
AWS Whitepaper

ETSI NFVO Compliant Orchestration in the 
Kubernetes/Cloud Native World

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native 
World: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service 
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any 
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are 
the property of their respective owners, who may or may not be affiliated with, connected to, or 
sponsored by Amazon.



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Table of Contents

Abstract and introduction ................................................................................................................ i
Abstract ........................................................................................................................................................... 1

Are you Well-Architected? ..................................................................................................................... 1
Introduction .............................................................................................................................................. 1

Mapping ETSI MANO to Kubernetes .............................................................................................. 4
High-level mapping architecture ............................................................................................................... 4
Mapping VIM and VNFM to Kubernetes .................................................................................................. 5
NFVO: functions and mapping .................................................................................................................. 6
Framework mapping challenges ............................................................................................................... 8

Service provider requirements ..................................................................................................... 11
Solution architecture ..................................................................................................................... 12

Day -1: Planning ......................................................................................................................................... 13
Day 0: Topology development ................................................................................................................ 14
Day 1: Instantiation ................................................................................................................................... 15
Day 2: Operation and management ...................................................................................................... 16

Conclusion ...................................................................................................................................... 19
Contributors ................................................................................................................................... 20
Document revisions ....................................................................................................................... 21
Notices ............................................................................................................................................ 22
AWS Glossary ................................................................................................................................. 23

iii



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

ETSI NFVO Compliant Orchestration in the Kubernetes/
Cloud Native World

Publication date: October 25, 2022 (Document revisions)

Abstract and introduction

This whitepaper examines the network functions virtualization (NFV) orchestration requirements 
and specification as put forth by the European Telecommunication Standard Institute (ETSI), in 
the context of the Kubernetes way of orchestrating services and applications. This whitepaper 
explores the interplay between the ETSI components and Kubernetes/Amazon Elastic Kubernetes 
Service (Amazon EKS) framework by examining requirements that can map from one framework 
to another, and outlines some of the gaps in mapping others. We also examine evolving business 
and operational needs, and importance of a true cloud-native orchestration framework to address 
those needs. We further provide a high-level architecture of a cloud-native orchestrator that can be 
implemented cost-effectively and reliably by some of the AWS cloud services.

This whitepaper is aimed at Communication Services Providers (CSPs) and Independent Software 
Vendors (ISVs).

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions 
you make when building systems in the cloud. The six pillars of the Framework allow you to learn 
architectural best practices for designing and operating reliable, secure, efficient, cost-effective, 
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS 
Management Console, you can review your workloads against these best practices by answering a 
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture 
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Introduction

In the past, before CSPs push toward virtualization, Independent Software Vendors (ISVs) often 
created their own proprietary ways of managing hardware and software, sometimes integrated, 
sometimes separate. While it was difficult to manage a multi-vendor network, methods for each 

Abstract 1

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

particular physically integrated functions (Physical network functions, or PNFs) worked reasonably 
well, and CSPs managed to create 2G and 3G networks that are still working in parts of the world.

Running network in such ways was expensive, and operators were often left with huge amounts 
of hardware that came with dedicated software functions, and became obsolete and required 
“forklift” upgrades.

When virtualization started being popular in Enterprise space, operators wanted to take advantage 
of hardware and software separation, and a network function virtualization (NFV) workgroup in 
the European Telecommunications Standards Institute (ETSI) was created in 2013. This workgroup 
looked at the concepts and issues of management of network functions and infrastructure in a 
virtualized world of virtual machines (VMs) and came up with a prescriptive reference called NFV 
Management and Orchestration (MANO). While the framework was often not implemented as-is, it 
did a great job in abstracting requirements and providing a unified framework to look at operations 
and management. As part of this, the group proposed using Topology and Orchestration 
Specification for Cloud Applications (TOSCA) as a declarative method of indicating network service 
and function requirements.

In the late 2000s and early 2010s, containers started becoming popular for software development 
and deployment. Containers are units of application that package code and all dependencies 
and can be run individually and reliably from one environment to another. Since an application 
consisted of many of these “container modules”, also called Pods, a way to manage them was 
needed. Many different container orchestration systems were developed, but the one that became 
most popular was an open-source project called Kubernetes. Kubernetes ensured declarative 
interfaces at each level and defined a set of building blocks/intents ("primitives") in terms of API 
objects. These objects are representation of various resources such as Pods, Secrets, Deployments, 
Services. Kubernetes ensured that its design was loosely coupled, which made it easy to extend it 
to support the varying needs of different workloads, while still following intent-based framework.

TOSCA and Kubernetes both use YAML representation. The main difference is that ETSI MANO
focused on specifying operations at each interface, whereas Kubernetes focused on the 
specification of the end state of the operation via APIs. In some ways they are similar. ETSI MANO 
with TOSCA templates started as a declarative framework in terms of Network Service Descriptor 
(NSD) and provided an abstraction for Virtual Network Functions (VNFs) independent of specific 
network functions. However, ETSI MANO with TOSCA then mapped this declarative framework to 
the imperative style of specification at lower levels. When ETSI NFV was developed, there were 
multiple competing virtualization frameworks such as OpenStack and VMware. Therefore, ETSI 
NFV had to create a common abstraction of them to specify architecture and requirements. While 

Introduction 2

https://www.etsi.org/technologies/nfv
https://www.etsi.org/technologies/nfv
https://kubernetes.io/
https://kubernetes.io/
https://en.wikipedia.org/wiki/YAML
https://www.etsi.org/technologies/open-source-mano


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

the advantages of these abstractions were multiple, creating another layer of abstractions made 
specifications difficult to apply. Further, mapping declarative specification to imperative operations 
was also difficult.

Kubernetes kept the philosophy of defining an application independent of its function, but in 
contrast to ETSI MANO, it kept everything intent/API driven and defined a declarative way to 
define objects such as deployments. Once an application was defined in terms of its objects, 
Kubernetes ensured that the application was properly run, and ensured that the various parts of 
application could communicate easily. Determining and applying application specific configuration 
is beyond the scope of both ETSI MANO and Kubernetes, though they both provide some 
supporting constructs such as an element management system (EM), an operator’s framework, or 
config files.

Network functions have additional requirements than commonly found cloud-applications. ETSI 
MANO framework was specifically designed to address these specialized requirements in the 
context of virtualized network functions. As we move to containerization, it becomes important 
to map the management and orchestration of CNFs to the ETSI MANO framework so that none of 
the requirements are missed and the containerized orchestration continues to work well without 
mandating changes in the business and operation support systems. With Kubernetes becoming 
the dominant common platform for container orchestration, an orchestration specification directly 
in terms of native Kubernetes terms would provide simplification and enable taking advantage 
of Kubernetes features and extensions to address MANO requirements. In the absence of such 
directly mapped specifications, multiple ways of interpretating the MANO requirements in the 
cloud-native/containerized contexts are possible. There have been multiple projects to address 
some of the challenges of defining common function orchestration system in containerized and 
cloud-native contexts. Linux open-source projects, such as ONAP, Nephio, and Anuket point to the 
need of such work.

In this whitepaper, we examine each component and requirement of NFV MANO architecture, and 
explore how they are normally addressed in a cloud native world. To keep the discussion closer 
to implementation, sometimes this whitepaper explores these requirements in the context of 
AWS services (such as Amazon EKS, Amazon Elastic Container Registry (Amazon ECR, and Amazon 
Elastic Compute Cloud (Amazon EC2) Auto Scaling groups) to avoid adding another layer of 
abstraction and ensure easy readability.

Introduction 3

https://www.onap.org/
https://nephio.org/
https://anuket.io/
https://aws.amazon.com/eks/
https://aws.amazon.com/ecr/
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Mapping ETSI MANO to Kubernetes

In this section, we depict the high-level mapping of Kubernetes objects and functions to ETSI 
MANO architecture, with the following sections going in detail over each of the components:

• Virtual Infrastructure Manager (VIM)

• Virtual Network Function Manager (VNFM)

• NFV Orchestrator (NFVO) and its mapping to Kubernetes in detail

High-level mapping architecture

The traditional ETSI MANO framework was developed in the context of virtual machines (VM). 
The following figure indicates ETSI MANO architecture along with major functions performed by 
each of its components. Network slice management and its associated functions such as Network 
Slice Subnet Management Function (NSSMF) and Network Function Management Function (NFMF) 
are part of 3GPP specifications and are beyond the realm of MANO framework; however, they are 
shown in the figure to provide complete view of network and service management.

High-level mapping architecture 4

https://www.3gpp.org/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

The traditional ETSI MANO framework as defined in the context of virtual machines along with 3GPP 
management functions.

Mapping VIM and VNFM to Kubernetes

In this section, we focus on the VIM and VNFM functional blocks of the ETSI MANO architecture 
and its functions, and then map to equivalent cloud-native constructs.

Following are the requirements that the MANO architecture puts on VIM:

• Manage lifecycle of virtual resources in an NFVI domain. Create, maintain, and tear down VMs 
from physical resources in an NFVI domain:

• Keep inventory of VMs associated with physical resources.

• Performance and fault management of hardware, software and virtual resources.

• Exposes physical and virtual resources to other management systems through northbound APIs.

In Kubernetes context, VIM is responsible for placing Pods and containers on nodes that can be 
bare-metal machine or a virtualization platform themselves. In this regard, the second and third 
requirements are out of scope of Kubernetes-based VIM in a cloud operational environment, 
specifically when we consider features such as automatic scaling node groups provided by 
managed Kubernetes solutions such as EKS. The functionality of the first and last requirements are 
also provided by services such as managed node groups and automatic scaling node groups in EKS.

VNFM performs the following tasks:

• Manage life cycle of VNFs — VNFM creates, maintains, and ends VNF instances, which are 
installed on the Virtual Machines (VMs) that the VIM creates and manages).

• Fault, configuration, accounting, performance, and security (FCAPS) — Management of 
VNFs. VNFM doesn’t deal with application specific FCAPS, but generic FCAPS dealing with 
virtualization.

• Scale up/scale down VNFs which results in scaling up and scaling down of CPU usage — 
While the original VNFs were mostly scaled vertically, in the cloud model, there are two kinds of 
scaling: horizontal and vertical. Horizontal scaling is often the preferred mode of operation.

When applications are containerized (instead of virtualized), they are referred to as a containerized 
network function (CNF). In Kubernetes, containerized applications are run as Pods. Kubernetes 

Mapping VIM and VNFM to Kubernetes 5



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

manages the lifecycle of Pods, and scales them up and down using changes in deployments 
as specified constraints in configurations such as minimum, maximum, and desired number of 
replicas.

Operation and management of infrastructure and platform is intrinsically provided by common 
cloud tools such as AWS CloudWatch, K8 config-maps. Due to scale, organization and security 
issues, one Kubernetes cluster is generally not sufficient for a telecom network operator, and 
a multi-cluster infra management solution is needed. There are many open-source and vendor 
provided solutions to manage multiple Kubernetes clusters. In AWS, this multi-cluster control plane 
management is provided by the EKS main control plane, which ensure that all clusters are healthy 
and scale as needed. The EKS dashboard provides a single pane of glass to manage multiple 
clusters, though each cluster does have its own API endpoint to which kubectl and helm commands 
are directed.

From the description and analysis for VIM and VNFM, it might seem like there is a good correlation 
between ETSI requirements and Kubernetes. However, ETSI MANO differs from the Kubernetes 
model in that the VNFM maintains a detailed view of deployed virtualization aspect of its 
associated VNFs, and exposes it northbound to NFVO. In Kubernetes, that information is not 
exposed. Kubernetes doesn’t expose its internal workings and placement to the upper layers. The 
only way to control the operations is by clearly defined intents (which can include labels, tags, 
selectors, and so on), which forces the application to interact only through intents and object 
definitions.

When mapping ETSI MANO to Kubernetes and the cloud, it is important to re-interpret the 
ETSI MANO architecture to avoid sharing details of the lower layers, such as EC2 instances, to 
upper layers. With powerful functionalities such as managed node groups and automatic scaling 
constructs in AWS, the NFVO should not be affected by lower-level changes.

NFVO: functions and mapping

NFVO is the brain and heart of ETSI orchestration. Before exploring its mapping to Kubernetes, the 
following points are worth mentioning about VNFs:

• A VNF can’t bring itself to service.

• Every VNF needs to be managed and orchestrated.

• A network service (NS) is composed of one of more VNFs. NS is onboarded on NFVO.

• An NS lifecycle is managed by NFVO.

NFVO: functions and mapping 6



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

• VNF lifecycle is managed by VNFM, which is responsible for bringing VNF into existence 
following the templates in VNF descriptor.

• VNF scaling can be invoked by NFVO, by element manager (EM), or the VNF can ask to scale itself 
based on VNF load.

Due to these characteristics of VNFs, the following functions are required of NFVO:

• Manage/coordinate the resources from different VIMs, when there are multiple VIMs (that may 
be in the same or different physical resources), NFVO calls northbound APIs of VIM instead of 
engaging with the NFVI resources directly.

• Manage/coordinate the creation of a service that involves multiple VNFs that might be managed 
by different VNFMs. In NFVO parlance, this is sometimes called service orchestration. Often, this 
is a source of confusion because in the cloud model, a service might represent an application.

• Manage topology of the network services instances (also called VNF forwarding graphs).

In particular, NFVO is responsible to track scale status, virtualized resources used, and connectivity 
to VIMs to manage the resources of VNFs. In ETSI MANO, some of the functionalities done by VNFM 
are controlled by NFVO in imperative way by mechanisms such as request and grant, where VNFM 
asks explicit permissions from NFVO for some of its operations. This required NFVO to micro-
manage some of VNFM operations, which it should have ignored.

To be fair, ETSI IFA029 specification did translate VIM and VNFM architecture and requirements 
into a container framework by creating new terms Container Infrastructure Service (CIS), Container 
Infrastructure Service Management (CISM) and Container Infrastructure Service Instance (CISI). 
However, IFA029 didn’t get sufficient exposure, partly due to the difficulty in interpreting the 
new abstraction for containerized platforms, instead of directly describing functionalities in well-
known Kubernetes terms. This required additional effort in reading and translating IFA029 to 
Kubernetes. Because the Kubernetes framework has become a standard for telecom network 
equipment providers (NEPs) and ISVs to use for their functions, in this whitepaper, we chose to 
directly translate requirements to Kubernetes. When we need specific product details, we have 
used Amazon EKS and associated services.

In light of the previous discussions, in the following diagram, we propose a way to map the same 
ETSI defined functions to corresponding Kubernetes and associated objects. Notice that the 
mapping is not 1-1, and Kubernetes and associated services such as ECR and Helm cover more than 
one element of the ETSI MANO architecture.

NFVO: functions and mapping 7

https://en.wikipedia.org/wiki/Element_management_system
https://helm.sh/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

ETSI MANO Framework and Kubernetes and associated constructs

This creates some difficulties in applying understandings gained from ETSI MANO NFV to 
Kubernetes operational environments. Some of these difficulties are discussed next.

Framework mapping challenges

As outlined earlier, the main difficulty in mapping ETSI MANO model to Kubernetes framework 
is that the first takes the declarative approach to imperative operations, whereas the later takes 
the declarative approach to an intent-based framework. ETSI MANO specifies direct procedures 
between NFVO and VNFM and VIM, whereas Kubernetes performs all communication among its 
components as well as on north and southbound interfaces by artifacts, APIs and manifests with 
specification of the desired final state of operation. This paper next discusses in detail the impact 
of this difference in approaches.

The ETSI MANO architecture uses lifecycle operation granting, where ETSI VNFM asks NFVO before 
initiating changes within the defined parameters. Kubernetes doesn’t ask the orchestrator whether 
to scale in, scale out, where to place, and so on. In the Kubernetes style of operation, NFVO only 
needs to define the desired end state in declarative ways by defining artifacts, such as deployment 
and service YAML files, and then Kubernetes schedules ensures operation within the specified 

Framework mapping challenges 8



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

range. When needed, Kubernetes can also use the cluster automatic scaler to request additional 
resources from an underlying cloud infrastructure to meet the additional needs of a Kubernetes 
workload within its realm of operations.

Lifecycle operation granting duplicates the work and breaks the hierarchical model. In the 
cloud-native world, NFVO indication of the desired state of operation should be implemented 
using intent-driven Kubernetes constructs and changes to Deployment and so on, instead of 
implementing the procedural model between the NFVO and VNFM.

The Kubernetes scheduler, along with constructs such as AWS Auto Scaling groups in EKS are 
well equipped to efficiently manage demand on resources, and NFVO should leave it to them to 
manage in the Kubernetes framework. With Kubernetes, the big, closed control loop has been 
replaced with multiple small, declarative control loops that gives it the power and flexibility to 
become a standard in the cloud-native world.

Another complexity is the configuration of VNFs once they are instantiated. Configuration is 
coupled in ETSI MANO where the VNFM, while instantiating VNF, also takes the responsibility for 
interacting with the element manager to configure the VNF. Kubernetes doesn’t have built-in 
mechanisms for application configuration, although with capabilities such as lifecycle hooks, init
containers, ConfigMap, and Operators, you can build an efficient devops way of configuring CNFs 
during or after CNF instantiation.

Service function chaining is a higher level of abstraction built on top of individual network and 
service functions that applies ordering constraints to the packet or flow of packets based on 
the result of some classification upstream. The networking world relies extensively on service 
function chaining to fulfill important tasks such as insertion of firewall or deep packet inspection 
in the path of some flows. The difficulties in defining a good service chaining solution stem from 
apparently simple but harder to implement requirements, such as being lightweight, allowing for 
easy debugging, and not adding unnecessary encapsulation overhead while steering traffic to the 
next service in the chain without packet modification. Some of the services are stateful, which 
implies that the packet should not only follow the service but also the exact instantiated service 
function that had served the earlier packet in the flow. These requirements have been hard to 
implement in the VNF world and also in the Kubernetes world. More research and work are needed 
to solve service chaining issues in a true intent-driven way.

The last but not least important aspect is service assurance, meaning how the system deals with 
failures and performance impact. Due to the Kubernetes intent-based framework and its ability to 
take care of Pod failures, many of the failures and performance issues can be taken care of at the 
Kubernetes level, and operation support system (OSS) and business support system (BSS) don’t 

Framework mapping challenges 9

https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
https://www.initse.com/ende/home/
https://kubernetes.io/docs/concepts/configuration/configmap/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

need to have control to recover from those failures. However, you do need a mechanism to track 
service KPIs from the OSS/BSS perspective. There isn't really a Kubernetes-native standard, but 
there are some popular standards that have emerged (such as Prometheus and OpenTelemetry) 
that do collect metrics, and on which service KPI solutions can be built. Service assurance itself is a 
big area of study but we will not go into further details in this paper.

Next, we’ll examine the impact of orchestration on achieving business and technical requirements 
of a CSP.

Framework mapping challenges 10

https://prometheus.io/
https://opentelemetry.io/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Service provider requirements

With the mobile traffic increasing almost 10% quarter by quarter (Ericsson Mobility Report) and 
technology evolving at a fast pace, service providers are under pressure from multiple dimensions. 
Some of the challenges are as follows:

• Cost savings (TCO) and productivity — The increase in traffic corresponds to higher bandwidth 
and processing capacity requirements. With proliferation of unlimited plans, this increase 
might not necessarily translate to new revenues. Therefore, it is imperative to lower the cost of 
operations and to enable new enterprise use cases by avoiding complex interactions between 
functions. Avoiding duplication of functionalities and tying it with custom logics increases the 
cost of deployment and operations. It’s important to think of truly cloud-native, Kubernetes-
savvy orchestrators with abstractions that avoid duplication and overlap of functionalities. 
Intent-driven and not procedure-driven coordination between different functions also increases 
staff productivity.

• Agility — Since the traffic demand fluctuates, CSPs are thinking of ways to elastically scale to 
provide the required capacity. This requires a versatile network orchestrator that can stand up, 
take down, scale-out, or scale-in both network functions and infrastructure. Infrastructure cost 
should be optimized, with baseline infrastructure being negotiated as a long-term contract, 
while the fluctuating demand is addressed by a pay-as-you go model. Cloud cost models are 
beneficial in this role if the network orchestrator supports fluctuating and agile operation.

• Assurance and Resilience — With more and more safety- and business-critical services relying 
on connected infrastructure, it is important that the connectivity service meets SLAs. When 
failures happen, an intelligent orchestration system should provide automated self-healing while 
keeping customer experience within desired SLA bounds.

To achieve the preceding business goals, it’s important that customers design their orchestration 
and automation architecture with the goals in mind. To achieve these goals, orchestrator 
implementation itself should take advantage of the latest cloud-native and serverless 
implementation best practices. These features enable the orchestration solution to be resilient and 
agile, and allow the solution to take advantage of the latest infrastructure and CNF functionalities. 
It also makes the orchestrator itself to evolve rapidly as the requirements changes.

In the following section, we outline one such possible implementation in the context of day-to-day 
operations of the network that achieves the desired agility, assurance, and resilience goals while 
also being cost-effective

11

https://www.ericsson.com/en/reports-and-papers/mobility-report/dataforecasts/mobile-traffic-update


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Solution architecture

Due to the different approaches in cloud-native operations versus virtualized application 
operations, the day -1 to day 2 operations also look different in the two. In this section, we will 
go over typical day -1 to day 2 operations, and explore how a cloud native orchestration can be 
built using those requirements. The following diagram represents a grouping of relevant AWS 
services for implementation of a cloud-native network orchestrator. To maintain ease of reading, 
we have ignored some of the operational requirements such as reliability, security and recovery 
from the following diagram, however in a real implementation, it is important to consider those 
requirements as well.

AWS constructs for a cloud-native CNF and infrastructure orchestrator

Motivation and tasks of each service in the preceding figure will become clear as the operational 
requirements are examined in detail in the following. Some guidelines to develop automation steps 
that are scalable while taking advantage of AWS and EKS native constructs for maximum flexibility 
is also presented.

12



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Day -1: Planning

Common tasks during this phase are:

• Creation of account structure

• Planning IP/subnets

• Working with ISVs and CSP to populate Customer Information Questionnaire (CIQ) and artifacts

• Ordering AWS Outposts if needed

• Defining naming conventions, metadata and tags

• Creating AWS Identity and Access Management (AWS IAM) accounts and roles in the account 
structure

• Creating service and CNF catalog

• Giving appropriate permissions and set policies

• Creating infrastructure — Deploy AWS constructs such as Amazon Virtual Private Cloud (Amazon 
VPC), AWS Transit Gateway, AWS Direct Connect, and subnets.

Most of these activities are covered by proper landing zone design, discussions with ISVs and 
network teams to create well-structured accounts and permissions, naming conventions and 
network design. AWS services such as AWS Organizations and AWS Control Tower can be quite 
useful to develop proper account structure and management, such as new account creation. 
With (AWS IAM), you can specify who or what can access services and resources in AWS, centrally 
manage fine-grained permissions, and analyze access and refine permissions across AWS. AWS 
Key Management Service (AWS KMS) helps create, manage, and control cryptographic keys across 
applications and more than 100 AWS services, and helps with secure access and management.

Amazon Virtual Private Cloud (Amazon VPC) gives you full control over virtual networking 
environment, including resource placement, connectivity, and security. One of more VPCs might be 
required depending on VPC design and scale. AWS Direct Connect links the CSP internal network 
to a Direct Connect location over a standard ethernet fiber-optic cable. AWS Transit Gateway
connects Amazon VPCs and on-premises networks through a central routing hub. This simplifies 
the network and puts an end to complex peering relationships as each new connection is only 
made once. Amazon Route 53 is a highly-available and scalable domain name system (DNS) web 
service. Route 53 connects user requests to internet applications running on AWS or on-premises.

Amazon Elastic Container Registry (Amazon ECR) is an AWS-managed, Open Container Initiative 
(OCI)-compliant container image registry service that is secure, scalable, and reliable. Amazon ECR 

Day -1: Planning 13

https://aws.amazon.com/outposts/
https://aws.amazon.com/iam/
https://aws.amazon.com/vpc/
https://aws.amazon.com/transit-gateway/?
https://aws.amazon.com/directconnect/
https://aws.amazon.com/organizations/
https://aws.amazon.com/controltower/
https://aws.amazon.com/kms/
https://aws.amazon.com/kms/
https://aws.amazon.com/vpc/
https://aws.amazon.com/directconnect/
https://aws.amazon.com/transit-gateway/
https://aws.amazon.com/route53/
https://aws.amazon.com/ecr/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

supports private repositories with resource-based permissions using AWS IAM. This ensures that 
only specified users or Amazon EC2 instances can access container repositories and images, thereby 
allowing separation across vendors. Customers can use the familiar Docker CLI, or their preferred 
client, to push, pull, and manage Docker images, OCI images, and OCI-compatible artifacts.

Significant engineering effort and consideration should be given at this stage, as this lays the 
foundation of future automation and operations. Although proper planning needs human 
decisions, implementation of these design choices can often be automated.

Day 0: Topology development

Some of the tasks in this phase of deployment are as follows:

• Activate hardware, such as AWS Outposts instance, if it is deployed.

• Develop a service/CNF catalog — This catalog contains services that upper layers can call.

• Deploy platforms such as EKS clusters, Container Network Interfaces (CNIs), Container Storage 
Interfaces (CSIs), vRouters, and observability infrastructure such as probes and clients.

• Boot up infrastructure such as node groups.

Some of the well-developed robotic automation tools or customized process automation tools can 
be developed to activate AWS Outposts. Services such as Service Catalog can be useful in creating 
the catalog and customizing it for the particular CSP and ISVs. Care should be taken to properly 
abstract configuration parameters to avoid bloating the catalog size.

AWS CloudFormation or the AWS Cloud Development Kit (AWS CDK) constructs are flexible and 
functionally rich tools to deploy infrastructure and many of the platform components such as EKS 
clusters, CNIs, CSIs, and so on. The invocation of AWS CloudFormation/AWS CDK templates can 
be further customized using AWS CodePipeline with tools such as AWS CodeCommit and AWS 
CodeDeploy. Some of the functions can also be automated using a purpose-built automation 
workflow using AWS Lambda and AWS Step Functions.

Increased agility and resilience can be achieved using Amazon EKS, an AWS managed Kubernetes 
service that makes it easy to run Kubernetes on AWS. The Kubernetes control plane managed by 
EKS runs inside an EKS-managed VPC, running components such as the Kubernetes API server 
nodes and etcd cluster. Kubernetes API server nodes run the API server, scheduler, kube-controller-
manager, and so on. in an EC2 Auto Scaling group, allowing it to scale based on demand. API server 
nodes run in a minimum configuration of two in distinct Availability Zones (AZs), while the etcd

Day 0: Topology development 14

https://aws.amazon.com/servicecatalog/
https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cdk/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/codecommit/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/codedeploy/
https://aws.amazon.com/lambda/
https://aws.amazon.com/step-functions/
https://etcd.io/docs/v3.4/op-guide/clustering/
https://etcd.io/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

server nodes run in an auto-scaling group that spans three Availability Zones. This architecture 
ensures that an event in a single Availability Zone doesn’t affect the EKS cluster's availability. The 
control plane backup (such as etcd backup) is periodically performed by AWS. Having a unified, 
managed Kubernetes control plane helps with operational agility and automation.

For on-premises infrastructure not managed by AWS, Amazon EKS Anywhere is a new deployment 
option that allows customers to create and operate Kubernetes clusters. Amazon EKS Anywhere 
helps simplify the creation and operation of on-premises Kubernetes clusters with default 
component configurations while providing tools for automating cluster management. While not 
as feature-rich as EKS, it gives customers option to view all of their Kubernetes clusters in one 
dashboard.

Day 1: Instantiation

This phase of deployment deals with the following tasks:

• Instantiate CNFs

• Update route tables

Most of these functions can be automated if properly designed. CloudFormation and AWS CDKs 
are good constructs for this part. An automation pipeline can be build using AWS-provided 
continuous integration/continuous development (CI/CD) tools such as AWS CodeCommit and AWS 
CodeDeploy, or custom workflows can be created using AWS Lambda and AWS Step Functions 
that invoke appropriate AWS CloudFormation and CDK templates. Again, care should be taken to 
develop pipelines with appropriate parameterization so as to not bloat the number of pipelines or 
custom workflows. Some beneficial approaches in this part of the deployment are constructs such 
as Amazon EKS blueprints.

You must also create proper databases to handle the vast and different types of data that is 
generated by network functions, and to ensure proper mapping between services, functions and 
their instantiation. Graph database such as Amazon Neptune can be useful in this regard. Amazon 
Neptune is a fast, reliable, fully managed graph database service that makes it easy to build and 
run applications. Amazon DynamoDB is a fully managed, serverless, key-value NoSQL database 
designed to run high-performance applications at any scale. DynamoDB offers built-in security, 
continuous backups, automated multi-Region replication, in-memory caching, and data import 
and export tools. Amazon Relational Database Service (Amazon RDS) is a managed relational 

Day 1: Instantiation 15

https://en.wikipedia.org/wiki/CI/CD
https://aws-quickstart.github.io/cdk-eks-blueprints/
https://aws.amazon.com/neptune/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/rds/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

database service for MySQL, PostgreSQL, MariaDB, Oracle BYOL, or SQL Server. Some AWS partner 
solutions, such as Portworx PX-Enterprise, can be useful in architecting CNFs for high availability.

Day 2: Operation and management

This is arguably the hardest part of the automation lifecycle, and deals with day-to-day operation 
of the network. This phase deals with the following tasks:

• Update and scale CNFs

• Update and scale network services

• Update EKS version

• Update configuration

• Allow creation of new services

• Monitor and manage

• End service/CNFs when not needed

New infrastructure, network and functions can also be deployed in this part to address increased 
network demand. Hence, it is important not to view this phase in isolation of earlier phases but 
think of it this phase as invoking all the earlier phases as and when needed.

This phase is also the one that is most difficult to handle with traditional CI/CD. However, the 
new GitOps-based approaches can be particularly beneficial in this context. GitOps enables 
configuration as code and, if properly implemented, can take care of drift management from the 
desired configuration. This model is often utilized as an efficient strategy for provisioning cloud 
provider-specific managed resources, such as Amazon Simple Storage Service (Amazon S3) bucket 
and Amazon RDS instance, on which application workloads depends. Furthermore, AWS constructs 
such as AWS Auto Scaling can provide a cost-effective way to manage utilization and allow for 
traffic adaptation. Combining this approach with an application configuration provides a useful 
method to manage the operational configuration.

Monitoring, observability, and logging alarm for the Day 2 operations can be achieved using 
services such as Amazon CloudWatch, AWS CloudTrail, and AWS-provided managed services such 
as Amazon Managed Service for Prometheus and AWS Distro for OpenTelemetry. AWS CloudWatch 
collects monitoring and operational data in the form of logs, metrics, and events so that the 
operation teams can get a unified view of operational health and gain complete visibility of AWS 
resources, applications, and services running on AWS and on-premises. You can use CloudWatch 

Day 2: Operation and management 16

https://aws.amazon.com/quickstart/architecture/portworx-px-enterprise/
https://en.wikipedia.org/wiki/DevOps#GitOps
https://aws.amazon.com/s3/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/prometheus/
https://aws.amazon.com/otel/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

to detect anomalous behavior in CSP environments, set alarms, visualize logs and metrics side by 
side, take automated actions, troubleshoot issues, and discover insights to keep network running 
smoothly.

Because network functions continuously emit performance data and Key Performance Indicators 
(KPIs), you'll need a way to process this streaming data. Amazon Kinesis makes it easy to collect, 
process, and analyze near real-time, streaming data to get timely insights and react quickly to 
new information. Amazon SageMaker helps prepare, build, train, and deploy high-quality machine 
learning (ML) models quickly by bringing together a broad set of capabilities purpose-built for ML. 
This makes it easy to get insights on the deployment and operations.

With the previous described AWS constructs, one possible implementation on AWS is be as follows:

Example implementation architecture of a cloud-native CNF and infrastructure orchestrator

This diagram represents VPC constructs, EKS clusters, load-balancers and repositories, network 
connections, and so on in the context of Region, Availability Zones, and on-premises data centers. 
For ease of representation, we haven’t depicted some of the functionalities such as account and 

Day 2: Operation and management 17

https://aws.amazon.com/kinesis/
https://aws.amazon.com/sagemaker/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

user administration, the creation of a landing zone, security, and DNS that were part of the earlier 
architecture, because many of those features will run in their own VPCs within control of cross-
account permissions.

Day 2: Operation and management 18



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Conclusion

In this whitepaper, we have discussed the essential role of agile and resilient cloud-native network 
orchestration to achieve the business and operational goals of service providers. We examined 
and mapped the NFV orchestration requirements and specifications as put by ETSI in the context 
of Kubernetes and cloud-native implementations. We classified the requirements into three 
categories: those that can be mapped, those that are not relevant, and those that need further 
research and work. We also discussed orchestration needs in various phases of implementation, 
and provided a way to implement agile and resilient automation and orchestration solutions using 
AWS container and serverless constructs. These constructs are flexible and can be easily adopted to 
meet CSP and ISV automation requirements.

For further information on AWS telco offerings, and how some of these constructs have been used 
with the service providers, visit https://aws.amazon.com/telecom/ .

19

https://aws.amazon.com/telecom/


ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Contributors

Contributors to this document include:

• Dr. Manjari Asawa, Senior Solution Architect, in the AWS Worldwide Telecom Business Unit

20



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Initial publication Whitepaper published. October 25, 2022

21



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in 
this document. This document: (a) is for informational purposes only, (b) represents current AWS 
product offerings and practices, which are subject to change without notice, and (c) does not create 
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or 
services are provided “as is” without warranties, representations, or conditions of any kind, whether 
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by 
AWS agreements, and this document is not part of, nor does it modify, any agreement between 
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

22



ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

23

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World
	Table of Contents
	ETSI NFVO Compliant Orchestration in the Kubernetes/Cloud Native World
	Abstract and introduction
	Are you Well-Architected?
	Introduction


	Mapping ETSI MANO to Kubernetes
	High-level mapping architecture
	Mapping VIM and VNFM to Kubernetes
	NFVO: functions and mapping
	Framework mapping challenges

	Service provider requirements
	Solution architecture
	Day -1: Planning
	Day 0: Topology development
	Day 1: Instantiation
	Day 2: Operation and management

	Conclusion
	Contributors
	Document revisions
	Notices
	AWS Glossary

