
User Guide

Amazon Verified Permissions

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon Verified Permissions User Guide

Amazon Verified Permissions: User Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Amazon Verified Permissions User Guide

Table of Contents

What is Amazon Verified Permissions? .. 1
Authorization in Verified Permissions .. 1
Cedar policy language ... 1
Benefits of Verified Permissions .. 2

Accelerate application development ... 2
More secure applications ... 2
End-user features .. 2

Related services .. 2
Accessing Verified Permissions .. 3
Pricing for Verified Permissions .. 4

Terms & concepts .. 5
Authorization model .. 5
Authorization request .. 6
Authorization response ... 6
Considered policies ... 6
Context data .. 6
Determining policies .. 7
Entity data ... 7
Permissions, authorization, and principals .. 7
Policy enforcement .. 7
Policy store .. 7
Satisfied policies ... 8
Differences with Cedar .. 8

Namespace definition ... 8
Policy template support .. 8
Schema support ... 9
Extension type support .. 9
Cedar JSON format for entities ... 9
Action groups definition .. 9
Length and size limits ... 10

Getting started .. 12
Sign up for an AWS account ... 12
Create an administrative user ... 12
IAM policies for Verified Permissions ... 13

iii

Amazon Verified Permissions User Guide

Create your first policy store ... 15
Creating a sample policy store .. 15
Creating template-linked policies for a sample policy store ... 16
Testing a sample policy store .. 17

Create an API-linked policy store ... 20
Policy stores ... 22

Creating policy stores .. 22
API-linked policy stores .. 29

How it works .. 30
Adding ABAC .. 32
Considerations ... 33
Troubleshooting .. 37

Switching policy stores ... 40
Deleting policy stores .. 40

Policy store schema ... 42
Editing schema - Visual .. 44
Editing schema - JSON ... 46
Deleting a schema ... 46

Policy validation mode ... 48
Policies ... 50

Entity formatting ... 50
Creating static policies .. 55
Editing static policies .. 57
Viewing policies .. 59
Example policies ... 62

Allows access to individual entities ... 62
Allows access to groups of entities ... 62
Allows access for any entity ... 64
Allows access for attributes of an entity (ABAC) ... 64
Denies access ... 67

Policy templates .. 69
Creating policy templates .. 69
Creating template-linked policies ... 70
Editing policy templates ... 73
Example template-linked policies for sample policy stores .. 74

PhotoFlash template-linked policy examples ... 74

iv

Amazon Verified Permissions User Guide

DigitalPetStore ... 76
TinyToDo template-linked policy examples .. 76

Identity providers .. 77
Working with Amazon Cognito and identity sources ... 77
Working with other identity providers .. 78
Creating identity sources .. 81
Editing identity sources .. 83
Mapping Amazon Cognito tokens to schema .. 85

Mapping ID tokens ... 86
Mapping access tokens .. 88

Designing an authorization model ... 91
No single correct model ... 92
Focus on resources ... 92
Compound authorization .. 94
Consider multi-tenancy ... 95

Comparing shared policy stores and per-tenant policy stores .. 96
How to choose .. 97

Populate the policy scope .. 98
Put all resources in containers .. 99
Separate principals from resources .. 100
Don't embed permissions in attributes ... 103
Fine-grained permissions ... 105
Other reasons to query authorization ... 106

Test bench .. 107
Authorization ... 110

API operations .. 110
API testing ... 112
Integrating with apps ... 114

.. 116
Evaluate example context .. 118

Security .. 124
Data protection .. 124

Data encryption .. 126
Identity and access management ... 126

Audience ... 127
Authenticating with identities ... 127

v

Amazon Verified Permissions User Guide

Managing access using policies ... 130
How Amazon Verified Permissions works with IAM .. 132
Identity-based policy examples ... 139
Troubleshooting .. 142

Compliance validation .. 144
Resilience ... 145

Monitoring ... 146
CloudTrail logs .. 146

Verified Permissions information in CloudTrail .. 146
Understanding Verified Permissions log file entries ... 147

AWS CloudFormation resources ... 165
Verified Permissions and AWS CloudFormation templates ... 165
Learn more about AWS CloudFormation .. 166

AWS PrivateLink .. 167
Considerations .. 167
Create an interface endpoint .. 167

Quotas .. 169
Quotas for resources ... 169
Quotas for hierarchies .. 170
Quotas for operations per second ... 171

Document history .. 175

vi

Amazon Verified Permissions User Guide

What is Amazon Verified Permissions?

Amazon Verified Permissions is a scalable, fine-grained permissions management and
authorization service for custom applications built by you. Verified Permissions enables your
developers to build secure applications faster by externalizing authorization and centralizing policy
management and administration. Verified Permissions uses the Cedar policy language to define
fine-grained permissions for application users.

Topics

• Authorization in Verified Permissions

• Cedar policy language

• Benefits of Verified Permissions

• Related services

• Accessing Verified Permissions

• Pricing for Verified Permissions

Authorization in Verified Permissions

Verified Permissions provides authorization by verifying whether a principal is allowed to perform
an action on a resource in a given context in a custom application. Verified Permissions presumes
that the principal has been previously identified and authenticated through other means, such
as by using protocols like OpenID Connect, a hosted provider like Amazon Cognito, or another
authentication solution. Verified Permissions is agnostic to where the user is managed and how the
user was authenticated.

Verified Permissions is a service that enables customers to create, maintain, and test policies in
the AWS Management Console. Permissions are expressed using the Cedar policy language. The
client application calls authorization APIs to evaluate the Cedar policies stored with the service and
provide an access decision for whether an action is permitted.

Cedar policy language

Authorization policies in Verified Permissions are written by using the Cedar policy language. Cedar
is an open source language for writing authorization policies and making authorization decisions
based on those policies. When you create an application, you need to ensure that only authorized

Authorization in Verified Permissions 1

Amazon Verified Permissions User Guide

users can access the application, and can do only what each user is authorized to do. Using Cedar,
you can decouple your business logic from the authorization logic. In your application’s code, you
preface requests made to your operations with a call to the Cedar authorization engine, asking “Is
this request authorized?”. Then, the application can either perform the requested operation if the
decision is “allow”, or return an error message if the decision is “deny”.

Verified Permissions currently uses Cedar version 2.4.

For more information about Cedar, see the following:

• Cedar policy language Reference Guide

• Cedar GitHub repository

Benefits of Verified Permissions

Accelerate application development

Accelerate application development by decoupling authorization from business logic.

More secure applications

Verified Permissions enables developers to build more secure applications.

End-user features

Verified Permissions allows you to deliver richer end-user features for permissions management.

Related services

• Amazon Cognito – Amazon Cognito is an identity platform for web and mobile apps. It’s a user
directory, an authentication server, and an authorization service for OAuth 2.0 access tokens and
AWS credentials. When you create a policy store, you have the option to build your principals
and groups from an Amazon Cognito user pool. For more information, see the Amazon Cognito
Developer Guide.

• Amazon API Gateway – Amazon API Gateway is an AWS service for creating, publishing,
maintaining, monitoring, and securing REST, HTTP, and WebSocket APIs at any scale. When you
create a policy store, you have the option to build your actions and resources from an API in API
Gateway. For more information about API Gateway, see the API Gateway Developer Guide.

Benefits of Verified Permissions 2

https://docs.cedarpolicy.com/
https://github.com/cedar-policy/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/cognito/latest/developerguide/
https://docs.aws.amazon.com/apigateway/latest/developerguide/

Amazon Verified Permissions User Guide

• AWS IAM Identity Center – With IAM Identity Center, you can manage sign-in security for your
workforce identities, also known as workforce users. IAM Identity Center provides one place
where you can create or connect workforce users and centrally manage their access across all
their AWS accounts and applications. For more information, see the AWS IAM Identity Center
User Guide.

Accessing Verified Permissions

You can work with Amazon Verified Permissions in any of the following ways.

AWS Management Console

The console is a browser-based interface to manage Verified Permissions and AWS resources.
For more information about accessing Verified Permissions through the console, see How to
sign in to AWS in the AWS Sign-In User Guide.

• Amazon Verified Permissions console

AWS Command Line Tools

You can use the AWS command line tools to issue commands at your system's command line to
perform Verified Permissions and AWS tasks. Using the command line can be faster and more
convenient than the console. The command line tools are also useful if you want to build scripts
that perform AWS tasks.

AWS provides two sets of command line tools: the AWS Command Line Interface (AWS CLI)
and the AWS Tools for Windows PowerShell. For information about installing and using the
AWS CLI, see the AWS Command Line Interface User Guide. For information about installing
and using the Tools for Windows PowerShell, see the AWS Tools for Windows PowerShell User
Guide.

• verifiedpermissions in the AWS CLI Command Reference

• Amazon Verified Permissions in AWS Tools for Windows PowerShell

AWS SDKs

AWS provides SDKs (software development kits) that consist of libraries and sample code for
various programming languages and platforms (Java, Python, Ruby, .NET, iOS, Android, etc.).
The SDKs provide a convenient way to create programmatic access to Verified Permissions
and AWS. For example, the SDKs take care of tasks such as cryptographically signing requests,
managing errors, and retrying requests automatically.

Accessing Verified Permissions 3

https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://docs.aws.amazon.com/singlesignon/latest/userguide/
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://console.aws.amazon.com/verifiedpermissions/home
https://aws.amazon.com/cli/
https://aws.amazon.com/powershell/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.aws.amazon.com/powershell/latest/userguide/
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/verifiedpermissions/index.html
https://docs.aws.amazon.com/powershell/latest/reference/index.html?page=VerifiedPermissions_cmdlets.html&tocid=VerifiedPermissions_cmdlets

Amazon Verified Permissions User Guide

To learn more and download AWS SDKs, see Tools for Amazon Web Services.

The following are links to documentation for Verified Permissions resources in various AWS
SDKs.

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

Verified Permissions API

You can access Verified Permissions and AWS programmatically by using the Verified
Permissions API, which lets you issue HTTPS requests directly to the service. When you use the
API, you must include code to digitally sign requests using your credentials.

• Amazon Verified Permissions API Reference Guide

Pricing for Verified Permissions

Verified Permissions provides tiered pricing based on the amount of authorization requests
per month made by your applications to Verified Permissions. There is also pricing for policy
management actions based on the amount of cURL (client URL) policy API requests per month
made by your applications to Verified Permissions.

For a complete list of charges and prices for Verified Permissions see Amazon Verified Permissions
pricing.

To see your bill, go to the Billing and Cost Management Dashboard in the AWS Billing and Cost
Management console. Your bill contains links to usage reports that provide details about your bill.
To learn more about AWS account billing, see the AWS Billing User Guide.

If you have questions concerning AWS billing, accounts, and events, contact AWS Support.

Pricing for Verified Permissions 4

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/VerifiedPermissions/NVerifiedPermissions.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-verifiedpermissions/html/class_aws_1_1_verified_permissions_1_1_verified_permissions_client.html
https://docs.aws.amazon.com/sdk-for-go/api/service/verifiedpermissions/#VerifiedPermissions
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/verifiedpermissions/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/verifiedpermissions/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-verifiedpermissions-2021-12-01.html
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/verifiedpermissions.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/VerifiedPermissions/Client.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/
https://aws.amazon.com/verified-permissions/pricing/
https://aws.amazon.com/verified-permissions/pricing/
https://console.aws.amazon.com/billing/
https://console.aws.amazon.com/billing/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/
https://aws.amazon.com/contact-us/

Amazon Verified Permissions User Guide

Amazon Verified Permissions terms and concepts

You should understand the following concepts to use Amazon Verified Permissions.

Verified Permissions concepts

• Authorization model

• Authorization request

• Authorization response

• Considered policies

• Context data

• Determining policies

• Entity data

• Permissions, authorization, and principals

• Policy enforcement

• Policy store

• Satisfied policies

• Differences between Verified Permissions and Cedar

Cedar policy language concepts

• Authorization

• Entity

• Groups and hierarchies

• Namespaces

• Policy

• Policy template

• Schema

Authorization model

The authorization model describes the scope of the authorization requests made by the application
and the basis for evaluating those requests. It is defined in terms of the different types of

Authorization model 5

https://docs.cedarpolicy.com/overview/terminology.html#authorization
https://docs.cedarpolicy.com/overview/terminology.html#entity
https://docs.cedarpolicy.com/overview/terminology.html#groups-and-hierarchies
https://docs.cedarpolicy.com/policies/validation.html#namespaces
https://docs.cedarpolicy.com/overview/terminology.html#policy
https://docs.cedarpolicy.com/overview/terminology.html#policy-template
https://docs.cedarpolicy.com/overview/terminology.html#schema

Amazon Verified Permissions User Guide

resources, the actions taken on those resources, and the types principals that take those actions. It
also considers the context in which those actions are being taken.

Role-based Access Control (RBAC) is an evaluation basis in which roles are defined and associated
with a set of permissions. These roles can then be assigned to one or more identities. The assigned
identity acquires the permissions associated with the role. If the permissions associated with the
role are modified, then the modification automatically impacts any identity to which the role has
been assigned. Cedar can support RBAC decisions through the use of principal groups.

Attribute-based Access Control (ABAC) is an evaluation basis in which the permissions associated
with an identity are determined by attributes of that identity. Cedar can support ABAC decisions
through the use of policy conditions that reference attributes of the principal.

The Cedar policy language enables the combination of RBAC and ABAC in a single policy by
allowing permissions to be defined for a group of users, which have attribute-based conditions.

Authorization request

An authorization request is a request made of Verified Permissions by an application to evaluate a
set of policies in order to determine whether a principal may perform an action on a resource for a
given context.

Authorization response

The authorization response is the response to the authorization request. It includes an allow or deny
decision, plus additional information, such as the IDs of the determining policies.

Considered policies

Considered policies are the full set of policies that are selected by Verified Permissions for inclusion
when evaluating an authorization request.

Context data

Context data are attribute values that provide additional information to be evaluated.

Authorization request 6

Amazon Verified Permissions User Guide

Determining policies

Determining policies are the policies that determine the authorization response. For example, if
there are two satisfied policies, where one is a deny and the other is an allow, then the deny policy
will be the determining policy. If there are multiple satisfied permit policies and no satisfied forbid
policies, then there are multiple determining policies. In the case that no policies match and the
response is deny, there are no determining policies.

Entity data

Entity data are data about the principal, action, and resource. Entity data relevant for policy
evaluation are group membership all the way up the entity hierarchy and attribute values of the
principal and resource.

Permissions, authorization, and principals

Verified Permissions manages fine-grained permissions and authorization within custom
applications that you build.

A principal is user of an application, either human or machine, that has an identity bound to an
identifier such as a username or machine ID. The process of authentication determines whether the
principal is truly the identity they claim to be.

Associated with that identity are a set of application permissions that determine what that
principal is permitted to do within that application. Authorization is the process of assessing those
permissions to determine whether a principal is permitted to perform a particular action in the
application. These permissions can be expressed as policies.

Policy enforcement

Policy enforcement is the process of enforcing the evaluation decision within the application
outside of Verified Permissions. If Verified Permissions evaluation returns a deny, then enforcement
would ensure that the principal was prevented from accessing the resource.

Policy store

A policy store is a container for policies and templates. Each store contains a schema that is used
to validate policies added to the store. By default, each application has its own policy store, but

Determining policies 7

https://docs.cedarpolicy.com/overview/terminology.html#policy

Amazon Verified Permissions User Guide

multiple applications can share a single policy store. When an application makes an authorization
request, it identifies the policy store used to evaluate that request. Policy stores provide a way
to isolate a set of policies, and can therefore be used in a multi-tenant application to contain the
schemas and policies for each tenant. A single application can have separate policy stores for each
tenant.

When evaluating an authorization request, Verified Permissions only considers the subset of the
policies in the policy store that are relevant to the request. Relevance is determined based on the
scope of the policy. The scope identifies the specific principal and resource to which the policy
applies, and the actions that the principal can perform on the resource. Defining the scope helps
improve performance by narrowing the set of considered policies.

Satisfied policies

Satisfied policies are the policies that match the parameters of the authorization request.

Differences between Verified Permissions and Cedar

Amazon Verified Permissions uses the Cedar policy language engine to perform its authorization
tasks. However, there are some differences between the native Cedar implementation and the
implementation of Cedar found in Verified Permissions. This topic identifies those differences.

Namespace definition

Verified Permissions implementation of Cedar has the following differences from the native Cedar
implementation:

• Verified Permissions supports only one namespace in a schema defined in a policy store.

• Verified Permissions doesn't allow you to create a namespace with the following values: aws,
amazon, or cedar.

Policy template support

Both Verified Permissions and Cedar allow placeholders in the scope for only the principal and
resource. However, Verified Permissions also requires that neither the principal and resource
are unconstrained.

Satisfied policies 8

https://docs.cedarpolicy.com/schema/schema.html#namespace
https://docs.cedarpolicy.com/schema/schema.html#namespace

Amazon Verified Permissions User Guide

The following policy is valid in Cedar but is rejected by Verified Permissions because the
principal is unconstrained.

permit(principal, action == Action::"view", resource == ?resource);

Both of the following examples are valid in both Cedar and Verified Permissions because both the
principal and resource have constraints.

permit(principal == User::"alice", action == Action::"view", resource == ?resource);

permit(principal == ?principal, action == Action::"a", resource in ?resource);

Schema support

Verified Permissions requires all schema JSON key names to be non-empty strings. Cedar allows
empty strings in a few cases, such as for properties.

Extension type support

Verified Permissions supports Cedar extension types in policies, but doesn't currently support
including them in the definition of a schema or as part of the entities parameter of the
IsAuthorized and IsAuthorizedWithToken operations.

Extension types include the fixed point (decimal) and IP address (ipaddr) data types.

Cedar JSON format for entities

At this time, Verified Permissions requires you to pass the list of entities to be considered in an
authorization requestion using the structure defined for the EntitiesDefinition, which is an array
of EntityItem elements. Verified Permissions doesn't currently support passing the list of entities
to be considered in an authorization request in Cedar JSON format. For specific requirements of
formatting your entities for use in Verified Permissions, see Entity formatting in Amazon Verified
Permissions.

Action groups definition

The Cedar authorization methods require a list of the entities to be considered when evaluating an
authorization request against the policies.

Schema support 9

https://docs.cedarpolicy.com/policies/syntax-datatypes.html#extension
https://docs.cedarpolicy.com/policies/syntax-datatypes.html#decimal
https://docs.cedarpolicy.com/policies/syntax-datatypes.html#ipaddr
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_EntitiesDefinition.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_EntityItem.html
https://docs.cedarpolicy.com/policies/json-format.html

Amazon Verified Permissions User Guide

You can define the actions and action groups used by your application in the schema. However,
Cedar doesn't include the schema as part of an evaluation request. Instead, Cedar uses the schema
only to validate the policies and policy templates that you submit. Because Cedar doesn't reference
the schema during evaluation requests, even if you defined action groups in the schema, you
must also include the list of any action groups as part of the entities list you must pass to the
authorization API operations.

Verified Permissions does this for you. Any action groups that you define in your schema are
automatically appended to the entities list that you pass to as a parameter to the IsAuthorized
or IsAuthorizedWithToken operations.

Length and size limits

Verified Permissions supports storage in the form of policy stores to hold your schema, policies,
and policy templates. That storage causes Verified Permissions to impose some length and size
limits that aren't relevant to Cedar.

Object Verified Permissions limit (in
bytes)

Cedar limit

Policy size¹ 10,000 None

Inline policy description 150 Not applicable to Cedar

Policy template size 10,000 None

Schema size 10,000 None

Entity type 200 None

Policy ID 64 None

Policy template ID 64 None

Entity ID 200 None

Policy store ID 64 Not applicable to Cedar

Length and size limits 10

Amazon Verified Permissions User Guide

¹ There is a limit for policies per policy store in Verified Permissions based on the combined size
of principals, actions, and resources of policies created in the policy store. The total size of all
policies pertaining to a single resource can't exceed 200,000 bytes. For template-linked policies,
the size of the policy template is counted only once, plus the size of each set of parameters used to
instantiate each template-linked policy.

Length and size limits 11

Amazon Verified Permissions User Guide

Getting started with Verified Permissions

Use this tutorial to get started with Amazon Verified Permissions.

Topics

• Sign up for an AWS account

• Create an administrative user

• IAM policies for Verified Permissions

• Create your first Verified Permissions policy store

• Create a policy store with a connected API and identity provider

Sign up for an AWS account

If you do not have an AWS account, complete the following steps to create one.

To sign up for an AWS account

1. Open https://portal.aws.amazon.com/billing/signup.

2. Follow the online instructions.

Part of the sign-up procedure involves receiving a phone call and entering a verification code
on the phone keypad.

When you sign up for an AWS account, an AWS account root user is created. The root user
has access to all AWS services and resources in the account. As a security best practice, assign
administrative access to an administrative user, and use only the root user to perform tasks
that require root user access.

AWS sends you a confirmation email after the sign-up process is complete. At any time, you can
view your current account activity and manage your account by going to https://aws.amazon.com/
and choosing My Account.

Create an administrative user

After you sign up for an AWS account, secure your AWS account root user, enable AWS IAM Identity
Center, and create an administrative user so that you don't use the root user for everyday tasks.

Sign up for an AWS account 12

https://portal.aws.amazon.com/billing/signup
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/getting-started.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://docs.aws.amazon.com/accounts/latest/reference/root-user-tasks.html
https://aws.amazon.com/

Amazon Verified Permissions User Guide

Secure your AWS account root user

1. Sign in to the AWS Management Console as the account owner by choosing Root user and
entering your AWS account email address. On the next page, enter your password.

For help signing in by using root user, see Signing in as the root user in the AWS Sign-In User
Guide.

2. Turn on multi-factor authentication (MFA) for your root user.

For instructions, see Enable a virtual MFA device for your AWS account root user (console) in
the IAM User Guide.

Create an administrative user

1. Enable IAM Identity Center.

For instructions, see Enabling AWS IAM Identity Center in the AWS IAM Identity Center User
Guide.

2. In IAM Identity Center, grant administrative access to an administrative user.

For a tutorial about using the IAM Identity Center directory as your identity source, see
Configure user access with the default IAM Identity Center directory in the AWS IAM Identity
Center User Guide.

Sign in as the administrative user

• To sign in with your IAM Identity Center user, use the sign-in URL that was sent to your email
address when you created the IAM Identity Center user.

For help signing in using an IAM Identity Center user, see Signing in to the AWS access portal in
the AWS Sign-In User Guide.

IAM policies for Verified Permissions

Verified Permissions manages the permissions of users within your application. In order for
your application to call the Verified Permissions APIs or for AWS Management Console users to
be allowed to manage Cedar policies in a Verified Permissions policy store, you must add the
necessary IAM permissions.

IAM policies for Verified Permissions 13

https://console.aws.amazon.com/
https://docs.aws.amazon.com/signin/latest/userguide/console-sign-in-tutorials.html#introduction-to-root-user-sign-in-tutorial
https://docs.aws.amazon.com/IAM/latest/UserGuide/enable-virt-mfa-for-root.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/get-set-up-for-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/quick-start-default-idc.html
https://docs.aws.amazon.com/signin/latest/userguide/iam-id-center-sign-in-tutorial.html

Amazon Verified Permissions User Guide

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied (listed below). You can't specify the
principal in an identity-based policy because it applies to the user or role to which it is attached. To
learn about all of the elements that you can use in a JSON policy, see IAM JSON policy elements
reference in the IAM User Guide.

Action Description

CreatePolicyStore Action to create a new policy store.

DeletePolicyStore Action to delete a policy store.

ListPolicyStores Action to list all policy stores in the AWS
account.

CreatePolicy Action to create a Cedar policy in a policy
store. You can create either a static policy or a
policy linked to a policy template.

DeletePolicy Action to delete a policy from a policy store.

GetPolicy Action to retrieve information about a
specified policy.

ListPolicies Action to list all policies in a policy store.

IsAuthorized Action to get an authorization response based
on the parameters described in the authoriza
tion request.

Example IAM policy for permission to the CreatePolicy action:

{
"Version": "2012-10-17",

IAM policies for Verified Permissions 14

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_DeletePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListPolicyStores.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_DeletePolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetPolicy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListPolicies.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html

Amazon Verified Permissions User Guide

 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "verifiedpermissions:CreatePolicy"
],
 "Resource": "*"
 }
]
 }

Create your first Verified Permissions policy store

When you sign in to the Verified Permissions console for the first time, you can choose how to
create your first policy store and Cedar policy. Follow the sign-in procedure appropriate to your
user type as described in the topic How to sign in to AWS in the AWS Sign-In User Guide. On the
Console Home page, select the Amazon Verified Permissions service. Choose Get started.

Creating a sample policy store

If this is your first time using Verified Permissions, we recommend using one of the sample policy
stores to familiarize yourself with how Verified Permissions works. The sample policy stores provide
pre-defined policies and a schema.

To create a policy store using the Sample policy store configuration method

1. In the Verified Permissions console, select Create new policy store.

2. In the Starting options section, choose Sample policy store.

3. In the Sample project section, choose the type of sample Verified Permissions application to
use. For this tutorial, choose the PhotoFlash policy store.

4. A namespace for the schema of your sample policy store is automatically generated based on
the sample project you chose.

5. Choose Create policy store.

Your policy store is created with policies, policy templates, and a schema for the sample policy
store.

Create your first policy store 15

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://console.aws.amazon.com/verifiedpermissions

Amazon Verified Permissions User Guide

The diagram below illustrates the relationships between the PhotoFlash sample policy store
actions and the resource types that they apply to.

Creating template-linked policies for a sample policy store

The PhotoFlash sample policy store includes policies, policy templates, and a schema. You can
create template-linked policies based on the policy templates included with the sample policy
store.

To create template-linked policies for the sample policy store

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy and then choose Create template-linked policy.

4. Choose the radio button next to the policy template with the description Grant full access to
non-private shared photos and then choose Next.

Creating template-linked policies for a sample policy store 16

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

5. For Principal, enter PhotoFlash::User::"Alice". For Resource, enter
PhotoFlash::Album::"Bob-Vacation-Album".

6. Choose Create template-linked policy.

The new template-linked policy is displayed under Policies.

7. Create another template-linked policy for the PhotoFlash sample policy store. Choose Create
policy and then choose Create template-linked policy.

8. Choose the radio button next to the policy template with the description Grant limited access
to non-private shared photos and then choose Next.

9. For Principal, enter PhotoFlash::FriendGroup::"MySchoolFriends". For Resource,
enter PhotoFlash::Album::"Alice’s favorite album".

10. Choose Create template-linked policy.

The new template-linked policy is displayed under Policies.

We will test the new template-linked policies in the next section of the tutorial. For more examples
of values you can use to create a template-linked policy for PhotoFlash, see PhotoFlash template-
linked policy examples.

Testing a sample policy store

After creating your sample policy store and template-linked policies, you can test the sample
Verified Permissions static policies and your new template-linked policies by running a simulated
authorization request using the Verified Permissions test bench.

Depending on when you created your sample policy store, your policy templates might differ from
the references in this procedure. Before you start this part of the tutorial, check that you have each
policy template that follows in your PhotoFlash example policy store. If your policy doesn't align
with these policies, edit the existing policies or create a new policy store from the Sample project
option PhotoFlash.

Grant full access to non-private shared photos

permit (
 principal in ?principal,
 action in PhotoFlash::Action::"FullPhotoAccess",
 resource in ?resource
)

Testing a sample policy store 17

Amazon Verified Permissions User Guide

when { resource.IsPrivate == false };

Grant limited access to non-private shared photos

permit (
 principal in ?principal,
 action in PhotoFlash::Action::"LimitedPhotoAccess",
 resource in ?resource
)
when { resource.IsPrivate == false };

To test sample policy store policies

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Test bench.

3. Choose Visual mode.

4. In the Principal section, choose PhotoFlash::User from the principal types in your schema.
Type an identifier for the user in the text box. For example, Alice.

5. Do not choose Add a parent for the principal.

6. For the Account: Entity attribute, make sure that the PhotoFlash::Account entity is selected.
Type an identifier for the account. For example, Alice-account.

7. In the Resource section, choose the PhotoFlash::Photo resource type. Type an identifier for
the photo in the text box. For example, photo.jpeg.

8. Choose Add a parent and choose PhotoFlash::Account for the entity type. Type the same
identifier for the parent account for the photo that you specified in the Account: Entity field
for the user. For example, Alice-account.

9. In the Action section, choose PhotoFlash::Action::"ViewPhoto" from the list of valid actions.

10. In the Additional entities section, choose Add this entity to add the suggested account entity.

11. Choose Run authorization request at the top of the page to simulate the authorization
request for the Cedar policies in the sample policy store. The test bench should display the
decision to allow the request.

The following table provides additional values for the principal, resource, and action you can test
with the Verified Permissions test bench. The table includes the authorization request decision

Testing a sample policy store 18

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

based on the static policies included with the PhotoFlash sample policy store and the template-
linked policies you created in the previous section.

Principal
value

Principal
Account:
Entity value

Resource
value

Resource
parent value

Action Authoriza
tion decision

PhotoFlas
h::User |
Alice

PhotoFlas
h::Account |
Alice-account

PhotoFlas
h::Photo |
photo.jpeg

PhotoFlas
h::Account |
Bob-account

PhotoFlas
h::Action
::"ViewPh
oto"

Deny

PhotoFlas
h::User |
Alice

PhotoFlas
h::Account |
Alice-account

PhotoFlas
h::Photo |
photo.jpeg

PhotoFlas
h::Account |
Alice-account

PhotoFlas
h::Action
::"ViewPh
oto"

Allow

PhotoFlas
h::User |
Alice

PhotoFlas
h::Account |
Alice-account

PhotoFlas
h::Photo |
Bob-photo
.jpeg

PhotoFlas
h::Album |
Bob-Vacat
ion-Album

PhotoFlas
h::Action
::"ViewPh
oto"

Allow

PhotoFlas
h::User |
Alice

PhotoFlas
h::Account |
Alice-account

PhotoFlas
h::Photo |
Bob-photo
.jpeg

PhotoFlas
h::Album |
Bob-Vacat
ion-Album

PhotoFlas
h::Action
::"Delete
Photo"

Deny

PhotoFlas
h::User |
Alice

PhotoFlas
h::Account |
Alice-account

PhotoFlas
h::Photo
| Bob-
photo.jpeg,
IsPrivate:
Boolean |
true

PhotoFlas
h::Album |
Bob-Vacat
ion-Album

PhotoFlas
h::Action
::"ViewPh
oto"

Deny

PhotoFlas
h::User
| Jane,

PhotoFlas
h::Account |
Jane-account

PhotoFlas
h::Photo |
photo.jpeg

PhotoFlas
h::Album
| Alice’s

PhotoFlas
h::Action

Allow

Testing a sample policy store 19

Amazon Verified Permissions User Guide

Principal
value

Principal
Account:
Entity value

Resource
value

Resource
parent value

Action Authoriza
tion decision

PhotoFlas
h::Friend
Group |
MySchoolF
riends

favorite
album

::"ViewPh
oto"

PhotoFlas
h::User
| Jane,
PhotoFlas
h::Friend
Group |
MySchoolF
riends

PhotoFlas
h::Account |
Jane-account

PhotoFlas
h::Photo |
photo.jpeg

PhotoFlas
h::Album
| Alice’s
favorite
album

PhotoFlas
h::Action
::"Delete
Photo"

Deny

Create a policy store with a connected API and identity
provider

A common use case for Amazon Verified Permissions is to authorize requests from an application
client to a back-end API. AWS has a service for authentication of application users: Amazon
Cognito. AWS also has a service for secure hosted APIs: Amazon API Gateway. When you combine
a Verified Permissions policy store with these two AWS services, you can connect user pool
authentication and API authorization in your application with a consistent, centralized set of
policies. Verified Permissions policy stores have built-in support for Amazon Cognito user pool
identity sources and API Gateway APIs.

To create a policy store that's linked to an existing user pool and API, choose Set up with Cognito
and API Gateway when you create a new policy store.

An API-linked policy store automatically provisions your authorization model and resources for
authorization requests. The Set up with Cognito and API Gateway creation process generates
a policy store with a user pool identity source, and a Lambda authorizer that connects API
Gateway to Verified Permissions. Initially, you can authorize API requests based on users’ group

Create an API-linked policy store 20

https://aws.amazon.com/cognito
https://aws.amazon.com/cognito
https://aws.amazon.com/api-gateway

Amazon Verified Permissions User Guide

memberships. For example, Verified Permissions can grant access only to users who are members
of the Directors group.

As your application grows, you can implement fine-grained authorization with user attributes and
OAuth 2.0 scopes. For example, Verified Permissions can grant access only to users who have an
email attribute in the domain mycompany.co.uk.

After you have automated the authorization model for your API, your remaining responsibility is to
authenticate users and generate API requests in your application, and to maintain your policy store.

To learn more, see API-linked policy stores.

Create an API-linked policy store 21

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy stores

A policy store is a container for policies and policy templates. Each policy store contains a schema
that is used to validate policies added to the policy store. We recommend creating one policy store
per application, or one policy store per tenant for multi-tenant applications. You must specify a
policy store when making an authorization request.

We recommend using namespaces to Cedar entities in your policy stores to prevent ambiguity. A
namespace is a string prefix for a type, separated by a pair of colons (::) as a delimiter. Verified
Permissions supports one namespace per policy store. For more information, see Namespaces in
the Cedar policy language Reference Guide.

Topics

• Creating Verified Permissions policy stores

• API-linked policy stores

• Switching Verified Permissions policy stores

• Deleting Verified Permissions policy stores

Creating Verified Permissions policy stores

You can create a policy store using the following methods:

• Follow a guided setup – You will define a resource type with valid actions and a principal type
before creating your first policy.

• Set up with Cognito and API Gateway – Define your principals from an Amazon Cognito user
pool and actions and resources from an Amazon API Gateway API. We recommend this option if
you want your application to authorize API requests with users’ group membership.

• Start from a sample policy store – Choose a pre-defined sample project policy store. We
recommend this option if you are learning about Verified Permissions and want to view and test
example policies.

• Create an empty policy store – You will define the schema and all access policies yourself. We
recommend this option if you are already familiar with configuring a policy store.

Creating policy stores 22

https://docs.cedarpolicy.com/overview/terminology.html#term-namespaces

Amazon Verified Permissions User Guide

Guided setup

To create a policy store using the Guided setup configuration method

The guided setup wizard leads you through the process of creating the first iteration of your
policy store. You will create a schema for your first resource type, describe the actions that are
applicable for that resource type, and the principal type for which you are granting permissions.
You will then create your first policy. Once you've completed this wizard, you will be able to
add to your policy store, extend the schema to describe other resource and principal types, and
create additional policies and templates.

1. In the Verified Permissions console, select Create new policy store.

2. In the Starting options section, choose Guided setup.

3. Enter a Policy store description. This text can be whatever suits your organization as a
friendly reference to the function of the current policy store, for example Weather updates.

4. In the Details section, type a Namespace for your schema.

5. Choose Next.

6. On the Resource type window, type a name for your resource type.

7. (Optional) Choose Add an attribute to add resource attributes. Type the Attribute name
and choose an Attribute type for each attribute of the resource. Choose whether each
attribute is Required. Verified Permissions uses the specified attribute values when
verifying policies against the schema. To remove an attribute that has been added for the
resource type, choose Remove next to the attribute.

8. In the Actions field, type the actions to be authorized for the specified resource type. To
add additional actions for the resource type, choose Add an action. To remove an action
that has been added for the resource type, choose Remove next to the action.

9. In the Name of the principal type field, type the name for a type of principal that will be
using the specified actions for your resource type.

10. Choose Next.

11. On the Principal type window, choose the identity source for your principal type.

• Choose Custom if the principal's ID and attributes will be provided directly by your
Verified Permissions application. Choose Add an attribute to add principal attributes.
Type the Attribute name and choose an Attribute type for each attribute of the
prinicpal. Verified Permissions uses the specified attribute values when verifying policies

Creating policy stores 23

https://console.aws.amazon.com/verifiedpermissions

Amazon Verified Permissions User Guide

against the schema. To remove an attribute that has been added for the prinicpal type,
choose Remove next to the attribute.

• Choose Cognito User Pool if the principal's ID and attributes will be provided from an
ID or access token generated by Amazon Cognito. Choose Connect user pool. Select
the AWS Region and type User pool ID of the Amazon Cognito user pool to connect
to. Choose Connect. For more information, see Authorization with Amazon Verified
Permissions in the Amazon Cognito Developer Guide.

12. Choose Next.

13. In the Policy details section, type an optional Policy description for your first Cedar policy.

14. In the Principals scope field, choose the principals that will be granted permissions from
the policy.

• Choose Specific principal to apply the policy to a specific principal. Choose the principal
in the Principal that will be permitted to take actions field and type an entity identifier
for the principal.

• Choose All principals to apply the policy to all principals in your policy store.

15. In the Resources scope field, choose which resources that the specified principals will be
authorized to act on.

• Choose Specific resource to apply the policy to a specific resource. Choose the resource
in the Resource this policy should apply to field and type an entity identifier for the
resource.

• Choose All resources to apply the policy to all resources in your policy store.

16. In the Actions scope field, choose which actions that the specified principals will be
authorized to perform.

• Choose Specific set of actions to apply the policy to specific actions. Select the check
boxes next to the actions in the Action(s) this policy should apply to field.

• Choose All actions to apply the policy to all actions in your policy store.

17. Review the policy in the Policy preview section. Choose Create policy store.

Creating policy stores 24

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

Set up with Cognito and API Gateway

To create a policy store using the Set up with Amazon Cognito and API Gateway
configuration method

The Amazon Cognito and API Gateway option builds a policy store for testing authorization
with user pool groups and an API with a Lambda authorizer.

The users and their groups in an Amazon Cognito user pool become your principals. The
methods and paths in an API Gateway API become the actions that your policies authorize.
Your application becomes the resource and the provider of context. As a result of this workflow,
Verified Permissions creates a policy store, a Lambda function, and an API Lambda authorizer.
You must assign the Lambda authorizer to your API after you finish this workflow.

1. In the Verified Permissions console, select Create new policy store.

2. In the Starting options section, choose Set up with Cognito and API Gateway and select
Next.

3. In the Import resources and actions step, under API, choose an API that will function as
the model to your policy store resources and actions.

a. Choose a Deployment stage from the stages configured in your API and select Import
API.

b. Preview your Map of imported resources and actions.

c. To update resources or actions, modify your API paths or methods and select Import
API.

d. When you are satisfied with your choices, choose Next.

4. In the Choose identity source step, under Amazon Cognito user pools, configure your
identity source.

a. Choose a user pool in the same AWS Region and AWS account as your policy store.

b. Choose the Token type to pass to API that you want to submit for authorization.
Either token types contains user groups, the foundation of this API-linked
authorization model.

c. Under App client validation, you can limit the scope of a policy store to a subset
of the Amazon Cognito app clients in a multi-tenant user pool. To require that user
authenticate with one or more specified app clients in your user pool, select Only

Creating policy stores 25

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://console.aws.amazon.com/verifiedpermissions

Amazon Verified Permissions User Guide

accept tokens with expected app client IDs. To accept any user who authenticates
with the user pool, select Don't validate app client IDs.

d. Choose Next.

5. Verified Permissions queries your user pool for groups. The Assign actions to groups step
creates policies for your policy store that permit group members to perform actions.

a. Choose the Groups from user pool that you want to include in your policies.

b. Assign actions to each of the groups that you selected.

c. Choose Next.

6. In the Deploy app integration, review the steps that Verified Permissions will take to create
your policy store and Lambda authorizer.

7. When you're ready to create the new resources, choose Create and deploy.

8. Keep the Policy store status step open in your browser to monitor the progress of resource
creation by Verified Permissions.

9. After about an hour, or when the Deploy Lambda authorizer step shows Success, configure
your authorizer.

Verified Permissions will have created a Lambda function and a Lambda authorizer in your
API. Choose Open API to navigate to your API.

To learn how to assign a Lambda authorizer, see Use API Gateway Lambda authorizers in
the Amazon API Gateway Developer Guide.

a. Navigate to Authorizers for your API and note the name of the authorizer that Verified
Permissions created.

b. Navigate to Resources and select a top-level method in your API.

c. Select Edit under Method request settings.

d. Set the Authorizer to be the authorizer name you noted earlier.

e. Expand HTTP request headers, enter a Name or AUTHORIZATION, and select
Required.

f. Deploy the API stage.

g. Save your changes.

10. Test your authorizer with a user pool token of the Token type that you selected in the
Choose identity source step. For more information about user pool sign-in and retrieving
tokens, see User pool authentication flow in the Amazon Cognito Developer Guide.

Creating policy stores 26

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html

Amazon Verified Permissions User Guide

11. Test authentication again with a user pool token in the AUTHORIZATION header of a
request to your API.

12. Examine your new policy store. Add and refine policies.

Sample policy store

To create a policy store using the Sample policy store configuration method

1. In the Starting options section, choose Sample policy store.

2. In the Sample project section, choose the type of sample Verified Permissions application
to use.

• PhotoFlash is a sample customer-facing web application that enables users to share
individual photos and albums with friends. Users can set fine-grained permissions on
who is allowed to view, comment on, and re-share their photos. Account owners can also
create groups of friends and organize photos into albums.

• DigitalPetStore is a sample application where anyone can register and become a
customer. Customers can add pets for sale, search pets, and place orders. Customers who
have added a pet are recorded as the pet owner. Pet owners can update the pet's details,
upload a pet image, or delete the pet listing. Customers who have placed an order are
recorded as the order owner. Order owners can get details on the order or cancel it. Pet
store managers have administrative access.

Note

The DigitalPetStore sample policy store does not include policy templates. The
PhotoFlash and TinyTodo sample policy stores include policy templates.

• TinyTodo is a sample application that enables users to create taks and task lists. List
owners can manage and share their lists and specify who can view or edit their lists.

3. A namespace for the schema of your sample policy store is automatically generated based
on the sample project you chose.

4. Choose Create policy store.

Your policy store is created with policies and a schema for the sample policy store you
chose. For more information on template-linked policies you can create for the sample

Creating policy stores 27

Amazon Verified Permissions User Guide

policy stores, see Example template-linked policies for Verified Permissions sample policy
stores.

Empty policy store

To create a policy store using the Empty policy store configuration method

1. In the Starting options section, choose Empty policy store.

2. Choose Create policy store.

An empty policy store is created without a schema, which means policies are not validated.
For more information about updating the schema for your policy store, see Amazon Verified
Permissions policy store schema.

For more information about creating policies for your policy store, see Creating Amazon Verified
Permissions static policies and Creating template-linked policies.

AWS CLI

To create an empty policy store by using the AWS CLI.

You can create a policy store by using the create-policy-store operation.

Note

A policy store that you create by using the AWS CLI is empty.

• To add schema, see Amazon Verified Permissions policy store schema.

• To add policies, see Creating Amazon Verified Permissions static policies.

• To add policy templates, see Creating policy templates.

$ aws verifiedpermissions create-policy-store \
 --validation-settings "mode=STRICT"
{
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111",
 "createdDate": "2023-05-16T17:41:29.103459+00:00",
 "lastUpdatedDate": "2023-05-16T17:41:29.103459+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"

Creating policy stores 28

Amazon Verified Permissions User Guide

}

AWS SDKs

You can create a policy store using the CreatePolicyStore API. For more information, see
CreatePolicyStore in the Amazon Verified Permissions API Reference Guide.

API-linked policy stores

When you create a new policy store in the Amazon Verified Permissions console, you can choose
the Set up with Cognito and API Gateway option. With this option, you build an API-linked policy
store, an authorization model for applications that authenticate with Amazon Cognito user pools
and get data from Amazon API Gateway APIs. To get started, see Create a policy store with a
connected API and identity provider.

Topics

• How Verified Permissions authorizes API requests

• Adding attribute-based access control (ABAC)

• Considerations for API-linked policy stores

• Troubleshooting API-linked policy stores

Important

Policy stores that you create with the Set up with Cognito and API Gateway option in the
Verified Permissions console aren’t intended for immediate deployment to production.
With your initial policy store, finalize your authorization model and export the policy store
resources to CloudFormation. Deploy Verified Permissions to production programmatically
with the AWS Cloud Development Kit (CDK). For more information, see Moving to
production with AWS CloudFormation.

In a policy store that's linked to an API and user pool, your application presents a user pool
token in an authorization header when it makes a request to the API. The identity source of your
policy store, a user pool, provides token validation for Verified Permissions. The token forms the
principal in authorization requests with the IsAuthorizedWithToken API. Verified Permissions
builds policies around the group membership of your users, as presented in the cognito:groups

API-linked policy stores 29

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyStore.html
https://aws.amazon.com/cdk
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html

Amazon Verified Permissions User Guide

claim in identity (ID) and access tokens. Your API processes the token from your application in a
Lambda authorizer and submits it to Verified Permissions for an authorization decision. When your
API receives the authorization decision from the Lambda authorizer, it passes the request on to
your data source or denies the request.

Components of Amazon Cognito and API Gateway authorization with Verified Permissions

• An Amazon Cognito user pool that authenticates and groups users. Users' tokens populate the
principal and group membership that Verified Permissions evaluates in your policy store.

• An API Gateway REST API. Verified Permissions defines actions from API paths and API methods,
for example MyAPI::Action::get /photo.

• A Lambda function and a Lambda authorizer for your API. The Lambda function takes in bearer
tokens from your user pool, requests authorization from Verified Permissions, and returns a
decision to API Gateway. The Set up with Cognito and API Gateway workflow automatically
creates this Lambda authorizer for you.

• A Verified Permissions policy store. The policy store identity source is your user pool. The
policy store schema reflects the configuration of your API, and the policies link user groups to
permitted API actions.

• An application that authenticates users with Amazon Cognito and appends tokens to API
requests.

How Verified Permissions authorizes API requests

When you create a new policy store and select the Set up with Cognito and API Gateway option,
Verified Permissions creates policy store schema and policies. The schema and policies reflect
API actions and the user pool groups that you want to authorize to take the actions. Verified
Permissions also creates the Lambda function and authorizer. You must configure the new
authorizer on a method in your API.

How it works 30

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-identity-pools.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html

Amazon Verified Permissions User Guide

1. Your user signs in with your application. Amazon Cognito issues ID and access tokens with the
user's information.

2. Your application stores the JWTs. For more information, see Using tokens with user pools in the
Amazon Cognito Developer Guide..

3. Your user requests data that your application must retrieve from an external API.

How it works 31

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon Verified Permissions User Guide

4. Your application requests data from a REST API in API Gateway. It appends an ID or access token
as a request header.

5. If your API has a cache for the authorization decision, it returns the previous response. If caching
is disabled or the API has no current cache, API Gateway passes the request parameters to a
token-based Lambda authorizer.

6. The Lambda function sends an authorization request to a Verified Permissions policy store with
the IsAuthorizedWithToken API. The Lambda function passes the elements of an authorization
decision:

a. The user pool token as the principal.

b. The API method combined with the API path, for example GetPhoto, as the action.

c. The term Application as the resource.

7. Verified Permissions validates the user pool token. For more information, see Authorization with
Amazon Verified Permissions in the Amazon Cognito Developer Guide.

8. Verified Permissions evaluates the authorization request against the policies in your policy store
and returns an authorization decision.

9. The Lambda authorizer returns an Allow or Deny response to API Gateway.

10.The API returns data or an ACCESS_DENIED response to your application. Your application
processes and displays the results of the API request.

Adding attribute-based access control (ABAC)

A typical authentication session with an Amazon Cognito user pool returns ID and access tokens.
You can pass either of these token types as a bearer token in application requests to your API.
Depending on your choices when you create your policy store, Verified Permissions expects one
of the two types of tokens. Both types carry information about the user’s group membership. For
more information about token types in Amazon Cognito, see Using tokens with user pools in the
Amazon Cognito Developer Guide.

After you create a policy store, you can add and extend policies. For example, you can add new
groups to your policies as you add them to your user pool. Because your policy store is already
aware of the way that your user pool presents groups in tokens, you can permit a set of actions for
any new group with a new policy.

Adding ABAC 32

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-use-lambda-authorizer.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html

Amazon Verified Permissions User Guide

You might also want to extend the group-based model of policy evaluation into a more precise
model based on user properties. User pool tokens contain additional user information that can
contribute to authorization decisions.

ID tokens

ID tokens represent a user’s attributes and have the highest level of fine-grained access control.
To evaluate email addresses, phone numbers, or custom attributes like department and
manager, evaluate the ID token.

Access tokens

Access tokens represent a user’s permissions with OAuth 2.0 scopes. To add a layer of
authorization or to set up requests for additional resources, evaluate the access token. For
example, you can validate that a user is in the appropriate groups and carries a scope like
PetStore.read that generally authorizes access to the API. User pools can add custom scopes
to tokens with resource servers and with token customization at runtime.

See Mapping Amazon Cognito tokens to Verified Permissions schema for example policies that
process claims in ID and access tokens.

Considerations for API-linked policy stores

When you build an API-linked policy store in the Verified Permissions console, you're creating a
test for an eventual production deployment. Before you move to production, establish a fixed
configuration for your API and user pool. Consider the following factors:

API Gateway caches responses

In API-linked policy stores, Verified Permissions creates a Lambda authorizer with an
Authorization caching TTL of 120 seconds. You can adjust this value or turn off caching in your
authorizer. In an authorizer with caching enabled, your authorizer returns the same response
each time until the TTL expires. This can extend the effective lifetime of user pool tokens by a
duration that equals the caching TTL of the requested stage.

Amazon Cognito groups can be reused

Amazon Verified Permissions determines group membership for user pool users from the
cognito:groups claim in a user's ID or access token. The value of this claim is an array of the
friendly names of the user pool groups that the user belongs to. You can't associate user pool
groups with a unique identifier.

Considerations 33

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools-define-resource-servers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-lambda-pre-token-generation.html#user-pool-lambda-pre-token-generation-accesstoken

Amazon Verified Permissions User Guide

User pool groups that you delete and recreate with the same name present to your policy store
as the same group. When you delete a group from a user pool, delete all references to the
group from your policy store.

API-derived namespace and schema are point-in-time

Verified Permissions captures your API at a point in time: it only queries your API when you
create your policy store. When the schema or name of your API changes, you must update your
policy store and Lambda authorizer, or create a new API-linked policy store. Verified Permissions
derives the policy store namespace from the name of your API.

Lambda function has no VPC configuration

The Lambda function that Verified Permissions creates for your API authorizer isn't
connected to a VPC. By default. APIs that have network access restricted to private VPCs
can't communicate with the Lambda function that authorizes access requests with Verified
Permissions.

Verified Permissions deploys authorizer resources in CloudFormation

To create an API-linked policy store, you must sign in a highly-privileged AWS principal to the
Verified Permissions console. This user deploys an AWS CloudFormation stack that creates
resources across several AWS services. This principal must have the permission to add and
modify resources in Verified Permissions, IAM, Lambda, and API Gateway. As a best practice,
don't share these credentials with other administrators in your organization.

See Moving to production with AWS CloudFormation for an overview of the resources that
Verified Permissions creates.

Moving to production with AWS CloudFormation

API-linked policy stores are a way to quickly build an authorization model for an API Gateway API.
They are designed to serve as a testing environment for the authorization component of your
application. After you create your test policy store, spend time refining the policies, schema, and
Lambda authorizer.

You might adjust the architecture of your API, requiring equivalent adjustments to your policy store
schema and policies. API-linked policy stores don't automatically update their schema from API
architecture–Verified Permissions only polls the API at the time you create a policy store. If your
API changes sufficiently, you might have to repeat the process with a new policy store.

Considerations 34

https://docs.cedarpolicy.com/schema/schema.html#schema-namespace

Amazon Verified Permissions User Guide

When your application and authorization model are ready for deployment to production, integrate
the API-linked policy store that you developed with your automation processes. As a best practice,
we recommend that you export the policy store schema and policies into a AWS CloudFormation
template that you can deploy to other AWS accounts and AWS Regions.

The results of the API-linked policy store process are an initial policy store and a Lambda
authorizer. The Lambda authorizer has several dependent resources. Verified Permissions deploys
these resources in an automatically-generated CloudFormation stack. To deploy to production, you
must collect the policy store and the Lambda authorizer resources into a template. An API-linked
policy store is made of the following resources:

1. AWS::VerifiedPermissions::PolicyStore: Copy your schema to the SchemaDefinition object.
Escape " characters as \".

2. AWS::VerifiedPermissions::IdentitySource: Copy values from the output of GetIdentitySource
from your test policy store and modify as needed.

3. One or more of AWS::VerifiedPermissions::Policy: Copy your policy statement to the
Definition object. Escape " characters as \".

4. AWS::Lambda::Function, AWS::IAM::Role, AWS::IAM::Policy, AWS::ApiGateway::Authorizer,
AWS::Lambda::Permission: Copy the template from the Template tab of the stack that Verified
Permissions deployed when you created your policy store.

The following template is an example policy store. You can append the Lambda authorizer
resources from your existing stack to this template.

{
 "AWSTemplateFormatVersion": "2010-09-09",
 "Resources": {
 "MyExamplePolicyStore": {
 "Type": "AWS::VerifiedPermissions::PolicyStore",
 "Properties": {
 "ValidationSettings": {
 "Mode": "STRICT"
 },
 "Description": "ApiGateway: PetStore/test",
 "Schema": {
 "CedarJson": "{\"PetStore\":{\"actions\":{\"get /pets\":
{\"appliesTo\":{\"principalTypes\":[\"User\"],\"resourceTypes\":[\"Application\"],
\"context\":{\"type\":\"Record\",\"attributes\":{}}}},\"get /\":{\"appliesTo\":
{\"principalTypes\":[\"User\"],\"resourceTypes\":[\"Application\"],\"context\":{\"type

Considerations 35

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-verifiedpermissions-policystore.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-verifiedpermissions-identitysource.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetIdentitySource.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-verifiedpermissions-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-function.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-role.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-iam-policy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-apigateway-authorizer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-lambda-permission.html

Amazon Verified Permissions User Guide

\":\"Record\",\"attributes\":{}}}},\"get /pets/{petId}\":{\"appliesTo\":{\"context
\":{\"type\":\"Record\",\"attributes\":{}},\"resourceTypes\":[\"Application\"],
\"principalTypes\":[\"User\"]}},\"post /pets\":{\"appliesTo\":{\"principalTypes\":
[\"User\"],\"resourceTypes\":[\"Application\"],\"context\":{\"type\":\"Record\",
\"attributes\":{}}}}},\"entityTypes\":{\"Application\":{\"shape\":{\"type\":\"Record\",
\"attributes\":{}}},\"User\":{\"memberOfTypes\":[\"UserGroup\"],\"shape\":{\"attributes
\":{},\"type\":\"Record\"}},\"UserGroup\":{\"shape\":{\"type\":\"Record\",\"attributes
\":{}}}}}}"
 }
 }
 },
 "MyExamplePolicy": {
 "Type": "AWS::VerifiedPermissions::Policy",
 "Properties": {
 "Definition": {
 "Static": {
 "Description": "Policy defining permissions for testgroup
 cognito group",
 "Statement": "permit(\nprincipal in PetStore::UserGroup::
\"us-east-1_EXAMPLE|testgroup\",\naction in [\n PetStore::Action::\"get /\",
\n PetStore::Action::\"post /pets\",\n PetStore::Action::\"get /pets\",\n
 PetStore::Action::\"get /pets/{petId}\"\n],\nresource);"
 }
 },
 "PolicyStoreId": {
 "Ref": "MyExamplePolicyStore"
 }
 },
 "DependsOn": [
 "MyExamplePolicyStore"
]
 },
 "MyExampleIdentitySource": {
 "Type": "AWS::VerifiedPermissions::IdentitySource",
 "Properties": {
 "Configuration": {
 "CognitoUserPoolConfiguration": {
 "ClientIds": [
 "1example23456789"
],
 "GroupConfiguration": {
 "GroupEntityType": "PetStore::UserGroup"
 },

Considerations 36

Amazon Verified Permissions User Guide

 "UserPoolArn": "arn:aws:cognito-idp:us-
east-1:123456789012:userpool/us-east-1_EXAMPLE"
 }
 },
 "PolicyStoreId": {
 "Ref": "MyExamplePolicyStore"
 },
 "PrincipalEntityType": "PetStore::User"
 },
 "DependsOn": [
 "MyExamplePolicyStore"
]
 }
 }
}

Troubleshooting API-linked policy stores

Use the information here to help you diagnose and fix common issues when you build Amazon
Verified Permissions API-linked policy stores.

Topics

• I updated my policy but the authorization decision didn't change

• I attached the Lambda authorizer to my API but it's not generating authorization requests

• I received an unexpected authorization decision and want to review the authorization logic

• I want to find logs from my Lambda authorizer

• My Lambda authorizer doesn't exist

• My API is in a private VPC and can't invoke the authorizer

• I want to process additional user attributes in my authorization model

• I want to add new actions, action context attributes, or resource attributes

I updated my policy but the authorization decision didn't change

By default, Verified Permissions configures the Lambda authorizer to cache authorization decisions
for 120 seconds. Try again after two minutes, or disable cache on your authorizer. For more
information, see Enabling API caching to enhance responsiveness in the Amazon API Gateway
Developer Guide.

Troubleshooting 37

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-caching.html

Amazon Verified Permissions User Guide

I attached the Lambda authorizer to my API but it's not generating authorization
requests

To begin processing requests, you must deploy the API stage that you attached your authorizer to.
For more information, see Deploying a REST API in the Amazon API Gateway Developer Guide.

I received an unexpected authorization decision and want to review the
authorization logic

The API-linked policy store process creates a Lambda function for your authorizer. Verified
Permissions automatically builds the logic of your authorization decisions into the authorizer
function. You can go back after you create your policy store to review and update the logic in the
function.

To locate your Lambda function from the AWS CloudFormation console, choose the Check
deployment button on the Overview page of your new policy store.

You can also locate your function in the AWS Lambda console. Navigate to the console
in the AWS Region of your policy store and search for a function name with a prefix of
AVPAuthorizerLambda. If you have create more than one API-linked policy store, use the Last
modified time of your functions to correlate them with policy store creation.

I want to find logs from my Lambda authorizer

Lambda functions collect metrics and log their invocation results in Amazon CloudWatch. To review
your logs, locate your function in the Lambda console and choose the Monitor tab. Select View
CloudWatch logs and review the entries in the log group.

For more information about Lambda function logs, see Using Amazon CloudWatch Logs with AWS
Lambda in the AWS Lambda Developer Guide.

My Lambda authorizer doesn't exist

After you complete setup of an API-linked policy store, you must attach the Lambda authorizer to
your API. If you can't locate your authorizer in the API Gateway console, the additional resources
for your policy store might have failed or not deployed yet. API-linked policy stores deploy these
resources in an AWS CloudFormation stack.

Verified Permissions displays a link with the label Check deployment at the end of the creation
process. If you already navigated away from this screen, go to the CloudFormation console

Troubleshooting 38

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-deploy-api.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-cloudwatchlogs.html

Amazon Verified Permissions User Guide

and search recent stacks for a name that's prefixed with AVPAuthorizer-<policy store
ID>. CloudFormation provides valuable troubleshooting information in the output of a stack
deployment.

For help troubleshooting CloudFormation stacks, see Troubleshooting CloudFormation in the AWS
CloudFormation User Guide.

My API is in a private VPC and can't invoke the authorizer

Verified Permissions doesn't support access to Lambda authorizers through VPC endpoints.
You must open a network path between your API and the Lambda function that serves as your
authorizer.

I want to process additional user attributes in my authorization model

The API-linked policy store process derives Verified Permissions policies from the groups claim in
users' tokens. To update your authorization model to consider additional user attributes, integrate
those attributes in your policies.

You can map many claims in ID and access tokens from Amazon Cognito user pools to Verified
Permissions policy statements. For example, most users have an email claim in their ID token. For
more information about adding claims from your identity source to policies, see Mapping Amazon
Cognito tokens to Verified Permissions schema.

I want to add new actions, action context attributes, or resource attributes

An API-linked policy store and the Lambda authorizer that it creates are a point-in-time resource.
They reflect the state of your API at the time of creation. The policy store schema doesn't assign
any context attributes to actions, nor any attributes or parents to the default Application
resource.

When you add actions—paths and methods—to your API, you must update your policy store to be
aware of the new actions. You must also update your Lambda authorizer to process authorization
requests for the new actions. You can start again with a new policy store or you can update your
existing policy store.

To update your existing policy store, locate your function. Examine the logic in the automatically-
generated function and update it to process the new actions, attributes, or context. Then edit your
schema to include the new actions and attributes.

Troubleshooting 39

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/troubleshooting.html

Amazon Verified Permissions User Guide

Switching Verified Permissions policy stores

AWS Management Console

To switch policy stores or create additional policy stores

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose switch next to Current policy store.

3. You can switch between existing policy stores or create additional policy stores.

• To switch policy stores, choose the policy store ID of the policy store to switch to.

• To create a new policy store, choose Create new policy store. Follow the instructions in
Creating Verified Permissions policy stores.

AWS CLI

To switch policy stores or create additional policy stores

The AWS CLI doesn't maintain a "default" policy store. Instead, most AWS CLI commands use
the --policy-store-id to specify which policy store to use for each command.

To create a new policy store, use the create-policy-store command.

Deleting Verified Permissions policy stores

AWS Management Console

To delete a policy store

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Settings.

3. Choose Delete this policy store.

4. Type delete in the text box and choose Delete.

Switching policy stores 40

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyStore.html
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

AWS CLI

To delete a policy store

You can delete a policy store by using the delete-policy-store operation.

$ aws verifiedpermissions delete-policy-store \
 --policy-store-id PSEXAMPLEabcdefg111111

This command produces no output if successful.

Deleting policy stores 41

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy store schema

A schema is a declaration of the structure of the entity types supported by your application, and
the actions your application may provide in authorization requests.

For more information, see Cedar schema format in the Cedar policy language Reference Guide.

Note

The use of schemas in Verified Permissions is optional, but they are highly recommended
for production software. When you create a new policy, Verified Permissions can use the
schema to validate the entities and attributes referenced in the scope and conditions to
avoid typos and mistakes in policies that can lead to confusing system behavior. If you
activate policy validation, then all new policies must conform with the schema.

AWS Management Console

To create a schema

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose Create schema.

AWS CLI

To submit a new schema, or overwrite an existing schema by using the AWS CLI.

You can create a policy store by running a AWS CLI command similar to the following example.

Consider a schema that contains the following Cedar content:

{
 "MySampleNamespace": {
 "actions": {
 "remoteAccess": {

42

https://docs.cedarpolicy.com/overview/terminology.html#schema
https://docs.cedarpolicy.com/schema/schema.html
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

 "appliesTo": {
 "principalTypes": ["Employee"]
 }
 }
 },
 "entityTypes": {
 "Employee": {
 "shape": {
 "type": "Record",
 "attributes": {
 "jobLevel": {"type": "Long"},
 "name": {"type": "String"}
 }
 }
 }
 }
 }
}

You must first escape the JSON into a single line string, and preface it with a declaration of its
data type: cedarJson. The following example uses the following contents of schema.json
file that contains the escaped version of the JSON schema.

Note

The example here is line wrapped for readability. You must have the entire file on a
single line for the command to accept it.

{"cedarJson": "{\"MySampleNamespace\": {\"actions\": {\"remoteAccess\": {\"appliesTo
\":
{\"principalTypes\": [\"Employee\"]}}},\"entityTypes\": {\"Employee\": {\"shape\":
{\"attributes\": {\"jobLevel\": {\"type\": \"Long\"},\"name\": {\"type\": \"String
\"}},
\"type\": \"Record\"}}}}}"}

$ aws verifiedpermissions put-schema \
 --definition file://schema.json \
 --policy-store PSEXAMPLEabcdefg111111
{
 "policyStoreId": "PSEXAMPLEabcdefg111111",

43

Amazon Verified Permissions User Guide

 "namespaces": [
 "MySampleNamespace"
],
 "createdDate": "2023-07-17T21:07:43.659196+00:00",
 "lastUpdatedDate": "2023-08-16T17:03:53.081839+00:00"
}

AWS SDKs

You can create a policy store using the PutSchema API. For more information, see PutSchema
in the Amazon Verified Permissions API Reference Guide.

Editing schemas in Visual mode

When you select Schema in the Verified Permissions console, the Visual mode displays the Entity
types and Actions that make up your schema. At this top-level view or from within the details of
any entity, you can choose Edit schema to begin to make updates to your schema. Visual mode
isn’t available with some schema formats like nested records.

The visual schema editor begins with a series of diagrams that illustrate the relationships between
the entities in your schema.Choose Expand to maximize your view of the entity relationships of
your schema.

Actions diagram

The Actions diagram view lists the types of Principals you have configured in your policy store,
the Actions they are eligible to perform, and the Resources that they are eligible to perform
actions on. The lines between entities indicate your ability to create a policy that allows a principal
to take an action on a resource. If your actions diagram doesn't indicate a relationship between
two entities, you must create that relationship between them before you can allow or deny it in
policies. Select an entity to see a properties overview and drill down to view full details. Choose
Filter by this [action | resource type | principal type] to see an entity in a view with only its own
connections.

Entity types diagram

The Entity types diagram focuses on the relationships between principals and resources. When
you want to understand the complex nested parent relationships in your schema, review this
diagram. Hover over an entity to drill down into the parent relationships that it has.

Editing schema - Visual 44

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_PutSchema.html

Amazon Verified Permissions User Guide

Under the diagrams are list views of the Entity types and Actions in your schema. The list view is
useful when you want to immediately view the details of a specific action or entity type. Select any
entity to view details.

To edit a Verified Permissions schema in Visual mode

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose Visual mode. Review the entity-relationship diagrams and plan the changes that you
want to make to your schema. You can optionally Filter by one entity to examine its individual
connections to other entities.

4. Choose Edit schema.

5. In the Details section, type a Namespace for your schema.

6. In the Entity types section, choose Add new entity type.

7. Type the name of the entity.

8. (Optional) Choose Add a parent to add parent entities that the new entity is a member of. To
remove a parent that has been added to the entity, choose Remove next to the name of the
parent.

9. Choose Add an attribute to add attributes to the entity. Type the Attribute name and choose
the Attribute type for each attribute of the entity. Verified Permissions uses the specified
attribute values when verifying policies against the schema. Select whether each attribute is
Required. To remove an attribute that has been added to the entity, choose Remove next to
the attribute.

10. Choose Add entity type to add the entity to the schema.

11. In the Actions section, choose Add new action.

12. Type the name of the action.

13. (Optional) Choose Add a resource to add resource types for which the action applies to. To
remove a resource type that has been added to the action, choose Remove next to the name
of the resource type.

14. (Optional) Choose Add a principal to add a principal type that the action applies to. To remove
a principal type that has been added to the action, choose Remove next to the name of the
principal type.

Editing schema - Visual 45

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

15. Choose Add an attribute to add attributes that can be added to the context of an action in
your authorization requests. Enter the Attribute name and choose the Attribute type for
each attribute. Verified Permissions uses the specified attribute values when verifying policies
against the schema. Select whether each attribute is Required. To remove an attribute that has
been added to the action, choose Remove next to the attribute.

16. Choose Add action.

17. After all the entity types and actions have been added to the schema, choose Save changes.

Editing schemas in JSON mode

To edit a Verified Permissions schema in JSON mode

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose JSON mode and then choose Edit schema.

4. Enter the content of your JSON schema in the Contents field. You can't save updates to your
schema until you resolve all syntax errors. You can choose Format JSON to format the JSON
syntax of your schema with the recommended spacing and indentation.

5. Choose Save changes.

Deleting a schema

AWS Management Console

To delete a Verified Permissions schema

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Schema.

3. Choose Delete schema.

AWS CLI

To delete a Verified Permissions schema

Editing schema - JSON 46

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

There isn't a delete schema command. You can delete the schema in a policy store by using
the put-schema command with an empty schema in cedarJson field. An empty schema is
represented by a pair of curly braces '{}'.

$ aws verifiedpermissions put-schema \
 --policy-store-id PSEXAMPLEabcdefg111111 \
 --definition cedarJson='{}'{
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "namespaces": [],
 "createdDate": "2023-06-14T21:55:27.347581Z",
 "lastUpdatedDate": "2023-06-19T17:55:04.95944Z"
}

Deleting a schema 47

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy validation mode

You can set the policy validation mode in Verified Permissions to control whether policy changes
are validated against the schema in your policy store.

Important

When you turn on policy validation, all attempts to create or update a policy or policy
template are validated against the schema in the policy store. Verified Permissions rejects
the request if validation fails.

AWS Management Console

To set the policy validation mode for a policy store

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. Choose Settings.

3. In the Policy validation mode section, choose Modify.

4. Do one of the following:

• To activate policy validation and enforce that all policy changes must be validated
against your schema, choose the Strict (recommended) radio button.

• To turn off policy validation for policy changes, choose the Off radio button. Type
confirm to confirm that updates to policies will no longer be validated against your
schema.

5. Choose Save changes.

AWS CLI

To set the validation mode for a policy store

You can change the validation mode for a policy store by using the UpdatePolicyStore
operation and specifying a different value for the ValidationSettings parameter.

$ aws verifiedpermissions update-policy-store \

48

https://docs.cedarpolicy.com/overview/terminology.html#schema
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicyStore.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicyStore.html#amazonverifiedpermissions-UpdatePolicyStore-request-ValidationSettings

Amazon Verified Permissions User Guide

 --validation-settings "mode=OFF",
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-17T18:36:10.134448+00:00",
 "lastUpdatedDate": "2023-05-17T18:36:10.134448+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "validationSettings": {
 "Mode": "OFF"
 }
}

For more information, see Policy validation in the Cedar policy language Reference Guide.

49

https://docs.cedarpolicy.com/policies/validation.html

Amazon Verified Permissions User Guide

Amazon Verified Permissions policies

A policy is a statement that either permits or forbids a principal to take one or more actions on a
resource. Each policy is evaluated independently of any other policy. For more information about
how Cedar policies are structured and evaluated, see Cedar policy validation against schema in the
Cedar policy language Reference Guide.

Important

When you write Cedar policies that reference principals, resources and actions, you can
define the unique identifiers used for each of those elements. We strongly recommend that
you follow these best practices:

• Use values like universally unique identifiers (UUIDs) for all principal and resource
identifiers.

For example, if user jane leaves the company, and you later let someone else use the
name jane, then that new user automatically gets access to everything granted by
policies that still reference User::"jane". Cedar can’t distinguish between the new user
and the old. This applies to both principal and resource identifiers. Always use identifiers
that are guaranteed unique and never reused to ensure that you don’t unintentionally
grant access because of the presence of an old identifier in a policy.

Where you use a UUID for an entity, we recommend that you follow it with the //
comment specifier and the ‘friendly’ name of your entity. This helps to make your policies
easier to understand. For example: principal == User::"a1b2c3d4-e5f6-a1b2-c3d4-
EXAMPLE11111", // alice

• Do not include personally identifying, confidential, or sensitive information as part of
the unique identifier for your principals or resources. These identifiers are included in
log entries shared in AWS CloudTrail trails.

Entity formatting in Amazon Verified Permissions

Amazon Verified Permissions uses the Cedar policy language to create policies. The syntax of
policies and the data types supported match the syntax and data types outlined in Basic policy
construction in Cedar and Data types supported by Cedar topics in the Cedar policy language

Entity formatting 50

https://docs.cedarpolicy.com/policies/validation.html
https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/syntax-datatypes.html

Amazon Verified Permissions User Guide

Reference Guide. However, there are differences between Verified Permissions and Cedar in the
formatting of entities when making an authorization request.

The JSON formatting of entities in Verified Permissions differs from Cedar in the following ways:

• In Verified Permissions, a JSON object must have all of its key-value pairs wrapped in a JSON
object with the name of Record.

• A JSON list in Verified Permissions must be wrapped in a JSON key-value pair where the key
name is Set and the value is the original JSON list from Cedar.

• For String, Long, and Boolean type names, each key-value pair from Cedar is replaced by a
JSON object in Verified Permissions. The name of the object is the original key name. Inside the
JSON object, there is one key-value pair where the key name is the type name of the scalar value
(String, Long, or Boolean) and the value is the value from the Cedar entity.

• The syntax formatting of Cedar entities and Verified Permissions entities differs in the following
ways:

Cedar format Verified Permissions format

uid Identifier

type EntityType

id EntityId

attrs Attributes

parents Parents

The following example shows how entities in a list are formatted using Cedar.

[
 {
 "number": 1
 },
 {
 "sentence": "Here is an example sentence"
 },
 {
 "Question": false

Entity formatting 51

Amazon Verified Permissions User Guide

 }
]

The following exmple shows how the same entities from the previous Cedar list example are
formatted in Verified Permissions.

{
 "Set": [
 {
 "Record": {
 "number": {
 "Long": 1
 }
 }
 },
 {
 "Record": {
 "sentence": {
 "String": "Here is an example sentence"
 }
 }
 },
 {
 "Record": {
 "question": {
 "Boolean": false
 }
 }
 }
]
}

The following example shows how Cedar entities are formatted for evaluating a policy in an
authorization request.

[
 {
 "uid": {
 "type": "PhotoApp::User",
 "id": "alice"
 },
 "attrs": {
 "age": 25,

Entity formatting 52

Amazon Verified Permissions User Guide

 "name": "alice",
 "userId": "123456789012"
 },
 "parents": [
 {
 "type": "PhotoApp::UserGroup",
 "id": "alice_friends"
 },
 {
 "type": "PhotoApp::UserGroup",
 "id": "AVTeam"
 }
]
 },
 {
 "uid": {
 "type": "PhotoApp::Photo",
 "id": "vacationPhoto.jpg"
 },
 "attrs": {
 "private": false,
 "account": {
 "__entity": {
 "type": "PhotoApp::Account",
 "id": "ahmad"
 }
 }
 },
 "parents": []
 },
 {
 "uid": {
 "type": "PhotoApp::UserGroup",
 "id": "alice_friends"
 },
 "attrs": {},
 "parents": []
 },
 {
 "uid": {
 "type": "PhotoApp::UserGroup",
 "id": "AVTeam"
 },
 "attrs": {},

Entity formatting 53

Amazon Verified Permissions User Guide

 "parents": []
 }
]

The following example shows how the same entities from the previous Cedar example are
formatted in Verified Permissions.

[
 {
 "Identifier": {
 "EntityType": "PhotoApp::User",
 "EntityId": "alice"
 },
 "Attributes": {
 "age": {
 "Long": 25
 },
 "name": {
 "String": "alice"
 },
 "userId": {
 "String": "123456789012"
 }
 },
 "Parents": [
 {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "alice_friends"
 },
 {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "AVTeam"
 }
]
 },
 {
 "Identifier": {
 "EntityType": "PhotoApp::Photo",
 "EntityId": "vacationPhoto.jpg"
 },
 "Attributes": {
 "private": {
 "Boolean": false

Entity formatting 54

Amazon Verified Permissions User Guide

 },
 "account": {
 "EntityIdentifier": {
 "EntityType": "PhotoApp::Account",
 "EntityId": "ahmad"
 }
 }
 },
 "Parents": []
 },
 {
 "Identifier": {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "alice_friends"
 },
 "Parents": []
 },
 {
 "Identifier": {
 "EntityType": "PhotoApp::UserGroup",
 "EntityId": "AVTeam"
 },
 "Parents": []
 }
]

Creating Amazon Verified Permissions static policies

You can create a Cedar static policy to allow or deny principals to perform specified actions on
specified resources for your application.

AWS Management Console

To create a static policy

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy and then choose Create static policy.

4. In the Policy effect section, choose whether the policy will Permit or Forbid when a
request matches the policy.

Creating static policies 55

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

5. In the Principals scope field, choose the scope of the principals that the policy will apply
to.

• Choose Specific principal to apply the policy to a specific principal. Specify the entity
type and identifier for the principal that will be permitted for forbidden to take the
actions specified in the policy.

• Choose Group of principals to apply the policy to a group of principals. Type the
principal group name in the Group of principals field.

• Choose All principals to apply the policy to all principals in your policy store.

6. In the Resources scope field, choose the scope of the resources that the policy will apply to.

• Choose Specific resources to apply the policy to a specific resource. Specify the entity
type and identifier for the resource that the policy should apply to.

• Choose Group of resources to apply the policy to a group of resources. Type the resource
group name in the Group of resources field.

• Choose All resources to apply the policy to all resources in your policy store.

7. In the Actions scope section, choose the scope of the resources that the policy will apply
to.

• Choose Specific set of actions to apply the policy to a set of actions. Select the check
boxes next to the actions to apply the policy.

• Choose All actions to apply the policy to all actions in your policy store.

8. Choose Next.

9. In the Policy section, review your Cedar policy. You can choose Format to format the syntax
of your policy with the recommended spacing and indentation. For more information, see
Basic policy construction in Cedar in the Cedar policy language Reference Guide.

10. In the Details section, type an optional description of the policy.

11. Choose Create policy.

AWS CLI

To create a static policy

You can create a static policy by using the CreatePolicy operation. The following example
creates a simple static policy.

Creating static policies 56

https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicy.html

Amazon Verified Permissions User Guide

$ aws verifiedpermissions create-policy \
 --definition "{ \"static\": { \"Description\": \"MyTestPolicy\", \"Statement\":
 \"permit(principal,action,resource) when {principal.owner == resource.owner};\"}}"
 \
 --policy-store-id PSEXAMPLEabcdefg111111
{
"Arn": "arn:aws:verifiedpermissions::123456789012:policy/PSEXAMPLEabcdefg111111/
SPEXAMPLEabcdefg111111",
 "createdDate": "2023-05-16T20:33:01.730817+00:00",
 "lastUpdatedDate": "2023-05-16T20:33:01.730817+00:00",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "STATIC"
}

Editing Amazon Verified Permissions static policies

You can edit an existing Cedar static policy in your policy store. You can directly update only static
policies. You can change only certain elements of a static policy:

• The action referenced by the policy.

• A condition clause, such as when and unless.

You can't change these elements of a static policy:

• Changing a policy from a static policy to a template-linked policy.

• Changing the effect of a static policy from permit or forbid.

• The principal referenced by a static policy.

• The resource referenced by a static policy.

To change a template-linked policy, you must update the template instead. For more information,
see Editing policy templates.

Editing static policies 57

Amazon Verified Permissions User Guide

AWS Management Console

To edit a static policy

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose the radio button next to the static policy to edit and then choose Edit.

4. In the Policy body section, update the action or condition clause of your static policy. You
can't update the policy effect, principal, or resource of the policy.

5. Choose Update policy.

Note

If policy validation is enabled in the policy store, then updating a static policy
causes Verified Permissions to validate the policy against the schema in the policy
store. If the updated static policy doesn't pass validation, the operation fails and
the update isn't saved.

AWS CLI

To edit a static policy

You can edit a static policy by using the UpdatePolicy operation. The following example edits a
simple static policy.

The example uses the file definition.txt to contain the policy definition.

{
 "static": {
 "description": "Grant everyone of janeFriends UserGroup access to the
 vacationFolder Album",
 "statement": "permit(principal in UserGroup::\"janeFriends\", action,
 resource in Album::\"vacationFolder\");"
 }
}

The following command references that file.

Editing static policies 58

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicy.html

Amazon Verified Permissions User Guide

$ aws verifiedpermissions create-policy \
 --definition file://definition.txt \
 --policy-store-id PSEXAMPLEabcdefg111111

{
 "createdDate": "2023-06-12T20:33:37.382907+00:00",
 "lastUpdatedDate": "2023-06-12T20:33:37.382907+00:00",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "STATIC",
 "principal": {
 "entityId": "janeFriends",
 "entityType": "UserGroup"
 },
 "resource": {
 "entityId": "vacationFolder",
 "entityType": "Album"
 }
}

Viewing policies

AWS Management Console

To view your Verified Permissions policies

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policies. All of the policies you have created are
displayed.

3. Choose the Search text box to filter policies by Principal or Resource.

4. Choose the radio button next to a policy to display details about the policy, such as when
the policy was created, updated, and the policy contents.

5. You can delete a policy by choosing the radio button next to a policy and then choosing
Delete. Choose Delete policy to confirm deleting the policy.

Viewing policies 59

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

AWS CLI

To list all of the available policies in a policy store

You can view the list of policies by using the GetPolicy operation. The following example
retrieves a list that includes a static policy and a template-linked policy.

$ aws verifiedpermissions list-policies \
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "Policies": [
 {
 "createdDate": "2023-05-17T18:38:31.359864+00:00",
 "definition": {
 "static": {
 "Description": "Grant everyone of janeFriends UserGroup access
 to the vacationFolder Album"
 }
 },
 "lastUpdatedDate": "2023-05-18T16:15:04.366237+00:00",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "STATIC",
 "resource": {
 "entityId": "publicFolder",
 "entityType": "Album"
 }
 },
 {
 "createdDate": "2023-05-22T18:57:53.298278+00:00",
 "definition": {
 "templateLinked": {
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
 }
 },
 "lastUpdatedDate": "2023-05-22T18:57:53.298278+00:00",
 "policyId": "TPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "TEMPLATELINKED",
 "principal": {
 "entityId": "alice",
 "entityType": "User"
 },
 "resource": {

Viewing policies 60

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_ListPolicies.html

Amazon Verified Permissions User Guide

 "entityId": "VacationPhoto94.jpg",
 "entityType": "Photo"
 }
 }
]
}

To view the details for an individual policy

You can retrieve the details for a policy by using the GetPolicy operation. The following example
retrieves details for a template-linked policy.

$ aws verifiedpermissions get-policy \
 --policy-id TPEXAMPLEabcdefg111111
 --policy-store-id PSEXAMPLEabcdefg111111

{
 "arn": "arn:aws:verifiedpermissions::123456789012:policy/PSEXAMPLEabcdefg111111/
TPEXAMPLEabcdefg111111",
 "createdDate": "2023-03-15T16:03:07.620867Z",
 "lastUpdatedDate": "2023-03-15T16:03:07.620867Z",
 "policyDefinition": {
 "templatedPolicy": {
 "policyTemplateId": "PTEXAMPLEabcdefg111111",
 "principal": {
 "entityId": "alice",
 "entityType": "User"
 },
 "resource": {
 "entityId": "Vacation94.jpg",
 "entityType": "Photo"
 }
 }
 },
 "policyId": "TPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "TEMPLATELINKED",
 "principal": {
 "entityId": "alice",
 "entityType": "User"
 },
 "resource": {
 "entityId": "Vacation94.jpg",

Viewing policies 61

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_GetPolicy.html

Amazon Verified Permissions User Guide

 "entityType": "Photo"
 }
}

Amazon Verified Permissions example policies

The following Verified Permissions policy examples are based on the schema defined for the
hypothetical application called PhotoFlash described in the Example schema section of the Cedar
policy language Reference Guide. For more information about Cedar policy syntax, see Basic policy
construction in Cedar in the Cedar policy language Reference Guide.

Policy examples

• Allows access to individual entities

• Allows access to groups of entities

• Allows access for any entity

• Allows access for attributes of an entity (ABAC)

• Denies access

Allows access to individual entities

This example shows how you might create a policy that allows the user alice to view the photo
VacationPhoto94.jpg.

permit(
 principal == User::"alice",
 action == Action::"view",
 resource == Photo::"VacationPhoto94.jpg"
);

Allows access to groups of entities

This example shows how you might create a policy that allows anyone in the group
alice_friends to view the photo VacationPhoto94.jpg.

permit(
 principal in Group::"alice_friends",

Example policies 62

https://docs.cedarpolicy.com/schema/schema.html#example-schema
https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/syntax-policy.html

Amazon Verified Permissions User Guide

 action == Action::"view",
 resource == Photo::"VacationPhoto94.jpg"
);

This example shows how you might create a policy that allows the user alice to view any photo in
the album alice_vacation.

permit(
 principal == User::"alice",
 action == Action::"view",
 resource in Album::"alice_vacation"
);

This example shows how you might create a policy that allows the user alice to view, edit, or
delete any photo in the album alice_vacation.

permit(
 principal == User::"alice",
 action in [Action::"view", Action::"edit", Action::"delete"],
 resource in Album::"alice_vacation"
);

This example shows how you might create a policy that allows permissions for the user alice
in the album alice_vacation, where admin is a group defined in the schema hierarchy that
contains the permissions to view, edit, and delete a photo.

permit(
 principal == User::"alice",
 action in PhotoflashRole::"admin",
 resource in Album::"alice_vacation"
);

This example shows how you might create a policy that allows permissions for the user alice
in the album alice_vacation, where viewer is a group defined in the schema hierarchy that
contains the permission to view and comment on a photo. The user alice is also granted the edit
permission by the second action listed in the policy.

permit(
 principal == User::"alice",
 action in [PhotoflashRole::"viewer", Action::"edit"],

Allows access to groups of entities 63

Amazon Verified Permissions User Guide

 resource in Album::"alice_vacation"
)

Allows access for any entity

This example shows how you might create a policy that allows any authenticated principal to view
the album alice_vacation.

permit(
 principal,
 action == Action::"view",
 resource in Album::"alice_vacation"
);

This example shows how you might create a policy that allows the user alice list all the albums in
the jane account, list the photos in each album, and view photos in the account.

permit(
 principal == User::"alice",
 action in [Action::"listAlbums", Action::"listPhotos", Action::"view"],
 resource in Account::"jane"
);

This example shows how you might create a policy that allows the user alice to perform any
action on resources in the album jane_vaction.

permit(
 principal == User::"alice",
 action,
 resource in Album::"jane_vacation"
);

Allows access for attributes of an entity (ABAC)

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. Verified Permissions allows attributes to be attached to principals, actions, and
resources. These attributes can then be referenced within the when and unless clauses of policies
that evaluate the attributes of the principals, actions, and resources that make up the context of
the request.

Allows access for any entity 64

Amazon Verified Permissions User Guide

The following examples use the attributes defined in the hypothetical application called
PhotoFlash described in the Example schema section of the Cedar policy language Reference
Guide.

This example shows how you might create a policy that allows any principal in the
HardwareEngineering department with a job level of greater than or equal to 5 to view and list
photos in the album device_prototypes.

permit(
 principal,
 action in [Action::"listPhotos", Action::"view"],
 resource in Album::"device_prototypes"
)
when {
 principal.department == "HardwareEngineering" &&
 principal.jobLevel >= 5
};

This example shows how you might create a policy that allows the user alice to view any resource
of file type JPEG.

permit(
 principal == User::"alice",
 action == Action::"view",
 resource
)
when {
 resource.fileType == "JPEG"
};

Actions have context attributes. You must pass these attributes in the context of an authorization
request. This example shows how you might create a policy that allows the user alice to perform
any readOnly action. You can also set an appliesTo property for actions in your schema. This
specifies valid actions for a resource when you want to ensure that, for example, users can only
attempt to authorize ViewPhoto for a resource of type PhotoFlash::Photo.

permit(
 principal == PhotoFlash::User::"alice",
 action,
 resource
) when {

Allows access for attributes of an entity (ABAC) 65

https://docs.cedarpolicy.com/schema/schema.html#example-schema

Amazon Verified Permissions User Guide

 context has readOnly &&
 context.readOnly == true
};

A better way to set the properties of actions in your schema, however, is to arrange them into
functional action groups. For example, you can create an action named ReadOnlyPhotoAccess
and set PhotoFlash::Action::"ViewPhoto" to be a member of ReadOnlyPhotoAccess as
an action group. This example shows how you might create a policy that grants Alice access to the
read-only actions in that group.

permit(
 principal == PhotoFlash::User::"alice",
 action,
 resource
) when {
 action in PhotoFlash::Action::"ReadOnlyPhotoAccess"
};

This example shows how you might create a policy that allows all principals to perform any action
on resources for which they have owner attribute.

permit(
 principal,
 action,
 resource
)
when {
 principal == resource.owner
};

This example shows how you might create a policy that allows any principal to view any resource if
the department attribute for the principal matches the department attribute of the resource.

Note

If an entity doesn't have an attribute mentioned in a policy condition, then the policy will
be ignored when making an authorization decision and evaluation of that policy fails for
that entity. For example, any principal that does not have a department attribute cannot
be granted access to any resource by this policy.

Allows access for attributes of an entity (ABAC) 66

Amazon Verified Permissions User Guide

permit(
 principal,
 action == Action::"view",
 resource
)
when {
 principal.department == resource.owner.department
};

This example shows how you might create a policy that allows any principal to perform any action
on a resource if the principal is the owner of the resource OR if the principal is part of the admins
group for the resource.

permit(
 principal,
 action,
 resource,
)
when {
 principal == resource.owner |
 resource.admins.contains(principal)
};

Denies access

If a policy contains forbid for the effect of the policy, it constrains permissions instead of granting
permissions.

Important

During authorization, if both a permit and forbid policy are enforced, the forbid takes
precedence.

The following examples use the attributes defined in the hypothetical application called
PhotoFlash described in the Example schema section of the Cedar policy language Reference
Guide.

This example shows how you might create a policy that denies the user alice from performing all
actions except readOnly on any resource.

Denies access 67

https://docs.cedarpolicy.com/schema/schema.html#example-schema

Amazon Verified Permissions User Guide

forbid (
 principal == User::"alice",
 action,
 resource
)
unless {
 action.readOnly
};

This example shows how you might create a policy that denies access to all resources that have a
private attribute unless the principal has the owner attribute for the resource.

forbid (
 principal,
 action,
 resource
)
when {
 resource.private
}
unless {
 principal == resource.owner
};

Denies access 68

Amazon Verified Permissions User Guide

Amazon Verified Permissions policy templates

You can create Cedar policy templates in Verified Permissions to define an access control rule
for your system. Policy templates are Cedar policies with placeholders for the principal,
resource, or both. Policy templates allow a policy to be defined once and then attached to
multiple principals and resources. Updates to the policy template are reflected across all principals
and resources that use the template. For more information, see Cedar policy templates in the Cedar
policy language Reference Guide.

We recommend using policy templates to create policies that can be shared throughout your
application. For example, you could create a policy template for an editor that provides read, edit,
and comment permissions for the principal and resource that use the policy template.

permit(
 principal == ?principal,
 action in [Action::"Read", Action::"Edit", Action::"Comment"],
 resource == ?resource
);

When a principal is designated as an editor for a resource, your application could instantiate a
policy using the template to provide permissions for the principal to perform the read, edit, and
comment actions on the resource.

Creating policy templates

AWS Management Console

To create a policy template

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policy templates.

3. Choose Create policy template.

4. In the Details section, type a Policy template description.

5. In the Policy template body section, use placeholders ?principal and ?resource to
allow policies created based on this template to customize permissions they grant. You

Creating policy templates 69

https://docs.cedarpolicy.com/policies/templates.html
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

can choose Format to format the syntax of your policy template with the recommended
spacing and indentation.

6. Choose Create policy template.

AWS CLI

To create a policy template

You can create a policy template by using the CreatePolicyTemplate operation. The following
example creates a policy template with a placeholder for the principal.

The file template1.txt contains the following.

"VacationAccess"
permit(
 principal in ?principal,
 action == Action::"view",
 resource == Photo::"VacationPhoto94.jpg"
);

$ aws verifiedpermissions create-policy-template \
 --description "Template for vacation picture access"
 --statement file://template1.txt
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-18T21:17:47.284268+00:00",
 "lastUpdatedDate": "2023-05-18T21:17:47.284268+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
}

Creating template-linked policies

You can create template-linked policies to link to a policy template. Template-linked policies stay
linked to their policy templates. If you change the policy statement in the policy template, any
policies linked to that template automatically use the new statement for all authorization decisions
made from that moment forward.

Creating template-linked policies 70

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreatePolicyTemplate.html

Amazon Verified Permissions User Guide

AWS Management Console

To create a template-linked policy by instantiating a policy template

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policies.

3. Choose Create policy and then choose Create template-linked policy.

4. Choose the radio button next to the policy template to use and then choose Next.

5. Type the Principal and Resource to be used for this specific instance of the template-linked
policy. The specified values are displayed in the Policy statement preview field.

Note

The Principal and Resource values must have the same formatting as static
policies. For example, to specify the AdminUsers group for the principal, type
Group::"AdminUsers". If you type AdminUsers, a validation error is displayed.

6. Choose Create template-linked policy.

The new template-linked policy is displayed under Policies.

AWS CLI

To create a template-linked policy by instantiating a policy template

You can create a template-linked policy that references an existing policy template and that
specifies values for any placeholders used by the template.

The following example creates a template-linked policy that uses a template with the following
statement:

permit(
 principal in ?principal,
 action == Action::"view",
 resource == Photo::"VacationPhoto94.jpg"
);

Creating template-linked policies 71

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

It also uses the following definition.txt file to supply the value for the definition
parameter:

{
 "templateLinked": {
 "policyTemplateId": "pt-4651be67-c128-4d22-8e67-9b068980c631",
 "principal": {
 "entityType": "User",
 "entityId": "alice"
 }
 }
}

The output shows both the resource, which it gets from the template, and the principal, which it
gets from the definition parameter

$ aws verifiedpermissions create-policy \
 --definition file://definition.txt
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-22T18:57:53.298278+00:00",
 "lastUpdatedDate": "2023-05-22T18:57:53.298278+00:00",
 "policyId": "TPEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyType": "TEMPLATELINKED",
 "principal": {
 "entityId": "alice",
 "entityType": "User"
 },
 "resource": {
 "entityId": "VacationPhoto94.jpg",
 "entityType": "Photo"
 }
}

Creating template-linked policies 72

Amazon Verified Permissions User Guide

Editing policy templates

AWS Management Console

To edit your policy templates

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Policy templates. The console displays all of the
policy templates you created in the current policy store.

3. Choose the radio button next to a policy template to display details about the policy
template, such as when the policy template was created, updated, and the policy template
contents.

4. Choose Edit to edit your policy template. Update the Policy description and Policy body as
necessary and then choose Update policy template.

5. You can delete a policy template by choosing the radio button next to a policy template
and then choosing Delete. Choose OK to confirm deleting the policy template.

AWS CLI

To update a policy template

You can create a static policy by using the UpdatePolicy operation. The following example
updates the specified policy template by replacing its policy body with a new policy defined in a
file.

Contents of file template1.txt:

permit(
 principal in ?principal,
 action == Action::"view",
 resource in ?resource)
when {
 principal has department && principal.department == "research"
};

$ aws verifiedpermissions update-policy-template \
 --policy-template-id PTEXAMPLEabcdefg111111 \
 --description "My updated template description" \

Editing policy templates 73

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdatePolicy.html

Amazon Verified Permissions User Guide

 --statement file://template1.txt \
 --policy-store-id PSEXAMPLEabcdefg111111
{
 "createdDate": "2023-05-17T18:58:48.795411+00:00",
 "lastUpdatedDate": "2023-05-17T19:18:48.870209+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
}

Example template-linked policies for Verified Permissions
sample policy stores

When you create a policy store in Verified Permissions using the Sample policy store method, your
policy store is created with predefined policies, policy templates, and a schema for the sample
project you chose. The following Verified Permissions template-linked policy examples can be used
with the sample policy stores and their respective policies, policy templates, and schemas.

PhotoFlash template-linked policy examples

This example shows how you might create a template-linked policy that uses the policy template
Grant limited access to non-private shared photos with an individual user and photo.

Note

Cedar policy language considers an entity to be in itself. Therefore, principal in
User::"Alice" is equivalent to principal == User::"Alice".

permit (
 principal in PhotoFlash::User::"Alice",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Photo::"VacationPhoto94.jpg"
);

This example shows how you might create a template-linked policy that uses the policy template
Grant limited access to non-private shared photos with an individual user and album.

permit (

Example template-linked policies for sample policy stores 74

Amazon Verified Permissions User Guide

 principal in PhotoFlash::User::"Alice",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Album::"Italy2023"
);

This example shows how you might create a template-linked policy that uses the policy template
Grant limited access to non-private shared photos with a friend group and individual photo.

permit (
 principal in PhotoFlash::FriendGroup::"Jane::MySchoolFriends",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Photo::"VacationPhoto94.jpg"
);

This example shows how you might create a template-linked policy that uses the policy template
Grant limited access to non-private shared photos with a friend group and album.

permit (
 principal in PhotoFlash::FriendGroup::"Jane::MySchoolFriends",
 action in PhotoFlash::Action::"SharePhotoLimitedAccess",
 resource in PhotoFlash::Album::"Italy2023"
);

This example shows how you might create a template-linked policy that uses the policy template
Grant full access to non-private shared photos with a friend group and an individual photo.

permit (
 principal in PhotoFlash::UserGroup::"Jane::MySchoolFriends",
 action in PhotoFlash::Action::"SharePhotoFullAccess",
 resource in PhotoFlash::Photo::"VacationPhoto94.jpg"
);

This example shows how you might create a template-linked policy that uses the policy template
Block user from an account.

forbid(
 principal == PhotoFlash::User::"Bob",
 action,
 resource in PhotoFlash::Account::"Alice-account"
);

PhotoFlash template-linked policy examples 75

Amazon Verified Permissions User Guide

DigitalPetStore

The DigitalPetStore sample policy store does not include any policy templates. You can view the
policies included with the policy store by choosing Policies in the navigation pane on the left after
creating the DigitalPetStore sample policy store.

TinyToDo template-linked policy examples

This example shows how you might create a template-linked policy that uses the policy template
that gives viewer access for an individual user and task list.

permit (
 principal == TinyTodo::User::"https://cognito-idp.us-east-1.amazonaws.com/us-
east-1_h2aKCU1ts|5ae0c4b1-6de8-4dff-b52e-158188686f31|bob",
 action in [TinyTodo::Action::"ReadList", TinyTodo::Action::"ListTasks"],
 resource == TinyTodo::List::"1"
);

This example shows how you might create a template-linked policy that uses the policy template
that gives editor access for an individual user and task list.

permit (
 principal == TinyTodo::User::"https://cognito-idp.us-east-1.amazonaws.com/us-
east-1_h2aKCU1ts|5ae0c4b1-6de8-4dff-b52e-158188686f31|bob",
 action in [
 TinyTodo::Action::"ReadList",
 TinyTodo::Action::"UpdateList",
 TinyTodo::Action::"ListTasks",
 TinyTodo::Action::"CreateTask",
 TinyTodo::Action::"UpdateTask",
 TinyTodo::Action::"DeleteTask"
],
 resource == TinyTodo::List::"1"
);

DigitalPetStore 76

Amazon Verified Permissions User Guide

Using Amazon Verified Permissions with identity
providers

You can use OpenID Connect (OIDC) identity providers (IdPs) with Verified Permissions to pass user
attributes to use as principals in Verified Permissions policies.

Working with Amazon Cognito and identity sources

An identity source is a collection of user information referenced by an identity provider for
simplifying authorization requests to your policy stores. You can create an identity source to
provide information about principals for your Verified Permissions applications. You can specify
the AWS Region, Amazon Cognito user pool ID, and principal type of your identity sources. Because
Verified Permissions only works with Amazon Cognito user pools in the same AWS account, you
can't specify an identity source in another account.

User pool JSON Web Token (JWT) claims contain user attributes. You can add custom claims to
inform the authorization decisions that Verified Permissions makes. Identity token claims include
cognito:username and cognito:groups. For more information, see Using tokens with user
pools in the Amazon Cognito Developer Guide.

Important

Although you can revoke Amazon Cognito tokens before they expire, JWTs are considered
to be stateless resources that are self-contained with a signature and validity. Services that
conform with the JSON Web Token RFC 7519 are expected to validate tokens remotely and
aren't required to validate them with the issuer. This means that it is possible for Verified
Permissions to grant access based on a token that was revoked or issued for user that was
later deleted. To mitigate this risk, we recommend that you create your tokens with the
shortest possible validity duration and revoke refresh tokens when you want to remove
authorization to continue a user's session.

You can also add custom attributes to your user pool. Custom attributes require the
custom: prefix to distinguish them from standard attributes. For example, you can add a
custom:joblevel attribute to a user pool. For more information, see Custom attributes in the
Amazon Cognito Developer Guide.

Working with Amazon Cognito and identity sources 77

https://openid.net/specs/openid-connect-core-1_0.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-using-tokens-with-identity-providers.html
https://datatracker.ietf.org/doc/html/rfc7519
https://docs.aws.amazon.com/cognito/latest/developerguide/user-pool-settings-attributes.html#user-pool-settings-custom-attributes

Amazon Verified Permissions User Guide

When writing Cedar policies in Verified Permissions using Amazon Cognito user pool claims and
attributes that contain a : character, you must reference them in Cedar policies with a period
(.) instead of a colon (:) to comply with Cedar policy syntax. For example, you must change
cognito:username and cognito:groups to cognito.username and cognito.groups
respectively.

Note

If a token contains a claim with a cognito: or custom: prefix and a cognito or
custom claim, an authorization request with IsAuthorizedWithToken will fail with a
ValidationException.

This example shows how you might create a policy that references Amazon Cognito user pools
custom claims corresponding to a principal.

permit(
 principal == ExampleCo::User::"us-east-1_example|4fe90f4a-ref8d9-4033-
a750-4c8622d62fb6",
 action,
 resource == ExampleCo::Photo::"VacationPhoto94.jpg"
) when { principal.cognito.username == "alice" };

For more information, see Authorization with Amazon Verified Permissions in the Amazon Cognito
Developer Guide.

Working with other identity providers

You can extract your entity attributes from a JSON Web Token (JWT) from any OpenID Connect
(OIDC) provider (IdP) and parse it into Verified Permissions.

This example shows how you might call Verified Permissions from an OIDC-compliant IdP.¹

async function authorizeUsingJwtToken(jwtToken) {

 const payload = await verifier.verify(jwtToken);

 var principalEntity = {
 entityType: "PhotoFlash::User", // the application needs to fill in the
 relevant user type

Working with other identity providers 78

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

 entityId: payload["sub"], // the application need to use the claim that
 represents the user-id
 };
 var resourceEntity = {
 entityType: "PhotoFlash::Photo", //the application needs to fill in the
 relevant resource type
 entityId: "jane_photo_123.jpg", // the application needs to fill in the
 relevant resource id
 };
 var action = {
 actionType: "PhotoFlash::Action", //the application needs to fill in the
 relevant action id
 actionId: "GetPhoto", //the application needs to fill in the relevant action
 type
 };
 var entities = {
 entityList: [],
 };
 entities.entityList.push(...getUserEntitiesFromToken(payload));
 var policyStoreId = "PSEXAMPLEabcdefg111111"; // set your own policy store id

 const authResult = await client
 .isAuthorized({
 policyStoreId: policyStoreId,
 principal: principalEntity,
 resource: resourceEntity,
 action: action,
 entities,
 })
 .promise();

 return authResult;

}

function getUserEntitiesFromToken(payload) {
 let attributes = {};
 let claimsNotPassedInEntities = ['aud', 'sub', 'exp', 'jti', 'iss'];
 Object.entries(payload).forEach(([key, value]) => {
 if (claimsNotPassedInEntities.includes(key)) {
 return;
 }
 if (Array.isArray(value)) {
 var attibuteItem = [];

Working with other identity providers 79

Amazon Verified Permissions User Guide

 value.forEach((item) => {
 attibuteItem.push({
 string: item,
 });
 });
 attributes[key] = {
 set: attibuteItem,
 };
 } else if (typeof value === 'string') {
 attributes[key] = {
 string: value,
 }
 } else if (typeof value === 'bigint' || typeof value ==='number') {
 attributes[key] = {
 long: value,
 }
 } else if (typeof value === 'bigint' || typeof value ==='number') {
 attributes[key] = {
 long: value,
 }
 } else if (typeof value === 'boolean') {
 attributes[key] = {
 boolean: value,
 }
 }

 });

 let entityItem = {
 attributes: attributes,
 identifier: {
 entityType: "PhotoFlash::User",
 entityId: payload["sub"], // the application need to use the claim that
 represents the user-id
 }
 };
 return [entityItem];
}

¹ This code example uses the aws-jwt-verify library for verifying JWTs signed by OIDC-compatible
IdPs.

Working with other identity providers 80

https://github.com/awslabs/aws-jwt-verify

Amazon Verified Permissions User Guide

Creating Amazon Verified Permissions identity sources

The following procedure adds an Amazon Cognito identity source to your policy store.

Note

Identity sources is not available in the navigation pane on the left until you have created a
policy store. Identity sources that you create are associated with the current policy store.

You can leave out the principal entity type when you create an identity source with create-identity-
source in the AWS CLI or CreateIdentitySource in the Verified Permissions API. However, a blank
entity type creates an identity source with an entity type of AWS::Cognito. This entity name isn't
compatible with policy store schema. To integrate Amazon Cognito identities with your policy store
schema, you must set the principal entity type to a supported policy store entity.

AWS Management Console

To create an Amazon Cognito user pools identity source

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Identity sources.

3. Choose Create identity source.

4. In the Cognito user pool details section, select the AWS Region and type the User pool ID
for your identity source.

5. In the Principal details section, choose the Principal type for the identity source. Identities
from the connected Amazon Cognito user pools will be mapped to the selected principal
type.

6. In the Client application validation section, choose whether to validate client application
IDs.

• To validate client application IDs, choose Only accept tokens with matching client
application IDs. Choose Add new client application ID for each client application ID to
validate. To remove a client application ID that has been added, choose Remove next to
the client application ID.

Creating identity sources 81

https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-identity-source.html
https://docs.aws.amazon.com/cli/latest/reference/verifiedpermissions/create-identity-source.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

• Choose Do not validate client application IDs if you do not want to validate client
application IDs.

7. Choose Create identity source.

8. Before you can reference attributes you extract from identity or access tokens in your Cedar
policies, you must update your schema to make Cedar aware of the type of principal that
your identity source creates. That addition to the schema must include the attributes that
you want to reference in your Cedar policies. For more information about mapping Amazon
Cognito token attributes to Cedar principal attributes, see Mapping Amazon Cognito tokens
to Verified Permissions schema.

AWS CLI

To create an Amazon Cognito user pools identity source

You can an create an identity source by using the CreateIdentitySource operation. The following
example creates an identity source that can access authenticated identities from a Amazon
Cognito user pool.

The following config.txt file contains the details of the Amazon Cognito user pool for use by
the --configuration parameter in the create-identity-source command.

{
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:us-west-2:123456789012:userpool/us-
west-2_1a2b3c4d5",
 "clientIds":["a1b2c3d4e5f6g7h8i9j0kalbmc"]
 }
}

Command:

$ aws verifiedpermissions create-identity-source \
 --configuration file://config.txt \
 --principal-entity-type "User" \
 --policy-store-id 123456789012
{
 "createdDate": "2023-05-19T20:30:28.214829+00:00",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-05-19T20:30:28.214829+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"

Creating identity sources 82

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_CreateIdentitySource.html

Amazon Verified Permissions User Guide

}

Before you can reference attributes you extract from identity or access tokens in your Cedar
policies, you must update your schema to make Cedar aware of the type of principal that your
identity source creates. That addition to the schema must include the attributes that you want
to reference in your Cedar policies. For more information about mapping Amazon Cognito
token attributes to Cedar principal attributes, see Mapping Amazon Cognito tokens to Verified
Permissions schema.

For more information about using Amazon Cognito access and identity tokens for authenticated
users in Verified Permissions, see Authorization with Amazon Verified Permissions in the Amazon
Cognito Developer Guide.

Editing Amazon Verified Permissions identity sources

AWS Management Console

To update an Amazon Cognito user pools identity source

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Identity sources.

3. Choose the ID of the identity source to edit.

4. Choose Edit.

5. In the Cognito user pool details section, select the AWS Region and type the User pool ID
for your identity source.

6. In the Principal details section, you can update the Principal type for the identity source.
Identities from the connected Amazon Cognito user pools will be mapped to the selected
principal type.

7. In the Client application validation section, choose whether to validate client application
IDs.

• To validate client application IDs, choose Only accept tokens with matching client
application IDs. Choose Add new client application ID for each client application ID to
validate. To remove a client application ID that has been added, choose Remove next to
the client application ID.

Editing identity sources 83

https://docs.aws.amazon.com/
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

• Choose Do not validate client application IDs if you do not want to validate client
application IDs.

8. Choose Save changes.

9. If you changed the principal type for the identity source, you must update your schema to
correctly reflect the updated principal type.

You can delete an identity source by choosing the radio button next to an identity source and
then choosing Delete identity source. Type delete in the text box and then choose Delete
identity source to confirm deleting the identity source.

AWS CLI

To update an Amazon Cognito user pools identity source

You can update an identity source by using the UpdateIdentitySource operation. The following
example updates the specified identity source to use a different Amazon Cognito user pool.

The following config.txt file contains the details of the Amazon Cognito user pool for use by
the --configuration parameter in the create-identity-source command.

{
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:us-west-2:123456789012:userpool/us-
west-2_1a2b3c4d5",
 "clientIds":["a1b2c3d4e5f6g7h8i9j0kalbmc"]
 }
}

Command:

$ aws verifiedpermissions update-identity-source \
 --update-configuration file://config.txt \
 --policy-store-id 123456789012
{
 "createdDate": "2023-05-19T20:30:28.214829+00:00",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-05-19T20:30:28.214829+00:00",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

Editing identity sources 84

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_UpdateIdentitySource.html

Amazon Verified Permissions User Guide

If you change the principal type for the identity source, you must update your schema to
correctly reflect the updated principal type.

Mapping Amazon Cognito tokens to Verified Permissions
schema

Amazon Cognito identity tokens have four types of attributes that affect the naming of attributes
in your Verified Permissions schema. To use Amazon Cognito as an identity source in your Verified
Permissions policy store and write policies using attributes from the Amazon Cognito token
that will be verified using the isAuthorizedWithToken API action, you must add Amazon Cognito
attributes to your schema.

• Amazon Cognito-specific claims that have the cognito namespace prefix, such as
cognito:username.

Note

The cognito:groups Amazon Cognito-specific claim is not currently mapped in
Verified Permissions schemas. Amazon Cognito groups can use identifiers that are not
guaranteed to be unique and that can be reused. Including them in an authorization
decision could introduce security risks to your application.

• Custom claims that have the custom namespace prefix, such as
custom:employmentStoreCode.

• Standard claims that do not have a namespace prefix, such as email.

• Transient claims that are added during token customization, such as tenant, department, and
clearance.

For more information about using Amazon Cognito access and identity tokens for authenticated
users in Verified Permissions, see Authorization with Amazon Verified Permissions in the Amazon
Cognito Developer Guide.

Mapping Amazon Cognito tokens to schema 85

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-authorization-with-avp.html

Amazon Verified Permissions User Guide

Mapping Amazon Cognito ID tokens

The following example identity token has each of the four types of attributes. It
includes the Amazon Cognito-specific claim cognito:username, the custom claim
custom:employmentStoreCode, the standard claim email, and the transient claim tenant.

{
 "sub": "91eb4550-XXX",
 "cognito:groups": [
 "Store-Owner-Role",
 "Customer"
],
 "email_verified": true,
 "clearance": "confidential",
 "iss": "https://cognito-idp.us-east-2.amazonaws.com/us-east-2_wBEbEZKaX",
 "cognito:username": "alice",
 "custom:employmentStoreCode": "petstore-dallas",
 "origin_jti": "5b9f50a3-05da-454a-8b99-b79c2349de77",
 "aud": "52n97d5afhfiuXXX",
 "event_id": "0ed5ad5c-7182-4ecf-XXX",
 "token_use": "id",
 "auth_time": 1687885407,
 "department": "engineering",
 "exp": 1687889006,
 "iat": 1687885407,
 "tenant": "x11app-tenant-1",
 "jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "email": "alice@example.com"
}

When you create an identity store and associate it with your Amazon Cognito user pool,
you specify the type of principal that Cedar generates when a token is passed to an
IsAuthorizedWithToken evaluation request. Your policies can then test attributes of that
principal as part of evaluating that request. You must define that principal type and the attributes
that you want to be able to reference from you Cedar policies.

The following example shows how to reflect the attributes from the example identity token in your
Verified Permissions schema. For more information about editing your schema, see Editing schemas
in JSON mode. If your identity source configuration specifies the principal type CognitoUser,
then you can include something similar to the following example to make those attributes
available to Cedar.

Mapping ID tokens 86

Amazon Verified Permissions User Guide

"CognitoUser": {
 "shape": {
 "type": "Record",
 "attributes": {
 "cognito": {
 "type": "Record",
 "required": true,
 "attributes": {
 "username": {
 "type": "String",
 "required": true
 }
 }
 },
 "custom": {
 "type": "Record",
 "required": true,
 "attributes": {
 "employmentStoreCode": {
 "type": "String",
 "required": true
 }
 }
 },
 "email": {
 "type": "String"
 },
 "tenant": {
 "type": "String",
 "required": true
 }
 }
 }
}

After updating your schema to reflect the Amazon Cognito attributes, you can create policies that
reference the attributes.

permit(principal, action, resource)
when {
 principal.cognito.username == "alice" &&
 principal.custom.employmentStoreCode == "petstore-dallas" &&
 principal.tenant == "x11app-tenant-1" &&

Mapping ID tokens 87

Amazon Verified Permissions User Guide

 principal has email && principal.email == "alice@example.com"
};

Mapping Amazon Cognito access tokens

Amazon Cognito access tokens have claims that can be used for authorization:

• client_id represents the application client ID. This value can be used in machine-to-machine
authorization scenarios to represent identity of the machine.

• scope is the OAuth 2.0 standard scope that represents the authorized scopes for the bearer of
the token.

An Amazon Cognito access token is mapped to a context object when passed
to Verified Permissions. Attributes of the access token can be referenced using
context.token.attribute_name. The following example access token includes both the
client_id and scope claims.

{
 "sub": "91eb4550-9091-708c-a7a6-9758ef8b6b1e",
 "cognito:groups": [
 "Store-Owner-Role",
 "Customer"
],
 "iss": "https://cognito-idp.us-east-2.amazonaws.com/us-east-2_wBEbEZKaX",
 "client_id": "52n97d5afhfiu1c4di1k5m8f60",
 "origin_jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "event_id": "bda909cb-3e29-4bb8-83e3-ce6808f49011",
 "token_use": "access",
 "scope": "aws.cognito.signin.user.admin",
 "auth_time": 1688092966,
 "exp": 1688096566,
 "iat": 1688092966,
 "jti": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN2222222",
 "username": "alice"
}

The following example shows how to reflect the attributes from the example access token in your
Verified Permissions schema. For more information about editing your schema, see Editing schemas
in JSON mode.

Mapping access tokens 88

https://oauth.net/2/scope/

Amazon Verified Permissions User Guide

{
 "MyApplication": {
 "actions": {
 "Read": {
 "appliesTo": {
 "context": {
 "type": "ReusedContext"
 },
 "resourceTypes": [
 "Application"
],
 "principalTypes": [
 "User"
]
 }
 }
 },
 ...
 ...
 "commonTypes": {
 "ReusedContext": {
 "attributes": {
 "token": {
 "type": "Record",
 "attributes": {
 "scope": {
 "type": "Set",
 "element": {
 "type": "String"
 }
 },
 "client_id": {
 "type": "String"
 }
 }
 }
 },
 "type": "Record"
 }
 }
 }
}

Mapping access tokens 89

Amazon Verified Permissions User Guide

After updating your schema to reflect the Amazon Cognito attributes, you can create policies that
reference the attributes.

permit(principal, action in [MyApplication::Action::"Read",
 MyApplication::Action::"GetStoreInventory"], resource)
when {
 context.token.client_id == "52n97d5afhfiu1c4di1k5m8f60" &&
 context.token.scope.contains("aws.cognito.signin.user.admin")
};

Mapping access tokens 90

Amazon Verified Permissions User Guide

Designing an authorization model for your application

As you prepare to use the Amazon Verified Permissions service within a software application, it can
be challenging to leap immediately into writing policy statements as a first step. This would be
similar to beginning development of other portions of an application by writing SQL statements
or API specifications before fully deciding what the application should do. Instead, you should
begin with a user experience, gathering a clear understanding of what end-users should see when
managing permissions in the application UI. Then, work backwards from that experience to arrive
at an implementation approach.

As you do this work, you’ll find yourself asking questions such as:

• What are my resources? Do they have relationships to each other? For example, do files reside
within a folder?

• What actions can principals perform on each resource?

• How do principals acquire those permissions?

• Do you want your end-users to choose from predefined permissions such as “Admin”, “Operator”,
or “ReadOnly”, or should they create ad-hoc policy statements? Or both?

• Should permissions inherit across resources, such as files inheriting permissions from a parent
folder?

• What types of queries are necessary to render the user experience? For example, do you need to
list all of the resources that a principal can access to render that user's home page?

• Can users accidentally lock themselves out of their own resources? Does that need to be avoided?

The end result of this exercise is referred to as an authorization model; it defines the principals,
resources, actions, and how they interrelate to each other. Producing this model doesn’t require
unique knowledge of Cedar or the Verified Permissions service. Instead, it is first and foremost a
user experience design exercise, much like any other, and can manifest in artifacts such as interface
mockups, logical diagrams, and an overall description of how permissions influence what users
see in the product. Cedar is designed to be flexible enough to meet customers at a model, rather
than forcing the model to bend unnaturally to comply with a Cedar's implementation. As a result,
gaining a crisp understanding of the desired user experience is the best way to arrive at an optimal
model.

This section provides general guidance on how to approach the design exercise, things to watch out
for, and a collection of best practices for using Verified Permissions successfully.

91

Amazon Verified Permissions User Guide

In addition to the guidelines presented here, remember to consider the best practices in the Cedar
policy language reference guide.

Topics

• There isn't a canonical “correct” model

• Focus on your resources beyond API operations

• Compound authorization is normal

• Multi-tenancy considerations

• When possible, populate the policy scope

• Every resource lives in a container

• Separate the principals from the resource containers

• Don't embed permissions inside attributes

• Prefer fine-grained permissions in the model and aggregate permissions in the user interface

• Consider other reasons to query authorization

There isn't a canonical “correct” model

When you design an authorization model, there is no single, uniquely correct answer. Different
applications can effectively use different authorization models for similar concepts, and this is OK.
For example, consider the representation of a computer's file system. When you create a file in a
Unix-like operating system, it doesn't automatically inherit permissions from the parent folder. In
contrast, in many other operating systems and most online file-sharing services, files do inherit
permissions from its parent folder. Both choices are valid depending upon the circumstances the
application is optimizing for.

The correctness of an authorization solution isn’t absolute, but should be viewed in terms of how
it delivers the experience that your customers want, and whether it protects their resources in the
way they expect. If your authorization model delivers on this, then it is successful.

This is why beginning your design with the desired user experience is the most helpful prerequisite
to the creation of an effective authorization model.

Focus on your resources beyond API operations

In most consumer-facing applications, permissions are modeled around the resources supported
by the application. For example, a file-sharing application might represent permissions as actions

No single correct model 92

https://docs.cedarpolicy.com/bestpractices/bp-naming-conventions.html
https://docs.cedarpolicy.com/bestpractices/bp-naming-conventions.html

Amazon Verified Permissions User Guide

that can be performed on a file or a folder. This is a good, simple model that abstracts away the
underlying implementation and the backend API operations.

In contrast, other types of applications, particularly web services, frequently design permissions
around the API operations themselves. For example, if a web service provides an API named
createThing(), the authorization model might define a corresponding permission, or an action
in Cedar named createThing. This works in many situations and makes it easy to understand
the permissions. To invoke the createThing operation, you need the createThing action
permission. Seems simple, right?

You'll find that the getting started process in the Verified Permissions console includes the option
to build your resources and actions directly from an API. This is a useful baseline: a direct mapping
between your policy store and the API that it authorizes for.

However, this API-focused approach can be less than optimal, because APIs are merely a proxy for
what your customers are truly trying to protect: the underlying data and resources. If multiple APIs
control access to the same resources, it can be difficult for administrators to reason about the paths
to those resources and manage access accordingly.

For example, consider a user directory that contains the members of an organization. Users can be
organized into groups, and one of the security goals is to prohibit discovery of group memberships
by unauthorized parties. The service managing this user directory provides two API operations:

• listMembersOfGroup

• listGroupMembershipsForUser

Customers can use either of these operations to discover group membership. Therefore, the
permissions administrator must remember to coordinate access to both operations. This is
complicated further if you later choose to add a new API operation to address additional use cases,
such as the following.

• isUserInGroups (a new API to quickly test if a user belongs in one or more groups)

From a security perspective, this API opens a third path for discovering group memberships,
disrupting the carefully crafted permissions of the administrator.

We recommend that you ignore the API semantics and instead focus on the underlying data and
resources and their association operations. Applying this approach to the group membership

Focus on resources 93

Amazon Verified Permissions User Guide

example would lead to an abstract permission, such as viewGroupMembership, which each of the
three API operations must consult.

API Name Permissions

listMembersOfGroup requires viewGroupMembership permission on the group

listGroupMembershi
psForUser

requires viewGroupMembership permission on the user

isUserInGroups requires viewGroupMembership permission on the user

By defining this one permission, the administrator successfully controls access to discovering group
memberships, now and forever. As a tradeoff, each API operation must now document the possibly
several permissions that it requires, and the administrator must consult this documentation
when crafting permissions. This can be a valid tradeoff when necessary to meet your security
requirements.

Compound authorization is normal

Compound authorization occurs when a single user activity, such as clicking a button in your
application's interface, requires multiple individual authorization queries to determine whether
that activity is permitted. For example, moving a file to a new directory in a file system might
require three different permissions: the ability to delete a file from the source directory, the ability
to add a file to the destination directory, and possibly the ability to touch the file itself (depending
on the application).

If you're new to designing an authorization model, you might think that every authorization
decision must be resolvable in a single authorization query. But this can lead to overly complex
models and convoluted policy statements. In practice, using compound authorizations can be
useful in helping you to produce a simpler authorization model. One measure of a well-designed
authorization model is that when you have sufficiently decomposed individual actions, your
compound operations, such as moving a file, can be represented by an intuitive aggregation of
primitives.

Another situation where compound authorization occurs is when multiple parties are involved
in the process of granting a permission. Consider an organizational directory where users can be

Compound authorization 94

Amazon Verified Permissions User Guide

members of groups. A simple approach is to give the group owner permission to add anyone.
However, what if you want your users to first consent to being added? This introduces a handshake
agreement in which both the user and the group must consent to the membership. To accomplish
this, you can introduce another permission that is bound to the user and specifies whether the user
can be added to any group, or to a particular group. When a caller subsequently attempts to add
members to a group, the application must enforce both sides of the permissions: that the caller has
permission to add members to the specified group, and that the individual user being added has
the permissions to be added. When N-way handshakes exist, it is common to observe N compound
authorization queries to enforce each portion of the agreement.

If you find yourself with a design challenge where multiple resources are involved and it is unclear
how to model the permissions, it can be a sign that you have a compound authorization scenario.
In this case, a solution might be found by decomposing the operation into multiple, individual
authorization checks.

Multi-tenancy considerations

You might want to develop applications for use by multiple customers - businesses that consume
your application, or tenants - and integrate them with Amazon Verified Permissions. Before you
develop your authorization model, develop a multi-tenant strategy. You can manage the policies of
your customers in one shared policy store, or assign each a per-tenant policy store.

1. One shared policy store

All tenants share a single policy store. The application sends all authorization requests to the
shared policy store.

2. Per-tenant policy store

Each tenant has a dedicated policy store. The application will query different policy stores for an
authorization decision, depending on the tenant that makes the request.

Neither strategy creates a relatively-higher volume of authorization requests that might have
an impact on your AWS bill. So how, then, should you design your approach? The following are
common conditions that might contribute to your Verified Permissions multi-tenancy authorization
strategy.

Consider multi-tenancy 95

Amazon Verified Permissions User Guide

Tenant policies isolation

Isolation of the policies of each tenant from the others is important to protect tenant data.
When each tenant has their own policy store, they each have their own isolated set of policies.

Authorization flow

You can identify a tenant making an authorization request with a policy store ID in the request,
with per-tenant policy stores. With a shared policy store, all requests use the same policy store
ID.

Templates and schema management

Your policy templates and a policy store schema add a level of design and maintenance
overhead in each policy store.

Global policies management

You might want to apply some global policies to every tenant. The level of overhead for
management of global policies varies between shared and per-tenant policy store models.

Tenant off-boarding

Some tenants will contribute elements to your schema and policies that are specific to their
case. When a tenant is no longer active with your organization and you want to remove their
data, the level of effort varies with their level of isolation from other tenants.

Service resource quotas

Verified Permissions has resource and request-rate quotas that might influence your multi-
tenancy decision. For more information about quotas, see Quotas for resources.

Comparing shared policy stores and per-tenant policy stores

Each consideration requires its own level of time and resource commitment in shared and per-
tenant policy store models.

Consideration Effort level in a shared policy
store

Effort level in per-tenant
policy stores

Tenant policies isolation Medium. Must include tenant
identifiers in policies and
authorization requests.

Low. Isolation is default
behavior. Tenant-specific

Comparing shared policy stores and per-tenant policy stores 96

https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/policy-templates.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/schema.html

Amazon Verified Permissions User Guide

policies are inaccessible to
other tenants.

Authorization flow Low. All queries target one
policy store.

Medium. Must maintain
mappings between each
tenant and their policy store
ID.

Templates and schema
management

Low. Must make one schema
work for all tenants.

High. Schemas and templates
might be less complex
individually, but changes
require more coordination
and complexity.

Global policies management Low. All policies are global
and can be centrally updated.

High. You must add global
policies to each policy store in
onboarding. Replicate global
policy updates between many
policy stores.

Tenant off-boarding Medium. Must identify and
delete only tenant-specific
policies.

Low. Delete the policy store.

Service resource quotas High. Tenants share resource
quotas that affect policy
stores like schema size, policy
size per resource, and identity
sources per policy store.

Low. Each tenant has
dedicated resource quotas.

How to choose

Each multi-tenant application is different. Carefully compare the two approaches and their
considerations before making an architectural decision.

If your application doesn't require tenant-specific policies and uses a single identity source, one
shared policy store for all tenants is likely to be the most effective solution. This results in a simpler

How to choose 97

Amazon Verified Permissions User Guide

authorization flow and global policy management. Off-boarding a tenant using one shared policy
store requires less effort because the application does not need to delete tenant-specific policies.

But if your application requires many tenant-specific policies, or uses multiple identity sources, per-
tenant policy stores are likely to be most effective. You can control access to tenant policies with
IAM policies that grant per-tenant permissions to each policy store. Off-boarding a tenant involves
deleting their policy store; in a shared-policy-store environment, you must find and delete tenant-
specific policies.

When possible, populate the policy scope

The policy scope is the portion of a Cedar policy statement after the permit or forbid keywords
and between the opening parenthesis.

We recommend that you populate the values for principal and resource whenever possible.
This lets Verified Permissions index the policies for more efficient retrieval and therefore improves
performance. If you need to grant the same permissions to many different principals or resources,
we recommend that you use a policy template and attach it to each principal and resource pair.

Avoid creating one large policy that contains lists of principals and resources in a when clause.
Doing so will likely cause you to run into scalability limits or operational challenges. For example,
in order to add or remove a single user from a large list within a policy, it is necessary to read
the whole policy, edit the list, write the new policy in full, and handle concurrency errors if one
administrator overwrites another’s changes. In contrast, by using many fine-grained permissions,
adding or removing a user is as simple as adding or removing the single policy that applies to
them.

Populate the policy scope 98

Amazon Verified Permissions User Guide

Every resource lives in a container

When you design an authorization model, every action must be associated with a particular
resource. With an action such as viewFile, the resource that you can apply it to is intuitive:
an individual file, or perhaps a collection of files within a folder. However, an operation such as
createFile is less intuitive. When modeling the capability to create a file, what resource does it
apply to? It can't be the file itself, because the file doesn’t exist yet.

This is an example of the generalized problem of resource creation. Resource creation is a
bootstrapping problem. There must be a way for something to have permission to create resources
even when no resources exist yet. The solution is to recognize that every resource must exist within
some container, and it is the container itself that acts as the anchor point for permissions. For
example, if a folder already exists in the system, the ability to create a file can be modeled as a
permission on that folder, since that is the location where permissions are necessary to instantiate
the new resource.

permit (
 principal == User::"6688f676-1aa9-456a-acf4-228340b54e9d",
 action == Action::"createFile",
 resource == Folder::"c863f89b-461f-4fc2-b638-e5fa5f79a48b"
);

But what if no folder exists? Perhaps this is a brand new customer account in an application where
no resources exist yet. In this situation, there is still a context that can be intuitively understood
by asking: where can the customer create new files? You don't want them to be able to create
files inside any random customer account. Rather, there is an implied context: the customer’s own
account boundary. Therefore, the account itself represents the container for resource creation, and
this can be explicitly modeled in a policy similar to the following example.

// Grants permission to create files within an account,
// or within any sub-folder inside the account.
permit (
 principal == User::"6688f676-1aa9-456a-acf4-228340b54e9d",
 action == Action::"createFile",
 resource in Account::"c863f89b-461f-4fc2-b638-e5fa5f79a48b"
);

Yet, what if no accounts exist either? You might choose to design the customer sign-up workflow
so that the it creates new accounts in the system. If so, you’ll need a container to hold the

Put all resources in containers 99

Amazon Verified Permissions User Guide

outermost boundary in which the process can create the accounts. This root level container
represents the system as a whole and might be named something like “system root”. However, the
decision for whether this is needed, and what to name it is up to you, the application owner.

For this sample application, the resulting container hierarchy would therefore appears as follows:

This is one sample hierarchy. Others are valid as well. The thing to remember is that resource
creation always happens within the context of a resource container. These containers can be
implicit, such as an account boundary, and it can be easy to overlook them. When designing
your authorization model, be sure to note these implicit assumptions so they can be formally
documented and represented in the authorization model.

Separate the principals from the resource containers

When you are designing a resource hierarchy, one of the common inclinations, especially for
consumer-facing applications, is to use the customer's user identity as the container for resources
within a customer account.

Separate principals from resources 100

Amazon Verified Permissions User Guide

We recommend that you treat this strategy as an anti-pattern. This is because there is a natural
tendency in richer applications to delegate access to additional users. For example, you might
choose to introduce "family" accounts, where other users can share account resources. Similarly,
enterprise customers sometimes want to designate multiple members of the workforce as
operators for portions of the account. You might also need to transfer ownership of an account to
a different user, or merge the resources of multiple accounts together.

When a user identity is used as the resource container for an account, the previous scenarios
become more difficult to achieve. More alarming, if others are granted access to the account
container in this approach, they might inadvertently be granted access to modify the user identity
itself, such as changing Jane’s email or login credentials.

Therefore, when possible to do so, a more resilient approach is to separate the principals from the
resource containers, and model the connection between them by using concepts such as "admin
permissions" or "ownership".

Separate principals from resources 101

Amazon Verified Permissions User Guide

Where you have an existing application that is unable to pursue this decoupled model, we
recommend that you consider mimicking it as much as possible when designing an authorization
model. For example, an application that possesses only a single concept named Customer that
encapsulates the user identity, login credentials, and resources that they own, could map this to an
authorization model that contains one logical entity for Customer Identity (containing name,
email, etc) and a separate logical entity for Customer Resources or Customer Account, acting
as the parent node for all the resources they own. Both entities can share the same Id, but with a
different Type.

Separate principals from resources 102

Amazon Verified Permissions User Guide

Don't embed permissions inside attributes

Attributes are best used as an input to the authorization decision. Don't use attributes to represent
the permissions themselves, such as by declaring an attribute named “permittedFolders” on a User:

// ANTI-PATTERN: comingling permissions into user attributes
{
 "id": "df82e4ad-949e-44cb-8acf-2d1acda71798",
 "name": "alice",
 "email": "alice@example.com",
 "permittedFolders": [
 "Folder::\"c943927f-d803-4f40-9a53-7740272cb969\"",
 "Folder::\"661817a9-d478-4096-943d-4ef1e082d19a\"",
 "Folder::\"b8ee140c-fa09-46c3-992e-099438930894\""
]
}

Don't embed permissions in attributes 103

Amazon Verified Permissions User Guide

And, subsequently using the attribute within a policy:

// ANTI-PATTERN
permit (
 principal,
 action == Action::"readFile",
 resource
)
when {
 resource in principal.permittedFolders
};

This approach transforms what would otherwise be a simple authorization model, where a specific
principal has access to a specific folder, into an attributes-based access control (ABAC) model
with the accompanying tradeoffs. One such tradeoff is that it becomes more difficult to quickly
determine who has permission to a resource. In the preceding example, to determine who has
access to a particular folder, it is necessary to iterate over every user to check if that folder is listed
in their attributes, and doing so with the special awareness that there is a policy that grants access
when they do.

Another risk with this approach is the scaling factors when permissions are packed together inside
a single User record. If the user has access to many things, the cumulative size of their User record
will grow and perhaps approach the maximum limit of whatever system is storing the data.

Instead, we recommend that you represent this scenario using multiple individual policies, perhaps
using policy templates to minimize repetition.

//BETTER PATTERN
permit (
 principal == User::"df82e4ad-949e-44cb-8acf-2d1acda71798",
 action == Action::"readFile",
 resource in Folder::"c943927f-d803-4f40-9a53-7740272cb969"
);

permit (
 principal == User::"df82e4ad-949e-44cb-8acf-2d1acda71798",
 action == Action::"readFile",
 resource in Folder::"661817a9-d478-4096-943d-4ef1e082d19a"
);

permit (

Don't embed permissions in attributes 104

Amazon Verified Permissions User Guide

 principal == User::"df82e4ad-949e-44cb-8acf-2d1acda71798",
 action == Action::"readFile",
 resource in Folder::"b8ee140c-fa09-46c3-992e-099438930894"
);

Verified Permissions can efficiently handle many individual, fine-grained policies during
authorization evaluation. Modeling things in this way is more manageable and auditable over time.

Prefer fine-grained permissions in the model and aggregate
permissions in the user interface

One strategy that designers often regret later is designing an authorization model with very broad
actions, such as Read and Write, and realizing later that finer-grained actions are necessary. The
need for finer granularity can be driven by customer feedback for more granular access controls, or
by compliance and security auditors who encourage least-privilege permissions.

If fine-grained permissions are not defined upfront, it can require a complicated conversion to
modify the application code and policy statements to user finer grained permissions. For example,
application code that previously authorized against a course-grained action will need to be
modified to use the fine-grained actions. In addition, policies will need to be updated to reflect the
migration:

permit (
 principal == User::"6688f676-1aa9-456a-acf4-228340b54e9d",
 // action == Action::"read", -- coarse-grained permission --
 commented out
 action in [// -- finer grained permissions
 Action::"listFolderContents",
 Action::"viewFile"
],
 resource in Account::"c863f89b-461f-4fc2-b638-e5fa5f79a48b"
);

To avoid this costly migration, it's better to define fine-grained permissions upfront. However,
this can result in a tradeoff if your end-users are subsequently forced to understand a larger
number of fine-grained permissions, especially if most customers would be satisfied with course-
grained controls such as Read and Write. To attain the best of both worlds, you can group fine-
grained permissions into predefined collections such as Read and Write using mechanisms
like policy templates or action groups. By using this approach, customers see only the course-

Fine-grained permissions 105

Amazon Verified Permissions User Guide

grained permissions. But behind the scenes, you've future-proofed your application by modeling
the course-grained permissions as a collection of fine-grained actions. When either customers or
auditors ask for it, the fine-grained permissions can be exposed.

Consider other reasons to query authorization

We usually associate authorization checks with user requests. The check is a way to determine
whether the user has permission to perform that request. However, you can also use authorization
data to influence the design of the application's interface. For example, you might want to display
a home screen that shows a list of only those resources that the end-user can access. When viewing
the details of a resource, you might want the interface to show only those operations that the user
can perform on that resource.

These situations can introduce tradeoffs into the authorization model. For example, heavy reliance
on attributed-based access control (ABAC) policies can make it more difficult to quickly answer the
question "who has access to what?" This is because answering that question requires examining
each rule against every principal and resource to determine if there is a match. As a result, a
product that needs to optimize for listing only those resources accessible by the user might choose
to use a role-based access control (RBAC) model. By using RBAC, it can be easier to iterate over all
the policies attached to a user to determine resource access.

Other reasons to query authorization 106

Amazon Verified Permissions User Guide

Test bench

The Verified Permissions test bench allows you to test and troubleshoot Verified Permissions
policies by running authorization requests against them. The test bench uses the parameters
that you specify to determine whether the Cedar policies in your policy store would authorize
the request. You can toggle between Visual mode and JSON mode while testing authorization
requests. For more information about how Cedar policies are structured and evaluated, see Basic
policy construction in Cedar in the Cedar policy language Reference Guide.

Note

When you make an authorization request using Verified Permissions, you can provide the
list of principals and resources as part of the request in the Additional entities section.
However, you can't include the details about the actions. They must be specified in the
schema or inferred from the request. You can't put an action in the Additional entities
section.

For a visual overview and demonstration of the test bench, see this video.

Visual mode

Note

You must have a schema defined in your policy store to use the Visual mode of the test
bench.

To test policies in Visual mode

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Test bench.

3. Choose Visual mode.

4. In the Principal section, choose the Principal taking action from the principal types in your
schema. Type an identifier for the principal in the text box.

107

https://docs.cedarpolicy.com/policies/syntax-policy.html
https://docs.cedarpolicy.com/policies/syntax-policy.html
https://www.youtube.com/watch?v=Gi3joEySMPQ
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

5. (Optional) Choose Add a parent to add parent entities for the specified principal. To
remove a parent that has been added to the principal, choose Remove next to the name of
the parent.

6. Specify the Attribute value for each attribute of the specified principal. The test bench
uses the specified attribute values in the simulated authorization request.

7. In the Resource section, choose the Resource that principal is acting on. Type an identifier
for the resource in the text box.

8. (Optional) Choose Add a parent to add parent entities for the specified resource. To
remove a parent that has been added to the resource, choose Remove next to the name of
the parent.

9. Specify the Attribute value for each attribute of the specified resource. The test bench uses
the specified attribute values in the simulated authorization request.

10. In the Action section, choose the Action that principal is taking from the list of valid
actions for the specified principal and resource.

11. Specify the Attribute value for each attribute of the specified action. The test bench uses
the specified attribute values in the simulated authorization request.

12. (Optional) In the Additional entities section, choose Add entity to add entities to be
evaluated for the authorization decision.

13. Choose the Entity Identifier from the dropdown list and type the entity identifier.

14. (Optional) Choose Add a parent to add parent entities for the specified entity. To remove a
parent that has been added to the entity, choose Remove next to the name of the parent.

15. Specify the Attribute value for each attribute of the specified entity. The test bench uses
the specified attribute values in the simulated authorization request.

16. Choose Confirm to add the entity to the test bench.

17. Choose Run authorization request to simulate the authorization request for the Cedar
policies in your policy store. The test bench displays the decision to allow or deny the
request along with information about the policies satisfied or the errors encountered
during evaluation.

108

Amazon Verified Permissions User Guide

JSON mode

To test policies in JSON mode

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Choose your policy store.

2. In the navigation pane on the left, choose Test bench.

3. Choose JSON mode.

4. In the Request details section, if you have a schema defined, choose the Principal taking
action from the principal types in your schema. Type an identifier for the principal in the
text box.

If you do not have a schema defined, type the principal in the Principal taking action text
box.

5. If you have a schema defined, choose the Resource from the resource types in your schema.
Type an identifier for the resource in the text box.

If you do not have a schema defined, type the resource in the Resource text box.

6. If you have a schema defined, choose the Action from the list of valid actions for the
specified principal and resource.

If you do not have a schema defined, type the action in the Action text box.

7. Enter the context of the request to simulate in the Context field. The request context is
additional information that can be used for authorization decisions.

8. In the Entities field, enter the hierarchy of the entities and their attributes to be evaluated
for the authorization decision.

9. Choose Run authorization request to simulate the authorization request for the Cedar
policies in your policy store. The test bench displays the decision to allow or deny the
request along with information about the policies satisfied or the errors encountered
during evaluation.

109

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/

Amazon Verified Permissions User Guide

Implementing authorization in Amazon Verified
Permissions

After you build your policy store, policies, templates, schema, and authorization model, you're
ready to start authorizing requests against Amazon Verified Permissions. To implement Verified
Permissions authorization, you must combine configuration of policies in AWS with integration
in an application. To integrate Verified Permissions with your application, add an AWS SDK and
implement the methods that invoke the Verified Permissions API and generate authorization
decisions against your policy store.

Authorization with Verified Permissions is useful for UX permissions and API permissions in your
applications.

UX permissions

Control user access to your application UX. You can permit a user to view only the exact forms,
buttons, graphics and other resources that they need to access. For example, when a user signs
in, you might want to determine whether a "Transfer funds" button is visible in their account.
You can also control actions that a user can take. For example, in same banking app you might
want to determine whether your user is permitted to change the category of a transaction.

API permissions

Control user access to data. Applications are often often part of a distributed system
and bring in information from external APIs. In the example of the banking app where
Verified Permissions has permitted the display of a "Transfer funds" button, a more complex
authorization decision must be made when your user initiates a transfer. Verified Permissions
can authorize the API request that lists the destination accounts that are eligible transfer
targets, and then the request to push the transfer to the other account.

The examples that illustrate this content come from a sample policy store. To follow along, create
the DigitalPetStore sample policy store in your testing environment.

API operations for authorization

The Verified Permissions API has the following authorization operations.

API operations 110

Amazon Verified Permissions User Guide

IsAuthorized

The IsAuthorized API operation is the entry point to authorization requests with Verified
Permissions. You must submit principal, action, resource, context, and entities elements.
Verified Permissions validates the entities in your request against your policy store schema.
Verified Permissions then evaluates your request against all policies in the requested policy
store that apply to the entities in the request.

IsAuthorizedWithToken

The IsAuthorizedWithToken operation generates an authorization request from user data
in Amazon Cognito JSON web tokens (JWTs). Verified Permissions works directly with Amazon
Cognito as an identity source in your policy store. Verified Permissions populates all attributes
to the principal in your request from the claims in users' ID or access tokens. You can authorize
actions and resources from user attributes or group membership in an Amazon Cognito user
pool.

You can't include information about group or user principal types in an
IsAuthorizedWithToken request. You must populate all principal data to the JWT that you
provide.

BatchIsAuthorized

The BatchIsAuthorized operation processes multiple authorization decisions for a single
principal or resource in a single API request. This operation groups requests into a single batch
operation that minimizes quota usage and returns authorization decisions for each of up to
30 complex nested actions. With batch authorization for a single resource, you can filter the
actions that a user can take on a resource. With batch authorization for a single principal, you
can filter for the resources that a user can take action on.

BatchIsAuthorizedWithToken

The BatchIsAuthorizedWithToken operation processes multiple authorization decisions
for a single principal in one API request. The principal is provided by your policy store identity
source in an ID or access token. This operation groups requests into a single batch operation
that minimizes quota usage and returns authorization decisions for each of up to 30 requests
for actions and resources. In your policies, you can authorize their access from their attributes or
their group membership in an Amazon Cognito user pool.

Like with IsAuthorizedWithToken, you can't include information about group or user
principal types in a BatchIsAuthorizedWithToken request. You must populate all principal
data to the JWT that you provide.

API operations 111

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorizedWithToken.html

Amazon Verified Permissions User Guide

Testing your authorization model

To understand the effect of Verified Permissions authorization decision when you deploy your
application, you can evaluate your policies as you develop them with the Test bench and with
HTTPS REST API requests to Verified Permissions. The test bench is a tool in the AWS Management
Console to evaluate authorization requests and responses in your policy store.

The Verified Permissions REST API is the next step in your development as you move from a
conceptual understanding to application design. The Verified Permissions API accepts authorization
requests with IsAuthorized, IsAuthorizedWithToken, and BatchIsAuthorized as signed AWS API
requests to Regional service endpoints. To test your authorization model, you can generate
requests with any API client and verify that your policies are returning authorization decisions as
expected.

For example, you can test IsAuthorized in a sample policy store with the following procedure.

Test bench

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Create a policy store from the Sample policy store with the name
DigitalPetStore.

2. Select Test bench in your new policy store.

3. Populate your test bench request from IsAuthorized in the Verified Permissions API
reference. The following details replicate the conditions in Example 4 that references the
DigitalPetStore sample.

a. Set Alice as the principal. For Principal taking action, choose
DigitalPetStore::User and enter Alice.

b. Set Alice's role as customer. Choose Add a parent, choose DigitalPetStore::Role,
and enter Customer.

c. Set the resource as order "1234." For Resource that the principal is acting on, choose
DigitalPetStore::Order and enter 1234.

d. The DigitalPetStore::Order resource requires an owner attribute. Set Alice as the
owner of the order. Choose DigitalPetStore::User and enter Alice

e. Alice requested to view the order. For Action that principal is taking, choose
DigitalPetStore::Action::"GetOrder".

API testing 112

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_BatchIsAuthorized.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/general/latest/gr/verifiedpermissions.html
https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html#API_IsAuthorized_Examples

Amazon Verified Permissions User Guide

4. Choose Run authorization request. In an unmodified policy store, this request results in an
ALLOW decision. Note the Satisfied policy that returned the decision.

5. Choose Policies from the left navigation bar. Review the static policy with the description
Customer Role - Get Order.

6. Observe that Verified Permissions allowed the request because the principal was in a
customer role and was the owner of the resource.

REST API

1. Open the Verified Permissions console at https://console.aws.amazon.com/
verifiedpermissions/. Create a policy store from the Sample policy store with the name
DigitalPetStore.

2. Note the Policy store ID of your new policy store.

3. From IsAuthorized in the Verified Permissions API reference, copy the request body of
Example 4 that references the DigitalPetStore sample.

4. Open your API client and create a request to the Regional service endpoint for your policy
store. Populate the headers as shown in the example.

5. Paste in the sample request body and change the value of policyStoreId to the policy
store ID you noted earlier.

6. Submit the request and review the results. In a default DigitalPetStore policy store, this
request returns an ALLOW decision.

You can make changes to policies, schema, and requests in your test environment to change the
outcomes and produce more complex decisions.

1. Change the request in a way that changes the decision from Verified Permissions. For example,
change Alice's role to Employee or change the owner attribute of order 1234 to Bob.

2. Change policies in ways that affect authorization decisions. For example, modify the policy with
the description Customer Role - Get Order to remove the condition that the User must be the
owner of the Resource and modify the request so that Bob wants to view the order.

3. Change the schema to allow policies to make a more complex decision. Update the request
entities so that Alice can satisfy the new requirements. For example, edit the schema to allow
User to be a member of ActiveUsers or InactiveUsers. Update the policy so that only
active users can view their own orders. Update the request entities so that Alice is an active or
inactive user.

API testing 113

https://console.aws.amazon.com/verifiedpermissions/
https://console.aws.amazon.com/verifiedpermissions/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html#API_IsAuthorized_Examples
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html#API_IsAuthorized_Examples

Amazon Verified Permissions User Guide

Integrating with apps and AWS SDKs

To implement Amazon Verified Permissions in your application, you must define the policies and
schema that you want your app to enforce. With your authorization model in place and tested, your
next step is to start generating API requests from the point of enforcement. To do this, you must
set up application logic to collect user data and populate it to authorization requests.

How an app authorizes requests with Verified Permissions

1. Gather information about the current user. Typically, a user's details are provided in the details
of an authenticated session, like a JWT or web session cookie. This user data might originate
from an Amazon Cognito identity source linked to your policy store or from another OpenID
Connect (OIDC) provider.

2. Gather information about the resource that a user wants to access. Typically, your application
will receive information about the resource when a user makes a selection that requires your
app to load a new asset.

3. Determine the action that your user wants to take.

4. Generate an authorization request to Verified Permissions with the principal, action, resource,
and entities for your user's attempted operation.Verified Permissions evaluates the request
against the policies in your policy store and returns an authorization decision.

5. Your application reads the allow or deny response from Verified Permissions and enforces the
decision on the user's request.

Verified Permissions API operations are built into AWS SDKs. To include Verified Permissions in an
app, integrate the AWS SDK for your chosen language into the app package.

To learn more and download AWS SDKs, see Tools for Amazon Web Services.

The following are links to documentation for Verified Permissions resources in various AWS SDKs.

• AWS SDK for .NET

• AWS SDK for C++

• AWS SDK for Go

• AWS SDK for Java

• AWS SDK for JavaScript

• AWS SDK for PHP

Integrating with apps 114

https://aws.amazon.com/tools/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/VerifiedPermissions/NVerifiedPermissions.html
https://sdk.amazonaws.com/cpp/api/LATEST/aws-cpp-sdk-verifiedpermissions/html/class_aws_1_1_verified_permissions_1_1_verified_permissions_client.html
https://docs.aws.amazon.com/sdk-for-go/api/service/verifiedpermissions/#VerifiedPermissions
https://sdk.amazonaws.com/java/api/latest/software/amazon/awssdk/services/verifiedpermissions/package-summary.html
https://docs.aws.amazon.com/AWSJavaScriptSDK/v3/latest/client/verifiedpermissions/
https://docs.aws.amazon.com/aws-sdk-php/v3/api/api-verifiedpermissions-2021-12-01.html

Amazon Verified Permissions User Guide

• AWS SDK for Python (Boto)

• AWS SDK for Ruby

The following AWS SDK for JavaScript example for IsAuthorized originates from Simplify fine-
grained authorization with Amazon Verified Permissions and Amazon Cognito.

const authResult = await avp.isAuthorized({
 principal: 'User::"alice"',
 action: 'Action::"view"',
 resource: 'Photo::"VacationPhoto94.jpg"',
 // whenever our policy references attributes of the entity,
 // isAuthorized needs an entity argument that provides
 // those attributes
 entities: {
 entityList: [
 {
 "identifier": {
 "entityType": "User",
 "entityId": "alice"
 },
 "attributes": {
 "location": {
 "String": "USA"
 }
 }
 }
]
 }
});

More developer resources

• Amazon Verified Permissions workshop

• Amazon Verified Permissions - Resources

• Implement custom authorization policy provider for ASP.NET Core apps using Amazon Verified
Permissions

• Build an entitlement service for business applications using Amazon Verified Permissions

• Simplify fine-grained authorization with Amazon Verified Permissions and Amazon Cognito

Integrating with apps 115

https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/verifiedpermissions.html
https://docs.aws.amazon.com/sdk-for-ruby/v3/api/Aws/VerifiedPermissions/Client.html
https://aws.amazon.com/blogs/security/simplify-fine-grained-authorization-with-amazon-verified-permissions-and-amazon-cognito/
https://aws.amazon.com/blogs/security/simplify-fine-grained-authorization-with-amazon-verified-permissions-and-amazon-cognito/
https://catalog.workshops.aws/verified-permissions-in-action
https://aws.amazon.com/verified-permissions/resources/
https://aws.amazon.com/blogs/dotnet/implement-a-custom-authorization-policy-provider-for-asp-net-core-apps-using-amazon-verified-permissions/
https://aws.amazon.com/blogs/dotnet/implement-a-custom-authorization-policy-provider-for-asp-net-core-apps-using-amazon-verified-permissions/
https://aws.amazon.com/blogs/security/build-an-entitlement-service-for-business-applications-using-amazon-verified-permissions/
https://aws.amazon.com/blogs/security/simplify-fine-grained-authorization-with-amazon-verified-permissions-and-amazon-cognito/

Amazon Verified Permissions User Guide

Adding context

Context is the information that's relevant to policy decisions, but not part of the identity of
your principal, action, or resource. You might want to allow an action only from a set of source
IP addresses, or only if your user has signed in with MFA. Your application has access to this
contextual session data and must populate it to authorization requests. The context data in a
Verified Permissions authorization request must be JSON-formatted in a contextMap element.

The examples that illustrate this content come from a sample policy store. To follow along, create
the DigitalPetStore sample policy store in your testing environment.

The following context object declares one of each Cedar data type for an application based on the
sample DigitalPetStore policy store.

"context": {
 "contextMap": {
 "MfaAuthorized": {
 "boolean": true
 },
 "AccountCodes": {
 "set": [
 {
 "long": 111122223333
 },
 {
 "long": 444455556666
 },
 {
 "long": 123456789012
 }
]
 },
 "UserAgent": {
 "string": "My UserAgent 1.12"
 },
 "RequestedOrderCount": {
 "long": 4
 },
 "NetworkInfo": {
 "record": {
 "IPAddress": {

116

Amazon Verified Permissions User Guide

 "string": "192.0.2.178"
 },
 "Country": {
 "string": "United States of America"
 },
 "SSL": {
 "boolean": true
 }
 }
 },
 "approvedBy": {
 "entityIdentifier": {
 "entityId": "Bob",
 "entityType": "DigitalPetStore::User"
 }
 }
 }
}

Data types in authorization context

Boolean

A binary true or false value. In the example, the boolean value of true for
MfaAuthenticated indicates that the customer has performed multi-factor authentication
before requesting to view their order.

Set

A collection of context elements. Set members can be all the same type, like in this example,
or of different types, including a nested set. In the example, the customer is associated with 3
different accounts.

String

A sequence of letters, numbers, or symbols, enclosed in " characters. In the example, the
UserAgent string represents the browser that the customer used to request to view their order.

Long

An integer. In the example, the RequestedOrderCount indicates that this request is part of a
batch that resulted from the customer asking to view four of their past orders.

117

Amazon Verified Permissions User Guide

Record

A collection of attributes. You must declare these attributes in the request context. A policy
store with a schema must include this entity and the attributes of the entity in the schema. In
the example, the NetworkInfo record contains information about the user's originating IP, the
geolocation of that IP as determined by the client, and encryption in transit.

EntityIdentifier

A reference to an entity and attributes declared in the entities element of the request. In the
example, the user's order was approved by employee Bob.

To test this example context in the example DigitalPetStore app, you must update your request
entities, your policy store schema, and the static policy with the description Customer Role -
Get Order.

Modifying DigitalPetStore to accept authorization context

Initially, DigitalPetStore is not a very complex policy store. It doesn't include any preconfigured
policies or context attributes to support the context that we have presented. To evaluate an
example authorization request with this context information, make the following modifications to
your policy store and your authorization request.

Schema

Apply the following updates to your policy store schema to support the new context attributes.
Update GetOrder in actions as follows.

"GetOrder": {
 "memberOf": [],
 "appliesTo": {
 "resourceTypes": [
 "Order"
],
 "context": {
 "type": "Record",
 "attributes": {
 "UserAgent": {
 "required": true,
 "type": "String"
 },

Evaluate example context 118

Amazon Verified Permissions User Guide

 "approvedBy": {
 "name": "User",
 "required": true,
 "type": "Entity"
 },
 "AccountCodes": {
 "type": "Set",
 "required": true,
 "element": {
 "type": "Long"
 }
 },
 "RequestedOrderCount": {
 "type": "Long",
 "required": true
 },
 "MfaAuthorized": {
 "type": "Boolean",
 "required": true
 }
 }
 },
 "principalTypes": [
 "User"
]
 }
}

To reference the record data type named NetworkInfo in your request context, create a
commonType construct in your schema as follows. A commonType construct is a shared set of
attributes that you can apply to different entities.

Note

The Verified Permissions visual schema editor currently doesn't support commonType
constructs. When you add them to your schema, you can no longer view your schema in
Visual mode.

"commonTypes": {
 "NetworkInfo": {
 "attributes": {

Evaluate example context 119

https://docs.cedarpolicy.com/schema/schema.html#schema-commonTypes

Amazon Verified Permissions User Guide

 "IPAddress": {
 "type": "String",
 "required": true
 },
 "SSL": {
 "required": true,
 "type": "Boolean"
 },
 "Country": {
 "required": true,
 "type": "String"
 }
 },
 "type": "Record"
 }
}

Policy

The following policy sets up conditions that must be fulfilled by each of the provided context
elements. It builds on the existing static policy with the description Customer Role - Get Order.
This policy initially only requires that the principal that makes a request is the owner of the
resource.

permit (
 principal in DigitalPetStore::Role::"Customer",
 action in [DigitalPetStore::Action::"GetOrder"],
 resource
) when {
 principal == resource.owner &&
 context.MfaAuthorized == true &&
 context.UserAgent like "*My UserAgent*" &&
 context.RequestedOrderCount <= 4 &&
 context.AccountCodes.contains(111122223333) &&
 context.NetworkInfo.Country like "*United States*" &&
 context.NetworkInfo.SSL == true &&
 context.NetworkInfo.IPAddress like "192.0.2.*" &&
 context.approvedBy in DigitalPetStore::Role::"Employee"
};

We have now required that the request to retrieve an order meets the additional context
conditions that we added to the request.

Evaluate example context 120

Amazon Verified Permissions User Guide

1. The user must have signed in with MFA.

2. The user's web browser User-Agent must contain the string My UserAgent.

3. The user must have requested to view 4 or fewer orders.

4. One of the user's account codes must be 111122223333.

5. The user's IP address must originate in the United States, they must be on an encrypted
session, and their IP address must begin with 192.0.2..

6. An employee must have approved their order. In the entities element of the authorization
request, we will declare a user Bob who has the role of Employee.

Request body

After you configure your policy store with the appropriate schema and policy, you can present
this authorization request to the Verified Permissions API operation IsAuthorized. Note that the
entities segment contains a definition of Bob, a user with a role of Employee.

{
 "principal": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Alice"
 },
 "action": {
 "actionType": "DigitalPetStore::Action",
 "actionId": "GetOrder"
 },
 "resource": {
 "entityType": "DigitalPetStore::Order",
 "entityId": "1234"
 },
 "context": {
 "contextMap": {
 "MfaAuthorized": {
 "boolean": true
 },
 "UserAgent": {
 "string": "My UserAgent 1.12"
 },
 "RequestedOrderCount":{
 "long": 4
 },
 "AccountCodes": {

Evaluate example context 121

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html

Amazon Verified Permissions User Guide

 "set": [
 {"long": 111122223333},
 {"long": 444455556666},
 {"long": 123456789012}
]
 },
 "NetworkInfo": {
 "record": {
 "IPAddress": {"string": "192.0.2.178"},
 "Country": {"string": "United States of America"},
 "SSL": {"boolean": true}
 }
 },
 "approvedBy": {
 "entityIdentifier": {
 "entityId": "Bob",
 "entityType": "DigitalPetStore::User"
 }
 }
 }
 },
 "entities": {
 "entityList": [
 {
 "identifier": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Alice"
 },
 "attributes": {
 "memberId": {
 "string": "801b87f2-1a5c-40b3-b580-eacad506d4e6"
 }
 },
 "parents": [
 {
 "entityType": "DigitalPetStore::Role",
 "entityId": "Customer"
 }
]
 },
 {
 "identifier": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Bob"

Evaluate example context 122

Amazon Verified Permissions User Guide

 },
 "attributes": {
 "memberId": {
 "string": "49d9b81e-735d-429c-989d-93bec0bcfd8b"
 }
 },
 "parents": [
 {
 "entityType": "DigitalPetStore::Role",
 "entityId": "Employee"
 }
]
 },
 {
 "identifier": {
 "entityType": "DigitalPetStore::Order",
 "entityId": "1234"
 },
 "attributes": {
 "owner": {
 "entityIdentifier": {
 "entityType": "DigitalPetStore::User",
 "entityId": "Alice"
 }
 }
 },
 "parents": []
 }
]
 },
 "policyStoreId": "PSEXAMPLEabcdefg111111"
}

Evaluate example context 123

Amazon Verified Permissions User Guide

Security in Amazon Verified Permissions

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers
and network architectures that are built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-
party auditors regularly test and verify the effectiveness of our security as part of the AWS
Compliance Programs. To learn about the compliance programs that apply to Amazon Verified
Permissions, see AWS Services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your company’s
requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when
using Verified Permissions. The following topics show you how to configure Verified Permissions to
meet your security and compliance objectives. You also learn how to use other AWS services that
help you to monitor and secure your Verified Permissions resources.

Topics

• Data protection in Amazon Verified Permissions

• Identity and access management for Amazon Verified Permissions

• Compliance validation for Amazon Verified Permissions

• Resilience in Amazon Verified Permissions

Data protection in Amazon Verified Permissions

The AWS shared responsibility model applies to data protection in Amazon Verified Permissions.
As described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the

Data protection 124

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/

Amazon Verified Permissions User Guide

AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR
blog post on the AWS Security Blog.

• For data protection purposes, we recommend that you protect AWS account credentials and set
up individual users with AWS IAM Identity Center or AWS Identity and Access Management (IAM).
That way, each user is given only the permissions necessary to fulfill their job duties.

• We recommend that you secure your data in the following ways:

• Use multi-factor authentication (MFA) with each account.

• Use SSL/TLS to communicate with AWS resources. We require TLS 1.2.

• Set up API and user activity logging with AWS CloudTrail.

• Use AWS encryption solutions, along with all default security controls within AWS services.

• Use advanced managed security services such as Amazon Macie, which assists in discovering
and securing sensitive data that is stored in Amazon S3.

• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through
a command line interface or an API, use a FIPS endpoint. For more information about the
available FIPS endpoints, see Federal Information Processing Standard (FIPS) 140-2.

• We strongly recommend that you never put confidential or sensitive information, such as your
customers' email addresses, into tags or free-form text fields such as a Name field. This includes
when you work with Verified Permissions or other AWS services using the console, API, AWS
CLI, or AWS SDKs. Any data that you enter into tags or free-form text fields used for names may
be used for billing or diagnostic logs. If you provide a URL to an external server, we strongly
recommend that you do not include credentials information in the URL to validate your request
to that server.

• Your action names should not include any sensitive information.

• We also strongly recommend that you always use unique, non-mutable, and non-reusable
identifiers for your entities (resources and principals). In a test environment, you might choose
to use simple entity identifiers, such as jane or bob for the name of an entity of type User.
However, in a production system, it’s critical for security reasons that you use unique values that
can’t be reused. We recommend that you use values like universally unique identifiers (UUIDs).
For example, consider the user jane who leaves the company. Later, you let someone else use
the name jane. That new user gets access automatically to everything granted by policies that
still reference User::"jane". Verified Permissions and Cedar can’t distinguish between the new
user and the previous user.

Data protection 125

https://aws.amazon.com/compliance/data-privacy-faq
https://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/
https://aws.amazon.com/compliance/fips/

Amazon Verified Permissions User Guide

This guidance applies to both principal and resource identifiers. Always use identifiers that are
guaranteed unique and never reused to ensure that you don’t grant access unintentionally
because of the presence of an old identifier in a policy.

• Ensure that the strings that you provide to define Long and Decimal values are within the
valid range of each type. Also, ensure that your use of any arithmetic operators don't result in
a value outside of the valid range. If the range is exceeded, the operation results in an overflow
exception. A policy that results in an error is ignored, meaning that a Permit policy might
unexpectedly fail to allow access, or a Forbid policy might unexpectedly fail to block access.

Data encryption

Amazon Verified Permissions automatically encrypts all customer data such as policies with an
AWS managed key, so the use of a customer managed key is neither necessary nor supported.

Identity and access management for Amazon Verified
Permissions

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use Verified Permissions resources. IAM is an AWS service that
you can use with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How Amazon Verified Permissions works with IAM

• Identity-based policy examples for Amazon Verified Permissions

• Troubleshooting Amazon Verified Permissions identity and access

Data encryption 126

Amazon Verified Permissions User Guide

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in Verified Permissions.

Service user – If you use the Verified Permissions service to do your job, then your administrator
provides you with the credentials and permissions that you need. As you use more Verified
Permissions features to do your work, you might need additional permissions. Understanding
how access is managed can help you request the right permissions from your administrator. If you
cannot access a feature in Verified Permissions, see Troubleshooting Amazon Verified Permissions
identity and access.

Service administrator – If you're in charge of Verified Permissions resources at your company,
you probably have full access to Verified Permissions. It's your job to determine which Verified
Permissions features and resources your service users should access. You must then submit
requests to your IAM administrator to change the permissions of your service users. Review the
information on this page to understand the basic concepts of IAM. To learn more about how your
company can use IAM with Verified Permissions, see How Amazon Verified Permissions works with
IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to Verified Permissions. To view example Verified Permissions
identity-based policies that you can use in IAM, see Identity-based policy examples for Amazon
Verified Permissions.

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

Audience 127

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html

Amazon Verified Permissions User Guide

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see Signing AWS API requests in the IAM User
Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in the
AWS IAM Identity Center User Guide and Using multi-factor authentication (MFA) in AWS in the IAM
User Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Federated identity

As a best practice, require human users, including users that require administrator access, to use
federation with an identity provider to access AWS services by using temporary credentials.

A federated identity is a user from your enterprise user directory, a web identity provider, the AWS
Directory Service, the Identity Center directory, or any user that accesses AWS services by using
credentials provided through an identity source. When federated identities access AWS accounts,
they assume roles, and the roles provide temporary credentials.

For centralized access management, we recommend that you use AWS IAM Identity Center. You can
create users and groups in IAM Identity Center, or you can connect and synchronize to a set of users
and groups in your own identity source for use across all your AWS accounts and applications. For
information about IAM Identity Center, see What is IAM Identity Center? in the AWS IAM Identity
Center User Guide.

Authenticating with identities 128

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-signing.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/root-user-tasks.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/what-is.html

Amazon Verified Permissions User Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see When to create an IAM user
(instead of a role) in the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. You can temporarily assume an IAM role in
the AWS Management Console by switching roles. You can assume a role by calling an AWS CLI or
AWS API operation or by using a custom URL. For more information about methods for using roles,
see Using IAM roles in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Creating a role for a third-party Identity Provider
in the IAM User Guide. If you use IAM Identity Center, you configure a permission set. To control
what your identities can access after they authenticate, IAM Identity Center correlates the
permission set to a role in IAM. For information about permissions sets, see Permission sets in
the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 129

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

Amazon Verified Permissions User Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see How IAM roles differ from resource-based policies in the
IAM User Guide.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Using
an IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM
User Guide.

To learn whether to use IAM roles or IAM users, see When to create an IAM role (instead of a user)
in the IAM User Guide.

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Managing access using policies 130

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html#id_which-to-choose_role
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json

Amazon Verified Permissions User Guide

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choosing between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Managing access using policies 131

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#choosing-managed-or-inline
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

Amazon Verified Permissions User Guide

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see How SCPs
work in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How Amazon Verified Permissions works with IAM

Before you use IAM to manage access to Verified Permissions, learn what IAM features are available
to use with Verified Permissions.

How Amazon Verified Permissions works with IAM 132

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_about-scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html

Amazon Verified Permissions User Guide

IAM features you can use with Amazon Verified Permissions

IAM feature Verified Permissions support

Identity-based policies Yes

Resource-based policies No

Policy actions Yes

Policy resources Yes

Policy condition keys No

ACLs No

ABAC (tags in policies) No

Temporary credentials Yes

Principal permissions Yes

Service roles No

Service-linked roles No

To get a high-level view of how Verified Permissions and other AWS services work with most IAM
features, see AWS services that work with IAM in the IAM User Guide.

Identity-based policies for Verified Permissions

Supports identity-based policies Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Creating IAM policies in the IAM User Guide.

How Amazon Verified Permissions works with IAM 133

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html

Amazon Verified Permissions User Guide

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. You can't specify the principal in an
identity-based policy because it applies to the user or role to which it is attached. To learn about all
of the elements that you can use in a JSON policy, see IAM JSON policy elements reference in the
IAM User Guide.

Identity-based policy examples for Verified Permissions

To view examples of Verified Permissions identity-based policies, see Identity-based policy
examples for Amazon Verified Permissions.

Resource-based policies within Verified Permissions

Supports resource-based policies No

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

To enable cross-account access, you can specify an entire account or IAM entities in another
account as the principal in a resource-based policy. Adding a cross-account principal to a resource-
based policy is only half of establishing the trust relationship. When the principal and the resource
are in different AWS accounts, an IAM administrator in the trusted account must also grant
the principal entity (user or role) permission to access the resource. They grant permission by
attaching an identity-based policy to the entity. However, if a resource-based policy grants access
to a principal in the same account, no additional identity-based policy is required. For more
information, see How IAM roles differ from resource-based policies in the IAM User Guide.

Policy actions for Verified Permissions

Supports policy actions Yes

How Amazon Verified Permissions works with IAM 134

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html

Amazon Verified Permissions User Guide

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

To see a list of Verified Permissions actions, see Actions defined by Amazon Verified Permissions in
the Service Authorization Reference.

Policy actions in Verified Permissions use the following prefix before the action:

verifiedpermissions

To specify multiple actions in a single statement, separate them with commas.

"Action": [
 "verifiedpermissions:action1",
 "verifiedpermissions:action2"
]

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "verifiedpermissions:Get*"

To view examples of Verified Permissions identity-based policies, see Identity-based policy
examples for Amazon Verified Permissions.

Policy resources for Verified Permissions

Supports policy resources Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

How Amazon Verified Permissions works with IAM 135

https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-actions-as-permissions

Amazon Verified Permissions User Guide

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

To see a list of Verified Permissions resource types and their ARNs, see Resource types defined by
Amazon Verified Permissions in the Service Authorization Reference. To learn with which actions you
can specify the ARN of each resource, see Actions defined by Amazon Verified Permissions.

Policy condition keys for Verified Permissions

Supports service-specific policy condition keys No

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement
is in effect. The Condition element is optional. You can create conditional expressions that use
condition operators, such as equals or less than, to match the condition in the policy with values in
the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single
Condition element, AWS evaluates them using a logical AND operation. If you specify multiple
values for a single condition key, AWS evaluates the condition using a logical OR operation. All of
the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant
an IAM user permission to access a resource only if it is tagged with their IAM user name. For more
information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global
condition keys, see AWS global condition context keys in the IAM User Guide.

How Amazon Verified Permissions works with IAM 136

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-resources-for-iam-policies
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html#amazonverifiedpermissions-actions-as-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition_operators.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_variables.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html

Amazon Verified Permissions User Guide

ACLs in Verified Permissions

Supports ACLs No

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

ABAC with Verified Permissions

Supports ABAC (tags in policies) No

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based
on attributes. In AWS, these attributes are called tags. You can attach tags to IAM entities (users or
roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then
you design ABAC policies to allow operations when the principal's tag matches the tag on the
resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy
management becomes cumbersome.

To control access based on tags, you provide tag information in the condition element of a policy
using the aws:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys.

If a service supports all three condition keys for every resource type, then the value is Yes for the
service. If a service supports all three condition keys for only some resource types, then the value is
Partial.

For more information about ABAC, see What is ABAC? in the IAM User Guide. To view a tutorial with
steps for setting up ABAC, see Use attribute-based access control (ABAC) in the IAM User Guide.

Using temporary credentials with Verified Permissions

Supports temporary credentials Yes

How Amazon Verified Permissions works with IAM 137

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_attribute-based-access-control.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/tutorial_attribute-based-access-control.html

Amazon Verified Permissions User Guide

Some AWS services don't work when you sign in using temporary credentials. For additional
information, including which AWS services work with temporary credentials, see AWS services that
work with IAM in the IAM User Guide.

You are using temporary credentials if you sign in to the AWS Management Console using
any method except a user name and password. For example, when you access AWS using your
company's single sign-on (SSO) link, that process automatically creates temporary credentials. You
also automatically create temporary credentials when you sign in to the console as a user and then
switch roles. For more information about switching roles, see Switching to a role (console) in the
IAM User Guide.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use
those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see
Temporary security credentials in IAM.

Cross-service principal permissions for Verified Permissions

Supports principal permissions Yes

When you use an IAM user or role to perform actions in AWS, you are considered a principal.
When you use some services, you might perform an action that then initiates another action in a
different service. FAS uses the permissions of the principal calling an AWS service, combined with
the requesting AWS service to make requests to downstream services. FAS requests are only made
when a service receives a request that requires interactions with other AWS services or resources to
complete. In this case, you must have permissions to perform both actions. For policy details when
making FAS requests, see Forward access sessions.

Service roles for Verified Permissions

Supports service roles No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM
administrator can create, modify, and delete a service role from within IAM. For more information,
see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

How Amazon Verified Permissions works with IAM 138

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Amazon Verified Permissions User Guide

Service-linked roles for Verified Permissions

Supports service-linked roles No

A service-linked role is a type of service role that is linked to an AWS service. The service can
assume the role to perform an action on your behalf. Service-linked roles appear in your AWS
account and are owned by the service. An IAM administrator can view, but not edit the permissions
for service-linked roles.

For details about creating or managing service-linked roles, see AWS services that work with IAM.
Find a service in the table that includes a Yes in the Service-linked role column. Choose the Yes
link to view the service-linked role documentation for that service.

Identity-based policy examples for Amazon Verified Permissions

By default, users and roles don't have permission to create or modify Verified Permissions
resources. They also can't perform tasks by using the AWS Management Console, AWS Command
Line Interface (AWS CLI), or AWS API. An IAM administrator must create IAM policies that grant
users and roles permission to perform actions on the resources that they need. The administrator
must then attach those policies for users that require them.

To learn how to create an IAM identity-based policy by using these example JSON policy
documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by Verified Permissions, including the format
of the ARNs for each of the resource types, see see Actions, resources, and condition keys for
Amazon Verified Permissions in the Service Authorization Reference.

Topics

• Policy best practices

• Using the Verified Permissions console

• Allow users to view their own permissions

Identity-based policy examples 139

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create-console.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html
https://docs.aws.amazon.com/service-authorization/latest/reference/list_amazonverifiedpermissions.html

Amazon Verified Permissions User Guide

Policy best practices

Identity-based policies determine whether someone can create, access, or delete Verified
Permissions resources in your account. These actions can incur costs for your AWS account. When
you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see IAM Access Analyzer policy validation in the IAM
User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users
or a root user in your AWS account, turn on MFA for additional security. To require MFA when
API operations are called, add MFA conditions to your policies. For more information, see
Configuring MFA-protected API access in the IAM User Guide.

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Identity-based policy examples 140

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html

Amazon Verified Permissions User Guide

Using the Verified Permissions console

To access the Amazon Verified Permissions console, you must have a minimum set of permissions.
These permissions must allow you to list and view details about the Verified Permissions resources
in your AWS account. If you create an identity-based policy that is more restrictive than the
minimum required permissions, the console won't function as intended for entities (users or roles)
with that policy.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that they're trying to perform.

To ensure that users and roles can still use the Verified Permissions console, also attach the
Verified Permissions ConsoleAccess or ReadOnly AWS managed policy to the entities. For more
information, see Adding permissions to a user in the IAM User Guide.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",
 "Action": [
 "iam:GetGroupPolicy",

Identity-based policy examples 141

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

Amazon Verified Permissions User Guide

 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Troubleshooting Amazon Verified Permissions identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with Verified Permissions and IAM.

Topics

• I am not authorized to perform an action in Verified Permissions

• I am not authorized to perform iam:PassRole

• I want to allow people outside of my AWS account to access my Verified Permissions resources

I am not authorized to perform an action in Verified Permissions

If you receive an error that you're not authorized to perform an action, your policies must be
updated to allow you to perform the action.

The following example error occurs when the mateojackson IAM user tries to use the console
to view details about a fictional my-example-widget resource but doesn't have the fictional
verifiedpermissions:GetWidget permissions.

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to perform:
 verifiedpermissions:GetWidget on resource: my-example-widget

In this case, the policy for the mateojackson user must be updated to allow access to the my-
example-widget resource by using the verifiedpermissions:GetWidget action.

Troubleshooting 142

Amazon Verified Permissions User Guide

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to Verified Permissions.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in Verified Permissions. However, the action requires the service to have
permissions that are granted by a service role. Mary does not have permissions to pass the role to
the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I want to allow people outside of my AWS account to access my Verified
Permissions resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether Verified Permissions supports these features, see How Amazon Verified
Permissions works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

Troubleshooting 143

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html

Amazon Verified Permissions User Guide

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see How IAM roles differ from resource-based policies in the IAM User Guide.

Compliance validation for Amazon Verified Permissions

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security and Compliance Quick Start Guides – These deployment guides discuss architectural
considerations and provide steps for deploying baseline environments on AWS that are security
and compliance focused.

• Architecting for HIPAA Security and Compliance on Amazon Web Services – This whitepaper
describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible
Services Reference.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of

Compliance validation 144

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_compare-resource-policies.html
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/quickstart/?awsf.filter-tech-category=tech-category%23security-identity-compliance
https://docs.aws.amazon.com/whitepapers/latest/architecting-hipaa-security-and-compliance-on-aws/welcome.html
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

Amazon Verified Permissions User Guide

Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in Amazon Verified Permissions

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you
can design and operate applications and databases that automatically fail over between zones
without interruption. Availability Zones are more highly available, fault tolerant, and scalable than
traditional single or multiple data center infrastructures.

When you create a Verified Permissions policy store , it is created within an individual AWS Region,
and is automatically replicated across the data centers that make up that Region's Availability
Zones. At this time, Verified Permissions doesn't support any cross-region replication.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Resilience 145

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/

Amazon Verified Permissions User Guide

Monitoring Amazon Verified Permissions

Monitoring is an important part of maintaining the reliability, availability, and performance
of Amazon Verified Permissions and your other AWS solutions. AWS provides the following
monitoring tools to watch Verified Permissions, report when something is wrong, and take
automatic actions when appropriate:

• AWS CloudTrail captures API calls and related events made by or on behalf of your AWS account
and delivers the log files to an Amazon S3 bucket that you specify. You can identify which users
and accounts called AWS, the source IP address from which the calls were made, and when the
calls occurred. For more information, see the AWS CloudTrail User Guide.

Logging Amazon Verified Permissions API calls using AWS
CloudTrail

Amazon Verified Permissions is integrated with AWS CloudTrail, a service that provides a record
of actions taken by a user, role, or an AWS service in Verified Permissions. CloudTrail captures
all API calls for Verified Permissions as events. The calls captured include calls from the Verified
Permissions console and code calls to the Verified Permissions API operations. If you create a trail,
you can enable continuous delivery of CloudTrail events to an Amazon S3 bucket, including events
for Verified Permissions. If you don't configure a trail, you can still view the most recent events
in the CloudTrail console in Event history. Using the information collected by CloudTrail, you
can determine the request that was made to Verified Permissions, the IP address from which the
request was made, who made the request, when it was made, and additional details.

To learn more about CloudTrail, see the AWS CloudTrail User Guide.

Verified Permissions information in CloudTrail

CloudTrail is enabled on your AWS account when you create the account. When activity occurs in
Verified Permissions, that activity is recorded in a CloudTrail event along with other AWS service
events in Event history. You can view, search, and download recent events in your AWS account.
For more information, see Viewing events with CloudTrail Event history.

For an ongoing record of events in your AWS account, including events for Verified Permissions,
create a trail. A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. By default,

CloudTrail logs 146

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html

Amazon Verified Permissions User Guide

when you create a trail in the console, the trail applies to all AWS Regions. The trail logs events
from all Regions in the AWS partition and delivers the log files to the Amazon S3 bucket that you
specify. Additionally, you can configure other AWS services to further analyze and act upon the
event data collected in CloudTrail logs. For more information, see the following:

• Overview for creating a trail

• CloudTrail supported services and integrations

• Configuring Amazon SNS notifications for CloudTrail

• Receiving CloudTrail log files from multiple regions and Receiving CloudTrail log files from
multiple accounts

All Verified Permissions actions are logged by CloudTrail and are documented in the Amazon
Verified Permissions API Reference Guide. For example, calls to the CreateIdentitySource,
DeletePolicy, and ListPolicyStores actions generate entries in the CloudTrail log files.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root or AWS Identity and Access Management (IAM) user
credentials.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

For more information, see the CloudTrail userIdentity element.

Data events like IsAuthorized and IsAuthorizedWithToken are not logged by default when you
create a trail or event data store. To record CloudTrail data events, you must explicitly add the
supported resources or resource types for which you want to collect activity. For more information,
see Data events in the AWS CloudTrail User Guide.

Understanding Verified Permissions log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

Understanding Verified Permissions log file entries 147

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-aws-service-specific-topics.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/configure-sns-notifications-for-cloudtrail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/receive-cloudtrail-log-files-from-multiple-regions.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-receive-logs-from-multiple-accounts.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-event-reference-user-identity.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events

Amazon Verified Permissions User Guide

Topics

• IsAuthorized

• BatchIsAuthorized

• CreatePolicyStore

• ListPolicyStores

• DeletePolicyStore

• PutSchema

• GetSchema

• CreatePolicyTemplate

• DeletePolicyTemplate

• CreatePolicy

• GetPolicy

• CreateIdentitySource

• GetIdentitySource

• ListIdentitySources

• DeleteIdentitySource

Note

Some fields have been redacted from the examples for data privacy.

IsAuthorized

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-11-20T22:55:03Z",
 "eventSource": "verifiedpermissions.amazonaws.com",

Understanding Verified Permissions log file entries 148

Amazon Verified Permissions User Guide

 "eventName": "IsAuthorized",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-cli/2.11.18 Python/3.11.3 Linux/5.4.241-160.348.amzn2int.x86_64
 exe/x86_64.amzn.2 prompt/off command/verifiedpermissions.is-authorized",
 "requestParameters": {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "ViewPhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 },
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "additionalEventData": {
 "decision": "ALLOW"
 },
 "requestID": "346c4b6a-d12f-46b6-bc06-6c857bd3b28e",
 "eventID": "8a4fed32-9605-45dd-a09a-5ebbf0715bbc",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data"
}

Understanding Verified Permissions log file entries 149

Amazon Verified Permissions User Guide

BatchIsAuthorized

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-11-20T23:02:33Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "BatchIsAuthorized",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-cli/2.11.18 Python/3.11.3 Linux/5.4.241-160.348.amzn2int.x86_64
 exe/x86_64.amzn.2 prompt/off command/verifiedpermissions.is-authorized",
 "requestParameters": {
 "requests": [
 {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "ViewPhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 },
 {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "annalisa"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "DeletePhoto"
 },

Understanding Verified Permissions log file entries 150

Amazon Verified Permissions User Guide

 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 }
],
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "additionalEventData": {
 "results": [
 {
 "request": {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "alice"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "ViewPhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 },
 "decision": "ALLOW"
 },
 {
 "request": {
 "principal": {
 "entityType": "PhotoFlash::User",
 "entityId": "annalisa"
 },
 "action": {
 "actionType": "PhotoFlash::Action",
 "actionId": "DeletePhoto"
 },
 "resource": {
 "entityType": "PhotoFlash::Photo",
 "entityId": "VacationPhoto94.jpg"
 }
 },
 "decision": "DENY"

Understanding Verified Permissions log file entries 151

Amazon Verified Permissions User Guide

 }
]
 },
 "requestID": "a8a5caf3-78bd-4139-924c-7101a8339c3b",
 "eventID": "7d81232f-f3d1-4102-b9c9-15157c70487b",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "123456789012",
 "eventCategory": "Data"
}

CreatePolicyStore

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:33Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreatePolicyStore",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "clientToken": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "validationSettings": {
 "mode": "OFF"
 }
 },

Understanding Verified Permissions log file entries 152

Amazon Verified Permissions User Guide

 "responseElements": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111",
 "createdDate": "2023-05-22T07:43:33.962794Z",
 "lastUpdatedDate": "2023-05-22T07:43:33.962794Z"
 },
 "requestID": "1dd9360e-e2dc-4554-ab65-b46d2cf45c29",
 "eventID": "b6edaeee-3584-4b4e-a48e-311de46d7532",
 "readOnly": false,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

ListPolicyStores

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:33Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "ListPolicyStores",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "maxResults": 10
 },
 "responseElements": null,
 "requestID": "5ef238db-9f87-4f37-ab7b-6cf0ba5df891",
 "eventID": "b0430fb0-12c3-4cca-8d05-84c37f99c51f",
 "readOnly": true,
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",

Understanding Verified Permissions log file entries 153

Amazon Verified Permissions User Guide

 "eventCategory": "Management"
}

DeletePolicyStore

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:32Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "DeletePolicyStore",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "1368e8f9-130d-45a5-b96d-99097ca3077f",
 "eventID": "ac482022-b2f6-4069-879a-dd509123d8d7",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 154

Amazon Verified Permissions User Guide

PutSchema

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-16T12:58:57Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "PutSchema",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": {
 "lastUpdatedDate": "2023-05-16T12:58:57.513442Z",
 "namespaces": "[some_namespace]",
 "createdDate": "2023-05-16T12:58:57.513442Z",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 },
 "requestID": "631fbfa1-a959-4988-b9f8-f1a43ff5df0d",
 "eventID": "7cd0c677-733f-4602-bc03-248bae581fe5",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 155

Amazon Verified Permissions User Guide

GetSchema

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::222222222222:role/ExampleRole",
 "accountId": "222222222222",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-25T01:12:07Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "GetSchema",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "a1f4d4cd-6156-480a-a9b8-e85a71dcc7c2",
 "eventID": "0b3b8e3d-155c-46f3-a303-7e9e8b5f606b",
 "readOnly": true,
 "resources": [
 {
 "accountId": "222222222222",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::222222222222:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "222222222222",
 "eventCategory": "Management"
}

CreatePolicyTemplate

{
 "eventVersion": "1.08",
 "userIdentity": {

Understanding Verified Permissions log file entries 156

Amazon Verified Permissions User Guide

 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-16T13:00:24Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreatePolicyTemplate",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": {
 "lastUpdatedDate": "2023-05-16T13:00:23.444404Z",
 "createdDate": "2023-05-16T13:00:23.444404Z",
 "policyTemplateId": "PTEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 },
 "requestID": "73953bda-af5e-4854-afe2-7660b492a6d0",
 "eventID": "7425de77-ed84-4f91-a4b9-b669181cc57b",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

DeletePolicyTemplate

{
 "eventVersion": "1.08",
 "userIdentity": {

Understanding Verified Permissions log file entries 157

Amazon Verified Permissions User Guide

 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::222222222222:role/ExampleRole",
 "accountId": "222222222222",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-25T01:11:48Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "DeletePolicyTemplate",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyTemplateId": "PTEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "5ff0f22e-6bbd-4b85-a400-4fb74aa05dc6",
 "eventID": "c0e0c689-369e-4e95-a9cd-8de113d47ffa",
 "readOnly": false,
 "resources": [
 {
 "accountId": "222222222222",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "ARN": "arn:aws:verifiedpermissions::222222222222:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "222222222222",
 "eventCategory": "Management"
}

CreatePolicy

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",

Understanding Verified Permissions log file entries 158

Amazon Verified Permissions User Guide

 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:42:30Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreatePolicy",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "clientToken": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyId": "SPEXAMPLEabcdefg111111",
 "policyType": "STATIC",
 "principal": {
 "entityType": "PhotoApp::Role",
 "entityId": "PhotoJudge"
 },
 "resource": {
 "entityType": "PhotoApp::Application",
 "entityId": "PhotoApp"
 },
 "lastUpdatedDate": "2023-05-22T07:42:30.70852Z",
 "createdDate": "2023-05-22T07:42:30.70852Z"
 },
 "requestID": "93ffa151-3841-4960-9af6-30a7f817ef93",
 "eventID": "30ab405f-3dff-43ff-8af9-f513829e8bde",
 "readOnly": false,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 159

Amazon Verified Permissions User Guide

GetPolicy

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::123456789012:role/ExampleRole",
 "accountId": "123456789012",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-22T07:43:29Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "GetPolicy",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "policyId": "SPEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "23022a9e-2f5c-4dac-b653-59e6987f2fac",
 "eventID": "9b4d5037-bafa-4d57-b197-f46af83fc684",
 "readOnly": true,
 "resources": [
 {
 "accountId": "123456789012",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::123456789012:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "123456789012",
 "eventCategory": "Management"
}

CreateIdentitySource

{
 "eventVersion": "1.08",

Understanding Verified Permissions log file entries 160

Amazon Verified Permissions User Guide

 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-19T01:27:44Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "CreateIdentitySource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "clientToken": "a1b2c3d4-e5f6-a1b2-c3d4-TOKEN1111111",
 "configuration": {
 "cognitoUserPoolConfiguration": {
 "userPoolArn": "arn:aws:cognito-idp:000011112222:us-east-1:userpool/us-
east-1_aaaaaaaaaa"
 }
 },
 "policyStoreId": "PSEXAMPLEabcdefg111111",
 "principalEntityType": "User"
 },
 "responseElements": {
 "createdDate": "2023-07-14T15:05:01.599534Z",
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "lastUpdatedDate": "2023-07-14T15:05:01.599534Z",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "requestID": "afcc1e67-d5a4-4a9b-a74c-cdc2f719391c",
 "eventID": "f13a41dc-4496-4517-aeb8-a389eb379860",
 "readOnly": false,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",

Understanding Verified Permissions log file entries 161

Amazon Verified Permissions User Guide

 "eventCategory": "Management"
}

GetIdentitySource

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-24T19:55:31Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "GetIdentitySource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "7a6ecf79-c489-4516-bb57-9ded970279c9",
 "eventID": "fa158e6c-f705-4a15-a731-2cdb4bd9a427",
 "readOnly": true,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 162

Amazon Verified Permissions User Guide

ListIdentitySources

{
 "eventVersion": "1.08",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-24T20:05:32Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "ListIdentitySources",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "95d2a7bc-7e9a-4efe-918e-97e558aacaf7",
 "eventID": "d3dc53f6-1432-40c8-9d1d-b9eeb75c6193",
 "readOnly": true,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",
 "eventCategory": "Management"
}

DeleteIdentitySource

{
 "eventVersion": "1.08",
 "userIdentity": {

Understanding Verified Permissions log file entries 163

Amazon Verified Permissions User Guide

 "type": "AssumedRole",
 "principalId": "EXAMPLE_PRINCIPAL_ID",
 "arn": "arn:aws:iam::333333333333:role/ExampleRole",
 "accountId": "333333333333",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE"
 },
 "eventTime": "2023-05-24T19:55:32Z",
 "eventSource": "verifiedpermissions.amazonaws.com",
 "eventName": "DeleteIdentitySource",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "203.0.113.0",
 "userAgent": "aws-sdk-rust/0.55.2 os/linux lang/rust/1.69.0",
 "requestParameters": {
 "identitySourceId": "ISEXAMPLEabcdefg111111",
 "policyStoreId": "PSEXAMPLEabcdefg111111"
 },
 "responseElements": null,
 "requestID": "d554d964-0957-4834-a421-c417bd293086",
 "eventID": "fe4d867c-88ee-4e5d-8d30-2fbc208c9260",
 "readOnly": false,
 "resources": [
 {
 "accountId": "333333333333",
 "type": "AWS::VerifiedPermissions::PolicyStore",
 "arn": "arn:aws:verifiedpermissions::333333333333:policy-store/
PSEXAMPLEabcdefg111111"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": true,
 "recipientAccountId": "333333333333",
 "eventCategory": "Management"
}

Understanding Verified Permissions log file entries 164

Amazon Verified Permissions User Guide

Creating Amazon Verified Permissions resources with
AWS CloudFormation

Amazon Verified Permissions is integrated with AWS CloudFormation, a service that helps you to
model and set up your AWS resources so that you can spend less time creating and managing your
resources and infrastructure. You create a template that describes all the AWS resources that you
want (such as policy stores), and AWS CloudFormation provisions and configures those resources
for you.

When you use AWS CloudFormation, you can reuse your template to set up your Verified
Permissions resources consistently and repeatedly. Describe your resources once, and then
provision the same resources over and over in multiple AWS accounts and Regions.

Important

Amazon Cognito Identity is not available in all of the same AWS Regions as
Amazon Verified Permissions. If you receive an error from AWS CloudFormation
regarding Amazon Cognito Identity, such as Unrecognized resource types:
AWS::Cognito::UserPool, AWS::Cognito::UserPoolClient, we recommend that
you create the Amazon Cognito user pool and client in the geographically closest AWS
Region where Amazon Cognito Identity is available. Use this newly created user pool when
creating the Verified Permissions identity source.

Verified Permissions and AWS CloudFormation templates

To provision and configure resources for Verified Permissions and related services, you must
understand AWS CloudFormation templates. Templates are formatted text files in JSON or YAML.
These templates describe the resources that you want to provision in your AWS CloudFormation
stacks. If you're unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help
you get started with AWS CloudFormation templates. For more information, see What is AWS
CloudFormation Designer? in the AWS CloudFormation User Guide.

Verified Permissions supports creating identity sources, policies, policy stores, and policy templates
in AWS CloudFormation. For more information, including examples of JSON and YAML templates
for Verified Permissions resources, see the Amazon Verified Permissions resource type reference in
the AWS CloudFormation User Guide.

Verified Permissions and AWS CloudFormation templates 165

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_VerifiedPermissions.html

Amazon Verified Permissions User Guide

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

Learn more about AWS CloudFormation 166

https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

Amazon Verified Permissions User Guide

Access Amazon Verified Permissions using an interface
endpoint (AWS PrivateLink)

You can use AWS PrivateLink to create a private connection between your VPC and Amazon
Verified Permissions. You can access Verified Permissions as if it were in your VPC, without the use
of an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances
in your VPC don't need public IP addresses to access Verified Permissions.

You establish this private connection by creating an interface endpoint, powered by AWS
PrivateLink. We create an endpoint network interface in each subnet that you enable for the
interface endpoint. These are requester-managed network interfaces that serve as the entry point
for traffic destined for Verified Permissions.

For more information, see Access AWS services through AWS PrivateLink in the AWS PrivateLink
Guide.

Considerations for Verified Permissions

Before you set up an interface endpoint for Verified Permissions, review Considerations in the AWS
PrivateLink Guide.

Verified Permissions supports making calls to all of its API actions through the interface endpoint.

VPC endpoint policies are not supported for Verified Permissions. By default, full access to Verified
Permissions is allowed through the interface endpoint. Alternatively, you can associate a security
group with the endpoint network interfaces to control traffic to Verified Permissions through the
interface endpoint.

Create an interface endpoint for Verified Permissions

You can create an interface endpoint for Verified Permissions using either the Amazon VPC console
or the AWS Command Line Interface (AWS CLI). For more information, see Create an interface
endpoint in the AWS PrivateLink Guide.

Create an interface endpoint for Verified Permissions using the following service name:

com.amazonaws.region.verifiedpermissions

Considerations 167

https://docs.aws.amazon.com/vpc/latest/privatelink/privatelink-access-aws-services.html
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#considerations-interface-endpoints
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws
https://docs.aws.amazon.com/vpc/latest/privatelink/create-interface-endpoint.html#create-interface-endpoint-aws

Amazon Verified Permissions User Guide

If you enable private DNS for the interface endpoint, you can make API requests to Verified
Permissions using its default Regional DNS name. For example, verifiedpermissions.us-
east-1.amazonaws.com.

Create an interface endpoint 168

Amazon Verified Permissions User Guide

Quotas for Amazon Verified Permissions

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless
otherwise noted, each quota is Region-specific. You can request increases for some quotas, and
other quotas cannot be increased.

To view the quotas for Verified Permissions, open the Service Quotas console. In the navigation
pane, choose AWS services and select Verified Permissions.

To request a quota increase, see Requesting a Quota Increase in the Service Quotas User Guide. If
the quota is not yet available in Service Quotas, use the limit increase form.

Your AWS account has the following quotas related to Verified Permissions.

Topics

• Quotas for resources

• Quotas for hierarchies

• Quotas for operations per second

Quotas for resources

Name Default Adjustabl
e

Description

Policy stores per Region per account Each supported
Region: 1,000

Yes The maximum number of
policy stores.

Policy templates per policy store Each supported
Region: 40

Yes The maximum number
of policy templates in a
policy store.

Identity sources per policy store 1 No The maximum number of
identity sources that you
can define for a policy
store.

Quotas for resources 169

https://console.aws.amazon.com/servicequotas/home
https://docs.aws.amazon.com/servicequotas/latest/userguide/request-quota-increase.html
https://console.aws.amazon.com/support/home#/case/create?issueType=service-limit-increase
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-919F2C9C
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-97BDA0CF

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

Authorization request size¹ 1 MB No The maximum size of an
authorization request.

Policy size 10,000 bytes No The maximum size of an
individual policy.

Schema size 100,000 bytes No The maximum size of the
schema of a policy store.

Policy size per resource 200,000 bytes² No The maximum size of all
policies that reference a
specific resource.

¹ The quota for an authorization request is the same for both IsAuthorized and
IsAuthorizedWithToken.

² The total size of all policies pertaining to a single resource can't exceed 200,000 bytes. For
template-linked policies, the size of the policy template is counted only once, plus the size of each
set of parameters used to instantiate each template-linked policy.

Quotas for hierarchies

Name Default Adjustabl
e

Description

Transitive parents per principal 100 No The maximum number
of transitive parents for
each principal.

Transitive parents per action 100 No The maximum number
of transitive parents for
each action.

Quotas for hierarchies 170

https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorized.html
https://docs.aws.amazon.com/verifiedpermissions/latest/apireference/API_IsAuthorizedWithToken.html

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

Transitive parents per resource 100 No The maximum number
of transitive parents for
each resource.

The diagram below illustrates how transitive parents can be defined for an entity (principal, action,
or resource).

Quotas for operations per second

Verified Permissions throttles requests to service endpoints in an AWS Region when application
requests exceed the quota for an API operation. Verified Permissions might return an exception
when you exceed the quota in requests per second, or you attempt simultaneous write operations.
You can view your current RPS quotas in Service Quotas. To prevent applications from exceeding
the quota for an operation, you must optimize them for retries and exponential backoff. For more
information, see Retry with backoff pattern and Managing and monitoring API throttling in your
workloads.

Quotas for operations per second 171

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas
https://docs.aws.amazon.com/prescriptive-guidance/latest/cloud-design-patterns/retry-backoff.html
https://aws.amazon.com/blogs/mt/managing-monitoring-api-throttling-in-workloads/
https://aws.amazon.com/blogs/mt/managing-monitoring-api-throttling-in-workloads/

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

BatchIsAuthorized requests per second
per Region per account

Each supported
Region: 30

Yes The maximum number
of BatchIsAuthorized
requests per second.

BatchIsAuthorizedWithToken requests
per second per Region per account

Each supported
Region: 30

Yes maximum number of
BatchIsAuthorizedW
ithToken requests per
second.

CreatePolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
CreatePolicy requests per
second.

CreatePolicyStore requests per second
per Region per account

Each supported
Region: 1

No The maximum number
of CreatePolicyStore
requests per second.

CreatePolicyTemplate requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of CreatePolicyTemplate
requests per second.

DeletePolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
DeletePolicy requests per
second.

DeletePolicyStore requests per second
per Region per account

Each supported
Region: 1

No The maximum number
of DeletePolicyStore
requests per second.

DeletePolicyTemplate requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of DeletePolicyTemplate
requests per second.

Quotas for operations per second 172

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-9647C866
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-8D5CB09F
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-F81CF58F
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-5CA93A13

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

GetPolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number
of GetPolicy requests per
second.

GetPolicyTemplate requests per second
per Region per account

Each supported
Region: 10

Yes The maximum number
of GetPolicyTemplate
requests per second.

GetSchema requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
GetSchema requests per
second.

IsAuthorized requests per second per
Region per account

Each supported
Region: 200

Yes The maximum number of
IsAuthorized requests per
second.

IsAuthorizedWithToken requests per
second per Region per account

Each supported
Region: 200

Yes The maximum number of
IsAuthorizedWithToken
requests per second.

ListPolicies requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
ListPolicies requests per
second.

ListPolicyStores requests per second
per Region per account

Each supported
Region: 10

Yes The maximum number of
ListPolicyStores requests
per second.

ListPolicyTemplates requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of ListPolicyTemplates
requests per second.

PutSchema requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number of
PutSchema requests per
second.

Quotas for operations per second 173

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-C9736881
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-D82415D2
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-B49B9779
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-771544C7
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-645D3857
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-4E0E8AFD
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-271BE7E8
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-70239429
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-886D79EB

Amazon Verified Permissions User Guide

Name Default Adjustabl
e

Description

UpdatePolicy requests per second per
Region per account

Each supported
Region: 10

Yes The maximum number
of UpdatePolicy requests
per second.

UpdatePolicyTemplate requests per
second per Region per account

Each supported
Region: 10

Yes The maximum number
of UpdatePolicyTemplate
requests per second.

Quotas for operations per second 174

https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-2AFF096D
https://console.aws.amazon.com/servicequotas/home/services/verifiedpermissions/quotas/L-DC54B663

Amazon Verified Permissions User Guide

Document history for the Amazon Verified Permissions
User Guide

The following table describes the documentation releases for Verified Permissions.

Change Description Date

Batch authorization with
identity source tokens

You can now authorize users
from a Amazon Cognito user
pool in a single BatchIsAu
thorizedWithToken API
request.

April 5, 2024

Creating a policy store with
API Gateway

You can now create a policy
store from an existing API and
Amazon Cognito user pool.

April 1, 2024

Context concepts and
example

Added information about
context in authorization
requests with Verified
Permissions.

February 1, 2024

Authorization concepts and
example

Added information about
authorization requests with
Verified Permissions.

February 1, 2024

AWS CloudFormation
integration

Verified Permissions supports
creating identity sources,
policies, policy stores, and
policy templates in AWS
CloudFormation.

June 30, 2023

Initial release Initial release of the Amazon
Verified Permissions User
Guide

June 13, 2023

175

https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/policy-stores_create.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/policy-stores_create.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/context.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/context.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/authorization.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/cloudformation-verified-permissions.html
https://docs.aws.amazon.com/verifiedpermissions/latest/userguide/cloudformation-verified-permissions.html

	Amazon Verified Permissions
	Table of Contents
	What is Amazon Verified Permissions?
	Authorization in Verified Permissions
	Cedar policy language
	Benefits of Verified Permissions
	Accelerate application development
	More secure applications
	End-user features

	Related services
	Accessing Verified Permissions
	Pricing for Verified Permissions

	Amazon Verified Permissions terms and concepts
	Authorization model
	Authorization request
	Authorization response
	Considered policies
	Context data
	Determining policies
	Entity data
	Permissions, authorization, and principals
	Policy enforcement
	Policy store
	Satisfied policies
	Differences between Verified Permissions and Cedar
	Namespace definition
	Policy template support
	Schema support
	Extension type support
	Cedar JSON format for entities
	Action groups definition
	Length and size limits

	Getting started with Verified Permissions
	Sign up for an AWS account
	Create an administrative user
	IAM policies for Verified Permissions
	Create your first Verified Permissions policy store
	Creating a sample policy store
	Creating template-linked policies for a sample policy store
	Testing a sample policy store

	Create a policy store with a connected API and identity provider

	Amazon Verified Permissions policy stores
	Creating Verified Permissions policy stores
	API-linked policy stores
	How Verified Permissions authorizes API requests
	Adding attribute-based access control (ABAC)
	Considerations for API-linked policy stores
	Moving to production with AWS CloudFormation

	Troubleshooting API-linked policy stores
	I updated my policy but the authorization decision didn't change
	I attached the Lambda authorizer to my API but it's not generating authorization requests
	I received an unexpected authorization decision and want to review the authorization logic
	I want to find logs from my Lambda authorizer
	My Lambda authorizer doesn't exist
	My API is in a private VPC and can't invoke the authorizer
	I want to process additional user attributes in my authorization model
	I want to add new actions, action context attributes, or resource attributes

	Switching Verified Permissions policy stores
	Deleting Verified Permissions policy stores

	Amazon Verified Permissions policy store schema
	Editing schemas in Visual mode
	Editing schemas in JSON mode
	Deleting a schema

	Amazon Verified Permissions policy validation mode
	Amazon Verified Permissions policies
	Entity formatting in Amazon Verified Permissions
	Creating Amazon Verified Permissions static policies
	Editing Amazon Verified Permissions static policies
	Viewing policies
	Amazon Verified Permissions example policies
	Allows access to individual entities
	Allows access to groups of entities
	Allows access for any entity
	Allows access for attributes of an entity (ABAC)
	Denies access

	Amazon Verified Permissions policy templates
	Creating policy templates
	Creating template-linked policies
	Editing policy templates
	Example template-linked policies for Verified Permissions sample policy stores
	PhotoFlash template-linked policy examples
	DigitalPetStore
	TinyToDo template-linked policy examples

	Using Amazon Verified Permissions with identity providers
	Working with Amazon Cognito and identity sources
	Working with other identity providers
	Creating Amazon Verified Permissions identity sources
	Editing Amazon Verified Permissions identity sources
	Mapping Amazon Cognito tokens to Verified Permissions schema
	Mapping Amazon Cognito ID tokens
	Mapping Amazon Cognito access tokens

	Designing an authorization model for your application
	There isn't a canonical “correct” model
	Focus on your resources beyond API operations
	Compound authorization is normal
	Multi-tenancy considerations
	Comparing shared policy stores and per-tenant policy stores
	How to choose

	When possible, populate the policy scope
	Every resource lives in a container
	Separate the principals from the resource containers
	Don't embed permissions inside attributes
	Prefer fine-grained permissions in the model and aggregate permissions in the user interface
	Consider other reasons to query authorization

	Test bench
	Implementing authorization in Amazon Verified Permissions
	API operations for authorization
	Testing your authorization model
	Integrating with apps and AWS SDKs

	Adding context
	Modifying DigitalPetStore to accept authorization context

	Security in Amazon Verified Permissions
	Data protection in Amazon Verified Permissions
	Data encryption

	Identity and access management for Amazon Verified Permissions
	Audience
	Authenticating with identities
	AWS account root user
	Federated identity
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How Amazon Verified Permissions works with IAM
	Identity-based policies for Verified Permissions
	Identity-based policy examples for Verified Permissions

	Resource-based policies within Verified Permissions
	Policy actions for Verified Permissions
	Policy resources for Verified Permissions
	Policy condition keys for Verified Permissions
	ACLs in Verified Permissions
	ABAC with Verified Permissions
	Using temporary credentials with Verified Permissions
	Cross-service principal permissions for Verified Permissions
	Service roles for Verified Permissions
	Service-linked roles for Verified Permissions

	Identity-based policy examples for Amazon Verified Permissions
	Policy best practices
	Using the Verified Permissions console
	Allow users to view their own permissions

	Troubleshooting Amazon Verified Permissions identity and access
	I am not authorized to perform an action in Verified Permissions
	I am not authorized to perform iam:PassRole
	I want to allow people outside of my AWS account to access my Verified Permissions resources

	Compliance validation for Amazon Verified Permissions
	Resilience in Amazon Verified Permissions

	Monitoring Amazon Verified Permissions
	Logging Amazon Verified Permissions API calls using AWS CloudTrail
	Verified Permissions information in CloudTrail
	Understanding Verified Permissions log file entries
	IsAuthorized
	BatchIsAuthorized
	CreatePolicyStore
	ListPolicyStores
	DeletePolicyStore
	PutSchema
	GetSchema
	CreatePolicyTemplate
	DeletePolicyTemplate
	CreatePolicy
	GetPolicy
	CreateIdentitySource
	GetIdentitySource
	ListIdentitySources
	DeleteIdentitySource

	Creating Amazon Verified Permissions resources with AWS CloudFormation
	Verified Permissions and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Access Amazon Verified Permissions using an interface endpoint (AWS PrivateLink)
	Considerations for Verified Permissions
	Create an interface endpoint for Verified Permissions

	Quotas for Amazon Verified Permissions
	Quotas for resources
	Quotas for hierarchies
	Quotas for operations per second

	Document history for the Amazon Verified Permissions User Guide

