Table of Contents

What is Amazon VPC Lattice? .. 1
 Key components ... 1
 Roles and responsibilities .. 3
 Features ... 4
How VPC Lattice works .. 5
Accessing VPC Lattice .. 8
Pricing .. 8

Service networks ... 9
 Create a service network ... 10
 Manage associations .. 12
 Manage service associations .. 12
 Manage VPC associations ... 13
 Edit access settings .. 14
 Edit monitoring details ... 15
 Manage tags ... 16
 Delete a service network ... 17

Services .. 19
 Step 1: Create a VPC Lattice service ... 20
 Step 2: Define routing ... 21
 Step 3: Create network associations .. 22
 Step 4: Review and create .. 23
 Manage associations ... 23
 Edit access settings ... 24
 Edit monitoring details ... 25
 Manage tags ... 26
 Configure a custom domain name .. 27
 Associate a custom domain name with your service .. 29
BYOC ... 31
 Securing your certificate's private key .. 33
Delete a service .. 33

Target groups .. 34
 Create a target group ... 35
 Create a target group ... 35
 Shared subnets .. 37
Register targets ... 38
 Instance IDs ... 38
 IP addresses .. 39
Lambda functions .. 40
 Application Load Balancers .. 40
Configure health checks ... 41
 Health check settings ... 41
 Check the health of your targets .. 43
 Modify the health check settings .. 44
Routing configuration .. 44
Routing algorithm .. 45
Target type .. 45
IP address type .. 46
HTTP targets ... 47
 x-forwarded headers ... 47
 Caller identity headers ... 47
Lambda functions as targets ... 48
 Prepare the Lambda function ... 49
 Create a target group for the Lambda function 40
Receive events from the VPC Lattice service 50
Respond to the VPC Lattice service ... 53
Multi-value headers .. 54
Deregister the Lambda function .. 55
Application Load Balancers as targets 55
 Prerequisites ... 56
 Step 1: Create a target group of type ALB 56
 Step 2: Register the Application Load Balancer as a target 57
Protocol version .. 58
Update tags .. 59
Delete a target group .. 60
Listeners .. 61
Listener configuration .. 61
Create a listener ... 62
HTTP listeners ... 62
 Prerequisites ... 63
 Add an HTTP listener ... 63
HTTPS listeners .. 64
 Security policy .. 65
 ALPN policy ... 65
 Add an HTTPS listener ... 66
TLS listeners .. 67
 Considerations .. 68
 Add a TLS listener ... 68
Listener rules .. 69
 Default rules .. 69
 Rule priority .. 70
 Rule action .. 70
 Rule conditions ... 70
 Add a rule .. 71
 Update a rule .. 72
 Delete a rule ... 72
 Update a listener .. 73
 Delete a listener .. 74
Share VPC Lattice resources ... 75
 Prerequisites ... 75
 Share resources .. 76
 Stop sharing resources .. 77
 Responsibilities and permissions ... 77
 Resource owners ... 77
 Resource consumers ... 78
 Cross-account events ... 78
Security .. 82
 Manage access to services ... 83
 Auth policies .. 83
 Security groups ... 98
 Network ACLs ... 102
 Authenticated requests .. 104
Data protection ... 112
 Encryption in transit ... 112
 Encryption at rest .. 113
Identity and access management .. 119
 How Amazon VPC Lattice works with IAM .. 119
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quotas</td>
<td>140</td>
</tr>
<tr>
<td>140</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td></td>
</tr>
<tr>
<td>168</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td></td>
</tr>
<tr>
<td>159</td>
<td></td>
</tr>
<tr>
<td>171</td>
<td></td>
</tr>
<tr>
<td>163</td>
<td></td>
</tr>
<tr>
<td>134</td>
<td></td>
</tr>
<tr>
<td>141</td>
<td></td>
</tr>
<tr>
<td>AWS PrivateLink</td>
<td>137</td>
</tr>
<tr>
<td>Considerations for interface VPC endpoints</td>
<td>139</td>
</tr>
<tr>
<td>Creating an interface VPC endpoint for VPC Lattice</td>
<td>139</td>
</tr>
<tr>
<td>Resilience</td>
<td>140</td>
</tr>
<tr>
<td>Infrastructure security</td>
<td>140</td>
</tr>
<tr>
<td>Monitoring</td>
<td>141</td>
</tr>
<tr>
<td>CloudWatch metrics</td>
<td>141</td>
</tr>
<tr>
<td>View Amazon CloudWatch metrics</td>
<td>141</td>
</tr>
<tr>
<td>Target group metrics</td>
<td>142</td>
</tr>
<tr>
<td>Service metrics</td>
<td>155</td>
</tr>
<tr>
<td>Access logs</td>
<td>159</td>
</tr>
<tr>
<td>IAM permissions required to enable access logs</td>
<td>160</td>
</tr>
<tr>
<td>Access log destinations</td>
<td>161</td>
</tr>
<tr>
<td>Enable access logs</td>
<td>162</td>
</tr>
<tr>
<td>Access log contents</td>
<td>163</td>
</tr>
<tr>
<td>Troubleshoot access logs</td>
<td>167</td>
</tr>
<tr>
<td>CloudTrail logs</td>
<td>167</td>
</tr>
<tr>
<td>Understand VPC Lattice log file entries</td>
<td>168</td>
</tr>
<tr>
<td>Quotas</td>
<td>171</td>
</tr>
<tr>
<td>Document history</td>
<td>174</td>
</tr>
</tbody>
</table>
What is Amazon VPC Lattice?

Amazon VPC Lattice is a fully managed application networking service that you use to connect, secure, and monitor the services for your application. You can use VPC Lattice with a single virtual private cloud (VPC) or across multiple VPCs from one or more accounts.

Modern applications can consist of multiple small and modular services, which are often called microservices. While modernization has its advantages, it can also introduce networking complexities and challenges when you connect these microservices. For example, if the developers are spread across different teams, they might build and deploy microservices across multiple accounts or VPCs.

In VPC Lattice, we refer to a microservice as a service. This is the wording that you see in the VPC Lattice documentation.

Contents

- Key components
- Roles and responsibilities
- Features
- How VPC Lattice works
- Accessing VPC Lattice
- Pricing

Key components

To use Amazon VPC Lattice, you should be familiar with its key components.

Service

An independently deployable unit of software that delivers a specific task or function. A service can run on EC2 instances or ECS containers, or as Lambda functions, within an account or a virtual private cloud (VPC). A VPC Lattice service has the following components: target groups, listeners, and rules.
Target group

A collection of resources, also known as targets, that run your application or service. Targets can be EC2 instances, IP addresses, Lambda functions, Application Load Balancers, or Kubernetes Pods. These are similar to the target groups provided by Elastic Load Balancing, but they are not interchangeable.

Listener

A process that checks for connection requests, and routes them to targets in a target group. You configure a listener with a protocol and a port number.

Rule

A default component of a listener that forwards requests to the targets in a VPC Lattice target group. Each rule consists of a priority, one or more actions, and one or more conditions. Rules determines how the listener routes client requests.

Service network

A logical boundary for a collection of services. A client is any resource deployed in a VPC that is associated with the service network. Clients and services that are associated with the same service network can communicate with each other if they are authorized to do so.

In the following figure, the clients can communicate with both services, because the VPC and services are associated with the same service network.
Service directory

A central registry of all VPC Lattice services that you own or are shared with your account through AWS Resource Access Manager (AWS RAM).

Auth policies

Fine-grained authorization policies that can be used to define access to services. You can attach separate auth policies to individual services or to the service network. For example, you can create a policy for how a payment service running on an auto scaling group of EC2 instances should interact with a billing service running in AWS Lambda.

Roles and responsibilities

A role determines who is responsible for the setup and flow of information within Amazon VPC Lattice. There are typically two roles, service network owner and service owner, and their responsibilities can overlap.

Service network owner – The service network owner is usually the network administrator or the cloud administrator in an organization. Service network owners create, share, and provision the service network. They also manage who can access the service network or services within VPC Lattice. The service network owner can define coarse-grained access settings for the services associated with the service network. These controls are used to manage communication between clients and services using authentication and authorization policies. The service network owner can

Roles and responsibilities
also associate a service with the service network, if the service is shared with the service network owner's account.

Service owner – The service owner is usually a software developer in an organization. Service owners create services within VPC Lattice, define routing rules, and also associate services with the service network. They can also define fine-grained access settings, which can restrict access to only authenticated and authorized services and clients.

Features

The following are the core features that VPC Lattice provides.

Service discovery

All clients and services in VPCs associated with the service network can communicate with other services within the same service network. DNS directs client-to-service and service-to-service traffic through the VPC Lattice endpoint. When a client wants to send a request to a service, it uses the service's DNS name. The Route 53 Resolver sends the traffic to VPC Lattice, which then identifies the destination service.
Connectivity

Client-to-service connectivity is established using the VPC Lattice data plane within the AWS network infrastructure. When you associate a VPC with the service network, any client within the VPC can connect with services in the service network, if they have the required access.

Observability

VPC Lattice generates metrics and logs for each request and response traversing the service network, to help you monitor and troubleshoot applications. By default, VPC Lattice publishes metrics in the service owner account, and gives you the option to turn on logging. If the clients are also associated with the same service network, the service network owner receives logs for all services associated with the service network. The service owner receives logs for all clients making requests to their service.

VPC Lattice works with the following tools to help you monitor and troubleshoot your services: CloudWatch log groups, Firehose delivery streams, and S3 buckets.

Security

VPC Lattice provides a framework that you can use to implement a defense strategy at multiple layers of the network. The first layer is the service and VPC association. Without a VPC and service association, clients can't access the service. The second layer enables users to attach security groups to the association between the VPC and the service network. The third and fourth layers are auth policies that can be applied individually at the service network level and the service level.

How VPC Lattice works

VPC Lattice is designed to help you easily and effectively discover, secure, connect, and monitor all of the services within it. Each component within VPC Lattice communicates unidirectionally or bi-directionally within the service network based on its association with the service network and its access settings. Access settings are comprised of authentication and authorization policies required for this communication.

The following summary describes communication between components within VPC Lattice:

• Services that are associated with the service network can receive requests from clients whose VPCs are also associated with the service network.
- A client can send requests to services associated with a service network only if it's in a VPC that's associated with the same service network. Client traffic that traverses a VPC peering connection or a transit gateway is denied.

- A client can't send requests to clients in other VPCs associated with the service network.

- Targets of services in VPCs that are associated with the service network are also clients and can send requests to other services associated with the service network.

- Targets of services in VPCs that aren't associated with the service network aren't clients and can't send requests to other services associated with the service network.

The following flow diagram uses an example scenario to explain the flow of information and direction of communication between the components within VPC Lattice. There are two services associated with a service network. Both services and all three VPCs were created in the same account as the service network. Both services are configured to allow traffic from the service network.

Service 1 is a billing application running on a group of instances registered with target group 1 in VPC 1. Service 2 is a payment application running on a group of instances registered with target group 2 in VPC 2. VPC 3 is in the same account, and it has clients but no services.

The following list describes, in order, the typical workflow of tasks for VPC Lattice.
1. **Create a service network**

 The service network owner creates the service network.

2. **Create a service**

 The service owners create their respective services, service 1 and service 2. During creation, the service owner adds listeners and defines rules for routing requests to the target group for each service.

3. **Define routing**

 The service owners create the target group for each service (target group 1 and target group 2). They do this by specifying the targeted resources on which the services run; for example, instances. They also specify the VPCs in which these targets reside.

 In the preceding diagram, the dotted arrows that point to the target groups from the services represent traffic flowing from each service to its respective target group. The dotted arrows represent the direction of communication between the service and the target group.

4. **Associate services with the service network**

 The service network owner or the service owner associates the services with the service network. The associations are shown as arrows with check marks pointing to the service network from the service. When you associate a service with a service network, that service becomes discoverable to other services and clients in the VPCs that are associated with the service network.

 The bi-directional dotted arrows between the service and the service network represent the two-way communication as a result of the association. The dotted arrows from the service network to the services represent services receiving requests from clients. The dotted arrows in the opposite direction, that is from the services to the service network, represent services responding to client requests through the service network.

5. **Associate VPCs with the service network**

 The service network owner associates VPC 1 and VPC 3 with the service network. The associations are shown arrows with check marks pointed to the service network. With these associations, the targets in these VPCs become clients, and can make requests to the associated services. The bi-directional dotted arrow between VPC 3 and the service network represents two-way communication between the clients (for example, instances) in VPC 3 and the service network as a result of the association. Similarly, the dotted arrow pointing from target group 1
to the service network represents clients making requests to other services associated with the service network.

Notice that VPC 2 does not have an arrow or a check mark that represents an association. This means that the service network owner or the service owner hasn't associated VPC 2 with the service network. This is because service 2, in this example, only needs to receive requests and send responses using the same request. In other words, the targets for service 2 aren't clients and don't need to make requests to other services in the service network.

Accessing VPC Lattice

You can create, access, and manage VPC Lattice using any of the following interfaces:

- **AWS Management Console** – Provides a web interface that you can use to access VPC Lattice.
- **AWS Command Line Interface (AWS CLI)** – Provides commands for a broad set of AWS services, including VPC Lattice. The AWS CLI is supported on Windows, MacOS, and Linux. For more information about the CLI, see [AWS Command Line Interface](https://docs.aws.amazon.com/cli/index.html). For more information about the APIs, see [Amazon VPC Lattice API Reference](https://docs.aws.amazon.com/vpc-lattice/latest/userguide/).
- **VPC Lattice Controller for Kubernetes** – Manages VPC Lattice resources for a Kubernetes cluster. For more information about using VPC Lattice with Kubernetes, see the [AWS Gateway API Controller User Guide](https://docs.aws.amazon.com/vpc-lattice/latest/userguide/).
- **AWS CloudFormation** – Helps you to model and set up your AWS resources. For more information, see the [Amazon VPC Lattice resource type reference](https://docs.aws.amazon.com/vpc-lattice/latest/userguide/).

Pricing

With VPC Lattice you pay for the time that a service is provisioned, the amount of data transferred through each service, and the number of requests. For more information, see [Amazon VPC Lattice Pricing](https://aws.amazon.com/vpc-lattice/pricing/).
Service networks in VPC Lattice

A service network is a logical boundary for a collection of services. Services associated with the network can be authorized for discovery, connectivity, accessibility, and observability. To make requests to services in the network, your service or client must be in a VPC that is associated with the service network.

The following diagram shows the key components of a typical service network within Amazon VPC Lattice. Check marks on the arrows indicate that the services and the VPC are associated with the service network. Clients in the VPC associated with the service network can communicate with both services through the service network.

You can associate one or more services with multiple service networks. You can also associate multiple VPCs with one service network. However, each VPC can be associated with only one service network.

In the following diagram, the arrows represent the associations between services and service networks, as well as associations between the VPCs and service networks. You can see that multiple services are associated to multiple service networks, and multiple VPCs are associated to each service network. However, the red x mark in the diagram shows that each VPC can have no more than one association to a service network.
For more information, see Quotas for Amazon VPC Lattice.

Create a service network

Use the console to create a service network and optionally configure it with services, associations, access settings, and access logs.

To create a service network using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Choose Create service network.
4. For Identifiers, enter a name, an optional description, and optional tags. The name must be between 3 and 63 characters. You can use lowercase letters, numbers, and hyphens. The name must begin and end with a letter or number. Do not use consecutive hyphens. The description can have up to 256 characters. To add a tag, choose Add new tag and specify a tag key and tag value.
5. (Optional) To associate a service, choose the service from Service associations, Services. The list includes services that are in your account and any services that are shared with you from a different account. If there aren't any services in the list, you can create a service by choosing Create an VPC Lattice service.

Alternatively, to associate a service after you've created the service network, see the section called “Manage service associations”.
6. (Optional) To associate a VPC, choose **Add VPC association**. Select the VPC to associate from **VPC**, and select up to five security groups from **Security groups**. To create a security group, choose **Create new security group**.

 Alternatively, to associate VPCs after you’ve created the service network, see the section called “Manage VPC associations”.

7. For **Network access**, you can leave the default auth type, **None**, if you want the clients in the associated VPCs to access the services in this service network. To apply an **auth policy** to control access to your services, choose **AWS IAM** and do one of the following for **Auth policy**:
 - Enter a policy in the input field. For example policies that you can copy and paste, choose **Policy examples**.
 - Choose **Apply policy template** and select the **Allow authenticated and unauthenticated access** template. This template allows a client from another account to access the service either by signing the request (meaning authenticated) or anonymously (meaning unauthenticated).
 - Choose **Apply policy template** and select the **Allow only authenticated access** template. This template allows a client from another account to access the service only by signing the request (meaning authenticated).

8. (Optional) To turn on **access logs**, select the **Access logs** toggle switch and specify a destination for your access logs as follows:
 - Select **CloudWatch Log group** and choose a CloudWatch Log group. To create a log group, choose **Create a log group in CloudWatch**.
 - Select **S3 bucket** and enter the S3 bucket path, including any prefix. To search your S3 buckets, choose **Browse S3**.
 - Select **Kinesis Data Firehose delivery stream** and choose a delivery stream. To create a delivery stream, choose **Create a delivery stream in Kinesis**.

9. (Optional) To **share your service network** with other accounts, choose the AWS RAM resource shares from **Resource shares**. To create a resource share, choose **Create a resource share in RAM console**.

10. Review your configuration in the **Summary** section, and then choose **Create service network**.

To create a service network using the AWS CLI
Use the `create-service-network` command. This command creates only the basic service network. To create a fully functional service network, you must also use the commands that create service associations, VPC associations, and access settings.

Manage the associations for a VPC Lattice service network

When you associate a service with the service network, it enables clients (resources in a VPC associated with the service network), to make requests to the service. When you associate a VPC with the service network, it enables all the targets within that VPC to be clients and communicate with other services in the service network.

Contents

- Manage service associations
- Manage VPC associations

Manage service associations

You can associate services that reside in your account or services that are shared with you from different accounts. This is an optional step while creating a service network. However, a service network is not fully functional until you associate a service. Service owners can associate their services to a service network if their account has the required access. For more information, see How VPC Lattice works.

When you delete a service association, the service can no longer connect to other services in the service network.

To manage service associations using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Select the name of the service network to open its details page.
5. To create an association, do the following:
 a. Choose Create associations.
 b. Select a service from Services. To create a service, choose Create an Amazon VPC Lattice service.
c. (Optional) To add a tag, expand Service association tags, choose Add new tag, and enter a tag key and tag value.

d. Choose Save changes.

6. To delete an association, select the check box for the association and then choose Actions, Delete service associations. When prompted for confirmation, enter confirm and then choose Delete.

To create a service association using the AWS CLI

Use the create-service-network-service-association command.

To delete a service association using the AWS CLI

Use the delete-service-network-service-association command.

Manage VPC associations

Clients can send requests to services associated with the service network only if they are in VPCs associated with the service network. Client traffic that traverses a VPC peering connection or a transit gateway is denied.

Associating a VPC is an optional step when you create a service network. However, the service network is not fully functional until you associate a VPC. Network owners can associate VPCs to a service network if their account has the required access. For more information, see How VPC Lattice works.

When you delete a VPC association, clients in the VPCs can no longer connect to services in the service network.

To manage VPC associations using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Select the name of the service network to open its details page.
4. Choose the VPC associations tab.
5. To create a VPC association, do the following:

 a. Choose Create VPC associations.
b. Choose **Add VPC association**.

c. Select a VPC from **VPC** and select up to five security groups from **Security groups**. To create a security group, choose **Create new security group**.

d. (Optional) To add a tag, expand **VPC association tags**, choose **Add new tag**, and enter a tag key and tag value.

e. Choose **Save changes**.

6. To edit the security groups for an association, select the check box for the association and then choose **Actions**, **Edit security groups**. Add and remove security groups as needed.

7. To delete an association, select the check box for the association and then choose **Actions**, **Delete VPC associations**. When prompted for confirmation, enter **confirm** and then choose **Delete**.

To create a VPC association using the AWS CLI

To update the security groups for a VPC association using the AWS CLI

To delete a VPC association using the AWS CLI

Edit access settings for a VPC Lattice service network

Access settings enable you to configure and manage client access to a service network. Access settings include **auth type** and **auth policies**. Auth policies help you authenticate and authorize traffic flowing to services within VPC Lattice.

You can apply auth policies at the service network level, the service level, or both. Typically, auth policies are applied by the network owners or cloud administrators. They can implement course-grained authorization, for example, allowing authenticated calls from within the organization, or allowing anonymous GET requests that match a certain condition. At the service level, service owners can apply fine-grained controls, which can be more restrictive. For more information, see [Control access to VPC Lattice services using auth policies](https://docs.aws.amazon.com/vpc-lattice/latest/userguide/control-access-to-vpc-lattice-services-using-auth-policies.html).
To add or update access policies using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Select the name of the service network to open its details page.
4. Choose the Access tab to check the current access settings.
5. To update the access settings, choose Edit access settings.
6. If you want the clients in the associated VPCs to access the services in this service network, choose None for Auth type.
7. To apply a resource policy to the service network, choose AWS IAM for Auth type and do one the following for Auth policy:
 - Enter a policy in the input field. For example policies that you can copy and paste, choose Policy examples.
 - Choose Apply policy template and select the Allow authenticated and unauthenticated access template. This template allows a client from another account to access the service either by signing the request (meaning authenticated) or anonymously (meaning unauthenticated).
 - Choose Apply policy template and select the Allow only authenticated access template. This template allows a client from another account to access the service only by signing the request (meaning authenticated).
8. Choose Save changes.

To add or update an access policy using the AWS CLI

Use the put-auth-policy command.

Edit monitoring details for a VPC Lattice service network

VPC Lattice generates metrics and logs for every request and response, making it more efficient to monitor and troubleshoot applications.

You can enable access logs and specify the destination resource for your logs. VPC Lattice can send logs to the following resources: CloudWatch Log groups, Firehose delivery streams, and S3 buckets.
To enable access logs or update a log destination using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Select the name of the service network to open its details page.
4. Choose the Monitoring tab. Check Access logs to see whether access logs are enabled.
5. To enable or disable access logs, choose Edit access logs, and then turn the Access logs toggle switch on or off.
6. When you enable access logs, you must select the type of delivery destination, and then create or choose the destination for the access logs. You can also change the delivery destination at any time. For example:
 - Select CloudWatch Log group and choose a CloudWatch Log group. To create a log group, choose Create a log group in CloudWatch.
 - Select S3 bucket and enter the S3 bucket path, including any prefix. To search your S3 buckets, choose Browse S3.
 - Select Kinesis Data Firehose delivery stream and choose a delivery stream. To create a delivery stream, choose Create a delivery stream in Kinesis.
7. Choose Save changes.

To enable access logs using the AWS CLI

Use the create-access-log-subscription command.

To update the log destination using the AWS CLI

Use the update-access-log-subscription command.

To disable access logs using the AWS CLI

Use the delete-access-log-subscription command.

Manage tags for a VPC Lattice service network

Tags help you to categorize your service network in different ways, for example, by purpose, owner, or environment.

You can add multiple tags to each service network. Tag keys must be unique for each service network. If you add a tag with a key that is already associated with the service network, it updates
the value of that tag. You can use characters such as letters, spaces, numbers (in UTF-8), and the following special characters: + - = . _ : / @. Do not use leading or trailing spaces. Tag values are case sensitive.

To add or delete tags using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Select the name of the service network to open its details page.
4. Choose the Tags tab.
5. To add a tag, choose Add tags and enter the tag key and tag value. To add another tag, choose Add new tag. When you are finished adding tags, choose Save changes.
6. To delete a tag, select the check box for the tag and choose Delete. When prompted for confirmation, enter confirm and then choose Delete.

To add or delete tags using the AWS CLI

Use the tag-resource and untag-resource commands.

Delete a service network

Before you can delete a service network, you must first delete all associations that the service network might have with any service or VPC. When you delete a service network, we also delete all resources related to the service network, such as the resource policy, auth policy, and access log subscriptions.

To delete a service network using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service networks.
3. Select the check box for the service network, and then choose Actions, Delete service network.
4. When prompted for confirmation, enter confirm, and then choose Delete.

To delete a service network using the AWS CLI
Use the `delete-service-network` command.
Services in VPC Lattice

A service within VPC Lattice is an independently deployable unit of software that delivers a specific task or function. A service can run on instances, containers, or as serverless functions within an account or a virtual private cloud (VPC). A service has a listener that uses rules, called listener rules, that you can configure to help route traffic to your targets. Targets can be EC2 instances, IP addresses, serverless Lambda functions, Application Load Balancers, or Kubernetes Pods. For more information, see Target groups in VPC Lattice. You can associate a service with multiple service networks. The following diagram shows the key components of a typical service within VPC Lattice.

You can create a service by giving it a name and description. However, to control and monitor traffic to your service, it is important that you include access settings and monitoring details. To send traffic from your service to your targets you must set up a listener and configure rules. To allow traffic to flow from the service network to your service, you must associate your service with the service network.

There is an idle timeout and overall connection timeout for connections to targets. The idle connection timeout is 1 minute, after which we close the connection. The maximum duration is 10 minutes, after which we do not allow new streams over the connection and we begin the process of closing the existing streams.

Tasks

- Step 1: Create a VPC Lattice service
- Step 2: Define routing
- Step 3: Create network associations
- Step 4: Review and create
- Manage associations for a VPC Lattice service
- Edit access settings for a VPC Lattice service
Step 1: Create a VPC Lattice service

Create a basic VPC Lattice service with access settings and monitoring details. However, the service is not fully functional until you define its routing configuration and associate it with a service network.

To create a basic service using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Choose Create service.
4. For Identifiers, do the following:
 a. Enter a name for the service. The name must be between 3-63 characters and use lowercase letters, numbers, and hyphens. It must begin and end with a letter or number. Do not use double hyphens.
 b. (Optional) Enter a description for the service network. You can set or change the description during or after creation. The description can have up to 256 characters.
5. To specify a custom domain name for your service, select Specify a custom domain configuration and enter the custom domain name.

 For HTTPS listeners, you can select the certificate that VPC Lattice will use to perform TLS termination. If you do not select a certificate now, you can select it when you create an HTTPS listener for the service.

 For TCP listeners, you must specify a custom domain name for your service. If you specify a certificate, it is not used. Instead, you perform TLS termination in your application.
6. For Service access, choose None if you want clients in the VPCs associated with the service network to access your service. To apply an auth policy to control access to the service, choose AWS IAM. To apply a resource policy to the service, do one of the following for Auth policy:
- Enter a policy in the input field. For example policies that you can copy and paste, choose Policy examples.
- Choose Apply policy template and select the Allow authenticated and unauthenticated access template. This template allows a client from another account to access the service either by signing the request (meaning authenticated) or anonymously (meaning unauthenticated).
- Choose Apply policy template and select the Allow only authenticated access template. This template allows a client from another account to access the service only by signing the request (meaning authenticated).

7. (Optional) To enable access logs, turn on the Access logs toggle switch and specify a destination for your access logs as follows:
 - Select CloudWatch Log group and choose a CloudWatch Log group. To create a log group, choose Create a log group in CloudWatch.
 - Select S3 bucket and enter the S3 bucket path, including any prefix. To search your S3 buckets, choose Browse S3.
 - Select Kinesis Data Firehose delivery stream and choose a delivery stream. To create a delivery stream, choose Create a delivery stream in Kinesis.

8. (Optional) To share your service with other accounts, choose an AWS RAM resource share from Resource shares. To create a resource share, choose Create a resource share in RAM console.

9. To review your configuration and create the service, choose Skip to review and create. Otherwise, choose Next to define the routing configuration for your service.

Step 2: Define routing

Define your routing configuration using listeners so your service can send traffic to the targets that you specify.

Prerequisite

Before you can add a listener, you must create a VPC Lattice target group. For more information, see the section called “Create a target group”.

To define routing for your service using the console

1. Choose Add listener.
2. For **Listener name**, you can either provide a custom listener name or use the protocol and port of your listener as the listener name. A custom name that you specify can have up to 63 characters, and it must be unique for every service in your account. The valid characters are a-z, 0-9, and hyphens (-). You can't use a hyphen as the first or last character, or immediately after another hyphen. You cannot change the name of a listener after you create it.

3. Choose a protocol and then enter a port number.

4. For **Default action**, choose the VPC Lattice target group to receive traffic and choose the weight to assign to this target group. You can optionally add another target group for the default action. Choose **Add action** and then choose another target group and specify its weight.

5. (Optional) To add another rule, choose **Add rule** and then enter a name, a priority, a condition, and an action for the rule.

You can give each rule a priority number between 1 and 100. A listener can't have multiple rules with the same priority. Rules are evaluated in priority order, from the lowest value to the highest value. The default rule is evaluated last.

For **Condition**, enter a path pattern for the path match condition. The maximum size of each string is 200 characters. The comparison is not case sensitive.

6. (Optional) To add tags, expand **Listener tags**, choose **Add new tag**, and enter a tag key and a tag value.

7. To review your configuration and create the service, choose **Skip to review and create**. Otherwise, choose **Next** to associate your service to a service network.

Step 3: Create network associations

Associate your service with a service network so that clients can communicate with it.

To associate a service to a service network using the console

1. For **VPC Lattice service networks**, select the service network. To create a service network, choose **Create a VPC Lattice network**. You can associate your service with multiple service networks.

2. (Optional) To add a tag, expand **Service network association tags**, choose **Add new tag**, and enter a tag key and tag value.

3. Choose **Next**.
Step 4: Review and create

To review the configuration and create the service using the console

1. Review the configuration for your service.
2. Choose Edit if you need to modify any portion of the service configuration.
3. When you have finished reviewing or editing your configuration, choose Create VPC Lattice service.
4. If you specified a custom domain name for the service, you must configure DNS routing after the service is created. For more information, see the section called “Configure a custom domain name”.

Manage associations for a VPC Lattice service

When you associate a service with the service network, it enables clients (resources in a VPC associated with the service network), to make requests to this service. You can associate services that are in your account or services that are shared with you from different accounts. This step is optional when creating the service. However, after creation, the service can't communicate with other services until you associate it with a service network. Service owners can associate their services to the service network if their account has the required access. For more information, see How VPC Lattice works.

To manage service network associations using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
4. Choose the Service network associations tab.
5. To create an association, do the following:
 a. Choose Create associations.
 b. Select a service network from VPC Lattice service networks. To create a service network, choose Create a VPC Lattice network.
 c. (Optional) To add a tag, expand Service association tags, choose Add new tag, and enter a tag key and tag value.
d. Choose **Save changes.**

6. To delete an association, select the check box for the association and then choose **Actions, Delete network associations.** When prompted for confirmation, enter **confirm** and then choose **Delete.**

To create a service network association using the AWS CLI

Use the [create-service-network-service-association](https://docs.aws.amazon.com/vpc/latest/APIReference/API_CreateServiceNetworkServiceAssociation.html) command.

To delete a service network association using the AWS CLI

Edit access settings for a VPC Lattice service

Access settings enable you to configure and manage client access to a service. Access settings include **auth type** and **auth policies.** Auth policies help you authenticate and authorize traffic flowing to services within VPC Lattice.

You can apply auth policies at the service network level, the service level, or both. At the service level, service owners can apply fine-grained controls, which can be more restrictive. Typically, auth policies are applied by the network owners or cloud administrators. They can implement course-grained authorization, for example, allowing authenticated calls from within the organization, or allowing anonymous GET requests that match a certain condition. For more information, see [Control access to VPC Lattice services using auth policies](https://docs.aws.amazon.com/vpc/latest/userguide/service-networks-introduction.html).

To add or update access policies using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under **VPC Lattice**, choose **Services.**
3. Select the name of the service to open its details page.
4. Choose the **Access** tab to check the current access settings.
5. To update the access settings, choose **Edit access settings.**
6. If you want the clients in VPCs in the associated service network to access your service, choose **None** for **Auth type.**
7. To apply a resource policy to control access to the service, choose **AWS IAM** for **Auth type** and do one of the following for **Auth policy:**
• Enter a policy in the input field. For example policies that you can copy and paste, choose Policy examples.

• Choose Apply policy template and select the Allow authenticated and unauthenticated access template. This template allows a client from another account to access the service either by signing the request (meaning authenticated) or anonymously (meaning unauthenticated).

• Choose Apply policy template and select the Allow only authenticated access template. This template allows a client from another account to access the service only by signing the request (meaning authenticated).

8. Choose Save changes.

To add or update an access policy using the AWS CLI

Use the put-auth-policy command.

Edit monitoring details for a VPC Lattice service

VPC Lattice generates metrics and logs for every request and response, making it more efficient to monitor and troubleshoot applications.

You can enable access logs and specify the destination resource for your logs. VPC Lattice can send logs to the following resources: CloudWatch Log groups, Firehose delivery streams, and S3 buckets.

To enable access logs or update a log destination using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
4. Choose the Monitoring tab and then choose Logs. Check Access logs to see whether access logs are enabled.
5. To enable or disable access logs, choose Edit access logs, and then turn the Access logs toggle switch on or off.
6. When you enable access logs, you must select the type of delivery destination, and then create or choose the destination for the access logs. You can also change the delivery destination at any time. For example:
• Select **CloudWatch Log group** and choose a CloudWatch Log group. To create a log group, choose **Create a log group in CloudWatch**.

• Select **S3 bucket** and enter the S3 bucket path, including any prefix. To search your S3 buckets, choose **Browse S3**.

• Select **Kinesis Data Firehose delivery stream** and choose a delivery stream. To create a delivery stream, choose **Create a delivery stream in Kinesis**.

7. Choose **Save changes**.

To enable access logs using the AWS CLI

Use the **create-access-log-subscription** command.

To update the log destination using the AWS CLI

Use the **update-access-log-subscription** command.

To disable access logs using the AWS CLI

Use the **delete-access-log-subscription** command.

Manage tags for a VPC Lattice service

Tags help you to categorize your service in different ways, for example, by purpose, owner, or environment.

You can add multiple tags to each service. Tag keys must be unique for each service. If you add a tag with a key that is already associated with the service, it updates the value of that tag. You can use characters such as letters, spaces, numbers (in UTF-8), and the following special characters: + - = . _ : / @. Do not use leading or trailing spaces. Tag values are case sensitive.

To add or delete tags using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, under **VPC Lattice**, choose **Services**.

3. Select the name of the service to open its details page.

4. Choose the **Tags** tab.

5. To add a tag, choose **Add tags** and enter the tag key and tag value. To add another tag, choose **Add new tag**. When you are finished adding tags, choose **Save changes**.
6. To delete a tag, select the check box for the tag and choose **Delete**. When prompted for confirmation, enter **confirm** and then choose **Delete**.

To add or delete tags using the AWS CLI

Use the [tag-resource](#) and [untag-resource](#) commands.

Configure a custom domain name for your VPC Lattice service

When you create a new service, VPC Lattice generates a unique Fully Qualified Domain Name (FQDN) for the service with the following syntax.

```
service_name-service_id.partition_id.vpc-lattice-svcs.region.on.aws
```

However, the domain names that VPC Lattice provides are not easy for your users to remember. Custom domain names are simpler and more intuitive URLs that you can provide to your users. If you'd prefer to use a custom domain name for your service, such as `www.parking.example.com` instead of the VPC Lattice generated DNS name, you can configure it when you create a VPC Lattice service. When a client makes a request using your custom domain name, the DNS server resolves it to the VPC Lattice generated domain name. However, this happens only if you map your custom domain name to the VPC Lattice generated domain name with a CNAME record to route queries to your service. For more information, see [Associate a custom domain name with your service](#).

Prerequisites

- You must have a registered domain name for your service. If you don't already have a registered domain name, you can register one through Amazon Route 53 or any other commercial registrar.
- To receive HTTPS requests, you must provide your own certificate in AWS Certificate Manager. VPC Lattice doesn't support a default certificate as a fallback. Therefore, if you don't provide an SSL/TLS certificate corresponding to your custom domain name, all HTTPS connections to your custom domain name will fail. For more information, see [Bring Your Own Certificate (BYOC) for VPC Lattice](#).

Limitations and considerations

- You can’t have more than one custom domain name for a service.
- You can't modify the custom domain name after you've created the service.
- The custom domain name must be unique for a service network. This means that a service can't be created with a custom domain name that already exists (for another service) in the same service network.

To configure a custom domain name for your service using the AWS Management Console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service.
3. Choose Create Service. You are navigated to Step 1: Create a service.
4. In the Custom domain configuration section, choose Specify a custom domain configuration.
5. Enter your custom domain name.
6. To serve HTTPS requests, select the SSL/TLS certificate matching your custom domain name in Custom SSL/TLS certificate. If you don't have a certificate yet, or don't want to add one now, you can add a certificate when you create your HTTPS listener. However, without a certificate, your custom domain name won't be able to serve HTTPS requests. For more information, see Add an HTTPS listener.
7. When you have finished adding all other information for creating the service, choose Create.

To configure a custom domain name for your service using the AWS CLI

Use the `create-service` command.

```bash
aws vpc-lattice create-service --name service_name --custom-domain-name your_custom_domain_name --type https --certificate-arn arn:aws:acm:us-east-1:123456789012:certificate/12345678-1234-1234-1234-123456789012
```

In the above command, for --name, enter a name for your service. For --custom-domain-name, enter your service's domain name such as, parking.example.com. For --certificate-arn enter the ARN of your certificate in ACM. The certificate ARN is available in your account in AWS Certificate Manager.

If you don’t have your own SSL/TLS certificate in AWS Certificate Manager (ACM), you can create or import one before setting up a custom domain name. However, the certificate is required only
if you want to serve HTTPS requests using your custom domain name. For more information, see Bring Your Own Certificate (BYOC) for VPC Lattice.

Associate a custom domain name with your service

First, if you haven't already done so, register your custom domain name. The Internet Corporation for Assigned Names and Numbers (ICANN) manages domain names on the internet. You register a domain name using a *domain name registrar*, an ICANN-accredited organization that manages the registry of domain names. The website for your registrar will provide detailed instructions and pricing information for registering your domain name. For more information, see the following resources:

- To use Amazon Route 53 to register a domain name, see Registering domain names using Route 53 in the Amazon Route 53 Developer Guide.
- For a list of accredited registrars, see the Accredited Registrar Directory.

Next, use your DNS service, such as your domain registrar, to create a CNAME record to route queries to your service. For more information, see the documentation for your DNS service. Alternatively, you can use Route 53 as your DNS service.

If you're using Route 53, you must first create a *hosted zone*, which contains information about how to route traffic on the internet for your domain. After you create the private or public hosted zone, create a CNAME record such that your custom domain name, for example parking.example.com, is mapped to the VPC Lattice auto-generated domain name, for example, my-service-02031c045478f6ddf1.7d67968.vpc-lattice-svcs.us-west-2.on.aws. Without this mapping, your custom domain name won't work in VPC Lattice. For more information, see Creating records by using the Amazon Route 53 console in the Amazon Route 53 Developer Guide. Additionally, you can refer to the steps below to create a hosted zone and a CNAME record to map your custom domain name to the VPC Lattice endpoint.

To create a private or public hosted zone with a CNAME record using Amazon Route 53 console

2. In the navigation pane, choose Hosted zones and then Create hosted zone.
3. For Domain name, choose the name of the hosted zone that you want to use to route traffic to your VPC Lattice service. For example, If your custom domain name is parking.example.com (http://parking.example.com/), then the domain name for your
hosted zone will be example.com (http://example.com/), also known as the apex domain name. You can then create a CNAME record for this hosted zone to route traffic to your VPC Lattice service. Note: You can’t change the name of a hosted zone after you create it.

4. For Type, choose Private Hosted Zone or Public Hosted Zone as required.

5. Choose your Region and select the VPC ID for a VPC that you want to associate with this hosted zone.

6. Add tags if necessary, and choose Create hosted zone. After creation, your hosted zone is listed under Hosted Zones.

7. To create a CNAME record in the hosted zone that you just created, select the hosted zone, then select Create record.

8. Specify the following values under Create record:

a. For Record name, enter the name that you want to use as your custom domain name. If you want to use parking.example.com (http://acme.example.com/) as your custom domain name, enter parking*. This means that you would enter the subdomain name parking but without the hosted zone domain name example.com (http://example.com/).

b. For Record type, choose CNAME.

c. Keep Alias turned off.

d. For Value, enter the VPC Lattice generated the domain name for your service (for example, my-service-02031c045478f6ddf1.7d67968.vpc-lattice-svcs.us-west-2.on.aws). You will find this auto-generated domain name in the VPC Lattice console on your service page. If using the AWS CLI, the output of the create-service or list-services commands will return this auto-generated domain name.

e. For TTL (seconds), accept the default value of 300.

f. For Routing policy, choose the applicable routing policy. For more information, see Choosing a routing policy in the Amazon Route 53 Developer Guide.

9. Choose Create records.

Changes generally propagate to all Route 53 servers within 60 seconds. When propagation is done, you'll be able to route traffic to your service by using the custom domain name.
To create an alias record in your hosted zone using the AWS CLI

1. Obtain the VPC Lattice generated domain name for your service (for example, my-service-02031c045478f6ddf1.7d67968.vpc-lattice-svcs.us-west-2.on.aws) and the hosted zone ID by running the get-service command.

2. To set the alias, use following command.

   ```
   aws route53 change-resource-record-sets --hosted-zone-id hosted-zone-id-for-your-service-domain --change-batch file://~/Desktop/change-set.json
   ```

 For the change-set.json file, create a JSON file with the content in the following JSON example, and save it on your local machine. Replace `file://~/Desktop/change-set.json` in the above command with the path of the JSON file saved in your local machine. Note that "Type" in the following JSON can be an A or AAAA record type.

   ```json
   {
     "Changes": [
       {
         "Action": "CREATE",
         "ResourceRecordSet": {
           "Name": "my-custom-domain-name.com",
           "Type": "alias-record-type",
           "AliasTarget": {
             "HostedZoneId": "hosted-zone-id-for-your-service-domain",
             "DNSName": "lattice-generated-domain-name",
             "EvaluateTargetHealth": true
           }
         }
       }
     ]
   }
   ```

Bring Your Own Certificate (BYOC) for VPC Lattice

To serve HTTPS requests, you must have your own SSL/TLS certificate ready in AWS Certificate Manager (ACM) before you set up a custom domain name. These certificates must have a Subject Alternate Name (SAN) or Common Name (CN) that matches the custom domain name for your
service. If the SAN is present, we check for a match only in the SAN list. If the SAN is absent, we check for a match in the CN.

VPC Lattice serves HTTPS requests using Server Name Indication (SNI). DNS routes the HTTPS request to your VPC Lattice service based on the custom domain name and the certificate that matches this domain name. To request an SSL/TLS certificate for a domain name in ACM or import one into ACM, see Issuing and Managing Certificates and Importing certificates in the AWS Certificate Manager User Guide. If you can’t request or import your own certificate in ACM, use the domain name and certificate generated by VPC Lattice.

VPC Lattice accepts only one custom certificate per service. However, you can use a custom certificate for multiple custom domains. This means that you can use the same certificate for all VPC Lattice services that you create with a custom domain name.

To view your certificate using the ACM console, open Certificates, and select your certificate ID. You should see the VPC Lattice service that is associated with that certificate under Associated resource.

Limitations and considerations

- VPC Lattice allows wildcard matches that are one level deep in the Subject Alternate Name (SAN) or Common Name (CN) of the associated certificate. For example, if you create a service with the custom domain name parking.example.com and associate your own certificate with the SAN *.example.com. When a request comes in for parking.example.com, VPC Lattice matches the SAN to any domain name with the apex domain example.com. However, if you have the custom domain parking.different.example.com and your certificate has the SAN *.example.com, the request fails.

- VPC Lattice supports one level of wildcard domain match. This means that a wildcard can be used only as a first-level subdomain, and that it only secures one subdomain level. For example, if your certificate's SAN is *.example.com, then parking.*.example.com is not supported.

- VPC Lattice supports one wildcard per domain name. This means that *.example.com is not valid. For more information, see Request a public certificate in the AWS Certificate Manager User Guide.

- VPC Lattice only supports certificates with 2048-bit RSA keys.

- The SSL/TLS certificate in ACM must be in the same Region as the VPC Lattice service you're associating it with.
Securing your certificate's private key

When you request an SSL/TLS certificate using ACM, ACM generates a public/private key pair. When you import a certificate, you generate the key pair. The public key becomes part of the certificate. To safely store the private key, ACM creates another key using AWS KMS, called the KMS key, with the alias `aws/acm`. AWS KMS uses this key to encrypt your certificate's private key. For more information, see [Data protection in AWS Certificate Manager](https://docs.aws.amazon.com/acm/latest/userguide/guides/data-protection.html) in the AWS Certificate Manager User Guide.

VPC Lattice uses AWS TLS Connection Manager, a service that is only accessible only to AWS services, to secure and use your certificate's private keys. When you use your ACM certificate to create a VPC Lattice service, VPC Lattice associates your certificate with AWS TLS Connection Manager. We do this by creating a grant in AWS KMS against your AWS managed key. This grant allows TLS Connection Manager to use AWS KMS to decrypt your certificate's private key. TLS Connection Manager uses the certificate and the decrypted (plaintext) private key to establish a secure connection (SSL/TLS session) with clients of VPC Lattice services. When the certificate is disassociated from a VPC Lattice service, the grant is retired. For more information, see [Grants](https://docs.aws.amazon.com/kms/latest/developerguide/grants.html) in the AWS Key Management Service Developer Guide.

For more information, see [Encryption at rest](https://docs.aws.amazon.com/kms/latest/developerguide/encrypting-at-rest.html).

Delete a service

To delete a VPC Lattice service, you must first delete all associations that the service might have with any service network. If you delete a service, all resources related to the service, such as the resource policy, auth policy, listeners, listener rules, and access log subscriptions, are also deleted.

To delete a service using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Service.
3. On the Services page, select the service that you want to delete, and then choose Actions, Delete service.
4. When prompted for confirmation, choose Delete.

To delete a service using the AWS CLI

Use the `delete-service` command.
Target groups in VPC Lattice

A VPC Lattice target group is a collection of targets, or compute resources, that run your application or service. Targets can be EC2 instances, IP addresses, Lambda functions, Application Load Balancers, or Kubernetes Pods. You can also attach existing services to your target groups. For more information about using Kubernetes with VPC Lattice, see the AWS Gateway API Controller User Guide.

Each target group is used to route requests to one or more registered targets. When you create a listener rule, you specify a target group and conditions. When a rule condition is met, traffic is forwarded to the corresponding target group. You can create different target groups for different types of requests. For example, create one target group for general requests and other target groups for requests that include specific rule conditions, such as a path or header value.

You define health check settings for your service on a per target group basis. Each target group uses the default health check settings, unless you override them when you create the target group or modify them later on. After you specify a target group in a rule for a listener, the service continually monitors the health of all targets registered with the target group. The service routes requests to the registered targets that are healthy.

To specify a target group in a rule for a service listener, the target group must be in the same account as the service.

VPC Lattice target groups are similar to the target groups provided by Elastic Load Balancing, but they are not interchangeable.

Contents

- Create a VPC Lattice target group
- Register targets with a VPC Lattice target group
- Health checks for your VPC Lattice target groups
Create a VPC Lattice target group

You register your targets with a target group. By default, the VPC Lattice service sends requests to registered targets using the port and protocol that you specified for the target group. You can override this port when you register each target with the target group.

To route traffic to the targets in a target group, specify the target group in an action when you create a listener or create a rule for your listener. For more information, see Listener rules for your VPC Lattice service. You can specify the same target group in multiple listeners, but these listeners must belong to the same service. To use a target group with a service, you must verify that the target group is not in use by a listener for any other service.

You can add or remove targets from your target group at any time. For more information, see Register targets with a VPC Lattice target group. You can also modify the health check settings for your target group. For more information, see Health checks for your VPC Lattice target groups.

Create a target group

You can create a target group and optionally register targets as follows.

To create a target group using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose Create target group.
4. For **Choose a target type**, do one of the following:
 - Choose **Instances** to register targets by instance ID.
 - Choose **IP addresses** to register targets by IP address.
 - Choose **Lambda function** to register a Lambda function as a target.
 - Choose **Application Load Balancer** to register an Application Load Balancer as a target.

5. For **Target group name**, enter a name for the target group. This name must be unique for your account in each AWS Region, can have a maximum of 32 characters, must contain only alphanumeric characters or hyphens, and must not begin or end with a hyphen.

6. For **Protocol** and **Port**, you can modify the default values as needed. The default protocol is HTTPS and the default port is 443.

 If the target type is **Lambda function**, you can't specify a protocol or a port.

7. For **IP address type**, choose **IPv4** to register targets with IPv4 addresses or choose **IPv6** to register targets with IPv6 addresses. You can't change this setting after the target group is created.

 This option is available only if the target type is **IP addresses**.

8. For **VPC**, select a virtual private cloud (VPC).

 This option is not available if the target type is **Lambda function**.

9. For **Protocol version**, modify the default value as needed. The default is HTTP1.

 This option is not available if the target type is **Lambda function**.

10. For **Health checks**, modify the default settings as needed. For more information, see **Health checks for your VPC Lattice target groups**.

 Health checks are not available if the target type is **Lambda function**.

11. For **Lambda event structure version**, choose a version. For more information, see **the section called “Receive events from the VPC Lattice service”**.

 This option is available only if the target type is **Lambda function**

12. (Optional) To add tags, expand **Tags**, choose **Add new tag**, and enter the tag key and tag value.

13. Choose **Next**.

14. For **Register targets**, you can either skip this step or add targets as follows:
• If the target type is **Instances**, select the instances, enter the ports, and then choose **Include as pending below**.

• If the target type is **IP addresses**, do the following:

a. For **Choose a network**, keep the VPC that you selected for the target group or choose **Other private IP address**.

b. For **Specify IPs and define ports**, enter the IP address and enter the ports. The default port is the target group port.

c. Choose **Include as pending below**.

• If the target type is a **Lambda function**, choose a Lambda function. To create a Lambda function, choose **Create a new Lambda function**.

• If the target type is a **Application Load Balancer**, choose an Application Load Balancer. To create an Application Load Balancer, choose **create an Application Load Balancer**.

15. Choose **Create target group**.

To create a target group using the AWS CLI

Use the **create-target-group** command to create the target group and the **register-targets** command to add targets.

Shared subnets

Participants can create VPC Lattice target groups in a shared VPC. The following rules apply to shared subnets:

• All parts of a VPC Lattice service, such as listeners, target groups, and targets, must be created by the same account. They can be created in subnets owned by or shared with the owner of the VPC Lattice service.

• The targets registered with a target group must be created by the same account as the target group.

• Only the owner of a VPC can associate the VPC with a service network. Participant resources in a shared VPC that is associated with a service network can send requests to services that are associated with the service network. However, the administrator can prevent this by using security groups, network ACLs, or auth policies.
For more information about the shareable resources for VPC Lattice, see Share VPC Lattice resources.

Register targets with a VPC Lattice target group

Your service serves as a single point of contact for clients and distributes incoming traffic across its healthy registered targets. You can register each target with one or more target groups.

If demand on your application increases, you can register additional targets with one or more target groups to handle the demand. The service starts routing requests to a newly registered target as soon as the registration process completes and the target passes the initial health checks.

If demand on your application decreases, or you need to service your targets, you can deregister targets from your target groups. Deregistering a target removes it from your target group, but does not affect the target otherwise. The service stops routing requests to a target as soon as it is deregistered. The target enters the DRAINING state until in-flight requests have completed. You can register the target with the target group again when you are ready for it to resume receiving requests.

The target type of your target group determines how you register targets with that target group. For more information, see Target type.

Use the following console procedures to register or deregister targets. Alternatively, use the register-targets and deregister-targets commands from the AWS CLI.

Contents
- Register or deregister targets by instance ID
- Register or deregister targets by IP address
- Register or deregister a Lambda function
- Register or deregister an Application Load Balancer

Register or deregister targets by instance ID

The target instances must be in the virtual private cloud (VPC) that you specified for the target group. The instance must also be in the running state when you register it.

When you register targets by instance ID, you can use your service with an Auto Scaling group. After you attach a target group to an Auto Scaling group and the group scales out, the instances
that the Auto Scaling group launches are automatically registered with the target group. If you
detach the target group from the Auto Scaling group, the instances are automatically deregistered
from the target group. For more information, see Routing traffic to your Auto Scaling group with a
VPC Lattice target group in the Amazon EC2 Auto Scaling User Guide.

To register or deregister targets by instance ID using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose the name of the target group to open its details page.
4. Choose the Targets tab.
5. To register instances, choose Register targets. Select the instances, enter the instance port,
 and then choose Include as pending below. When you are finished adding instances, choose
 Register targets.
6. To deregister instances, select the instances, and then choose Deregister.

Register or deregister targets by IP address

The target IP addresses must be from the subnets of the VPC that you specified for the target
group. You can't register the IP addresses of another service in the same VPC. You can't register
VPC endpoints or publicly routable IP addresses.

To register or deregister targets by IP address using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose the name of the target group to open its details page.
4. Choose the Targets tab.
5. To register IP addresses, choose Register targets. For each IP address, select the network,
 enter the IP address and port, and choose Include as pending below. When you are finished
 specifying addresses, choose Register targets.
6. To deregister IP addresses, select the IP addresses and then choose Deregister.
Register or deregister a Lambda function

You can register a single Lambda function with the target group. If you no longer need to send traffic to your Lambda function, you can deregister it. After you deregister a Lambda function, in-flight requests fail with HTTP 5XX errors. It is better to create a new target group instead of replacing the Lambda function for a target group.

To register or deregister a Lambda function using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under **VPC Lattice**, choose **Target groups**.
3. Choose the name of the target group to open its details page.
4. Choose the **Targets** tab.
5. If there is no Lambda function registered, choose **Register target**. Select the Lambda function and choose **Register target**.
6. To deregister a Lambda function, choose **Deregister**. When prompted for confirmation, enter **confirm** and then choose **Deregister**.

Register or deregister an Application Load Balancer

You can register a single Application Load Balancer with each target group. If you no longer need to send traffic to your load balancer, you can deregister it. After you deregister a load balancer, in-flight requests fail with HTTP 5XX errors. It is better to create a new target group instead of replacing the Application Load Balancer for a target group.

To register or deregister an Application Load Balancer using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under **VPC Lattice**, choose **Target groups**.
3. Choose the name of the target group to open its details page.
4. Choose the **Targets** tab.
5. If there is no Application Load Balancer registered, choose **Register target**. Select the Application Load Balancer and choose **Register target**.
6. To deregister an Application Load Balancer, choose **Deregister**. When prompted for confirmation, enter **confirm** and then choose **Deregister**.
Health checks for your VPC Lattice target groups

Your service periodically sends requests to its registered targets to test their status. These tests are called **health checks**.

Each VPC Lattice service routes requests only to the healthy targets. Each service checks the health of each target, using the health check settings for the target groups with which the target is registered. After your target is registered, it must pass one health check to be considered healthy. After each health check is completed, the service closes the connection that was established for the health check.

Limitations and considerations

- When the target group protocol version is HTTP1, health checks are enabled by default.
- When the target group protocol version is HTTP2, health checks are not enabled by default. However, you can enable health checks, and manually set the protocol version to HTTP1 or HTTP2.
- Health checks do not support gRPC target group protocol versions. However, if you enable health checks, you must specify the health check protocol version as HTTP1 or HTTP2.
- Health checks do not support Lambda target groups.
- Health checks do not support Application Load Balancer target groups. However, you can enable health checks for the targets of your Application Load Balancer using Elastic Load Balancing. For more information, see [Target group health](User Guide for Application Load Balancers).

Health check settings

You configure health checks for the targets in a target group as described in the following table. The setting names used in the table are the names used in the API. The service sends a health check request to each registered target every **HealthCheckIntervalSeconds** seconds, using the specified port, protocol, and ping path. Each health check request is independent and the result lasts for the entire interval. The time that it takes for the target to respond does not affect the interval for the next health check request. If the health checks exceed **UnhealthyThresholdCount** consecutive failures, the service takes the target out of service. When the health checks exceed **HealthyThresholdCount** consecutive successes, the service puts the target back in service.
<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HealthCheckProtocol</td>
<td>The protocol the service uses when performing health checks on targets. The possible protocols are HTTP and HTTPS. The default is the HTTP protocol.</td>
</tr>
<tr>
<td>HealthCheckPort</td>
<td>The port the service uses when performing health checks on targets. The default is to use the port on which each target receives traffic from the service.</td>
</tr>
<tr>
<td>HealthCheckPath</td>
<td>The destination for health checks on the targets. If the protocol version is HTTP1 or HTTP2, specify a valid URI (/path?query). The default is /.</td>
</tr>
<tr>
<td>HealthCheckTimeoutSeconds</td>
<td>The amount of time, in seconds, during which no response from a target means a failed health check. The range is 1–120 seconds. The default is 5 seconds if the target type is INSTANCE or IP. Specify 0 to reset this setting to its default value.</td>
</tr>
<tr>
<td>HealthCheckIntervalSeconds</td>
<td>The approximate amount of time, in seconds, between health checks of an individual target. The range is 5–300 seconds. The default is 30 seconds if the target type is INSTANCE or IP. Specify 0 to reset this setting to its default value.</td>
</tr>
<tr>
<td>HealthyThresholdCount</td>
<td>The number of consecutive successful health checks required before an unhealthy target is considered healthy. The range is 2–10. The default is 5. Specify 0 to reset this setting to its default value.</td>
</tr>
</tbody>
</table>
Setting

<table>
<thead>
<tr>
<th>Setting</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>UnhealthyThresholdCount</td>
<td>The number of consecutive health check failures required before considering a target unhealthy. The range is 2–10. The default is 2. Specify 0 to reset this setting to its default value.</td>
</tr>
<tr>
<td>Matcher</td>
<td>The codes to use when checking for a successful response from a target. These are called Success codes in the console.</td>
</tr>
</tbody>
</table>

If the protocol version is HTTP1 or HTTP2, the possible values are from 200 to 499. You can specify multiple values (for example, "200,202") or a range of values (for example, "200-299"). The default value is 200.

Health check protocol version for gRPC is not currently supported. However, if your target group protocol version is gRPC, you can specify HTTP1 or HTTP2 protocol versions in your health check configuration.

Check the health of your targets

You can check the health status of the targets registered with your target groups.

To check the health of your targets using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under **VPC Lattice**, choose **Target groups**.
3. Choose the name of the target group to open its details page.
4. On the **Targets** tab, the **Health status** column indicates the status of each target. If the status is any value other than **Healthy**, the **Health status details** column contains more information.

To check the health of your targets using the AWS CLI
Use the list-targets command. The output of this command contains the target health state. If the status is any value other than Healthy, the output also includes a reason code.

To receive email notifications about unhealthy targets

Use CloudWatch alarms to initiate a Lambda function to send details about unhealthy targets.

Modify the health check settings

You can modify the health check settings for your target group at any time.

To modify the health check settings using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose the name of the target group to open its details page.
4. On the Health checks tab, in the Health check settings section, choose Edit.
5. Modify the health check settings as needed.
6. Choose Save changes.

To modify the health check settings using the AWS CLI

Use the update-target-group command.

Routing configuration

By default, a service routes requests to its targets using the protocol and port number that you specified when you created the target group. Alternatively, you can override the port used for routing traffic to a target when you register it with the target group.

Target groups support the following protocols and ports:

- **Protocols**: HTTP, HTTPS, TCP
- **Ports**: 1-65535

If a target group is configured with the HTTPS protocol or uses HTTPS health checks, the TLS connections to the targets use the security policy from the listener. VPC Lattice establishes TLS
connections with the targets using certificates that you install on the targets. VPC Lattice does not validate these certificates. Therefore, you can use self-signed certificates or certificates that have expired. The traffic between VPC Lattice and the targets is authenticated at the packet level, so it is not at risk of man-in-the-middle attacks or spoofing even if the certificates on the targets are not valid.

TCP target groups are supported only with **TLS listeners**.

Routing algorithm

By default, the round robin routing algorithm is used to route requests to healthy targets.

When the VPC Lattice service receives a request, it uses the following process:

1. Evaluates the listener rules in priority order to determine which rule to apply.
2. Selects a target from the target group for the rule action, using the default round robin algorithm. Routing is performed independently for each target group, even when a target is registered with multiple target groups.

If a target group contains only unhealthy targets, the requests are routed to all targets, regardless of their health status. This means that if all targets fail health checks at the same time, the VPC Lattice service fails open. The effect of the fail-open is to allow traffic to all targets, regardless of their health status, based on the round robin algorithm.

Target type

When you create a target group, you specify its target type, which determines the type of target you specify when registering targets with this target group. After you create a target group, you can't change its target type.

The following are the possible target types:

INSTANCE

The targets are specified by instance ID.

IP

The targets are IP addresses.
LAMBDA

The target is a Lambda function.

ALB

The target is an Application Load Balancer.

Considerations

- When the target type is IP, you must specify IP addresses from the subnets of the VPC for the target group. If you need to register IP addresses from outside this VPC, create a target group of type ALB and register the IP addresses with the Application Load Balancer.
- When the target type is IP, you can't register VPC endpoints or publicly routable IP addresses.
- When the target type is LAMBDA, you can register a single Lambda function. When the service receives a request for the Lambda function, it invokes the Lambda function. If you would like to register multiple lambda functions to a service, you need to use multiple target groups.
- When the target type is ALB, you can register a single internal Application Load Balancer as the target of up to two VPC Lattice Services. To do this, register the Application Load Balancer with two separate target groups, used by two different VPC Lattice services. Additionally, the targeted Application Load Balancer must have at least one listener whose port matches the target group port.
- To register an ECS task as a target, use the ALB target type and register the Application Load Balancer for your Amazon ECS service. For more information, see Service load balancing in the Amazon Elastic Container Service Developer Guide.
- To register an EKS pod as a target, use the AWS Gateway API Controller, which gets the IP addresses from the Kubernetes service.
- If the target group protocol is TCP, the only supported target types are INSTANCE and IP.

IP address type

When you create a target group with a target type of IP, you can specify an IP address type for the target group. This specifies what type of addresses the load balancer uses to send requests and health checks to targets. The possible values are IPv4 and IPv6. The default is IPV4.
Considerations

- If you create a target group with an IP address type of IPv6, the VPC that you specify for the target group must have an IPv6 address range.
- The IP addresses that you register with a target group must match the IP address type of the target group. For example, you can't register an IPv6 address with a target group if its IP address type is IPv4.
- The IP addresses that you register with a target group must be within the IP address range of the VPC that you specified for the target group.

HTTP targets in VPC Lattice

HTTP requests and HTTP responses use header fields to send information about the HTTP messages. HTTP headers are added automatically. Header fields are colon-separated name-value pairs that are separated by a carriage return (CR) and a line feed (LF). A standard set of HTTP header fields is defined in RFC 2616, Message Headers. There are also non-standard HTTP headers available that are automatically added and widely used by the applications. For example, there are non-standard HTTP headers with the `x-forwarded` prefix.

x-forwarded headers

Amazon VPC Lattice adds the following `x-forwarded` headers:

- **x-forwarded-for**
 - The source IP address.
- **x-forwarded-for-port**
 - The destination port.
- **x-forwarded-for,proto**
 - The connection protocol (http | https).

Caller identity headers

Amazon VPC Lattice adds the following caller identity headers:
x-amzn-lattice-identity

The identity information. The following fields are present if AWS authentication is successful.

- **Principal** – The authenticated principal.
- **PrincipalOrgID** – The ID of the organization for the authenticated principal.
- **SessionName** – The name of the authenticated session.

The following fields are present if Roles Anywhere credentials are used and authentication is successful.

- **X509Issuer/OU** – The issuer (OU).
- **X509SAN/DNS** – The subject alternative name (DNS).
- **X509SAN/NameCN** – The issuer alternative name (Name/CN).
- **X509SAN/URI** – The subject alternative name (URI).
- **X509Subject/CN** – The subject name (CN).

x-amzn-lattice-network

The VPC. The format is as follows.

`SourceVpcArn=arn:aws:ec2:region:account:vpc/id`

x-amzn-lattice-target

The target. The format is as follows.

`ServiceArn=arn;ServiceNetworkArn=arn;TargetGroupArn=arn`

For information about the resource ARNs for VPC Lattice, see [Resource types defined by Amazon VPC Lattice](#).

Lambda functions as targets in VPC Lattice

You can register your Lambda functions as targets with a VPC Lattice target group, and configure a listener rule to forward requests to the target group for your Lambda function. When the service forwards the request to a target group with a Lambda function as a target, it invokes your Lambda function and passes the content of the request to the Lambda function, in JSON format. For more information, see [Using AWS Lambda with Amazon VPC Lattice](#) in the AWS Lambda Developer Guide.
Limitations

- The Lambda function and target group must be in the same account and in the same Region.
- The maximum size of the request body that you can send to a Lambda function is 6 MB.
- The maximum size of the response JSON that the Lambda function can send is 6 MB.
- The protocol must be HTTP or HTTPS.

Prepare the Lambda function

The following recommendations apply if you are using your Lambda function with a VPC Lattice service.

Permissions to invoke the Lambda function

When you create the target group and register the Lambda function using the AWS Management Console or the AWS CLI, VPC Lattice adds the required permissions to your Lambda function policy on your behalf.

You can also add permissions on your own using the following API call:

```
aws lambda add-permission \
    --function-name lambda-function-arn-with-alias-name \
    --statement-id vpc-lattice \
    --principal vpc-lattice.amazonaws.com \
    --action lambda:InvokeFunction \
    --source-arn target-group-arn
```

Lambda function versioning

You can register one Lambda function per target group. To ensure that you can change your Lambda function and that the VPC Lattice service always invokes the current version of the Lambda function, create a function alias and include the alias in the function ARN when you register the Lambda function with the VPC Lattice service. For more information, see Lambda function versions and Create an alias for a Lambda function in the AWS Lambda Developer Guide.

Create a target group for the Lambda function

Create a target group, which is used in request routing. If the request content matches a listener rule with an action to forward it to this target group, the VPC Lattice service invokes the registered Lambda function.
To create a target group and register the Lambda function using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose Create target group.
4. For Choose a target type, select Lambda function.
5. For Target group name, enter a name for the target group.
6. For Lambda event structure version, choose a version. For more information, see the section called “Receive events from the VPC Lattice service”.
7. (Optional) To add tags, expand Tags, choose Add new tag, and enter the tag key and tag value.
8. Choose Next.
9. For Lambda function, do one of the following:
 - Select an existing Lambda function.
 - Create a new Lambda function and select it.
 - Register the Lambda function later.
10. Choose Create target group.

To create a target group and register the Lambda function using the AWS CLI

Use the create-target-group and register-targets commands.

Receive events from the VPC Lattice service

The VPC Lattice service supports Lambda invocation for requests over both HTTP and HTTPS. The service sends an event in JSON format, and adds the X-Forwarded-For header to every request.

Base64 encoding

The service Base64 encodes the body if the content-encoding header is present and the content type is not one of the following:

- text/*
- application/json
- application/xml
If the content-encoding header is not present, Base64 encoding depends on the content type. For the content types above, the service sends the body as is, without Base64 encoding.

Event structure format

When you create or update a target group of type LAMBDA, you can specify the version of the event structure that your Lambda function receives. The possible versions are V1 and V2.

Example event: V2

```json
{
    "version": "2.0",
    "path": "/",
    "method": "GET|POST|HEAD|...",
    "headers": {
        "header-key": ["header-value", ...],
        ...
    },
    "queryStringParameters": {
        "key": ["value", ...]
    },
    "body": "request-body",
    "isBase64Encoded": true|false,
    "requestContext": {
        "serviceNetworkArn": "arn:aws:vpc-lattice:region:123456789012:servicenetwork/sn-0bf3f2882e9cc805a",
        "serviceArn": "arn:aws:vpc-lattice:region:123456789012:service/svc-0a40eebed65f8d69c",
        "targetGroupArn": "arn:aws:vpc-lattice:region:123456789012:targetgroup/tg-6d0ecf831eec9f09",
        "identity": {
            "sourceVpcArn": "arn:aws:ec2:region:123456789012:vpc-0b8276c84697e7339",
            "type": "AWS_IAM",
            "principal": "arn:aws:iam::123456789012:assumed-role/my-role/my-session",
            "principalOrgID": "o-50dc6c495c0c9188",
            "sessionName": "i-0c7de02a688bde9f7",
            "x509IssuerOu": "string",
            "x509SanDns": "string",
            "x509SanNameCn": "string",
            "x509SanUri": "string"
        }
    }
}
```
body

The body of the request. Present only if the protocol is HTTP, HTTPS, or gRPC.

headers

The HTTP headers of the request. Present only if the protocol is HTTP, HTTPS, or gRPC.

identity

The identity information. The following are possible fields.

- principal – The authenticated principal. Present only if AWS authentication is successful.
- principalOrgID – The ID of the organization for the authenticated principal. Present only if AWS authentication is successful.
- sessionName – The name of the authenticated session. Present only if AWS authentication is successful.
- sourceVpcArn – The ARN of the VPC where the request originated. Present only if the source VPC can be identified.
- type – The value is AWS_IAM if an auth policy is used and AWS authentication is successful.

If Roles Anywhere credentials are used and authentication is successful, the following are possible fields.

- x509IssuerOu – The issuer (OU).
- x509SanDns – The subject alternative name (DNS).
- x509SanNameCn – The issuer alternative name (Name/CN).
- x509SanUri – The subject alternative name (URI).
- x509SubjectCn – The subject name (CN).

isBase64Encoded

Indicates whether the body was base64 encoded. Present only if the protocol is HTTP, HTTPS, or gRPC and the request body is not already a string.
method

The HTTP method of the request. Present only if the protocol is HTTP, HTTPS, or gRPC.

path

The path of the request. Present only if the protocol is HTTP, HTTPS, or gRPC.

queryStringParameters

The HTTP query string parameters. Present only if the protocol is HTTP, HTTPS, or gRPC.

serviceArn

The ARN of the service that receives the request.

serviceNetworkArn

The ARN of the service network that delivers the request.

targetGroupArn

The ARN of the target group that receives the request.

timeEpoch

The time, in microseconds.

Example Example event: V1

```
{
    "raw_path": "/path/to/resource",
    "method": "GET|POST|HEAD|...",
    "headers": {"header-key": "header-value", ... },
    "query_string_parameters": {"key": "value", ...},
    "body": "request-body",
    "is_base64_encoded": true|false
}
```

Respond to the VPC Lattice service

The response from your Lambda function must include the Base64 encoding status, status code, and headers. You can omit the body.
To include a binary content in the body of the response, you must Base64 encode the content and set `isBase64Encoded` to `true`. The service decodes the content to retrieve the binary content and sends it to the client in the body of the HTTP response.

The VPC Lattice service does not honor hop-by-hop headers, such as `Connection` or `Transfer-Encoding`. You can omit the `Content-Length` header because the service computes it before sending responses to clients.

The following is an example response from a Lambda function:

```json
{
   "isBase64Encoded": false,
   "statusCode": 200,
   "statusDescription": "200 OK",
   "headers": {
      "Set-cookie": "cookies",
      "Content-Type": "application/json"
   },
   "body": "Hello from Lambda (optional)"
}
```

Multi-value headers

By default, VPC Lattice supports requests from a client or responses from a Lambda function containing headers with multiple values or containing the same header multiple times. VPC Lattice also supports query parameters with multiple values for the same key.

For request headers, if multiple parameters share the same name, VPC Lattice will pass both values to the targets. The following is an example where `header1` is the name of two separate headers:

```plaintext
header1 = foo
header1 = bar
```

Then VPC Lattice sends both values to the targets:

```json
"header1": ["foo", "bar"]
```

For query strings, if multiple parameters share the same name, the last value wins. This means that parameters are _not_ coalesced into a single value if they share the same key name.
The following is an example where foo and bar are the values of the parameters with the same name, QS1:

```
http://www.example.com?&QS1=foo&QS1=bar
```

Then VPC Lattice sends the last value to the targets:

```
"QS1": "bar"
```

Deregister the Lambda function

If you no longer need to send traffic to your Lambda function, you can deregister it. After you deregister a Lambda function, in-flight requests fail with HTTP 5XX errors.

To replace a Lambda function, we recommend that you create a new target group, register the new function with the new target group, and update the listener rules to use the new target group instead of the existing one.

To deregister a Lambda function using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose the name of the target group to open its details page.
4. On the Targets tab, choose Deregister.
5. When prompted for confirmation, enter confirm and then choose Deregister.

To deregister the Lambda function using the AWS CLI

Use the [deregister-targets](http://awscli.amazonaws.com/v2/documentation/api/1.16.19/index.html#deregister-targets) command.

Application Load Balancers as targets in VPC Lattice

You can create a VPC Lattice target group, register a single internal Application Load Balancer as the target, and configure your VPC Lattice service to forward traffic to this target group. In this scenario, the Application Load Balancer takes over the routing decision as soon as traffic reaches it. This configuration allows you to use the layer 7 request-based routing feature of the Application Load Balancer in combination with features that VPC Lattice supports, such as IAM authentication and authorization, and connectivity across VPCs and accounts.
Limitations

- You can register a single internal Application Load Balancer as the target in a VPC Lattice target group of type ALB.
- You can register an Application Load Balancer as a target of up to two VPC Lattice target groups, used by two different VPC Lattice services.
- VPC Lattice does not provide health checks for an ALB type target group. However, you can configure health checks independently at the load balancer level for the targets in Elastic Load Balancing. For more information, see Health checks for your target groups in the User Guide for Application Load Balancers.

Prerequisites

Create an Application Load Balancer to register as a target with your VPC Lattice target group. The load balancer must meet the following criteria:

- The load balancer scheme is Internal.
- The Application Load Balancer must be in the same account as the VPC Lattice target group, and must be in the Active state.
- The Application Load Balancer must be in the same VPC as the VPC Lattice target group.
- You can use HTTPS listeners on the Application Load Balancer to terminate TLS, but only if the VPC Lattice service uses the same SSL/TLS certificate as the load balancer.
- To preserve the client IP of the VPC Lattice service in the X-Forwarded-For request header, you must set the attribute for the Application Load Balancer routing.http.xff_header_processing.mode to Preserve. If the value is Preserve, the load balancer preserves the X-Forwarded-For header in the HTTP request, and sends it to targets without any change. For more information, see X-Forwarded-For in the User Guide for Application Load Balancers.

For more information, see Create an Application Load Balancer in the User Guide for Application Load Balancers.

Step 1: Create a target group of type ALB

Use the following procedure to create the target group. Note that VPC Lattice does not support health checks for ALB target groups. However, you can configure health checks for the target
groups for your Application Load Balancer. For more information, see Target group health in the User Guide for Application Load Balancers.

To create the target group

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, under VPC Lattice, choose Target groups.
3. Choose Create target group.
4. On the Specify target group details page, under Basic configuration, choose Application Load Balancer as the target type.
5. For Target group name, enter a name for the target group.
6. For Protocol, choose HTTP or HTTPS. The target group protocol must match the protocol of the listener for your internal Application Load Balancer.
7. For Port, specify the port for your target group. This port must match the port of the listener for your internal Application Load Balancer. You can alternatively add a listener port on the internal Application Load Balancer to match the target group port that you specify here.
8. For VPC, select the same virtual private cloud (VPC) that you selected when you created the internal Application Load Balancer. This should be the VPC that contains your VPC Lattice resources.
9. For Protocol version, choose the protocol version that your Application Load Balancer supports.
10. (Optional) Add any required tags.
11. Choose Next.

Step 2: Register the Application Load Balancer as a target

You can either register the load balancer as a target now or later on.

To register an Application Load Balancer as a target

1. Choose Register now.
2. For Application Load Balancer, choose your internal Application Load Balancer.
3. For Port, keep the default or specify a different port as needed. This port must match an existing listener port on your Application Load Balancer. If you continue without a matching port, traffic won't reach your Application Load Balancer.
4. Choose Create target group.

Protocol version

By default, services send requests to targets using HTTP/1.1. You can use the protocol version to send requests to targets using HTTP/2 or gRPC.

The following table summarizes the result for the combinations of request protocol and target group protocol version.

<table>
<thead>
<tr>
<th>Request protocol</th>
<th>Protocol version</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP/1.1</td>
<td>HTTP/1.1</td>
<td>Success</td>
</tr>
<tr>
<td>HTTP/2</td>
<td>HTTP/1.1</td>
<td>Success</td>
</tr>
<tr>
<td>gRPC</td>
<td>HTTP/1.1</td>
<td>Error</td>
</tr>
<tr>
<td>HTTP/1.1</td>
<td>HTTP/2</td>
<td>Error</td>
</tr>
<tr>
<td>HTTP/2</td>
<td>HTTP/2</td>
<td>Success</td>
</tr>
<tr>
<td>gRPC</td>
<td>HTTP/2</td>
<td>Success if targets support gRPC</td>
</tr>
<tr>
<td>HTTP/1.1</td>
<td>gRPC</td>
<td>Error</td>
</tr>
<tr>
<td>HTTP/2</td>
<td>gRPC</td>
<td>Success if a POST request</td>
</tr>
<tr>
<td>gRPC</td>
<td>gRPC</td>
<td>Success</td>
</tr>
</tbody>
</table>

Considerations for the gRPC protocol version

- The only supported listener protocol is HTTPS.
- The only supported target types are INSTANCE and IP.
- The service parses gRPC requests and routes the gRPC calls to the appropriate target groups based on the package, service, and method.
- You can’t use Lambda functions as targets.
Considerations for the HTTP/2 protocol version

- The only supported listener protocol is HTTPS. You can choose either HTTP or HTTPS for the target group protocol.
- The only supported listener rules are forward and fixed response.
- The only supported target types are INSTANCE and IP.
- The service supports streaming from clients. The service does not support streaming to the targets.

Tags for your VPC Lattice target group

Tags help you to categorize your target groups in different ways, for example, by purpose, owner, or environment.

You can add multiple tags to each target group. Tag keys must be unique for each target group. If you add a tag with a key that is already associated with the target group, it updates the value of that tag.

When you are finished with a tag, you can remove it.

Restrictions

- Maximum number of tags per resource—50
- Maximum key length—127 Unicode characters
- Maximum value length—255 Unicode characters
- Tag keys and values are case sensitive. Allowed characters are letters, spaces, and numbers representable in UTF-8, plus the following special characters: + - = . _ : / @. Do not use leading or trailing spaces.
- Do not use the aws: prefix in your tag names or values because it is reserved for AWS use. You can't edit or delete tag names or values with this prefix. Tags with this prefix do not count against your tags per resource limit.

To update the tags for a target group using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Target groups.
3. Select the name of the target group to open its details page.
4. Choose the **Tags** tab.
5. To add a tag, choose **Add tags** and enter the tag key and tag value. To add another tag, choose **Add new tag**. When you are finished adding tags, choose **Save changes**.
6. To delete a tag, select the check box for the tag and choose **Delete**. When prompted for confirmation, enter **confirm** and then choose **Delete**.

To update the tags for a target group using the AWS CLI

Use the **tag-resource** and **untag-resource** commands.

Delete a VPC Lattice target group

You can delete a target group if it is not referenced by the forward actions of any listener rules. Deleting a target group does not affect the targets registered with the target group. If you no longer need a registered EC2 instance, you can stop or terminate it.

To delete a target group using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. On the navigation pane, choose **Target groups**.
3. Select the check box for the target group and then choose **Actions, Delete**.
4. When prompted for confirmation, enter **confirm** and then choose **Delete**.

To delete a target group using the AWS CLI

Use the **delete-target-group** command.
Listeners for your VPC Lattice service

Before you start using your VPC Lattice service, you must add a listener. A listener is a process that checks for connection requests, using the protocol and port that you configure. The rules that you define for a listener determine how the service routes requests to its registered targets.

Contents

- Listener configuration
- Create a listener
- HTTP listeners for VPC Lattice services
- HTTPS listeners for VPC Lattice services
- TLS listeners for VPC Lattice services
- Listener rules for your VPC Lattice service
- Update a listener
- Delete a listener

Listener configuration

Listeners support the following protocols and ports:

- **Protocols**: HTTP, HTTPS, TLS
- **Ports**: 1-65535

If the listener protocol is HTTPS, VPC Lattice will provision and manage a TLS certificate that is associated with the VPC Lattice generated FQDN. VPC Lattice supports TLS on HTTP/1.1 and HTTP/2. When you configure a service with an HTTPS listener, VPC Lattice will automatically
determine the HTTP protocol using Application-Layer Protocol Negotiation (ALPN). If ALPN is absent, VPC Lattice defaults to HTTP/1.1. For more information, see HTTPS listeners.

VPC Lattice can listen on HTTP, HTTPS, HTTP/1.1, and HTTP/2 and communicate to targets in any of these protocols and versions. We do not require that the listener and target group protocols match. VPC Lattice manages the entire process of upgrading and downgrading between protocols and versions. For more information, see Protocol version.

You can create a TLS listener to ensure that your application decrypts the encrypted traffic instead of VPC Lattice. For more information, see TLS listeners.

VPC Lattice does not support WebSockets.

Create a listener

You can create listeners for your VPC Lattice service. When you create a listener, you must specify a name, a default action, and protocol. A listener comes with a default rule. You can also create additional rules for your listener.

To create a listener using the console

- the section called “Add an HTTP listener”
- the section called “Add an HTTPS listener”
- the section called “Add a TLS listener”
- the section called “Add a rule”

To create a listener using the AWS CLI

Use the create-listener and create-rule commands.

HTTP listeners for VPC Lattice services

A listener is a process that checks for connection requests. You can define a listener when you create your VPC Lattice service. You can add listeners to your service at any time.

The information on this page helps you create an HTTP listener for your service. For information about creating listeners that use other protocols, see HTTPS listeners and TLS listeners.
Prerequisites

- To add a forward action to the default listener rule, you must specify an available VPC Lattice target group. For more information, see Create a VPC Lattice target group.
- You can specify the same target group in multiple listeners, but these listeners must belong to the same service. To use a target group with a VPC Lattice service, you must verify that it is not used by a listener for any other VPC Lattice service.

Add an HTTP listener

You can add listeners and rules to your service at any time. You configure a listener with a protocol and a port for connections from clients to the service, and a VPC Lattice target group for the default listener rule. For more information, see Listener configuration.

To add an HTTP listener using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
5. For Listener name, you can either provide a custom listener name, or use the protocol and port of your listener as the listener name. A custom name that you specify can have up to 63 characters, and it must be unique for every service in your account. The valid characters are a-z, 0-9, and hyphens (-). You can't use a hyphen as the first or last character, or immediately after another hyphen. You cannot change the name after you create it.
6. For Protocol : port, choose HTTP and enter a port number.
7. For Default action, choose the VPC Lattice target group to receive traffic and choose the weight to assign to this target group. The weight that you assign to a target group sets its priority to receive traffic. For example, if two target groups have the same weight, each target group receives half of the traffic. If you've specified only one target group, then 100 percent of the traffic is sent to the one target group.

You can optionally add another target group for the default action. Choose Add action and then choose a target group and specify its weight.
8. (Optional) To add another rule, choose Add rule and then enter a name, a priority, a condition, and an action for the rule.
You can give each rule a priority number between 1 and 100. A listener can't have multiple rules with the same priority. Rules are evaluated in priority order, from the lowest value to the highest value. The default rule is evaluated last. For more information, see [Listener rules](#).

9. (Optional) To add tags, expand **Listener tags**, choose **Add new tag**, and enter a tag key and tag value.

10. Review your configuration, and then choose **Add**.

To add an HTTP listener using the AWS CLI

Use the [create-listener](#) command to create a listener with a default rule, and the [create-rule](#) command to create additional listener rules.

HTTPS listeners for VPC Lattice services

A listener is a process that checks for connection requests. You define a listener when you create your service. You can add listeners to your service in VPC Lattice at any time.

You can create an HTTPS listener, which uses TLS version 1.2 to terminate HTTPS connections with VPC Lattice directly. VPC Lattice will provision and manage a TLS certificate that is associated with the VPC Lattice generated Fully Qualified Domain Name (FQDN). VPC Lattice supports TLS on HTTP/1.1 and HTTP/2. When you configure a service with an HTTPS listener, VPC Lattice will automatically determine the HTTP protocol via Application-Layer Protocol Negotiation (ALPN). If ALPN is absent, VPC Lattice defaults to HTTP/1.1.

VPC Lattice uses a multi-tenancy architecture, meaning that it can host multiple services on the same endpoint. VPC Lattice uses TLS with Server Name Indication (SNI) for every client request.

VPC Lattice can listen on HTTP, HTTPS, HTTP/1.1, and HTTP/2 and communicate to targets in any of these protocols and versions. These listener and target group configurations do not need to match. VPC Lattice manages the entire process of upgrading and downgrading between protocols and versions. For more information, see [Protocol version](#).

To ensure that your application decrypts the traffic, create a TLS listener instead. With TLS passthrough, VPC Lattice does not terminate TLS. For more information, see [TLS listeners](#).

Contents

- [Security policy](#)
Security policy

VPC Lattice uses a security policy that is a combination of the TLSv1.2 protocol and a list of SSL/TLS ciphers. The protocol establishes a secure connection between a client and a server and helps to ensure that all data passed between the client and your service in VPC Lattice is private. A cipher is an encryption algorithm that uses encryption keys to create a coded message. Protocols use several ciphers to encrypt data. During the connection negotiation process, the client and VPC Lattice present a list of ciphers and protocols that they each support, in order of preference. By default, the first cipher on the server's list that matches any one of the client's ciphers is selected for the secure connection.

VPC Lattice uses the TLSv1.2 protocol and the following SSL/TLS ciphers in this order of preference:

- ECDHE-RSA-AES128-GCM-SHA256
- ECDHE-RSA-AES128-SHA
- ECDHE-RSA-AES256-GCM-SHA384
- ECDHE-RSA-AES256-SHA
- AES128-GCM-SHA256
- AES128-SHA
- AES256-GCM-SHA384
- AES256-SHA

ALPN policy

Application-Layer Protocol Negotiation (ALPN) is a TLS extension that is sent on the initial TLS handshake hello messages. ALPN enables the application layer to negotiate which protocols should be used over a secure connection, such as HTTP/1 and HTTP/2.

When the client initiates an ALPN connection, the VPC Lattice service compares the client ALPN preference list with its ALPN policy. If the client supports a protocol from the ALPN policy, the VPC Lattice service establishes the connection based on the preference list of the ALPN policy. Otherwise, the service does not use ALPN.
VPC Lattice supports the following ALPN policy:

HTTP2Preferred

Prefer HTTP/2 over HTTP/1.1. The ALPN preference list is h2, http/1.1.

Add an HTTPS listener

You configure a listener with a protocol and a port for connections from clients to the service, and a target group for the default listener rule. For more information, see [Listener configuration](#).

Prerequisites

- To add a forward action to the default listener rule, you must specify an available VPC Lattice target group. For more information, see [Create a VPC Lattice target group](#).
- You can specify the same target group in multiple listeners, but these listeners must belong to the same VPC Lattice service. To use a target group with a VPC Lattice service, you must verify that it is not used by a listener for any other VPC Lattice service.
- You can use the certificate provided by VPC Lattice or import your own certificate to AWS Certificate Manager. For more information, see the section called “BYOC”.

To add an HTTPS listener using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under **VPC Lattice**, choose **Services**.
3. Select the name of the service to open its details page.
4. On the **Routing** tab, choose **Add listener**.
5. For **Listener name**, you can either provide a custom listener name or use the protocol and port of your listener as the listener name. A custom name that you specify can have up to 63 characters, and it must be unique for every service in your account. The valid characters are a-z, 0-9, and hyphens (-). You can't use a hyphen as the first or last character, or immediately after another hyphen. You cannot change the name of a listener after you create it.
6. For **Protocol : port**, choose **HTTPS** and enter a port number.
7. For **Default action**, choose the VPC Lattice target group to receive traffic and choose the weight to assign to this target group. The weight that you assign to a target group sets its priority to receive traffic. For example, if two target groups have the same weight, each target
group receives half of the traffic. If you've specified only one target group, then 100 percent of the traffic is sent to the one target group.

You can optionally add another target group for the default action. Choose Add action and then choose a target group and specify its weight.

8. (Optional) To add another rule, choose Add rule and then enter a name, a priority, a condition, and an action for the rule.

You can give each rule a priority number between 1 and 100. A listener can't have multiple rules with the same priority. Rules are evaluated in priority order, from the lowest value to the highest value. The default rule is evaluated last. For more information, see Listener rules.

9. (Optional) To add tags, expand Listener tags, choose Add new tag, and enter a tag key and tag value.

10. For HTTPS listener certificate settings, if you did not specify a custom domain name when you created the service, VPC Lattice automatically generates a TLS certificate to secure the traffic flowing though the listener.

If you created the service with a custom domain name, but didn't specify a matching certificate, you can do so now by choosing the certificate from Custom SSL/TLS certificate. Otherwise, the certificate that you specified when you created the service is already chosen.

11. Review your configuration, and then choose Add.

To add an HTTPS listener using the AWS CLI

Use the create-listener command to create a listener with a default rule, and the create-rule command to create additional listener rules.

TLS listeners for VPC Lattice services

A listener is a process that checks for connection requests. You can define a listener when you create your VPC Lattice service. You can add listeners to your service at any time.

You can create a TLS listener so that VPC Lattice passes encrypted traffic through to your applications without decrypting it.

If you prefer that VPC Lattice decrypts encrypted traffic and sends unencrypted traffic to your applications, create an HTTPS listener instead. For more information, see HTTPS listeners.
Considerations

The following considerations apply to TLS listeners:

- The VPC Lattice service must have a custom domain name. The service custom domain name is used as a Service Name Indication (SNI) match. If you specified a certificate when you created the service, it is not used.
- The only rule allowed for a TLS listener is the default rule.
- The default action for a TLS listener must be a forward action to a TCP target group.
- By default, health checks are disabled for TCP target groups. If you enable health checks for a TCP target group, you must specify a protocol and protocol version.
- TLS listeners route requests using the SNI field of the client-hello message. You can use wildcard and SAN certificates on your targets if the matching condition is an exact match to the client-hello.
- Because all traffic remains encrypted from the client to the target, VPC Lattice can't read the HTTP headers and can't insert or remove HTTP headers. Therefore, with a TLS listener, the following limitations exist:
 - Connection duration is limited to 10 minutes
 - Auth policies are limited to anonymous principals
 - Lambda targets are not supported

Add a TLS listener

You configure a listener with a protocol and a port for connections from clients to the service, and a target group for the default listener rule. For more information, see Listener configuration.

To add a TLS listener using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
5. For Listener name, you can either provide a custom listener name or use the protocol and port of your listener as the listener name. A custom name that you specify can have up to 63 characters, and it must be unique for every service in your account. The valid characters are
a-z, 0-9, and hyphens (-). You can't use a hyphen as the first or last character, or immediately after another hyphen. You cannot change the name of a listener after you create it.

6. For Protocol, choose TLS. For Port, enter a port number.

7. For Forward to target group, choose a VPC Lattice target group that uses the TCP protocol to receive the traffic, and choose the weight to assign to this target group. You can optionally add another target group. Choose Add target group and then choose a target group and enter its weight.

8. (Optional) To add tags, expand Listener tags, choose Add new tag, and enter a tag key and tag value.

9. Review your configuration, and then choose Add.

To add a TLS listener using the AWS CLI

Use the create-listener command to create a listener with a default rule. Specify the TLS_PASSTHROUGH protocol.

Listener rules for your VPC Lattice service

Each listener has a default rule and additional rules that you can define. Each rule consists of a priority, one or more actions, and one or more conditions. You can add or edit rules at any time.

Contents

- Default rules
- Rule priority
- Rule action
- Rule conditions
- Add a rule
- Update a rule
- Delete a rule

Default rules

When you create a listener, you define actions for the default rule. Default rules can't have conditions. If the conditions for none of a listener's rules are met, then the action for the default rule is performed.
Rule priority

Each rule has a priority. Rules are evaluated in priority order, from the lowest value to the highest value. The default rule is evaluated last. You can change the priority of a non-default rule at any time. You cannot change the priority of the default rule.

Rule action

Listeners for VPC Lattice services support forward actions and fixed response actions.

Forward actions

You can use forward actions to route requests to one or more VPC Lattice target groups. If you specify multiple target groups for a forward action, you must specify a weight for each target group. Each target group weight is a value from 0 to 999. Requests that match a listener rule with weighted target groups are distributed to these target groups based on their weights. For example, if you specify two target groups, each with a weight of 10, each target group receives half the requests. If you specify two target groups, one with a weight of 10 and the other with a weight of 20, the target group with a weight of 20 receives twice as many requests as the other target group.

Fixed-response actions

You can use fixed-response actions to drop client requests and return a custom HTTP response. You can use this action to return a 404 response code.

Example fixed response action for the AWS CLI

You can specify an action when you create or update a rule. The following action sends a fixed response with the specified status code.

```
"action": {
  "fixedResponse": {
    "statusCode": 404
  }
},
```

Rule conditions

Each rule condition has a type and configuration information. When the conditions for a rule are met, then its actions are performed.
The following are the supported matching criteria for a rule:

Header match

Routing is based on the HTTP headers for each request. You can use HTTP header conditions to configure rules that route requests based on the HTTP headers for the request. You can specify the names of standard or custom HTTP header fields. The header name and the match evaluation are not case sensitive. You can change this setting by turning on case-sensitivity. Wildcard characters are not supported in the header name. Prefix, exact, and contains matching are supported on header match.

Method match

Routing is based on the HTTP request method of each request.

You can use HTTP request method conditions to configure rules that route requests based on the HTTP request method of the request. You can specify standard or custom HTTP methods. The method match is case sensitive. The method name must be an exact match. Wildcard characters are not supported.

Path match

Routing is based on matching the path patterns in the request URLs.

You can use path conditions to define rules that route requests based on the URL in the request. Wildcard characters are not supported. Prefix and exact matching on path are supported.

Add a rule

You can add a listener rule at any time.

To add a listener rule using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under **VPC Lattice**, choose **Services**.
3. Select the name of the service to open its details page.
4. On the **Routing** tab, choose **Edit listener**.
5. Expand **Listener rules** and choose **Add rule**.
6. For **Rule name**, enter a name for the rule.
7. For **Priority**, enter a priority between 1 and 100. Rules are evaluated in priority order, from the lowest value to the highest value. The default rule is evaluated last.

8. For **Condition**, enter a path pattern for the path match condition. The maximum size of each string is 200 characters. The comparison is not case sensitive. Wildcard characters are not supported.

 To add a header match or method match rule condition, use the AWS CLI or an AWS SDK.

10. Choose **Save changes**.

To add a rule using the AWS CLI

Use the `create-rule` command.

Update a rule

You can update a listener rule at any time. You can modify its priority, condition, target group, and the weight of each target group. You can't modify the name of the rule.

To update a listener rule using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under **VPC Lattice**, choose **Services**.
3. Select the name of the service to open its details page.
4. On the **Routing** tab, choose **Edit listener**.
5. Modify the rule priorities, conditions, and actions as needed.
6. Review your updates and choose **Save changes**.

To update a rule using the AWS CLI

Use the `update-rule` command.

Delete a rule

You can delete the non-default rules for a listener at any time. You cannot delete the default rule for a listener. When you delete a listener, all of its rules are deleted.
To delete a listener rule using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
5. Find the rule and choose Remove.
6. Choose Save changes.

To delete a rule using the AWS CLI

Use the delete-rule command.

Update a listener

After you create a listener, you can replace the target group for the default action. You can also add a target group to the default action and assign weights to the target groups. You can't update the listener name, listener protocol, or listener port.

To update a listener using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
5. For Default action, you can update the target group or the weight as needed.
6. To add additional target groups, choose Add action and then choose a target group and specify its weight.
7. You can also add, edit, or delete listener rules. For more information, see Listener rules.
8. Review your updates, and choose Save changes.

To update the default action for a listener using the AWS CLI

Use the update-listener command.
Delete a listener

You can delete a listener at any time. When you delete a listener, all its rules are automatically deleted.

To delete a listener using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services.
3. Select the name of the service to open its details page.
5. When prompted for confirmation, enter confirm and then choose Delete.

To delete a listener using the AWS CLI

Use the delete-listener command.
Share your VPC Lattice resources

Amazon VPC Lattice integrates with AWS Resource Access Manager (AWS RAM) to enable resource sharing. AWS RAM is a service that enables you to share some VPC Lattice resources with other AWS accounts or through AWS Organizations. With AWS RAM, you share resources that you own by creating a resource share. A resource share specifies the resources to share, and the consumers with whom to share them. Consumers can include:

- Specific AWS accounts inside or outside of its organization in AWS Organizations.
- An organizational unit inside of its organization in AWS Organizations.
- An entire organization in AWS Organizations.

For more information about AWS RAM, see the AWS RAM User Guide.

Contents

- Prerequisites for sharing VPC Lattice resources
- Share VPC Lattice resources
- Stop sharing VPC Lattice resources
- Responsibilities and permissions
- Cross-account events

Prerequisites for sharing VPC Lattice resources

- To share a resource, you must own it in your AWS account. This means that the resource must be allocated or provisioned in your account. You can't share a resource that has been shared with you.

- To share a resource with your organization or an organizational unit in AWS Organizations, you must enable sharing with AWS Organizations. For more information, see Enable resource sharing within AWS Organizations in the AWS RAM User Guide.
Share VPC Lattice resources

To share a resource, start by creating a resource share using AWS Resource Access Manager. A resource share specifies the resources to share, the consumers with whom they are shared, and what actions principals can perform.

When you share a VPC Lattice resource that you own with other AWS accounts, you enable those accounts to associate their resources with resources in your account. When you create an association against a shared resource, we generate an Amazon Resource Name (ARN) in the resource owner account and plus an ARN in the account that created the association. This way, both the resource owner and the account that created the association can delete the association.

If you are part of an organization in AWS Organizations and sharing within your organization is enabled, consumers in your organization are automatically granted access to the shared resource. Otherwise, consumers receive an invitation to join the resource share and are granted access to the shared resource after accepting the invitation.

Considerations

- You can share two types of VPC Lattice resources: service networks and services.
- You can share your VPC Lattice resources with any AWS account.
- You can't share your VPC Lattice resources with individual IAM users and roles.
- VPC Lattice supports customer managed permissions for both service networks and services.

To share a resource that you own using the VPC Lattice console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services or Service networks.
3. Choose the name of the resource to open its details page, and then choose Share service or Share service network from the Sharing tab.
4. Choose the AWS RAM resource shares from Resource shares. To create a resource share, choose Create a resource share in RAM console.
5. Choose Share service or Share service network.

To share a resource that you own using the AWS RAM console

Use the procedure described in Create a resource share in the AWS RAM User Guide.
To share a resource that you own using the AWS CLI

Use the `associate-resource-share` command.

Stop sharing VPC Lattice resources

To stop sharing a VPC Lattice resource that you own, you must remove it from the resource share. Existing associations persist after you stop sharing your resource. New associations to a previously shared resource are not allowed. When either the resource owner or the association owner deletes an association, it is deleted from both accounts. If an account owner wants to leave a resource share, they must ask the owner of the resource share to remove the account.

To stop sharing a resource that you own using the VPC Lattice console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under VPC Lattice, choose Services or Service networks.
3. Choose the name of the resource to open its details page.
4. On the Sharing tab, select the check box for the resource share and then choose Remove.

To stop sharing a resource that you own using the AWS RAM console

See Update a resource share in the AWS RAM User Guide.

To stop sharing a resource that you own using the AWS CLI

Use the `disassociate-resource-share` command.

Responsibilities and permissions

The following responsibilities and permissions apply when using shared VPC Lattice resources.

Resource owners

- The service network owner can't modify a service created by a consumer.
- The service network owner can't delete a service created by a consumer.
- The service network owner can describe all service associations for the service network.
• The service network owner can disassociate any service associated with the service network, regardless of who created the association.

• The service network owner can describe all VPC associations for the service network.

• The service network owner can disassociate any VPC that a consumer associated with the service network.

• The service owner can describe all network associations with the service.

• The service owner can disassociate a service from any service network that it is associated with.

• Only the account that created an association can update the association between the service network and the VPC.

Resource consumers

• The consumer can't delete a service that they didn't create.

• The consumer can disassociate only the services that they associated with a service network.

• The consumer and network owner can describe all associations between a service network and a service.

• The consumer can't retrieve service information of a service that they don't own.

• The consumer can describe all service associations with a shared service network.

• The consumer can associate a service with a shared service network.

• The consumer can see all VPC associations with a shared service network.

• The consumer can associate a VPC with a shared service network.

• The consumer can disassociate only the VPCs that they associated with a service network.

• The consumer of a shared service can't associate a service with a service network that they don't own.

• The consumer of a shared service network can't associate a VPC or service that they don't own.

• The consumer can describe a service or a service network that is shared with them.

• The consumer can't associate two resources if both are shared with them.

Cross-account events

When resource owners and consumers perform actions on a shared resource, those actions are recorded as cross-account events in AWS CloudTrail.
CreateServiceNetworkServiceAssociationBySharee

Sent to the resource owner when a resource consumer calls `CreateServiceNetworkServiceAssociation` with a shared resource. If the caller owns the service, the event is sent to the owner of the service network. If the caller owns the service network, the event is sent to the owner of the service.

CreateServiceNetworkVpcAssociationBySharee

Sent to the resource owner when a resource consumer calls `CreateServiceNetworkVpcAssociation` with a shared service network.

DeleteServiceNetworkServiceAssociationByOwner

Sent to the association owner when the resource owner calls `DeleteServiceNetworkServiceAssociation` with a shared resource. If the caller owns the service, the event is sent to the owner of the service network association. If the caller owns the service network, the event is sent to the owner of the service association.

DeleteServiceNetworkServiceAssociationBySharee

Sent to the resource owner when a resource consumer calls `DeleteServiceNetworkServiceAssociation` with a shared resource. If the caller owns the service, the event is sent to the owner of the service network. If the caller owns the service network, the event is sent to the owner of the service.

DeleteServiceNetworkVpcAssociationByOwner

Sent to the association owner when the resource owner calls `DeleteServiceNetworkVpcAssociation` with a shared service network.

DeleteServiceNetworkVpcAssociationBySharee

Sent to the resource owner when a resource consumer calls `DeleteServiceNetworkVpcAssociation` with a shared service network.

GetServiceBySharee

Sent to the resource owner when a resource consumer calls `GetService` with a shared service.

GetServiceNetworkBySharee

Sent to the resource owner when a resource consumer calls `GetServiceNetwork` with a shared service network.
GetServiceNetworkServiceAssociationBySharee

Sent to the resource owner when a resource consumer calls GetServiceNetworkServiceAssociation with a shared resource. If the caller owns the service, the event is sent to the owner of the service network. If the caller owns the service network, the event is sent to the owner of the service.

GetServiceNetworkVpcAssociationBySharee

Sent to the resource owner when a resource consumer calls GetServiceNetworkVpcAssociation with a shared service network.

The following is an example entry for the CreateServiceNetworkServiceAssociationBySharee event.

```json
{
    "eventVersion": "1.08",
    "userIdentity": {
        "type": "Unknown"
    },
    "eventTime": "2023-04-27T17:12:46Z",
    "eventSource": "vpc-lattice.amazonaws.com",
    "eventName": "CreateServiceNetworkServiceAssociationBySharee",
    "awsRegion": "us-west-2",
    "sourceIPAddress": "vpc-lattice.amazonaws.com",
    "userAgent": "ec2.amazonaws.com",
    "requestParameters": null,
    "responseElements": null,
    "additionalEventData": {
        "callerAccountId": "111122223333"
    },
    "requestID": "ddabb0a7-70c6-4f70-a6c9-00cbe8a6a18b",
    "eventID": "bd03cdca-7edd-4d50-b9c9-eaa89f4a47cd",
    "readOnly": false,
    "resources": [
        {
            "accountId": "123456789012",
            "type": "AWS::VpcLattice::ServiceNetworkServiceAssociation",
            "ARN": "arn:aws:vpc-lattice:region:123456789012:servicenetworkserviceassociation/snsa-0d5ea7bc72EXAMPLE"
        }
    ],
    "eventType": "AwsServiceEvent"
}
```
"managementEvent": true,
"recipientAccountId": "123456789012",
"eventCategory": "Management"
Security in Amazon VPC Lattice

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from data centers and network architectures that are built to meet the requirements of the most security-sensitive organizations.

You are responsible for maintaining control over your content that is hosted on this infrastructure. The shared responsibility model describes this as security of the cloud and security in the cloud:

- **Security of the cloud** – AWS is responsible for protecting the infrastructure that runs AWS services in the AWS Cloud. AWS also provides you with services that you can use securely. Third-party auditors regularly test and verify the effectiveness of our security as part of the AWS Compliance Programs. To learn about the compliance programs that apply to Amazon VPC Lattice, see AWS Services in Scope by Compliance Program.

- **Security in the cloud** – You are responsible for maintaining control over your content that is hosted on this infrastructure. You are also responsible for other factors including the sensitivity of your data, your company's requirements, and applicable laws and regulations.

This documentation helps you understand how to apply the shared responsibility model when using VPC Lattice. The following topics show you how to configure VPC Lattice to meet your security and compliance objectives. You also learn how to use other AWS services that help you to monitor and secure your VPC Lattice resources.

Contents

- Manage access to VPC Lattice services
- Data protection in Amazon VPC Lattice
- Identity and access management for Amazon VPC Lattice
- Compliance validation for Amazon VPC Lattice
- Access Amazon VPC Lattice using interface endpoints (PrivateLink)
- Resilience in Amazon VPC Lattice
- Infrastructure security in Amazon VPC Lattice
Manage access to VPC Lattice services

VPC Lattice is secure by default because you must be explicit about which services to provide access to and with which VPCs. For multi-account scenarios, you can use AWS Resource Access Manager to share resources across account boundaries. VPC Lattice provides a framework that lets you implement a defense-in-depth strategy at multiple layers of the network.

- **First layer** – The service and VPC association with a service network. If a VPC or specific service is not associated with the service network, clients in the VPC do not have access to the service.

- **Second layer** – Optional network-level security protections for the service network, such as security groups and network ACLs. By using these, you can allow access to specific groups of resources in a VPC instead of all resources in the VPC.

- **Third layer** – Optional VPC Lattice auth policy. You can apply an auth policy to service networks and individual services. Typically, the auth policy on the service network is operated by the network or cloud administrator, and they implement coarse-grained authorization. For example, allowing only authenticated requests from a specific organization in AWS Organizations. For an auth policy at the service level, typically the service owner sets fine-grained controls, which might be more restrictive than the coarse-grained authorization applied at the service network level.

Methods of access control

- Auth policies
- Security groups
- Network ACLs

Control access to VPC Lattice services using auth policies

VPC Lattice auth policies are IAM policy documents that you attach to service networks or services to control whether a specified principal has access to a group of services or specific service. You can attach one auth policy to each service network or service that you want to control access to.

Auth policies are different from IAM identity-based policies. IAM identity-based policies are attached to IAM users, groups, or roles and define what actions those identities can do on which resources. Auth policies are attached to services and service networks. For authorization to succeed,
both auth policies and identity-based policies need to have explicit allow statements. For more information, see [How authorization works](#).

You can use the AWS CLI and console to view, add, update, or remove auth policies on services and service networks. When using the AWS CLI, remember that your commands run in the AWS Region configured for your profile. If you want to run the commands in a different Region, either change the default Region for your profile, or use the `--region` parameter with the command.

Contents

- Common elements in an auth policy
- Resource format for auth policies
- Condition keys that can be used in auth policies
- Anonymous (unauthenticated) principals
- Example auth policies
- How authorization works

To get started with auth policies, follow the procedure to create an auth policy that applies to a service network. For more restrictive permissions that you don't want applied to other services, you can optionally set auth policies on individual services.

Manage access to a service network with auth policies

The following AWS CLI tasks show you how to manage access to a service network using auth policies. For instructions that use the console, see [Service networks in VPC Lattice](#).

Tasks

- Add an auth policy to a service network
- Change a service network's auth type
- Remove an auth policy from a service network

Add an auth policy to a service network

Follow the steps in this section to use the AWS CLI to:

- Enable access control on a service network using IAM.
- Add an auth policy to the service network. If you do not add an auth policy, all traffic will get an access denied error.
To enable access control and add an auth policy to a new service network

1. To enable access control on a service network so that it can use an auth policy, use the `create-service-network` command with the `--auth-type` option and a value of AWS_IAM.

   ```bash
   aws vpc-lattice create-service-network --name Name --auth-type AWS_IAM [--tags TagSpecification]
   ```

 If successful, the command returns output similar to the following.

   ```json
   {
     "arn": "arn",
     "authType": "AWS_IAM",
     "id": "sn-0123456789abcdef0",
     "name": "Name"
   }
   ```

2. Use the `put-auth-policy` command, specifying the ID of the service network where you want to add the auth policy and the auth policy you want to add.

 For example, use the following command to create an auth policy for the service network with the ID `sn-0123456789abcdef0`.

   ```bash
   aws vpc-lattice put-auth-policy --resource-identifier sn-0123456789abcdef0 --policy file://policy.json
   ```

 Use JSON to create a policy definition. For more information, see [Common elements in an auth policy](#).

 If successful, the command returns output similar to the following.

   ```json
   {
     "policy": "policy",
     "state": "Active"
   }
   ```
To enable access control and add an auth policy to an existing service network

1. To enable access control on a service network so that it can use an auth policy, use the `update-service-network` command with the `--auth-type` option and a value of AWS_IAM.

   ```bash
   aws vpc-lattice update-service-network --service-network-identifier sn-0123456789abcdef0 --auth-type AWS_IAM
   ```

 If successful, the command returns output similar to the following.

   ```json
   {
     "arn": "arn",
     "authType": "AWS_IAM",
     "id": "sn-0123456789abcdef0",
     "name": "Name"
   }
   ```

2. Use the `put-auth-policy` command, specifying the ID of the service network where you want to add the auth policy and the auth policy you want to add.

   ```bash
   aws vpc-lattice put-auth-policy --resource-identifier sn-0123456789abcdef0 --policy file://policy.json
   ```

 Use JSON to create a policy definition. For more information, see [Common elements in an auth policy](#).

 If successful, the command returns output similar to the following.

   ```json
   {
     "policy": "policy",
     "state": "Active"
   }
   ```

Change a service network's auth type

To disable the auth policy for a service network

Use the `update-service-network` command with the `--auth-type` option and a value of NONE.
aws vpc-lattice update-service-network --service-network-identifier sn-0123456789abcdef0 --auth-type NONE

If you need to enable the auth policy again later, run this command with AWS_IAM specified for the --auth-type option.

Remove an auth policy from a service network

To remove an auth policy from a service network

Use the `delete-auth-policy` command.

```bash
aws vpc-lattice delete-auth-policy --resource-identifier sn-0123456789abcdef0
```

The request fails if you remove an auth policy before changing the auth type of a service network to NONE.

Manage access to a service with auth policies

The following AWS CLI tasks show you how to manage access to a service using auth policies. For instructions that use the console, see Services in VPC Lattice.

Tasks

- Add an auth policy to a service
- Change a service's auth type
- Remove an auth policy from a service

Add an auth policy to a service

Follow these steps to use the AWS CLI to:

- Enable access control on a service using IAM.
- Add an auth policy to the service. If you do not add an auth policy, all traffic will get an access denied error.

To enable access control and add an auth policy to a new service

1. To enable access control on a service so that it can use an auth policy, use the `create-service` command with the --auth-type option and a value of AWS_IAM.
aws vpc-lattice create-service --name Name --auth-type AWS_IAM [--tags TagSpecification]

If successful, the command returns output similar to the following.

```
{
   "arn": "arn",
   "authType": "AWS_IAM",
   "dnsEntry": {
      ...
   },
   "id": "svc-0123456789abcdef0",
   "name": "Name",
   "status": "CREATE_IN_PROGRESS"
}
```

2. Use the **put-auth-policy** command, specifying the ID of the service where you want to add the auth policy and the auth policy you want to add.

For example, use the following command to create an auth policy for the service with the ID `svc-0123456789abcdef0`.

```
aws vpc-lattice put-auth-policy --resource-identifier svc-0123456789abcdef0 --policy file://policy.json
```

Use JSON to create a policy definition. For more information, see [Common elements in an auth policy](#).

If successful, the command returns output similar to the following.

```
{
   "policy": "policy",
   "state": "Active"
}
```

To enable access control and add an auth policy to an existing service

1. To enable access control on a service so that it can use an auth policy, use the **update-service** command with the `--auth-type` option and a value of AWS_IAM.
aws vpc-lattice update-service --service-identifier svc-0123456789abcdef0 --auth-type AWS_IAM

If successful, the command returns output similar to the following.

```
{
    "arn": "arn",
    "authType": "AWS_IAM",
    "id": "svc-0123456789abcdef0",
    "name": "Name"
}
```

2. Use the `put-auth-policy` command, specifying the ID of the service where you want to add the auth policy and the auth policy you want to add.

aws vpc-lattice put-auth-policy --resource-identifier svc-0123456789abcdef0 --policy file://policy.json

Use JSON to create a policy definition. For more information, see Common elements in an auth policy.

If successful, the command returns output similar to the following.

```
{
    "policy": "policy",
    "state": "Active"
}
```

Change a service's auth type

To disable the auth policy for a service

Use the `update-service` command with the `--auth-type` option and a value of NONE.

aws vpc-lattice update-service --service-identifier svc-0123456789abcdef0 --auth-type NONE

If you need to enable the auth policy again later, run this command with AWS_IAM specified for the `--auth-type` option.
Remove an auth policy from a service

To remove an auth policy from a service

Use the `delete-auth-policy` command.

```shell
aws vpc-lattice delete-auth-policy --resource-identifier svc-0123456789abcdef0
```

The request fails if you remove an auth policy before changing the auth type of the service to NONE.

If you enable auth policies that require authenticated requests to a service, any requests to that service must contain a valid request signature that is computed using Signature Version 4 (SigV4). For more information, see [SIGv4 authenticated requests for Amazon VPC Lattice](https://docs.aws.amazon.com/vpc/latest/lattice/guides/secure-auth-policy.html).

Common elements in an auth policy

VPC Lattice auth policies are specified using the same syntax as IAM policies. For more information, see [Identity-based policies and resource-based policies](https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-types.html) in the IAM User Guide.

An auth policy contains the following elements:

- **Principal** – The person or application who is allowed access to the actions and resources in the statement. In an auth policy, the principal is the IAM entity who is the recipient of this permission. The principal is authenticated as an IAM entity to make requests to a specific resource, or group of resources as in the case of services in a service network.

 You must specify a principal in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS services. For more information, see [AWS JSON policy elements: Principal](https://docs.aws.amazon.com/IAM/latest/UserGuide/policies-types.html) in the IAM User Guide.

- **Effect** – The effect when the specified principal requests the specific action. This can be either Allow or Deny. By default, when you enable access control on a service or service network using IAM, principals have no permissions to make requests to the service or service network.

- **Actions** – The specific API action for which you are granting or denying permission. VPC Lattice supports actions that use the `vpc-lattice-svcs` prefix. For more information, see [Actions defined by Amazon VPC Lattice Services](https://docs.aws.amazon.com/vpc/latest/lattice/guides/secure-auth-policy.html) in the Service Authorization Reference.

- **Resources** – The services that are affected by the action.
Condition – Conditions are optional. You can use them to control when your policy is in effect. For more information, see [Condition keys for Amazon VPC Lattice Services](#) in the *Service Authorization Reference*.

As you create and manage auth policies, you might want to use the [IAM Policy Generator](#).

Requirement

The policy in JSON must not contain newlines or blank lines.

Resource format for auth policies

You can restrict access to specific resources by creating an auth policy that uses a matching schema with a `<serviceARN>/<path>` pattern and code the `Resource` element as shown in the following examples.

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Examples</th>
</tr>
</thead>
</table>
 | "Resource": "*/rates"
 | "Resource": "*/*" |
| gRPC | "Resource": "arn:aws:vpc-lattice:us-west-2:1234567890:service/svc-0123456789abcdef0/api.parking/GetRates"
Use the following Amazon Resource Name (ARN) resource format for <serviceARN>:

```
arn:aws:vpc-lattice:region:account-id:service/service-id
```

For example:

```
```

Condition keys that can be used in auth policies

Access can be further controlled by condition keys in the **Condition** element of auth policies. These condition keys are present for evaluation depending on the protocol and whether the request is signed with **Signature Version 4 (SigV4)** or anonymous. Condition keys are case sensitive.

AWS provides global condition keys that you can use to control access, such as `aws:PrincipalOrgID` and `aws:SourceIp`. To see a list of the AWS global condition keys, see [AWS global condition context keys](https://docs.aws.amazon.com/iam/latest/userguide/idc-context-keys.html) in the **IAM User Guide**.

The following table lists the VPC Lattice condition keys. For more information, see [Condition keys for Amazon VPC Lattice Services](https://docs.aws.amazon.com/vpc-lattice/latest/userguide/service-authorization-reference.html) in the **Service Authorization Reference**.

<table>
<thead>
<tr>
<th>Condition keys</th>
<th>Description</th>
<th>Example</th>
<th>Available for anonymous (unauthenticated) caller?</th>
<th>Available for gRPC?</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpc-lattice-svcs:Port</td>
<td>Filters access by the service port the request is made to</td>
<td>80</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>vpc-lattice-svcs:RequestMethod</td>
<td>Filters access by the method of the request</td>
<td>GET</td>
<td>Yes</td>
<td>Always POST</td>
</tr>
<tr>
<td>vpc-lattice-svcs:RequestHeader/ header-name : value</td>
<td>Filters access by a header name-value pair in the request headers</td>
<td>content-type: application/json</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Condition keys</td>
<td>Description</td>
<td>Example</td>
<td>Available for anonymous (unauthenticated) caller?</td>
<td>Available for gRPC?</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---------</td>
<td>---</td>
<td>--------------------</td>
</tr>
<tr>
<td>vpc-lattice-svcs:RequestQueryString/ key-name: value</td>
<td>Filters access by the query string key-value pairs in the request URL</td>
<td>quux: [corge, grault]</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>vpc-lattice-svcs:ServiceNetworkArn</td>
<td>Filters access by the ARN of the service network of the service that is receiving the request</td>
<td>arn:aws:vpc-lattice:us-west-2:123456789012:service/network/sn-0123456789abcdef0</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>vpc-lattice-svcs:ServiceArn</td>
<td>Filters access by the ARN of the service that is receiving the request</td>
<td>arn:aws:vpc-lattice:us-west-2:123456789012:service/svc-0123456789abcdef0</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>vpc-lattice-svcs:SourceVpc</td>
<td>Filters access by the VPC the request is made from</td>
<td>vpc-1a2b3c4d</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Anonymous (unauthenticated) principals

Anonymous principals are callers that don't sign their AWS requests with Signature Version 4 (SigV4), and are within a VPC that is connected to the service network. Anonymous principals can make unauthenticated requests to services in the service network if an auth policy allows it.

Example auth policies

The following are example auth policies that require requests to be made by authenticated principals.

All examples use the us-west-2 Region and contain fictitious account IDs.

Example 1: Restrict access to services by a specific AWS organization

The following auth policy example grants permissions to any authenticated request to access any services in the service network to which the policy applies. However, the request must originate from principals that belong to the AWS organization specified in the condition.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": "*",
            "Action": "vpc-lattice-svcs:Invoke",
            "Resource": "*",
            "Condition": {
```
Example 2: Restrict access to a service by a specific IAM role

The following auth policy example grants permissions to any authenticated request that uses the IAM role rates-client to make HTTP GET requests on the service specified in the Resource element. The resource in the Resource element is the same as the service that the policy is attached to.

```json
{
    "Version":"2012-10-17",
    "Statement":[
        {
            "Effect": "Allow",
            "Principal": {
                "AWS": [
                    "arn:aws:iam::123456789012:role/rates-client"
                ],
            },
            "Action": "vpc-lattice-svcs:Invoke",
            "Resource": [
                "arn:aws:vpc-lattice:us-west-2:123456789012:service/svc-0123456789abcdef0/*"
            ],
            "Condition": {
                "StringEquals": {
                    "vpc-lattice-svcs:RequestMethod": "GET"
                }
            }
        }
    ]
}
```

Example 3: Restrict access to services by authenticated principals in a specific VPC
The following auth policy example only allows authenticated requests from principals in the VPC whose VPC ID is `vpc-1a2b3c4d`.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Principal": "*",
            "Action": "vpc-lattice-svcs:Invoke",
            "Resource": "*",
            "Condition": {
                "StringNotEquals": {
                    "aws:PrincipalType": "Anonymous"
                },
                "StringEquals": {
                    "vpc-lattice-svcs:SourceVpc": "vpc-1a2b3c4d"
                }
            }
        }
    ]
}
```

How authorization works

When a VPC Lattice service receives a request, the AWS enforcement code evaluates all relevant permissions policies together to determine whether to authorize or deny the request. It evaluates all the IAM identity-based policies and auth policies that are applicable in the request context during authorization. By default, all requests are implicitly denied when the auth type is `AWS_IAM`. An explicit allow from all relevant policies overrides the default.

Authorization includes:

- Collecting all the relevant IAM identity-based policies and auth policies.
- Evaluating the resulting set of policies:
 - Verifying that the requester (such as an IAM user or role) has permissions to perform the operation from the account to which the requester belongs. If there is no explicit allow statement, AWS does not authorize the request.
- Verifying that the request is allowed by the auth policy for the service network. If an auth policy is enabled, but there is no explicit allow statement, AWS does not authorize the request. If there is an explicit allow statement, or the auth type is NONE, the code continues.

- Verifying that the request is allowed by the auth policy for the service. If an auth policy is enabled, but there is no explicit allow statement, AWS does not authorize the request. If there is an explicit allow statement, or the auth type is NONE, then the enforcement code returns a final decision of **Allow**.

- An explicit deny in any policy overrides any allows.

The diagram shows the authorization workflow. When a request is made, the relevant policies allow or deny the request access to a given service.
Control traffic in VPC Lattice using security groups

AWS security groups act as virtual firewalls, controlling the network traffic to and from the resources that they are associated with. With VPC Lattice, you can create security groups and assign them to the VPC association that links a VPC to a service network to enforce additional network-level security protections for your service network.

Contents

• Managed prefix list
• Security group rules
• Manage security groups for a VPC association

Managed prefix list

VPC Lattice provides managed prefix lists that includes the IP addresses used to route traffic over the VPC Lattice network. You can reference the VPC Lattice managed prefix lists in your security group rules. This allows traffic to flow from clients, through the VPC Lattice service network, and to the VPC Lattice service targets.

For example, suppose that you have an EC2 instance registered as a target in the US West (Oregon) Region (us-west-2). You can add a rule to the instance security group that allows inbound HTTPS access from the VPC Lattice managed prefix list, so that the VPC Lattice traffic in this Region can reach the instance. If you remove all other inbound rules from the security group, you can prevent any traffic other than VPC Lattice traffic from reaching the instance.

The names of the managed prefix lists for VPC Lattice are as follows:

• com.amazonaws.region.vpc-lattice
• com.amazonaws.region.ipv6.vpc-lattice

For more information, see AWS-managed prefix lists in the Amazon VPC User Guide.

Windows clients

The addresses in the VPC Lattice prefix lists are link-local addresses. If you connect to VPC Lattice from a Windows client, you must update the configuration of the Windows client so that it forwards the link-local addresses used by VPC Lattice to the primary IP address for the client. The
following is an example command that updates the configuration of the Windows client, where 169.254.171.0 is the link-local address used by VPC Lattice.

```
C:\> route add 169.254.171.0 mask 255.255.255.0 primary-ip-address
```

Security group rules

Using VPC Lattice with or without security groups will not impact your existing VPC security group configuration. However, you can add your own security groups at any time.

Key considerations

- Security group rules for clients control outbound traffic to VPC Lattice.
- Security group rules for targets control inbound traffic from VPC Lattice to the targets, including health check traffic.
- Security group rules for the association between the service network and VPC control which clients can access the VPC Lattice service network.

Recommended inbound rules for service network and VPC associations

For traffic to flow from client VPCs to the services associated with the service network, you must create inbound rules for the listener ports and listener protocols for the services.

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPC CIDR</td>
<td>listener</td>
<td>listener</td>
<td>Allow traffic from clients to VPC Lattice</td>
</tr>
</tbody>
</table>

Recommended outbound rules for traffic flowing from client instances to VPC Lattice

By default, security groups allow all outbound traffic. However, if you have custom outbound rules, you must allow outbound traffic to VPC Lattice prefix for listener ports and protocols so that client instances can connect to all services associated with the VPC Lattice service network. You can allow this traffic by referencing the ID of the prefix list for VPC Lattice.
Destination

<table>
<thead>
<tr>
<th>Destination</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID of the VPC Lattice prefix list</td>
<td>listener</td>
<td>listener</td>
<td>Allow traffic from clients to VPC Lattice</td>
</tr>
</tbody>
</table>

Recommended inbound rules for traffic flowing from VPC Lattice to target instances

You can't use the client security group as a source for your target's security groups, because traffic flows from VPC Lattice. You can reference the ID of the prefix list for VPC Lattice.

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID of the VPC Lattice prefix list</td>
<td>target</td>
<td>target</td>
<td>Allow traffic from VPC Lattice to targets</td>
</tr>
<tr>
<td>ID of the VPC Lattice prefix list</td>
<td>health check</td>
<td>health check</td>
<td>Allow health check traffic from VPC Lattice to targets</td>
</tr>
</tbody>
</table>

Manage security groups for a VPC association

You can use the AWS CLI to view, add, or update security groups on the VPC to service network association. When using the AWS CLI, remember that your commands run in the AWS Region configured for your profile. If you want to run the commands in a different Region, either change the default Region for your profile, or use the `--region` parameter with the command.

Before you begin, confirm that you have created the security group in the same VPC as the VPC you want to add to the service network. For more information, see [Control traffic to your resources using security groups](https://docs.aws.amazon.com/vpc/latest/userguide/amazon-vpc-security-groups-traffic-control.html) in the *Amazon VPC User Guide*.

To add a security group when you create a VPC association using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the navigation pane, under **VPC Lattice**, choose **Service networks**.
3. Select the name of the service network to open its details page.

4. On the **VPC associations** tab, choose **Create VPC associations** and then choose **Add VPC association**.

5. Select a VPC and up to five security groups.

6. Choose **Save changes**.

To add or update security groups for an existing VPC association using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, under **VPC Lattice**, choose **Service networks**.

3. Select the name of the service network to open its details page.

4. On the **VPC associations** tab, select the check box for the association and then choose **Actions, Edit security groups**.

5. Add and remove security groups as needed.

6. Choose **Save changes**.

To add a security group when you create a VPC association using the AWS CLI

Use the `create-service-network-vpc-association` command, specifying the ID of the VPC for the VPC association and the ID of the security groups to add.

```bash
aws vpc-lattice create-service-network-vpc-association \
  --service-network-identifier sn-0123456789abcdef0 \
  --vpc-identifier vpc-1a2b3c4d \
  --security-group-ids sg-7c2270198example
```

If successful, the command returns output similar to the following.

```json
{
  "arn": "arn",
  "createdBy": "464296918874",
  "id": "snva-0123456789abcdef0",
  "status": "CREATE_IN_PROGRESS",
  "securityGroupIds": ["sg-7c2270198example"]
}
```

To add or update security groups for an existing VPC association using the AWS CLI

Use the `update-service-network-vpc-association` command, specifying the ID of the service network and the IDs of the security groups. These security groups override any previously associated security groups. Define at least one security group when updating the list.

```
aws vpc-lattice update-service-network-vpc-association
   --service-network-vpc-association-identifier sn-903004f88example \
   --security-group-ids sg-7c2270198example sg-903004f88example
```

⚠️ **Warning**

You can't remove all security groups. Instead, you must first delete the VPC association, and then re-create the VPC association without any security groups. Be cautious when deleting the VPC association. This prevents traffic from reaching services that are in that service network.

Control traffic to VPC Lattice using network ACLs

A network access control list (ACL) allows or denies specific inbound or outbound traffic at the subnet level. The default network ACL allows all inbound and outbound traffic. You can create custom network ACLs for your subnets to provide an additional layer of security. For more information, see [Network ACLs](#) in the *Amazon VPC User Guide*.

Contents

- Network ACLs for your client subnets
- Network ACLs for your target subnets

Network ACLs for your client subnets

The network ACLs for client subnets must allow traffic between clients and VPC Lattice. You can get the IP address range to allow from the [managed prefix list](#) for VPC Lattice.

The following is an example inbound rule.
The following is an example outbound rule.

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpc_lattice_cidr_block</td>
<td>TCP</td>
<td>1025-65535</td>
<td>Allow traffic from VPC Lattice to clients</td>
</tr>
</tbody>
</table>

Network ACLs for your target subnets

The network ACLs for target subnets must allow traffic between targets and VPC Lattice on both the target port and the health check port. You can get the IP address range to allow from the managed prefix list for VPC Lattice.

The following is an example inbound rule.

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpc_lattice_cidr_block</td>
<td>listener</td>
<td>listener</td>
<td>Allow traffic from clients to VPC Lattice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpc_lattice_cidr_block</td>
<td>target</td>
<td>target</td>
<td>Allow traffic from VPC Lattice to targets</td>
</tr>
<tr>
<td>vpc_lattice_cidr_block</td>
<td>health check</td>
<td>health check</td>
<td>Allow health check traffic from VPC Lattice to targets</td>
</tr>
</tbody>
</table>
Outbound

<table>
<thead>
<tr>
<th>Destination</th>
<th>Protocol</th>
<th>Port range</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>vpc_lattice_cidr_block</td>
<td>target</td>
<td>1024-65535</td>
<td>Allow traffic from targets to VPC Lattice</td>
</tr>
<tr>
<td>vpc_lattice_cidr_block</td>
<td>health check</td>
<td>1024-65535</td>
<td>Allow health check traffic from targets to VPC Lattice</td>
</tr>
</tbody>
</table>

SIGv4 authenticated requests for Amazon VPC Lattice

VPC Lattice uses Signature Version 4 (SIGv4) or Signature Version 4A (SIGv4A) for client authentication. For more information, see Signing AWS API requests in the IAM User Guide.

Considerations

- VPC Lattice attempts to authenticate any request that is signed with SIGv4 or SIGv4A. The request fails without authentication.
- VPC Lattice does not support payload signing. You must send an `x-amz-content-sha256` header with the value set to "UNSIGNED-PAYLOAD".

Examples

- **Python**
- **Java with interceptor**
- **Java without interceptor**
- **Node.js**

Python

This example sends the signed requests over a secure connection to a service registered in the network. If you prefer to use `requests`, the `botocore` package simplifies the authentication process, but is not strictly required. For more information, see Credentials in the Boto3 documentation.

To install the botocore and aws-crt packages, use the following command. For more information, see AWS CRT Python.
pip install botocore awscrt

In the following example, replace the placeholder values with your own values.

SIGv4

```python
from botocore import crt
import requests
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
import botocore.session

if __name__ == '__main__':
    session = botocore.session.Session()
    signer = crt.auth.CrtS3SigV4Auth(session.get_credentials(), 'vpc-lattice-svcs', 'us-west-2')
    endpoint = 'https://user-02222f67d3a427111.1234abc.vpc-lattice-svcs.us-west-2.on.aws/create'
    data = "some-data-here"
    headers = {'Content-Type': 'application/json'}
    request = AWSRequest(method='POST', url=endpoint, data=data, headers=headers)
    request.context["has_streaming_input"] = True  # payload signing is not supported
    signer.add_auth(request)

    prepped = request.prepare()

    response = requests.post(prepped.url, headers=prepped.headers, data=data)
```

SIGv4A

```python
from botocore import crt
import requests
from botocore.awsrequest import AWSRequest
from botocore.credentials import Credentials
import botocore.session

if __name__ == '__main__':
    session = botocore.session.Session()
    signer = crt.auth.CrtS3SigV4AsymAuth(session.get_credentials(), 'vpc-lattice-svcs', 'us-west-2')
    endpoint = 'https://user-02222f67d3a427111.1234abc.vpc-lattice-svcs.us-west-2.on.aws/create'
```

Authenticated requests
data = "some-data-here"
headers = {'Content-Type': 'application/json'}
request = AWSRequest(method='POST', url=endpoint, data=data, headers=headers)
request.context["has_streaming_input"] = True # payload signing is not supported
signer.add_auth(request)

prepped = request.prepare()

response = requests.post(prepped.url, headers=prepped.headers, data=data)

Java with interceptor

This example uses Amazon Request Signing Interceptor to handle request signing.

```java
import com.amazonaws.http.AwsRequestSigningApacheInterceptor;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.auth.signer.Aws4UnsignedPayloadSigner;
import software.amazon.awssdk.regions.Region;
import java.nio.charset.StandardCharsets;

public class App {
    public static void main(String[] args) {
        var interceptor = new AwsRequestSigningApacheInterceptor(
                "vpc-lattice-svcs",
                Aws4UnsignedPayloadSigner.create(), // requires HTTPS
                DefaultCredentialsProvider.create(),
                Region.US_WEST_2.id()
        );

        CloseableHttpClient client = HttpClients.custom()
            .addInterceptorLast(interceptor)
            .build();

        var httpPost = new HttpPost("https://user-02222f67d3a427111.1234abc.vpc-lattice-
            svcs.us-west-2.on.aws/create");
        httpPost.setHeader("content-type", "application/json");
    }
}
```
var body = """"{
 "name": "Jane Doe",
 "job": "Engineer"
}
"""";
httpPost.setEntity(new ByteArrayEntity(body.getBytes(StandardCharsets.UTF_8)));

try (var response = client.execute(httpPost)) {
 System.out.println(new String(response.getEntity().getContent().readAllBytes()));
 catch (Exception e) {
 throw new RuntimeException(e);
 }
}

Java without interceptor

This example shows how you can perform request signing by using custom interceptors. It uses the default credentials provider class from AWS SDK for Java 2.x, which gets the correct credentials for you. If you would prefer to use a specific credential provider, you can select one from the AWS SDK for Java 2.x. The AWS SDK for Java allows only unsigned payloads over HTTPS. However, you can extend the signer to support unsigned payloads over HTTP.

```java
import java.io.ByteArrayInputStream;
import java.io.IOException;
import java.nio.charset.StandardCharsets;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
import software.amazon.awssdk.auth.credentials.DefaultCredentialsProvider;
import software.amazon.awssdk.auth.signer.Aws4UnsignedPayloadSigner;
import software.amazon.awssdk.auth.signer.AwsSignerExecutionAttribute;
import software.amazon.awssdk.core.interceptor.ExecutionAttributes;
import software.amazon.awssdk.http.SdkHttpFullRequest;
import software.amazon.awssdk.http.SdkHttpMethod;
import software.amazon.awssdk.regions.Region;
```
public class App {

 public static void main(String[] args) {
 var signer = Aws4UnsignedPayloadSigner.create(); // requires HTTPS

 Map<String, String> headers = new HashMap<>();
 headers.put("content-type", "application/json");
 var body = ""
 {
 "name": "Jane Doe",
 "job": "Engineer"
 }
 "";

 String endpoint = "https://user-02222f67d3a427111.1234abc.vpc-lattice-svcs.us-west-2.on.aws/create";

 var sdkRequest = SdkHttpFullRequest.builder().method(SdkHttpMethod.POST);

 sdkRequest.host("user-02222f67d3a427111.1234abc.vpc-lattice-svcs.us-west-2.on.aws");
 sdkRequest.protocol("HTTPS");
 sdkRequest.encodedPath("/create");
 sdkRequest.contentStreamProvider(() -> new ByteArrayInputStream(body.getBytes(StandardCharsets.UTF_8)));

 for (Map.Entry<String, String> header : headers.entrySet()) {
 sdkRequest.putHeader(header.getKey(), header.getValue());
 }

 ExecutionAttributes attributes = ExecutionAttributes.builder()
 .put(AwsSignerExecutionAttribute.AWS_CREDENTIALS, DefaultCredentialsProvider.create().resolveCredentials())
 .put(AwsSignerExecutionAttribute.SERVICE_SIGNING_NAME, "vpc-lattice-svcs")
 .put(AwsSignerExecutionAttribute.SIGNING_REGION, Region.US_WEST_2)
 .build();

 SdkHttpFullRequest prepRequest = signer.sign(sdkRequest.build(), attributes);

 HttpPost httpPost = new HttpPost(endpoint);
for (Map.Entry<String, List<String>> header : prepRequest.headers().entrySet()) {
 if (header.getKey().equalsIgnoreCase("host")) { continue; }
 for (var value : header.getValue()) {
 httpPost.addHeader(header.getKey(), value);
 }
}

CloseableHttpClient client = HttpClients.custom().build();

httpPost.setEntity(new ByteArrayEntity(body.getBytes(StandardCharsets.UTF_8)));

try (var response = client.execute(httpPost)) {
 System.out.println(new String(response.getEntity().getContent().readAllBytes()));
} catch (IOException e) {
 throw new RuntimeException(e);
}
}

Node.js

This example uses aws-crt NodeJS bindings to send a signed request using HTTPS.

To install the aws-crt package, use the following command.

```
npm -i aws-crt
```

If the AWS_REGION environment variable exists, the example uses the Region specified by AWS_REGION. The default Region is us-east-1.

SIGv4

```javascript
const https = require('https')
const crt = require('aws-crt')
const { HttpRequest } = require('aws-crt/dist/native/http')

function sigV4Sign(method, endpoint, service, algorithm) {
    const host = new URL(endpoint).host
    const request = new HttpRequest(method, endpoint)
    request.headers.add('host', host)
    // crt.io.enable_logging(crt.io.LogLevel.INFO)
```
const config = {
 service: service,
 region: process.env.AWS_REGION ? process.env.AWS_REGION : 'us-east-1',
 algorithm: algorithm,
 signature_type: crt.auth.AwsSignatureType.HttpRequestViaHeaders,
 signed_body_header: crt.auth.AwsSignedBodyHeaderType.XAmzContentSha256,
 signed_body_value: crt.auth.AwsSignedBodyValue.UnsignedPayload,
 provider: crt.auth.AwsCredentialsProvider.newDefault()
}

return crt.auth.aws_sign_request(request, config)
}

if (process.argv.length === 2) {
 console.error(process.argv[1] + ' <url> ')
 process.exit(1)
}

const algorithm = crt.auth.AwsSigningAlgorithm.SigV4;

sigV4Sign('GET', process.argv[2], 'vpc-lattice-svcs').then(
 httpResponse => {
 var headers = {}

 for (const sigv4header of httpResponse.headers) {
 headers[sigv4header[0]] = sigv4header[1]
 }

 const options = {
 hostname: new URL(process.argv[2]).host,
 path: '/',
 method: 'GET',
 headers: headers
 }

 req = https.request(options, res => {
 console.log('statusCode:', res.statusCode)
 console.log('headers:', res.headers)
 res.on('data', d => {
 process.stdout.write(d)
 })
 })
 req.on('error', err => {
 console.log('Error: ' + err)
const https = require('https')
const crt = require('aws-crt')
const { HttpRequest } = require('aws-crt/dist/native/http')

function sigV4Sign(method, endpoint, service, algorithm) {
 const host = new URL(endpoint).host
 const request = new HttpRequest(method, endpoint)
 request.headers.add('host', host)
 // crt.io.enable_logging(crt.io.LogLevel.INFO)
 const config = {
 service: service,
 region: process.env.AWS_REGION ? process.env.AWS_REGION : 'us-east-1',
 algorithm: algorithm,
 signature_type: crt.auth.AwsSignatureType.HttpRequestViaHeaders,
 signed_body_header: crt.auth.AwsSignedBodyHeaderType.XAmzContentSha256,
 signed_body_value: crt.auth.AwsSignedBodyValue.UnsignedPayload,
 provider: crt.auth.AwsCredentialsProvider.newDefault()
 }

 return crt.auth.aws_sign_request(request, config)
}

if (process.argv.length === 2) {
 console.error(process.argv[1] + ' <url>')
 process.exit(1)
}

const algorithm = crt.auth.AwsSigningAlgorithm.SigV4Asymmetric;
sigV4Sign('GET', process.argv[2], 'vpc-lattice-svcs').then(
 httpResponse => {
 var headers = {}

 for (const sigv4header of httpResponse.headers) {
 headers[sigv4header[0]] = sigv4header[1]
 }
 })
const options = {
 hostname: new URL(process.argv[2]).host,
 path: '/',
 method: 'GET',
 headers: headers
}

req = https.request(options, res => {
 console.log('statusCode:', res.statusCode)
 console.log('headers:', res.headers)
 res.on('data', d => {
 process.stdout.write(d)
 })
})
req.on('error', err => {
 console.log('Error: ' + err)
})
req.end()

Data protection in Amazon VPC Lattice

The AWS shared responsibility model applies to data protection in Amazon VPC Lattice. As described in this model, AWS is responsible for protecting the global infrastructure that runs all of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on this infrastructure. This content includes the security configuration and management tasks for the AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog post on the AWS Security Blog.

Encryption in transit

VPC Lattice is a fully managed service that consists of a control plane and a data plane. Each plane serves a distinct purpose in the service. The control plane provides the administrative APIs used to create, read/describe, update, delete, and list (CRUDL) resources (for example, CreateService and UpdateService). Communications to the VPC Lattice control plane are protected in-transit by TLS. The data plane is the VPC Lattice Invoke API, which provides the interconnection between services. TLS encrypts communications to the VPC Lattice data plane when you use HTTPS or
TLS. The cipher suite and protocol version use defaults provided by VPC Lattice and are not configurable. For more information, see HTTPS listeners for VPC Lattice services.

Encryption at rest

By default, encryption of data at rest helps reduce the operational overhead and complexity involved in protecting sensitive data. At the same time, it enables you to build secure applications that meet strict encryption compliance and regulatory requirements.

Contents

- Server-side encryption with Amazon S3 managed keys (SSE-S3)
- Server-side encryption with AWS KMS keys stored in AWS KMS (SSE-KMS)

Server-side encryption with Amazon S3 managed keys (SSE-S3)

When you use server-side encryption with Amazon S3 managed keys (SSE-S3), each object is encrypted with a unique key. As an additional safeguard, we encrypt the key itself with a root key that we regularly rotate. Amazon S3 server-side encryption uses one of the strongest block ciphers available, 256-bit Advanced Encryption Standard (AES-256) GCM, to encrypt your data. For objects encrypted prior to AES-GCM, AES-CBC is still supported to decrypt those objects. For more information, see Using server-side encryption with Amazon S3-managed encryption keys (SSE-S3).

If you enable server-side encryption with Amazon S3-managed encryption keys (SSE-S3) for your S3 bucket for VPC Lattice access logs, we automatically encrypt each access log file before it is stored in your S3 bucket. For more information, see Logs sent to Amazon S3 in the Amazon CloudWatch User Guide.

Server-side encryption with AWS KMS keys stored in AWS KMS (SSE-KMS)

Server-side encryption with AWS KMS keys (SSE-KMS) is similar to SSE-S3, but with additional benefits and charges for using this service. There are separate permissions for the AWS KMS key that provides added protection against unauthorized access of your objects in Amazon S3. SSE-KMS also provides you with an audit trail that shows when your AWS KMS key was used and by whom. For more information, see Using server-side encryption with AWS Key Management Service (SSE-KMS).

Contents

- Encryption and decryption of your certificate’s private key
Encryption and decryption of your certificate's private key

Your ACM certificate and private key are encrypted using an AWS managed KMS key that has the alias `aws/acm`. You can view the key ID with this alias in the AWS KMS console under AWS managed keys.

VPC Lattice does not directly access your ACM resources. It uses AWS TLS Connection Manager to secure and access the private keys for your certificate. When you use your ACM certificate to create a VPC Lattice service, VPC Lattice associates your certificate with AWS TLS Connection Manager. This is done by creating a grant in AWS KMS against your AWS Managed Key with the prefix `aws/acm`. A grant is a policy instrument that allows TLS Connection Manager to use KMS keys in cryptographic operations. The grant allows the grantee principal (TLS Connection Manager) to call the specified grant operations on the KMS key to decrypt your certificate's private key. TLS Connection Manager then uses the certificate and the decrypted (plaintext) private key to establish a secure connection (SSL/TLS session) with clients of VPC Lattice services. When the certificate is disassociated from a VPC Lattice service, the grant is retired.

If you want to remove access to the KMS key, we recommend that you replace or delete the certificate from the service using the AWS Management Console or the `update-service` command in the AWS CLI.

Encryption context for VPC Lattice

An encryption context is an optional set of key-value pairs that contain contextual information about what your private key might be used for. AWS KMS binds the encryption context to the encrypted data and uses it as additional authenticated data to support authenticated encryption.

When your TLS keys are used with VPC Lattice and TLS Connection manager, the name of your VPC Lattice service is included in the encryption context used to encrypt your key at rest. You can verify which VPC Lattice service your certificate and private key are being used for by viewing the encryption context in your CloudTrail logs as shown in the next section, or by looking at the Associated Resources tab in the ACM console.

To decrypt data, the same encryption context is included in the request. VPC Lattice uses the same encryption context in all AWS KMS cryptographic operations, where the key is `aws:vpc-lattice:arn` and the value is the Amazon Resource Name (ARN) of the VPC Lattice service.
The following example shows the encryption context in the output of an operation such as CreateGrant.

```
"encryptionContextEquals": {
}
```

Monitoring your encryption keys for VPC Lattice

When you use an AWS managed key with your VPC Lattice service, you can use [AWS CloudTrail](https://aws.amazon.com/cloudtrail/) to track requests that VPC Lattice sends to AWS KMS.

CreateGrant

When you add your ACM certificate to a VPC Lattice service, a CreateGrant request is sent on your behalf for TLS Connection Manager to be able to decrypt the private key associated with your ACM certificate.

You can view the CreateGrant operation as an event in [CloudTrail](https://aws.amazon.com/cloudtrail/), Event history, CreateGrant.

The following is an example event record in the CloudTrail event history for the CreateGrant operation.

```
{
    "eventVersion": "1.08",
    "userIdentity": {
        "type": "IAMUser",
        "principalId": "EX_PRINCIPAL_ID",
        "arn": "arn:aws:iam::111122223333:user/Alice",
        "accountId": "111122223333",
        "accessKeyId": "EXAMPLE_KEY_ID",
        "sessionContext": {
            "sessionIssuer": {
                "type": "IAMUser",
                "principalId": "EX_PRINCIPAL_ID",
                "arn": "arn:aws:iam::111122223333:user/Alice",
                "accountId": "111122223333",
                "userName": "Alice"
            },
            "webIdFederationData": {}
        }
    }
}
```
"attributes": {
 "creationDate": "2023-02-06T23:30:50Z",
 "mfaAuthenticated": "false"
},

"invokedBy": "acm.amazonaws.com",

"eventTime": "2023-02-07T00:07:18Z",
"eventSource": "kms.amazonaws.com",
"eventName": "CreateGrant",
"awsRegion": "us-west-2",
"sourceIPAddress": "acm.amazonaws.com",
"userAgent": "acm.amazonaws.com",
"requestParameters": {
 "granteePrincipal": "tlsconnectionmanager.amazonaws.com",
 "keyId": "1234abcd-12ab-34cd-56ef-1234567890ab",
 "operations": [
 "Decrypt"
],
 "constraints": {
 "encryptionContextEquals": {
 }
 },
 "retiringPrincipal": "acm.us-west-2.amazonaws.com"
},
"responseElements": {
 "grantId": "f020fe75197b93991dc8491d6f19dd3cebb24ee62277a05914386724f3d48758",
 "keyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
},
"requestID": "ba178361-8ab6-4bdd-9aa2-0d1a44b2974a",
"eventID": "8d449963-1120-4d0c-9479-f76de11ce609",
"readOnly": false,
"resources": [
 {
 "accountId": "111122223333",
 "type": "AWS::KMS::Key",
 "ARN": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab"
 }
]
In the above CreateGrant example, the grantee principal is TLS Connection Manager, and the encryption context has the VPC Lattice service ARN.

ListGrants

You can use your KMS key ID and your account ID to call the ListGrants API. This gets you a list of all grants for the specified KMS key. For more information, see [ListGrants](#).

Use the following `ListGrants` command in the AWS CLI to see the details of all the grants.

```
aws kms list-grants --key-id your-kms-key-id
```

The following is example output.

```json
{
    "Grants": [
        {
            "Operations": [
                "Decrypt"
            ],
            "KeyId": "arn:aws:kms:us-west-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab",
            "Name": "IssuedThroughACM",
            "RetiringPrincipal": "acm.us-west-2.amazonaws.com",
            "GranteePrincipal": "tlsconnectionmanager.amazonaws.com",
            "GrantId": "f020fe75197b93991dc8491d6f19dd3cebb24ee62277a05914386724f3d48758",
            "IssuingAccount": "arn:aws:iam::111122223333:root",
            "CreationDate": "2023-02-06T23:30:50Z",
            "Constraints": {
                "encryptionContextEquals": {
                }
            }
        }
    ]
}
```
In the above ListGrants example, the grantee principal is TLS Connection Manager and the encryption context has the VPC Lattice service ARN.

Decrypt

VPC Lattice uses TLS Connection Manager to call the Decrypt operation to decrypt your private key in order to serve TLS connections in your VPC Lattice service. You can view the Decrypt operation as an event in CloudTrail Event history, Decrypt.

The following is an example event record in the CloudTrail event history for the Decrypt operation.

```json
{
    "eventVersion": "1.08",
    "userIdentity": {
        "type": "AWSService",
        "invokedBy": "tlsconnectionmanager.amazonaws.com"
    },
    "eventTime": "2023-02-07T00:07:23Z",
    "eventSource": "kms.amazonaws.com",
    "eventName": "Decrypt",
    "awsRegion": "us-west-2",
    "sourceIPAddress": "tlsconnectionmanager.amazonaws.com",
    "userAgent": "tlsconnectionmanager.amazonaws.com",
    "requestParameters": {
        "encryptionContext": {
        },
        "encryptionAlgorithm": "SYMMETRIC_DEFAULT"
    },
    "responseElements": null,
    "requestID": "12345126-30d5-4b28-98b9-9153da559963",
    "eventID": "abcde202-ba1a-467c-b4ba-f729d45ae521",
}
```
Identity and access management for Amazon VPC Lattice

The following sections describe how you can use AWS Identity and Access Management (IAM) to help secure your VPC Lattice resources, by controlling who can perform VPC Lattice API actions.

Topics

- How Amazon VPC Lattice works with IAM
- Amazon VPC Lattice API permissions
- Identity-based policies for Amazon VPC Lattice
- Using service-linked roles for Amazon VPC Lattice
- AWS managed policies for Amazon VPC Lattice

How Amazon VPC Lattice works with IAM

Before you use IAM to manage access to VPC Lattice, learn what IAM features are available to use with VPC Lattice.

<table>
<thead>
<tr>
<th>IAM feature</th>
<th>VPC Lattice support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity-based policies</td>
<td>Yes</td>
</tr>
</tbody>
</table>
IAM feature

<table>
<thead>
<tr>
<th>IAM feature</th>
<th>VPC Lattice support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resource-based policies</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy actions</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy resources</td>
<td>Yes</td>
</tr>
<tr>
<td>Policy condition keys</td>
<td>Yes</td>
</tr>
<tr>
<td>ACLs</td>
<td>No</td>
</tr>
<tr>
<td>ABAC (tags in policies)</td>
<td>Yes</td>
</tr>
<tr>
<td>Temporary credentials</td>
<td>Yes</td>
</tr>
<tr>
<td>Service roles</td>
<td>No</td>
</tr>
<tr>
<td>Service-linked roles</td>
<td>Yes</td>
</tr>
</tbody>
</table>

For a high-level view of how VPC Lattice and other AWS services work with most IAM features, see [AWS services that work with IAM](https://docs.aws.amazon.com/IAM/latest/UserGuide/) in the *IAM User Guide*.

Identity-based policies for VPC Lattice

Supports identity-based policies: Yes

Identity-based policies are JSON permissions policy documents that you can attach to an identity, such as an IAM user, group of users, or role. These policies control what actions users and roles can perform, on which resources, and under what conditions. To learn how to create an identity-based policy, see [Creating IAM policies](https://docs.aws.amazon.com/IAM/latest/UserGuide/) in the *IAM User Guide*.

With IAM identity-based policies, you can specify allowed or denied actions and resources as well as the conditions under which actions are allowed or denied. You can't specify the principal in an identity-based policy because it applies to the user or role to which it is attached. To learn about all of the elements that you can use in a JSON policy, see [IAM JSON policy elements reference](https://docs.aws.amazon.com/IAM/latest/UserGuide/iam-policy-reference.html) in the *IAM User Guide*.

Resource-based policies within VPC Lattice

Supports resource-based policies: Yes
resource-based policies are JSON policy documents that you attach to a resource. In services that
support resource-based policies, service administrators can use them to control access to a specific
resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal in a
resource-based policy.

VPC Lattice supports auth policies, a resource-based policy that lets you control access to services
in your service network. For more information, see Control access to VPC Lattice services using auth
policies.

VPC Lattice also supports resource-based permissions policies for integration with AWS Resource
Access Manager. You can use these resource-based policies to grant usage permission to other AWS
accounts or organizations to enable resource sharing. For more information, see Share your VPC
Lattice resources.

Policy actions for VPC Lattice

Supports policy actions: Yes

In an IAM policy statement, you can specify any API action from any service that supports IAM.
For VPC Lattice, use the following prefix with the name of the API action: vpc-lattice:. For
example: vpc-lattice:CreateService, vpc-lattice:CreateTargetGroup, and vpc-
lattice:PutAuthPolicy.

To specify multiple actions in a single statement, separate them with commas, as follows:

"Action": ["vpc-lattice:action1", "vpc-lattice:action2"]

You can also specify multiple actions using wildcards. For example, you can specify all actions
whose names begin with the word Get, as follows:

"Action": "vpc-lattice:Get*"

For a complete list of VPC Lattice API actions, see Actions defined by Amazon VPC Lattice in the
Service Authorization Reference.

Policy resources for VPC Lattice

Supports policy resources: Yes
In an IAM policy statement, the Resource element specifies the object or objects that the statement covers. For VPC Lattice, each IAM policy statement applies to the resources that you specify using their ARNs.

The specific Amazon Resource Name (ARN) format depends on the resource. When you provide an ARN, replace the italicized text with your resource-specific information.

- **Access log subscriptions:**

 "Resource": "arn:aws:vpc-lattice:region:account-id:accesslogsubscription/access-log-subscription-id"

- **Listeners:**

- **Rules:**

- **Services:**

 "Resource": "arn:aws:vpc-lattice:region:account-id:service/service-id"

- **Service networks:**

- **Service network service associations:**

- **Service network VPC associations:**

- **Target groups:**
Policy condition keys for VPC Lattice

Supports service-specific policy condition keys: Yes

Administrators can use AWS JSON policies to specify who has access to what. That is, which principal can perform actions on what resources, and under what conditions.

The Condition element (or Condition block) lets you specify conditions in which a statement is in effect. The Condition element is optional. You can create conditional expressions that use condition operators, such as equals or less than, to match the condition in the policy with values in the request.

If you specify multiple Condition elements in a statement, or multiple keys in a single Condition element, AWS evaluates them using a logical AND operation. If you specify multiple values for a single condition key, AWS evaluates the condition using a logical OR operation. All of the conditions must be met before the statement's permissions are granted.

You can also use placeholder variables when you specify conditions. For example, you can grant an IAM user permission to access a resource only if it is tagged with their IAM user name. For more information, see IAM policy elements: variables and tags in the IAM User Guide.

AWS supports global condition keys and service-specific condition keys. To see all AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

To see a list of the VPC Lattice condition keys, see Condition keys for Amazon VPC Lattice in the Service Authorization Reference.

AWS supports global condition keys and service-specific condition keys. For information about AWS global condition keys, see AWS global condition context keys in the IAM User Guide.

Access control lists (ACLs) in VPC Lattice

Supports ACLs: No

Access control lists (ACLs) control which principals (account members, users, or roles) have permissions to access a resource. ACLs are similar to resource-based policies, although they do not use the JSON policy document format.
Attribute-based access control (ABAC) with VPC Lattice

Supports ABAC (tags in policies): Yes

Attribute-based access control (ABAC) is an authorization strategy that defines permissions based on attributes. In AWS, these attributes are called *tags*. You can attach tags to IAM entities (users or roles) and to many AWS resources. Tagging entities and resources is the first step of ABAC. Then you design ABAC policies to allow operations when the principal's tag matches the tag on the resource that they are trying to access.

ABAC is helpful in environments that are growing rapidly and helps with situations where policy management becomes cumbersome.

To control access based on tags, you provide tag information in the *condition element* of a policy using the `aws:ResourceTag/key-name`, `aws:RequestTag/key-name`, or `aws:TagKeys` condition keys.

If a service supports all three condition keys for every resource type, then the value is *Yes* for the service. If a service supports all three condition keys for only some resource types, then the value is *Partial*.

Using temporary credentials with VPC Lattice

Supports temporary credentials: Yes

Some AWS services don't work when you sign in using temporary credentials. For additional information, including which AWS services work with temporary credentials, see [AWS services that work with IAM](https://docs.aws.amazon.com/IAM/latest/UserGuide/id-auth-temp-creds.html) in the *IAM User Guide*.

You are using temporary credentials if you sign in to the AWS Management Console using any method except a user name and password. For example, when you access AWS using your company's single sign-on (SSO) link, that process automatically creates temporary credentials. You also automatically create temporary credentials when you sign in to the console as a user and then switch roles. For more information about switching roles, see [Switching to a role (console)](https://docs.aws.amazon.com/IAM/latest/UserGuide/id-auth-temp-creds-console.html) in the *IAM User Guide*.

You can manually create temporary credentials using the AWS CLI or AWS API. You can then use those temporary credentials to access AWS. AWS recommends that you dynamically generate
temporary credentials instead of using long-term access keys. For more information, see Temporary security credentials in IAM.

Service roles for VPC Lattice

Supports service roles: No

A service role is an IAM role that a service assumes to perform actions on your behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For more information, see Creating a role to delegate permissions to an AWS service in the IAM User Guide.

⚠️ **Warning**

Changing the permissions for a service role might break VPC Lattice functionality. Edit service roles only when VPC Lattice provides guidance to do so.

Service-linked roles for VPC Lattice

Supports service-linked roles: Yes

A service-linked role is a type of service role that is linked to an AWS service. The service can assume the role to perform an action on your behalf. Service-linked roles appear in your AWS account and are owned by the service. An IAM administrator can view, but not edit the permissions for service-linked roles.

For information about creating or managing VPC Lattice service-linked roles, see Using service-linked roles for Amazon VPC Lattice.

Amazon VPC Lattice API permissions

You must grant IAM identities (such as users or roles) permission to call the VPC Lattice API actions they need, as described in Policy actions for VPC Lattice. In addition, for some VPC Lattice actions, you must grant IAM identities permission to call specific actions from other AWS APIs.

Required permissions for the API

When calling the following actions from the API, you must grant IAM users permission to call the specified actions.
CreateServiceNetworkVpcAssociation
- vpc-lattice:CreateServiceNetworkVpcAssociation
- ec2:DescribeVpcs
- ec2:DescribeSecurityGroups (Only needed when security groups are provided)

UpdateServiceNetworkVpcAssociation
- vpc-lattice:UpdateServiceNetworkVpcAssociation
- ec2:DescribeSecurityGroups (Only needed when security groups are provided)

CreateTargetGroup
- vpc-lattice:CreateTargetGroup
- ec2:DescribeVpcs

RegisterTargets
- vpc-lattice:RegisterTargets
- ec2:DescribeInstances (Only needed when INSTANCE is the target group type)
- ec2:DescribeVpcs (Only needed when INSTANCE or IP is the target group type)
- ec2:DescribeSubnets (Only needed when INSTANCE or IP is the target group type)
- lambda:GetFunction (Only needed when LAMBDA is the target group type)
- lambda:AddPermission (Only needed if the target group doesn't already have permission to invoke the specified Lambda function)

DeregisterTargets
- vpc-lattice:DeregisterTargets

CreateAccessLogSubscription
- vpc-lattice:CreateAccessLogSubscription
- logs:GetLogDelivery
- logs:CreateLogDelivery

DeleteAccessLogSubscription
- vpc-lattice:DeleteAccessLogSubscription
- logs:DeleteLogDelivery

UpdateAccessLogSubscription
- vpc-lattice:UpdateAccessLogSubscription
- logs:UpdateLogDelivery
Identity-based policies for Amazon VPC Lattice

By default, users and roles don't have permission to create or modify VPC Lattice resources. They also can't perform tasks by using the AWS Management Console, AWS Command Line Interface (AWS CLI), or AWS API. To grant users permission to perform actions on the resources that they need, an IAM administrator can create IAM policies. The administrator can then add the IAM policies to roles, and users can assume the roles.

To learn how to create an IAM identity-based policy by using these example JSON policy documents, see Creating IAM policies in the IAM User Guide.

For details about actions and resource types defined by VPC Lattice, including the format of the ARNs for each of the resource types, see Actions, Resources, and Condition Keys for Amazon VPC Lattice in the Service Authorization Reference.

Contents

• Policy best practices
• Additional required permissions for full access
• Identity-based policy examples for VPC Lattice

Policy best practices

Identity-based policies determine whether someone can create, access, or delete VPC Lattice resources in your account. These actions can incur costs for your AWS account. When you create or edit identity-based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To get started granting permissions to your users and workloads, use the AWS managed policies that grant permissions for many common use cases. They are available in your AWS account. We recommend that you reduce permissions further by defining AWS customer managed policies that are specific to your use cases. For more information, see AWS managed policies or AWS managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the permissions required to perform a task. You do this by defining the actions that can be taken on specific resources under specific conditions, also known as least-privilege permissions. For more information about using IAM to apply permissions, see Policies and permissions in IAM in the IAM User Guide.
• **Use conditions in IAM policies to further restrict access** – You can add a condition to your policies to limit access to actions and resources. For example, you can write a policy condition to specify that all requests must be sent using SSL. You can also use conditions to grant access to service actions if they are used through a specific AWS service, such as AWS CloudFormation. For more information, see [IAM JSON policy elements: Condition](#) in the *IAM User Guide*.

• **Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional permissions** – IAM Access Analyzer validates new and existing policies so that the policies adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides more than 100 policy checks and actionable recommendations to help you author secure and functional policies. For more information, see [IAM Access Analyzer policy validation](#) in the *IAM User Guide*.

• **Require multi-factor authentication (MFA)** – If you have a scenario that requires IAM users or a root user in your AWS account, turn on MFA for additional security. To require MFA when API operations are called, add MFA conditions to your policies. For more information, see [Configuring MFA-protected API access](#) in the *IAM User Guide*.

For more information about best practices in IAM, see [Security best practices in IAM](#) in the *IAM User Guide*.

Additional required permissions for full access

To use other AWS services that VPC Lattice is integrated with and the entire suite of VPC Lattice features, you must have specific additional permissions. These permissions are not included in the VPCLatticeFullAccess managed policy because of the **confused deputy** privilege escalation risk.

You must attach the following policy to your role and use it along with the VPCLatticeFullAccess managed policy.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": [
                "firehose:TagDeliveryStream",
                "lambda:AddPermission",
                "s3:PutBucketPolicy"
            ]
        }
    ]
}
```
This policy provides the following additional permissions:

- **iam:AttachRolePolicy**: Allows you to attach the specified managed policy to the specified IAM role.
- **iam:PutRolePolicy**: Allows you to add or update an inline policy document that is embedded in the specified IAM role.
• `s3:PutBucketPolicy`: Allows you to apply a bucket policy to an Amazon S3 bucket.
• `firehose:TagDeliveryStream`: Allows you to add or update tags for Firehose delivery streams.

Identity-based policy examples for VPC Lattice

Topics

• Manage VPC associations to a service network
• Create service associations to a service network
• Add tags to resources
• Create a service-linked role

Manage VPC associations to a service network

The following example demonstrates a policy that gives users with this policy the permission to create, update, and delete the VPC associations to a service network, but only for the VPC and service network specified in the condition. For more information about specifying condition keys, see [Policy condition keys for VPC Lattice](#).

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Resource": ["*"]
        },
        "Condition": {
            "StringEquals": {
                "vpc-lattice:VpcId": "vpc-1a2b3c4d"
            }
        }
    ]
}
```
Create service associations to a service network

If you are not using condition keys to control access to VPC Lattice resources, you can specify the ARNs of resources in the Resource element to control access instead.

The following example demonstrates a policy that limits the service associations to a service network that users with this policy can create by specifying the ARNs of the service and service network that can be used with the CreateServiceNetworkServiceAssociation API action. For more information about specifying the ARN values, see Policy resources for VPC Lattice.

```
{
   "Version": "2012-10-17",
   "Statement": [
    {
       "Effect": "Allow",
       "Action": [
        "vpc-lattice:CreateServiceNetworkServiceAssociation"
       ],
       "Resource": [
        "arn:aws:vpc-lattice:us-west-2:123456789012:service/svc-04d5cc9b88example",
        "arn:aws:vpc-lattice:us-west-2:123456789012:servicenetwork/sn-903004f88example"
       ]
    }
   ]
}
```

Add tags to resources

The following example demonstrates a policy that gives users with this policy permission to create tags on VPC Lattice resources.

```
{
   "Version": "2012-10-17",
   "Statement": [
    {
       "Effect": "Allow",
       "Action": [
        "vpc-lattice:CreateServiceNetworkServiceAssociation"
       ]
    }
   ]
}
```
Create a service-linked role

VPC Lattice requires permissions to create a service-linked role the first time that any user in your AWS account creates VPC Lattice resources. If the service-linked role does not exist already, VPC Lattice creates it in your account. The service-linked role gives permissions to VPC Lattice so that it can call other AWS services on your behalf.

For automatic role creation to succeed, users must have permissions for the `iam:CreateServiceLinkedRole` action.

```

"Action": "iam:CreateServiceLinkedRole"
```

The following example demonstrates a policy that gives users with this policy permission to create a service-linked role for VPC Lattice.

```

{
   "Version": "2012-10-17",
   "Statement": [
   {
      "Effect": "Allow",
      "Action": "iam:CreateServiceLinkedRole",
      "Resource": "arn:aws:iam::*:role/aws-service-role/vpc-lattice.amazonaws.com/AWSServiceRoleForVpcLattice",
      "Condition": {
         "StringLike": {
            "iam:AWSServiceName": "vpc-lattice.amazonaws.com"
         }
      }
   }
   ]
}
```
Using service-linked roles for Amazon VPC Lattice

Amazon VPC Lattice uses a service-linked role for the permissions that it requires to call other AWS services on your behalf. For more information, see Using service-linked roles in the IAM User Guide.

Service-linked role permissions for VPC Lattice

VPC Lattice uses the service-linked role named AWSServiceRoleForVpcLattice.

The AWSServiceRoleForVpcLattice service-linked role trusts the following service to assume the role:

- vpc-lattice.amazonaws.com

The role permissions policy named AWSVpcLatticeServiceRolePolicy allows VPC Lattice to publish CloudWatch metrics in the AWS/VpcLattice namespace.

```json
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "cloudwatch:PutMetricData",
            "Resource": "*",
            "Condition": {
                "StringEquals": {
                    "cloudwatch:namespace": "AWS/VpcLattice"
                }
            }
        }
    ]
}
```

You must configure permissions to allow an IAM entity (such as a user, group, or role) to create, edit, or delete a service-linked role. For more information, see Service-linked role permissions in the IAM User Guide.
Creating a service-linked role for VPC Lattice

You don’t need to manually create a service-linked role. When you create VPC Lattice resources in the AWS Management Console, the AWS CLI, or the AWS API, VPC Lattice creates the service-linked role for you.

If you delete this service-linked role, and then need to create it again, you can use the same process to recreate the role in your account. When you create VPC Lattice resources, VPC Lattice creates the service-linked role for you again.

Editing a service-linked role for VPC Lattice

You can edit the description of `AWSServiceRoleForVpcLattice` using IAM. For more information, see Editing a service-linked role in the IAM User Guide.

Deleting a service-linked role for VPC Lattice

If you no longer need to use Amazon VPC Lattice, we recommend that you delete `AWSServiceRoleForVpcLattice`.

You can delete this service-linked role only after you delete all VPC Lattice resources in your AWS account.

Use the IAM console, the AWS CLI, or the AWS API to delete the `AWSServiceRoleForVpcLattice` service-linked role. For more information, see Deleting a service-linked role in the IAM User Guide.

After you delete a service-linked role, VPC Lattice creates the role again when you create VPC Lattice resources in your AWS account.

Supported Regions for VPC Lattice service-linked roles

VPC Lattice supports using service-linked roles in all of the Regions where the service is available.

AWS managed policies for Amazon VPC Lattice

An AWS managed policy is a standalone policy that is created and administered by AWS. AWS managed policies are designed to provide permissions for many common use cases so that you can start assigning permissions to users, groups, and roles.

Keep in mind that AWS managed policies might not grant least-privilege permissions for your specific use cases because they’re available for all AWS customers to use. We recommend that you
reduce permissions further by defining customer managed policies that are specific to your use cases.

You cannot change the permissions defined in AWS managed policies. If AWS updates the permissions defined in an AWS managed policy, the update affects all principal identities (users, groups, and roles) that the policy is attached to. AWS is most likely to update an AWS managed policy when a new AWS service is launched or new API operations become available for existing services.

For more information, see AWS managed policies in the IAM User Guide.

AWS managed policy: VPCLatticeFullAccess

This policy provides full access to Amazon VPC Lattice and limited access to other dependent services. It includes permissions to do the following:

- ACM – Retrieve the SSL/TLS certificate ARN for custom domain names.
- CloudWatch – View access logs and monitoring data.
- CloudWatch Logs – Set up and send access logs to CloudWatch Logs.
- Amazon EC2 – Retrieve information about EC2 instances and VPCs to create target groups and register targets.
- Elastic Load Balancing – Retrieve information about an Application Load Balancer to register it as a target.
- Firehose – Retrieve information about delivery streams used to store access logs.
- Lambda – Retrieve information about a Lambda function to register it as a target.
- Amazon S3 – Retrieve information about S3 buckets used to store access logs.

To view the permissions for this policy, see VPCLatticeFullAccess in the AWS Managed Policy Reference.

To use other AWS services that VPC Lattice is integrated with and the entire suite of VPC Lattice features, you must have specific additional permissions. These permissions are not included in the VPCLatticeFullAccess managed policy because of the confused deputy privilege escalation risk. For more information, see Additional required permissions for full access.
AWS managed policy: VPCLatticeReadOnlyAccess

This policy provides read-only access to Amazon VPC Lattice and limited access to other dependent services. It includes permissions to do the following:

- ACM – Retrieve the SSL/TLS certificate ARN for custom domain names.
- CloudWatch – View access logs and monitoring data.
- CloudWatch Logs – View log delivery information for access log subscriptions.
- Amazon EC2 – Retrieve information about EC2 instances and VPCs to create target groups and register targets.
- Firehose – Retrieve information about delivery streams for access log delivery.
- Lambda – View information about a Lambda function.
- Amazon S3 – Retrieve information about S3 buckets for access log delivery.

To view the permissions for this policy, see VPCLatticeReadOnlyAccess in the AWS Managed Policy Reference.

AWS managed policy: VPCLatticeServicesInvokeAccess

This policy provides access to invoke Amazon VPC Lattice services.

To view the permissions for this policy, see VPCLatticeServicesInvokeAccess in the AWS Managed Policy Reference.

AWS managed policy: AWSVpcLatticeServiceRolePolicy

This policy is attached to a service-linked role named AWSServiceRoleForVpcLattice to allow VPC Lattice to perform actions on your behalf. You can't attach this policy to your IAM entities. For more information, see Using service-linked roles for Amazon VPC Lattice.

To view the permissions for this policy, see AWSVpcLatticeServiceRolePolicy in the AWS Managed Policy Reference.

VPC Lattice updates to AWS managed policies

View details about updates to AWS managed policies for VPC Lattice since this service began tracking these changes. For automatic alerts about changes to this page, subscribe to the RSS feed for the VPC Lattice User Guide.
<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPCLatticeFullAccess</td>
<td>VPC Lattice adds a new policy to grant permissions for full access to Amazon VPC Lattice and limited access to other dependent services.</td>
<td>March 31, 2023</td>
</tr>
<tr>
<td>VPCLatticeReadOnlyAccess</td>
<td>VPC Lattice adds a new policy to grant permissions for read-only access to Amazon VPC Lattice and limited access to other dependent services.</td>
<td>March 31, 2023</td>
</tr>
<tr>
<td>VPCLatticeServicesInvokeAccess</td>
<td>VPC Lattice adds a new policy to grant access to invoke Amazon VPC Lattice services.</td>
<td>March 31, 2023</td>
</tr>
<tr>
<td>AWSVpcLatticeServiceRolePolicy</td>
<td>VPC Lattice adds permissions to its service-linked role to allow VPC Lattice to publish CloudWatch metrics in the AWS/VpcLattice namespace. The AWSVpcLatticeServiceRolePolicy policy includes permission to call the CloudWatch PutMetricData API action. For more information, see Using service-linked roles for Amazon VPC Lattice.</td>
<td>December 5, 2022</td>
</tr>
<tr>
<td>VPC Lattice started tracking changes</td>
<td>VPC Lattice started tracking changes for its AWS managed policies.</td>
<td>December 5, 2022</td>
</tr>
</tbody>
</table>

Compliance validation for Amazon VPC Lattice

Third-party auditors assess the security and compliance of Amazon VPC Lattice as part of multiple AWS compliance programs.
To learn whether an AWS service is within the scope of specific compliance programs, see AWS services in Scope by Compliance Program and choose the compliance program that you are interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your data, your company's compliance objectives, and applicable laws and regulations. AWS provides the following resources to help with compliance:

- **Security and Compliance Quick Start Guides** – These deployment guides discuss architectural considerations and provide steps for deploying baseline environments on AWS that are security and compliance focused.

- **Architecting for HIPAA Security and Compliance on Amazon Web Services** – This whitepaper describes how companies can use AWS to create HIPAA-eligible applications.

Note

Not all AWS services are HIPAA eligible. For more information, see the HIPAA Eligible Services Reference.

- **AWS Compliance Resources** – This collection of workbooks and guides might apply to your industry and location.

- **AWS Customer Compliance Guides** – Understand the shared responsibility model through the lens of compliance. The guides summarize the best practices for securing AWS services and map the guidance to security controls across multiple frameworks (including National Institute of Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and International Organization for Standardization (ISO)).

- **Evaluating Resources with Rules** in the AWS Config Developer Guide – The AWS Config service assesses how well your resource configurations comply with internal practices, industry guidelines, and regulations.

- **AWS Security Hub** – This AWS service provides a comprehensive view of your security state within AWS. Security Hub uses security controls to evaluate your AWS resources and to check your compliance against security industry standards and best practices. For a list of supported services and controls, see Security Hub controls reference.
• **Amazon GuardDuty** – This AWS service detects potential threats to your AWS accounts, workloads, containers, and data by monitoring your environment for suspicious and malicious activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by meeting intrusion detection requirements mandated by certain compliance frameworks.

• **AWS Audit Manager** – This AWS service helps you continuously audit your AWS usage to simplify how you manage risk and compliance with regulations and industry standards.

Access Amazon VPC Lattice using interface endpoints (PrivateLink)

You can establish a private connection between your VPC and Amazon VPC Lattice by creating an *interface VPC endpoint*. Interface endpoints are powered by [AWS PrivateLink](https://aws.amazon.com/privatelink), a technology that enables you to privately access VPC Lattice APIs without an internet gateway, NAT device, VPN connection, or AWS Direct Connect connection. Instances in your VPC don't need public IP addresses to communicate with VPC Lattice APIs.

Each interface endpoint is represented by one or more *network interfaces* in your subnets.

Considerations for interface VPC endpoints

Before you set up an interface VPC endpoint for VPC Lattice, ensure that you review [Access AWS services through AWS PrivateLink](https://docs.aws.amazon.com/privatelink/latest/userguide/privatelink-overview.html) in the *AWS PrivateLink Guide*.

VPC Lattice supports making calls to all of its API actions from your VPC.

Creating an interface VPC endpoint for VPC Lattice

You can create a VPC endpoint for the VPC Lattice service using either the Amazon VPC console or the AWS Command Line Interface (AWS CLI). For more information, see [Create an interface VPC endpoint](https://docs.aws.amazon.com/privatelink/latest/userguide/privatelink-create-interface-vpc-endpoint.html) in the *AWS PrivateLink Guide*.

Create a VPC endpoint for VPC Lattice using the following service name:

```text
com.amazonaws.region.vpc-lattice
```

If you enable private DNS for the endpoint, you can make API requests to VPC Lattice using its default DNS name for the Region, for example, `vpc-lattice.us-east-1.amazonaws.com`.
Resilience in Amazon VPC Lattice

The AWS global infrastructure is built around AWS Regions and Availability Zones.

AWS Regions provide multiple physically separated and isolated Availability Zones, which are connected with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically fail over between zones without interruption. Availability Zones are more highly available, fault tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in Amazon VPC Lattice

As a managed service, Amazon VPC Lattice is protected by AWS global network security. For information about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To design your AWS environment using the best practices for infrastructure security, see Infrastructure Protection in Security Pillar AWS Well-Architected Framework.

You use AWS published API calls to access VPC Lattice through the network. Clients must support the following:

- Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.
- Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to generate temporary security credentials to sign requests.
Monitoring Amazon VPC Lattice

Use the features in this section to monitor your Amazon VPC Lattice service networks, services, target groups, and VPC connections.

Contents

- CloudWatch metrics for Amazon VPC Lattice
- Access logs for Amazon VPC Lattice
- CloudTrail logs for Amazon VPC Lattice

CloudWatch metrics for Amazon VPC Lattice

Amazon VPC Lattice sends data related to your target groups and services to Amazon CloudWatch, and processes it into readable, near real-time metrics. These metrics are kept for 15 months, so that you can access historical information and gain a better perspective on how your web application or service is performing. You can also set alarms that watch for certain thresholds and send notifications or take actions when those thresholds are met. For more information, see the Amazon CloudWatch User Guide.

Amazon VPC Lattice uses a service-linked role in your AWS account to send metrics to Amazon CloudWatch. For more information, see Using service-linked roles for Amazon VPC Lattice.

Contents

- View Amazon CloudWatch metrics
- Target group metrics
- Service metrics

View Amazon CloudWatch metrics

You can view the Amazon CloudWatch metrics for your target groups and services using the CloudWatch console or AWS CLI.

To view metrics using the CloudWatch console

1. Open the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.
2. In the navigation pane, choose Metrics.
3. Select the AWS/VpcLattice namespace.

4. (Optional) To view a metric across all dimensions, enter its name in the search field.

5. (Optional) To filter by dimension, select one of the following:
 - To display only the metrics reported for your target groups, choose **Target groups**. To view the metrics for a single target group, enter its name in the search field.
 - To display only the metrics reported for your services, choose **Services**. To view the metrics for a single service, enter its name in the search field.

To view metrics using the AWS CLI

Use the following **CloudWatch list-metrics** AWS CLI command to list the available metrics:

```
aws cloudwatch list-metrics --namespace AWS/VpcLattice
```

For information about each of the metrics and their dimensions, see **Target group metrics** and **Service metrics**.

Target group metrics

VPC Lattice automatically stores metrics related to target groups in the AWS/VpcLattice Amazon CloudWatch namespace. For more information about target groups, see **Target groups in VPC Lattice**.

You may want to monitor HTTP code and RequestTime metrics for target groups. You can filter these metrics by Availability Zone (AZ) to determine which AZ the target group is in.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalConnectionCount</td>
<td>Total connections.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>• The most useful statistic is Sum.</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>• Name: TargetGroup, Value: The name of the target group.</td>
<td></td>
</tr>
<tr>
<td>• Name: AvailabilityZone, Value: The AZ that the target group is in.</td>
<td></td>
</tr>
<tr>
<td>ActiveConnectionCount</td>
<td>Active connections.</td>
</tr>
<tr>
<td>Reporting criteria</td>
<td>• Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.</td>
</tr>
<tr>
<td>Reporting frequency</td>
<td>• Once a minute.</td>
</tr>
<tr>
<td>Statistics</td>
<td>• The most useful statistic is Sum.</td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>• Name: TargetGroup, Value: The name of the target group.</td>
<td></td>
</tr>
<tr>
<td>• Name: AvailabilityZone, Value: The AZ that the target group is in.</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>ConnectionErrorCount</td>
<td>Total connection failures.</td>
</tr>
<tr>
<td></td>
<td>Reporting criteria</td>
</tr>
<tr>
<td></td>
<td>• Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.</td>
</tr>
<tr>
<td></td>
<td>Reporting frequency</td>
</tr>
<tr>
<td></td>
<td>• Once a minute.</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>• The most useful statistic is Sum.</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>• Name: TargetGroup, Value: The name of the target group.</td>
</tr>
<tr>
<td></td>
<td>• Name: AvailabilityZone, Value: The AZ that the target group is in.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>HTTP1_ConnectionCount</td>
<td>Total HTTP/1.1 connections.</td>
</tr>
<tr>
<td></td>
<td>Reporting criteria</td>
</tr>
<tr>
<td></td>
<td>• Always reported (whether it's a zero or non-zero value) from</td>
</tr>
<tr>
<td></td>
<td>the time the resource receives traffic.</td>
</tr>
<tr>
<td></td>
<td>Reporting frequency</td>
</tr>
<tr>
<td></td>
<td>• Once a minute.</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>• The most useful statistic is <code>Sum</code>.</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>• Name: TargetGroup, Value: The name of the target group.</td>
</tr>
<tr>
<td></td>
<td>• Name: AvailabilityZone, Value: The AZ that the target group is in.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------</td>
<td>--</td>
</tr>
<tr>
<td>HTTP2_ConnectionCount</td>
<td>Total HTTP/2 connections.</td>
</tr>
<tr>
<td>Reporting criteria</td>
<td></td>
</tr>
<tr>
<td>• Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.</td>
<td></td>
</tr>
<tr>
<td>Reporting frequency</td>
<td></td>
</tr>
<tr>
<td>• Once a minute.</td>
<td></td>
</tr>
<tr>
<td>Statistics</td>
<td></td>
</tr>
<tr>
<td>• The most useful statistic is Sum.</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td></td>
</tr>
<tr>
<td>• Name: TargetGroup , Value: The name of the target group.</td>
<td></td>
</tr>
<tr>
<td>• Name: AvailabilityZone , Value: The AZ that the target group is in.</td>
<td></td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
</tr>
<tr>
<td>ConnectionTimeoutCount</td>
<td>Total connection connect timeouts.</td>
</tr>
<tr>
<td>Reporting criteria</td>
<td>- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.</td>
</tr>
<tr>
<td>Reporting frequency</td>
<td>- Once a minute.</td>
</tr>
<tr>
<td>Statistics</td>
<td>- The most useful statistic is Sum.</td>
</tr>
<tr>
<td>Dimensions</td>
<td>- Name: TargetGroup , Value: The name of the target group.</td>
</tr>
<tr>
<td></td>
<td>- Name: AvailabilityZone , Value: The AZ that the target group is in.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>TotalReceivedConneCtionBytes</td>
<td>Total received connection bytes.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistic is Sum.

Dimensions

- Name: TargetGroup, Value: The name of the target group.
- Name: AvailabilityZone, Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TotalSentConnectionBytes</td>
<td>Total sent connection bytes.</td>
</tr>
<tr>
<td></td>
<td>Reporting criteria</td>
</tr>
<tr>
<td></td>
<td>• Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.</td>
</tr>
<tr>
<td></td>
<td>Reporting frequency</td>
</tr>
<tr>
<td></td>
<td>• Once a minute.</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>• The most useful statistic is <code>Sum</code>.</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>• Name: <code>TargetGroup</code>, Value: The name of the target group.</td>
</tr>
<tr>
<td></td>
<td>• Name: <code>AvailabilityZone</code>, Value: The AZ that the target group is in.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>TotalRequestCount</td>
<td>Total requests.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistic is Sum.

Dimensions

- Name: TargetGroup, Value: The name of the target group.
- Name: AvailabilityZone, Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ActiveRequestCount</td>
<td>Total active requests.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistic is **Sum**.

Dimensions

- Name: **TargetGroup**, Value: The name of the target group.
- Name: **AvailabilityZone**, Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RequestTime</td>
<td>Request time in milliseconds.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistics are **Average** and **pNN.NN** (percentiles).

Dimensions

- Name: `TargetGroup`, Value: The name of the target group.
- Name: `AvailabilityZone`, Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPCode_2XX_Count, HTTPCode_3XX_Count,</td>
<td>Aggregate HTTP response codes.</td>
</tr>
<tr>
<td>HTTPCode_4XX_Count, HTTPCode_5XX_Count</td>
<td></td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistic is Sum.

Dimensions

- Name: TargetGroup, Value: The name of the target group.
- Name: AvailabilityZone, Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLSConnectionError Count</td>
<td>Total TLS connection errors not including failed certificate verifications.</td>
</tr>
</tbody>
</table>

Reporting criteria
- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency
- Once a minute.

Statistics
- The most useful statistic is Sum.

Dimensions
- Name: TargetGroup , Value: The name of the target group.
- Name: AvailabilityZone , Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total TLS Connection</td>
<td>Total successful TLS connection handshakes.</td>
</tr>
<tr>
<td>Handshake Count</td>
<td>Reporting criteria</td>
</tr>
<tr>
<td></td>
<td>• Always reported (whether it's a zero or non-zero value) from</td>
</tr>
<tr>
<td></td>
<td>the time the resource receives traffic.</td>
</tr>
<tr>
<td></td>
<td>Reporting frequency</td>
</tr>
<tr>
<td></td>
<td>• Once a minute.</td>
</tr>
<tr>
<td></td>
<td>Statistics</td>
</tr>
<tr>
<td></td>
<td>• The most useful statistic is Sum.</td>
</tr>
<tr>
<td></td>
<td>Dimensions</td>
</tr>
<tr>
<td></td>
<td>• Name: TargetGroup , Value: The name of the target group.</td>
</tr>
<tr>
<td></td>
<td>• Name: AvailabilityZone , Value: The AZ that the target group is in.</td>
</tr>
</tbody>
</table>

Service metrics

VPC Lattice automatically stores metrics related to services in the AWS/VpcLattice Amazon CloudWatch namespace. For more information about services, see [Services in VPC Lattice](#).

You may want to monitor HTTP code and Request Time metrics for services. You can filter these metrics by Availability Zone (AZ) to determine which AZ the service is in.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Request Timeout Count</td>
<td>Total requests that timed out waiting for a response.</td>
</tr>
</tbody>
</table>

Reporting criteria
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.</td>
</tr>
<tr>
<td>Reporting frequency</td>
<td>• Once a minute.</td>
</tr>
<tr>
<td>Statistics</td>
<td>• The most useful statistic is Sum.</td>
</tr>
<tr>
<td>Dimensions</td>
<td>• Name: Service, Value: The ID of the service.</td>
</tr>
<tr>
<td></td>
<td>• Name: AvailabilityZone, Value: The AZ that the target group is in.</td>
</tr>
<tr>
<td>Metric</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>TotalRequestCount</td>
<td>Total requests.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistic is Sum.

Dimensions

- Name: Service, Value: The ID of the service.
- Name: AvailabilityZone, Value: The AZ that the target group is in.
<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RequestTime</td>
<td>Request time in milliseconds.</td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistics are *Average* and pNN.NN (percentiles).

Dimensions

- Name: *Service*, Value: The ID of the service.
- Name: *AvailabilityZone*, Value: The AZ that the target group is in.
Metric

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTPCode_2XX_Count ,</td>
<td>Aggregate HTTP response codes.</td>
</tr>
<tr>
<td>HTTPCode_3XX_Count ,</td>
<td></td>
</tr>
<tr>
<td>HTTPCode_4XX_Count ,</td>
<td></td>
</tr>
<tr>
<td>HTTPCode_5XX_Count</td>
<td></td>
</tr>
</tbody>
</table>

Reporting criteria

- Always reported (whether it's a zero or non-zero value) from the time the resource receives traffic.

Reporting frequency

- Once a minute.

Statistics

- The most useful statistic is Sum.

Dimensions

- Name: Service, Value: The ID of the service.
- Name: AvailabilityZone , Value: The AZ that the target group is in.

Access logs for Amazon VPC Lattice

Access logs capture detailed information about your VPC Lattice services. You can use these access logs to analyze traffic patterns and audit all of the services in the network.

Access logs are optional and are disabled by default. After you enable access logs, you can disable them at any time.

Pricing

Charges apply when access logs are published. Logs that AWS natively publishes on your behalf are called vended logs. For more information about pricing for vended logs, see Amazon CloudWatch Pricing, choose Logs, and view the pricing under Vended Logs.
IAM permissions required to enable access logs

To enable access logs and send the logs to their destinations, you must have the following actions in the policy attached to the IAM user, group, or role that you are using.

```json
{
   "Version": "2012-10-17",
   "Statement": [
      {
         "Effect": "Allow",
         "Sid": "ManageVPCLatticeAccessLogSetup",
         "Action": [
            "logs:CreateLogDelivery",
            "logs:GetLogDelivery",
            "logs:UpdateLogDelivery",
            "logs:DeleteLogDelivery",
            "logs:ListLogDeliveries",
            "vpc-lattice:CreateAccessLogSubscription",
            "vpc-lattice:GetAccessLogSubscription",
            "vpc-lattice:UpdateAccessLogSubscription",
            "vpc-lattice:DeleteAccessLogSubscription",
            "vpc-lattice:ListAccessLogSubscriptions"
         ],
         "Resource": ["*"]
      }
   ]
}
```

For more information, see Adding and removing IAM identity permissions in the AWS Identity and Access Management User Guide.
After you’ve updated the policy attached to the IAM user, group, or role that you are using, go to Enable access logs.

Access log destinations

You can send access logs to the following destinations.

Amazon CloudWatch Logs

- VPC Lattice typically delivers logs to CloudWatch Logs within 2 minutes. However, keep in mind that actual log delivery time is on a best effort basis and there may be additional latency.

- A resource policy is created automatically and added to the CloudWatch log group if the log group does not have certain permissions. For more information, see [Logs sent to CloudWatch Logs](#) in the *Amazon CloudWatch User Guide*.

- You can find access logs that are sent to CloudWatch under Log Groups in the CloudWatch console. For more information, see [View log data sent to CloudWatch Logs](#) in the *Amazon CloudWatch User Guide*.

Amazon S3

- VPC Lattice typically delivers logs to Amazon S3 within 6 minutes. However, keep in mind that actual log delivery time is on a best effort basis and there may be additional latency.

- A bucket policy will be created automatically and added to your Amazon S3 bucket if the bucket does not have certain permissions. For more information, see [Logs sent to Amazon S3](#) in the *Amazon CloudWatch User Guide*.

- Access logs that are sent to Amazon S3 use the following naming convention:


  ```
  [bucket][/prefix]/AWSLogs/[accountId]/VpcLattice/AccessLogs/[region]/[YYYY/MM/DD]/[resource-id]/[accountId][VpcLatticeAccessLogs_][region][resource-id]_YYYYMMDDTHHmmmZ_[hash].json.gz
  ```

Amazon Data Firehose

- VPC Lattice typically delivers logs to Firehose within 2 minutes. However, keep in mind that actual log delivery time is on a best effort basis and there may be additional latency.

- A service-linked role is automatically created that grants VPC Lattice permission to send access logs to Amazon Data Firehose. For automatic role creation to succeed, users must have
permission for the `iam:CreateServiceLinkedRole` action. For more information, see [Logs sent to Amazon Data Firehose](https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/) in the *Amazon CloudWatch User Guide*.

- For more information about viewing the logs sent to Amazon Data Firehose, see [Monitoring Amazon Kinesis Data Streams](https://docs.aws.amazon.com/AmazonDataFirehose/latest/DeveloperGuide/) in the *Amazon Data Firehose Developer Guide*.

Enable access logs

Complete the following procedure to configure access logs to capture and deliver access logs to the destination that you choose.

Contents

- Enable access logs using the console
- Enable access logs using the AWS CLI

Enable access logs using the console

You can enable access logs for a service network or for a service during creation. You can also enable access logs after you create a service network or service, as described in the following procedure.

To create a basic service using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. Select the service network or service.
3. Choose **Actions, Edit log settings**.
4. Turn on the **Access logs** toggle switch.
5. Add a delivery destination for your access logs as follows:
 - Select **CloudWatch Log group** and choose a log group. To create a log group, choose [Create a log group in CloudWatch](https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/).
 - Select **S3 bucket** and enter the S3 bucket path, including any prefix. To search your S3 buckets, choose [Browse S3](https://docs.aws.amazon.com/AmazonS3/latest/userguide/browsing-buckets.html).
 - Select **Kinesis Data Firehose delivery stream** and choose a delivery stream. To create a delivery stream, choose [Create a delivery stream in Kinesis](https://docs.aws.amazon.com/AmazonKinesis/latest/dev/key-terms.html).
6. Choose **Save changes**.
Enable access logs using the AWS CLI

Use the CLI command `create-access-log-subscription` to enable access logs for service networks or services.

Access log contents

The following table describes the fields of an access log entry.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Format</th>
</tr>
</thead>
<tbody>
<tr>
<td>hostHeader</td>
<td>The authority header of the request.</td>
<td>string</td>
</tr>
<tr>
<td>sslCipher</td>
<td>The OpenSSL name for the set of ciphers used to establish the client TLS connection.</td>
<td>string</td>
</tr>
<tr>
<td>serviceNetworkArn</td>
<td>The service network ARN.</td>
<td><code>arn:aws:vpc-lattice:region:account:servicenetwork/id</code></td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>userAgent</td>
<td>The user-agent header.</td>
<td>string</td>
</tr>
<tr>
<td>ServerNameIndication</td>
<td>[HTTPS only] The value set on ssl connection socket for Server Name Indication (SNI).</td>
<td>string</td>
</tr>
<tr>
<td>destinationVpcId</td>
<td>The destination VPC ID.</td>
<td>vpc-xxxxxxxxxxxx</td>
</tr>
<tr>
<td>sourceIpPort</td>
<td>The IP address and :port of the source.</td>
<td>ip:port</td>
</tr>
<tr>
<td>targetIpPort</td>
<td>The IP address and port of the target.</td>
<td>ip:port</td>
</tr>
<tr>
<td>serviceArn</td>
<td>The service ARN.</td>
<td>arn:aws:vpc-lattice:region:account:service:id</td>
</tr>
<tr>
<td>sourceVpcId</td>
<td>The source VPC ID.</td>
<td>vpc-xxxxxxxxxxxx</td>
</tr>
<tr>
<td>requestPath</td>
<td>The path of the request.</td>
<td>LatticePath?:path</td>
</tr>
<tr>
<td>startTime</td>
<td>The request start time.</td>
<td>YYYY-MM-DDTHH:MM:SSZ</td>
</tr>
<tr>
<td>protocol</td>
<td>The protocol. Currently either HTTP/1.1 or HTTP/2.</td>
<td>string</td>
</tr>
<tr>
<td>responseCode</td>
<td>The HTTP response code. Only the response code for the final headers are logged. For more information, see Troubleshoot access logs.</td>
<td>integer</td>
</tr>
<tr>
<td>bytesReceived</td>
<td>The body and header bytes received.</td>
<td>integer</td>
</tr>
<tr>
<td>bytesSent</td>
<td>The body and header bytes sent.</td>
<td>integer</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>duration</td>
<td>Total duration in milliseconds of the request from the start time to the last byte out.</td>
<td>integer</td>
</tr>
<tr>
<td>requestToTargetDuration</td>
<td>Total duration in milliseconds of the request from the start time to the last byte sent to the target.</td>
<td>integer</td>
</tr>
<tr>
<td>responseFromTargetDuration</td>
<td>Total duration in milliseconds of the request from the first byte read from the target host to the last byte sent to the client.</td>
<td>integer</td>
</tr>
<tr>
<td>grpcResponseCode</td>
<td>The gRPC response code. For more information, see Status codes and their use in gRPC. This field is logged only if the service supports gRPC.</td>
<td>integer</td>
</tr>
<tr>
<td>callerPrincipal</td>
<td>The authenticated principal.</td>
<td>string</td>
</tr>
<tr>
<td>callerX509SubjectCN</td>
<td>The subject name (CN).</td>
<td>string</td>
</tr>
<tr>
<td>callerX509IssuerOU</td>
<td>The issuer (OU).</td>
<td>string</td>
</tr>
<tr>
<td>callerX509SANNameCN</td>
<td>The issuer alternative (Name/CN).</td>
<td>string</td>
</tr>
<tr>
<td>callerX509SANDNS</td>
<td>The subject alternative name (DNS).</td>
<td>string</td>
</tr>
<tr>
<td>callerX509SANURI</td>
<td>The subject alternative name (URI).</td>
<td>string</td>
</tr>
<tr>
<td>Field</td>
<td>Description</td>
<td>Format</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>sourceVpcArn</td>
<td>The ARN of the VPC where the request originated.</td>
<td><code>arn:aws:ec2:region:account:vpc/id</code></td>
</tr>
</tbody>
</table>

Example

The following is an example log entry.

```json
{
    "hostHeader": "example.com",
    "sslCipher": "-",
    "serviceNetworkArn": "arn:aws:vpc-lattice:us-west-2:123456789012:servicenetwork/svn-1a2b3c4d",
    "resolvedUser": "Unknown",
    "authDeniedReason": "null",
    "requestMethod": "GET",
    "tlsVersion": "-",
    "userAgent": "-",
    "serverNameIndication": "-",
    "destinationVpcId": "vpc-0abcdef1234567890",
    "sourceIpPort": "178.0.181.150:80",
    "targetIpPort": "131.31.44.176:80",
    "serviceArn": "arn:aws:vpc-lattice:us-west-2:123456789012:service/svc-1a2b3c4d",
    "sourceVpcId": "vpc-0abcdef1234567890",
    "requestPath": "/billing",
    "startTime": "2023-07-28T20:48:45Z",
    "protocol": "HTTP/1.1",
    "responseCode": 200,
    "bytesReceived": 42,
    "bytesSent": 42,
    "duration": 375,
    "requestToTargetDuration": 1,
    "responseFromTargetDuration": 1,
    "grpcResponseCode": 1
}
```
Troubleshoot access logs

This section contains an explanation of the HTTP error codes that you may see in access logs.

<table>
<thead>
<tr>
<th>Error code</th>
<th>Possible causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP 400: Bad Request</td>
<td>• The client sent a malformed request that doesn't meet the HTTP specification.</td>
</tr>
<tr>
<td></td>
<td>• The request header exceeded 60K for the entire request header or more than 100 headers.</td>
</tr>
<tr>
<td></td>
<td>• The client closed the connection before sending the full request body.</td>
</tr>
<tr>
<td>HTTP 403: Forbidden</td>
<td>Authentication has been configured for the service, but the incoming request is not authenticated or authorized.</td>
</tr>
<tr>
<td>HTTP 404: Non Existent Service</td>
<td>You're trying to connect to a service that does not exist or is not registered to the right service network.</td>
</tr>
<tr>
<td>HTTP 500: Internal Server Error</td>
<td>VPC Lattice has encountered an error, such as failure to connect to targets.</td>
</tr>
<tr>
<td>HTTP 502: Bad Gateway</td>
<td>VPC Lattice has encountered an error.</td>
</tr>
</tbody>
</table>

CloudTrail logs for Amazon VPC Lattice

AWS CloudTrail is an AWS service that provides a record of actions taken by a user, role, or an AWS service. CloudTrail captures API calls for VPC Lattice as events. CloudTrail is enabled on your AWS account when you create it. When activity occurs in VPC Lattice, that activity is recorded as a CloudTrail event along with other AWS service events in Event history. The calls captured include calls from the VPC Lattice console and code calls to VPC Lattice API operations. For more information about CloudTrail, see the AWS CloudTrail User Guide.

CloudTrail log files contain one or more log entries. An event represents a single request from any source and includes information about the requested action, the date and time of the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the public API
calls, so they don't appear in any specific order. A trail is a CloudTrail configuration that enables
delivery of events as log files to an S3 bucket that you specify.

To monitor additional actions, use access logs. For more information, see Access logs.

Understand VPC Lattice log file entries

A trail is a configuration that enables delivery of events as log files to an Amazon S3 bucket that
you specify. CloudTrail log files contain one or more log entries. An event represents a single
request from any source and includes information about the requested action, the date and time of
the action, request parameters, and so on. CloudTrail log files aren't an ordered stack trace of the
public API calls, so they don't appear in any specific order.

For information related to key-value pairs in the logs, see CloudTrail record contents in the AWS
CloudTrail User Guide.

The following is an example log entry for a call to the CreateService API action.

```
{
  "eventVersion": "1.08",
  "userIdentity": {
    "type": "AssumedRole",
    "principalId": "abcdef01234567890",
    "arn": "arn:abcdef01234567890",
    "accountId": "abcdef01234567890",
    "accessKeyId": "abcdef01234567890",
    "sessionContext": {
      "sessionIssuer": {
        "type": "Role",
        "principalId": "abcdef01234567890",
        "arn": "arn:abcdef01234567890",
        "accountId": "abcdef01234567890",
        "userName": "abcdef01234567890"
      },
      "webIdFederationData": {},
      "attributes": {
        "creationDate": "2022-08-16T03:34:54Z",
        "mfaAuthenticated": "false"
      }
    },
    "eventTime": "2022-08-16T03:36:12Z",
```
The following is an example log entry for a call to the DeleteService API action.

```json
{
    "eventVersion": "1.08",
    "userIdentity": {
        "type": "AssumedRole",
        "principalId": "abcdef01234567890",
        "arn": "arn:ABCXYZ123456",
        "accountId": "abcdef01234567890",
        "accessKeyId": "abcdef01234567890",
        "sessionContext": {
            "sessionIssuer": {
                "type": "Role",
                "principalId": "abcdef01234567890",
                "arn": "arn:aws:iam::AIDACKCEVSQ6C2EXAMPLE:role/Admin",
                "accountId": "abcdef01234567890",
                "userName": "Admin"
            },
            "webIdFederationData": {},
            "attributes": {
```

Understand VPC Lattice log file entries
Understand VPC Lattice log file entries

{ "creationDate": "2022-10-27T17:42:36Z", "mfaAuthenticated": "false"}
}
{
"eventTime": "2022-10-27T17:56:41Z",
"eventSource": "vpc-lattice.amazonaws.com",
"eventName": "DeleteService",
"awsRegion": "us-east-1",
"sourceIPAddress": "72.21.198.64",
" userAgent": "abcdef01234567890",
"requestParameters": {
 "serviceIdentifier": "abcdef01234567890"
},
"responseElements": {
 "name": "test",
 "id": "abcdef01234567890",
 "arn": "arn:abcdef01234567890",
 "status": "DELETE_IN_PROGRESS"
},
"requestID": "abcdef01234567890",
"eventID": "abcdef01234567890",
"readOnly": false,
"eventType": "AwsApiCall",
"managementEvent": true,
"recipientAccountId": "abcdef01234567890",
"eventCategory": "Management"}
Quotas for Amazon VPC Lattice

Your AWS account has default quotas, formerly referred to as limits, for each AWS service. Unless otherwise noted, each quota is Region-specific. You can request increases for some quotas, and other quotas cannot be increased.

To view the quotas for VPC Lattice, open the Service Quotas console. In the navigation pane, choose AWS services and select VPC Lattice.

To request a quota increase, contact AWS Support, or see Requesting a Quota Increase in the Service Quotas User Guide.

Your AWS account has the following quotas related to VPC Lattice.

<table>
<thead>
<tr>
<th>Name</th>
<th>Default</th>
<th>Adjustable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auth policy size</td>
<td>Each supported Region: 10 Kilobytes</td>
<td>No</td>
<td>The maximum size of a JSON file in an Auth policy.</td>
</tr>
<tr>
<td>Listeners per service</td>
<td>Each supported Region: 2</td>
<td>Yes</td>
<td>The maximum number of listeners that you can create for a service. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Rules per listener</td>
<td>Each supported Region: 5</td>
<td>Yes</td>
<td>The maximum number of rules that you can define for your service listener. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Security groups per association</td>
<td>Each supported Region: 5</td>
<td>No</td>
<td>The maximum number of security groups that you can add to an associati</td>
</tr>
<tr>
<td>Name</td>
<td>Default</td>
<td>Adjustable</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------------------</td>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>Service associations per service network</td>
<td>Each supported Region: 500</td>
<td>Yes</td>
<td>The maximum number of services that you can associate with a single service network. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Service networks per region</td>
<td>Each supported Region: 10</td>
<td>Yes</td>
<td>The maximum number of service networks per region. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Services per region</td>
<td>Each supported Region: 500</td>
<td>Yes</td>
<td>The maximum number of services per region. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Target groups per region</td>
<td>Each supported Region: 500</td>
<td>Yes</td>
<td>The maximum number of target groups per region. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Name</td>
<td>Default</td>
<td>Adjust</td>
<td>Description</td>
</tr>
<tr>
<td>---</td>
<td>--------------------------</td>
<td>--------</td>
<td>---</td>
</tr>
<tr>
<td>Target groups per service</td>
<td>Each supported Region: 5</td>
<td>Yes</td>
<td>The maximum number of target groups that you can associate with a service.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>Targets per target group</td>
<td>Each supported Region: 1,000</td>
<td>Yes</td>
<td>The maximum number of targets that you can associate with a single target</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>group. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
<tr>
<td>VPC associations per service network</td>
<td>Each supported Region: 500</td>
<td>Yes</td>
<td>The maximum number of VPCs that you can associate with a single service</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>network. For additional capacity and limit increases, contact AWS Support.</td>
</tr>
</tbody>
</table>

The following limits also apply.

<table>
<thead>
<tr>
<th>Limit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bandwidth per service per Availability Zone</td>
<td>10 Gbps</td>
</tr>
<tr>
<td>Maximum transmission unit (MTU) per connection</td>
<td>8500 bytes</td>
</tr>
<tr>
<td>Requests per second per service per Availability Zone</td>
<td>10,000</td>
</tr>
</tbody>
</table>
Document history for the Amazon VPC Lattice User Guide

The following table describes the documentation releases for VPC Lattice.

<table>
<thead>
<tr>
<th>Change</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLS passthrough</td>
<td>VPC Lattice now supports TLS passthrough, which allows you to perform TLS termination in your application for end-to-end authentication.</td>
<td>May 14, 2024</td>
</tr>
<tr>
<td>Lambda event structure version</td>
<td>VPC Lattice now supports a new version of the Lambda event structure.</td>
<td>September 7, 2023</td>
</tr>
<tr>
<td>Support for shared VPCs</td>
<td>Participants can create VPC Lattice target groups in a shared VPC.</td>
<td>July 5, 2023</td>
</tr>
<tr>
<td>General Availability release</td>
<td>The release of the VPC Lattice User Guide for General Availability (GA)</td>
<td>March 31, 2023</td>
</tr>
<tr>
<td>VPC Lattice now reports changes to its AWS managed policies</td>
<td>Changes to managed policies are reported in "AWS managed policies for VPC Lattice" in the "Security" chapter.</td>
<td>March 29, 2023</td>
</tr>
<tr>
<td>Support for Application Load Balancer target type</td>
<td>VPC Lattice now supports creating an Application Load Balancer type target group.</td>
<td>March 29, 2023</td>
</tr>
<tr>
<td>Support for all instance types</td>
<td>VPC Lattice now supports all instance types.</td>
<td>March 27, 2023</td>
</tr>
<tr>
<td>Feature</td>
<td>Description</td>
<td>Date</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>IPv6 support</td>
<td>VPC Lattice now supports both IPv4 and IPv6 IP target groups.</td>
<td>March 27, 2023</td>
</tr>
<tr>
<td>HTTP2 protocol version for health checks</td>
<td>Health checks are now supported when the target group protocol version is HTTP2.</td>
<td>March 27, 2023</td>
</tr>
<tr>
<td>Fixed response action for listener rules</td>
<td>Listeners for VPC Lattice services now support fixed response actions in addition to forward actions.</td>
<td>March 27, 2023</td>
</tr>
<tr>
<td>Support for custom domain names</td>
<td>You can now configure a custom domain name for your VPC Lattice service</td>
<td>February 14, 2023</td>
</tr>
<tr>
<td>Support for BYOC (Bring Your Own Certificate)</td>
<td>VPC Lattice supports using your own an SSL/TLS certificate in ACM for custom domain names.</td>
<td>February 14, 2023</td>
</tr>
<tr>
<td>VPC Lattice now reports an updated list of unsupported instance types</td>
<td>Three additional instances have been added to the unsupported list of instances.</td>
<td>January 26, 2023</td>
</tr>
<tr>
<td>VPC Lattice now reports changes to its AWS managed policies</td>
<td>Beginning December 5, 2022, changes to managed policies are reported in the topic "AWS managed policies for VPC Lattice" in the "Security " chapter. The first change listed is the addition of permissions needed for CloudWatch monitoring.</td>
<td>December 5, 2022</td>
</tr>
<tr>
<td>Initial release</td>
<td>Initial release of the VPC Lattice User Guide</td>
<td>December 5, 2022</td>
</tr>
</tbody>
</table>