. You can set a timeout value for the same time period.

In the CloudWatch console, you can get the best results if you choose average as the display
statistic for time interval metrics.

Metrics that report a time interval 1098

AWS Step Functions Developer Guide

Metrics that report a count

Some of the Step Functions CloudWatch metrics report results as a count. For example,
ExecutionsFailed records the number of failed state machine executions.

Step Functions emits two ExecutionsStarted metrics for every state machine execution. This
causes the SampleCount statistic for the ExecutionsStarted metric to show the value of 2
for every state machine execution. The SampleCount statistic shows ExecutionStarted=1 and
ExecutionStarted=0 when the execution completes.

Tip

We recommend selecting Sum as the display statistic for metrics that report a count in the
CloudWatch console.

Execution metrics

The AWS/States namespace includes the following metrics for all Step Functions executions.
These are dimensionless metrics that apply across your account in a region.

Metric Description

OpenExecutionCount Approximate number of currently open executions—workflows
that are currently in progress in your account.

The intent is to provide insight into when your workflows are
approaching the maximum execution limit, to avoid Execution
LimitExceeded errors when calling StartExecution or
RedriveExecution for Standard Workflows.

The metric depends on active workflow state transitions, so at
low levels, the estimate may not align with observed running
workflow count.

OpenExecutionLimit Maximum number of open executions. For more information,
see Quotas related to accounts.

This limit does not apply to Express Workflows.

Metrics that report a count 1099

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Statistics-definitions.html

AWS Step Functions Developer Guide

Execution metrics for state machine with version or alias

When you run a state machine execution with a version or an alias, Step Functions emits the
following metrics. The ExecutionThrottled metric will only be emitted in the case of throttled
execution. These metrics will include a StateMachineArn to identify a specific state machine.

Metric Description

ExecutionTime Interval, in milliseconds, between the time the execution starts
and the time it closes.

ExecutionThrottled Number of StateEntered events and retries that have been
throttled. This is related to StateTransition throttling. For
more information, see Quotas related to state throttling.

ExecutionsAborted Number of aborted or terminated executions.

ExecutionsFailed Number of failed executions.

ExecutionsStarted Number of started executions.

ExecutionsSucceeded Number of successfully completed executions.

ExecutionsTimedOut Number of executions that time out for any reason.

Execution metrics for Express Workflows

The AWS/States namespace includes the following metrics for Step Functions Express Workflows'
executions.

Metric Description

ExpressExecutionMe
mory

The total memory consumed by an Express Workflow.

ExpressExecutionBi
lledDuration

The duration for which an Express Workflow is charged.

Execution metrics 1100

AWS Step Functions Developer Guide

Metric Description

ExpressExecutionBi
lledMemory

The amount of consumed memory for which an Express
Workflow is charged.

Redrive execution metrics for Standard Workflows

When you redrive a state machine execution, Step Functions emits the following metrics.

For all redriven executions, the Executions* metric is emitted. For example, say
a redriven execution aborts. This execution will emit non-zero datapoints for both
RedrivenExecutionsAborted and ExecutionsAborted.

Metric Description

ExecutionsRedriven Number of redriven executions.

RedrivenExecutions
Aborted

Number of redriven executions that are canceled or terminate
d.

RedrivenExecutions
TimedOut

Number of redriven executions that time out for any reason.

RedrivenExecutions
Succeeded

Number of redriven executions that completed successfully.

RedrivenExecutions
Failed

Number of redriven executions that failed.

Dimension for Step Functions execution metrics

Dimension Description

StateMachineArn The Amazon Resource Name (ARN) of the state machine for the
execution in question.

Execution metrics 1101

AWS Step Functions Developer Guide

Dimensions for executions with version

Dimension Description

StateMachineArn The Amazon Resource Name (ARN) of the state machine whose
execution was started by a version.

Version State machine version used to start the execution.

Dimensions for executions with an alias

Dimension Description

StateMachineArn The Amazon Resource Name (ARN) of the state machine whose
execution was started by an alias.

Alias State machine alias used to start the execution.

Resource count metrics for versions and aliases

The AWS/States namespace includes the following metrics for the count of versions and aliases of
a state machine.

Metric Description

AliasCount Number of aliases created for the state machine.

You can create up to 100 aliases for each state machine.

VersionCount Number of versions published for the state machine.

You can publish up to 1000 versions of a state machine.

Resource count metrics for versions and aliases 1102

AWS Step Functions Developer Guide

Dimension for resource count metrics for versions and aliases

Dimension Description

ResourceArn The Amazon Resource Name (ARN) of the state machine with a
version or an alias.

Activity Metrics

The AWS/States namespace includes the following metrics for Step Functions activities.

Metric Description

ActivityRunTime Interval, in milliseconds, between the time the activity starts
and the time it closes.

ActivityScheduleTime Interval, in milliseconds, for which the activity stays in the
schedule state.

ActivityTime Interval, in milliseconds, between the time the activity is
scheduled and the time it closes.

ActivitiesFailed Number of failed activities.

ActivitiesHeartbea
tTimedOut

Number of activities that time out due to a heartbeat timeout.

ActivitiesScheduled Number of scheduled activities.

ActivitiesStarted Number of started activities.

ActivitiesSucceeded Number of successfully completed activities.

ActivitiesTimedOut Number of activities that time out on close.

Activity Metrics 1103

AWS Step Functions Developer Guide

Dimension for Step Functions Activity Metrics

Dimension Description

ActivityArn The ARN of the activity.

Lambda Function Metrics

The AWS/States namespace includes the following metrics for Step Functions Lambda functions.

Metric Description

LambdaFunctionRunT
ime

Interval, in milliseconds, between the time the Lambda
function starts and the time it closes.

LambdaFunctionSche
duleTime

Interval, in milliseconds, for which the Lambda function stays
in the schedule state.

LambdaFunctionTime Interval, in milliseconds, between the time the Lambda
function is scheduled and the time it closes.

LambdaFunctionsFai
led

Number of failed Lambda functions.

LambdaFunctionsSch
eduled

Number of scheduled Lambda functions.

LambdaFunctionsSta
rted

Number of started Lambda functions.

LambdaFunctionsSuc
ceeded

Number of successfully completed Lambda functions.

LambdaFunctionsTim
edOut

Number of Lambda functions that time out on close.

Lambda Function Metrics 1104

AWS Step Functions Developer Guide

Dimension for Step Functions Lambda Function Metrics

Dimension Description

LambdaFunctionArn The ARN of the Lambda function.

Note

Lambda Function Metrics are emitted for Task states that specify the Lambda
function ARN in the Resource field. Task states that use "Resource":
"arn:aws:states:::lambda:invoke" emit Service Integration Metrics instead. For
more information, see Invoke Lambda with Step Functions.

Service Integration Metrics

The AWS/States namespace includes the following metrics for Step Functions service
integrations. For more information, see Using AWS Step Functions with other services.

Metric Description

ServiceIntegration
RunTime

Interval, in milliseconds, between the time the Service Task
starts and the time it closes.

ServiceIntegration
ScheduleTime

Interval, in milliseconds, for which the Service Task stays in the
schedule state.

ServiceIntegration
Time

Interval, in milliseconds, between the time the Service Task is
scheduled and the time it closes.

ServiceIntegration
sFailed

Number of failed Service Tasks.

ServiceIntegration
sScheduled

Number of scheduled Service Tasks.

Service Integration Metrics 1105

AWS Step Functions Developer Guide

Metric Description

ServiceIntegration
sStarted

Number of started Service Tasks.

ServiceIntegration
sSucceeded

Number of successfully completed Service Tasks.

ServiceIntegration
sTimedOut

Number of Service Tasks that time out on close.

Dimension for Step Functions Service Integration Metrics

Dimension Description

ServiceIntegration
ResourceArn

The resource ARN of the integrated service.

Service Metrics

The AWS/States namespace includes the following metrics for the Step Functions service.

Metric Description

ThrottledEvents Count of requests that have been throttled.

ProvisionedBucketS
ize

Count of available requests per second.

ProvisionedRefillR
ate

Count of requests per second that are allowed into the bucket.

ConsumedCapacity Count of requests per second.

Service Metrics 1106

AWS Step Functions Developer Guide

Dimension for Step Functions Service Metrics

Dimension Description

ServiceName Filters data to show State Transitions metrics.

API Metrics

The AWS/States namespace includes the following metrics for the Step Functions API.

Metric Description

ThrottledEvents Count of requests that have been throttled.

ProvisionedBucketS
ize

Count of available requests per second.

ProvisionedRefillR
ate

Count of requests per second that are allowed into the bucket.

ConsumedCapacity Count of requests per second.

Dimension for Step Functions API Metrics

Dimension Description

APIName Filters data to an API of the specified API name.

Best-effort CloudWatch metrics delivery

CloudWatch metrics are delivered on a best-effort basis.

The completeness and timeliness of metrics are not guaranteed. The data point for a particular
request might be returned with a timestamp that is later than when the request was actually
processed. The data point for a minute might be delayed before being available through

API Metrics 1107

AWS Step Functions Developer Guide

CloudWatch, or it might not be delivered at all. CloudWatch request metrics give you an idea of
the state machine executions in near-real time. It is not meant to be a complete accounting of all
execution-related metrics.

It follows from the best-effort nature of this feature that the reports available at the Billing &
Cost Management Dashboard might include one or more access requests that do not appear in the
execution metrics.

Viewing Metrics for Step Functions

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Metrics, and on the All Metrics tab, choose States.

If you ran any executions recently, you will see up to four types of metrics:

• Execution Metrics

• Activity Function Metrics

• Lambda Function Metrics

• Service Integration Metrics

3. Choose a metric type to see a list of metrics.

Viewing Metrics for Step Functions 1108

https://console.aws.amazon.com/billing/home?#/
https://console.aws.amazon.com/billing/home?#/

AWS Step Functions Developer Guide

• To sort your metrics by Metric Name or StateMachineArn, use the column headings.

• To view graphs for a metric, choose the box next to the metric on the list. You can change
the graph parameters using the time range controls above the graph view.

You can choose custom time ranges using relative or absolute values (specific days and
times). You can also use the dropdown list to display values as lines, stacked areas, or
numbers (values).

• To view the details about a graph, hover over the metric color code that appears below the
graph.

The metric's details are displayed.

For more information about working with CloudWatch metrics, see Using Amazon CloudWatch
Metrics in the Amazon CloudWatch User Guide.

Viewing Metrics for Step Functions 1109

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/working_with_metrics.html

AWS Step Functions Developer Guide

Setting Alarms for Step Functions

You can use Amazon CloudWatch alarms to perform actions. For example, if you want to know
when an alarm threshold is reached, you can set an alarm to send a notification to an Amazon SNS
topic or to send an email when the StateMachinesFailed metric rises above a certain threshold.

To set an alarm on a metric

1. Sign in to the AWS Management Console and open the CloudWatch console.

2. Choose Metrics, and on the All Metrics tab, choose States.

If you ran any executions recently, you will see up to four types of metrics:

• Execution Metrics

• Activity Function Metrics

• Lambda Function Metrics

• Service Integration Metrics

3. Choose a metric type to see a list of metrics.

Setting Alarms for Step Functions 1110

AWS Step Functions Developer Guide

4. Choose a metric, and then choose Graphed metrics.

5. Choose

next to a metric on the list.

The Create Alarm page is displayed.

Setting Alarms for Step Functions 1111

AWS Step Functions Developer Guide

6. Enter the values for the Alarm threshold and Actions, and then choose Create Alarm.

For more information about setting and using CloudWatch alarms, see Creating Amazon
CloudWatch Alarms in the Amazon CloudWatch User Guide.

EventBridge (CloudWatch Events) for Step Functions execution
status changes

Amazon EventBridge is an AWS service that enables you to respond to state changes in an AWS
resource. For example, you can respond to the execution status changes of a Step Functions
Standard Workflow with EventBridge using the following two ways:

Amazon EventBridge Events 1112

https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/AlarmThatSendsEmail.html

AWS Step Functions Developer Guide

• You can configure EventBridge rules to react to events that are emitted when the execution
status of a Step Functions state machine changes. This enables you to monitor your workflows
without having to constantly poll using the DescribeExecution API. Based on changes in state
machine executions, you can use an EventBridge target to start new state machine executions,
call AWS Lambda functions, publish messages to Amazon Simple Notification Service (Amazon
SNS) topics, and more.

• You can also configure a Step Functions state machine as a target in EventBridge. This enables
you to trigger an execution of a Step Functions workflow in response to an event from another
AWS service.

For more information, see the Amazon EventBridge User Guide.

Express Workflows, however, do not emit events to EventBridge. To monitor the execution of
an Express Workflow, you can use CloudWatch Logs. To do this, on the state machine Execution
Details page, choose the Monitoring and Logging tabs. On the Monitoring tab, you can view the
CloudWatch metrics for events, such as Execution Duration, Execution Errors, and Billed Memory.
On the Logging tab, you can view recent logs and the logging configuration.

Tip

To deploy an example of an Express Workflow to your AWS account and learn how to
monitor Express Workflows, see the Monitoring Express Workflows module of The AWS Step
Functions Workshop.

EventBridge payloads

An EventBridge event can contain an input property in its definition. For some events, an
EventBridge event can also contain an output property in its definition.

• If the combined escaped input and escaped output sent to EventBridge exceeds 248KB, then the
input will be excluded. Similarly, if the escaped output exceeds 248KB, then the output will be
excluded. This is a result of the EventBridge events quotas.

• You can determine whether a payload has been truncated with the
inputDetails and outputDetails properties. For more information, see the
CloudWatchEventsExecutionDataDetails Data Type.

• For Standard Workflows, you can see the full input and output by using DescribeExecution.

EventBridge payloads 1113

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/
https://catalog.workshops.aws/stepfunctions/en-US/basics/flow-state/parallel-state/step-7
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CloudWatchEventsExecutionDataDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html

AWS Step Functions Developer Guide

• DescribeExecution is not available for Express Workflows. If you want to see the full input/
output, you can wrap your Express Workflow with a Standard Workflow. Another option is to
use Amazon S3 ARNs. For information about using ARNs, see the section called “Use Amazon S3
ARNs instead of passing large payloads”.

Topics

• Step Functions event examples

• Routing a Step Functions event to EventBridge in the EventBridge console

Step Functions event examples

The following are examples of Step Functions sending events to EventBridge:

Topics

• Execution started

• Execution succeeded

• Execution failed

• Execution timed out

• Execution aborted

In each case, the detail section in the event data provides the same information as the
DescribeExecution API. The status field indicates the status of the execution at the time the
event was sent, one of RUNNING, SUCCEEDED, FAILED, TIMED_OUT, or ABORTED depending on the
event emitted.

Execution started

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "Step Functions Execution Status Change",
 "source": "aws.states",
 "account": "123456789012",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-2",
 "resources": [

Step Functions event examples 1114

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html

AWS Step Functions Developer Guide

 "arn:aws:states:us-east-2:123456789012:execution:state-machine-name:execution-
name"
],
 "detail": {
 "executionArn": "arn:aws:states:us-east-2:123456789012:execution:state-machine-
name:execution-name",
 "stateMachineArn": "arn:aws::states:us-east-2:123456789012:stateMachine:state-
machine",
 "name": "execution-name",
 "status": "RUNNING",
 "startDate": 1551225271984,
 "stopDate": null,
 "input": "{}",
 "inputDetails": {
 "included": true
 },
 "output": null,
 "outputDetails": null
 }
}

Execution succeeded

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "Step Functions Execution Status Change",
 "source": "aws.states",
 "account": "123456789012",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-2",
 "resources": [
 "arn:aws:states:us-east-2:123456789012:execution:state-machine-name:execution-
name"
],
 "detail": {
 "executionArn": "arn:aws:states:us-east-2:123456789012:execution:state-machine-
name:execution-name",
 "stateMachineArn": "arn:aws:states:us-east-2:123456789012:stateMachine:state-
machine",
 "name": "execution-name",
 "status": "SUCCEEDED",
 "startDate": 1547148840101,

Step Functions event examples 1115

AWS Step Functions Developer Guide

 "stopDate": 1547148840122,
 "input": "{}",
 "inputDetails": {
 "included": true
 },
 "output": "\"Hello World!\"",
 "outputDetails": {
 "included": true
 }
 }
}

Execution failed

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "Step Functions Execution Status Change",
 "source": "aws.states",
 "account": "123456789012",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-2",
 "resources": [
 "arn:aws:states:us-east-2:123456789012:execution:state-machine-name:execution-
name"
],
 "detail": {
 "executionArn": "arn:aws:states:us-east-2:123456789012:execution:state-machine-
name:execution-name",
 "stateMachineArn": "arn:aws:states:us-east-2:123456789012:stateMachine:state-
machine",
 "name": "execution-name",
 "status": "FAILED",
 "startDate": 1551225146847,
 "stopDate": 1551225151881,
 "input": "{}",
 "inputDetails": {
 "included": true
 },
 "output": null,
 "outputDetails": null
 }
}

Step Functions event examples 1116

AWS Step Functions Developer Guide

Execution timed out

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "Step Functions Execution Status Change",
 "source": "aws.states",
 "account": "123456789012",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-2",
 "resources": [
 "arn:aws:states:us-east-2:123456789012:execution:state-machine-name:execution-
name"
],
 "detail": {
 "executionArn": "arn:aws:states:us-east-2:123456789012:execution:state-machine-
name:execution-name",
 "stateMachineArn": "arn:aws:states:us-east-2:123456789012:stateMachine:state-
machine",
 "name": "execution-name",
 "status": "TIMED_OUT",
 "startDate": 1551224926156,
 "stopDate": 1551224927157,
 "input": "{}",
 "inputDetails": {
 "included": true
 },
 "output": null,
 "outputDetails": null
 }
}

Execution aborted

{
 "version": "0",
 "id": "315c1398-40ff-a850-213b-158f73e60175",
 "detail-type": "Step Functions Execution Status Change",
 "source": "aws.states",
 "account": "123456789012",
 "time": "2019-02-26T19:42:21Z",
 "region": "us-east-2",

Step Functions event examples 1117

AWS Step Functions Developer Guide

 "resources": [
 "arn:aws:states:us-east-2:123456789012:execution:state-machine-name:execution-
name"
],
 "detail": {
 "executionArn": "arn:aws:states:us-east-2:123456789012:execution:state-machine-
name:execution-name",
 "stateMachineArn": "arn:aws:states:us-east-2:123456789012:stateMachine:state-
machine",
 "name": "execution-name",
 "status": "ABORTED",
 "startDate": 1551225014968,
 "stopDate": 1551225017576,
 "input": "{}",
 "inputDetails": {
 "included": true
 },
 "output": null,
 "outputDetails": null
 }
}

Routing a Step Functions event to EventBridge in the EventBridge
console

Use the following instructions to learn how to trigger the execution of a Step Functions state
machine whenever a specific Step Functions state machine completes running successfully. You use
the Amazon EventBridge console to specify the state machine whose execution you want to trigger.

1. On the Details page of a state machine, choose Actions, and then choose Create EventBridge
(CloudWatch Events) rule.

Routing a Step Functions event to EventBridge 1118

AWS Step Functions Developer Guide

Alternatively, open the EventBridge console at https://console.aws.amazon.com/events/. In
the navigation pane, choose Rules under Buses.

2. Choose Create rule. This opens the Define rule detail page.

3. Enter a Name for your rule (for example, StepFunctionsEventRule) and optionally enter a
Description for the rule.

4. For Event bus and Rule type, keep the default selections.

5. Choose Next. This opens the Build event pattern page.

6. Under Event Source, keep the default selection of AWS events or EventBridge partner
events.

7. Keep the default selections for the Sample event and Creation method sections.

8. Under Event pattern, do the following:

a. In the Event source dropdown list, keep the default selection of AWS services.

b. From the AWS service dropdown list, choose Step Functions.

c. From the Event type dropdown list, select Step Functions Execution Status Change.

d. (Optional) Configure a specific status, state machine Amazon Resource Name (ARN),
or execution ARN. For this procedure, choose Specific status(es), and then choose
SUCCEEDED from the dropdown list.

9. Choose Next. This opens the Select target(s) page.

10. Under Target types, keep the default selection of AWS service.

11. From the Select a target dropdown list, choose an AWS service. For example, you could launch
a Lambda function, or run a Step Functions state machine. For this procedure, choose Step
Functions state machine.

12. From the State machine dropdown list, choose a state machine.

13. Under Execution role, keep the default selection of Create a new role for this specific
resource.

14. Choose Next. This opens the Configure tags page.

15. choose Next again. This opens the Review and create page.

16. Review the details of the rule and choose Create rule.

The rule is created and the Rules page is displayed, listing all your Amazon EventBridge rules.

Routing a Step Functions event to EventBridge 1119

https://console.aws.amazon.com/events/

AWS Step Functions Developer Guide

Logging Step Functions Using AWS CloudTrail

Step Functions is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service in Step Functions. CloudTrail captures all API calls for Step
Functions as events, including calls from the Step Functions console and from code calls to the
Step Functions APIs.

If you create a trail, you can enable continuous delivery of CloudTrail events to an Amazon Simple
Storage Service (Amazon S3) bucket, including events for Step Functions. If you don't configure a
trail, you can still view the most recent events in the CloudTrail console in Event history.

Using the information collected by CloudTrail, you can determine the request that was made to
Step Functions, the IP address from which the request was made, who made the request, when it
was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Step Functions Information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Step Functions, that activity is recorded in a CloudTrail event with other AWS service events in
Event history.

You can view, search, and download recent events in your AWS account. For more information, see
Viewing Events with CloudTrail Event History.

For an ongoing record of events in your AWS account, including events for Step Functions, create
a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default, when
you create a trail in the console, the trail applies to all AWS Regions. The trail logs events from all
Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you specify.
Additionally, you can configure other AWS services to further analyze and act on the event data
collected in CloudTrail logs.

For more information, see the following:

• Overview for Creating a Trail

• CloudTrail Supported Services and Integrations

• Configuring Amazon SNS Notifications for CloudTrail

Logging Step Functions Using AWS CloudTrail 1120

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html#cloudtrail-aws-service-specific-topics-integrations
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/getting_notifications_top_level.html

AWS Step Functions Developer Guide

• Receiving CloudTrail Log Files from Multiple Regions and Receiving CloudTrail Log Files from
Multiple Accounts

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or user credentials

• Whether the request was made with temporary security credentials for a role or federated user

• Whether the request was made by another AWS service

For more information, see the CloudTrail userIdentity Element.

Example: Step Functions Log File Entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files are not an ordered stack trace of the
public API calls, so they don't appear in any specific order.

CreateActivity

The following example shows a CloudTrail log entry that demonstrates the CreateActivity
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:17:56Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "CreateActivity",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",

Example: Step Functions Log File Entries 1121

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html

AWS Step Functions Developer Guide

 "userAgent": "AWS Internal",
 "requestParameters": {
 "name":
 "OtherActivityPrefix.2016-10-27-18-16-56.894c791e-2ced-4cf4-8523-376469410c25"
 },
 "responseElements": {
 "activityArn": "arn:aws:states:us-
east-1:123456789012:activity:OtherActivityPrefix.2016-10-27-18-16-56.894c791e-2ced-4cf4-8523-376469410c25",
 "creationDate": "Oct 28, 2016 1:17:56 AM"
 },
 "requestID": "37c67602-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "dc3becef-d06d-49bf-bc93-9b76b5f00774",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

CreateStateMachine

The following example shows a CloudTrail log entry that demonstrates the CreateStateMachine
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:18:07Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "CreateStateMachine",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "name": "testUser.2016-10-27-18-17-06.bd144e18-0437-476e-9bb",
 "roleArn": "arn:aws:iam::123456789012:role/graphene/tests/graphene-execution-
role",
 "definition": "{ \"StartAt\": \"SinglePass\", \"States\": {
 \"SinglePass\": { \"Type\": \"Pass\", \"End\": true } }}"

Example: Step Functions Log File Entries 1122

AWS Step Functions Developer Guide

 },
 "responseElements": {
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:testUser.2016-10-27-18-17-06.bd144e18-0437-476e-9bb",
 "creationDate": "Oct 28, 2016 1:18:07 AM"
 },
 "requestID": "3da6370c-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "84a0441d-fa06-4691-a60a-aab9e46d689c",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

DeleteActivity

The following example shows a CloudTrail log entry that demonstrates the DeleteActivity
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:18:27Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "DeleteActivity",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "activityArn": "arn:aws:states:us-
east-1:123456789012:activity:testUser.2016-10-27-18-11-35.f017c391-9363-481a-be2e-"
 },
 "responseElements": null,
 "requestID": "490374ea-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "e5eb9a3d-13bc-4fa1-9531-232d1914d263",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
 }

Example: Step Functions Log File Entries 1123

AWS Step Functions Developer Guide

DeleteStateMachine

The following example shows a CloudTrail log entry that demonstrates the DeleteStateMachine
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJABK5MNKNAEXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/graphene/tests/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJA2ELRVCPEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:17:37Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "DeleteStateMachine",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "errorCode": "AccessDenied",
 "errorMessage": "User: arn:aws:iam::123456789012:user/graphene/tests/test-user is
 not authorized to perform: states:DeleteStateMachine on resource: arn:aws:states:us-
east-1:123456789012:stateMachine:testUser.2016-10-27-18-16-38.ec6e261f-1323-4555-9fa",
 "requestParameters": null,
 "responseElements": null,
 "requestID": "2cf23f3c-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "4a622d5c-e9cf-4051-90f2-4cdb69792cd8",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

StartExecution

The following example shows a CloudTrail log entry that demonstrates the StartExecution
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",

Example: Step Functions Log File Entries 1124

AWS Step Functions Developer Guide

 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"
 },
 "eventTime": "2016-10-28T01:17:25Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "StartExecution",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "input": "{}",
 "stateMachineArn": "arn:aws:states:us-
east-1:123456789012:stateMachine:testUser.2016-10-27-18-16-26.482bea32-560f-4a36-bd",
 "name": "testUser.2016-10-27-18-16-26.6e229586-3698-4ce5-8d"
 },
 "responseElements": {
 "startDate": "Oct 28, 2016 1:17:25 AM",
 "executionArn": "arn:aws:states:us-
east-1:123456789012:execution:testUser.2016-10-27-18-16-26.482bea32-560f-4a36-
bd:testUser.2016-10-27-18-16-26.6e229586-3698-4ce5-8d"
 },
 "requestID": "264c6f08-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "30a20c8e-a3a1-4b07-9139-cd9cd73b5eb8",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

StopExecution

The following example shows a CloudTrail log entry that demonstrates the StopExecution
action.

{
 "eventVersion": "1.04",
 "userIdentity": {
 "type": "IAMUser",
 "principalId": "AIDAJYDLDBVBI4EXAMPLE",
 "arn": "arn:aws:iam::123456789012:user/test-user",
 "accountId": "123456789012",
 "accessKeyId": "AKIAJL5C75K4ZEXAMPLE",
 "userName": "test-user"

Example: Step Functions Log File Entries 1125

AWS Step Functions Developer Guide

 },
 "eventTime": "2016-10-28T01:18:20Z",
 "eventSource": "states.amazonaws.com",
 "eventName": "StopExecution",
 "awsRegion": "us-east-1",
 "sourceIPAddress": "AWS Internal",
 "userAgent": "AWS Internal",
 "requestParameters": {
 "executionArn": "arn:aws:states:us-
east-1:123456789012:execution:testUser.2016-10-27-18-17-00.337b3344-83:testUser.2016-10-27-18-17-00.3a0801c5-37"
 },
 "responseElements": {
 "stopDate": "Oct 28, 2016 1:18:20 AM"
 },
 "requestID": "4567625b-9cac-11e6-aed5-5b57d226e9ef",
 "eventID": "e658c743-c537-459a-aea7-dafb83c18c53",
 "eventType": "AwsApiCall",
 "recipientAccountId": "123456789012"
}

Logging using CloudWatch Logs

Standard Workflows record execution history in AWS Step Functions, although you can optionally
configure logging to Amazon CloudWatch Logs.

Unlike Standard Workflows, Express Workflows don't record execution history in AWS Step
Functions. To see execution history and results for an Express Workflow, you must configure
logging to Amazon CloudWatch Logs. Publishing logs doesn't block or slow down executions.

Note

When you configure logging, CloudWatch Logs charges will apply and you will be billed at
the vended logs rate. For more information, see Vended Logs under the Logs tab on the
CloudWatch Pricing page.

Configure logging

When you create a Standard Workflow using the Step Functions console, it will not be configured
to enable logging to CloudWatch Logs. An Express Workflow created using the Step Functions
console will by default be configured to enable logging to CloudWatch Logs.

Logging using CloudWatch Logs 1126

https://aws.amazon.com/cloudwatch/pricing

AWS Step Functions Developer Guide

For Express workflows, Step Functions can create a role with the necessary AWS Identity and Access
Management (IAM) policy for CloudWatch Logs. If you create a Standard Workflow, or an Express
Workflow using the API, CLI, or AWS CloudFormation, Step Functions will not enable logging by
default, and you will need ensure your role has the necessary permissions.

For each execution started from the console, Step Functions provides a link to CloudWatch Logs,
configured with the correct filter to fetch log events specific for that execution.

To configure logging, you can pass the LoggingConfiguration parameter when using
CreateStateMachine or UpdateStateMachine. You can further analyze your data in CloudWatch
Logs by using CloudWatch Logs Insights. For more information see Analyzing Log Data with
CloudWatch Logs Insights.

CloudWatch Logs payloads

Execution history events may contain either input or output properties in their definitions. If
escaped input or escaped output sent to CloudWatch Logs exceeds 248KB, it will be truncated as a
result of CloudWatch Logs quotas.

• You can determine whether a payload has been truncated by reviewing the
inputDetails and outputDetails properties. For more information, see the
HistoryEventExecutionDataDetails Data Type.

• For Standard Workflows, you can see the full execution history by using
GetExecutionHistory.

• GetExecutionHistory is not available for Express Workflows. If you want to see the full input
and output, you can use Amazon S3 ARNs. For more information, see the section called “Use
Amazon S3 ARNs instead of passing large payloads”.

IAM Policies for logging to CloudWatch Logs

You will also need to configure your state machine's execution IAM role to have the proper
permission to log to CloudWatch Logs as shown in the following example.

IAM policy example

The following is an example policy you can use to configure your permissions. As shown in the
following example, you need to specify * in the Resource field because CloudWatch API actions,
such as CreateLogDelivery and DescribeLogGroups, don't support Resource types defined by

CloudWatch Logs payloads 1127

https://docs.aws.amazon.com/step-functions/latest/apireference/API_LoggingConfiguration.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AnalyzingLogData.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_HistoryEventExecutionDataDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchlogs.html#amazoncloudwatchlogs-resources-for-iam-policies

AWS Step Functions Developer Guide

Amazon CloudWatch Logs. For more information, see Actions defined by Amazon CloudWatch
Logs.

• For information about CloudWatch resources, see CloudWatch Logs resources and operations in
the Amazon CloudWatch User Guide.

• For information about the permissions you need to set up sending logs to CloudWatch Logs, see
User permissions in the section titled Logs sent to CloudWatch Logs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "logs:CreateLogDelivery",
 "logs:CreateLogStream",
 "logs:GetLogDelivery",
 "logs:UpdateLogDelivery",
 "logs:DeleteLogDelivery",
 "logs:ListLogDeliveries",
 "logs:PutLogEvents",
 "logs:PutResourcePolicy",
 "logs:DescribeResourcePolicies",
 "logs:DescribeLogGroups"
],
 "Resource": "*"
 }
]
}

Unable to access the CloudWatch Logs

If you're unable to access the CloudWatch Logs, make sure you've done the following:

1. Configured your state machine's execution IAM role to have the proper permission to log to
CloudWatch Logs.

If you're using the CreateStateMachine or UpdateStateMachine requests, make sure you've
specified the IAM role in the roleArn parameter containing the permissions as shown in the
preceding example.

IAM Policies for logging to CloudWatch Logs 1128

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchlogs.html#amazoncloudwatchlogs-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchlogs.html#amazoncloudwatchlogs-actions-as-permissions
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazoncloudwatchlogs.html#amazoncloudwatchlogs-actions-as-permissions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/iam-access-control-overview-cwl.html#CWL_ARN_Format
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/AWS-logs-and-resource-policy.html#AWS-logs-infrastructure-CWL
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html

AWS Step Functions Developer Guide

2. Checked the CloudWatch Logs resource policy doesn't exceed the 5120 character limit for
CloudWatch Logs resource policies.

If you've exceeded the character limit, remove unnecessary permissions from the CloudWatch
Logs resource policy, or prefix the log group name with /aws/vendedlogs, which will grant
permissions to the log group without appending more characters to the resource policy. When
you create a log group in the Step Functions console, the log group names are prefixed with
/aws/vendedlogs/states. For more information, see Amazon CloudWatch Logs resource
policy size restrictions.

Log levels

You can choose from OFF, ALL, ERROR, or FATAL. No event types log when set to OFF and all event
types do when set to ALL. For ERROR and FATAL, see the following table.

For more information about the execution data displayed for Express Workflow executions based
on these Log levels, see Standard and Express Workflow executions in the console.

Event Type ALL ERROR FATAL OFF

ChoiceSta
teEntered

✓

ChoiceSta
teExited

✓

Execution
Aborted

✓ ✓ ✓

ExecutionFailed ✓ ✓ ✓

Execution
Started

✓

Execution
Succeeded

✓

Execution
TimedOut

✓ ✓ ✓

Log levels 1129

AWS Step Functions Developer Guide

Event Type ALL ERROR FATAL OFF

FailStateEntered ✓ ✓

LambdaFun
ctionFailed

✓ ✓

LambdaFun
ctionScheduled

✓

LambdaFun
ctionSche
duleFailed

✓ ✓

LambdaFun
ctionStarted

✓

LambdaFun
ctionStartFailed

✓ ✓

LambdaFun
ctionSucceeded

✓

LambdaFun
ctionTimedOut

✓ ✓

MapIterat
ionAborted

✓ ✓

MapIterat
ionFailed

✓ ✓

MapIterat
ionStarted

✓

MapIterat
ionSucceeded

✓

MapRunAborted ✓ ✓

Log levels 1130

AWS Step Functions Developer Guide

Event Type ALL ERROR FATAL OFF

MapRunFailed ✓ ✓

MapStateA
borted

✓ ✓

MapStateE
ntered

✓

MapStateExited ✓

MapStateFailed ✓ ✓

MapStateS
tarted

✓

MapStateS
ucceeded

✓

ParallelS
tateAborted

✓ ✓

ParallelS
tateEntered

✓

ParallelS
tateExited

✓

ParallelS
tateFailed

✓ ✓

ParallelS
tateStarted

✓

ParallelS
tateSucceeded

✓

PassState
Entered

✓

Log levels 1131

AWS Step Functions Developer Guide

Event Type ALL ERROR FATAL OFF

PassStateExited ✓

SucceedSt
ateEntered

✓

SucceedSt
ateExited

✓

TaskFailed ✓ ✓

TaskScheduled ✓

TaskStarted ✓

TaskStartFailed ✓ ✓

TaskState
Aborted

✓ ✓

TaskState
Entered

✓

TaskStateExited ✓

TaskSubmi
tFailed

✓ ✓

TaskSubmitted ✓

TaskSucceeded ✓

TaskTimedOut ✓ ✓

WaitState
Aborted

✓ ✓

WaitState
Entered

✓

Log levels 1132

AWS Step Functions Developer Guide

Event Type ALL ERROR FATAL OFF

WaitStateExited ✓

AWS X-Ray and Step Functions

You can use AWS X-Ray to visualize the components of your state machine, identify performance
bottlenecks, and troubleshoot requests that resulted in an error. Your state machine sends trace
data to X-Ray, and X-Ray processes the data to generate a service map and searchable trace
summaries.

With X-Ray enabled for your state machine, you can trace requests as they are executed in Step
Functions, in all AWS Regions where X-Ray is available. This gives you a detailed overview of
an entire Step Functions request. Step Functions will send traces to X-Ray for state machine
executions, even when a trace ID is not passed by an upstream service. You can use an X-Ray service
map to view the latency of a request, including any AWS services that are integrated with X-Ray.
You can also configure sampling rules to tell X-Ray which requests to record, and at what sampling
rates, according to criteria that you specify.

When X-Ray is not enabled for your state machine, and an upstream service does not pass a trace
ID, Step Functions will not send traces to X-Ray for state machine executions. However, if a trace ID
is passed by an upstream service, Step Functions will then send traces to X-Ray for state machine
executions.

You can use AWS X-Ray with Step Functions in regions where both are supported. See the Step
Functions and X-Ray endpoints and quotas pages for information on region support for X-Ray and
Step Functions.

X-Ray and Step Functions Combined Quotas

You can add data to a trace for up to seven days, and query trace data going back thirty
days, the length of time that X-Ray stores trace data. Your traces will be subject to X-Ray
quotas. In addition to other quotas, X-Ray provides a minimum guaranteed trace size of
100KB for Step Functions state machines. If more than 100KB of trace data is provided
to X-Ray, this may result in a frozen trace. See the service quotas section of the X-Ray
endpoints and quotas page for more information on other quotas for X-Ray.

X-Ray 1133

https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html
https://docs.aws.amazon.com/general/latest/gr/step-functions.html
https://docs.aws.amazon.com/general/latest/gr/step-functions.html
https://docs.aws.amazon.com/general/latest/gr/xray.html
https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray
https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray

AWS Step Functions Developer Guide

Important

Step Functions doesn't support X-Ray tracing for the child workflow executions started by
a Distributed Map state because it's easy to exceed the Trace document size limit for such
executions.

Topics

• Setup and configuration

• Concepts

• Step Functions service integrations and X-Ray

• Viewing the X-Ray console

• Viewing X-Ray tracing information for Step Functions

• Traces

• Service map

• Segments and subsegments

• Analytics

• Configuration

• What if there is no data in the trace map or service map?

Setup and configuration

Enable X-Ray tracing when creating a state machine

You can enable X-Ray tracing when creating a new state machine by selecting Enable X-Ray
tracing on the Specify details page.

1. Open the Step Functions console and choose Create state machine.

2. On the Choose authoring method page, choose an appropriate option to create your state
machine. If you choose Run a sample project, you cannot enable X-Ray tracing during the state
machine creation, and you will need to enable X-Ray tracing after your state machine has been
created. For more information about enabling X-Ray in an existing state machine, see Enable X-
Ray in an existing state machine.

Setup and configuration 1134

https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray
https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

Choose Next.

3. On the Specify details page, configure your state machine.

4. Choose Enable X-Ray tracing.

Your Step Functions state machine will now send traces to X-Ray for state machine executions.

Note

If you choose to use an existing IAM role, you should ensure that X-Ray writes are
allowed. For more information about the permissions that you need, see IAM policies for
X-Ray.

Enable X-Ray in an existing state machine

To enable X-Ray in an existing state machine:

1. In the Step Functions console, select the state machine for which you want to enable tracing.

2. Choose Edit.

3. Choose Enable X-Ray tracing.

Setup and configuration 1135

https://console.aws.amazon.com/states/home

AWS Step Functions Developer Guide

You will see a notification telling you that you that you may need to make additional changes.

Note

When you enable X-Ray for an existing state machine, you must ensure that you have an
IAM policy that grants sufficient permissions for X-Ray to perform traces. You can either
add one manually, or generate one. For more information, see the IAM policy section for
IAM policies for AWS X-Ray.

4. (Optional) Auto-generate a new role for your state machine to include X-Ray permissions.

5. Choose Save.

Configure X-Ray tracing for Step Functions

When you first run a state machine with X-Ray tracing enabled, it will use the default configuration
values for X-Ray tracing. AWS X-Ray does not collect data for every request that is sent to an
application. Instead, it collects data for a statistically significant number of requests. The default
is to record the first request each second, and five percent of any additional requests. One request
per second is the reservoir. This ensures that at least one trace is recorded each second as long as
the service is serving requests. Five percent is the rate at which additional requests beyond the
reservoir size are sampled.

To avoid incurring service charges when you are getting started, the default sampling rate is
conservative. You can configure X-Ray to modify the default sampling rule and configure additional
rules that apply sampling based on properties of the service or request.

For example, you might want to disable sampling and trace all requests for calls that modify state
or handle AWS accounts or transactions. For high-volume read-only calls, like background polling,
health checks, or connection maintenance, you can sample at a low rate and still get enough data
to observe issues that occur.

To configure a sampling rule for your state machine:

1. Go to the X-Ray console.

2. Choose Sampling.

3. To create a rule, choose Create sampling rule.

To edit a rule, choose a rule's name.

Setup and configuration 1136

https://console.aws.amazon.com/xray/home

AWS Step Functions Developer Guide

To delete a rule, choose a rule and use the Actions menu to delete it.

Some parts of existing sampling rules, such as the name and priority, cannot be changed. Instead,
add or clone an existing rule, make the changes you want, then use the new rule.

For detailed information on X-Ray sampling rules and how to configure the various parameters, see
Configuring sampling rules in the X-Ray console.

Integrate upstream services

To integrate the execution of Step Functions workflows, such as Express, Synchronous, and
Standard workflows, with an upstream service you need to set the traceHeader. This is
automatically done for you if you are using a HTTP API in API Gateway. However, if you're using a
Lambda function and/or an SDK, you need to set the traceHeader on the StartExecution or
StartSyncExecution API calls yourself.

You must specify the traceHeader format as \p{ASCII}#. Additionally, to let Step Functions
use the same trace ID, you must specify the format as Root={TRACE_ID};Sampled={1 or 0}.
If you're using a Lambda function, replace the TRACE_ID with the trace ID in your current segment
and set the Sampled field as 1 if your sampling mode is true and 0 if your sampling mode is false.
Providing the trace ID in this format ensures that you'll get a complete trace.

The following is an example written in Python to showcase how to specify the traceHeader.

state_machine = config.get_string_paramter("STATE_MACHINE_ARN")
 if (xray_recorder.current_subsegment() is not None and
 xray_recorder.current_subsegment().sampled) :
 trace_id = "Root={};Sampled=1".format(
 xray_recorder.current_subsegment().trace_id
)
 else:
 trace_id = "Root=not enabled;Sampled=0"
 LOGGER.info("trace %s", trace_id)

 # execute it
 response = states.start_sync_execution(
 stateMachineArn=state_machine,
 input=event['body'],
 name=context.aws_request_id,
 traceHeader=trace_id

Setup and configuration 1137

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions Developer Guide

)
 LOGGER.info(response)

Concepts

The X-Ray console

The AWS X-Ray console enables you to view service maps and traces for requests that your
applications serve. You can access the console to view detailed information collected by X-Ray
when it's enabled for your state machine.

See Viewing the X-Ray console for information on how to access the X-Ray console for your state
machine executions.

For detailed information about the X-Ray console, see the X-Ray console documentation.

Segments, subsegments, and traces

A segment records information about a request to your state machine. It contains information
such as the work that your state machine performs, and may also contain subsegments with
information about downstream calls.

A trace collects all the segments generated by a single request.

Sampling

To ensure efficient tracing and provide a representative sample of the requests that your
application serves, X-Ray applies a sampling algorithm to determine which requests get traced.
This can be changed by editing the sampling rules.

Metrics

For your state machine, X-Ray will meter invocation time, state transition time, the overall
execution time of Step Functions, and variances in this execution time. This information can be
accessed through the X-Ray console.

Analytics

The AWS X-Ray Analytics console is an interactive tool for interpreting trace data. You can refine
the active dataset with increasingly granular filters by clicking the graphs and the panels of metrics

Concepts 1138

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html

AWS Step Functions Developer Guide

and fields that are associated with the current trace set. This lets you analyze how your state
machine is performing, and quickly locate and identify performance issues.

For detailed information about X-Ray analytics, see Interacting with the AWS X-Ray Analytics
console

Step Functions service integrations and X-Ray

Some of the AWS services that integrate with Step Functions provide integration with AWS X-Ray
by adding a tracing header to requests, running the X-Ray daemon, or making sampling decisions
and uploading trace data to X-Ray. Others must be instrumented using the AWS X-Ray SDK. A few
do not yet support X-Ray integration. X-Ray integration is necessary to provide complete trace data
when using a service integration with Step Functions

Native X-Ray support

Service integrations with native X-Ray support include:

• Amazon Simple Notification Service

• Amazon Simple Queue Service

• AWS Lambda

• AWS Step Functions

Instrumentation required

Service integrations that require X-Ray instrumentation:

• Amazon Elastic Container Service

• AWS Batch

• AWS Fargate

Client-side trace only

Other service integrations do not support X-Ray traces. However, client side traces can still be
collected:

• Amazon DynamoDB

• Amazon EMR

Service integrations 1139

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-analytics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-analytics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sqs.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-lambda.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray.html

AWS Step Functions Developer Guide

• Amazon SageMaker

• AWS CodeBuild

• AWS Glue

Viewing the X-Ray console

X-Ray receives data from services as segments. X-Ray groups segments that have a common
request into traces. X-Ray processes the traces to generate a service graph that provides a visual
representation of your application.

After you start your state machine's execution, you can view its X-Ray traces by choosing the X-Ray
trace map link in the Execution details section.

After you have enabled X-Ray for your state machine, you can view tracing information for its
executions in the X-Ray console.

Viewing X-Ray tracing information for Step Functions

The following steps illustrate what kind of information you can see in the console after you enable
X-Ray and run an execution. X-Ray traces for the Callback Pattern Example (Amazon SQS, Amazon
SNS, Lambda) sample project are shown.

Traces

After the an execution has finished, you can navigate to the X-Ray console, where you will see
the X-Ray Traces page. This displays an overview of the service map as well as trace and segment
information for your state machine.

Viewing the X-Ray console 1140

AWS Step Functions Developer Guide

Service map

The service map in the X-Ray console helps you to identify services where errors are occurring,
where there are connections with high latency, or see traces for requests that were unsuccessful.

On the trace map, you can choose a service node to view requests for that node, or an edge
between two nodes to view requests that traveled that connection. Here, the WaitForCallBack

Service map 1141

AWS Step Functions Developer Guide

node has been selected, and you can view additional information about its execution and response
status.

You can see how the X-Ray service map correlates to the state machine. There is a service map
node for each service integration that is called by Step Functions, provided it supports X-Ray.

Segments and subsegments

A trace is a collection of segments generated by a single request. Each segment provides the
resource's name, details about the request, and details about the work done. On the Traces page,
you can see the segments and, if expanded, its corresponding subsegments. You can choose a
segment or subsegment to view detailed information about it.

Segments and subsegments 1142

AWS Step Functions Developer Guide

Choose each of the tabs to see how information for segments and subsegments is displayed.

Overview of Segments

An overview of segments and subsegments for this state machine. There is a different segment
for each node on the service map.

View segment detail

Choosing a segment provides the resource's name, details about the request, and details about
the work done.

View subsegment detail

A segment can break down the data about the work done into subsegments. Choosing a
subsegments lets you view more granular timing information and details. A subsegment can

Segments and subsegments 1143

AWS Step Functions Developer Guide

contain additional details about a call to an AWS service, an external HTTP API, or an SQL
database.

Analytics

The AWS X-Ray Analytics console is an interactive tool for interpreting trace data. You can use
this to more easily understand how your state machine is performing. The console enables you to
explore, analyze, and visualize traces through interactive response time and time-series graphs.
This can help you quickly locate performance and latency issues.

You can refine the active dataset with increasingly granular filters by clicking the graphs and the
panels of metrics and fields that are associated with the current trace set.

Analytics 1144

AWS Step Functions Developer Guide

Configuration

You can configure sampling and encryption options from the X-Ray console.

Sampling

Choose Sampling to view details about the sampling rate and configuration. You can change
the sampling rules to control the amount of data that you record, and modify sampling
behavior to suit your specific requirements.

Configuration 1145

AWS Step Functions Developer Guide

Encryption

Choose Encryption to modify the encryption settings. You can use the default setting, where
X-Ray encrypts traces and date at rest, or, if needed, you can choose a customer master key.
Standard AWS KMS charges apply in the latter case.

What if there is no data in the trace map or service map?

If you have enabled X-Ray, but can't see any data in the X-Ray console, check that:

• Your IAM roles are set up correctly to allow writing to X-Ray.

• Sampling rules allow sampling of data.

• Since there can be a short delay before newly created or modified IAM roles are applied, check
the trace or service maps again after a few minutes.

What if there is no data in the trace map or service map? 1146

https://docs.aws.amazon.com/kms/latest/developerguide/

AWS Step Functions Developer Guide

• If you see Data Not Found in the X-Ray Traces panel, check your IAM account settings
and ensure that AWS Security Token Service is enabled for the intended region. For more
information, see Activating and deactivating AWS STS in an AWS Region in the IAM User Guide.

Using AWS User Notifications with AWS Step Functions

You can use AWS User Notifications to set up delivery channels to get notified about AWS Step
Functions events. You receive a notification when an event matches a rule that you specify. You
can receive notifications for events through multiple channels, including email, AWS Chatbot chat
notifications, or AWS Console Mobile Application push notifications. You can also see notifications
in the Console Notifications Center. User Notifications supports aggregation, which can reduce the
number of notifications you receive during specific events.

Using AWS User Notifications with Step Functions 1147

https://console.aws.amazon.com/iam/home?#/account_settings
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_enable-regions.html#sts-regions-activate-deactivate
https://docs.aws.amazon.com/notifications/latest/userguide/what-is.html
https://docs.aws.amazon.com/chatbot/latest/adminguide/what-is.html
https://docs.aws.amazon.com/consolemobileapp/latest/userguide/what-is-consolemobileapp.html
https://console.aws.amazon.com/notifications/

AWS Step Functions Developer Guide

Security in AWS Step Functions

This section provides information about AWS Step Functions security and authentication.

Topics

• Data protection in AWS Step Functions

• Identity and Access Management in AWS Step Functions

• Logging and Monitoring

• Compliance Validation for AWS Step Functions

• Resilience in AWS Step Functions

• Infrastructure Security in AWS Step Functions

• Configuration and Vulnerability Analysis in AWS Step Functions

Step Functions uses IAM to control access to other AWS services and resources. For an overview
of how IAM works, see Overview of Access Management in the IAM User Guide. For an overview of
security credentials, see AWS Security Credentials in the Amazon Web Services General Reference.

Data protection in AWS Step Functions

The AWS shared responsibility model applies to data protection in AWS Step Functions. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. You are also responsible for the security configuration and management tasks
for the AWS services that you use. For more information about data privacy, see the Data Privacy
FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model
and GDPR blog post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties. We also
recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2 and recommend TLS 1.3.

• Set up API and user activity logging with AWS CloudTrail.

Data Protection 1148

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS Step Functions Developer Guide

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering and
securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a
command line interface or an API, use a FIPS endpoint. For more information about the available
FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Step Functions or other AWS services using the console, API, AWS CLI, or AWS
SDKs. Any data that you enter into tags or free-form text fields used for names may be used for
billing or diagnostic logs. If you provide a URL to an external server, we strongly recommend that
you do not include credentials information in the URL to validate your request to that server.

Encryption in AWS Step Functions

Encryption at Rest

Step Functions always encrypts your data at rest. Data in AWS Step Functions is encrypted at rest
using transparent server-side encryption. This helps reduce the operational burden and complexity
involved in protecting sensitive data. With encryption at rest, you can build security-sensitive
applications that meet encryption compliance and regulatory requirements

Encryption in transit

Step Functions encrypts data in transit between the service and other integrated AWS services (see
Using AWS Step Functions with other services). All data that passes between Step Functions and
integrated services is encrypted using Transport Layer Security (TLS).

Identity and Access Management in AWS Step Functions

Access to AWS Step Functions requires credentials that AWS can use to authenticate your requests.
These credentials must have permissions to access AWS resources, such as retrieving event data
from other AWS resources. The following sections provide details on how you can use AWS Identity
and Access Management (IAM) and Step Functions to help secure your resources by controlling who
can access them.

Encryption 1149

https://aws.amazon.com/compliance/fips/
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html

AWS Step Functions Developer Guide

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Step Functions resources. IAM is an AWS service that you
can use with no additional charge.

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Step Functions.

Service user – If you use the Step Functions service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Step Functions
features to do your work, you might need additional permissions. Understanding how access is
managed can help you request the right permissions from your administrator. If you cannot access
a feature in Step Functions, see Troubleshooting AWS Step Functions identity and access.

Service administrator – If you're in charge of Step Functions resources at your company, you
probably have full access to Step Functions. It's your job to determine which Step Functions
features and resources your service users should access. You must then submit requests to your IAM
administrator to change the permissions of your service users. Review the information on this page
to understand the basic concepts of IAM. To learn more about how your company can use IAM with
Step Functions, see How AWS Step Functions works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Step Functions. To view example Step Functions identity-
based policies that you can use in IAM, see Identity-based policy examples for AWS Step Functions.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Audience 1150

AWS Step Functions Developer Guide

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For

Authenticating with identities 1151

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html

AWS Step Functions Developer Guide

information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

Authenticating with identities 1152

https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS Step Functions Developer Guide

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Creating a role to delegate permissions to an AWS service in the IAM
User Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using

Authenticating with identities 1153

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS Step Functions Developer Guide

an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose

Managing access using policies 1154

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Step Functions Developer Guide

between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a

Managing access using policies 1155

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html

AWS Step Functions Developer Guide

service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

Access Control

You can have valid credentials to authenticate your requests, but unless you have permissions
you cannot create or access Step Functions resources. For example, you must have permissions
to invoke AWS Lambda, Amazon Simple Notification Service (Amazon SNS), and Amazon Simple
Queue Service (Amazon SQS) targets associated with your Step Functions rules.

The following sections describe how to manage permissions for Step Functions.

• Creating an IAM role for your state machine

• Creating Granular IAM Permissions for Non-Admin Users

• Amazon VPC Endpoints for Step Functions

• IAM Policies for integrated services

• IAM policies for using Distributed Map state

Policy actions for Step Functions

Supports policy actions Yes

Access Control 1156

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

AWS Step Functions Developer Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Step Functions actions, see Resources Defined by AWS Step Functions in the Service
Authorization Reference.

Policy actions in Step Functions use the following prefix before the action:

states

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "states:action1",
 "states:action2"
]

To view examples of Step Functions identity-based policies, see Identity-based policy examples for
AWS Step Functions.

Policy resources for Step Functions

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,

Policy resources 1157

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html

AWS Step Functions Developer Guide

specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Step Functions resource types and their ARNs, see Actions Defined by AWS Step
Functions in the Service Authorization Reference. To learn with which actions you can specify the
ARN of each resource, see Resources Defined by AWS Step Functions.

To view examples of Step Functions identity-based policies, see Identity-based policy examples for
AWS Step Functions.

Policy condition keys for Step Functions

Supports service-specific policy condition keys Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

Policy condition keys 1158

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

AWS Step Functions Developer Guide

To see a list of Step Functions condition keys, see Condition Keys for AWS Step Functions in the
Service Authorization Reference. To learn with which actions and resources you can use a condition
key, see Resources Defined by AWS Step Functions.

To view examples of Step Functions identity-based policies, see Identity-based policy examples for
AWS Step Functions.

ACLs in Step Functions

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Step Functions

Supports ABAC (tags in policies) Partial

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

ACLs 1159

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS Step Functions Developer Guide

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Step Functions

Supports temporary credentials Yes

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Step Functions

Supports forward access sessions (FAS) Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Temporary credentials 1160

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html

AWS Step Functions Developer Guide

Service roles for Step Functions

Supports service roles Yes

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

Warning

Changing the permissions for a service role might break Step Functions functionality. Edit
service roles only when Step Functions provides guidance to do so.

Service-linked roles for Step Functions

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

How AWS Step Functions works with IAM

Before you use IAM to manage access to Step Functions, learn what IAM features are available to
use with Step Functions.

IAM features you can use with AWS Step Functions

IAM feature Step Functions support

Identity-based policies Yes

Service roles 1161

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html

AWS Step Functions Developer Guide

IAM feature Step Functions support

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys (service-specific) Yes

ACLs No

ABAC (tags in policies) Partial

Temporary credentials Yes

Principal permissions Yes

Service roles Yes

Service-linked roles No

To get a high-level view of how Step Functions and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policy examples for AWS Step Functions

By default, users and roles don't have permission to create or modify Step Functions resources.
They also can't perform tasks by using the AWS Management Console, AWS Command Line
Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources
that they need, an IAM administrator can create IAM policies. The administrator can then add the
IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Step Functions, including the format of
the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for AWS Step
Functions in the Service Authorization Reference.

Identity-based policy examples 1162

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsstepfunctions.html

AWS Step Functions Developer Guide

Topics

• Policy best practices

• Using the Step Functions console

• Allow users to view their own permissions

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Step Functions
resources in your account. These actions can incur costs for your AWS account. When you create or
edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when

Identity-based policy examples 1163

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html

AWS Step Functions Developer Guide

API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the Step Functions console

To access the AWS Step Functions console, you must have a minimum set of permissions. These
permissions must allow you to list and view details about the Step Functions resources in your AWS
account. If you create an identity-based policy that is more restrictive than the minimum required
permissions, the console won't function as intended for entities (users or roles) with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Step Functions console, also attach the Step
Functions ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],

Identity-based policy examples 1164

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS Step Functions Developer Guide

 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Identity-based policies for Step Functions

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Step Functions

To view examples of Step Functions identity-based policies, see Identity-based policy examples for
AWS Step Functions.

Identity-based policies 1165

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS Step Functions Developer Guide

Resource-based policies within Step Functions

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Creating an IAM role for your state machine

AWS Step Functions can execute code and access AWS resources (such as invoking an AWS Lambda
function). To maintain security, you must grant Step Functions access to those resources by using
an IAM role.

The Tutorials for Step Functions in this guide enable you to take advantage of automatically
generated IAM roles that are valid for the AWS Region in which you create the state machine.
However, you can create your own IAM role for a state machine.

When creating an IAM policy for your state machines to use, the policy should include the
permissions that you would like the state machines to assume. You can use an existing AWS
managed policy as an example or you can create a custom policy from scratch that meets your
specific needs. For more information, see Creating IAM policies in the IAM User Guide

To create your own IAM role for a state machine, follow the steps in this section.

Resource-based policies 1166

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

AWS Step Functions Developer Guide

In this example, you create an IAM role with permission to invoke a Lambda function.

Create a role for Step Functions

1. Sign in to the IAM console, and then choose Roles, Create role.

2. On the Select trusted entity page, under AWS service, select Step Functions from the list,
and then choose Next: Permissions.

3. On the Attached permissions policy page, choose Next: Review.

4. On the Review page, enter StepFunctionsLambdaRole for Role Name, and then choose
Create role.

The IAM role appears in the list of roles.

For more information about IAM permissions and policies, see Access Management in the IAM User
Guide.

Prevent cross-service confused deputy issue

The confused deputy problem is a security issue where an entity that doesn't have permission
to perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-
service impersonation can result in the confused deputy problem. Cross-service impersonation can
occur when one service (the calling service) calls another service (the called service). This type of
impersonation can happen cross-account and cross-service. The calling service can be manipulated
to use its permissions to act on another customer's resources in a way it should not otherwise have
permission to access.

To prevent confused deputies, AWS provides tools that help you protect your data for all services
with service principals that have been given access to resources in your account. This section
focuses on cross-service confused deputy prevention specific to AWS Step Functions; however, you
can learn more about this topic in the confused deputy problem section of the IAM User Guide.

We recommend using the aws:SourceArn and aws:SourceAccount global condition context
keys in resource policies to limit the permissions that Step Functions gives another service to access
your resources. Use aws:SourceArn if you want only one resource to be associated with the cross-
service access. Use aws:SourceAccount if you want to allow any resource in that account to be
associated with the cross-service use.

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don’t know

Creating a state machine IAM role 1167

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/confused-deputy.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount

AWS Step Functions Developer Guide

the full ARN of the resource, or if you're specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:states:*:111122223333:*.

Here's an example of a trusted policy that shows how you can use aws:SourceArn and
aws:SourceAccount with Step Functions to prevent the confused deputy issue.

{
 "Version":"2012-10-17",
 "Statement":[
 {
 "Effect":"Allow",
 "Principal":{
 "Service":[
 "states.amazonaws.com"
]
 },
 "Action":"sts:AssumeRole",
 "Condition":{
 "ArnLike":{
 "aws:SourceArn":"arn:aws:states:us-east-1:111122223333:stateMachine:*"
 },
 "StringEquals":{
 "aws:SourceAccount":"111122223333"
 }
 }
 }
]
}

Attach an Inline Policy

Step Functions can control other services directly in a Task state. Attach inline policies to allow
Step Functions to access the API actions of the services you need to control.

1. Open the IAM console, choose Roles, search for your Step Functions role, and select that role.

2. Select Add inline policy.

3. Use the Visual editor or the JSON tab to create policies for your role.

For more information about how AWS Step Functions can control other AWS services, see Using
AWS Step Functions with other services.

Creating a state machine IAM role 1168

https://console.aws.amazon.com/iam/home

AWS Step Functions Developer Guide

Note

For examples of IAM policies created by the Step Functions console, see IAM Policies for
integrated services.

Creating Granular IAM Permissions for Non-Admin Users

The default managed policies in IAM, such as ReadOnly, don't fully cover all types of AWS Step
Functions permissions. This section describes these different types of permissions and provides
some example configurations.

Step Functions has four categories of permissions. Depending on what access you want to provide
to a user, you can control access by using permissions in these categories.

Service-Level Permissions

Apply to components of the API that don't act on a specific resource.

State Machine-Level Permissions

Apply to all API components that act on a specific state machine.

Execution-Level Permissions

Apply to all API components that act on a specific execution.

Activity-Level Permissions

Apply to all API components that act on a specific activity or on a particular instance of an
activity.

Service-Level Permissions

This permission level applies to all API actions that don't act on a specific resource. These include
CreateStateMachine, CreateActivity, ListStateMachines, and ListActivities.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

Creating Granular IAM Permissions for Non-Admin Users 1169

https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListStateMachines.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListActivities.html

AWS Step Functions Developer Guide

 "Action": [
 "states:ListStateMachines",
 "states:ListActivities",
 "states:CreateStateMachine",
 "states:CreateActivity"
],
 "Resource": [
 "arn:aws:states:*:*:*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam:::role/my-execution-role"
]
 }
]
}

State Machine-Level Permissions

This permission level applies to all API actions that act on a specific state machine. These
API operations require the Amazon Resource Name (ARN) of the state machine as part of the
request, such as DeleteStateMachine, DescribeStateMachine, StartExecution, and
ListExecutions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:DescribeStateMachine",
 "states:StartExecution",
 "states:DeleteStateMachine",
 "states:ListExecutions",
 "states:UpdateStateMachine",
 "states:TestState",
 "states:RevealSecrets"
],

Creating Granular IAM Permissions for Non-Admin Users 1170

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListExecutions.html

AWS Step Functions Developer Guide

 "Resource": [
 "arn:aws:states:*:*:stateMachine:StateMachinePrefix*"
]
 }
]
}

Execution-Level Permissions

This permission level applies to all the API actions that act on a specific execution. These API
operations require the ARN of the execution as part of the request, such as DescribeExecution,
GetExecutionHistory, and StopExecution.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:DescribeExecution",
 "states:DescribeStateMachineForExecution",
 "states:GetExecutionHistory",
 "states:StopExecution"
],
 "Resource": [
 "arn:aws:states:*:*:execution:*:ExecutionPrefix*"
]
 }
]
}

Activity-Level Permissions

This permission level applies to all the API actions that act on a specific activity or on a particular
instance of it. These API operations require the ARN of the activity or the token of the instance as
part of the request, such as DeleteActivity, DescribeActivity, GetActivityTask, and
SendTaskHeartbeat.

{
 "Version": "2012-10-17",
 "Statement": [
 {

Creating Granular IAM Permissions for Non-Admin Users 1171

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StopExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DeleteActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeActivity.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_SendTaskHeartbeat.html

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "states:DescribeActivity",
 "states:DeleteActivity",
 "states:GetActivityTask",
 "states:SendTaskHeartbeat"
],
 "Resource": [
 "arn:aws:states:*:*:activity:ActivityPrefix*"
]
 }
]
}

Accessing resources in other AWS accounts in your workflows

Step Functions provides cross-account access to resources configured in different AWS accounts in
your workflows. Using Step Functions service integrations, you can invoke any cross-account AWS
resource even if that AWS service doesn’t support resource-based policies or cross-account calls.

For example, assume you own two AWS accounts, called Development and Testing, in the same
AWS Region. Using cross-account access, your workflow in the Development account can access
resources, such as Amazon S3 buckets, Amazon DynamoDB tables, and Lambda functions that are
available in the Testing account.

Important

IAM roles and resource-based policies delegate access across accounts only within a single
partition. For example, assume that you have an account in US West (N. California) in the
standard aws partition. You also have an account in China (Beijing) in the aws-cn partition.
You can't use an Amazon S3 resource-based policy in your account in China (Beijing) to
allow access for users in your standard aws account.

For more information about cross-account access, see Cross-account policy evaluation logic in the
IAM User Guide.

Although each AWS account maintains complete control over its own resources, with Step
Functions, you can reorganize, swap, add, or remove steps in your workflows without the need to
customize any code. You can do this even as the processes change or applications evolve.

Accessing cross-account AWS resources 1172

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic-cross-account.html

AWS Step Functions Developer Guide

You can also invoke executions of nested state machines so they're available across different
accounts. Doing so efficiently separates and isolates your workflows. When you use the .sync
service integration pattern in your workflows that access another Step Functions workflow in
a different account, Step Functions uses polling that consumes your assigned quota. For more
information, see Run a Job (.sync).

Note

Currently, cross-Region AWS SDK integration and cross-Region AWS resource access aren't
available in Step Functions.

Contents

• Key concepts in this topic

• Invoking cross-account resources

• Tutorial: Accessing cross-account AWS resources

• Cross-account access for .sync integration pattern

Key concepts in this topic

Execution role

An IAM role that Step Functions uses to run code and access AWS resources, such as the AWS
Lambda function's Invoke action.

Service integration

The AWS SDK integration API actions that can be called from within a Task state in your
workflows.

source account

An AWS account that owns the state machine and has started its execution.

target account

An AWS account to which you make cross-account calls.

target role

An IAM role in the target account that the state machine assumes for making calls to resources
that the target account owns.

Accessing cross-account AWS resources 1173

AWS Step Functions Developer Guide

Run a Job (.sync)

A service integration pattern used to call services, such as AWS Batch. It also makes a Step
Functions state machine wait for a job to complete before progressing to the next state. To
indicate that Step Functions should wait, append the .sync suffix in the Resource field in your
Task state definition.

Invoking cross-account resources

To invoke a cross-account resource in your workflows, do the following:

1. Create an IAM role in the target account that contains the resource. This role grants the source
account, containing the state machine, permissions to access the target account's resources.

2. In the Task state's definition, specify the target IAM role to be assumed by the state machine
before invoking the cross-account resource.

3. Modify the trust policy in the target IAM role to allow the source account to assume this role
temporarily. The trust policy must include the Amazon Resource Name (ARN) of the state
machine defined in the source account. Also, define the appropriate permissions in the target
IAM role to call the AWS resource.

4. Update the source account’s execution role to include the required permission for assuming the
target IAM role.

For an example, see Tutorial: Accessing cross-account AWS resources.

Note

You can configure your state machine to assume an IAM role for accessing resources from
multiple AWS accounts. However, a state machine can assume only one IAM role at a given
time.

Accessing cross-account AWS resources 1174

AWS Step Functions Developer Guide

Tutorial: Accessing cross-account AWS resources

With the cross-account access support in Step Functions, you can share resources configured in
different AWS accounts. In this tutorial, we walk you through the process of accessing a cross-
account Lambda function defined in an account called Production. This function is invoked from
a state machine in an account called Development. In this tutorial, the Development account is
referred to as the source account and the Production account is the target account containing the
target IAM role.

To start, in your Task state’s definition, you specify the target IAM role the state machine must
assume before invoking the cross-account Lambda function. Then, modify the trust policy in the
target IAM role to allow the source account to assume the target role temporarily. Also, to call the
AWS resource, define the appropriate permissions in the target IAM role. Finally, update the source
account’s execution role to specify the required permission to assume the target role.

Accessing cross-account AWS resources 1175

AWS Step Functions Developer Guide

You can configure your state machine to assume an IAM role for accessing resources from multiple
AWS accounts. However, a state machine can assume only one IAM role at a given time based on
the Task state’s definition.

Note

Currently, cross-Region AWS SDK integration and cross-Region AWS resource access aren't
available in Step Functions.

Contents

• Prerequisites

• Step 1: Update the Task state definition to specify the target role

• Step 2: Update the target role's trust policy

• Step 3: Add the required permission in the target role

• Step 4: Add permission in execution role to assume the target role

Prerequisites

• This tutorial uses the example of a Lambda function for demonstrating how to set up cross-
account access. You can use any other AWS resource, but make sure you’ve configured the
resource in a different account.

Important

IAM roles and resource-based policies delegate access across accounts only within a
single partition. For example, assume that you have an account in US West (N. California)
in the standard aws partition. You also have an account in China (Beijing) in the aws-
cn partition. You can't use an Amazon S3 resource-based policy in your account in China
(Beijing) to allow access for users in your standard aws account.

• Make a note of the cross-account resource's Amazon Resource Name (ARN) in a text file. Later in
this tutorial, you'll provide this ARN in your state machine's Task state definition. The following
is an example of a Lambda function ARN:

arn:aws:lambda:us-east-2:123456789012:function:functionName

Accessing cross-account AWS resources 1176

AWS Step Functions Developer Guide

• Make sure you've created the target IAM role that the state machine needs to assume.

Step 1: Update the Task state definition to specify the target role

In the Task state of your workflow, add a Credentials field containing the identity the state
machine must assume before invoking the cross-account Lambda function.

The following procedure demonstrates how to access a cross-account Lambda function called
Echo. You can call any AWS resource by following these steps.

1. Open the Step Functions console and choose Create state machine.

2. On the Choose authoring method page, choose Design your workflow visually and keep all
the default selections.

3. To open Workflow Studio, choose Next.

4. On the Actions tab, drag and drop a Task state on the canvas. This invokes the cross-account
Lambda function that's using this Task state.

5. On the Configuration tab, do the following:

a. Rename the state to Cross-account call.

b. For Function name, choose Enter function name, and then enter the
Lambda function ARN in the box. For example, arn:aws:lambda:us-
east-2:111122223333:function:Echo.

c. For Provide IAM role ARN, specify the target IAM role ARN. For example,
arn:aws:iam::111122223333:role/LambdaRole.

Tip

Alternatively, you can also specify a reference path to an existing key-value pair
in the state’s JSON input that contains the IAM role ARN. To do this, choose Get
IAM role ARN at runtime from state input. For an example of specifying a value
by using a reference path, see Specifying JSONPath as IAM role ARN.

6. Choose Next.

7. On the Review generated code page, choose Next.

8. On the Specify state machine settings page, specify details for the new state machine, such
as a name, permissions, and logging level.

Accessing cross-account AWS resources 1177

https://console.aws.amazon.com/states/home?region=us-east-1#/

AWS Step Functions Developer Guide

9. Choose Create state machine.

10. Make a note of the state machine's IAM role ARN and the state machine ARN in a text file.
You'll need to provide these ARNs in the target account's trust policy.

Your Task state definition should now look similar to the following definition.

{
 "StartAt": "Cross-account call",
 "States": {
 "Cross-account call": {
 "Type": "Task",
 "Resource": "arn:aws:states:::lambda:invoke",
 "Credentials": {
 "RoleArn": "arn:aws:iam::111122223333:role/LambdaRole"
 },
 "Parameters": {
 "FunctionName": "arn:aws:lambda:us-east-2:111122223333:function:Echo",
 },
 "End": true
 }
 }
}

Step 2: Update the target role's trust policy

The IAM role must exist in the target account and you must modify its trust policy to allow the
source account to assume this role temporarily. Additionally, you can control who can assume the
target IAM role.

After you create the trust relationship, a user from the source account can use the AWS Security
Token Service (AWS STS) AssumeRole API operation. This operation provides temporary security
credentials that enable access to AWS resources in a target account.

1. Open the IAM console at https://console.aws.amazon.com/iam/.

2. On the navigation pane of the console, choose Roles and then use the Search box to search for
the target IAM role. For example, LambdaRole.

3. Choose the Trust relationships tab.

4. Choose Edit trust policy and paste the following trust policy. Make sure to replace the AWS
account number and IAM role ARN. The sts:ExternalId field further controls who can

Accessing cross-account AWS resources 1178

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

assume the role. The state machine's name must include only characters that the AWS Security
Token Service AssumeRole API supports. For more information, see AssumeRole in the AWS
Security Token Service API Reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:role/ExecutionRole" // The source
 account's state machine execution role ARN
 },
 "Condition": { // Control which account and state machine can assume the
 target IAM role

 "StringEquals": {
 "sts:ExternalId": "arn:aws:states:us-
east-1:123456789012:stateMachine:testCrossAccount" //// ARN of the state machine
 that will assume the role.
 }
 }
 }
]
}

5. Keep this window open and proceed to the next step for further actions.

Step 3: Add the required permission in the target role

Permissions in the IAM policies determine whether a specific request is allowed or denied. The
target IAM role must have the correct permission to invoke the Lambda function.

1. Choose the Permissions tab.

2. Choose Add permissions and then choose Create inline policy.

3. Choose the JSON tab and replace the existing content with the following permission. Make
sure to replace your Lambda function ARN.

{
 "Version": "2012-10-17",

Accessing cross-account AWS resources 1179

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": "lambda:InvokeFunction",
 "Resource": "arn:aws:lambda:us-east-2:111122223333:function:Echo" // The
 cross-account AWS resource being accessed
 }
]
}

4. Choose Review policy.

5. On the Review policy page, enter a name for the permission, and then choose Create policy.

Step 4: Add permission in execution role to assume the target role

Step Functions doesn’t automatically generate the AssumeRole policy for all cross-account service
integrations. You must add the required permission in the state machine's execution role to allow it
to assume a target IAM role in one or more AWS accounts.

1. Open your state machine's execution role in the IAM console at https://
console.aws.amazon.com/iam/. To do this:

a. Open the state machine that you created in Step 1 in the source account.

b. On the State machine detail page, choose IAM role ARN.

2. On the Permissions tab, choose Add permissions and then choose Create inline policy.

3. Choose the JSON tab and replace the existing content with the following permission. Make
sure to replace your Lambda function ARN.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Resource": "arn:aws:iam::111122223333:role/LambdaRole" // The target role
 to be assumed
 }
]
}

Accessing cross-account AWS resources 1180

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS Step Functions Developer Guide

4. Choose Review policy.

5. On the Review policy page, enter a name for the permission, and then choose Create policy.

Cross-account access for .sync integration pattern

When you use the .sync service integration patterns in your workflows, Step Functions polls
the invoked cross-account resource to confirm the task is complete. This causes a slight delay
between the actual task completion time and the time when Step Functions recognizes the task as
complete. The target IAM role needs the required permissions for a .sync invocation to complete
this polling loop. To do this, the target IAM role must have a trust policy that allows the source
account to assume it. Additionally, the target IAM role needs the required permissions to complete
the polling loop.

Note

For nested Express Workflows, arn:aws:states:::states:startExecution.sync
isn't currently supported. Use arn:aws:states:::aws-
sdk:sfn:startSyncExecution instead.

Trust policy update for .sync calls

Update the trust policy of your target IAM role as shown in the following example. The
sts:ExternalId field further controls who can assume the role. The state machine's name must
include only characters that the AWS Security Token Service AssumeRole API supports. For more
information, see AssumeRole in the AWS Security Token Service API Reference.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "sts:AssumeRole",
 "Principal": {
 "AWS": "arn:aws:iam::sourceAccountID:role/InvokeRole",
 },
 "Condition": {
 "StringEquals": {

Accessing cross-account AWS resources 1181

https://docs.aws.amazon.com/STS/latest/APIReference/API_AssumeRole.html

AWS Step Functions Developer Guide

 "sts:ExternalId": "arn:aws:states:us-
east-2:sourceAccountID:stateMachine:stateMachineName"
 }
 }
 }
]
}

Permissions required for .sync calls

To grant the permissions required for your state machine, update the required permissions for the
target IAM role. For more information, see the section called “IAM Policies for integrated services”.
The Amazon EventBridge permissions from the example policies aren't required. For example, to
start a state machine, add the following permissions.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": [
 "arn:aws:states:region:accountID:stateMachine:stateMachineName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "states:DescribeExecution",
 "states:StopExecution"
],
 "Resource": [
 "arn:aws:states:region:accountID:execution:stateMachineName:*"
]
 }
]
}

Accessing cross-account AWS resources 1182

AWS Step Functions Developer Guide

Amazon VPC Endpoints for Step Functions

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a connection between your Amazon VPC and AWS Step Functions workflows. You can use
this connection with your Step Functions workflows without crossing the public internet. Amazon
VPC endpoints are supported by Standard Workflows, Express Workflows, and Synchronous
Express Workflows.

Amazon VPC lets you launch AWS resources in a custom virtual network. You can use a VPC to
control your network settings, such as the IP address range, subnets, route tables, and network
gateways. For more information about VPCs, see the Amazon VPC User Guide.

To connect your Amazon VPC to Step Functions, you must first define an interface VPC endpoint,
which lets you connect your VPC to other AWS services. The endpoint provides reliable, scalable
connectivity, without requiring an internet gateway, network address translation (NAT) instance,
or VPN connection. For more information, see Interface VPC Endpoints (AWS PrivateLink) in the
Amazon VPC User Guide.

Creating the Endpoint

You can create an AWS Step Functions endpoint in your VPC using the AWS Management Console,
the AWS Command Line Interface (AWS CLI), an AWS SDK, the AWS Step Functions API, or AWS
CloudFormation.

For information about creating and configuring an endpoint using the Amazon VPC console or the
AWS CLI, see Creating an Interface Endpoint in the Amazon VPC User Guide.

Note

When you create an endpoint, specify Step Functions as the service that you want your VPC
to connect to. In the Amazon VPC console, service names vary based on the AWS Region.
For example, if you choose US East (N. Virginia), the service name for Standard Workflows
and Express Workflows is com.amazonaws.us-east-1.states, and the service name for
Synchronous Express Workflows is com.amazonaws.us-east-1.sync-states.

VPC Endpoints 1183

https://docs.aws.amazon.com/vpc/latest/userguide/
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpce-interface.html#create-interface-endpoint

AWS Step Functions Developer Guide

Note

It's possible to use VPC Endpoints without overriding the endpoint in the SDK through
Private DNS. However, if you want to override the endpoint in the SDK for Synchronous
Express Workflows, you need to set DisableHostPrefixInjection configuration to
true. Example (Java SDK V2):

SfnClient.builder()
 .endpointOverride(URI.create("https://vpce-{vpceId}.sync-states.us-
east-1.vpce.amazonaws.com"))
 .overrideConfiguration(ClientOverrideConfiguration.builder()

 .advancedOptions(ImmutableMap.of(SdkAdvancedClientOption.DISABLE_HOST_PREFIX_INJECTION,
 true))
 .build())
 .build();

For information about creating and configuring an endpoint using AWS CloudFormation, see the
AWS::EC2::VPCEndpoint resource in the AWS CloudFormation User Guide.

Amazon VPC Endpoint Policies

To control connectivity access to Step Functions you can attach an AWS Identity and Access
Management (IAM) endpoint policy while creating an Amazon VPC endpoint. You can create
complex IAM rules by attaching multiple endpoint policies. For more information, see:

• Amazon Virtual Private Cloud Endpoint Policies for Step Functions

• Creating Granular IAM Permissions for Non-Admin Users

• Controlling Access to Services with VPC Endpoints

Amazon Virtual Private Cloud Endpoint Policies for Step Functions

You can create an Amazon VPC endpoint policy for Step Functions in which you specify the
following:

• The principal that can perform actions.

• The actions that can be performed.

VPC Endpoints 1184

https://docs.aws.amazon.com/vpc/latest/privatelink/verify-domains.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-ec2-vpcendpoint.html
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS Step Functions Developer Guide

• The resources on which the actions can be performed.

The following example shows an Amazon VPC endpoint policy that allows one user to create state
machines, and denies all other users permission to delete state machines. The example policy also
grants all users execution permission.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": "*Execution",
 "Resource": "*",
 "Effect": "Allow",
 "Principal": "*"
 },
 {
 "Action": "states:CreateStateMachine",
 "Resource": "*",
 "Effect": "Allow",
 "Principal": {
 "AWS": "arn:aws:iam::123456789012:user/MyUser"
 }
 },
 {
 "Action": "states:DeleteStateMachine",
 "Resource": "*",
 "Effect": "Deny",
 "Principal": "*"
 }
]
}

For more information about creating endpoint policies, see the following:

• Creating Granular IAM Permissions for Non-Admin Users

• Controlling Access to Services with VPC Endpoints

VPC Endpoints 1185

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS Step Functions Developer Guide

IAM Policies for integrated services

When you create a state machine in the AWS Step Functions console, Step Functions produces
an AWS Identity and Access Management (IAM) policy based on the resources used in your state
machine definition as follows:

• If your state machine uses one of the Optimized integrations, it will create a policy with the
necessary permissions and roles for your state machine.

• If your state machine uses one of the AWS SDK integrations, an IAM role with partial permissions
will be created. Afterwards, you can use the IAM console to add any missing role policies.

The following examples show how Step Functions generates an IAM policy based on your state
machine definition. Items in the example code such as [[resourceName]] are replaced with the
static resources listed in your state machine definition. If you have multiple static resources, there
will be an entry for each in the IAM role.

Dynamic vs. Static Resources

Static resources are defined directly in the task state of your state machine. When you include the
information about the resources you want to call directly in your task states, Step Functions creates
an IAM role for only those resources.

Dynamic resources are those that are passed in to your state input, and accessed using a Path
(see Paths). If you are passing dynamic resources to your task, Step Functions will create a more
privileged policy that specifies: "Resource": "*".

Additional permissions for tasks using the Run a Job pattern

For tasks that use the Run a Job pattern (those ending in .sync), additional permissions are
needed to monitor and receive a response from the API actions of connected services. The related
policies include more permissions than for tasks that use the Request Response or Wait for
Callback patterns. See Service integration patterns for information about synchronous tasks.

Note

You need to provide additional permissions for service integrations that support the Run a
Job (.sync) pattern.

IAM Policies for integrated services 1186

AWS Step Functions Developer Guide

Step Functions uses two methods to monitor a job's status when a job is run on a connected
service, polling and events.

Polling requires permission for Describe or Get API actions, such as ecs:DescribeTasks or
glue:GetJobRun. If these permissions are missing from your role, then Step Functions may
be unable to determine the status of your job. This is because some Run a Job (.sync) service
integrations do not support EventBridge events, and some services only send events on a best-
effort basis.

Events sent from AWS services to Amazon EventBridge are directed to Step Functions using
a managed rule, and require permissions for events:PutTargets, events:PutRule, and
events:DescribeRule. If these permissions are missing from your role, there may be a delay
before Step Functions becomes aware of the completion of your job. For more information about
EventBridge events, see Events from AWS services.

Note

For Run a Job (.sync) tasks that support both polling and events, your task may still
complete properly using events. This can occur even if your role lacks the required
permissions for polling. In this case, you may not immediately notice that the polling
permissions are incorrect or missing. In the rare instance that the event fails to be delivered
to or processed by Step Functions, your execution could become stuck. To verify that your
polling permissions are configured correctly, you can run an execution in an environment
without EventBridge events in the following ways:

• Delete the managed rule from EventBridge, which is responsible for forwarding events
to Step Functions. This managed rule is shared by all state machines in your account,
so you should perform this action only in a test or development account to avoid any
unintentional impact on other state machines. You can identify the specific managed
rule to delete by inspecting the Resource field used for events:PutRule in the policy
template for the target service. The managed rule will be recreated the next time you
create or update a state machine that uses that service integration. For more information
on deleting EventBridge rules, see Disabling or deleting a rule.

• Test with Step Functions Local, which does not support the use of events to
complete Run a Job (.sync) tasks. To use Step Functions Local, assume the IAM role
used by your state machine. You may need to edit the Trust Relationship. Set the
AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN
environment variables to the assumed role's values, then launch Step Functions Local

IAM Policies for integrated services 1187

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-service-event.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-delete-rule.html

AWS Step Functions Developer Guide

using java -jar StepFunctionsLocal.jar. Last, use the AWS CLI with the --endpoint-url
parameter to create a state machine, start an execution, and get the execution history.
For more information, see Testing state machines locally.

If a task that uses the Run a Job (.sync) pattern is stopped, Step Functions will make a best-effort
attempt to cancel the task. This requires permission to Cancel, Stop, Terminate, or Delete API
actions, such as batch:TerminateJob or eks:DeleteCluster. If these permissions are missing
from your role, Step Functions will be unable to cancel your task and you may accrue additional
charges while it continues to run. For more information on stopping tasks, see Run a Job.

Policy templates used to create IAM roles

The following topics include the policy templates used when you choose to have Step Functions
create a new role for you.

Note

Review these templates to understand how Step Functions creates your IAM policies, and as
an example of how to manually create IAM policies for Step Functions when working with
other AWS services. For more information about Step Functions service integrations, see
Using AWS Step Functions with other services.

Topics

• IAM policies for Amazon API Gateway

• IAM policies for Amazon Athena

• IAM policies for AWS Batch

• IAM policies for Amazon Bedrock

• IAM policies for AWS CodeBuild

• IAM policies for Amazon DynamoDB

• IAM policies for Amazon ECS/AWS Fargate

• IAM policies for Amazon EKS

• IAM policies for Amazon EMR

• IAM policies for Amazon EMR on EKS

• IAM policies for Amazon EMR Serverless

IAM Policies for integrated services 1188

AWS Step Functions Developer Guide

• IAM policies for Amazon EventBridge

• IAM policies for AWS Lambda

• IAM policies for AWS Glue

• IAM policies for AWS Glue DataBrew

• IAM policies for Amazon SageMaker

• IAM policies for Amazon SNS

• IAM policies for Amazon SQS

• IAM policies for AWS Step Functions

• IAM policies for AWS X-Ray

• Activities or No Tasks

IAM policies for Amazon API Gateway

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "execute-api:Invoke"
],
 "Resource": [
 "arn:[[region]]:[[accountId]]:*"
]
 }
]
}

The following code example shows a resource policy for calling API Gateway.

{
 "Version": "2012-10-17",

IAM Policies for integrated services 1189

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Principal": {
 "Service": "states.amazonaws.com"
 },
 "Action": "execute-api:Invoke",
 "Resource": "arn:aws:execute-api:<region>:<account-id>:<api-id>/<stage-
name>/<HTTP-VERB>/<resource-path-specifier>",
 "Condition": {
 "StringEquals": {
 "aws:SourceArn": [
 "<SourceStateMachineArn>"
]
 }
 }
 }
]
}

IAM policies for Amazon Athena

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

StartQueryExecution

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",
 "athena:stopQueryExecution",
 "athena:getQueryExecution",
 "athena:getDataCatalog"
],

IAM Policies for integrated services 1190

AWS Step Functions Developer Guide

 "Resource": [
 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/[[workGroup]]",
 "arn:aws:athena:{{region}}:{{accountId}}:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],

IAM Policies for integrated services 1191

AWS Step Functions Developer Guide

 "Resource": [
 "arn:aws:glue:{{region}}:{{accountId}}:catalog",
 "arn:aws:glue:{{region}}:{{accountId}}:database/*",
 "arn:aws:glue:{{region}}:{{accountId}}:table/*",
 "arn:aws:glue:{{region}}:{{accountId}}:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [
 "*"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",
 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/[[workGroup]]",
 "arn:aws:athena:{{region}}:{{accountId}}:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",

IAM Policies for integrated services 1192

AWS Step Functions Developer Guide

 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws:glue:{{region}}:{{accountId}}:catalog",
 "arn:aws:glue:{{region}}:{{accountId}}:database/*",
 "arn:aws:glue:{{region}}:{{accountId}}:table/*",
 "arn:aws:glue:{{region}}:{{accountId}}:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [

IAM Policies for integrated services 1193

AWS Step Functions Developer Guide

 "*"
]
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",
 "athena:stopQueryExecution",
 "athena:getQueryExecution",
 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/*",
 "arn:aws:athena:{{region}}:{{accountId}}:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },

IAM Policies for integrated services 1194

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",
 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws:glue:{{region}}:{{accountId}}:catalog",
 "arn:aws:glue:{{region}}:{{accountId}}:database/*",
 "arn:aws:glue:{{region}}:{{accountId}}:table/*",
 "arn:aws:glue:{{region}}:{{accountId}}:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [
 "*"
]
 }
]
}

IAM Policies for integrated services 1195

AWS Step Functions Developer Guide

Request Response

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:startQueryExecution",
 "athena:getDataCatalog"
],
 "Resource": [
 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/*",
 "arn:aws:athena:{{region}}:{{accountId}}:datacatalog/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetBucketLocation",
 "s3:GetObject",
 "s3:ListBucket",
 "s3:ListBucketMultipartUploads",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload",
 "s3:CreateBucket",
 "s3:PutObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "glue:CreateDatabase",
 "glue:GetDatabase",
 "glue:GetDatabases",
 "glue:UpdateDatabase",
 "glue:DeleteDatabase",
 "glue:CreateTable",
 "glue:UpdateTable",
 "glue:GetTable",
 "glue:GetTables",

IAM Policies for integrated services 1196

AWS Step Functions Developer Guide

 "glue:DeleteTable",
 "glue:BatchDeleteTable",
 "glue:BatchCreatePartition",
 "glue:CreatePartition",
 "glue:UpdatePartition",
 "glue:GetPartition",
 "glue:GetPartitions",
 "glue:BatchGetPartition",
 "glue:DeletePartition",
 "glue:BatchDeletePartition"
],
 "Resource": [
 "arn:aws:glue:{{region}}:{{accountId}}:catalog",
 "arn:aws:glue:{{region}}:{{accountId}}:database/*",
 "arn:aws:glue:{{region}}:{{accountId}}:table/*",
 "arn:aws:glue:{{region}}:{{accountId}}:userDefinedFunction/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "lakeformation:GetDataAccess"
],
 "Resource": [
 "*"
]
 }
]
}

StopQueryExecution

Resources

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:stopQueryExecution"
],
 "Resource": [

IAM Policies for integrated services 1197

AWS Step Functions Developer Guide

 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/*"
]
 }
]
}

GetQueryExecution

Resources

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:getQueryExecution"
],
 "Resource": [
 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/*"
]
 }
]
}

GetQueryResults

Resources

{
 "Version": "2012-10-17",
 "Statement":[
 {
 "Effect": "Allow",
 "Action": [
 "athena:getQueryResults"
],
 "Resource": [
 "arn:aws:athena:{{region}}:{{accountId}}:workgroup/*"
]
 },
 {
 "Effect": "Allow",

IAM Policies for integrated services 1198

AWS Step Functions Developer Guide

 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::*"
]
 }
]
}

IAM policies for AWS Batch

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Because AWS Batch provides partial support for resource-level access control, you must use
"Resource": "*".

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob",
 "batch:DescribeJobs",
 "batch:TerminateJob"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventsForBatchJobsRule"

IAM Policies for integrated services 1199

AWS Step Functions Developer Guide

]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "batch:SubmitJob"
],
 "Resource": "*"
 }
]
}

IAM policies for Amazon Bedrock

When you create a state machine using the console, Step Functions automatically creates an
execution role for your state machine with the least privileges required. These automatically
generated IAM roles are valid for the AWS Region in which you create the state machine.

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

We recommend that when you create IAM policies, do not include wildcards in the policies. As a
security best practice, you should scope your policies down as much as possible. You should use
dynamic policies only when certain input parameters are not known during runtime.

In this topic

• IAM policy examples for Amazon Bedrock integration with Step Functions

IAM Policies for integrated services 1200

AWS Step Functions Developer Guide

IAM policy examples for Amazon Bedrock integration with Step Functions

The following section describes the IAM permissions you need based on the Amazon Bedrock API
that you use for a specific foundation or provisioned model. This section also contains examples of
policies that grant full access.

Remember to replace the italicized text with your resource-specific information.

• IAM policy example to access a specific foundation model using InvokeModel

• IAM policy example to access a specific provisioned model using InvokeModel

• Full access IAM policy example to use InvokeModel

• IAM policy example to access a specific foundation model as a base model

• IAM policy example to access a specific custom model as a base model

• Full access IAM policy example to use CreateModelCustomizationJob.sync

• IAM policy example to access a specific foundation model using
CreateModelCustomizationJob.sync

• IAM policy example to access a custom model using CreateModelCustomizationJob.sync

• Full access IAM policy example to use CreateModelCustomizationJob.sync

IAM policy example to access a specific foundation model using InvokeModel

The following is an IAM policy example for a state machine that accesses a specific foundation
model named amazon.titan-text-express-v1 using the InvokeModel API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "InvokeModel1",
 "Action": [
 "bedrock:InvokeModel"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2::foundation-model/amazon.titan-text-express-
v1"
]
 }
]

IAM Policies for integrated services 1201

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html

AWS Step Functions Developer Guide

}

IAM policy example to access a specific provisioned model using InvokeModel

The following is an IAM policy example for a state machine that accesses a specific provisioned
model named c2oi931ulksx using the InvokeModel API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "InvokeModel1",
 "Action": [
 "bedrock:InvokeModel"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2:123456789012:provisioned-model/c2oi931ulksx"
]
 }
]
}

Full access IAM policy example to use InvokeModel

The following is an IAM policy example for a state machine that provides full access when you use
the InvokeModel API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "InvokeModel1",
 "Action": [
 "bedrock:InvokeModel"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2::foundation-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:provisioned-model/*"
]
 }

IAM Policies for integrated services 1202

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_InvokeModel.html

AWS Step Functions Developer Guide

]
}

IAM policy example to access a specific foundation model as a base model

The following is an IAM policy example for a state machine to access a specific
foundation model named amazon.titan-text-express-v1 as a base model using the
CreateModelCustomizationJob API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob1",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2::foundation-model/amazon.titan-text-express-
v1",
 "arn:aws:bedrock:us-east-2:123456789012:custom-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob2",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

IAM policy example to access a specific custom model as a base model

The following is an IAM policy example for a state machine to access a specific custom model as a
base model using the CreateModelCustomizationJob API action.

IAM Policies for integrated services 1203

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html
https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

AWS Step Functions Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob1",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2:123456789012:custom-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob2",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/[[roleName]]"
]
 }
]
}

Full access IAM policy example to use CreateModelCustomizationJob.sync

The following is an IAM policy example for a state machine that provides full access when you use
the CreateModelCustomizationJob API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob1",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2::foundation-model/*",

IAM Policies for integrated services 1204

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

AWS Step Functions Developer Guide

 "arn:aws:bedrock:us-east-2:123456789012:custom-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob2",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

IAM policy example to access a specific foundation model using
CreateModelCustomizationJob.sync

The following is an IAM policy example for a state machine to access a specific foundation model
named amazon.titan-text-express-v1 using the CreateModelCustomizationJob.sync API
action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob1",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2::foundation-model/amazon.titan-text-express-
v1",
 "arn:aws:bedrock:us-east-2:123456789012:custom-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob2",

IAM Policies for integrated services 1205

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

AWS Step Functions Developer Guide

 "Action": [
 "bedrock:GetModelCustomizationJob",
 "bedrock:StopModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob3",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

IAM policy example to access a custom model using CreateModelCustomizationJob.sync

The following is an IAM policy example for a state machine to access a custom model using the
CreateModelCustomizationJob.sync API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob1",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2:123456789012:custom-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob2",

IAM Policies for integrated services 1206

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

AWS Step Functions Developer Guide

 "Action": [
 "bedrock:GetModelCustomizationJob",
 "bedrock:StopModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob3",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

Full access IAM policy example to use CreateModelCustomizationJob.sync

The following is an IAM policy example for a state machine that provides full access when you use
the CreateModelCustomizationJob.sync API action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob1",
 "Action": [
 "bedrock:CreateModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2::foundation-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:custom-model/*",
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",

IAM Policies for integrated services 1207

https://docs.aws.amazon.com/bedrock/latest/APIReference/API_CreateModelCustomizationJob.html

AWS Step Functions Developer Guide

 "Sid": "CreateModelCustomizationJob2",
 "Action": [
 "bedrock:GetModelCustomizationJob",
 "bedrock:StopModelCustomizationJob"
],
 "Resource": [
 "arn:aws:bedrock:us-east-2:123456789012:model-customization-job/*"
]
 },
 {
 "Effect": "Allow",
 "Sid": "CreateModelCustomizationJob3",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "arn:aws:iam::123456789012:role/myRole"
]
 }
]
}

IAM policies for AWS CodeBuild

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Resources:

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:sa-east-1:123456789012:StepFunctionsSample-
CodeBuildExecution1111-2222-3333-wJalrXUtnFEMI-SNSTopic-bPxRfiCYEXAMPLEKEY"
],
 "Effect": "Allow"
 },

IAM Policies for integrated services 1208

AWS Step Functions Developer Guide

 {
 "Action": [
 "codebuild:StartBuild",
 "codebuild:StopBuild",
 "codebuild:BatchGetBuilds",
 "codebuild:BatchGetReports"
],
 "Resource": "*",
 "Effect": "Allow"
 },
 {
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:sa-east-1:123456789012:rule/
StepFunctionsGetEventForCodeBuildStartBuildRule"
],
 "Effect": "Allow"
 }
]
}

StartBuild

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuild",
 "codebuild:StopBuild",
 "codebuild:BatchGetBuilds"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]

IAM Policies for integrated services 1209

AWS Step Functions Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventForCodeBuildStartBuildRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuild"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [

IAM Policies for integrated services 1210

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuild",
 "codebuild:StopBuild",
 "codebuild:BatchGetBuilds"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:*:project/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventForCodeBuildStartBuildRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuild"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:*:project/*"
]
 }
]
}

IAM Policies for integrated services 1211

AWS Step Functions Developer Guide

StopBuild

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StopBuild"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StopBuild"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:*:project/*"
]
 }
]
}

BatchDeleteBuilds

Static resources

{
 "Version": "2012-10-17",
 "Statement": [

IAM Policies for integrated services 1212

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchDeleteBuilds"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchDeleteBuilds"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:*:project/*"
]
 }
]
}

BatchGetReports

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetReports"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:report-group/[[reportName]]"

IAM Policies for integrated services 1213

AWS Step Functions Developer Guide

]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:BatchGetReports"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:*:report-group/*"
]
 }
]
}

StartBuildBatch

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuildBatch",
 "codebuild:StopBuildBatch",
 "codebuild:BatchGetBuildBatches"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 },
 {

IAM Policies for integrated services 1214

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventForCodeBuildStartBuildBatchRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

IAM Policies for integrated services 1215

AWS Step Functions Developer Guide

 "Action": [
 "codebuild:StartBuildBatch",
 "codebuild:StopBuildBatch",
 "codebuild:BatchGetBuildBatches"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventForCodeBuildStartBuildBatchRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StartBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/*"
]
 }
]
}

IAM Policies for integrated services 1216

AWS Step Functions Developer Guide

StopBuildBatch

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StopBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:StopBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/*"
]
 }
]
}

RetryBuildBatch

Static resources

Run a Job (.sync)

{

IAM Policies for integrated services 1217

AWS Step Functions Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:RetryBuildBatch",
 "codebuild:StopBuildBatch",
 "codebuild:BatchGetBuildBatches"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:RetryBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [

IAM Policies for integrated services 1218

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "codebuild:RetryBuildBatch",
 "codebuild:StopBuildBatch",
 "codebuild:BatchGetBuildBatches"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/*"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:RetryBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/*"
]
 }
]
}

DeleteBuildBatch

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

IAM Policies for integrated services 1219

AWS Step Functions Developer Guide

 "codebuild:DeleteBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/[[projectName]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "codebuild:DeleteBuildBatch"
],
 "Resource": [
 "arn:aws:codebuild:[[region]]:[[accountId]]:project/*"
]
 }
]
}

IAM policies for Amazon DynamoDB

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:PutItem",

IAM Policies for integrated services 1220

AWS Step Functions Developer Guide

 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem"
],
 "Resource": [
 "arn:aws:dynamodb:[[region]]:[[accountId]]:table/[[tableName]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem",
 "dynamodb:DeleteItem"
],
 "Resource": "*"
 }
]
}

For more information about the IAM policies for all DynamoDB API actions, see IAM policies with
DynamoDB in the Amazon DynamoDB Developer Guide. Additionally, for information about the IAM
policies for PartiQL for DynamoDB, see IAM policies with PartiQL for DynamoDB in the Amazon
DynamoDB Developer Guide.

IAM policies for Amazon ECS/AWS Fargate

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Because the value for TaskId is not known until the task is submitted, Step Functions creates a
more privileged "Resource": "*" policy.

IAM Policies for integrated services 1221

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/using-identity-based-policies.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/using-identity-based-policies.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ql-iam.html

AWS Step Functions Developer Guide

Note

You can only stop Amazon Elastic Container Service (Amazon ECS) tasks that were started
by Step Functions, despite the "*" IAM policy.

Run a Job (.sync)

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:[[region]]:
[[accountId]]:task-definition/[[taskDefinition]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "ecs:StopTask",
 "ecs:DescribeTasks"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:
[[accountId]]:rule/StepFunctionsGetEventsForECSTaskRule"
]
 }

IAM Policies for integrated services 1222

AWS Step Functions Developer Guide

]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask",
 "ecs:StopTask",
 "ecs:DescribeTasks"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:
[[accountId]]:rule/StepFunctionsGetEventsForECSTaskRule"
]
 }
]
}

Request Response and Callback (.waitForTaskToken)

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

IAM Policies for integrated services 1223

AWS Step Functions Developer Guide

 "Action": [
 "ecs:RunTask"
],
 "Resource": [
 "arn:aws:ecs:[[region]]:
[[accountId]]:task-definition/[[taskDefinition]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ecs:RunTask"
],
 "Resource": "*"
 }
]
}

If your scheduled Amazon ECS tasks require the use of a task execution role, a task role, or a task
role override, then you must add iam:PassRole permissions for each task execution role, task
role, or task role override to the CloudWatch Events IAM role of the calling entity, which in this case
is Step Functions.

IAM policies for Amazon EKS

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

CreateCluster

Resources

IAM Policies for integrated services 1224

AWS Step Functions Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:CreateCluster"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeCluster",
 "eks:DeleteCluster"
],
 "Resource": "arn:aws:eks:sa-east-1:444455556666:cluster/*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::444455556666:role/StepFunctionsSample-EKSClusterManag-
EKSServiceRole-ANPAJ2UCCR6DPCEXAMPLE"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "eks.amazonaws.com"
 }
 }
 }
]
}

CreateNodeGroup

Resources

{
 "Version": "2012-10-17",

IAM Policies for integrated services 1225

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "ec2:DescribeSubnets",
 "eks:CreateNodegroup"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "eks:DescribeNodegroup",
 "eks:DeleteNodegroup"
],
 "Resource": "arn:aws:eks:sa-east-1:444455556666:nodegroup/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:GetRole",
 "iam:ListAttachedRolePolicies"
],
 "Resource": "arn:aws:iam::444455556666:role/*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::444455556666:role/StepFunctionsSample-EKSClusterMan-
NodeInstanceRole-ANPAJ2UCCR6DPCEXAMPLE"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "eks.amazonaws.com"
 }
 }
 }
]
}

DeleteCluster

Resources

IAM Policies for integrated services 1226

AWS Step Functions Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:DeleteCluster",
 "eks:DescribeCluster"
],
 "Resource": [
 "arn:aws:eks:sa-east-1:444455556666:cluster/ExampleCluster"
]
 }
]
}

DeleteNodegroup

Resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "eks:DeleteNodegroup",
 "eks:DescribeNodegroup"
],
 "Resource": [
 "arn:aws:eks:sa-east-1:444455556666:nodegroup/ExampleCluster/
ExampleNodegroup/*"
]
 }
]
}

For more information about using Amazon EKS with Step Functions, see Call Amazon EKS with
Step Functions.

IAM Policies for integrated services 1227

AWS Step Functions Developer Guide

IAM policies for Amazon EMR

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

addStep

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:AddJobFlowSteps",
 "elasticmapreduce:DescribeStep",
 "elasticmapreduce:CancelSteps"
],
 "Resource": [
 "arn:aws:elasticmapreduce:[[region]]:[[accountId]]:cluster/[[clusterId]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:AddJobFlowSteps",
 "elasticmapreduce:DescribeStep",
 "elasticmapreduce:CancelSteps"
],
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 }
]

IAM Policies for integrated services 1228

AWS Step Functions Developer Guide

}

cancelStep

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticmapreduce:CancelSteps",
 "Resource": [

 "arn:aws:elasticmapreduce:[[region]]:[[accountId]]:cluster/[[clusterId]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticmapreduce:CancelSteps",
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 }
]
}

createCluster

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM Policies for integrated services 1229

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:RunJobFlow",
 "elasticmapreduce:DescribeCluster",
 "elasticmapreduce:TerminateJobFlows"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "arn:aws:iam::{{account}}:role/[[roleName]]"
]
 }
]
}

setClusterTerminationProtection

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "elasticmapreduce:SetTerminationProtection",
 "Resource": [

 "arn:aws:elasticmapreduce:[[region]]:[[accountId]]:cluster/[[clusterId]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",

IAM Policies for integrated services 1230

AWS Step Functions Developer Guide

 "Action": "elasticmapreduce:SetTerminationProtection",
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 }
]
}

modifyInstanceFleetByName

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ModifyInstanceFleet",
 "elasticmapreduce:ListInstanceFleets"
],
 "Resource": [

 "arn:aws:elasticmapreduce:[[region]]:[[accountId]]:cluster/[[clusterId]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ModifyInstanceFleet",
 "elasticmapreduce:ListInstanceFleets"
],
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 }
]
}

IAM Policies for integrated services 1231

AWS Step Functions Developer Guide

modifyInstanceGroupByName

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ModifyInstanceGroups",
 "elasticmapreduce:ListInstanceGroups"
],
 "Resource": [

 "arn:aws:elasticmapreduce:[[region]]:[[accountId]]:cluster/[[clusterId]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:ModifyInstanceGroups",
 "elasticmapreduce:ListInstanceGroups"
],
 "Resource": "*"
 }
]
}

terminateCluster

Static resources

{
 "Version": "2012-10-17",

IAM Policies for integrated services 1232

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:TerminateJobFlows",
 "elasticmapreduce:DescribeCluster"
],
 "Resource": [
 "arn:aws:elasticmapreduce:[[region]]:[[accountId]]:cluster/[[clusterId]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "elasticmapreduce:TerminateJobFlows",
 "elasticmapreduce:DescribeCluster"
],
 "Resource": "arn:aws:elasticmapreduce:*:*:cluster/*"
 }
]
}

IAM policies for Amazon EMR on EKS

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

CreateVirtualCluster

Resources

{
 "Version": "2012-10-17",
 "Statement": [

IAM Policies for integrated services 1233

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:CreateVirtualCluster"
],
 "Resource": "*"
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::{{accountId}}:role/aws-service-role/emr-
containers.amazonaws.com/AnAWSServiceRoleForAmazonEMRContainers",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "emr-containers.amazonaws.com"
 }
 }
 }
]
}

DeleteVirtualCluster

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DeleteVirtualCluster",
 "emr-containers:DescribeVirtualCluster"
],
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/
[[virtualClusterId]]"
]
 }
]
}

IAM Policies for integrated services 1234

AWS Step Functions Developer Guide

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DeleteVirtualCluster"
],
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/
[[virtualClusterId]]"
]
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DeleteVirtualCluster",
 "emr-containers:DescribeVirtualCluster"
],
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/*"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",

IAM Policies for integrated services 1235

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DeleteVirtualCluster"
],
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/*"
]
 }
]
}

StartJobRun

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:StartJobRun",
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/
[[virtualClusterId]]"
],
 "Condition": {
 "StringEquals": {
 "emr-containers:ExecutionRoleArn": [
 "[[executionRoleArn]]"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DescribeJobRun",
 "emr-containers:CancelJobRun"
],

IAM Policies for integrated services 1236

AWS Step Functions Developer Guide

 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/
[[virtualClusterId]]/jobruns/*"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:StartJobRun",
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/
[[virtualClusterId]]"
],
 "Condition": {
 "StringEquals": {
 "emr-containers:ExecutionRoleArn": [
 "[[executionRoleArn]]"
]
 }
 }
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:StartJobRun",
 "Resource": [

IAM Policies for integrated services 1237

AWS Step Functions Developer Guide

 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/*"
],
 "Condition": {
 "StringEquals": {
 "emr-containers:ExecutionRoleArn": [
 "[[executionRoleArn]]"
]
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "emr-containers:DescribeJobRun",
 "emr-containers:CancelJobRun"
],
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/*"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": "emr-containers:StartJobRun",
 "Resource": [
 "arn:aws:emr-containers:{{region}}:{{accountId}}:/virtualclusters/*"
],
 "Condition": {
 "StringEquals": {
 "emr-containers:ExecutionRoleArn": [
 "[[executionRoleArn]]"
]
 }
 }
 }
]

IAM Policies for integrated services 1238

AWS Step Functions Developer Guide

}

IAM policies for Amazon EMR Serverless

When you create a state machine using the console, Step Functions automatically creates an
execution role for your state machine with the least privileges required. These automatically
generated IAM roles are valid for the AWS Region in which you create the state machine.

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

We recommend that when you create IAM policies, do not include wildcards in the policies. As a
security best practice, you should scope your policies down as much as possible. You should use
dynamic policies only when certain input parameters are not known during runtime.

Further, administrator users should be careful when granting non-administrator users execution
roles for running the state machines. We recommend that you include passRole policies in the
execution roles if you're creating policies on your own. We also recommend that you add the
aws:SourceARN and aws:SourceAccount context keys in the execution roles.

In this topic

• IAM policy examples for EMR Serverless integration with Step Functions

IAM policy examples for EMR Serverless integration with Step Functions

• IAM policy example for CreateApplication

• IAM policy example for StartApplication

• IAM policy example for StopApplication

• IAM policy example for DeleteApplication

• IAM policy example for StartJobRun

• IAM policy example for CancelJobRun

IAM policy example for CreateApplication

The following is an IAM policy example for a state machine with a CreateApplication Task state.

IAM Policies for integrated services 1239

AWS Step Functions Developer Guide

Note

You need to specify the CreateServiceLinkedRole permissions in your IAM policies during
the creation of the first ever application in your account. Thereafter, you need not add this
permission. For information about CreateServiceLinkedRole, see CreateServiceLinkedRole in
the https://docs.aws.amazon.com/IAM/latest/APIReference/.

Static and dynamic resources for the following policies are the same.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:CreateApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:GetApplication",
 "emr-serverless:DeleteApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [

IAM Policies for integrated services 1240

https://docs.aws.amazon.com/IAM/latest/APIReference/API_CreateServiceLinkedRole.html

AWS Step Functions Developer Guide

 "arn:aws:events:{{region}}:{{accountId}}:rule/
StepFunctionsGetEventsForEMRServerlessApplicationRule"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::{{accountId}}:role/aws-service-role/ops.emr-
serverless.amazonaws.com/AWSServiceRoleForAmazonEMRServerless*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "ops.emr-serverless.amazonaws.com"
 }
 }
 }
]
}

Request Response

{
 "Version": "2012-10-17",

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:CreateApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:CreateServiceLinkedRole",
 "Resource": "arn:aws:iam::{{accountId}}:role/aws-service-role/ops.emr-
serverless.amazonaws.com/AWSServiceRoleForAmazonEMRServerless*",
 "Condition": {
 "StringLike": {
 "iam:AWSServiceName": "ops.emr-serverless.amazonaws.com"
 }
 }

IAM Policies for integrated services 1241

AWS Step Functions Developer Guide

 }
]
}

IAM policy example for StartApplication

Static resources

The following are IAM policy examples for static resources when you use a state machine with a
StartApplication Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartApplication",
 "emr-serverless:GetApplication",
 "emr-serverless:StopApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessApplicationRule"
]
 }
]
}

IAM Policies for integrated services 1242

AWS Step Functions Developer Guide

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 }
]
}

Dynamic resources

The following are IAM policy examples for dynamic resources when you use a state machine with a
StartApplication Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartApplication",
 "emr-serverless:GetApplication",
 "emr-serverless:StopApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

IAM Policies for integrated services 1243

AWS Step Functions Developer Guide

 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessApplicationRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 }
]
}

IAM policy example for StopApplication

Static resources

The following are IAM policy examples for static resources when you use a state machine with a
StopApplication Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM Policies for integrated services 1244

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "emr-serverless:StopApplication",
 "emr-serverless:GetApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessApplicationRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StopApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 }
]
}

IAM Policies for integrated services 1245

AWS Step Functions Developer Guide

Dynamic resources

The following are IAM policy examples for dynamic resources when you use a state machine with a
StopApplication Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StopApplication",
 "emr-serverless:GetApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessApplicationRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

IAM Policies for integrated services 1246

AWS Step Functions Developer Guide

 "emr-serverless:StopApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 }
]
}

IAM policy example for DeleteApplication

Static resources

The following are IAM policy examples for static resources when you use a state machine with a
DeleteApplication Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:DeleteApplication",
 "emr-serverless:GetApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessApplicationRule"
]

IAM Policies for integrated services 1247

AWS Step Functions Developer Guide

 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:DeleteApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 }
]
}

Dynamic resources

The following are IAM policy examples for dynamic resources when you use a state machine with a
DeleteApplication Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:DeleteApplication",
 "emr-serverless:GetApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },

IAM Policies for integrated services 1248

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessApplicationRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:DeleteApplication"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 }
]
}

IAM policy example for StartJobRun

Static resources

The following are IAM policy examples for static resources when you use a state machine with a
StartJobRun Task state.

Run a Job (.sync)

{

IAM Policies for integrated services 1249

AWS Step Functions Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "[[jobExecutionRoleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:GetJobRun",
 "emr-serverless:CancelJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]/jobruns/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [

IAM Policies for integrated services 1250

AWS Step Functions Developer Guide

 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessJobRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "[[jobExecutionRoleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }
 }
]
}

Dynamic resources

The following are IAM policy examples for dynamic resources when you use a state machine with a
StartJobRun Task state.

IAM Policies for integrated services 1251

AWS Step Functions Developer Guide

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartJobRun",
 "emr-serverless:GetJobRun",
 "emr-serverless:CancelJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "[[jobExecutionRoleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessJobRule"
]
 }
]
}

IAM Policies for integrated services 1252

AWS Step Functions Developer Guide

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:StartJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },
 {
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": [
 "[[jobExecutionRoleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "emr-serverless.amazonaws.com"
 }
 }
 }
]
}

IAM policy example for CancelJobRun

Static resources

The following are IAM policy examples for static resources when you use a state machine with a
CancelJobRun Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM Policies for integrated services 1253

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "emr-serverless:CancelJobRun",
 "emr-serverless:GetJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]/jobruns/[[jobRunId]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessJobRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:CancelJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/
[[applicationId]]/jobruns/[[jobRunId]]"
]
 }
]
}

IAM Policies for integrated services 1254

AWS Step Functions Developer Guide

Dynamic resources

The following are IAM policy examples for dynamic resources when you use a state machine with a
CancelJobRun Task state.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "emr-serverless:CancelJobRun",
 "emr-serverless:GetJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:{{region}}:
{{accountId}}:rule/StepFunctionsGetEventsForEMRServerlessJobRule"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [

IAM Policies for integrated services 1255

AWS Step Functions Developer Guide

 "emr-serverless:CancelJobRun"
],
 "Resource": [
 "arn:aws:emr-serverless:{{region}}:{{accountId}}:/applications/*"
]
 }
]
}

IAM policies for Amazon EventBridge

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

PutEvents

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Action": [
 "events:PutEvents"
],
 "Resource": [
 "arn:aws:events:us-east-1:123456789012:event-bus/stepfunctions-
sampleproject-eventbus"
],
 "Effect": "Allow"
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {

IAM Policies for integrated services 1256

AWS Step Functions Developer Guide

 "Effect": "Allow",
 "Action": [
 "events:PutEvents"
],
 "Resource": "arn:aws:events:*:*:event-bus/*"
 }
]
}

For more information about using EventBridge with Step Functions, see Call EventBridge with Step
Functions.

IAM policies for AWS Lambda

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

AWS Step Functions generates an IAM policy based on your state machine definition. For a state
machine with two AWS Lambda task states that call function1 and function2, a policy with
lambda:Invoke permissions for the two functions must be used.

This is shown in the following example.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "lambda:InvokeFunction"
],
 "Resource": [
 "arn:aws:lambda:[[region]]:[[accountId]]:function:[[function1]]",
 "arn:aws:lambda:[[region]]:[[accountId]]:function:[[function2]]"
]
 }
]
}

IAM Policies for integrated services 1257

AWS Step Functions Developer Guide

IAM policies for AWS Glue

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

AWS Glue does not have resource-based control.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:StartJobRun",
 "glue:GetJobRun",
 "glue:GetJobRuns",
 "glue:BatchStopJobRun"
],
 "Resource": "*"
 }
]
}

Request Response and Callback (.waitForTaskToken)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "glue:StartJobRun"
],
 "Resource": "*"
 }
]
}

IAM Policies for integrated services 1258

AWS Step Functions Developer Guide

IAM policies for AWS Glue DataBrew

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "databrew:startJobRun",
 "databrew:listJobRuns",
 "databrew:stopJobRun"
],
 "Resource": [
 "arn:aws:databrew:{{region}}:{{accountId}}:job/*"
]
 }
]
}

Request Response

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "databrew:startJobRun"
],
 "Resource": [
 "arn:aws:databrew:{{region}}:{{accountId}}:job/*"
]
 }
]
}

IAM Policies for integrated services 1259

AWS Step Functions Developer Guide

IAM policies for Amazon SageMaker

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Note

For these examples, [[roleArn]] refers to the Amazon Resource Name (ARN) of the IAM
role that SageMaker uses to access model artifacts and docker images for deployment on
ML compute instances, or for batch transform jobs. For more information, see Amazon
SageMaker Roles.

CreateTrainingJob

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",
 "sagemaker:DescribeTrainingJob",
 "sagemaker:StopTrainingJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:training-
job/[[trainingJobName]]*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"

IAM Policies for integrated services 1260

https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html
https://docs.aws.amazon.com/sagemaker/latest/dg/sagemaker-roles.html

AWS Step Functions Developer Guide

]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventsForSageMakerTrainingJobsRule"
]
 }
]
}

Request Response and Callback (.waitForTaskToken)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": [

IAM Policies for integrated services 1261

AWS Step Functions Developer Guide

 "arn:aws:sagemaker:[[region]]:[[accountId]]:training-
job/[[trainingJobName]]*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

Dynamic resources

.sync or .waitForTaskToken

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob",

IAM Policies for integrated services 1262

AWS Step Functions Developer Guide

 "sagemaker:DescribeTrainingJob",
 "sagemaker:StopTrainingJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:training-job/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventsForSageMakerTrainingJobsRule"
]
 }
]

IAM Policies for integrated services 1263

AWS Step Functions Developer Guide

}

Request Response and Callback (.waitForTaskToken)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTrainingJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:training-job/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

IAM Policies for integrated services 1264

AWS Step Functions Developer Guide

CreateTransformJob

Note

AWS Step Functions will not automatically create a policy for CreateTransformJob
when you create a state machine that integrates with SageMaker. You must attach an inline
policy to the created role based on one of the following IAM examples.

Static resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTransformJob",
 "sagemaker:DescribeTransformJob",
 "sagemaker:StopTransformJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:transform-
job/[[transformJobName]]*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],

IAM Policies for integrated services 1265

AWS Step Functions Developer Guide

 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventsForSageMakerTransformJobsRule"
]
 }
]
}

Request Response and Callback (.waitForTaskToken)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTransformJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:transform-
job/[[transformJobName]]*"
]
 },
 {
 "Effect": "Allow",
 "Action": [

IAM Policies for integrated services 1266

AWS Step Functions Developer Guide

 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

Dynamic resources

Run a Job (.sync)

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTransformJob",
 "sagemaker:DescribeTransformJob",
 "sagemaker:StopTransformJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:transform-job/*"
]
 },

IAM Policies for integrated services 1267

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 },
 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventsForSageMakerTransformJobsRule"
]
 }
]
}

Request Response and Callback (.waitForTaskToken)

{
 "Version": "2012-10-17",

IAM Policies for integrated services 1268

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:CreateTransformJob"
],
 "Resource": [
 "arn:aws:sagemaker:[[region]]:[[accountId]]:transform-job/*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "sagemaker:ListTags"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "iam:PassRole"
],
 "Resource": [
 "[[roleArn]]"
],
 "Condition": {
 "StringEquals": {
 "iam:PassedToService": "sagemaker.amazonaws.com"
 }
 }
 }
]
}

IAM policies for Amazon SNS

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

IAM Policies for integrated services 1269

AWS Step Functions Developer Guide

Static resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": [
 "arn:aws:sns:[[region]]:[[accountId]]:[[topicName]]"
]
 }
]
}

Resources based on a Path, or publishing to TargetArn or PhoneNumber

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sns:Publish"
],
 "Resource": "*"
 }
]
}

IAM policies for Amazon SQS

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

Static resources

{

IAM Policies for integrated services 1270

AWS Step Functions Developer Guide

 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sqs:SendMessage"
],
 "Resource": [
 "arn:aws:sqs:[[region]]:[[accountId]]:[[queueName]]"
]
 }
]
}

Dynamic resources

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "sqs:SendMessage"
],
 "Resource": "*"
 }
]
}

IAM policies for AWS Step Functions

For a state machine that calls StartExecution for a single nested workflow execution, use an
IAM policy that limits permissions to that state machine.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"

IAM Policies for integrated services 1271

AWS Step Functions Developer Guide

],
 "Resource": [

 "arn:aws:states:[[region]]:[[accountId]]:stateMachine:[[stateMachineName]]"
]
 }
]
}

For more information, see the following:

• Using AWS Step Functions with other services

• Pass parameters to a service API

• Manage AWS Step Functions Executions as an Integrated Service

Synchronous

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": [
 "arn:aws:states:[[region]]:[[accountId]]:stateMachine:
[[stateMachineName]]"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "states:DescribeExecution",
 "states:StopExecution"
],
 "Resource": [

 "arn:aws:states:[[region]]:[[accountId]]:execution:[[stateMachineName]]:*"
]
 },

IAM Policies for integrated services 1272

AWS Step Functions Developer Guide

 {
 "Effect": "Allow",
 "Action": [
 "events:PutTargets",
 "events:PutRule",
 "events:DescribeRule"
],
 "Resource": [
 "arn:aws:events:[[region]]:[[accountId]]:rule/
StepFunctionsGetEventsForStepFunctionsExecutionRule"
]
 }
]
}

Asynchronous

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": [

 "arn:aws:states:[[region]]:[[accountId]]:stateMachine:[[stateMachineName]]"
]
 }
]
}

For more information about nested workflow executions, see Start Workflow Executions from a
Task State.

IAM policies for AWS X-Ray

The following example templates show how AWS Step Functions generates IAM policies based
on the resources in your state machine definition. For more information, see IAM Policies for
integrated services and Service integration patterns.

IAM Policies for integrated services 1273

AWS Step Functions Developer Guide

To enable X-Ray tracing, you will need an IAM policy with suitable permissions to allow tracing. If
your state machine uses other integrated services, you may need additional IAM policies. See the
IAM policies for your specific service integrations.

When you create a state machine with X-Ray tracing enabled, an IAM policy is automatically
created.

Note

If you enable X-Ray tracing for an existing state machine you must ensure that you add a
policy with sufficient permissions to enable X-Ray traces.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],
 "Resource": [
 "*"
]
 }
]
}

For more information about using X-Ray with Step Functions, see AWS X-Ray and Step Functions.

Activities or No Tasks

For a state machine that has only Activity tasks, or no tasks at all, use an IAM policy that denies
access to all actions and resources.

{
 "Version": "2012-10-17",

IAM Policies for integrated services 1274

AWS Step Functions Developer Guide

 "Statement": [
 {
 "Effect": "Deny",
 "Action": "*",
 "Resource": "*"
 }
]
}

For more information about using Activity tasks, see Activities.

IAM policies for using Distributed Map state

When you create workflows with the Step Functions console, Step Functions can automatically
generate IAM policies based on the resources in your workflow definition. These policies include
the least privileges necessary to allow the state machine role to invoke the StartExecution
API action for the Distributed Map state. These policies also include the least privileges necessary
Step Functions to access AWS resources, such as Amazon S3 buckets and objects and Lambda
functions. We highly recommend that you include only those permissions that are necessary in
your IAM policies. For example, if your workflow includes a Map state in Distributed mode, scope
your policies down to the specific Amazon S3 bucket and folder that contains your dataset.

Important

If you specify an Amazon S3 bucket and object, or prefix, with a reference path to an
existing key-value pair in your Distributed Map state input, make sure that you update the
IAM policies for your workflow. Scope the policies down to the bucket and object names the
path resolves to at runtime.

In this topic:

• Example of IAM policy for running a Distributed Map state

• Example of IAM policy for redriving a Distributed Map

• Examples of IAM policies for reading data from Amazon S3 datasets

• Example of IAM policy for writing data to an Amazon S3 bucket

IAM policies for using Distributed Map state 1275

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

Example of IAM policy for running a Distributed Map state

When you include a Distributed Map state in your workflows, Step Functions needs appropriate
permissions to allow the state machine role to invoke the StartExecution API action for the
Distributed Map state.

The following IAM policy example grants the least privileges required to your state machine role
for running the Distributed Map state.

Note

Make sure that you replace stateMachineName with the name of the state machine
in which you're using the Distributed Map state. For example, arn:aws:states:us-
east-2:123456789012:stateMachine:mystateMachine.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:StartExecution"
],
 "Resource": [
 "arn:aws:states:region:accountID:stateMachine:stateMachineName"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "states:DescribeExecution",
 "states:StopExecution"
],
 "Resource": "arn:aws:states:region:accountID:execution:stateMachineName:*"
 }
]
}

IAM policies for using Distributed Map state 1276

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html

AWS Step Functions Developer Guide

Example of IAM policy for redriving a Distributed Map

You can restart unsuccessful child workflow executions in a Map Run by redriving your parent
workflow. A redriven parent workflow redrives all the unsuccessful states, including Distributed
Map. Make sure that your execution role has the least privileges necessary to allow it to invoke the
RedriveExecution API action on the parent workflow.

The following IAM policy example grants the least privileges required to your state machine role
for redriving a Distributed Map state.

Note

Make sure that you replace stateMachineName with the name of the state machine
in which you're using the Distributed Map state. For example, arn:aws:states:us-
east-2:123456789012:stateMachine:mystateMachine.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "states:RedriveExecution"
],
 "Resource": "arn:aws:states:us-
east-2:123456789012:execution:myStateMachine/myMapRunLabel:*"
 }
]
}

Examples of IAM policies for reading data from Amazon S3 datasets

The following IAM policy examples grant the least privileges required to access your Amazon S3
datasets using the ListObjectsV2 and GetObject API actions.

Example IAM policy for Amazon S3 object as dataset

The following example shows an IAM policy that grants the least privileges to access the objects
organized within processImages in an Amazon S3 bucket named myBucket.

IAM policies for using Distributed Map state 1277

https://docs.aws.amazon.com/step-functions/latest/apireference/API_RedriveExecution.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_ListObjectsV2.html
https://docs.aws.amazon.com/AmazonS3/latest/API/API_GetObject.html

AWS Step Functions Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:ListBucket"
],
 "Resource": [
 "arn:aws:s3:::myBucket"
],
 "Condition": {
 "StringLike": {
 "s3:prefix": [
 "processImages"
]
 }
 }
 }
]
}

Example IAM policy for a CSV file as dataset

The following example shows an IAM policy that grants least privileges to access a CSV file named
ratings.csv.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::myBucket/csvDataset/ratings.csv"
]
 }
]
}

IAM policies for using Distributed Map state 1278

AWS Step Functions Developer Guide

Example IAM policy for an Amazon S3 inventory as dataset

The following example shows an IAM policy that grants least privileges to access an Amazon S3
inventory report.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:GetObject"
],
 "Resource": [
 "arn:aws:s3:::destination-prefix/source-bucket/config-ID/YYYY-MM-DDTHH-
MMZ/manifest.json",
 "arn:aws:s3:::destination-prefix/source-bucket/config-ID/data/*"
]
 }
]
}

Example of IAM policy for writing data to an Amazon S3 bucket

The following IAM policy example grants the least privileges required to write your child workflow
execution results to a folder named csvJobs in an Amazon S3 bucket using the PutObject API
action.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "s3:PutObject",
 "s3:GetObject",
 "s3:ListMultipartUploadParts",
 "s3:AbortMultipartUpload"
],
 "Resource": [
 "arn:aws:s3:::resultBucket/csvJobs/*"
]
 }

IAM policies for using Distributed Map state 1279

https://docs.aws.amazon.com/AmazonS3/latest/API/API_PutObject.html

AWS Step Functions Developer Guide

]
}

IAM permissions for AWS KMS key encrypted Amazon S3 bucket

Distributed Map state uses multipart uploads to write the child workflow execution results to
an Amazon S3 bucket. If the bucket is encrypted using an AWS Key Management Service (AWS
KMS) key, you must also include permissions in your IAM policy to perform the kms:Decrypt,
kms:Encrypt, and kms:GenerateDataKey actions on the key. These permissions are required
because Amazon S3 must decrypt and read data from the encrypted file parts before it completes
the multipart upload.

The following IAM policy example grants permission to the kms:Decrypt, kms:Encrypt, and
kms:GenerateDataKey actions on the key used to encrypt your Amazon S3 bucket.

{
 "Version": "2012-10-17",
 "Statement": {
 "Effect": "Allow",
 "Action": [
 "kms:Decrypt",
 "kms:Encrypt",
 "kms:GenerateDataKey"
],
 "Resource": [
 "arn:aws:kms:us-east-1:123456789012:key/111aa2bb-333c-4d44-5555-a111bb2c33dd"
]
 }
}

For more information, see Uploading a large file to Amazon S3 with encryption using an AWS KMS
key in the AWS Knowledge Center.

If your IAM user or role is in the same AWS account as the KMS key, then you must have these
permissions on the key policy. If your IAM user or role belongs to a different account than the KMS
key, then you must have the permissions on both the key policy and your IAM user or role.

Tag-based Policies

Step Functions supports policies based on tags. For example, you could restrict access to all Step
Functions resources that include a tag with the key environment and the value production.

Tag-based Policies 1280

https://aws.amazon.com/premiumsupport/knowledge-center/s3-large-file-encryption-kms-key/
https://aws.amazon.com/premiumsupport/knowledge-center/s3-large-file-encryption-kms-key/

AWS Step Functions Developer Guide

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Deny",
 "Action": [
 "states:TagResource",
 "states:UntagResource",
 "states:DeleteActivity",
 "states:DeleteStateMachine",
 "states:StopExecution"
],
 "Resource": "*",
 "Condition": {
 "StringEquals": {"aws:ResourceTag/environment": "production"}
 }
 }
]
}

This policy will Deny the ability to delete state machines or activities, stop executions, and add or
delete new tags for all resources that have been tagged as environment/production.

For tag-based authorization, state machine execution resources as shown in the following example
inherit the tags associated with a state machine.

arn:<partition>:states:<Region>:<account-id>:execution:<StateMachineName>:<ExecutionId>

When you call DescribeExecution or other APIs in which you specify the execution resource
ARN, Step Functions uses tags associated with the state machine to accept or deny the request
while performing tag-based authorization. This helps you allow or deny access to state machine
executions at the state machine level.

For more information about tagging, see the following:

• Tagging in Step Functions

• Controlling Access Using IAM Tags

Tag-based Policies 1281

https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_iam-tags.html

AWS Step Functions Developer Guide

Troubleshooting AWS Step Functions identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Step Functions and IAM.

Topics

• I am not authorized to perform an action in Step Functions

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Step Functions resources

I am not authorized to perform an action in Step Functions

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson user tries to use the console to
view details about a fictional my-example-widget resource but does not have the fictional
states:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 states:GetWidget on resource: my-example-widget

In this case, Mateo's policy must be updated to allow him to access the my-example-widget
resource using the states:GetWidget action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Step Functions.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the
console to perform an action in Step Functions. However, the action requires the service to have

Troubleshooting 1282

AWS Step Functions Developer Guide

permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Step Functions
resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Step Functions supports these features, see How AWS Step Functions works
with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Logging and Monitoring

For information about logging and monitoring in AWS Step Functions, see the Logging and
monitoring section.

Logging and Monitoring 1283

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

AWS Step Functions Developer Guide

Compliance Validation for AWS Step Functions

Third-party auditors assess the security and compliance of AWS Step Functions as part of multiple
AWS compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others.

For a list of AWS services in scope of specific compliance programs, see AWS Services in Scope by
Compliance Program. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using Step Functions is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying security- and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS that helps you check your compliance with security industry standards and best practices.

Resilience in AWS Step Functions

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

Compliance Validation 1284

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/aws-step-functions.html
https://aws.amazon.com/compliance/resources/
https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html

AWS Step Functions Developer Guide

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

In addition to the AWS global infrastructure, Step Functions offers several features to help support
your data resiliency and backup needs.

Infrastructure Security in AWS Step Functions

As a managed service, AWS Step Functions is protected by AWS global network security. For
information about AWS security services and how AWS protects infrastructure, see AWS Cloud
Security. To design your AWS environment using the best practices for infrastructure security, see
Infrastructure Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access Step Functions through the network. Clients must
support the following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

You can call the AWS API operations from any network location, but Step Functions doesn't
support resource-based access policies, which can include restrictions based on the source IP
address. You can also use Step Functions policies to control access from specific Amazon Virtual
Private Cloud (Amazon VPC) endpoints or specific VPCs. Effectively, this isolates network access to
a given Step Functions resource from only the specific VPC within the AWS network.

Configuration and Vulnerability Analysis in AWS Step Functions

Configuration and IT controls are a shared responsibility between AWS and you, our customer. For
more information, see the AWS shared responsibility model.

Infrastructure Security 1285

https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/STS/latest/APIReference/Welcome.html
https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Step Functions Developer Guide

Migrating workloads from AWS Data Pipeline to Step
Functions

AWS launched the AWS Data Pipeline service in 2012. At that time, customers wanted a service
that let them use a variety of compute options to move data between different data sources. As
data transfer needs changed over time, so have the solutions to those needs. You now have the
option to choose the solution that most closely meets your business requirements. For example,
you can do any of the following:

• Use Step Functions to orchestrate workflows between multiple AWS services.

• Use Amazon Managed Workflows for Apache Airflow (Amazon MWAA) to manage workflow
orchestration for Apache Airflow.

• Use AWS Glue to run and orchestrate Apache Spark applications.

You can migrate typical use cases of AWS Data Pipeline to either AWS Glue, Step Functions, or
Amazon MWAA. The option you choose depends on your current workload on AWS Data Pipeline.
This topic explains how to migrate from AWS Data Pipeline to Step Functions.

Topics

• Migrating workloads from AWS Data Pipeline

• Concept mapping between Step Functions and AWS Data Pipeline

• Step Functions sample projects

• Pricing comparison

Migrating workloads from AWS Data Pipeline

Step Functions is a serverless orchestration service where you build workflows for business-
critical applications. With Step Functions' Workflow Studio, you can build workflows and integrate
them with more than 11,000 API actions from over 250 AWS services. This includes AWS services
such as AWS Lambda, Amazon EMR, and Amazon DynamoDB. You can also use Step Functions
to orchestrate data processing pipelines, handle errors, and work with throttling limits on the
underlying AWS services. You can create workflows that process and publish machine learning
models, orchestrate microservices, and handle extract, transform, and load (ETL) workflows with

Migrating workloads 1286

AWS Step Functions Developer Guide

AWS Glue. You can also create long-running, automated workflows for applications that require
human interaction.

Step Functions is a fully managed service provided by AWS. This means that AWS manages tasks
such as maintaining infrastructure, patching workers, and managing OS version updates for you.

When your use case matches the following conditions, we recommend that you migrate from AWS
Data Pipeline to Step Functions:

• You prefer a serverless, highly available workflow orchestration service.

• You need a solution that charges at the granularity of a single task execution.

• Your workloads involve orchestrating tasks for multiple other AWS services, such as Amazon
EMR, Lambda, AWS Glue, or DynamoDB.

• You need a low-code solution with a drag-and-drop visual designer for workflow creation. This
solution shouldn't require learning unfamiliar, complex programming concepts.

• You need a service that integrates with over 250 AWS services that cover over 11,000 API
actions. This service must also integrate with custom services and activities outside of AWS.

Concept mapping between Step Functions and AWS Data
Pipeline

AWS Data Pipeline and Step Functions share some common concepts. For example, to define
your workflows, you use JSON format in both AWS Data Pipeline and Step Functions. In Step
Functions, you use Amazon States Language, which is a JSON-based, structured language. You use
Amazon States Language (ASL) to define your workflows and switch between the textual and visual
representations of your workflow. This JSON-based format helps simplify storing your workflows
in a source control tool. It also helps you manage multiple versions of your workflows, control their
access, or automate their orchestration with CI/CD methods.

The following table describes the mapping between the major concepts used in both the services.
The Data pipeline concepts column on the left lists the concepts in AWS Data Pipeline, while the
Step Functions concepts column on the right lists the equivalent concepts in Step Functions.

Data pipeline concepts Step Functions concepts

Pipelines Workflows

Concept mapping 1287

https://aws.amazon.com/compliance/shared-responsibility-model/

AWS Step Functions Developer Guide

Data pipeline concepts Step Functions concepts

Pipeline definition Amazon States Language (ASL)

Activities States and Task

Instances Executions

Attempts Catchers and retriers

Pipeline schedule • Executions with Amazon EventBridge
Scheduler

• Events triggered through EventBridge Pipes

Pipeline expressions and functions • Intrinsic functions

• Lambda functions using service integration

Step Functions sample projects

For an introduction to Step Functions, see the following video:

Getting started with AWS Step Functions for service orchestration

The following list outlines some sample projects that implement the most common AWS Data
Pipeline use cases with Step Functions. You can use these sample projects as a reference to migrate
from AWS Data Pipeline to Step Functions. You can also use them as a boilerplate to build your
own workflows and integrate with the supported AWS services based on your use case.

• Manage an Amazon EMR Job

• Run a data processing job on Amazon EMR Serverless

• Running Hive/Pig/Hadoop jobs

• Query large datasets (Amazon Athena, Amazon S3, AWS Glue, Amazon SNS)

• Run ETL/ELT workflows using Amazon Redshift

• Orchestrating AWS Glue crawlers

• Run a shell script with Step Functions

To learn more about Step Functions, see the following topics and resources:

Step Functions sample projects 1288

https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/scheduler/latest/UserGuide/what-is-scheduler.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-pipes-event-source.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-deploy-functions.html
https://www.youtube.com/embed/2zCvMcZTr1E
https://aws.amazon.com/blogs/big-data/run-a-data-processing-job-on-amazon-emr-serverless-with-aws-step-functions/
https://catalog.us-east-1.prod.workshops.aws/workshops/c86bd131-f6bf-4e8f-b798-58fd450d3c44/en-US/step-functions/01-execute-step-function
https://aws.amazon.com/blogs/compute/orchestrating-aws-glue-crawlers-using-aws-step-functions/
https://github.com/aws-samples/datapipeline-migration-samples

AWS Step Functions Developer Guide

• Tutorials for Step Functions

• Sample projects for Step Functions

• The AWS Step Functions Workshop

Pricing comparison

AWS Data Pipeline is priced by number of pipelines and their level of use. Activities that are run
more than once a day (high frequency) are priced at $1 per month per activity. Activities that are
run once a day or less (low frequency) are priced at $0.60 per month per activity. Inactive Pipelines
are priced at $1 per pipeline. For more information about pricing, see AWS Data Pipeline Pricing
page.

Step Functions has two types of workflows: Standard and Express. Each workflow type has a
different pricing model. This comparison is based on the Standard workflow since it best matches
common use cases from AWS Data Pipeline. Standard workflows are priced at $0.025 per 1000
state transitions. There’s no cost for inactive state machines; you only pay for what you use. For
more information about pricing, see AWS Step Functions Pricing page.

Pricing comparison 1289

https://catalog.workshops.aws/stepfunctions
https://aws.amazon.com/datapipeline/pricing/
https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

Troubleshooting

If you encounter difficulties when working with Step Functions, use the following troubleshooting
resources.

Topics

• General troubleshooting

• Troubleshooting service integrations

• Troubleshooting activities

• Troubleshooting Express Workflows

General troubleshooting

I'm unable to create a state machine.

The IAM role associated with the state machine might not have sufficient permissions. Check the
IAM role's permissions, including for AWS service integration tasks, X-Ray, and CloudWatch logging.
Additional permissions are required for .sync task states.

I'm unable to use a JsonPath to reference the previous task’s output.

For a JsonPath, a JSON key must end with .$. This means a JsonPath can only be used in a key-
value pair. If you want to use a JsonPath other places, such as an array, you can use intrinsic
functions. For example, you could use something similar to the following:

Task A output:

{
 "sample": "test"
}

Task B:

{
 "JsonPathSample.$": "$.sample"
}

General troubleshooting 1290

AWS Step Functions Developer Guide

Tip

Use the data flow simulator in the Step Functions console to test JSON path syntax, to
better understand how data is manipulated within a state, and to see how data is passed
between states.

There was a delay in state transitions.

For standard workflows, there is a limit on the number of state transitions. When you exceed the
state transition limit, Step Functions delays state transitions until the bucket for the quota is filled.
State transition limit throttling can be monitored by reviewing the ExecutionThrottled metric
in the Execution metrics section of the CloudWatch Metrics page.

When I start new Standard Workflow executions, they fail with the
ExecutionLimitExceeded error.

Step Functions has a limit of 1,000,000 open executions for each AWS account in each AWS
Region. If you exceed this limit, Step Functions throws an ExecutionLimitExceeded
error. This limit does not apply to Express Workflows. You can use the following CloudWatch
Metrics math in the Amazon CloudWatch User Guide to approximate the number of open
executions: ExecutionsStarted - (ExecutionsSucceeded + ExecutionsTimedOut +
ExecutionsFailed + ExecutionsAborted).

A failure on one branch in a parallel state causes the whole execution
to fail.

This is an expected behavior. To avoid encountering failures when using a parallel state, configure
Step Functions to catch errors thrown from each branch.

Troubleshooting service integrations

My job is complete in the downstream service, but in Step Functions
the task state remains "In progress" or its completion is delayed.

For .sync service integration patterns, Step Functions uses EventBridge rules, downstream APIs,
or a combination of both to detect the downstream job status. For some services, Step Functions

There was a delay in state transitions. 1291

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html

AWS Step Functions Developer Guide

does not create EventBridge rules to monitor. For example, for the AWS Glue service integration,
instead of using EventBridge rules, Step Functions makes a glue:GetJobRun call. Because of
the frequency of API calls, there is a difference between the downstream task completion and
the Step Functions task completion time. Step Functions requires IAM permissions to manage
the EventBridge rules and to make calls to the downstream service. For more details about how
insufficient permissions on your execution role can affect the completion of tasks, see Additional
permissions for tasks using the Run a Job pattern.

I want to return a JSON output from a nested state machine execution.

There are two Step Functions synchronous service integrations for Step Functions:
startExecution.sync and startExecution.sync:2. Both wait for the nested state machine
to complete, but they return different Output formats. You can use startExecution.sync:2 to
return a JSON output under Output.

I can't invoke a Lambda function from another account.

Accessing the Lambda function with cross-account support

If cross-account access of AWS resources is available in your Region, use the following method to
invoke a Lambda function from another account.

To invoke a cross-account resource in your workflows, do the following:

1. Create an IAM role in the target account that contains the resource. This role grants the source
account, containing the state machine, permissions to access the target account's resources.

2. In the Task state's definition, specify the target IAM role to be assumed by the state machine
before invoking the cross-account resource.

3. Modify the trust policy in the target IAM role to allow the source account to assume this role
temporarily. The trust policy must include the Amazon Resource Name (ARN) of the state
machine defined in the source account. Also, define the appropriate permissions in the target
IAM role to call the AWS resource.

4. Update the source account’s execution role to include the required permission for assuming the
target IAM role.

For an example, see Tutorial: Accessing cross-account AWS resources.

I want to return a JSON output from a nested state machine execution. 1292

AWS Step Functions Developer Guide

Note

You can configure your state machine to assume an IAM role for accessing resources from
multiple AWS accounts. However, a state machine can assume only one IAM role at a given
time.

For an example of a Task state definition that specifies a cross-account resource, see Task state's
Credentials field examples.

Accessing the Lambda function without cross-account support

If cross-account access of AWS resources is unavailable in your Region, use the following method to
invoke a Lambda function from another account.

In the Task state’s Resource field, use arn:aws:states:::lambda:invoke and pass the
FunctionArn in parameters. The IAM role that is associated with the state machine must have the
right permissions to invoke cross-account Lambda functions: lambda:invokeFunction.

{
 "StartAt":"CallLambda",
 "States":{
 "CallLambda":{
 "Type":"Task",
 "Resource":"arn:aws:states:::lambda:invoke",
 "Parameters":{
 "FunctionName":"arn:aws:lambda:us-west-2:123456789012:function:my-function"
 },
 "End":true
 }
 }
}

I'm unable to see task tokens passed from .waitForTaskToken states.

In the Task state’s Parameters field, you must pass a task token. For example, you could use
something similar to the following code.

{
 "StartAt":"taskToken",

I'm unable to see task tokens passed from .waitForTaskToken states. 1293

AWS Step Functions Developer Guide

 "States":{
 "taskToken":{
 "Type":"Task",
 "Resource":"arn:aws:states:::lambda:invoke.waitForTaskToken",
 "Parameters":{
 "FunctionName":"get-model-review-decision",
 "Payload":{
 "token.$":"$$.Task.Token"
 },
 },
 "End":true
 }
 }
}

Note

You can try to use .waitForTaskToken with any API action. However, some APIs don't
have any suitable parameters.

Troubleshooting activities

My state machine execution is stuck at an activity state.

An activity task state doesn't start until you poll a task token by using the GetActivityTask API
action. As a best practice, add a task level timeout in order to avoid a stuck execution. For more
information, see Use timeouts to avoid stuck executions.

If your state machine is stuck in the ActivityScheduled event, it indicates that your activity worker
fleet has issues or is underscaled. You should monitor the ActivityScheduleTime CloudWatch
metric and set an alarm when that time increases. However, to time out any stuck state machine
executions in which the Activity state doesn't transition to the ActivityStarted state, define
a timeout at state machine-level. To do this, specify a TimeoutSeconds field at the beginning of
the state machine definition, outside of the States field.

My activity worker times out while waiting for a task token.

Workers use the GetActivityTask API action to retrieve a task with the specified activity ARN that
is scheduled for execution by a running state machine. GetActivityTask starts a long poll, so

Troubleshooting activities 1294

https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ActivityScheduledEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html

AWS Step Functions Developer Guide

the service holds the HTTP connection open and responds as soon as a task becomes available. The
maximum time the service hold the request before responding is 60 seconds. If no task is available
within 60 seconds, the poll returns a taskToken with a null string. To avoid this timeout, configure
a client side socket with a timeout of at least 65 seconds in the AWS SDK or in the client you are
using to make the API call.

Troubleshooting Express Workflows

My application times out before receiving a response from a
StartSyncExecution API call.

Configure a client side socket timeout in the AWS SDK or client you use to make the API call.
To receive a response, the timeout must have a value higher than the duration of the Express
Workflow executions.

I'm unable to see the execution history in order to troubleshoot Express
Workflow failures.

Express Workflows don't record execution history in AWS Step Functions. Instead, you must turn on
CloudWatch logging. Once logging is turned on, you can use CloudWatch Logs Insights queries to
review your Express Workflow executions. You can also view execution history for Express Workflow
executions on the Step Functions console if you choose the Enable button in the Executions tab.
For more information, see Viewing and debugging executions on the Step Functions console.

To list executions based on duration:

fields ispresent(execution_arn) as exec_arn
| filter exec_arn
| filter type in ["ExecutionStarted", "ExecutionSucceeded", "ExecutionFailed",
 "ExecutionAborted", "ExecutionTimedOut"]
| stats latest(type) as status,
 tomillis(earliest(event_timestamp)) as UTC_starttime,
 tomillis(latest(event_timestamp)) as UTC_endtime,
 latest(event_timestamp) - earliest(event_timestamp) as duration_in_ms by
 execution_arn
| sort duration desc

To list failed and cancelled executions:

Troubleshooting Express Workflows 1295

https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetActivityTask.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions Developer Guide

fields ispresent(execution_arn) as isRes | filter type in ["ExecutionFailed",
 "ExecutionAborted", "ExecutionTimedOut"]

I'm unable to see the execution history in order to troubleshoot Express Workflow failures. 1296

AWS Step Functions Developer Guide

Related information

The following table lists related resources that you might find useful as you work with this service.

Resource Description

AWS Step Functions API Reference Descriptions of API actions, parameters, and
data types and a list of errors that the service
returns.

AWS Step Functions Command Line Reference Descriptions of the AWS CLI commands that
you can use to work with AWS Step Functions.

Product information for Step Functions The primary webpage for information about
Step Functions.

Discussion Forums A community-based forum for developers to
discuss technical questions related to Step
Functions and other AWS services.

AWS Support Information The primary webpage for information about
AWS Support, a one-on-one, fast-response
support channel to help you build and run
applications on AWS infrastructure services.

1297

https://docs.aws.amazon.com/step-functions/latest/apireference/
https://docs.aws.amazon.com/cli/latest/reference/stepfunctions/
https://aws.amazon.com/step-functions
https://forums.aws.amazon.com/
https://aws.amazon.com/premiumsupport/

AWS Step Functions Developer Guide

Recent feature launches

The following table lists the Regions in which new Step Functions features are available.

Launch date Feature name Regions available

November 26, 2023 Invoke public HTTPS
endpoints and test individual
states

• US East (N. Virginia) – us-
east-1

• US West (Oregon) – us-
west-2

• US East (Ohio) – us-east-2

• Europe (Ireland) – eu-
west-1

• Europe (Frankfurt) – eu-
central-1

• Europe (Stockholm) – eu-
north-1

• Asia Pacific (Sydney) – ap-
southeast-2

• Asia Pacific (Tokyo) – ap-
northeast-1

• Asia Pacific (Singapore) –
ap-southeast-1

November 15, 2023 Redrive executions For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on
the page titled AWS services
by Region.

October 12, 2023 Optimized integration for
Amazon EMR Serverless

For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on

1298

https://aws.amazon.com/about-aws/whats-new/2023/11/aws-step-functions-restarting-workflows-failure/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/whats-new/2023/10/aws-step-functions-optimized-integration-amazon-emr-serverless/
https://aws.amazon.com/about-aws/whats-new/2023/10/aws-step-functions-optimized-integration-amazon-emr-serverless/

AWS Step Functions Developer Guide

Launch date Feature name Regions available

the page titled AWS services
by Region.

September 07, 2023 Enhanced error handling For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on
the page titled AWS services
by Region.

August 31, 2023 Workflow Studio enhanceme
nts for a streamlined
authoring experience

For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on
the page titled AWS services
by Region.

June 22, 2023 Versions and aliases For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on
the page titled AWS services
by Region.

June 16, 2023 New AWS SDK integrations For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on
the page titled AWS services
by Region.

1299

https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/whats-new/2023/09/aws-step-functions-enhanced-error-handling/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/whats-new/2023/08/aws-step-functions-authoring-experience-workflow-studio/
https://aws.amazon.com/about-aws/whats-new/2023/08/aws-step-functions-authoring-experience-workflow-studio/
https://aws.amazon.com/about-aws/whats-new/2023/08/aws-step-functions-authoring-experience-workflow-studio/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/whats-new/2023/06/aws-step-functions-versions-aliases/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/whats-new/2023/06/aws-step-functions-7-services-vpc-lattice/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Step Functions Developer Guide

Launch date Feature name Regions available

December 01, 2022 Orchestrate large-scale
parallel workflows for data
processing with Distributed
Map state

For a complete list of the AWS
Regions in which this feature
is available, see the options in
the Region dropdown list on
the page titled AWS services
by Region.

1300

https://aws.amazon.com/about-aws/whats-new/2022/12/aws-step-functions-large-scale-parallel-workflows-data-processing-serverless-applications/
https://aws.amazon.com/about-aws/whats-new/2022/12/aws-step-functions-large-scale-parallel-workflows-data-processing-serverless-applications/
https://aws.amazon.com/about-aws/whats-new/2022/12/aws-step-functions-large-scale-parallel-workflows-data-processing-serverless-applications/
https://aws.amazon.com/about-aws/whats-new/2022/12/aws-step-functions-large-scale-parallel-workflows-data-processing-serverless-applications/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/

AWS Step Functions Developer Guide

Document history

This section lists major changes to the AWS Step Functions Developer Guide.

Change Description Date
changed

Updates Step Functions adds support for Open Workflow metrics

With open workflow metrics, you now have account-level visibility
into the number of standard workflows in progress as well as your
open workflow limit. You can manage workloads across all workflows
, regardless of how they're started, to ensure smooth workflow
operations. You can set CloudWatch alarms to monitor your workflows
and proactively receive alerts as you approach your limits. Once
alerted, you can effectively manage your workflows by taking actions
such as stopping specific workflows or requesting a limit increase.

Open workflow metrics is available to use in CloudWatch for standard
workflows with no additional configuration required. To learn more, see
Execution metrics.

February
29, 2024

Updates Service integration additions and updates. For the list of new and
updated AWS SDK integrations, see Change log for supported AWS
SDK integrations. For the full list of services, see Supported AWS SDK
service integrations.

January
18, 2024

New
feature

Use Workflow Studio in Application Composer to build serverless
workflows using AWS CloudFormation templates. For more informati
on, see Using Workflow Studio in Application Composer.

November
27, 2023

New
feature

Step Functions now lets you directly invoke public HTTPS endpoints
and test individual states using a new Test State API. For more
information, see:

• Call third-party APIs

• Using TestState API to test a state

November
26, 2023

1301

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

Step Functions now integrates with Amazon Bedrock. For more
information, see the following topics:

• Call Amazon Bedrock with Step Functions

• IAM permissions for Amazon Bedrock

• Perform AI prompt-chaining with Amazon Bedrock

• Using AWS Step Functions with other services

November
26, 2023

New
feature

Step Functions now lets you redrive workflow executions of type
Standard from their point of failure. For more information, see
Redriving executions and Redriving Map Runs.

November
15, 2023

Documenta
tion-only
update

Published a new topic that explains how to run state machines on a
schedule using Amazon EventBridge Scheduler. For more information,
see Using Amazon EventBridge Scheduler with AWS Step Functions.

October
16, 2023

New
feature

Step Functions now integrates with Amazon EMR Serverless. For more
information, see the following topics:

• Call Amazon EMR Serverless with Step Functions

• Run an EMR Serverless job

• Optimized integrations for Step Functions

• Using AWS Step Functions with other services

October
12, 2023

Documenta
tion-only
update

Added information about running state machines on a schedule using
Amazon EventBridge Scheduler. For more information, see Using
EventBridge Scheduler.

October
05, 2023

Update Reorganized and updated the Distributed Map state topics for clarity,
brevity, and establishing a clear journey map for new users. For more
information, see Using Map state in Distributed mode to orchestrate
large-scale parallel workloads.

October
6, 2023

1302

AWS Step Functions Developer Guide

Change Description Date
changed

Fixes Fixed code samples in a tutorial to use AWS CDK v2. For more informati
on, see Creating a Lambda state machine for Step Functions using AWS
CDK.

September
19, 2023

Update Added information about the enhanced error handling capabilities that
Step Functions has introduced to identify errors clearly and implement
retries with greater control. For more information, see Fail and Retrying
after an error.

September
07, 2023

Update Step Functions has added enhancements to Workflow Studio for
streamlining workflow authoring experience. For more information, see
AWS Step Functions Workflow Studio.

August
31, 2023

Documenta
tion-only
update

Added information about twice the actual metric count reported for
the ExecutionsStarted metric. For more information, see Metrics
that report a count.

July 25,
2023

Documenta
tion-only
update

Step Functions has added two new sample projects that demonstrate
the following common use cases for the Distributed Map state:

• Processing a CSV file

• Processing data in an Amazon S3 bucket

July 17,
2023

Documenta
tion-only
update

Published a new topic about deploying state machines using Terraform.
For more information, see Deploying state machines using Terraform.

July 5,
2023

Documenta
tion-only
update

Updated the following procedures to match changes to the Amazon
EventBridge interface.

• Routing a Step Functions event to EventBridge

• Starting a State Machine Execution in Response to Amazon S3 Events

June 26,
2023

1303

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

Step Functions now provides the ability to create multiple state
machine versions and aliases for improved resiliency while deploying
serverless workflows. For more information, see Manage continuous
deployments with versions and aliases.

June 22,
2023

Documenta
tion-only
update

Improved the description of TimeoutSeconds and Heartbeat
Seconds fields to describe how they're different from each other. For
more information, see Task state fields.

June 22,
2023

Documenta
tion-only
update

Published a new section that describes how to flatten an array of
arrays typically returned as result for Parallel and Map states. For more
information, see Flattening an array of arrays.

June 20,
2023

Update Step Functions has expanded support for AWS SDK integrations
by adding seven AWS services and 468 new API actions. For more
information, see Supported AWS SDK service integrations and Change
log for supported AWS SDK integrations.

June 16,
2023

Documenta
tion-only
update

Published a new topic that lists the AWS Regions in which recently
launched Step Functions features are available. For more information,
see Recent feature launches.

June 16,
2023

Documenta
tion-only
update

Step Functions now includes a section about AWS User Notifications, an
AWS service that acts as a central location for your AWS notifications in
the AWS Management Console. For more information, see Using AWS
User Notifications with Step Functions.

May 4,
2023

Documenta
tion-only
update

Added a new section that explains about the permissions needed
to write child workflow execution results to an Amazon S3 bucket
encrypted with an AWS Key Management Service (AWS KMS) key. For
more information, see IAM permissions for AWS KMS key encrypted
Amazon S3 bucket.

April 25,
2023

1304

AWS Step Functions Developer Guide

Change Description Date
changed

Documenta
tion-only
update

Added a new topic that explains about the Data flow simulator feature.
For more information, see Data flow simulator.

April 14,
2023

Quota
update

Added information about default quota of 1000 for open Map Runs in
each account. For more information, see Quotas related to accounts.

April 05,
2023

Documenta
tion-only
update

Added a topic that describes when to migrate AWS Data Pipeline
workloads to Step Functions. This topic also provides a list of examples
that explain how to perform the migration. For more information, see
Migrating workloads from AWS Data Pipeline to Step Functions.

March
30, 2023

Documenta
tion-only
update

Added a Note about unavailability of X-Ray tracing for the Distributed
Map state. For more information, see AWS X-Ray and Step Functions.

March
21, 2023

Documenta
tion-only
update

Added information about how Step Functions handles tag-based
authorization. For more information, see Tagging in Step Functions and
Tag-based Policies.

March
15, 2023

Documenta
tion-only
update

Added information about how Step Functions parses CSV files used as
input in Distributed Map state. For more information, see CSV file in an
Amazon S3 bucket.

March
14, 2023

Documenta
tion-only
update

Added information about how Step Functions handles cross-account
invocations for the Run a Job (.sync) pattern. For more information, see
Run a Job (.sync).

March
01, 2023

Documenta
tion-only
update

Reduce the history retention period of your completed workflow
executions from 90 days to 30 days. For more information about
adjusting the retention period, see Execution guarantees and Quotas
related to state machine executions.

February
21, 2023

1305

https://console.aws.amazon.com/states/home?region=us-east-1#/simulator

AWS Step Functions Developer Guide

Change Description Date
changed

Update Step Functions has expanded support for AWS SDK integrations by
adding 35 AWS services and 1100 new API actions. For more informati
on, see Supported AWS SDK service integrations and Change log for
supported AWS SDK integrations.

February
17, 2023

Documenta
tion-only
update

Published a Getting Started tutorial series that walks you through the
process of creating a workflow for credit card application using Step
Functions. For more information, see Getting started with AWS Step
Functions.

December
30, 2022

New
feature

Step Functions adds support to orchestrate large-scale parallel
workflows for data processing using a new Distributed mode for Map
state. For more information, see Using Map state in Distributed mode
to orchestrate large-scale parallel workloads.

December
01, 2022

New
feature

Step Functions now supports access to cross-account AWS resources
configured in other accounts. For more information, see

• Accessing resources in other AWS accounts in your workflows

• Tutorial: Accessing cross-account AWS resources

• Task state

November
18, 2022

Update Step Functions now provides a new console experience for viewing and
debugging Express workflow executions. For more information see:

• Standard and Express Workflow executions in the console

• Viewing and debugging executions on the Step Functions console

October
18, 2022

Update Added support to optionally specify the ExecutionRoleArn
parameter while using the addStep and addStep.sync APIs for the
Amazon EMR optimized service integration. For more information, see
Call Amazon EMR with Step Functions.

September
20, 2022

1306

AWS Step Functions Developer Guide

Change Description Date
changed

Documenta
tion-only
update

Added a new topic that provides recommendations about optimizing
cost while building serverless workflows using Step Functions. For more
information, see Cost-optimization using Express Workflows.

September
15, 2022

Update Step Functions adds support for 14 new intrinsic functions for
performing data processing tasks, such as array manipulations, data
encoding and decoding, hash calculations, JSON data manipulation,
math function operations, and unique identifier generation.

Documentation-only update:

Grouped all the existing and newly introduced intrinsic functions into
the following categories based on the type of data processing task they
help you perform:

• Intrinsics for arrays

• Intrinsics for data encoding and decoding

• Intrinsic for hash calculation

• Intrinsics for JSON data manipulation

• Intrinsics for Math operations

• Intrinsic for String operation

• Intrinsic for unique identifier generation

• Intrinsic for generic operation

For more information, see Intrinsic functions.

August
31, 2022

Update Step Functions has expanded support for AWS SDK integrations by
adding three more AWS services – AWS Billing Conductor, Amazon
GameSparks, and Amazon Pinpoint SMS and Voice V2. For more
information, see Change log for supported AWS SDK integrations.

July 26,
2022

1307

AWS Step Functions Developer Guide

Change Description Date
changed

Documenta
tion-only
update

Added a new topic to include a summary of all the updates made to
AWS SDK integrations supported by Step Functions. For more informati
on, see Change log for supported AWS SDK integrations

July 26,
2022

Documenta
tion-only
update

AWS Step Functions Developer Guide now includes details about the
execution metrics that are emitted specifically for Express Workflows.
For more information, see Execution metrics for Express Workflows.

June 09,
2022

1308

AWS Step Functions Developer Guide

Change Description Date
changed

Update Step Functions console enhancements

The console now features a redesigned Execution Details page that
includes the following enhancements:

• Ability to identify the reason for a failed execution at a glance.

• Two new modes of visualizations for your state machine – Table view
and Event view. These views also provide you the ability to apply
filters to only view the information of interest. In addition, you can
sort the Event view contents based on the event timestamps.

• Switch between the different iterations of Map state in the Graph
view mode using a dropdown list or in the Table view mode's tree
view for Map states.

• View in-depth information about each state in the workflow,
including the complete input and output data transfer path and retry
attempts for Task or Parallel states.

• Miscellaneous enhancements including the option to copy the state
machine's execution Amazon Resource Name, view the count of total
state machine transitions, and export the execution details in JSON
format.

Documentation-only updates

Added a new topic to explain the various types of information
displayed in the Execution Details page. Also, added a tutorial to show
how to examine this information. For more information, see:

• Viewing and debugging executions on the Step Functions console

• Tutorial: Examining state machine executions using the Step
Functions console

May 09,
2022

1309

AWS Step Functions Developer Guide

Change Description Date
changed

Update Step Functions now provides a workaround to prevent the confused
deputy security issue, which arises when an entity (a service or an
account) is coerced by a different entity to perform an action. For more
information, see:

• Prevent cross-service confused deputy issue

May 02,
2022

Update • Step Functions has expanded support for AWS SDK integrations by
adding 21 more AWS services. For more information, see: Supported
AWS SDK service integrations.

• Documentation-only updates:

• Added a list of all the exception prefixes present in the exception
s that are generated when you erroneously perform an AWS SDK
service integration with Step Functions. For more information, see:
Supported AWS SDK service integrations.

• Added a list of all the unsupported API actions for supported AWS
SDK integrations. For more information, see: Unsupported API
actions for supported services.

• Added a list of all the supported AWS SDK integrations that are
now deprecated. For more information, see: Deprecated AWS SDK
service integrations.

April 19,
2022

New
feature

Step Functions Local now supports AWS SDK integration and mocking
of service integrations. For more information, see:

• Using Mocked Service Integrations

January
28, 2022

New
feature

AWS Step Functions now supports creating an Amazon API Gateway
REST API with synchronous express state machine as backend integrati
on using the AWS Cloud Development Kit (AWS CDK). For more
information, see:

• Creating an API Gateway REST API with Synchronous Express State
Machine Using the AWS CDK

December
10, 2021

1310

AWS Step Functions Developer Guide

Change Description Date
changed

Update Step Functions has added three new sample projects that demonstra
te the integration of Step Functions and Amazon Athena's upgraded
console. For more information, see:

• Execute multiple queries (Amazon Athena, Amazon SNS)

• Query large datasets (Amazon Athena, Amazon S3, AWS Glue,
Amazon SNS)

• Keep data up to date (Amazon Athena, Amazon S3, AWS Glue)

November
22, 2021

New
feature

Step Functions has added Amazon VPC endpoints support for
Synchronous Express Workflows. For more information, see:

• Amazon VPC Endpoints for Step Functions

November
15, 2021

Update AWS Step Functions has added three new sample projects that
demonstrate how to use the Step Functions AWS Batch integration. For
more information, see:

• Fan out an AWS Batch job

• AWS Batch with Lambda

• Use Step Functions and AWS Batch with error handling

October
14, 2021

New
feature

AWS Step Functions has added AWS SDK integrations, letting you use
the API actions for all of the more than two hundred AWS services. For
more information, see:

• AWS SDK service integrations

• Gather Amazon S3 bucket info using AWS SDK service integrations

September
30, 2021

New
feature

AWS Step Functions has added a visual workflow designer, the AWS
Step Functions Workflow Studio. For more information, see:

• AWS Step Functions Workflow Studio

• Learn to use the AWS Step Functions Workflow Studio

June 17,
2021

1311

AWS Step Functions Developer Guide

Change Description Date
changed

Update AWS Step Functions has added four new APIs, StartBuildBatch ,
StopBuildBatch , RetryBuildBatch and DeleteBuildBatch ,
to the CodeBuild integration. For more information, see:

• Call AWS CodeBuild with Step Functions

June 4,
2021

New
feature

AWS Step Functions now integrates with Amazon EventBridge. For
more information, see:

• Call EventBridge with Step Functions

• IAM policies for Step Functions and IAM policies for Amazon
EventBridge

• A sample project that shows how to Send a custom event to
EventBridge

May 14,
2021

Update AWS Step Functions has added a new sample project that shows how
to use Step Functions and the Amazon Redshift Data API to run an
ETL/ELT workflow. For more information, see:

• Run ETL/ELT workflows using Amazon Redshift (Lambda, Amazon
Redshift Data API)

April 16,
2021

New
feature

AWS Step Functions has a new data flow simulator in the console. For
more information, see:

• Step Functions console

April 8,
2021

New
feature

AWS Step Functions now integrates with Amazon EMR on EKS. For
more information, see:

• Call Amazon EMR on EKS with AWS Step Functions

March
29, 2021

1312

AWS Step Functions Developer Guide

Change Description Date
changed

Update YAML support for state machine definitions has been added to AWS
Toolkit for Visual Studio Code and AWS CloudFormation. For more
information, see:

• Definition format support

• AWS Toolkit for Visual Studio Code

March 4,
2021

New
feature

AWS Step Functions now integrates with AWS Glue DataBrew. For more
information, see:

• Manage AWS Glue DataBrew Jobs with Step Functions

• What is AWS Glue DataBrew? in the DataBrew developer guide.

January
6, 2021

New
feature

AWS Step Functions Synchronous Express Workflows are now available,
giving you an easy way to orchestrate microservices. For more informati
on, see:

• Synchronous and Asynchronous Express Workflows

• A sample project that shows how to Invoke Synchronous Express
Workflows

• The StartSyncExecution API documentation.

November
24, 2020

New
feature

AWS Step Functions now integrates with Amazon API Gateway. For
more information, see:

• Call API Gateway with Step Functions

• IAM policies for Step Functions and IAM policies for Amazon API
Gateway

• A sample project that shows how to Make a call to API Gateway

November
17, 2020

1313

https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/bulding-stepfunctions.html
https://docs.aws.amazon.com/databrew/latest/dg/what-is.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartSyncExecution.html

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

AWS Step Functions now integrates with Amazon Elastic Kubernetes
Service. For more information, see:

• Call Amazon EKS with Step Functions

• IAM policies for Step Functions and IAM policies for Amazon EKS

• A sample project that shows how to Manage an Amazon EKS cluster

November
16, 2020

New
feature

AWS Step Functions now integrates with Amazon Athena. For more
information, see:

• Call Athena with Step Functions

• IAM policies for Step Functions and IAM policies for Amazon Athena

• A sample project that shows how to Start an Athena query

October
22, 2020

New
feature

AWS Step Functions now supports tracing end-to-end workflows with
AWS X-Ray, giving you full visibility across state machine executions
and making it easier to analyze and debug your distributed applicati
ons. For more information, see:

• AWS X-Ray and Step Functions

• IAM policies for Step Functions and IAM policies for AWS X-Ray

• AWS Step Functions API Reference

• TracingConfiguration

September
14, 2020

1314

https://docs.aws.amazon.com/step-functions/latest/apireference/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TracingConfiguration.html

AWS Step Functions Developer Guide

Change Description Date
changed

Update AWS Step Functions now supports payload sizes up to 256 KB of data
as a UTF-8 encoded string. This lets you process larger payloads in both
Standard and Express workflows.

Your existing state machines do not need to be changed in order
to use the larger payloads. However, you will need to update to the
latest versions of the Step Functions SDK and Local Runner to use the
updated APIs. For more information, see:

• Quotas

• the section called “Use Amazon S3 ARNs instead of passing large
payloads”

• States.DataLimitExceeded

• the section called “CloudWatch Logs payloads”

• the section called “EventBridge payloads”

• AWS Step Functions API Reference

• CloudWatchEventsExecutionDataDetails

• HistoryEventExecutionDataDetails

• GetExecutionHistory

• ActivityScheduledEventDetails

• ActivitySucceededEventDetails

• CloudWatchEventsExecutionDataDetails

• ExecutionSucceededEventDetails

• LambdaFunctionScheduledEventDetails

• ExecutionSucceededEventDetails

• StateEnteredEventDetails

• StateExitedEventDetails

• TaskSubmittedEventDetails

• TaskSucceededEventDetails

September
3, 2020

1315

https://docs.aws.amazon.com/step-functions/latest/apireference/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CloudWatchEventsExecutionDataDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_HistoryEventExecutionDataDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ActivityScheduledEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ActivitySucceededEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CloudWatchEventsExecutionDataDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ExecutionSucceededEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_LambdaFunctionScheduledEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ExecutionSucceededEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StateEnteredEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StateExitedEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TaskSubmittedEventDetails.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_TaskSucceededEventDetails.html

AWS Step Functions Developer Guide

Change Description Date
changed

Update The Amazon States Language has been updated as follows:

• Choice Rules has added

• A null comparison operator, IsNull. IsNull tests against the
JSON null value, and can be used to detect if the output of a
previous state is null or not.

• Four other new operators have been added, IsBoolean, IsNumeric,
IsString and IsTimestamp.

• A test for the existence or non-existence of a field using the
IsPresent operator. IsPresent can be used to prevent
States.Runtime errors when there is an attempt to access a
non-existent key.

• Wildcard pattern matching to support string comparison against
patterns with one or more wildcards.

• Comparison between two variables for supported comparison
operators.

• Timeout and heartbeat values in a Task state can now be provided
dynamically from the state input instead of a fixed value using the
TimeoutSecondsPath and HeartbeatSecondsPath fields.
See the Task state for more information.

• The new ResultSelector field provides a way to manipulate a state’s
result before ResultPath is applied. The ResultSelector field
is an optional field in the Map, Parallel, and Task states.

• Intrinsic functions have been added to allow basic operations without
Task states. Intrinsic functions can be used within the Parameters
and ResultSelector fields.

August
13, 2020

1316

AWS Step Functions Developer Guide

Change Description Date
changed

Update AWS Step Functions now supports the Amazon SageMaker CreatePro
cessingJob API call. For more information, see:

• Manage SageMaker with Step Functions

• Preprocess data and train a machine learning model, a sample
project that demonstrates CreateProcessingJob .

August 4,
2020

New
feature

AWS Step Functions is now supported by AWS Serverless Application
Model, making it easier to integrate workflow orchestration into your
serverless applications. For more information, see:

• AWS Step Functions and AWS SAM

• AWS::Serverless::StateMachine

• AWS SAM Policy Templates

May 27,
2020

New
feature

AWS Step Functions has introduced a new synchronous invocation for
nesting Step Functions executions. The new invocation, arn:aws:s
tates:::states:startExecution.sync:2 , returns a JSON
object. The original invocation, arn:aws:states:::states:sta
rtExecution.sync , continues to be supported, and returns a
JSON-escaped string. For more information, see:

• Manage AWS Step Functions Executions as an Integrated Service

May 19,
2020

New
feature

AWS Step Functions now integrates with AWS CodeBuild. For more
information, see:

• Using AWS Step Functions with other services

• Call AWS CodeBuild with Step Functions

• Optimized integrations for Step Functions

May 5,
2020

New
feature

Step Functions is now supported in AWS Toolkit for Visual Studio Code,
making it easier to create and visualize state machine based workflows
without leaving your code editor.

March
31, 2020

1317

https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/sam-resource-statemachine.html
https://docs.aws.amazon.com/serverless-application-model/latest/developerguide/serverless-policy-templates.html
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/bulding-stepfunctions.html

AWS Step Functions Developer Guide

Change Description Date
changed

Update You can now configure logging to Amazon CloudWatch Logs for
Standard workflows. For more information, see:

• Logging using CloudWatch Logs

February
25, 2020

New
feature

AWS Step Functions can now be accessed without requiring a public IP
address, directly from Amazon Virtual Private Cloud (VPC). For more
information, see:

• Amazon VPC Endpoints for Step Functions

December
23, 2019

1318

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

Express Workflows are a new workflow type, suitable for high-volume
event processing workloads such as IoT data ingestion, streaming data
processing and transformation, and mobile application backends.

For more information, review the following new and updated topics.

• Standard vs. Express Workflows

• Execution guarantees

• Using AWS Step Functions with other services

• Optimized integrations for Step Functions

• Process High-Volume Messages from Amazon SQS (Express
Workflows)

• Selective Checkpointing Example (Express Workflows)

• Quotas

• Quotas

• Logging using CloudWatch Logs

• AWS Step Functions API Reference

• CreateStateMachine

• UpdateStateMachine

• DescribeStateMachine

• DescribeStateMachineForExecution

• StopExecution

• DescribeExecution

• GetExecutionHistory

• ListExecutions

• ListStateMachines

• StartExecution

• CloudWatchLogsLogGroup

• LogDestination

December
3, 2019

1319

https://docs.aws.amazon.com/step-functions/latest/apireference/
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CreateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_UpdateStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachine.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeStateMachineForExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StopExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_DescribeExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_GetExecutionHistory.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListExecutions.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_ListStateMachines.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_CloudWatchLogsLogGroup.html
https://docs.aws.amazon.com/step-functions/latest/apireference/API_LogDestination.html

AWS Step Functions Developer Guide

Change Description Date
changed

• LoggingConfiguration

New
feature

AWS Step Functions now integrates with Amazon EMR. For more
information, see:

• Using AWS Step Functions with other services

• Call Amazon EMR with Step Functions

• Optimized integrations for Step Functions

November
19, 2019

Update AWS Step Functions has released the AWS Step Functions Data Science
SDK. For more information, see the following.

• Project on Github

• SDK Documentation

• The following Example Notebooks, which are available in the
SageMaker console and the related GitHub project.

• hello_world_workflow.ipynb

• machine_learning_workflow_abalone.ipynb

• training_pipeline_pytorch_mnist.ipynb

November
7, 2019

Update Step Functions now supports more API actions for Amazon SageMaker
, and includes two new sample projects to demonstrate the functiona
lity. For more information, see the following.

• Manage SageMaker with Step Functions

• Using AWS Step Functions with other services

• Train a Machine Learning Model

• Tune a Machine Learning Model

October
3, 2019

1320

https://docs.aws.amazon.com/step-functions/latest/apireference/API_LoggingConfiguration.html
https://github.com/aws/aws-step-functions-data-science-sdk-python
https://aws-step-functions-data-science-sdk.readthedocs.io/
https://docs.aws.amazon.com/sagemaker/latest/dg/howitworks-nbexamples.html
https://console.aws.amazon.com/sagemaker/
https://github.com/awslabs/amazon-sagemaker-examples/tree/master/step-functions-data-science-sdk

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

Step Functions supports starting new workflow executions by calling
StartExecution as an integrated service API. See:

• Start Workflow Executions from a Task State

• Manage AWS Step Functions Executions as an Integrated Service

• Using AWS Step Functions with other services

• IAM Policies for Starting Step Functions Workflow Executions

August
12, 2019

New
feature

Step Functions includes the ability to pass a task token to integrated
services, and pause the execution until that task token is returned with
SendTaskSuccess or SendTaskFailure . See:

• Service integration patterns

• Wait for a Callback with the Task Token

• Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda)

• Optimized integrations for Step Functions

• Deploying an Example Human Approval Project

• Service Integration Metrics

Step Functions now provides a way to access dynamic information
about your current execution directly in the "Parameters" field of a
state definition. See:

• Context object

• Pass Context Object Nodes as Parameters

May 23,
2019

New
feature

Step Functions supports CloudWatch Events for execution status
changes, see:

• EventBridge (CloudWatch Events) for Step Functions execution status
changes

• Amazon CloudWatch Events User Guide

May 8,
2019

1321

https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

Step Functions supports IAM permissions using tags. For more
information, see:

• Tagging in Step Functions

• Tag-based Policies

March 5,
2019

New
feature

Step Functions Local is now available. You can run Step Functions on
your local machine for testing and development. Step Functions Local
is available for download as either a Java application, or as a Docker
image. See Testing state machines locally.

February
4, 2019

New
feature

AWS Step Functions is now available in the Beijing and Ningxia regions.
See Supported regions.

January
15, 2018

New
feature

Step Functions supports resource tagging to help track your cost
allocation. You can tag state machines on the Details page, or through
API actions. See Tagging in Step Functions.

January
7, 2019

New
feature

AWS Step Functions is now available in the Europe (Paris), and South
America (São Paulo) regions. See Supported regions.

December
13, 2018

New
feature

AWS Step Functions is now available the Europe (Stockholm) region.
See Supported regions for a list of supported regions.

December
12, 2018

New
feature

Step Functions now integrates with some AWS services. You can now
directly call and pass parameters to the API of these integrated services
from a task state in the Amazon States Language. For more informati
on, see:

• Using AWS Step Functions with other services

• Pass parameters to a service API

• Optimized integrations for Step Functions

November
29, 2018

Update Improved the description of TimeoutSeconds and Heartbeat
Seconds in the documentation for task states. See Task.

October
24, 2018

1322

AWS Step Functions Developer Guide

Change Description Date
changed

Update Improved the description for the Maximum execution history size limit
and provided a link to the related best practices topic.

• Quotas related to state machine executions

• Avoid reaching the history quota

October
17, 2018

Update Added a new tutorial to the AWS Step Functions documentation: See
Starting a State Machine Execution in Response to Amazon S3 Events.

September
25, 2018

Update Removed the entry Maximum executions displayed in Step Functions
console from the limits documentation. See Quotas.

September
13, 2018

Update Added a best practices topic to the AWS Step Functions documentation
on improving latency when polling for activity tasks. See Avoid latency
when polling for activity tasks.

August
30, 2018

Update Improved the AWS Step Functions topic on activities and activity
workers. See Activities.

August
29, 2018

Update Improved the AWS Step Functions topic on CloudTrail integration. See
Logging Step Functions Using AWS CloudTrail.

August 7,
2018

Update Added JSON examples to AWS CloudFormation tutorial. See Creating a
Lambda state machine for Step Functions using AWS CloudFormation.

June 23,
2018

Update Added a new topic on handling Lambda service errors. See Handle
Lambda service exceptions.

June 20,
2018

New
feature

AWS Step Functions is now available the Asia Pacific (Mumbai) region.
See Supported regions for a list of supported regions.

June 28,
2018

New
feature

AWS Step Functions is now available the AWS GovCloud (US-West)
region. See Supported regions for a list of supported regions. For
information about using Step Functions in the AWS GovCloud (US-
West) Region, see AWS GovCloud (US).

June 28,
2018

1323

https://docs.aws.amazon.com/govcloud-us/latest/UserGuide/using-govcloud-endpoints.html

AWS Step Functions Developer Guide

Change Description Date
changed

Update Improved documentation on error handling for Parallel states. See
Error Handling.

June 20,
2018

Update Improved documentation about Input and Output processing in
Step Functions. Learn how to use InputPath , ResultPath , and
OutputPath to control the flow of JSON through your workflows,
states, and tasks. See:

• Input and Output Processing in Step Functions

• ResultPath

June 7,
2018

Update Improved code examples for parallel states. See Parallel. June 4,
2018

New
feature

You can now monitor API and Service metrics in CloudWatch. See
Monitoring Step Functions Using CloudWatch.

May 25,
2018

Update StartExecution , StopExecution , and StateTransition now
have increased throttling limits in the following regions:

• US East (N. Virginia)

• US West (Oregon)

• Europe (Ireland)

For more information see Quotas.

May 16,
2018

New
feature

AWS Step Functions is now available the US West (N. California)
and Asia Pacific (Seoul) regions. See Supported regions for a list of
supported regions.

May 5,
2018

Update Updated procedures and images to match changes to the interface. April 25,
2018

1324

AWS Step Functions Developer Guide

Change Description Date
changed

Update Added a new tutorial that shows how to start a new execution to
continue your work. See Continuing Long-running Workflow Execution
s as a New Execution. This tutorial describes a design pattern that can
help avoid some service limitations. See Avoid reaching the history
quota.

April 19,
2018

Update Improved introduction to states documentation by adding conceptual
information about state machines. See States.

March 9,
2018

Update In addition to HTML, PDF, and Kindle, the AWS Step Functions
Developer Guide is available on GitHub. To leave feedback, choose the
GitHub icon in the upper right-hand corner.

March 2,
2018

Update Added a topic describing other resources relating to Step Functions.

See Related information.

February
20, 2018

New
feature

• When you create a new state machine, you must acknowledge that
AWS Step Functions will create an IAM role which allows access to
your Lambda functions.

• Updated the following tutorials to reflect the minor changes in the
state machine creation workflow:

• Creating a Step Functions state machine that uses Lambda

• Creating an Activity state machine using Step Functions

• Handling error conditions using a Step Functions state machine

• Iterate a loop with Lambda

February
19, 2018

1325

AWS Step Functions Developer Guide

Change Description Date
changed

Update Added a topic that describes an example activity worker written in
Ruby. This implementation can be used to create a Ruby activity
worker directly, or as a design pattern for creating an activity worker in
another language.

See Example Activity Worker in Ruby.

February
6, 2018

Update Added a new tutorial describing a design pattern that uses a Lambda
function to iterate a count.

See Creating a Step Functions state machine that uses Lambda.

January
31, 2018

Update Updated content on IAM permissions to include DescribeS
tateMachineForExecution and UpdateStateMachine APIs.

See Creating Granular IAM Permissions for Non-Admin Users.

January
26, 2018

Update Added newly available regions: Canada (Central), Asia Pacific (Singapor
e).

See Supported regions.

January
25, 2018

Update Updated tutorials and procedures to reflect that IAM allows you to
select Step Functions as a role.

January
24, 2018

Update Added a new Best Practices topic that suggests not passing large
payloads between states.

See Use Amazon S3 ARNs instead of passing large payloads.

January
23, 2018

Update Corrected procedures to match updated interface for creating a state
machine:

• Creating a Step Functions state machine that uses Lambda

• Creating an Activity state machine using Step Functions

• Handling error conditions using a Step Functions state machine

January
17, 2018

1326

AWS Step Functions Developer Guide

Change Description Date
changed

New
Feature

You can use Sample Projects to quickly provision state machines and all
related AWS resources. See Sample projects for Step Functions,

Available sample projects include:

• Poll for Job Status (Lambda, AWS Batch)

• Task Timer (Lambda, Amazon SNS)

Note

These sample projects and related documentation replace
tutorials that described implementing the same functionality.

January
11, 2018

Update Added a Best Practices section that includes information on avoiding
stuck executions. See Best practices for Step Functions.

January
5, 2018

Update Added a note on how retries can affect pricing:

Note

Retries are treated as state transitions. For information about
how state transitions affect billing, see Step Functions Pricing.

December
8, 2017

Update Added information related to resource names:

Note

Step Functions allows you to create names for state machines,
executions, and activities, and labels that contain non-ASCII
characters. These non-ASCII names don't work with Amazon
CloudWatch. To ensure that you can track CloudWatch metrics,
choose a name that uses only ASCII characters.

December
6, 2017

1327

https://aws.amazon.com/step-functions/pricing/

AWS Step Functions Developer Guide

Change Description Date
changed

Update Improved security overview information and added a topic on granular
IAM permissions. See Security in AWS Step Functions and Creating
Granular IAM Permissions for Non-Admin Users.

November
27, 2017

New
Feature

You can update an existing state machine. See Update your state
machine.

November
15, 2017

Update Added a note to clarify Lambda.Unknown errors and linked to the
Lambda documentation in the following sections:

• Error names

• Step 3: Create a state machine with a Catch field

Note

Unhandled errors in Lambda are reported as Lambda.Un
known in the error output. These include out-of-memory
errors and function timeouts. You can match on Lambda.Un
known , States.ALL , or States.TaskFailed to handle
these errors. When Lambda hits the maximum number of
invocations, the error is Lambda.TooManyRequestsExcep
tion . For more information about Lambda function errors,
see Error handling and automatic retries in the AWS Lambda
Developer Guide.

October
17, 2017

Update Corrected and clarified IAM instructions and updated the screenshots in
all tutorials.

October
11, 2017

1328

https://docs.aws.amazon.com/lambda/latest/dg/invocation-retries.html

AWS Step Functions Developer Guide

Change Description Date
changed

Update • Added new screenshots for state machine execution results to reflect
changes in the Step Functions console. Rewrote the Lambda instructi
ons in the following tutorials to reflect changes in the Lambda
console:

• Creating a Step Functions state machine that uses Lambda

• Creating a Job Status Poller

• Creating a Task Timer

• Handling error conditions using a Step Functions state machine

• Corrected and clarified information about creating state machines in
the following sections:

• Creating an Activity state machine using Step Functions

October
6, 2017

Update Rewrote the IAM instructions in the following sections to reflect
changes in the IAM console:

• Creating an IAM role for your state machine

• Creating a Step Functions state machine that uses Lambda

• Creating a Job Status Poller

• Creating a Task Timer

• Handling error conditions using a Step Functions state machine

• Creating a Step Functions API using API Gateway

October
5, 2017

Update Rewrote the State Machine Data section. September
28, 2017

New
feature

The limits related to API action throttling are increased for all regions
where Step Functions is available.

September
18, 2017

Update • Corrected and clarified information about starting new executions in
all tutorials.

• Corrected and clarified information in the Quotas related to accounts
section.

September
14, 2017

1329

AWS Step Functions Developer Guide

Change Description Date
changed

Update Rewrote the following tutorials to reflect changes in the Lambda
console:

• Creating a Step Functions state machine that uses Lambda

• Handling error conditions using a Step Functions state machine

• Creating a Job Status Poller

August
28, 2017

New
feature

Step Functions is available in Europe (London). August
23, 2017

New
feature

The visual workflows of state machines let you zoom in, zoom out, and
center the graph.

August
21, 2017

Important

An execution can't use the name of another execution for 90
days.

When you make multiple StartExecution calls with the same
name, the new execution doesn't run and the following rules apply.

Execution StateInput Type

Open Closed

Identical Success Execution
AlreadyEx
ists

New
feature

Different Execution
AlreadyEx
ists

Execution
AlreadyEx
ists

August
18, 2017

1330

AWS Step Functions Developer Guide

Change Description Date
changed

For more information, see the name request parameter of the
StartExecution API action in the AWS Step Functions API Reference.

Update Added information about an alternative way of passing the state
machine ARN to the Creating a Step Functions API using API Gateway
tutorial.

August
17, 2017

Update Added the new Creating a Job Status Poller tutorial. August
10, 2017

New
feature

• Step Functions emits the ExecutionThrottled CloudWatch
metric. For more information, see Monitoring Step Functions Using
CloudWatch.

• Added the Quotas related to state throttling section.

August 3,
2017

Update Updated the instructions in the Step 1: Create an IAM Role for API
Gateway section.

July 18,
2017

Update Corrected and clarified information in the Choice section. June 23,
2017

Update Added information about using resources under other AWS accounts to
the following tutorials:

• Creating a Step Functions state machine that uses Lambda

• Creating a Lambda state machine for Step Functions using AWS
CloudFormation

• Creating an Activity state machine using Step Functions

• Handling error conditions using a Step Functions state machine

June 22,
2017

Update Corrected and clarified information in the following sections:

• Handling error conditions using a Step Functions state machine

• States

• Error handling in Step Functions

June 21,
2017

1331

https://docs.aws.amazon.com/step-functions/latest/apireference/API_StartExecution.html#API_StartExecution_RequestParameters

AWS Step Functions Developer Guide

Change Description Date
changed

Update Rewrote all tutorials to match the Step Functions console refresh. June 12,
2017

New
feature

Step Functions is available in Asia Pacific (Sydney). June 8,
2017

Update Restructured the Amazon States Language section. June 7,
2017

Update Corrected and clarified information in the Creating an Activity state
machine using Step Functions section.

June 6,
2017

Update Corrected the code examples in the State machine examples using
Retry and using Catch section.

June 5,
2017

Update Restructured this guide using AWS documentation standards. May 31,
2017

Update Corrected and clarified information in the Parallel section. May 25,
2017

Update Merged the Paths and Filters sections into the Input and Output
Processing in Step Functions section.

May 24,
2017

Update Corrected and clarified information in the Monitoring Step Functions
Using CloudWatch section.

May 15,
2017

Update Updated the GreeterActivities.java worker code in the
Creating an Activity state machine using Step Functions tutorial.

May 9,
2017

Update Added an introductory video to the What is AWS Step Functions?
section.

April 19,
2017

1332

AWS Step Functions Developer Guide

Change Description Date
changed

Update Corrected and clarified information in the following tutorials:

• Creating a Step Functions state machine that uses Lambda

• Creating an Activity state machine using Step Functions

• Handling error conditions using a Step Functions state machine

April 19,
2017

Update Added information about Lambda templates to the Creating a Step
Functions state machine that uses Lambda and Handling error
conditions using a Step Functions state machine tutorials.

April 6,
2017

Update Changed the "Maximum input or result data size" limit to "Maximum
input or result data size for a task, state, or execution" (32,768
characters). For more information, see Quotas related to task execution
s.

March
31, 2017

New
feature

• Step Functions supports executing state machines by setting Step
Functions as Amazon CloudWatch Events targets.

March
21, 2017

New
feature

• Step Functions allows Lambda function error handling as the
preferred error handling method.

• Updated the Handling error conditions using a Step Functions state
machine tutorial and the Error handling in Step Functions section.

March
16, 2017

New
feature

Step Functions is available in Europe (Frankfurt). March 7,
2017

Update Reorganized the topics in the table of contents and updated the
following tutorials:

• Creating a Step Functions state machine that uses Lambda

• Creating an Activity state machine using Step Functions

• Handling error conditions using a Step Functions state machine

February
23, 2017

1333

AWS Step Functions Developer Guide

Change Description Date
changed

New
feature

• The State Machines page of the Step Functions console includes the
Copy to New and Delete buttons.

• Updated the screenshots to match the console changes.

February
23, 2017

New
feature

• Step Functions supports creating APIs using API Gateway.

• Added the Creating a Step Functions API using API Gateway tutorial.

February
14, 2017

New
feature

• Step Functions supports integration with AWS CloudFormation.

• Added the Creating a Lambda state machine for Step Functions using
AWS CloudFormation tutorial.

February
10, 2017

Update Clarified the current behavior of the ResultPath and OutputPath
fields in relation to Parallel states.

February
6, 2017

Update • Clarified state machine naming restrictions in tutorials.

• Corrected some code examples.

January
5, 2017

Update Updated Lambda function examples to use the latest programming
model.

December
9, 2016

New
feature

The initial release of Step Functions. December
1, 2016

1334

AWS Step Functions Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

1335

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	AWS Step Functions
	Table of Contents
	What is AWS Step Functions?
	AWS SDK and Optimized integrations
	Standard and Express workflows
	Standard workflows specifications
	Express workflows specifications

	Use cases
	Use case #1: Function orchestration
	Use case #2: Branching
	Use case #3: Error handling
	Use case #4: Human in the loop
	Use case #5: Parallel processing
	Use case #6: Dynamic parallelism

	Service integrations
	Supported regions
	Is this your first time using Step Functions?

	Prerequisites for Getting Started with AWS Step Functions
	Step 1: Sign up for an AWS account and an IAM user
	Sign up for an AWS account
	Create an administrative user

	Step 2: Grant programmatic access

	Getting started with AWS Step Functions
	Key concepts
	Tutorials in this series
	Tutorial 1: Create the prototype for your state machine
	Next steps

	Tutorial 2: Define the first service integration using a Lambda function
	Step 1: Create and test the Lambda function
	Step 2: Update the workflow – configure the Get credit limit state
	Next steps

	Tutorial 3: Implement an if-else condition in your workflow
	Step 1: Create an Amazon SNS topic that receives the callback token
	Step 2: Create a Lambda function to handle the callback
	Step 2.1: Create the Lambda function to handle callback
	Step 2.2: Add the Amazon SNS topic as a trigger for the Lambda function
	Step 2.3: Provide necessary permissions to the Lambda function IAM role

	Step 3: Update the workflow – add if-else condition logic in the Choice state
	Next steps

	Tutorial 4: Define multiple tasks to perform in parallel
	Step 1: Create the Lambda functions to perform the required checks
	Step 2: Update the workflow – Add parallel tasks to be performed

	Tutorial 5: Concurrently iterate over a collection of items
	Step 1: Create a DynamoDB table to store the name of all credit bureaus
	Step 2: Update the state machine – Fetch results from the DynamoDB table
	Step 3: Create a Lambda function that returns the credit scores for all credit bureaus
	Step 4: Update the state machine – add a Map state to iteratively fetch credit scores

	Tutorial 6: Save the workflow and execute the state machine
	Step 1: Review the auto-generated state machine definition and save the state machine
	Step 2: Add the remaining IAM policies
	Step 3: Run the state machine

	Tutorial 7: Configure input and output
	Select specific portions of the raw input using the InputPath filter
	Step 1: Create a state machine
	Step 2: Run the state machine
	Step 3: Use the InputPath filter to select specific parts of an execution input

	Manipulate the selected input using the Parameters filter
	Configure output using the ResultSelector, ResultPath, and OutputPath filters
	Using ResultSelector
	Using ResultPath
	Using OutputPath
	Using console features to visualize the input and output data flows

	Tutorial 8: Debug errors in the console
	Debugging the invalid path Choice state error
	Debugging JSON path expression errors while applying input and output filters

	Use cases
	Data processing
	Machine learning
	Microservice orchestration
	IT and security automation

	How Step Functions works
	Standard vs. Express Workflows
	Synchronous and Asynchronous Express Workflows
	Execution guarantees
	Cost-optimization using Express Workflows
	Tip #1: Nesting Express workflows inside Standard workflows
	Tip #2: Convert Standard workflows into Express workflows

	States
	Amazon States Language
	Example Amazon States Language Specification
	State machine structure
	Intrinsic functions
	Fields that support intrinsic functions
	Intrinsics for arrays
	Intrinsics for data encoding and decoding
	Intrinsic for hash calculation
	Intrinsics for JSON data manipulation
	Intrinsics for Math operations
	Intrinsic for String operation
	Intrinsic for unique identifier generation
	Intrinsic for generic operation
	Reserved characters in intrinsic functions

	Common State Fields

	Pass
	Pass State Example

	Task
	Task types
	Activity
	Lambda functions
	A supported AWS service

	Task state fields
	Task state definition examples
	Task state timeouts and heartbeat intervals
	Static timeout and heartbeat notification example
	Dynamic task timeout and heartbeat notification example

	Task state's Credentials field examples
	Specifying hard-coded IAM role ARN
	Specifying JSONPath as IAM role ARN
	Specifying an intrinsic function as IAM role ARN

	Activities
	Overview
	APIs Related to Activity Tasks

	Waiting for an Activity Task to Complete
	Next Steps
	Example Activity Worker in Ruby

	Choice
	Choice Rules
	Choice State Example

	Wait
	Wait State Examples

	Succeed
	Fail
	Fail state definition examples

	Parallel
	Parallel State Example
	Parallel State Input and Output Processing
	Error Handling

	Map

	Map state processing modes
	Inline mode and Distributed mode differences
	Using Map state in Inline mode
	Key concepts in this topic
	Inline Map state fields
	Deprecated fields
	Inline Map state example
	Inline Map state example with ItemSelector
	Inline Map state input and output processing

	Using Map state in Distributed mode to orchestrate large-scale parallel workloads
	Key terms
	Distributed Map state definition example
	Permissions to run Distributed Map
	Distributed Map state fields
	Next steps

	Tolerated failure threshold for Distributed Map state
	Transitions
	Transitions in Distributed Map state

	State Machine Data
	Data Format
	State Machine Input/Output
	State Input/Output

	Input and Output Processing in Step Functions
	Paths
	Reference Paths
	Flattening an array of arrays

	InputPath, Parameters and ResultSelector
	InputPath
	Parameters
	Key-value pairs
	Connected resources
	Amazon S3

	ResultSelector
	Flattening an array of arrays

	ResultPath
	Use ResultPath to Replace the Input with the Result
	Discard the Result and Keep the Original Input
	Use ResultPath to Include the Result with the Input
	Use ResultPath to Update a Node in the Input with the Result
	Use ResultPath to Include Both Error and Input in a Catch

	OutputPath
	InputPath, ResultPath, and OutputPath Examples
	Map state input and output fields
	ItemReader
	Contents of the ItemReader field
	Examples of datasets
	JSON array from a previous step
	Amazon S3 objects example
	JSON file in an Amazon S3 bucket
	CSV file in an Amazon S3 bucket
	S3 inventory example

	IAM policies for datasets

	ItemsPath
	ItemSelector
	ItemBatcher
	Fields to specify item batching

	ResultWriter
	IAM policies for ResultWriter

	Parsing an input CSV file

	Context object
	Context Object Format
	Accessing the Context Object
	Retrieve and pass execution ARN to a downstream service
	Access the execution start time and name in a Pass state
	Access the redrive count of an execution

	Context Object Data for Map States

	Data flow simulator
	Using Data flow simulator
	Considerations about using the Data flow simulator

	Manage continuous deployments with versions and aliases
	State machine versions
	Publishing a state machine version (Console)
	Managing versions with Step Functions API operations
	Running a state machine version from the console

	State machine aliases
	Creating a state machine alias (Console)
	Managing aliases with Step Functions API operations
	Alias routing configuration
	Running a state machine using an alias (Console)

	Authorization for versions and aliases
	Scoping down permissions for a version or alias

	Associating state machine executions with a version or alias
	Viewing executions started with a version or an alias
	Using API actions
	Using Step Functions console
	Using CloudWatch metrics

	Alias and version deployment example
	Perform gradual deployment of state machine versions
	Use the AWS CLI to deploy a new state machine version
	Use the AWS SDK to deploy a new state machine version
	Use AWS CloudFormation to deploy a new state machine version

	Executions in Step Functions
	Start Workflow Executions from a Task State
	Associate Workflow Executions

	Using Amazon EventBridge Scheduler with AWS Step Functions
	Set up the execution role
	Create a schedule
	Related resources

	Standard and Express Workflow executions in the console
	Console experience differences
	Considerations and limitations for viewing Express workflow executions
	Availability of Express workflow execution details relies on Amazon CloudWatch Logs
	Partial Express workflow execution details are available if logging level is ERROR or FATAL
	State machine definition of an older execution can't be viewed once it has been updated

	Viewing and debugging executions on the Step Functions console
	Execution Details page – Interface overview
	Execution summary
	Error message
	View mode
	Step details
	Events

	Tutorial: Examining state machine executions using the Step Functions console
	Step 1: Create and test the required Lambda functions
	Step 2: Create and execute the state machine
	Step 3: View the state machine execution details
	Step 4: Explore the different View modes
	Graph view – Switch between different Map state iterations
	Table view – Switch between different Map state iterations
	Table view – Configure the columns to display
	Table view – Filter the results
	Event view – Filter the results
	Event view – Inspect a TaskFailed event detail

	Redriving executions
	Redrive eligibility for unsuccessful executions
	Redrive behavior of individual states
	IAM permission to redrive an execution
	Redriving executions in console
	Redriving executions using API
	Examining redriven executions
	Retry behavior of redriven executions

	Examining Map Run of a Distributed Map state execution
	Map Run execution summary
	Error message
	Item processing status
	Executions listing
	Redriving Map Runs
	Redrive eligibility for child workflows in a Map Run
	Child workflow execution redrive behavior
	Scenarios of input used on Map Run redrive
	IAM permission to redrive a Map Run
	Redriving Map Run in console
	Redriving Map Run using API

	Error handling in Step Functions
	Error names
	Retrying after an error
	Retry field examples

	Fallback states
	Error output
	Cause payloads and service integrations

	State machine examples using Retry and using Catch
	Handling a failure using Retry
	Handling a failure using Catch
	Handling a timeout using Retry
	Handling a timeout using Catch

	Invoke AWS Step Functions from other services
	Read Consistency in Step Functions
	Tagging in Step Functions
	Tagging for Cost Allocation
	Tagging for Security
	Viewing and Managing Tags in the Step Functions Console
	Manage Tags with Step Functions API Actions

	AWS Step Functions Workflow Studio
	Interface overview
	Design mode
	States browser
	Canvas
	Inspector

	Code mode
	Code editor
	Graph visualization pane

	Config mode
	Keyboard shortcuts

	Using Workflow Studio
	Create a workflow
	Create a workflow using starter templates
	Create a workflow using a blank template

	Design a workflow
	Run your workflow
	Edit your workflow
	Export your workflow
	Create your workflow prototype

	Configure inputs and outputs for your states
	Configure input to a state
	Configure output of a state
	Use ResultSelector
	Use ResultPath
	Use OutputPath

	Execution roles in Workflow Studio
	About auto-generated roles
	Automatically generating roles
	Resolving role generation problems
	Role for testing HTTP Tasks in Workflow Studio
	Role for testing an optimized service integration in Workflow Studio
	Role for testing an AWS SDK service integration in Workflow Studio
	Role for testing flow states in Workflow Studio

	Error handling
	Retry on errors
	Catch errors
	Timeouts
	HeartbeatSeconds

	Tutorial: Learn to use the AWS Step Functions Workflow Studio
	Step 1: Navigate to Workflow Studio
	Step 2: Create a state machine
	Step 3: Review the auto-generated Amazon States Language definition
	Step 4: Edit the workflow definition in Code mode
	Step 5: Save the state machine
	Step 6: Run the state machine
	Step 7: Update your state machine
	Step 8: Clean up

	Tutorials for Step Functions
	Creating a Step Functions state machine that uses Lambda
	Step 1: Create a Lambda function
	Step 2: Test the Lambda function
	

	Step 3: Create a state machine
	

	Step 4: Run the state machine

	Handling error conditions using a Step Functions state machine
	Step 1: Create a Lambda function that fails
	Step 2: Test the Lambda function
	Step 3: Create a state machine with a Catch field
	Step 4: Run the state machine

	Using Inline Map state to repeat an action
	Step 1: Create the workflow prototype
	Step 2: Configure input and output
	Step 3: Review the auto-generated Amazon States Language definition and save the workflow
	Step 4: Run the state machine

	Copying large-scale CSV data using Distributed Map
	Prerequisites
	Step 1: Create the workflow prototype
	Step 2: Configure the required fields for Map state
	Step 3: Configure additional options
	Step 4: Configure the Lambda function
	Step 5: Update the workflow prototype
	Step 6: Review the auto-generated Amazon States Language definition and save the workflow
	Step 7: Run the state machine

	Processing entire batch of data with a Lambda function
	Step 1: Create the state machine
	Step 2: Create the Lambda function
	Step 3: Run the state machine

	Processing individual data items with a Lambda function
	Step 1: Create the state machine
	Step 2: Create the Lambda function
	Step 3: Run the state machine

	Starting a State Machine Execution in Response to Amazon S3 Events
	Prerequisite: Create a State Machine
	Step 1: Create a Bucket in Amazon S3
	Step 2: Enable Amazon S3 Event Notification with EventBridge
	Step 3: Create an Amazon EventBridge Rule
	To create the rule
	To create the target

	Step 4: Test the Rule
	Example of Execution Input

	Creating a Step Functions API using API Gateway
	Step 1: Create an IAM Role for API Gateway
	
	

	Step 2: Create your API Gateway API
	
	
	

	Step 3: Test and Deploy the API Gateway API
	
	
	

	Create a Step Functions state machine using AWS SAM
	Prerequisites
	Step 1: Download a Sample AWS SAM Application
	Step 2: Build Your Application
	Step 3: Deploy Your Application to the AWS Cloud
	Troubleshooting
	SAM CLI error: "no such option: --guided"
	SAM CLI error: "Failed to create managed resources: Unable to locate credentials"

	Clean Up
	Verify Deleted Stack

	Creating an Activity state machine using Step Functions
	Step 1: Create an Activity
	

	Step 2: Create a state machine
	

	Step 3: Implement a Worker
	To implement the worker

	Step 4: Run the state machine
	

	Step 5: Run and Stop the Worker
	

	Iterate a loop with Lambda
	Step 1: Create a Lambda function to iterate a count
	To create the Lambda function

	Step 2: Test the Lambda Function
	To test your Lambda function

	Step 3: Create a State Machine
	

	Step 4: Start a New Execution
	

	Continuing Long-running Workflow Executions as a New Execution
	Using a Step Functions API action to continue a new execution (recommended)
	Step 1: Create a long-running state machine
	Step 2: Create a state machine to call the Step Functions API action
	Step 3: Update the IAM policy
	Step 4: Run the state machine

	Using a Lambda function to continue a new execution
	Prerequisites
	Step 1: Create a Lambda function to iterate a count
	Create the Iterate Lambda function
	Test the Iterate Lambda function
	To test your Lambda function

	Step 2: Create a Restart Lambda function to start a new Step Functions execution
	Step 3: Create a state machine
	Step 4: Update the IAM Policy
	Step 5: Run the state machine

	Deploying an Example Human Approval Project
	Step 1: Create an AWS CloudFormation template
	Step 2: Create a stack
	Step 3: Approve the Amazon SNS subscription
	Step 4: Run the state machine
	AWS CloudFormation Template Source Code

	View X-Ray traces in Step Functions
	Step 1: Create an IAM role for Lambda
	

	Step 2: Create a Lambda function
	

	Step 3: Create two more Lambda functions
	

	Step 4: Create a state machine
	

	Step 5: Run the state machine
	

	Gather Amazon S3 bucket info using AWS SDK service integrations
	Step 1: Create the state machine
	Step 2: Add the necessary IAM role permissions
	Step 3: Run a Standard state machine execution
	Step 4: Run an Express state machine execution

	Developer tools
	Development options
	Step Functions console
	Data flow simulator

	AWS SDKs
	Standard and Express workflows
	HTTPS service API
	Development environments
	Endpoints
	AWS CLI
	Step Functions Local
	AWS Toolkit for Visual Studio Code
	AWS Serverless Application Model and Step Functions
	Terraform and Step Functions
	Definition format support

	AWS Step Functions and AWS SAM
	Why use Step Functions with AWS SAM?
	Step Functions integration with the AWS SAM specification
	Step Functions integration with the SAM CLI
	DefinitionSubstitutions in AWS SAM templates
	Next steps

	Using Workflow Studio in Application Composer
	Using Workflow Studio in Application Composer to build a serverless workflow
	Dynamically reference resources using CloudFormation definition substitutions in Workflow Studio
	Connect service integration tasks to enhanced component cards
	Import existing projects and sync them locally
	Unavailable Workflow Studio features in AWS Application Composer

	Creating a Lambda state machine for Step Functions using AWS CloudFormation
	Step 1: Set up your AWS CloudFormation template
	To create an IAM role for Lambda
	To create a Lambda function
	To create an IAM role for the state machine execution
	To create a Lambda state machine

	Step 2: Use the AWS CloudFormation template to create a Lambda State Machine
	To create the Lambda state machine

	Step 3: Start a State Machine execution
	To start the state machine execution

	Creating a Lambda state machine for Step Functions using AWS CDK
	Step 1: Set up your AWS CDK project
	Step 2: Use AWS CDK to create a state machine
	To create a Lambda function
	To create a state machine
	To build and deploy the AWS CDK app

	Step 3: Start a state machine execution
	To start the state machine execution

	Step 4: Clean Up
	Next steps

	Creating an API Gateway REST API with Synchronous Express State Machine Using the AWS CDK
	Step 1: Set Up Your AWS CDK Project
	Step 2: Use the AWS CDK to create an API Gateway REST API with Synchronous Express State Machine backend integration
	To create an Express State Machine
	To create the API Gateway REST API using StepFunctionsRestApi construct
	To build and deploy the AWS CDK app

	Step 3: Test the API Gateway
	To test the deployed API Gateway using API Gateway console
	To test the deployed API using cURL

	Step 4: Clean Up

	AWS Step Functions Data Science SDK for Python
	Deploying state machines using Terraform
	Prerequisites
	State machine development lifecycle with Terraform
	IAM roles and policies for your state machine

	Testing and debugging
	Using TestState API to test a state
	Considerations about using the TestState API
	Using inspection levels in TestState API
	INFO inspectionLevel
	Example of test with INFO level that succeeds
	Example of test with INFO level that fails

	DEBUG inspectionLevel
	Example of test with DEBUG level that succeeds
	Example of test with DEBUG level that fails

	TRACE inspectionLevel
	Example of test with TRACE level that succeeds

	IAM permissions for using TestState API
	Testing a state (Console)
	Testing a state using AWS CLI
	Example 1: Using INFO inspectionLevel to test a Choice state
	Example 2: Using DEBUG inspectionLevel to debug input and output data processing in a Pass state
	Example 3: Using TRACE inspectionLevel and revealSecrets to inspect the HTTP request sent to a third-party API
	Example 4: Using jq utility to filter and print the response that TestState API returns

	Testing and debugging input and output data flow
	Key concepts
	Using TestState to inspect input and output processing

	Testing state machines locally
	Setting Up Step Functions Local (Downloadable Version) and Docker
	Setting Up Step Functions Local (Downloadable Version) - Java Version
	Setting Configuration Options for Step Functions Local
	Configuration Options
	Credentials and configuration for Docker

	Running Step Functions Local on Your Computer
	Run a HelloWorld state machine locally
	Step Functions Local with AWS SAM CLI Local

	Testing Step Functions and AWS SAM CLI Local
	Step 1: Set Up AWS SAM
	Step 2: Test AWS SAM CLI Local
	Step 3: Start AWS SAM CLI Local
	Step 4: Start Step Functions Local
	JAR File
	Docker

	Step 5: Create a State Machine That References Your AWS SAM CLI Local Function
	Step 6: Start an Execution of Your Local State Machine

	Using Mocked Service Integrations
	Key concepts in this topic
	Step 1: Specify Mocked Service Integrations in a Mock Configuration File
	Step 2: Provide the Mock Configuration File to Step Functions Local
	Step 3: Run Mocked Service Integration Tests
	Configuration File for Mocked Service Integrations
	Introducing structure of mock configuration
	Mock configuration field reference
	StateMachines
	TestCases

	MockedResponses
	Return
	Throw

	Configuring mocked service integrations

	Best practices for Step Functions
	Use timeouts to avoid stuck executions
	Use Amazon S3 ARNs instead of passing large payloads
	Avoid reaching the history quota
	Handle Lambda service exceptions
	Avoid latency when polling for activity tasks
	Choosing Standard or Express Workflows
	Amazon CloudWatch Logs resource policy size restrictions

	Using AWS Step Functions with other services
	Call other AWS services
	Optimized integrations
	AWS SDK integrations
	Integration pattern support
	Cross-account access

	AWS SDK service integrations
	Using AWS SDK service integrations
	Supported AWS SDK service integrations
	Unsupported API actions for supported services
	Deprecated AWS SDK service integrations

	Optimized integrations for Step Functions
	Call API Gateway with Step Functions
	API Gateway feature support
	Request format
	Required request parameters
	Optional request parameters

	Authentication and authorization
	Service integration patterns
	Output format
	Error handling

	Call Athena with Step Functions
	Manage AWS Batch with Step Functions
	Call Amazon Bedrock with Step Functions
	Amazon Bedrock service integration APIs
	Task state definition for Amazon Bedrock integration

	Call AWS CodeBuild with Step Functions
	

	Call DynamoDB APIs with Step Functions
	Manage Amazon ECS or Fargate Tasks with Step Functions
	Passing Data to an Amazon ECS Task

	Call Amazon EMR with Step Functions
	Call Amazon EMR on EKS with AWS Step Functions
	Call Amazon EKS with Step Functions
	Kubernetes API integrations
	RunJob
	Call

	Supported Amazon EKS APIs
	Permissions

	Call Amazon EMR Serverless with Step Functions
	EMR Serverless service integration APIs
	EMR Serverless integration use cases
	Create an application
	Start an application
	Stop an application
	Delete an application
	Start a job in an application
	Cancel a job in an application

	Call EventBridge with Step Functions
	Supported EventBridge API
	Error handling

	Manage AWS Glue Jobs with Step Functions
	Manage AWS Glue DataBrew Jobs with Step Functions
	Invoke Lambda with Step Functions
	Manage SageMaker with Step Functions
	SageMaker Transform Job Example
	SageMaker Training Job Example
	SageMaker Labeling Job Example
	SageMaker Processing Job Example

	Call Amazon SNS with Step Functions
	Call Amazon SQS with Step Functions
	Manage AWS Step Functions Executions as an Integrated Service
	Configuring IAM permissions for nested state machines

	Call third-party APIs
	HTTP Task definition
	HTTP Task fields
	Authentication for an HTTP Task
	Merging EventBridge connection and HTTP Task definition data
	Applying URL-encoding on request body
	IAM permissions to run an HTTP Task
	HTTP Task example
	Testing an HTTP Task
	Unsupported HTTP Task responses

	Service integration patterns
	Request Response
	Run a Job (.sync)
	Wait for a Callback with the Task Token
	Task Token Example
	Get a Token from the Context Object
	Configure a Heartbeat Timeout for a Waiting Task

	Pass parameters to a service API
	Pass static JSON as parameters
	Pass state input as parameters using Paths
	Pass Context Object Nodes as Parameters

	Change log for supported AWS SDK integrations

	Sample projects for Step Functions
	Manage a batch job (AWS Batch, Amazon SNS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Manage a container task (Amazon ECS, Amazon SNS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Transfer data records (Lambda, DynamoDB, Amazon SQS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Poll for Job Status (Lambda, AWS Batch)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code

	Task Timer (Lambda, Amazon SNS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine

	Callback Pattern Example (Amazon SQS, Amazon SNS, Lambda)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Lambda Callback Example

	Manage an Amazon EMR Job
	Step 1: Create the State Machine and Provision Resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Run an EMR Serverless job
	AWS CloudFormation template and additional resources
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine

	Start a Workflow within a Workflow (Step Functions, Lambda)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code

	Dynamically process data with a Map state
	Step 1: Create the state machine and provision resources
	Step 2: Subscribe to the Amazon SNS topic
	Step 3: Add messages to the Amazon SQS queue
	Step 4: Run the state machine
	Example state machine code
	IAM example

	Process a CSV file with Distributed Map
	AWS CloudFormation template and additional resources
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine

	Process data in an Amazon S3 bucket with Distributed Map
	AWS CloudFormation template and additional resources
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine

	Train a Machine Learning Model
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Tune a Machine Learning Model
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Examples

	Process High-Volume Messages from Amazon SQS (Express Workflows)
	Step 1: Create the state machine and provision resources
	Step 2: Trigger the state machine execution
	Example Lambda Function Code
	Example State Machine Code
	IAM Example

	Selective Checkpointing Example (Express Workflows)
	Step 1: Create the State Machine and Provision Resources
	Step 2: Run the state machine
	Example State Machine Code for the Parent (Standard Workflows)
	Example IAM Role for the Parent State Machine
	Example State Machine Code for the Nested State Machine (Express Workflows)
	Example IAM Role for Child State Machine

	Build an AWS CodeBuild Project (CodeBuild, Amazon SNS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code

	Preprocess data and train a machine learning model
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Lambda orchestration example
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	About the state machine and its execution
	Sample Lambda function code to handle callback functionality and return the task token

	IAM Examples

	Start an Athena query
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Execute multiple queries (Amazon Athena, Amazon SNS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Examples

	Query large datasets (Amazon Athena, Amazon S3, AWS Glue, Amazon SNS)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Examples

	Keep data up to date (Amazon Athena, Amazon S3, AWS Glue)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Manage an Amazon EKS cluster
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Make a call to API Gateway
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Call a microservice running on Fargate using API Gateway integration
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Send a custom event to EventBridge
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Invoke Synchronous Express Workflows
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Examples

	Run ETL/ELT workflows using Amazon Redshift (Lambda, Amazon Redshift Data API)
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Use Step Functions and AWS Batch with error handling
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Fan out an AWS Batch job
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	AWS Batch with Lambda
	Step 1: Create the State Machine and Provision Resources
	Step 2: Run the state machine
	Example State Machine Code
	IAM Example

	Perform AI prompt-chaining with Amazon Bedrock
	AWS CloudFormation template and additional resources
	Prerequisites
	Step 1: Create the state machine and provision resources
	Step 2: Run the state machine

	Quotas
	General quotas
	Quotas related to accounts
	Quotas related to HTTP Task
	Quotas related to state throttling
	Quotas related to API action throttling
	Quota related to TestState API
	Other quotas

	Quotas related to state machine executions
	Quotas related to task executions
	Quotas related to versions and aliases
	Restrictions related to tagging

	Logging and monitoring in AWS Step Functions
	Monitoring Step Functions Using CloudWatch
	Metrics that report a time interval
	Metrics that report a count
	Execution metrics
	Execution metrics for state machine with version or alias
	Execution metrics for Express Workflows
	Redrive execution metrics for Standard Workflows
	Dimension for Step Functions execution metrics
	Dimensions for executions with version
	Dimensions for executions with an alias

	Resource count metrics for versions and aliases
	Dimension for resource count metrics for versions and aliases

	Activity Metrics
	Dimension for Step Functions Activity Metrics

	Lambda Function Metrics
	Dimension for Step Functions Lambda Function Metrics

	Service Integration Metrics
	Dimension for Step Functions Service Integration Metrics

	Service Metrics
	Dimension for Step Functions Service Metrics

	API Metrics
	Dimension for Step Functions API Metrics

	Best-effort CloudWatch metrics delivery
	Viewing Metrics for Step Functions
	Setting Alarms for Step Functions
	To set an alarm on a metric

	EventBridge (CloudWatch Events) for Step Functions execution status changes
	EventBridge payloads
	Step Functions event examples
	Execution started
	Execution succeeded
	Execution failed
	Execution timed out
	Execution aborted

	Routing a Step Functions event to EventBridge in the EventBridge console

	Logging Step Functions Using AWS CloudTrail
	Step Functions Information in CloudTrail
	Example: Step Functions Log File Entries
	CreateActivity
	CreateStateMachine
	DeleteActivity
	DeleteStateMachine
	StartExecution
	StopExecution

	Logging using CloudWatch Logs
	Configure logging
	CloudWatch Logs payloads
	IAM Policies for logging to CloudWatch Logs
	Log levels

	AWS X-Ray and Step Functions
	Setup and configuration
	Enable X-Ray tracing when creating a state machine
	Enable X-Ray in an existing state machine
	Configure X-Ray tracing for Step Functions
	Integrate upstream services

	Concepts
	The X-Ray console
	Segments, subsegments, and traces
	Sampling
	Metrics
	Analytics

	Step Functions service integrations and X-Ray
	Native X-Ray support
	Instrumentation required
	Client-side trace only

	Viewing the X-Ray console
	Viewing X-Ray tracing information for Step Functions
	Traces
	Service map
	Segments and subsegments
	Analytics
	Configuration
	What if there is no data in the trace map or service map?

	Using AWS User Notifications with AWS Step Functions

	Security in AWS Step Functions
	Data protection in AWS Step Functions
	Encryption in AWS Step Functions
	Encryption at Rest
	Encryption in transit

	Identity and Access Management in AWS Step Functions
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	Access Control
	Policy actions for Step Functions
	Policy resources for Step Functions
	Policy condition keys for Step Functions
	ACLs in Step Functions
	ABAC with Step Functions
	Using temporary credentials with Step Functions
	Cross-service principal permissions for Step Functions
	Service roles for Step Functions
	Service-linked roles for Step Functions
	How AWS Step Functions works with IAM
	Identity-based policy examples for AWS Step Functions
	Policy best practices
	Using the Step Functions console
	Allow users to view their own permissions

	Identity-based policies for Step Functions
	Identity-based policy examples for Step Functions

	Resource-based policies within Step Functions
	Creating an IAM role for your state machine
	Create a role for Step Functions
	Prevent cross-service confused deputy issue
	Attach an Inline Policy

	Creating Granular IAM Permissions for Non-Admin Users
	Service-Level Permissions
	State Machine-Level Permissions
	Execution-Level Permissions
	Activity-Level Permissions

	Accessing resources in other AWS accounts in your workflows
	Key concepts in this topic
	Invoking cross-account resources
	Tutorial: Accessing cross-account AWS resources
	Prerequisites
	Step 1: Update the Task state definition to specify the target role
	Step 2: Update the target role's trust policy
	Step 3: Add the required permission in the target role
	Step 4: Add permission in execution role to assume the target role

	Cross-account access for .sync integration pattern
	Trust policy update for .sync calls
	Permissions required for .sync calls

	Amazon VPC Endpoints for Step Functions
	Creating the Endpoint
	Amazon VPC Endpoint Policies
	Amazon Virtual Private Cloud Endpoint Policies for Step Functions

	IAM Policies for integrated services
	Dynamic vs. Static Resources
	Additional permissions for tasks using the Run a Job pattern
	Policy templates used to create IAM roles
	IAM policies for Amazon API Gateway
	IAM policies for Amazon Athena
	StartQueryExecution
	StopQueryExecution
	GetQueryExecution
	GetQueryResults

	IAM policies for AWS Batch
	IAM policies for Amazon Bedrock
	IAM policy examples for Amazon Bedrock integration with Step Functions
	IAM policy example to access a specific foundation model using InvokeModel
	IAM policy example to access a specific provisioned model using InvokeModel
	Full access IAM policy example to use InvokeModel
	IAM policy example to access a specific foundation model as a base model
	IAM policy example to access a specific custom model as a base model
	Full access IAM policy example to use CreateModelCustomizationJob.sync
	IAM policy example to access a specific foundation model using CreateModelCustomizationJob.sync
	IAM policy example to access a custom model using CreateModelCustomizationJob.sync
	Full access IAM policy example to use CreateModelCustomizationJob.sync

	IAM policies for AWS CodeBuild
	StartBuild
	StopBuild
	BatchDeleteBuilds
	BatchGetReports
	StartBuildBatch
	StopBuildBatch
	RetryBuildBatch
	DeleteBuildBatch

	IAM policies for Amazon DynamoDB
	IAM policies for Amazon ECS/AWS Fargate
	IAM policies for Amazon EKS
	CreateCluster
	CreateNodeGroup
	DeleteCluster
	DeleteNodegroup

	IAM policies for Amazon EMR
	addStep
	cancelStep
	createCluster
	setClusterTerminationProtection
	modifyInstanceFleetByName
	modifyInstanceGroupByName
	terminateCluster

	IAM policies for Amazon EMR on EKS
	CreateVirtualCluster
	DeleteVirtualCluster
	StartJobRun

	IAM policies for Amazon EMR Serverless
	IAM policy examples for EMR Serverless integration with Step Functions
	IAM policy example for CreateApplication
	IAM policy example for StartApplication
	IAM policy example for StopApplication
	IAM policy example for DeleteApplication
	IAM policy example for StartJobRun
	IAM policy example for CancelJobRun

	IAM policies for Amazon EventBridge
	PutEvents

	IAM policies for AWS Lambda
	IAM policies for AWS Glue
	IAM policies for AWS Glue DataBrew
	IAM policies for Amazon SageMaker
	CreateTrainingJob
	CreateTransformJob

	IAM policies for Amazon SNS
	IAM policies for Amazon SQS
	IAM policies for AWS Step Functions
	IAM policies for AWS X-Ray
	Activities or No Tasks

	IAM policies for using Distributed Map state
	Example of IAM policy for running a Distributed Map state
	Example of IAM policy for redriving a Distributed Map
	Examples of IAM policies for reading data from Amazon S3 datasets
	Example of IAM policy for writing data to an Amazon S3 bucket
	IAM permissions for AWS KMS key encrypted Amazon S3 bucket

	Tag-based Policies
	Troubleshooting AWS Step Functions identity and access
	I am not authorized to perform an action in Step Functions
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Step Functions resources

	Logging and Monitoring
	Compliance Validation for AWS Step Functions
	Resilience in AWS Step Functions
	Infrastructure Security in AWS Step Functions
	Configuration and Vulnerability Analysis in AWS Step Functions

	Migrating workloads from AWS Data Pipeline to Step Functions
	Migrating workloads from AWS Data Pipeline
	Concept mapping between Step Functions and AWS Data Pipeline
	Step Functions sample projects
	Pricing comparison

	Troubleshooting
	General troubleshooting
	I'm unable to create a state machine.
	I'm unable to use a JsonPath to reference the previous task’s output.
	There was a delay in state transitions.
	When I start new Standard Workflow executions, they fail with the ExecutionLimitExceeded error.
	A failure on one branch in a parallel state causes the whole execution to fail.

	Troubleshooting service integrations
	My job is complete in the downstream service, but in Step Functions the task state remains "In progress" or its completion is delayed.
	I want to return a JSON output from a nested state machine execution.
	I can't invoke a Lambda function from another account.
	I'm unable to see task tokens passed from .waitForTaskToken states.

	Troubleshooting activities
	My state machine execution is stuck at an activity state.
	My activity worker times out while waiting for a task token.

	Troubleshooting Express Workflows
	My application times out before receiving a response from a StartSyncExecution API call.
	I'm unable to see the execution history in order to troubleshoot Express Workflow failures.

	Related information
	Recent feature launches
	Document history
	AWS Glossary

