
Detecting and Mitigating Gray Failures

Advanced Multi-AZ Resilience Patterns

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Advanced Multi-AZ Resilience Patterns: Detecting and Mitigating
Gray Failures

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Table of Contents

Abstract and introduction .. i
Introduction ... 1

Gray failures ... 3
Differential observability .. 3
Gray failure example .. 6
Responding to gray failures ... 7

Multi-AZ observability .. 10
Failure detection with CloudWatch composite alarms ... 14

Detect impact in a single Availability Zone ... 14
Ensure the impact isn’t Regional ... 16
Ensure the impact isn’t caused by a single instance ... 16
Putting it all together .. 18

Failure detection using outlier detection .. 20
Failure detection of single instance zonal resources .. 25
Summary .. 28

Availability Zone evacuation patterns ... 29
Availability Zone independence .. 29
Control planes and data planes .. 36
Data plane-controlled evacuation .. 37

Zonal Shift in Route 53 Application Recovery Controller (ARC) .. 37
Route 53 ARC ... 38
Using a self-managed HTTP endpoint ... 40

Control plane-controlled evacuation ... 46
Summary .. 50

Conclusion .. 51
Appendix A – Getting the Availability Zone ID ... 52
Appendix B – Example chi-squared calculation ... 54
Contributors ... 60
Document revisions ... 61
Notices .. 62
AWS Glossary ... 63

iii

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Advanced Multi-AZ Resilience Patterns

Publication date: July 11, 2023 (Document revisions)

Many customers run their workloads in highly available, multi-Availability Zone (AZ) configurations.
These architectures perform well during binary failure events, but often encounter problems with
gray failures. The manifestations of this type of failure can be subtle, and defy quick and definitive
detection. This paper provides guidance on how to instrument workloads to detect impact from
gray failures that are isolated to a single Availability Zone, and then take action to mitigate that
impact in the Availability Zone.

Introduction

The purpose of this document is to help you more effectively implement resilient multi-AZ
architectures. One of the best practices for building resilient systems in Amazon Virtual Private
Cloud (VPC) networks is to deploy each workload to multiple Availability Zones.

An Availability Zone is one or more discrete data centers with redundant power, networking, and
connectivity. Using multiple Availability Zones allows you to operate workloads that are more
highly available, fault tolerant, and scalable than would be possible from a single data center.

Many AWS services, such as Amazon Elastic Compute Cloud (EC2) Auto Scaling or Amazon
Relational Database Service (Amazon RDS), provide a multi-AZ configuration. These services don't
require you to build any additional observability or failover tooling. They make workloads resilient
to easily detectable binary failure modes within an AWS Region that affect a single Availability
Zone. This could be complete physical hardware failure, power loss, or a latent software bug
affecting a majority of resources.

But there is another category of failures termed gray failures, whose manifestations are subtle
and defy quick and definitive detection. This in turn results in longer times to mitigate the impact
caused by the failure. This paper focuses on the impacts gray failures can have on multi-AZ
architectures, how to detect them, and, finally, how to mitigate them.

The guidance provided in this whitepaper is mostly applicable to specific classes of
workloads that:

• Primarily use zonal AWS services

Introduction 1

https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/vpc-security-best-practices.html
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/ec2/autoscaling/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

• Need to improve single Region resilience

• Are willing to make a significant investment to build the required observability and
resilience patterns

In these workloads, you might not be willing to make some, or all, of the tradeoffs
presented in ???, or not have the option to use multiple Regions. These types of workloads
are likely to represent a small subset of your overall portfolio and hence this guidance
should be considered at the workload level versus at the platform level.

Introduction 2

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Gray failures

Gray failures are defined by the characteristic of differential observability, meaning that different
entities observe the failure differently. Let’s define what this means.

Differential observability

The workloads that you operate typically have dependencies. For example, these can be the AWS
cloud services that you use to build your workload or a third-party identity provider (IdP) you use
for federation. Those dependencies almost always implement their own observability, recording
metrics about errors, availability, and latency among other things that are generated by their
customer usage. When a threshold is crossed for one of these metrics, the dependency usually
takes some action to correct it.

These dependencies usually have multiple consumers of their services. Consumers also
implement their own observability and record metrics and logs about their interactions with
their dependencies, recording things like how much latency there is in disk reads, how many API
requests failed, or how long a database query took.

These interactions and measurements are depicted in an abstract model in the following figure.

Differential observability 3

https://doi.org/10.1145/3102980.3103005

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

An abstract model for understanding gray failures

First, we have the system, which is a dependency for consumers App 1, App 2, and App 3 in this
scenario. The system has a failure detector that examines metrics created from the core business
process. It also has a failure response mechanism to mitigate or correct problems that are observed
by the failure detector. The system sees an overall average latency of 53 ms and has set a threshold
to invoke the failure response mechanism when average latency exceeds 60 ms. App 1, App 2, and
App 3 are also making their own observations about their interaction with the system, recording an
average latency of 50 ms, 53 ms, and 56 ms respectively.

Differential observability is the situation where one of the system consumers detects that the
system is unhealthy, but the system’s own monitoring does not detect the problem or the impact
does not cross an alarm threshold. Let’s imagine that App 1 starts experiencing an average latency
of 70 ms instead of 50ms. App 2 and App 3 don’t see a change in their average latencies. This
increases the average latency of the underlying system to 59.66 ms, but this does not cross the
latency threshold to activate the failure response mechanism. However, App 1 sees a 40% increase
in latency. This could impact its availability by exceeding the configured client timeout for App 1,
or it may cause cascading impacts in a longer chain of interactions. From the perspective of App
1, the underlying system it depends on is unhealthy, but from the perspective of the system itself

Differential observability 4

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

as well App 2 and App 3, the system is healthy. The following figure summarizes these different
perspectives.

A quadrant defining the different states a system can be in based on different perspectives

The failure can also traverse this quadrant. An event could start as a gray failure, then become a
detected failure, then move to a masked failure, and then maybe back to a gray failure. There’s
not a defined cycle, and there’s almost always a chance of failure recurrence until its root cause is
addressed.

The conclusion we draw from this is that workloads can’t always rely on the underlying system to
detect and mitigate the failure. No matter how sophisticated and resilient the underlying system
is, there will always be the chance that a failure could go undetected or stay under the reaction
threshold. The consumers of that system, like App 1, need to be equipped to both quickly detect

Differential observability 5

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

and mitigate the impact a gray failure causes. This requires building observability and recovery
mechanisms for these situations.

Gray failure example

Gray failures can have impact for multi-AZ systems in AWS. For example, take a fleet of Amazon
EC2 instances in an Auto Scaling group deployed across three Availability Zones. They all connect
to an Amazon Aurora database in one Availability Zone. Then, a gray failure occurs that impacts
networking between Availability Zone 1 and Availability Zone 2. The result of this impairment is
that a percentage of new and existing database connections from instances in Availability Zone 1
fail. This situation is shown in the following figure.

A gray failure that impacts database connections from instances in Availability Zone 1

Gray failure example 6

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

In this example, Amazon EC2 sees the instances in Availability Zone 1 as healthy because they
continue to pass system and instance status checks. Amazon EC2 Auto Scaling also doesn't
detect direct impact to any Availability Zone, and continues to launch capacity in the configured
Availability Zones. The Network Load Balancer (NLB) also sees the instances behind it as healthy
as do the Route 53 health checks that are performed against the NLB endpoint. Similarly, Amazon
Relational Database Service (Amazon RDS) sees the database cluster as healthy and does not
trigger an automated failover. We have many different services that all see their service and
resources as healthy, but the workload detects a failure that impacts its availability. This is a gray
failure.

Responding to gray failures

When you experience a gray failure in your AWS environment, you generally have three available
options:

• Do nothing and wait for the impairment to end.

• If the impairment is isolated to a single Availability Zone, evacuate that Availability Zone.

• Failover to another AWS Region and use the benefits of AWS Regional isolation to mitigate the
impact.

Many AWS customers are fine with option one for a majority of their workloads. They accept
having a possibly extended Recovery Time Objective (RTO) with the tradeoff that they haven’t had
to build additional observability or resilience solutions. Other customers choose to implement the
third option, Multi-Region Disaster Recovery (DR), as their mitigation plan for a various number
of failure modes. Multi-Region architectures can work well in these scenarios. However, there are
a few tradeoffs when using this approach (refer to AWS Multi-Region Fundamentals for a full
discussion about multi-Region considerations).

First, building and operating a multi-Region architecture can be a challenging, complex, and
potentially expensive endeavor. Multi-Region architectures require careful consideration of which
DR strategy you select. It might not be fiscally viable to implement a multi-Region active-active
DR solution just to handle zonal impairments, while a backup and restore strategy might not meet
your resilience requirements. Additionally, multi-Region failovers must be continuously practiced
in production so that you are confident they will work when needed. This all requires a lot of
dedicated time and resources to build, operate, and test.

Responding to gray failures 7

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/monitoring-system-instance-status-check.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-benefits.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/auto-scaling-benefits.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/disaster-recovery-dr-objectives.html
https://aws.amazon.com/blogs/architecture/disaster-recovery-dr-architecture-on-aws-part-i-strategies-for-recovery-in-the-cloud/
https://docs.aws.amazon.com/whitepapers/latest/aws-multi-region-fundamentals/aws-multi-region-fundamentals.html
https://docs.aws.amazon.com/whitepapers/latest/disaster-recovery-workloads-on-aws/disaster-recovery-options-in-the-cloud.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Second, data replication across AWS Regions using AWS services today is all done asynchronously.
Asynchronous replication can result in data loss. This means that during a Regional failover,
there is a chance for some amount of data loss and inconsistency. Your tolerance to the amount
of data loss is defined as your Recovery Point Objective (RPO). Customers, for whom strong
data consistency is a requirement, have to build reconciliation systems to fix these consistency
issues when the primary Region is available again. Or, they have to build their own synchronous
replication or dual-write systems, which can have significant impacts on response latency, cost, and
complexity. They also make the secondary Region a hard dependency for every transaction, which
can potentially reduce the availability of the overall system.

Finally, for many workloads using an active/standby approach, there is a non-zero amount of
time required to perform the failover to another Region. Your portfolio of workloads might need
to be brought down in the primary Region in a specific order, need to drain connections, or stop
specific processes. Then, the services might need to be brought back up in a specific order. New
resources might also need be provisioned or require time to pass required health checks before
being brought into service. This failover process can be experienced as a period of complete
unavailability. This is what RTOs are concerned with.

Inside a Region, many AWS services offer strongly consistent data persistence. Amazon RDS multi-
AZ deployments use synchronous replication. Amazon Simple Storage Service (Amazon S3) offers
strong read-after-write consistency. Amazon Elastic Block Storage (Amazon EBS) offers multi-
volume crash consistent snapshots. Amazon DynamoDB can perform strongly consistent reads.
These features can help you achieve a lower RPO (in most cases a zero RPO) in a single Region than
you can in multi-Region architectures.

Evacuating an Availability Zone can have a lower RTO than a multi-Region strategy, because
your infrastructure and resources are already provisioned across Availability Zones. Instead of
needing to carefully order services being brought down and back up, or draining connections,
multi-AZ architectures can continue operating in a static way when an Availability Zone is impaired.
Instead of a period of complete unavailability that can occur during a Regional failover, during an
Availability Zone evacuation, many systems might see only a slight degradation, as work is shifted
to the remaining Availability Zones. If the system has been designed to be statically stable to an
Availability Zone failure (in this case, that would mean having capacity pre-provisioned in the other
Availability Zones to absorb the load), customers of the workload might not see impact at all.

It's possible that the impairment of a single Availability Zone impacts one or more AWS
Regional services in addition to your workload. If you observe Regional impact, you should

Responding to gray failures 8

https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/disaster-recovery-dr-objectives.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
https://aws.amazon.com/s3/
https://aws.amazon.com/blogs/aws/amazon-s3-update-strong-read-after-write-consistency/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html#ebs-create-snapshot-multi-volume
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html#ebs-create-snapshot-multi-volume
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.ReadConsistency.html
https://aws.amazon.com/builders-library/static-stability-using-availability-zones
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/regional-services.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

treat the event as a Regional service impairment although the source of that impact is
from a single Availability Zone. Evacuating an Availability Zone will not mitigate this type
of problem. Use the response plans you have in place to respond to a Regional service
impairment when this occurs.

The rest of this document focuses on the second option, evacuating the Availability Zone, as a way
to achieve lower RTOs and RPOs for single-AZ gray failures. These patterns can help achieve better
value and efficiency of multi-AZ architectures and, for most classes of workloads, can reduce the
need to create multi-Region architectures to handle these types of events.

Responding to gray failures 9

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Multi-AZ observability

To be able to evacuate an Availability Zone during an event that is isolated to a single Availability
Zone, you first must be able to detect that the failure is, in fact, isolated to a single Availability
Zone. This requires high-fidelity visibility into how the system is behaving in each Availability Zone.
Many AWS services provide out-of-the-box metrics that provide operational insights about your
resources. For example, Amazon EC2 provides numerous metrics such as CPU utilization, disk reads
and writes, and network traffic in and out.

However, as you build workloads that use these services, you need more visibility than just
those standard metrics. You want visibility into the customer experience being provided by your
workload. Additionally, you need your metrics to be aligned to the Availability Zones where they
are being produced. This is the insight you need to detect differentially observable gray failures.
That level of visibility requires instrumentation.

Instrumentation requires writing explicit code. This code should do things such as record how long
tasks take, count how many items succeeded or failed, collect metadata about the requests, and
so on. You also need to define thresholds ahead of time to define what is considered normal and
what isn’t. You should outline objectives and different severity thresholds for latency, availability,
and error counts in your workload. The Amazon Builders’ Library article Instrumenting distributed
systems for operational visibility provides a number of best practices.

Metrics should both be generated from the server-side as well as the client-side. A best practice
for generating client-side metrics and understanding the customer experience is using canaries,
software that regularly probes your workload and records metrics.

In addition to producing these metrics, you also need to understand their context. One way to do
this is by using dimensions. Dimensions give a metric a unique identity, and help explain what the
metrics are telling you. For metrics that are used to identify failure in your workload (for example,
latency, availability, or error count), you need to use dimensions that align to your fault isolation
boundaries.

For example, if you are running a web service in one Region, across multiple Availability Zones,
using a Model-view-controller (MVC) web framework, you should use Region, Availability
Zone ID, Controller, Action, and InstanceId as the dimensions for your dimension sets (if
you were using microservices, you might use the service name and HTTP method instead of the
controller and action names). This is because you expect different types of failures to be isolated
by these boundaries. You wouldn’t expect a bug in your web service’s code that affects its ability to

10

https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/
https://aws.amazon.com/builders-library/instrumenting-distributed-systems-for-operational-visibility/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch_concepts.html#Dimension
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/use-fault-isolation-to-protect-your-workload.html
https://docs.aws.amazon.com/wellarchitected/latest/reliability-pillar/use-fault-isolation-to-protect-your-workload.html
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

list products to also impact the home page. Similarly, you wouldn’t expect a full EBS volume on a
single EC2 instance to affect other EC2 instances from serving your web content. The Availability
Zone ID dimension is what enables you to identify Availability Zone-related impacts consistently
across AWS accounts. You can find the Availability Zone ID in your workloads in a number of
different ways. Refer to Appendix A – Getting the Availability Zone ID for some examples.

While this document mainly uses Amazon EC2 as the compute resource in the examples,
InstanceId could be replaced with a container ID for Amazon Elastic Container Service (Amazon
ECS) and Amazon Elastic Kubernetes Service (Amazon EKS) compute resources as components of
your dimensions.

Your canaries can also use Controller, Action, AZ-ID, and Region as dimensions in their
metrics if you have zonal endpoints for your workload. In this case, align your canaries to run in
the Availability Zone that they are testing. This ensures that if an isolated Availability Zone event is
impacting the Availability Zone in which your canary is running, it doesn’t record metrics that make
a different Availability Zone it is testing appear unhealthy. For example, your canary can test each
zonal endpoint for a service behind a Network Load Balancer (NLB) or Application Load Balancer
(ALB) using its zonal DNS names.

A canary running on CloudWatch Synthetics or an AWS Lambda function testing each zonal endpoint
of an NLB

11

https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/network-load-balancers.html#dns-name

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

By producing metrics with these dimensions, you can establish Amazon CloudWatch alarms that
notify you when changes in availability or latency occur within those boundaries. You can also
quickly analyze that data using dashboards. To use both metrics and logs efficiently, Amazon
CloudWatch offers the embedded metric format (EMF) that enables you to embed custom metrics
with log data. CloudWatch automatically extracts the custom metrics so you can visualize and
alarm on them. AWS provides several client libraries for different programming languages that
make it easy to get started with EMF. They can be used with Amazon EC2, Amazon ECS, Amazon
EKS, AWS Lambda, and on-premises environments. With metrics embedded into your logs, you
can also use Amazon CloudWatch Contributor Insights to create time series graphs that display
contributor data. In this scenario, we could display data grouped by dimensions like AZ-ID,
InstanceId, or Controller as well as any other field in the log like SuccessLatency or
HttpResponseCode.

{
 "_aws": {
 "Timestamp": 1634319245221,
 "CloudWatchMetrics": [
 {
 "Namespace": "workloadname/frontend",
 "Metrics": [
 { "Name": "2xx", "Unit": "Count" },
 { "Name": "3xx", "Unit": "Count" },
 { "Name": "4xx", "Unit": "Count" },
 { "Name": "5xx", "Unit": "Count" },
 { "Name": "SuccessLatency", "Unit": "Milliseconds" }
],
 "Dimensions": [
 ["Controller", "Action", "Region", "AZ-ID", "InstanceId"],
 ["Controller", "Action", "Region", "AZ-ID"],
 ["Controller", "Action", "Region"]
]
 }
],
 "LogGroupName": "/loggroupname"
 },
 "CacheRefresh": false,
 "Host": "use1-az2-name.example.com",
 "SourceIp": "34.230.82.196",
 "TraceId": "|e3628548-42e164ee4d1379bf.",
 "Path": "/home",
 "OneBox": false,

12

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Dashboards.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Embedded_Metric_Format_Libraries.html
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

 "Controller": "Home",
 "Action": "Index",
 "Region": "us-east-1",
 "AZ-ID": "use1-az2",
 "InstanceId": "i-01ab0b7241214d494",
 "LogGroupName": "/loggroupname",
 "HttpResponseCode": 200,
 "2xx": 1,
 "3xx": 0,
 "4xx": 0,
 "5xx": 0,
 "SuccessLatency": 20
}

This log has three sets of dimensions. They progress in order of granularity, from instance to
Availability Zone to Region (Controller and Action are always included in this example). They
support creating alarms across your workload that indicate when there is impact to a specific
controller action in a single instance, in a single Availability Zone, or within a whole AWS Region.
These dimensions are used for the count of 2xx, 3xx, 4xx, and 5xx HTTP response metrics, as well
as the latency for successful request metrics (if the request failed, it would also record a metric for
failed request latency). The log also records other information such as the HTTP path, the source
IP of the requestor, and whether this request required the local cache to be refreshed. These data
points can then be used to calculate the availability and latency of each API the workload provides.

A note on using HTTP response codes for availability metrics

Typically, you can consider 2xx and 3xx responses as successful, and 5xx as failures. 4xx
response codes fall somewhere in the middle. Usually, they are produced due to a client
error. Maybe a parameter is out of range leading to a 400 response, or they’re requesting
something that doesn’t exist, resulting in a 404 response. You wouldn’t count these
responses against your workload’s availability. However, this could also be the result of a
bug in the software.
For example, if you’ve introduced stricter input validation that rejects a request that would
have succeeded before, the 400 response might count as a drop in availability. Or maybe
you’re throttling the customer and returning a 429 response. While throttling a customer
protects your service to maintain its availability, from the customer’s perspective, the
service isn’t available to process their request. You’ll need to decide whether or not 4xx
response codes are part of your availability calculation.

13

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

While this section has outlined using CloudWatch as a way to collect and analyze metrics, it’s
not the only solution you can use. You might choose to also send metrics into Amazon Managed
Service for Prometheus and Amazon Managed Grafana, an Amazon DynamoDB table, or use a
third-party monitoring solution. The key is that the metrics your workload produces must contain
context about the fault isolation boundaries of your workload.

With workloads that produce metrics with dimensions aligned to fault isolation boundaries, you
can create observability that detects Availability Zone isolated failures. The following sections
describe three complimentary approaches for detecting failures that arise from the impairment of
a single Availability Zone.

Topics

• Failure detection with CloudWatch composite alarms

• Failure detection using outlier detection

• Failure detection of single instance zonal resources

• Summary

Failure detection with CloudWatch composite alarms

In CloudWatch metrics, each dimension set is a unique metric, and you can create a CloudWatch
alarm on each one. You can then create Amazon CloudWatch composite alarms to aggregate these
metrics.

In order to accurately detect impact, the examples in this paper will use two different CloudWatch
alarm structures for each dimension set they alarm on. Each alarm will use a Period of one-
minute, meaning the metric is evaluated once per minute. The first approach is going to use three
consecutive breaching data points by setting the Evaluation Periods and Datapoints to Alarm
to three, meaning impact for three minutes total. The second approach is going to use an "M out
of N" when any 3 data points in a five-minute window are breaching by setting the Evaluation
Periods to five and Datapoints to Alarm to three. This provides an ability to detect a constant
signal, as well as one that fluctuates over a short time. The time durations and number of data
points contained here are a suggestion, use values that make sense for your workloads.

Detect impact in a single Availability Zone

Using this construct, consider a workload that uses Controller, Action, InstanceId, AZ-
ID, and Region as dimensions. The workload has two controllers, Products and Home, and one

Failure detection with CloudWatch composite alarms 14

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Create_Composite_Alarm.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

action per controller, List and Index respectively. It operates in three Availability Zones in the us-
east-1 Region. You would create two alarms for availability for each Controller and Action
combination in each Availability Zone as well as two alarms for latency for each. Then, you can
optionally choose to create a composite alarm for availability for each Controller and Action
combination. Finally, you create a composite alarm that aggregates all of the availability alarms
for the Availability Zone. This is shown in the following figure for a single Availability Zone, use1-
az1, using the optional composite alarm for each Controller and Action combination (similar
alarms would exist for the use1-az2 and use1-az3 Availability Zones as well, but are not shown
for simplicity).

Composite alarm structure for availability in use1-az1

You would also build a similar alarm structure for latency as well, shown in the next figure.

Composite alarm structure for latency in use1-az1

Detect impact in a single Availability Zone 15

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

For the remainder of the figures in this section, only the az1-availability and az1-latency
composite alarms will be shown at the top level. These composite alarms, az1-availability
and az1-latency, will tell you if either availability drops below or latency rises above defined
thresholds in a particular Availability Zone for any part of your workload. You might also want
to consider measuring throughput to detect impact that prevents your workload in a single
Availability Zone from receiving work. You can integrate alarms produced from the metrics emitted
by your canaries into these composite alarms as well. That way, if either the server-side or client-
side see impacts in availability or latency, the alarm will create an alert.

Ensure the impact isn’t Regional

Another set of composite alarms can be used to ensure that only an isolated Availability Zone
event causes the alarm to be activated. This is performed by ensuring that an Availability Zone
composite alarm is in the ALARM state while the composite alarms for the other Availability Zones
are in the OK state. This will result in one composite alarm per Availability Zone that you use.
An example is shown in the following figure (remember that there are alarms for latency and
availability in use1-az2 and use1-az3, az2-latency, az2-availability, az3-latency, and
az3-availability, that are not pictured for simplicity).

Composite alarm structure to detect impact isolated to a single AZ

Ensure the impact isn’t caused by a single instance

A single instance (or a small percentage of your overall fleet) can cause disproportionate impact to
availability and latency metrics that could make the whole Availability Zone appear to be affected,
when in fact it is not. It is faster and just as effective to remove a single problematic instance than
evacuate an Availability Zone.

Instances and containers are typically treated as ephemeral resources, frequently replaced with
services such as AWS Auto Scaling. It’s difficult to create a new CloudWatch alarm every time a new

Ensure the impact isn’t Regional 16

https://aws.amazon.com/autoscaling/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

instance is created (but certainly possible using Amazon EventBridge or Amazon EC2 Auto Scaling
lifecycle hooks). Instead, you can use CloudWatch Contributor Insights to identify the quantity of
contributors to availability and latency metrics.

As an example, for an HTTP web application, you can create a rule to identify top contributors for
5xx HTTP responses in each Availability Zone. This will identify which instances are contributing to
a drop in availability (our availability metric defined above is driven by the presence of 5xx errors).
Using the EMF log example, create a rule using a key of InstanceId. Then, filter the log by the
HttpResponseCode field. This example is a rule for the use1-az1 Availability Zone.

{
 "AggregateOn": "Count",
 "Contribution": {
 "Filters": [
 {
 "Match": "$.InstanceId",
 "IsPresent": true
 },
 {
 "Match": "$.HttpStatusCode",
 "IsPresent": true
 },
 {
 "Match": "$.HttpStatusCode",
 "GreaterThan": 499
 },
 {
 "Match": "$.HttpStatusCode",
 "LessThan": 600
 },
 {
 "Match": "$.AZ-ID",
 "In": ["use1-az1"]
 },
],
 "Keys": [
 "$.InstanceId"
]
 },
 "LogFormat": "JSON",
 "LogGroupNames": [
 "/loggroupname"
],

Ensure the impact isn’t caused by a single instance 17

https://docs.aws.amazon.com/autoscaling/ec2/userguide/cloud-watch-events.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/lifecycle-hooks.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

 "Schema": {
 "Name": "CloudWatchLogRule",
 "Version": 1
 }
}

CloudWatch alarms can be created based on these rules as well. You can create alarms based on
Contributor Insights rules using metric math and the INSIGHT_RULE_METRIC function with the
UniqueContributors metric. You can also create additional Contributor Insights rules with
CloudWatch alarms for metrics like latency or error counts in addition to ones for availability. These
alarms can be used with the isolated Availability Zone impact composite alarms to ensure that
single instances don’t activate the alarm. The metric for the insights rule for use1-az1 might look
like the following:

 INSIGHT_RULE_METRIC("5xx-errors-use1-az1", "UniqueContributors")

You can define an alarm when this metric is greater than a threshold; for this example, two. It is
activated when the unique contributors to 5xx responses goes above that threshold, indicating
the impact is originating from more than two instances. The reason this alarm uses a greater-than
comparison instead of less-than is to make sure that a zero value for unique contributors doesn’t
set off the alarm. This tells you that the impact is not from a single instance. Adjust this threshold
for your individual workload. A general guide is to make this number 5% or more of the total
resources in the Availability Zone. More than 5% of your resources being affected shows statistical
significance, given a sufficient sample size.

Putting it all together

The following figure shows the complete composite alarm structure for a single Availability Zone:

Putting it all together 18

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/using-metric-math.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Complete composite alarm structure for determining single-AZ impact

The final composite alarm, use1-az1-isolated-impact, is activated when the composite alarm
indicating isolated Availability Zone impact from latency or availability, use1-az1-aggregate-
alarm, is in ALARM state and when the alarm based on the Contributor Insights rule for that same
Availability Zone, not-single-instance-use1-az1, is also in ALARM state (meaning that the
impact is more than a single instance). You would create this stack of alarms for each Availability
Zone that your workload uses.

You can attach an Amazon Simple Notification Service (Amazon SNS) alert to this final alarm. All of
the previous alarms are configured without an action. The alert could notify an operator via email
to start manual investigation. It could also initiate automation to evacuate the Availability Zone.
However, a word of caution on building automation to respond to these alerts. After an Availability
Zone evacuation happens, the result should be that the increased error rates are mitigated and the
alarm goes back to an OK state. If impact happens in another Availability Zone, it’s possible that
the automation could evacuate a second or third Availability Zone, potentially removing all of the
workload’s available capacity. The automation should check to see if an evacuation has already
been performed before taking any action. You may also need to scale resources in other Availability
Zones before an evacuation is successful.

When you add new controllers or actions to your MVC web app, or a new microservice, or in
general, any additional functionality you want to separately monitor, you only need to modify
a few alarms in this setup. You will create new availability and latency alarms for that new

Putting it all together 19

https://aws.amazon.com/sns/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

functionality and then add those to the appropriate Availability Zone aligned availability and
latency composite alarms, az1-latency and az1-availability in the example we’ve been
using here. The remaining composite alarms remain static after they have been configured. This
makes onboarding new functionality with this approach a simpler process.

Failure detection using outlier detection

One gap with the previous approach could arise when you see elevated error rates in multiple
Availability Zones that are occurring for an uncorrelated reason. Imagine a scenario where you
have EC2 instances deployed across three Availability Zones and your availability alarm threshold
is 99%. Then, a single Availability Zone impairment occurs, isolating many instances and causes
availability in that zone to drop to 55%. At the same time, but in a different Availability Zone, a
single EC2 instance exhausts all of the storage on its EBS volume, and can no longer write logs
files. This causes it to start returning errors, but it still passes the load balancer health checks
because those don’t trigger a log file to be written. This results in availability dropping to 98% in
that Availability Zone. In this case, your single Availability Zone impact alarm wouldn’t activate
because you are seeing an availability impact in multiple Availability Zones. However, you could still
mitigate almost all of the impact by evacuating the impaired Availability Zone.

In some types of workloads, you might experience errors consistently across all Availability Zones
where the previous availability metric might not be useful. Take AWS Lambda for example. AWS
allows customers to create their own code to run in the Lambda function. To use the service, you
have to upload your code in a ZIP file, including dependencies, and define the entry point to the
function. But sometimes customers get this part wrong, for example, they might forget a critical
dependency in the ZIP file, or mistype the method name in the Lambda function definition. This
causes the function to fail to be invoked and results in an error. AWS Lambda sees these kinds
of errors all the time, but they’re not indicative that anything is necessarily unhealthy. However,
something like an Availability Zone impairment might also cause these errors to appear.

To find signal in this kind of noise, you can use outlier detection to determine if there is a
statistically significant skew in the number of errors among Availability Zones. Although we see
errors across multiple Availability Zones, if there was truly a failure in one of them, we’d expect to
see a much higher error rate in that Availability Zone compared to the other ones, or potentially
much lower. But how much higher or lower?

One way to do this analysis is by using a chi-squared (χ2) test to detect statistically significant
differences in error rates between Availability Zones (there are many different algorithms for
performing outlier detection). Let’s look at how the chi-squared test works.

Failure detection using outlier detection 20

https://en.wikipedia.org/wiki/Chi-squared_test
https://dataprocessing.aixcape.org/DataPreprocessing/DataCleaning/OutlierDetection/index.html
https://dataprocessing.aixcape.org/DataPreprocessing/DataCleaning/OutlierDetection/index.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

A chi-squared test evaluates the probability that some distribution of results is likely to occur.
In this case, we’re interested in the distribution of errors across some defined set of AZs. For this
example, to make the math easier, consider four Availability Zones.

First, establish the null hypothesis, which defines what you believe the default outcome is. In this
test, the null hypothesis is that you expect errors to be evenly distributed across each Availability
Zone. Then, generate the alternative hypothesis, which is that the errors are not evenly distributed
indicating an Availability Zone impairment. Now you can test these hypotheses using data from
your metrics. For this purpose, you’ll sample your metrics from a five-minute window. Suppose you
get 1000 published data points in that window, in which you see 100 total errors. You expect that
with an even distribution the errors would occur 25% of the time in each of the four Availability
Zones. Assume the following table shows what you expected compared to what you actually saw.

Table 1: Expected versus actual errors seen

AZ Expected Actual

use1-az1 25 20

use1-az2 25 20

use1-az3 25 25

use1-az4 25 35

So, you see that the distribution in reality isn’t even. However, you might believe that this occurred
due to some level of randomness in the data points you sampled. There’s some level of probability
that this type of distribution could occur in the sample set and still assume that the null hypothesis
is true. This leads to the following question: What is the probability of getting a result at least
this extreme? If that probability is below a defined threshold, you reject the null hypothesis. To be
statistically significant, this probability should be 5% or less.1

1 Craparo, Robert M. (2007). "Significance level". In Salkind, Neil J. Encyclopedia of Measurement
and Statistics 3. Thousand Oaks, CA: SAGE Publications. pp. 889–891. ISBN 1-412-91611-9.

How do you calculate the probability of this outcome? You use the χ2 statistic that provides very
well-studied distributions and can be used to determine the probability of getting a result this
extreme or more extreme using this formula.

Failure detection using outlier detection 21

https://en.wikipedia.org/wiki/Statistical_significance

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

For our example, this results in:

So, what does 6 mean in terms of our probability? You need to look at a chi-squared distribution
with the appropriate degree of freedom. The following figure shows several chi-squared
distributions for different degrees of freedom.

Failure detection using outlier detection 22

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Chi-squared distributions for different degrees of freedom

The degree of freedom is calculated as one less than the number of choices in the test. In this case,
because there are four Availability Zones, the degree of freedom is three. Then, you want to know
the area under the curve (the integral) for x ≥ 6 on the k = 3 plot. You can also use a pre-calculated
table with commonly used values to approximate that value.

Table 2: Chi-squared critical values

Degrees of
freedom

Probability less than the critical value

0.75 0.90 0.95 0.99 0.999

1 1.323 2.706 3.841 6.635 10.828

2 2.773 4.605 5.991 9.210 13.816

Failure detection using outlier detection 23

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Degrees of
freedom

Probability less than the critical value

0.75 0.90 0.95 0.99 0.999

3 4.108 6.251 7.815 11.345 16.266

4 5.385 7.779 9.488 13.277 18.467

For three degrees of freedom, the chi-squared value of six falls between the 0.75 and 0.9
probability columns. What this means is there is a greater than 10% chance of this distribution
occurring, which is not less than the 5% threshold. Therefore, you accept the null hypothesis and
determine there is not a statistically significant difference in error rates among the Availability
Zones.

Performing a chi-squared statistics test isn’t natively supported in CloudWatch metric math,
so you’ll need collect the applicable error metrics from CloudWatch and run the test in a
compute environment like Lambda. You can decide to perform this test at something like an
MVC Controller/Action or individual microservice level, or at the Availability Zone level. You’ll
need to consider whether an Availability Zone impairment would affect each Controller/Action
or microservice equally, or whether something like a DNS failure might cause impact in a low
throughput service and not in a high throughput service, which could mask the impact when
aggregated. In either case, select the appropriate dimensions to create the query. The level of
granularity will also impact the resulting CloudWatch alarms you create.

Collect the error count metric for each AZ and Controller/Action in a specified time window. First,
calculate the result of the chi-squared test as either true (there was a statistically significant skew)
or false (there was wasn’t, that is, the null hypothesis holds). If the result is false, publish a 0 data
point to your metric stream for chi-squared results for each Availability Zone. If the result is true,
publish a 1 data point for the Availability Zone with the errors farthest from the expected value
and a 0 for the others (refer to Appendix B – Example chi-squared calculation for sample code that
can be used in a Lambda function). You can follow the same approach as the previous availability
alarms by using creating a 3 in a row CloudWatch metric alarm and a 3 out of 5 CloudWatch
metric alarm based on the data points being produced by the Lambda function. As in the previous
examples, this approach can be modified to use more or less data points in a shorter or longer
window.

Failure detection using outlier detection 24

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Then, add these alarms to your existing Availability Zone availability alarm for the Controller and
Action combination, shown in the following figure.

Integrating the chi-squared statistics test with composite alarms

As mentioned previously, when you onboard new functionality in your workload, you only need to
create the appropriate CloudWatch metric alarms that are specific to that new functionality and
update the next tier in the composite alarm hierarchy to include those alarms. The rest of the alarm
structure remains static.

Failure detection of single instance zonal resources

In some cases, you might have a single active instance of a zonal resource, most commonly systems
that require a single-writer component such as a relational database (such as Amazon RDS) or a
distributed cache (such as Amazon ElastiCache for Redis). If a single Availability Zone impairment
affects the Availability Zone that the primary resource is in, it can cause impact to every Availability
Zone that accesses the resource. This could cause availability thresholds to be crossed in every
Availability Zone, meaning the first approach wouldn’t correctly identify the single Availability
Zone source of impact. Additionally, you would likely see similar error rates in each Availability
Zone, meaning the outlier analysis also wouldn’t detect the problem. What this means is that you
need to implement additional observability to specifically detect this scenario.

It's likely that the resource you’re concerned about will produce its own metrics about its health,
but during an Availability Zone impairment that resource might not be able to deliver those
metrics. In this scenario, you should create or update alarms to know when you are flying blind. If
there are important metrics that you already monitor and alarm on, you can configure the alarm
to treat the missing data as breaching. This will help you know if the resource stops reporting data,
and can be included in the same in a row and m out of n alarms used previously.

Failure detection of single instance zonal resources 25

https://aws.amazon.com/elasticache/redis/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html#alarms-and-missing-data

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

It’s also possible that in some of the metrics that indicate the health of the resource that it
publishes a zero valued data point when there is no activity. If the impairment is preventing
interactions with the resource, you can’t use the missing data approach for these kinds of metrics.
You also probably don’t want to alarm on the value being zero, since there could be legitimate
scenarios where that is within normal thresholds. The best approach to detecting this type of
problem is with metrics being produced by the resources using this dependency. In this case we
want to detect impact in multiple Availability Zones using composite alarms. These alarms should
use a handful of critical metrics categories related to the resource. A few examples are listed below:

• Throughput – The rate of incoming units of work. This could be transactions, reads, writes, and
so on.

• Availability – Measure the number of successful vs failed units of work.

• Latency – Measure multiple percentiles of latency for successful work performed across critical
operations.

Once again, you can create the in a row and m out of n metric alarms for each metric in each
metric category that you want to measure. As before, these can be combined into a composite
alarm to determine that this shared resource is the source of impact across Availability Zones.
You want to be able to identify impact to more than one Availability Zone with the composite
alarms, but the impact does not necessarily need to be all Availability Zones. The high-level
composite alarm structure for this kind of approach is shown in the following figure.

Failure detection of single instance zonal resources 26

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

An example of creating alarms to detect impact to multiple Availability Zones caused by a single
resource

You will notice that this diagram is less prescriptive about what type of metric alarms should be
used and the hierarchy of the composite alarms. This is because discovering this kind of problem
can be difficult and will require careful attention to the right signals for the shared resource. Those
signals may also need to be evaluated in specific ways.

Additionally, you should notice that the primary-database-impact alarm is not associated with
a specific Availability Zone. This is because the primary database instance can be located in any
Availability Zone that it is configured to use, and there’s not a CloudWatch metric that specifies
where it is. When you see this alarm activate, you should use it as a signal that there may be a
problem with the resource and initiate a failover to another Availability Zone, if it hasn’t been
done automatically. After moving the resource to another Availability Zone, you can wait and see
if your isolated Availability Zone alarm is activated, or you can choose to preemptively invoke your
Availability Zone evacuation plan.

Failure detection of single instance zonal resources 27

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Summary

This section described three approaches to help identify single Availability Zone impairments. Each
approach should be used together to provide a holistic view of your workload’s health.

The CloudWatch composite alarm approach allows you to find problems where the skew in
availability isn’t statistically significant, say availabilities of 98% (the impaired Availability Zone),
100%, and 99.99%, that isn’t caused by a single, shared resource.

Outlier detection will help detect single Availability Zone impairments where you have
uncorrelated errors happening in multiple Availability Zones that all surpass your alarm threshold.

Finally, identifying degradation of a single instance zonal resource helps discover when an
Availability Zone impairment affects a resource that is shared across Availability Zones.

The resulting alarms from each one of these patterns can be combined into a CloudWatch
composite alarm hierarchy to discover when single Availability Zone impairments occur and have
impact to the availability or latency of your workload.

Summary 28

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Availability Zone evacuation patterns

After detecting impact in a single Availability Zone, the next step is to evacuate that Availability
Zone. There are two outcomes that evacuation needs to achieve.

First, you want to stop sending work to the impacted Availability Zone. This could mean different
things in different architectures. In a request/response workload, this would mean stopping things
like HTTP or gRPC requests coming from your customers being sent to the load balancer or other
resources in the Availability Zone. In a batch processing or queue processing system, it could mean
stopping compute resources from processing work in the impacted Availability Zone. You will also
need to prevent resources in the unaffected Availability Zones from interacting with resources in
the impacted Availability Zone, for example, an EC2 instance sending traffic to an interface VPC
endpoint in the impacted Availability Zone or connecting to the primary instance of a database.

The second outcome is preventing new capacity from being provisioned in the impacted
Availability Zone. This is important because new resources, like EC2 instances or containers, being
provisioned in the affected Availability Zone are likely to see the same impact as existing resources.
Additionally, because the first outcome prevents work from being sent to them, they cannot
absorb the load they were provisioned to handle. This leads to increased load on the existing
resources, which can ultimately lead to brown out or total unavailability of the workload. There are
several auto scaling services available in AWS where this is applicable: Amazon EC2 Auto Scaling,
Application Auto Scaling, and AWS Auto Scaling. Additionally, services like Amazon ECS, Amazon
EKS, and AWS Batch may schedule work on hosts across Availability Zones in a VPC as part of their
normal operation.

Topics

• Availability Zone independence

• Control planes and data planes

• Data plane-controlled evacuation

• Control plane-controlled evacuation

• Summary

Availability Zone independence

To achieve the first outcome, to stop sending work to the impacted Availability Zone, evacuation
requires that you implement Availability Zone Independence (AZI), also sometimes called

Availability Zone independence 29

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://aws.amazon.com/ec2/autoscaling/
https://docs.aws.amazon.com/autoscaling/application/userguide/what-is-application-auto-scaling.html
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/batch/
https://aws.amazon.com/builders-library/static-stability-using-availability-zones/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Availability Zone Affinity. This architectural pattern isolates resources inside an Availability Zone
and prevents interaction among resources in different Availability Zones except where absolutely
required, such as connecting to a primary database instance in a different Availability Zone.

In a request/response type workload, implementing AZI requires you to disable cross-zone load
balancing for Application Load Balancers (ALB), Classic Load Balancers (CLB), and Network Load
Balancers (NLB) (cross-zone load balancing is disabled by default for NLBs). Disabling cross-zone
load balancing has a few tradeoffs. When you disable cross-zone load balancing, traffic is evenly
split between each Availability Zone regardless of how many instances are in each one. If you have
unbalanced resources or Auto Scaling groups, this could put additional load on resources in an
Availability Zone that has fewer resources than others. This is shown in the following figure where
two instances in Availability Zone 1 are each receiving 25% of the load and the five instances in
Availability Zone 2 are each receiving 10% of the load.

Availability Zone independence 30

https://aws.amazon.com/blogs/architecture/improving-performance-and-reducing-cost-using-availability-zone-affinity/
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/disable-cross-zone.html#cross_zone_console_disable
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/disable-cross-zone.html#cross_zone_console_disable
https://docs.aws.amazon.com/elasticloadbalancing/latest/classic/enable-disable-crosszone-lb.html#disable-cross-zone
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/target-group-cross-zone.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/target-group-cross-zone.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html#cross-zone-load-balancing
https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/how-elastic-load-balancing-works.html#cross-zone-load-balancing

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

The effect of disabling cross-zone load balancing with unbalanced instances

Availability Zone independence 31

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Other zonal services that you use will also need to be implemented using AZI patterns to support
effective Availability Zone evacuation. For example, interface VPC endpoints provide specific DNS
names for each Availability Zone the interface endpoint is made available in.

One challenge with implementing AZI is with databases, especially because most relational
databases only support a single primary writer at any time. When communicating with the primary
instance, you may need to cross an Availability Zone boundary. Many AWS database services
support a user-defined Multi-AZ configuration and have a built-in multi-AZ failover feature,
such as Amazon RDS or Amazon Aurora. In many failure scenarios, the service can detect the
impact and automatically failover the database to a different Availability Zone when a problem
occurs. However, during a gray failure, the service may not detect the impact that is affecting your
workload, or the impact may not be related to the database at all. In these cases, once you detect
impact in an Availability Zone, you can manually invoke a failover to move the primary database.
This allows you to effectively react to a single Availability Zone impairment.

If you are using read replicas with those databases, you may also want to implement AZI for
those because you cannot failover a read replica to a different Availability Zone like you can the
primary database. If you have a single read replica in Availability Zone 1, and instances across three
Availability Zones are configured to use it, an impairment impacting Availability Zone 1 will also
impact operations in the other two Availability Zones. That’s the impact you want to prevent.

For RDS instances, you receive a DNS endpoint to access the replica in a specific Availability Zone.
To achieve AZI, you would need a read replica per Availability Zone and a way for your application
to know which replica endpoint to use for the Availability Zone it’s in. One approach you can take
is to use the Availability Zone ID as part of the database identifier, something like use1-az1-
read-replica.cbkdgoeute4n.us-east-1.rds.amazonaws.com. You can also do this using
service discovery (such as with AWS Cloud Map) or looking up a simple map stored in AWS Systems
Manager Parameter Store or a DynamoDB table. This concept is shown in the following figure.

Availability Zone independence 32

https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html#access-service-though-endpoint
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_RebootDBInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/APIReference/API_FailoverDBCluster.html
https://aws.amazon.com/cloud-map/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Discovering RDS endpoint DNS names for each Availability Zone

Amazon Aurora’s default configuration is to provide a single reader endpoint that load balances
requests across available read replicas. In order to implement AZI using Aurora, you can use a
custom endpoint for each read replica using the ANY type (so you can promote a read replica
if required). Name the custom endpoint based on the Availability Zone ID where the replica is
deployed. Then, you can use the DNS name provided by the custom endpoint to connect to a
specific read replica in a specific Availability Zone, which is shown in the following figure.

Availability Zone independence 33

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Endpoints.Reader
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Overview.Endpoints.html#Aurora.Endpoints.Custom

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Using a custom endpoint for an Aurora read replica

When your system is architected this way, it makes Availability Zone evacuation a much simpler
task. For example, in the following figure when there is an impairment affecting Availability Zone 3,
both read and write operations in Availability Zones 1 and 2 are not affected.

Availability Zone independence 34

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Using AZI to prevent impact with Amazon Aurora read replicas

Alternatively, if Availability Zone 2 was impacted, read operations would still succeed in Availability
Zones 1 and 3. Then, if Amazon Aurora hasn’t automatically failed over the primary database,
you can manually invoke a failover to a different Availability Zone to restore the capability for
processing writes. This approach prevents needing to make any configuration changes in your
database connections when you need to evacuate an Availability Zone. Minimizing the required
changes and keeping the process as simple as possible will make it more reliable.

Availability Zone independence 35

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Control planes and data planes

Before we get to the actual patterns you can use to perform an Availability Zone evacuation, we
need to discuss the concepts of control planes and data planes. AWS makes a distinction between
control planes and data planes in our services. Control planes are the machinery involved in making
changes to a system—adding resources, deleting resources, modifying resources—and getting
those changes propagated to wherever they need to go to take effect, such as updating a network
configuration for an ALB or creating an AWS Lambda function.

Data planes are the primary function of those resources, things such as the running EC2 instance,
or getting items from or putting items into an Amazon DynamoDB table. For a more detailed
discussion of control planes and data planes, refer to Static stability using Availability Zones and
AWS Fault Isolation Boundaries.

For the purposes of this document, consider that control planes tend to have more moving parts
and dependencies than data planes. This makes it statistically more likely that the control plane
becomes impaired compared to the data plane. This is especially relevant for services that provide
AZI, such as Amazon EC2 and EBS, because parts of those services have control planes that are also
zonally independent and can be impacted during a single-AZ event.

While control plane actions can be used to perform AZ evacuation, based on the previous
information, they may have a lower probability of success, especially during a failure event. To
increase the probability of successfully mitigating impact, you can use two different patterns. The
first pattern relies only on data plane actions to initially mitigate impact by preventing work from
being routed to or stop work from being done in the impacted Availability Zone. Then, the second
pattern can be attempted to update the configuration of resources with control plane actions to
both prevent capacity from being provisioned in the impacted Availability Zone as well as stop
inter-Availability Zone communication with that Availability Zone.

The recovery patterns discussed in this section are big red buttons. They are the mechanisms you
use to take large-scale action, quickly, akin to pulling an Andon cord on an assembly line. They
assume that the workloads have already attempted strategies such as retry with exponential
backoff with jitter in their code to overcome transient errors. This means that when isolated
Availability Zone impact is detected, its effects on availability or latency are severe enough to
require evacuating the Availability Zone to effectively mitigate.

Control planes and data planes 36

https://aws.amazon.com/builders-library/static-stability-using-availability-zones
https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/aws-infrastructure.html#control-planes-and-data-planes
https://en.wikipedia.org/wiki/Andon_(manufacturing)
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/
https://aws.amazon.com/builders-library/timeouts-retries-and-backoff-with-jitter/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Data plane-controlled evacuation

There are several solutions that you can implement to perform an Availability Zone evacuation
using data plane-only actions. This section will describe three of them and the use cases where you
may want to pick one over the other.

When using any of these solutions, you need to ensure you have sufficient capacity in the
remaining Availability Zones to handle the load of the Availability Zone you are shifting away
from. The most resilient was to do this is by having the required capacity pre-provisioned in each
Availability Zone. If you are using three Availability Zones, you would have 50% of the required
capacity to handle your peak load deployed in each one, so that the loss of a single Availability
Zone would still leave you 100% of your required capacity without having to rely on a control
plane to provision more.

Additionally, if you are using EC2 Auto Scaling, ensure your Auto Scaling group (ASG) doesn’t
scale in during the shift, so that when the shift ends, you still have sufficient capacity in the group
to handle your customer traffic. You can do this by ensuring that your ASG’s minimum desired
capacity can handle your current customer load. You can also help ensure that your ASG doesn’t
inadvertently scale in by using averages in your metrics as opposed to outlier percentile metrics like
P90 or P99.

During a shift, the resources no longer serving traffic should have very low utilization, but the other
resources will increase their utilization with the new traffic, keeping the average fairly consistent,
which would prevent a scale-in action. Finally, you can also use target group health settings for ALB
and NLB to specify DNS failover with either a percentage or count of healthy hosts. This prevents
traffic from being routed to an Availability Zone that does not have enough healthy hosts.

Zonal Shift in Route 53 Application Recovery Controller (ARC)

The first solution for Availability Zone evacuation uses zonal shift in Route 53 ARC. This solution
can be used for request/response workloads that use an NLB or ALB as the ingress point for
customer traffic.

When you detect that an Availability Zone has become impaired, you can initiate a zonal shift
with Route 53 ARC. Once this operation completes and existing cached DNS responses expire,
all new requests are only routed to resources in the remaining Availability Zones. The following
figure shows how zonal shift works. In the following figure we have a Route 53 alias record
for www.example.com that points to my-example-nlb-4e2d1f8bb2751e6a.elb.us-
east-1.amazonaws.com. The zonal shift is performed for Availability Zone 3.

Data plane-controlled evacuation 37

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/target-group-health.html
https://docs.aws.amazon.com/r53recovery/latest/dg/arc-zonal-shift.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Zonal shift

In the example, if the primary database instance is not in Availability Zone 3, then performing the
zonal shift is the only action required to achieve the first outcome for evacuation, preventing work
from being processed in the impacted Availability Zone. If the primary node was in Availability
Zone 3, then you could perform a manually initiated failover (which does rely on the Amazon
RDS control plane) in coordination with the zonal shift, if Amazon RDS did not already failover
automatically. This will be true for all of the data plane-controlled solutions in this section.

You should initiate the zonal shift using CLI commands or the API in order to minimize
dependencies required to start the evacuation. The simpler the evacuation process, the more
reliable it will be. The specific commands can be stored in a local runbook that on-call engineers
can easily access. Zonal shift is the most preferred and simplest solution for evacuating an
Availability Zone.

Route 53 ARC

The second solution uses the capabilities of Route 53 ARC to manually specify the health of specific
DNS records. This solution has the benefit of using the highly available Route 53 ARC cluster data

Route 53 ARC 38

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

plane, making it resilient to the impairment of up to two different AWS Regions. It has the tradeoff
of additional cost and it requires some additional configuration of DNS records. To implement this
pattern, you need to create alias records for the Availability Zone-specific DNS names provided by
the load balancer (ALB or NLB). This is shown in the following table.

Table 3: Route 53 alias records configured for the load balancer’s zonal DNS names

Routing Policy: weighted

Name: www.example.com

Type: A (alias)

Value: us-east-1b.load-
balancer-name.elb.us
-east-1.amazonaws.
com

Weight: 100

Evaluate Target Health: true

Routing Policy: weighted

Name: www.example.com

Type: A (alias)

Value: us-east-1
a.load-balancer-na
me.elb.us-east-1.a
mazonaws.com

Weight: 100

Evaluate Target Health:
true

Routing Policy: weighted

Name: www.example.com

Type: A (alias)

Value: us-east-1
c.load-balancer-na
me.elb.us-east-1.a
mazonaws.com

Weight: 100

Evaluate Target Health:
true

For each of these DNS records, you would configure a Route 53 health check that is associated
with a Route 53 ARC routing control. When you want to initiate an Availability Zone evacuation,
set the routing control state to Off. AWS recommends you do this using the CLI or API in order to
minimize the dependencies required to start the Availability Zone evacuation. As a best practice,
you should keep a local copy of the Route 53 ARC cluster endpoints so you don’t need to retrieve
those from the ARC control plane when you need to perform an evacuation.

To minimize cost when using this approach, you can create a single Route 53 ARC cluster and
health checks in a single AWS account and share the health checks with other AWS accounts in your
organization. When you take this approach, you should use the Availability Zone ID (AZ-ID) (for
example, use1-az1) instead of the Availability Zone name (for example, us-east-1a) for your
routing controls. Because AWS maps the physical Availability Zone randomly to the Availability
Zone names for each AWS account, using the AZ-ID provides a consistent way to refer to the
same physical locations. When you initiate an Availability Zone evacuation, say for use1-az2, the

Route 53 ARC 39

https://docs.aws.amazon.com/elasticloadbalancing/latest/network/network-load-balancers.html#dns-name
https://docs.aws.amazon.com/r53recovery/latest/dg/routing-control.html
https://docs.aws.amazon.com/r53recovery/latest/dg/route53-arc-best-practices.html
https://aws.amazon.com/premiumsupport/knowledge-center/route-53-cross-account-health-checks/
https://docs.aws.amazon.com/ram/latest/userguide/working-with-az-ids.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Route 53 record sets in each AWS account should ensure they use the AZ-ID mapping to configure
the right health check for each NLB records.

For example, let’s say we have a Route 53 health check associated with a Route 53 ARC routing
control for use1-az2, with an ID of 0385ed2d-d65c-4f63-a19b-2412a31ef431. If in a
different AWS account that wants to use this health check, us-east-1c was mapped to use1-
az2, you would need to use the use1-az2 health check for the record us-east-1c.load-
balancer-name.elb.us-east-1.amazonaws.com. You would use the health check ID
0385ed2d-d65c-4f63-a19b-2412a31ef431 with that resource record set.

Using a self-managed HTTP endpoint

You can also implement this solution by managing your own HTTP endpoint that indicates the
status of a particular Availability Zone. It allows you to manually specify when an Availability
Zone is unhealthy based on the response from the HTTP endpoint. This solution costs less than
using Route 53 ARC, but is more expensive than zonal shift and requires managing additional
infrastructure. It has the benefit of being much more flexible for different scenarios.

The pattern can be used with NLB or ALB architectures and Route 53 health checks. It can also be
used in non-load balanced architectures, like service discovery or queue processing systems where
worker nodes perform their own health checks. In those scenarios, the hosts can use a background
thread where they periodically make a request to the HTTP endpoint with their AZ-ID (refer to
Appendix A – Getting the Availability Zone ID for details on how find this) and receive back a
response about the health of the Availability Zone.

If the Availability Zone has been declared to be unhealthy, they have multiple options on how to
respond. They may choose to fail an external health check from sources such as ELB, Route 53, or
custom health checks in service discovery architectures so that they appear unhealthy to those
services. They can also immediately respond with an error should they receive a request, allowing
the client to backoff and retry. In event-driven architectures, nodes can intentionally fail to process
work, like intentionally returning an SQS message to the queue. In work router architectures where
a central service schedules work on specific hosts you can also use this pattern. The router can
check the status of an Availability Zone before selecting a worker, endpoint, or cell. In service
discovery architectures that use AWS Cloud Map, you can discover endpoints by providing a filter in
your request, such as an AZ-ID.

The following figure shows how this approach can be used for multiple types of workloads.

Using a self-managed HTTP endpoint 40

https://aws.amazon.com/about-aws/whats-new/2020/10/aws-cloud-map-simplifies-service-discovery-optional-parameters/
https://aws.amazon.com/about-aws/whats-new/2020/10/aws-cloud-map-simplifies-service-discovery-optional-parameters/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Multiple workload types can all use the HTTP endpoint solution

There are multiple ways to implement the HTTP endpoint approach, two of them are outlined next.

Using Amazon S3

This pattern was originally presented in this blog post for multi-Region disaster recovery. You can
use the same pattern for Availability Zone evacuation.

In this scenario you would create Route 53 DNS resource record sets for each zonal DNS record
just like the Route 53 ARC scenario above as well as associated health checks. However, for this
implementation, instead of associating the health checks with Route 53 ARC routing controls, they
are configured to use an HTTP endpoint and are inverted to safeguard against an impairment in
Amazon S3 accidentally triggering an evacuation. The health check is considered healthy when
the object is absent and unhealthy when the object is present. This setup is shown in the following
table.

Table 4: DNS record configuration for using Route 53 health checks per Availability Zone

Using a self-managed HTTP endpoint 41

https://aws.amazon.com/blogs/networking-and-content-delivery/creating-disaster-recovery-mechanisms-using-amazon-route-53/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-types.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Health check
type:

monitor an
endpoint

Protocol: HTTPS

ID: dddd-4444

URL:
https://bucket-
name .s3.us-
east-1.amaz
onaws.com
/use1-az1
.txt

Health check
type:

monitor an
endpoint

Protocol: HTTPS

ID: eeee-5555

URL:
https://bucket-
name .s3.us-
east-1.amaz
onaws.com
/use1-az3
.txt

Health check
type:

monitor an
endpoint

Protocol: HTTPS

ID: ffff-6666

URL:
https://bucket-
name .s3.us-
east-1.amaz
onaws.com
/use1-az2
.txt

← Health checks

↑ ↑ ↑

Routing Policy:
weighted

Name:
www.examp
le.com

Type: A (alias)

Value: us-
east-1
b.load-ba
lancer-na
me.elb.us
-east-1.a
mazonaws.
com

Weight: 100

Routing Policy:
weighted

Name:
www.examp
le.com

Type: A (alias)

Value: us-
east-1
a.load-ba
lancer-na
me.elb.us
-east-1.a
mazonaws.
com

Weight: 100

Routing Policy:
weighted

Name:
www.examp
le.com

Type: A (alias)

Value: us-
east-1
c.load-ba
lancer-na
me.elb.us
-east-1.a
mazonaws.
com

Weight: 100

←

Top level,
evenly
weighted alias
A records
point to NLB
AZ specific
endpoints

Using a self-managed HTTP endpoint 42

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Evaluate Target
Health: true

Evaluate Target
Health: true

Evaluate Target
Health: true

Let’s assume that the Availability Zone us-east-1a is mapped to use1-az3 in the account where
we have a workload where we want to perform an Availability Zone evacuation. For the resource
record set created for us-east-1a.load-balancer-name.elb.us-east-1.amazonaws.com
would associate a health check that tests the URL https://bucket-name.s3.us-
east-1.amazonaws.com/use1-az3.txt. When you want to initiate an Availability Zone
evacuation for use1-az3, upload a file named use1-az3.txt to the bucket using the CLI or API.
The file doesn’t need to contain any content, but it does need to be public so that the Route 53
health check can access it. The following figure demonstrates this implementation being used to
evacuate use1-az3.

Using Amazon S3 as the target for a Route 53 health check

Using a self-managed HTTP endpoint 43

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Using API Gateway and DynamoDB

The second implementation of this pattern uses an Amazon API Gateway REST API. The API is
configured with a service integration to Amazon DynamoDB where the status for each in-use
Availability Zone is stored. This implementation is more flexible than the Amazon S3 approach,
but requires building, operating, and monitoring more infrastructure. It can also both be used with
Route 53 health checks as well as health checks performed by individual hosts.

If you are using this solution with an NLB or ALB architecture, set up your DNS records in the
same way as the Amazon S3 example above, except change the health check path to use the API
Gateway endpoint and provide the AZ-ID in the URL path. For example, if the API Gateway is
configured with a custom domain of az-status.example.com, the full request for use1-az1
would look like https://az-status.example.com/status/use1-az1. When you want to
initiate an Availability Zone evacuation, you can create or update a DynamoDB item using the
CLI or API. The item uses the AZ-ID as its primary key and then has a Boolean attribute called
Healthy which is used indicate how API Gateway responds. The following is example code used in
the API Gateway configuration to make this determination.

#set($inputRoot = $input.path('$'))
#if ($inputRoot.Item.Healthy['BOOL'] == (false))
 #set($context.responseOverride.status = 500)
#end

If the attribute is true (or isn’t present), API Gateway responds to the health check with an HTTP
200, if it is false, it responds with an HTTP 500. This implementation is shown in the following
figure.

Using a self-managed HTTP endpoint 44

https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-rest-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-integration-types.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Using API Gateway and DynamoDB as the target of Route 53 health checks

In this solution you need to use API Gateway in front of DynamoDB so that you can make the
endpoint publicly accessible as well as manipulate the request URL into a GetItem request for
DynamoDB. The solution also provides flexibility if you want to include additional data in the
request. For example, if you wanted to create more granular statuses, like per application, you can
configure the health check URL to provide an application ID in the path or query string that is also
matched against the DynamoDB item.

The Availability Zone status endpoint can be deployed centrally so that multiple health check
resources across AWS accounts can all use the same consistent view of Availability Zone health
(ensuring that your API Gateway REST API and DynamoDB table are scaled to handle the load) and
eliminates the need to share Route 53 health checks.

The solution could also be scaled across multiple AWS Regions using an Amazon DynamoDB
global table and a copy of the API Gateway REST API in each Region. This prevents this solution
from having a dependency on a single Region and increases its availability. You could deploy the
solution across three or five Regions and query each one for Availability Zone health, using the
result of the majority of the endpoints to ensure quorum. This allows for eventually consistent

Using a self-managed HTTP endpoint 45

https://aws.amazon.com/dynamodb/global-tables/
https://aws.amazon.com/dynamodb/global-tables/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

replication of updates across the global table as well as mitigates impairments that may prevent an
endpoint from responding. For example, if you are using five Regions, and three endpoints report
an Availability Zone as unhealthy, one endpoint reports the Availability Zone as healthy, and one
endpoint does not respond, you would choose to treat the Availability Zone as unhealthy. You
could also create a Route 53 calculated health check using an m of n calculation to perform this
logic to determine Availability Zone health.

If you were building a solution for individual hosts to use as a mechanism to determine the health
of their AZ, as an alternative, instead of providing a pull mechanism for health checks, you can
use push notifications. One way to do this is with an SNS topic that your consumers subscribe to.
When you want to trigger the circuit breaker, publish a message to the SNS topic that indicates
which Availability Zone is impaired. This approach makes tradeoffs with the former. It removes the
need to create and operate the API Gateway infrastructure and perform capacity management. It
can also potentially provide faster convergence of the Availability Zone state. However, it removes
the ability to perform ad hoc queries and relies on the SNS delivery retry policy to ensure each
endpoint receives the notification. It also requires each workload or service to build a way to
receive the SNS notification and take action on it.

For example, each new EC2 instance or container that is launched will need to subscribe to the
topic with an HTTP endpoint during its bootstrap. Then, each instance needs to implement
software that listens on this endpoint where the notification is delivered. Additionally, if the
instance is impacted by the event, it may not receive the push notification and continue to do work.
Whereas, with a pull notification, the instance will know if its pull request fails and can choose
what action to take in response.

A second way to send push notifications is with long-lived WebSocket connections. Amazon API
Gateway can be used to provide a WebSocket API that consumers can connect to and receive a
message when sent by the backend. With a WebSocket, instances can both do periodic pulls to
ensure their connection is healthy and also receive low-latency push notifications.

Control plane-controlled evacuation

The first pattern uses data plane operations to prevent performing work in an impacted Availability
Zone to mitigate the impact of an event. However, you may be using an architecture that doesn’t
use load balancers or where configuring a per-host health check isn’t feasible. Or, you may want
to prevent new capacity from being deployed into the impacted Availability Zone through Auto
Scaling or normal work scheduling.

Control plane-controlled evacuation 46

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-values.html#health-checks-creating-values-calculated
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/health-checks-creating-values.html#health-checks-creating-values-calculated
https://docs.aws.amazon.com/sns/latest/dg/sns-message-delivery-retries.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-websocket-api-data-from-backend.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

To address both situations, control plane actions are required to update the configuration of the
resource. The pattern will work for any service whose network configuration can be updated, for
example, EC2 Auto Scaling, Amazon ECS, Lambda, and more. It requires writing code for each
service, but the business logic follows a standard pattern. The code should be executed locally by
an operator responding to the event in order to minimize the dependencies required. The basic
flow of the script logic is shown in the following figure.

Control plane update to evacuate an Availability Zone

1. The script lists all of the resources of the specified type, such as Auto Scaling group, ECS service,
or Lambda function, and retrieves their subnets from the resource information. The supported
resources depend on what the script has been configured to support.

2. It determines which subnets should be removed by comparing each subnet’s Availability Zone
name to its mapped Availability Zone ID that was provided as an input parameter.

3. The network configuration of the resource is updated to remove the identified subnets.

4. The details of the update are recorded in a DynamoDB table. The Availability Zone ID is stored as
the partition key and the resource ARN or name is stored as the sort key. The subnets that were
removed are stored as a string array. Finally, the resource type is also stored and used as a hash
key for a Global Secondary Index (GSI).

Because step four records the updates that were made, this approach also lends itself to being
easily reversible when you’re ready to recover, as shown in the following figure.

Control plane-controlled evacuation 47

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.PrimaryKey
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/HowItWorks.CoreComponents.html#HowItWorks.CoreComponents.SecondaryIndexes

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Control plane update to recover from Availability Zone evacuation

Recovery steps:

1. Query the GSI to get the subnets removed for each resource of the specified type in the
specified Availability Zone (or all Availability Zones if one isn’t specified).

2. Describe each resource found in the DynamoDB query to get its current network configuration.

3. Combine the subnets from the current network configuration with those retrieved from the
DynamoDB query.

4. Update the network configuration of the resource with the new subnet set.

5. Remove the record from the DynamoDB table after the update completes successfully.

This generalized pattern both prevents routing work to the impacted Availability Zone and
prevents new capacity from being deployed there. The following are examples of how this is
accomplished for different services.

• Lambda — Update the function’s VPC configuration to remove the subnets in the specified
Availability Zone.

• Auto Scaling Group — Remove the subnets from the ASG configuration which will replace that
capacity in the remaining Availability Zones.

• Amazon ECS — Update the ECS service VPC configuration to remove the subnets.

Control plane-controlled evacuation 48

https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-add-availability-zone.html#as-remove-az-console
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

• Amazon EKS — Apply taints to nodes in the impacted Availability Zone to evict existing pods
and prevent additional pods from being scheduled there.

Each service will react differently to the configuration update. For example, Amazon ECS will follow
the service’s deployment configuration after an update and trigger a rolling deployment or blue/
green deployment of new tasks.

These updates may shift work to the healthy Availability Zones too quickly for some workloads.
While being configured to be statically stable to the failure (having enough capacity pre-
provisioned in the remaining Availability Zones to handle the impacted Availability Zone’s work),
you may also want to gradually phase out capacity from the impacted Availability Zone.

If you plan to update the network configuration of your Auto Scaling group that is a
target group for a load balancer with cross-zone load balancing disabled, follow this
guidance.

Auto Scaling reacts to this change using its Availability Zone rebalancing logic. It will launch
instances in the other Availability Zones to meet your desired capacity and terminate
instances in the Availability Zone you removed. However, the load balancer will continue
to split traffic evenly across each Availability Zone, including the one you removed from
the ASG, while the instances are being terminated. This could lead to a brown out of the
remaining capacity in that Availability Zone until all instances are successfully terminated
there. This is the same problem described in Availability Zone independence concerning
Availability Zone imbalance when cross-zone load balancing is disabled. To prevent this
from occurring, you can either:

• Always perform your Availability Zone evacuation first so traffic is only being split among
the remaining Availability Zones

• Specify a minimum healthy target count with DNS failover to match your required
minimum target count for that Availability Zone.

This will help ensure traffic is not sent to the Availability Zone you removed after instances
start being terminated.

Control plane-controlled evacuation 49

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/update-service.html
https://docs.aws.amazon.com/autoscaling/ec2/userguide/as-instance-termination.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/target-group-health.html

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Summary

The following table summarizes the pros and cons of the evacuation patterns described.

Table 5: Evacuation pattern pros and cons

Approach Pros Cons

Data plane-controlled
evacuation

Relies only on data plane
actions

Quickly prevents work from
being done in the impacted
Availability Zone

Flexible approach to a
centralized view of Availabil
ity Zone health

Does not prevent capacity
from being deployed in an
impacted Availability Zone

Not all workload types can
use this approach easily

Control plane-controlled
evacuation

Prevents new capacity
from being deployed in the
impacted Availability Zone

Removes existing capacity
from the impacted Availabil
ity Zone

Relies on each service’s
control plane

Requires code to be written
for each service

Has to be completed service
by service

Needs to be careful not to
overwhelm capacity during
the update

You will likely use both approaches together as part of an Availability Zone evacuation plan. Start
with the data plane-controlled evacuation actions that are more likely to succeed to quickly stop
processing work in the impacted Availability Zone. Then, once the initial impact is mitigated,
follow-up with the control plane-controlled evacuation actions, if you deem it necessary.

Summary 50

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Conclusion

This paper provided an overview of gray failures, how they manifest, and outlined why you need
to build observability and evacuation tooling to mitigate those types of events when they occur.
In the next section, you reviewed multi-AZ observability and three approaches you can implement
to detect single Availability Zone impact. In the last section, this paper presented two general
approaches for performing Availability Zone evacuation. The first approach uses data plane actions
to prevent work from being routed to the impacted Availability Zone while the second approach
uses control plane actions to prevent capacity from being provisioned in the impacted Availability
Zone. Together, these two approaches achieve the two outcomes that Availability Zone evacuation
intends.

The recovery patterns described in this paper will likely be part of a larger monitoring and fault
recovery solution. This approach to dealing with single-Availability Zone gray failures requires
engineering work to build the instrumentation necessary to detect them as well as the tooling to
respond to them. However, for many workloads, this approach can be a simpler and less costly
alternative to building multi-Region architectures. Additionally, it can help achieve smaller RPOs
and RTOs (which increases the workload’s availability) when compared to multi-Region DR.

51

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Appendix A – Getting the Availability Zone ID

If you are using the AWS .NET SDK (as well as some others like JavaScript) or running your system
on an EC2 instance (including Amazon ECS and Amazon EKS), you can get the Availability Zone ID
directly.

• AWS .NET SDK

Amazon.Util.EC2InstanceMetadata.GetData(“/placement/availability-zone-id”)

• EC2 Instance Metadata Service

curl http://169.254.169.254/latest/meta-data/placement/availability-zone-id

On other platforms, such as Lambda and Fargate, you will need to retrieve the Availability Zone
name and then find the mapping to the Availability Zone ID. With the Availability Zone name you
can find the Availability Zone ID like this:

aws ec2 describe-availability-zones --zone-names $AZ --output json
 --query ‘AvailabilityZones[0].ZoneId’

The following examples to find the Availability Zone name to be used in the example above are
written in bash using the AWS CLI and the package jq. They will need to be converted to the
programming language used for your workload.

• Amazon ECS - If the Instance Metadata Service (IMDS) is blocked by the host, you can use the
container metadata file instead.

AZ=$(cat $ECS_CONTAINER_METADATA_FILE | jq –-raw-output
 .AvailabilityZone)

• Fargate (platform version 1.4 or later)

AZ=$(curl $ECS_CONTAINER_METADATA_URI_V4/task | jq --raw-output
 .AvailabilityZone)

52

https://stedolan.github.io/jq/

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

• Lambda – The Availability Zone is not exposed directly to the function. To find it, you need to
complete several steps. To do this, you will need to build a private API Gateway REST endpoint
that returns the IP address of the requestor. This will identify the private IP assigned to the
elastic network interface being used by the function.

• Call the Lambda GetFunction API to find the VPC ID of the function.

• Call the API Gateway service to get the function’s IP.

• Using the IP and VPC ID, find the associated network interface and extract the Availability
Zone.

VPC_ID=$(aws lambda get-function --function-name $ AWS_LAMBDA_FUNCTION_NAME --
region $AWS_REGION --output json --query ‘Configuration.VpcConfig.VpcId’)

MY_IP=$(curl http://whats-my-private-ip.internal)

AZ=$(aws ec2 describe-network-interfaces --filters Name=private-ip-address,Values=
$MY_IP Name=vpc-id,Values=$VPC_ID --region $AWS_REGION --output json –query
 ‘NetworkInterfaces[0].AvailabilityZone’)

53

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Appendix B – Example chi-squared calculation

The following is an example of collecting error metrics and performing a chi-squared test on the
data. The code is not production ready and does not perform necessary error handling, but does
provide a proof of concept on how the logic works. You should update this example to fit your
needs.

First, a Lambda function is invoked each minute by an Amazon EventBridge scheduled event. The
content of the event is configured with the following data:

{
 "timestamp": "2023-03-15T15:26:37.527Z",
 "namespace": "multi-az/frontend",
 "metricName": "5xx",
 "dimensions": [
 { "Name": "Region", "Value": "us-east-1" },
 { "Name": "Controller", "Value": "Home" },
 { "Name": "Action", "Value": "Index" }
],
 "period": 60,
 "stat": "Sum",
 "unit": "Count",
 "chiSquareMetricName": "multi-az/chi-squared",
 "azs": ["use1-az2", "use1-az4", "use1-az6"]
}

The data is used to specify the common data needed to retrieve the appropriate CloudWatch
metrics (like namespace, metric name, and dimensions) and then publish the chi-squared results
for each Availability Zone. The code in the Lambda function looks like the following using Python
3.9. At a high level, it collects the specified CloudWatch metrics for the previous minute, runs the
chi-squared test on that data, and then publishes CloudWatch metrics about the result of the test
for each Availability Zone specified.

import os
import boto3
import datetime
import copy
import json
from datetime import timedelta

54

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

from scipy.stats import chisquare
from aws_embedded_metrics import metric_scope

cw_client = boto3.client("cloudwatch", os.environ.get("AWS_REGION", "us-east-1"))

@metric_scope
def handler(event, context, metrics):
 metrics.set_property("Event", json.loads(json.dumps(event, default = str)))
 time = datetime.datetime.strptime(event["timestamp"], "%Y-%m-%dT%H:%M:%S.%fZ")

 # Round down to the previous minute
 end: datetime = roundTime(time)

 # Subtract a minute for the start
 start: datetime = end - timedelta(minutes = 1)

 # Get all the metrics that match the query
 results = get_all_metrics(event, start, end, metrics)
 metrics.set_property("MetricCounts", results)

 # Calculate the chi squared result
 chi_sq_result = chisquare(list(results.values()))
 expected = sum(list(results.values())) / len(results.values())
 metrics.set_property("ChiSquaredResult", chi_sq_result)

 # Put the chi square metrics into CloudWatch
 put_all_metrics(event, results, chi_sq_result[1], expected, start, metrics)

def get_all_metrics(detail: dict, start: datetime, end: datetime, metrics):
 """
 Gets all of the error metrics for each AZ specified
 """
 metric_query = {
 "MetricDataQueries": [
],
 "StartTime": start,
 "EndTime": end
 }

 for az in detail["azs"]:

 dim = copy.deepcopy(detail["dimensions"])
 dim.append({"Name": "AZ-ID", "Value": az})

55

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

 query = {
 "Id": az.replace("-", "_"),
 "MetricStat": {
 "Metric": {
 "Namespace": detail["namespace"],
 "MetricName": detail["metricName"],
 "Dimensions": dim
 },
 "Period": int(detail["period"]),
 "Stat": detail["stat"],
 "Unit": detail["unit"]
 },
 "Label": az,
 "ReturnData": True
 }

 metric_query["MetricDataQueries"].append(query)

 metrics.set_property("GetMetricRequest", json.loads(json.dumps(metric_query,
 default=str)))
 next_token: str = None
 results = {}

 while True:
 if next_token is not None:
 metric_query["NextToken"] = next_token

 data = cw_client.get_metric_data(**metric_query)

 if next_token is not None:
 metrics.set_property("GetMetricResult::" + next_token,
 json.loads(json.dumps(data, default = str)))
 else:
 metrics.set_property("GetMetricResult", json.loads(json.dumps(data, default
 = str)))

 for item in data["MetricDataResults"]:
 key = item["Id"].replace("_", "-")
 if key not in results:
 results[key] = 0

 results[key] += sum(item["Values"])

 if "NextToken" in data:

56

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

 next_token = data["NextToken"]

 if next_token is None:
 break

 return results

def put_all_metrics(detail: dict, results: dict, chi_sq_value: float, expected: float,
 timestamp: datetime, metrics):
 """
 Adds the chi squared metric for all AZs to CloudWatch
 """
 farthest_from_expected = None
 if len(results) > 0:
 keys = list(results.keys())
 farthest_from_expected = keys[0]

 for key in keys:
 if abs(results[key] - expected) > abs(results[farthest_from_expected] -
 expected):
 farthest_from_expected = key

 metric_query = {
 "Namespace": detail["namespace"],
 "MetricData": []
 }

 for az in detail["azs"]:
 dim = copy.deepcopy(detail["dimensions"])
 dim.append({"Name": "AZ-ID", "Value": az})

 query = {
 "MetricName": detail["chiSquareMetricName"],
 "Dimensions": dim,
 "Timestamp": timestamp,
 }

 if chi_sq_value <= 0.05 and az == farthest_from_expected:
 query["Value"] = 1
 else:
 query["Value"] = 0

 metric_query["MetricData"].append(query)

57

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

 metrics.set_property("PutMetricRequest", json.loads(json.dumps(metric_query,
 default = str)))

 cw_client.put_metric_data(**metric_query)

def roundTime(dt=None, roundTo=60):
 """Round a datetime object to any time lapse in seconds
 dt : datetime.datetime object, default now.
 roundTo : Closest number of seconds to round to, default 1 minute.
 """
 if dt == None : dt = datetime.datetime.now()
 seconds = (dt.replace(tzinfo=None) - dt.min).seconds
 rounding = (seconds+roundTo/2) // roundTo * roundTo
 return dt + datetime.timedelta(0,rounding-seconds,-dt.microsecond)

You can then create an alarm per AZ. The following example is for use1-az2 and alarms for three,
one-minute data points in a row that have a maximum value equal to 1 (1 is the metric being
published when the chi-squared test determines statistically significant skew in the error rate).

{
 "Type": "AWS::CloudWatch::Alarm",
 "Properties": {
 "AlarmName": "use1-az2-chi-squared",
 "ActionsEnabled": true,
 "OKActions": [],
 "AlarmActions": [],
 "InsufficientDataActions": [],
 "MetricName": "multi-az/chi-squared",
 "Namespace": "multi-az/frontend",
 "Statistic": "Maximum",
 "Dimensions": [
 {
 "Name": "AZ-ID",
 "Value": "use1-az2"
 },
 {
 "Name": "Action",
 "Value": "Index"
 },
 {
 "Name": "Region",

58

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

 "Value": "us-east-1"
 },
 {
 "Name": "Controller",
 "Value": "Home"
 }
],
 "Period": 60,
 "EvaluationPeriods": 3,
 "DatapointsToAlarm": 3,
 "Threshold": 1,
 "ComparisonOperator": "GreaterThanOrEqualToThreshold",
 "TreatMissingData": "missing"
 }
}

You can also create an m-of-n alarm and combine these two alarms together with a composite
alarm. You would also need to create the same alarms for each Controller/Action combination or
microservice you have in each Availability Zone. Finally, you can add the chi-squared composite
alarm to the Availability Zone-specific alarm for each Controller/Action combination as shown in
Failure detection using outlier detection.

59

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Contributors

Contributors to this document include:

• Michael Haken, Principal Solutions Architect, Amazon Web Services

60

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated with additional
observability guidance and
to use the new zonal shift
feature.

July 11, 2023

Initial publication Whitepaper first published. March 2, 2022

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser you are
using.

61

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided "as is" without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2023 Amazon Web Services, Inc. or its affiliates. All rights reserved.

62

Advanced Multi-AZ Resilience Patterns Detecting and Mitigating Gray Failures

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

63

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Advanced Multi-AZ Resilience Patterns
	Table of Contents
	Advanced Multi-AZ Resilience Patterns
	Introduction

	Gray failures
	Differential observability
	Gray failure example
	Responding to gray failures

	Multi-AZ observability
	Failure detection with CloudWatch composite alarms
	Detect impact in a single Availability Zone
	Ensure the impact isn’t Regional
	Ensure the impact isn’t caused by a single instance
	Putting it all together

	Failure detection using outlier detection
	Failure detection of single instance zonal resources
	Summary

	Availability Zone evacuation patterns
	Availability Zone independence
	Control planes and data planes
	Data plane-controlled evacuation
	Zonal Shift in Route 53 Application Recovery Controller (ARC)
	Route 53 ARC
	Using a self-managed HTTP endpoint
	Using Amazon S3
	Using API Gateway and DynamoDB

	Control plane-controlled evacuation
	Summary

	Conclusion
	Appendix A – Getting the Availability Zone ID
	Appendix B – Example chi-squared calculation
	Contributors
	Document revisions
	Notices
	AWS Glossary

