
AWS Whitepaper

Building A Data Perimeter on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Building A Data Perimeter on AWS AWS Whitepaper

Building A Data Perimeter on AWS: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Building A Data Perimeter on AWS AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Are you Well-Architected? .. 1
Introduction ... 1

Perimeter overview ... 4
Perimeter objectives .. 4
AWS services .. 5

Service control policies .. 5
Resource-based policies ... 6
VPC endpoint policies .. 6
Summary ... 8

Perimeter implementation .. 10
Only trusted identities .. 10
Only trusted resources .. 12
Only expected networks ... 14

Mobile devices ... 16
Additional considerations ... 17

Amazon S3 resource considerations ... 17
Cross-Region requests .. 17
Preventing access to temporary credentials ... 20
Resource sharing and external targets ... 21
AWS Management Console ... 22

Conclusion .. 23
Appendix A – Proxy configuration example ... 25
Contributors ... 28
Further reading .. 29
Document history .. 30
Notices .. 31
AWS Glossary ... 32

iii

Building A Data Perimeter on AWS AWS Whitepaper

Building a Data Perimeter on AWS

Publication date: June 13, 2023 (Document history)

Many organizations want to implement perimeter controls to help protect against unintended
access and configuration errors through always-on guardrails. This paper outlines the best practices
and available services for creating a perimeter around your identities, resources, and networks in
AWS.

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS
Management Console, you can review your workloads against these best practices by answering a
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Introduction

In traditional, on-premises data center environments, a trusted network and strong authentication
are the foundation of security. They establish a high-level perimeter to help prevent untrusted
entities from coming in and data from going out. This perimeter provides a clear boundary of
trust and ownership. When customers think about creating an AWS perimeter as part of their
responsibility for security “in the cloud” in the AWS Shared Responsibility Model, they want to
achieve the same outcomes. They want to draw a circle around their AWS resources, like Amazon
Simple Storage Service (Amazon S3) buckets and Amazon Simple Queue Service (Amazon SQS)
queues, that clearly separates “my AWS” from other customers.

The circle that defines an AWS perimeter is typically represented as an AWS organization managed
by AWS Organizations. AWS Organizations is an account management service that lets you
consolidate multiple AWS accounts into an organization that you create and centrally manage.

Each AWS account you own is a logical container for AWS identities, resources, and networks.
The AWS organization groups of all of those items into a single entity. Along with on-premises

Are you Well-Architected? 1

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/

Building A Data Perimeter on AWS AWS Whitepaper

networks and systems that access AWS resources, it is what most customers think of as the
perimeter of “my AWS”.

The perimeter defines the things you intend or expect to happen. It refers to the access patterns
among your identities, resources, and networks that should be allowed. Using those three
elements, we make the following assertion to define our perimeter’s goal: access can only be
allowed if the identity is trusted, the resource is trusted, and the network is expected.

If any of these conditions are false, then the access inside the perimeter is unintended and should
be denied. The perimeter is composed of controls implemented on your identities, resources, and
networks to ensure the necessary conditions are true.

This paper discusses the perimeter objectives and how the applied controls prevent unintended
access patterns, particularly to data. It is designed to help customers understand how to create
a complete AWS data perimeter as part of their responsibility in the AWS Shared Responsibility
Model.

Introduction 2

Building A Data Perimeter on AWS AWS Whitepaper

A high-level depiction of defining a perimeter around your AWS resources to prevent interaction
with unintended AWS Identity and Access Management (IAM) principals, unintended resources, and
unexpected networks

Introduction 3

https://aws.amazon.com/iam/?nc=sn&loc=0

Building A Data Perimeter on AWS AWS Whitepaper

Perimeter overview

This section provides an overview of a data perimeter’s objectives and the AWS services used to
implement it.

Topics

• Perimeter objectives

• AWS services

Perimeter objectives

The goal of an AWS perimeter is to ensure access is allowed only if an authorization involves:

• Only trusted identities - The AWS Identity and Access Management (IAM) principals in your
AWS organization or AWS acting on your behalf. Throughout this document, references to my
principals refers to both of these situations.

• Only trusted resources - The resources in your AWS organization or resources AWS operates
on your behalf. Throughout this document, references to my resources refers to both of these
situations.

• Only expected networks - Your virtual private cloud (VPC) and on-premises networks or the
networks AWS uses on your behalf. Throughout this document, references to my networks refers
to both of these situations.

These are the necessary (but not sufficient) authorization conditions for access inside an AWS
perimeter to be allowed.

Access in the Perimeter#(Trusted Identity)#(Trusted Resource)#(Expected
 Network)

Ensuring the truth of these three conditions ultimately defines the objectives of the perimeter.
Each authorization condition has two objectives.

Authorization condition Perimeter objective

Only trusted identities Ensure that my resources can be accessed by
only trusted identities.

Perimeter objectives 4

https://aws.amazon.com/iam/

Building A Data Perimeter on AWS AWS Whitepaper

Authorization condition Perimeter objective

Ensure that only trusted identities are
allowed from my networks.

Ensure that my identities can access only
trusted resources.

Only trusted resources

Ensure that only trusted resources can be
accessed from my networks.

Ensure that my identities can access resources
only from expected networks.

Only expected networks

Ensure my resources can only be accessed
from expected networks.

AWS services

You can establish a data perimeter by using permissions guardrails that restrict access outside of an
organization boundary. This is achieved using three primary AWS capabilities, AWS Organizations
service control policies (SCP), resource-based policies, and VPC endpoint policies. The following is a
summary of these different types of policies and some considerations.

Service control policies

SCPs are a type of organization policy that you can use to manage permissions in your organization
and control the maximum available permissions for your principals. SCPs offer central control over
the maximum available permissions for all accounts in your organization. SCPs configured as deny
lists can limit the scope of access to resources or source networks in your organization or within
specific accounts. It’s important to note that SCPs do not apply to service-linked roles (SLR) or AWS
service principals.

Although you can define similar guard rails with IAM identity-based policies, the solutions in this
document will favor using SCPs. They are a more scalable way to implement perimeter guardrails
for all your IAM principals than creating and managing individual policies for every IAM principal
you own. However, access to resources in AWS requires explicit permissions in identity-based

AWS services 5

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpc-endpoints-access.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html#how_scps_deny
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps_evaluation.html#how_scps_deny
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html#scp-effects-on-permissions
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html#principal-services
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html

Building A Data Perimeter on AWS AWS Whitepaper

policies, so they are still a necessary component of providing access, but not as part of establishing
data perimeter guardrails.

SCPs are primarily going to use the aws:ResourceOrgId condition for achieving only trusted
resources and aws:SourceIp, aws:SourceVpc, and aws:ViaAWSService as the conditions for
achieving only expected networks as well as for managing exceptions required in the policies. Refer
to service control policies in the data perimeter policy examples repo for more details.

Resource-based policies

These policies can be applied to AWS resources and define which IAM principals (which includes
SLRs and AWS service principals) can interact with the resource, as well as what the expected
networks are for access. This means that in addition to authorization through identity-based
policies, these resources can define an access policy that is directly associated with the resource.
These are commonly used to provide cross-account access, and can be used to authorize external
AWS credentials or anonymous access. Although resource-based policies do not allow unintended
access by default, a misconfigured policy might unintentionally grant access to an unintended
principal or unexpected network. For a list of services that support resource-based policies, refer to
AWS services that work with IAM.

Resource-based policies are primarily going to use the aws:PrincipalOrgId and
aws:PrincipalIsAWSService conditions to achieve only trusted identities and aws:SourceIp,
aws:SourceVpc, aws:ViaAWSService, and aws:PrincipalIsAWSService as conditions for
achieving only expected networks as well as for managing exceptions required in the policies. Refer
to resource-based policies in the data perimeter policy examples repo for more details.

VPC endpoint policies

These policies are a special type of resource-based policy that you attach to an endpoint that
controls access to resources when they are accessed through that VPC endpoint. An endpoint
policy does not override or replace IAM user policies or service-specific policies (such as Amazon
S3 bucket policies). It is a separate policy for controlling access from the endpoint to the specified
service. In VPC networks, traffic is routed to VPC endpoints automatically if you are using an AWS-
provided domain name system (DNS).

For on-premises networks, you can also route AWS traffic through VPC endpoints if they are
connected to AWS with AWS Direct Connect or a VPN. For services that have AWS PrivateLink
interface endpoints, you can route traffic to those endpoints directly from an on-premises network.
When using Amazon DynamoDB, which only provides a gateway endpoint, you can use a proxy

Resource-based policies 6

https://github.com/aws-samples/data-perimeter-policy-examples/tree/main/service_control_policies
https://github.com/aws-samples/data-perimeter-policy-examples
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://github.com/aws-samples/data-perimeter-policy-examples/tree/main/resource_based_policies
https://github.com/aws-samples/data-perimeter-policy-examples
https://aws.amazon.com/privatelink/
https://d0.awsstatic.com/aws-answers/Accessing_VPC_Endpoints_from_Remote_Networks.pdf

Building A Data Perimeter on AWS AWS Whitepaper

fleet as a way to route traffic from on-premises over that endpoint. For a list of services that
support VPC endpoints and VPC endpoint policies, refer to AWS services that integrate with AWS
PrivateLink.

VPC endpoint policies are primarily going to use the aws:PrincipalOrgId and
aws:PrincipalIsAWSService conditions to achieve only trusted identities and the
aws:ResourceOrgId condition to achieve only trusted resources and manage exceptions required
in the policies. Refer to VPC endpoint policies in the data perimeter policy examples repo for more
details.

Note

For a VPC endpoint policy, it’s important to explicitly specify the AWS organization ID in the
condition. DO NOT use a condition like this:

"Condition": {
 "StringNotEquals": {
 "aws:ResourceOrgId": "${aws:PrincipalOrgId}"
 }
}

If an unintended principal in a different AWS organization tries to access a resource in
their own organization over the VPC endpoint, this condition won’t deny the action
because the values for both keys in the request context, aws:ResourceOrgID and
aws:PrincipalOrgID, will be the unintended principal’s organization ID. This is different
from an SCP because SCPs are only applied to principals that are part of your organization,
but a VPC endpoint policy can apply to any principal. Instead, use a condition like the
following in a VPC endpoint policy:

"Condition": {
 "StringNotEquals": {
 "aws:ResourceOrgId": "<my-org-id>",
 "aws:PrincipalOrgId": "<my-org-id>"
 }
}

VPC endpoint policies 7

https://d0.awsstatic.com/aws-answers/Accessing_VPC_Endpoints_from_Remote_Networks.pdf
https://docs.aws.amazon.com/vpc/latest/privatelink/integrated-services-vpce-list.html
https://docs.aws.amazon.com/vpc/latest/privatelink/integrated-services-vpce-list.html
https://github.com/aws-samples/data-perimeter-policy-examples/tree/main/vpc_endpoint_policies
https://github.com/aws-samples/data-perimeter-policy-examples

Building A Data Perimeter on AWS AWS Whitepaper

Summary

The following table outlines how the different types of policies are used to achieve the perimeter
objectives to support the necessary authorization conditions.

Authorization
condition

Perimeter objective AWS service used Primary IAM
Condition(s) Used

Ensure that my
resources can be
accessed by only
trusted identities.

Resource-based
policies

aws:Princ
ipalOrgId

, aws:Princ
ipalIsAWS
Service

Only trusted
identities

Ensure that only
trusted identities
are allowed from my
networks.

VPC endpoint policies aws:Princ
ipalOrgId

, aws:Princ
ipalIsAWS
Service

Ensure that my
identities can
access only trusted
resources.

SCPs aws:Resou
rceOrgId

Only trusted
resources

Ensure that only
trusted resources can
be accessed from my
networks.

VPC endpoint policies aws:Resou
rceOrgId

Ensure that my
identities can access
resources only from
expected networks.

SCPs aws:Sourc
eIp , aws:Sourc
eVpc , aws:ViaAW
SService

Only expected
networks

Ensure my resources
can only be accessed

Resource-based
policies

aws:Sourc
eIp , aws:Sourc
eVpc , aws:ViaAW

Summary 8

Building A Data Perimeter on AWS AWS Whitepaper

Authorization
condition

Perimeter objective AWS service used Primary IAM
Condition(s) Used

from expected
networks.

SService ,
aws:Princ
ipalIsAWS
Service

Summary 9

Building A Data Perimeter on AWS AWS Whitepaper

Perimeter implementation

This section describes the complete perimeter solution by evaluating each perimeter authorization
condition and how the different policy types are used to achieve it. Each section will describe
the overall solution for that objective, provide links to detailed policy examples, explain how
exceptions can be implemented, and demonstrate how the controls prevent the unintended access
pattern.

Only trusted identities

The objectives for this condition ensure that only my principals can access my resources and only
my principals are allowed from my networks. You'll use resource-based policies and VPC endpoint
policies to constrain which principals are allowed access.

The primary way to ensure IAM principals belong to my AWS is by specifying the
aws:PrincipalOrgId IAM policy condition in those policies. This requires that the principal being
considered during the authorization of access to a resource you own or originating from a network
you own (regardless of the resource owner) belongs to your AWS organization.

You can implement a more granular restriction with the aws:PrincipalAccount or
aws:PrincipalOrgPaths IAM policy conditions as well. To ensure that your resource policies
only allow the intended access, you can use IAM Access Analyzer for supported resources to
identify resource-based policies that are too permissive.

The following diagram demonstrates how these controls prevent unintended principals from
accessing your resources or using your networks.

Only trusted identities 10

https://docs.aws.amazon.com/IAM/latest/UserGuide/what-is-access-analyzer.html

Building A Data Perimeter on AWS AWS Whitepaper

Preventing unintended principals in a resource-based policy and a VPC endpoint policy

In certain cases, AWS services might use an IAM service principal instead of an IAM role to interact
with your resources. A service principal is not part of your AWS organization like IAM roles are.
These are intended actions, but they need to be explicitly allowed in your resource-based policies
and, in some cases, VPC endpoint policies. For example, AWS CloudTrail uses the IAM service
principal cloudtrail.amazonaws.com to deliver logs to your Amazon S3 bucket, which requires
an exception in your Amazon S3 bucket policy. Similarly, when you use a pre-signed URL for
wait condition signaling from a VPC with AWS CloudFormation, you need to create an exception
in your policy to allow it. In Allow statements, the service principal can be listed explicitly.
However, you might also have Deny statements that the service principal needs to be exempt
from. You can’t use a NotPrincipal statement with an AWS service principal; instead, use the
aws:PrincipalIsAWSService condition to exempt service principals from Deny statements.

Refer to the AWS data perimeter policy examples repo for templates and instructions on how to
create the required resource-based policies and VPC endpoint policies to achieve this objective as
well as create any required exceptions. Specifically, look at the example resource-based policies
with "Sid": "EnforceIdentityPerimeter" and the example default VPC endpoint policy.

Only trusted identities 11

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-waitcondition.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-waitcondition.html
https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples/tree/main/resource_based_policies
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/vpc_endpoint_policies/default_endpoint_policy.json

Building A Data Perimeter on AWS AWS Whitepaper

Only trusted resources

The objectives for this condition ensure that my principals can only access my resources and that
access from my networks only targets my resources (regardless of the principal involved). You’ll use
SCPs and VPC endpoint policies to constrain which resources are allowed to be accessed.

The primary way to ensure targeted resources belong to my AWS is by specifying the
aws:ResourceOrgId IAM policy condition in SCPs and VPC endpoint policies. This ensures that
the resource being considered during authorization, either being accessed directly or through a
VPC endpoint, belongs to your AWS organization. The following diagram demonstrates how these
policies prevent access to an unintended resource.

Preventing access to unintended resources with SCPs and VPC endpoint policies

Using VPC endpoint policies in this way can be considered a defense in depth approach. This is
because implementing the controls for the ??? objectives apply a policy on each endpoint that

Only trusted resources 12

Building A Data Perimeter on AWS AWS Whitepaper

ensures only my principals can access resources from my networks. Then, the SCP used for this
objective always applies to these principals to constrain what resources they can access. This
indirectly accomplishes the same outcome as applying an aws:ResourceOrgId condition to your
VPC endpoint policies.

In some cases, you might need to directly access resources outside of my AWS. These could be
Amazon S3 buckets that AWS provides for things like Amazon Linux packages, CloudWatch agent
installation, or public data repositories. They could also be resources like public SSM parameters.
When you use cfn-hup, it supports the on.command hook, which allows you to use Amazon SQS
messages to invoke the cfn-hup actions. This is used by AWS Elastic Beanstalk environments
where the cfn-hup daemon retrieves a AWS CloudFormation specific credential to query an
Amazon SQS queue owned by AWS. Remember that SCPs don’t apply to SLRs or AWS service
principals, so when you need to create exceptions to allow them to access resources from your
VPCs, you’ll need to use VPC endpoint policies. For example, in order to use AWS CloudFormation
wait condition signaling, which uses an Amazon S3 pre-signed URL to a bucket owned by AWS, you
have to create an exception to allow this access in a VPC endpoint policy.

You will need to use SCPs and VPC endpoint policies together to create the necessary exceptions.
In VPC endpoint policies, you can list the trusted resources explicitly in the resource element of an
Allow statement. However, in an SCP, you can only list specific resources in a Deny statement. In
this case, we don’t want to deny the resources; we want to allow them. Instead, you can amend
the trusted resource guardrail SCP that requires aws:ResourceOrgId. This statement can
use a NotAction element to exempt specific actions from meeting the aws:ResourceOrgId
condition. This combined approach allows you to exempt specific actions in your SCPs from the
aws:ResourceOrgId guardrail and ensures that only specific resources can be accessed with
those permissions by explicitly allowing them in a VPC endpoint policy.

In a few other scenarios, you can use services that use your credentials on your behalf to interact
with resources that are not part of your organization. For example, AWS Service Catalog and
AWS Data Exchange will write data to an Amazon S3 bucket that you don’t own. Amazon Athena
can also write data to a bucket you don’t own. In the former cases, AWS owns the buckets those
services store the data in, but in the latter case with Athena, the bucket could be owned by anyone.
For that reason, you might not want to create a broad exception to accessing external resources
with the aws:ViaAWSService condition. Not all of the resources that can be accessed through
an AWS service should be considered a trusted resource. Instead, you can use the aws:CalledVia
condition to explicitly allow services to behave this way.

Only trusted resources 13

https://docs.aws.amazon.com/systems-manager/latest/userguide/parameter-store-public-parameters.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-hup.html
https://aws.amazon.com/athena/

Building A Data Perimeter on AWS AWS Whitepaper

Refer to the AWS data perimeter policy examples repo for templates and instructions on how to
create the required SCPs and VPC endpoint policies to achieve this objective as well as manage any
required exceptions. Specifically look at the resource perimeter policy and the default endpoint
policy.

Only expected networks

This final condition’s objectives ensures that only my networks can be the source of requests from
my principals or to my resources. You’ll use SCPs and resource-based policies to constrain which
networks are allowed for access.

Within an SCP, you can define the expected networks by using an IP address with the
aws:SourceIp IAM policy condition or a VPC identifier with the aws:SourceVpc condition. The
following diagram shows how these policies prevent access from unexpected network locations.

Preventing access from unexpected networks with SCPs and resource-based policies

Only expected networks 14

https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/service_control_policies/resource_perimeter_policy.json
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/vpc_endpoint_policies/default_endpoint_policy.json
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/vpc_endpoint_policies/default_endpoint_policy.json

Building A Data Perimeter on AWS AWS Whitepaper

Applying a similar constraint with a resource-based policy can also be considered a defense in
depth approach. This is because the ??? objectives apply a constraint on each resource-based
policy that ensures only my principals can access those resources. Then, the network boundary
SCP always applies to these principals to constrain the networks they can access resources from.
This indirectly accomplishes the same outcome as applying an aws:SourceIp condition or
aws:SourceVpc condition to your resource-based policies.

There are several scenarios where AWS will act on your behalf with your IAM credentials from
networks that AWS owns that will require exceptions to these policies. For example, you can use
AWS CloudFormation to define a template of resources for which AWS orchestrates the creation,
update, and deletion. The initial request to create a AWS CloudFormation stack will originate from
an expected network, but the subsequent requests for each resource in the template are made
by the AWS CloudFormation service in an AWS network using your credentials or a service role
for AWS CloudFormation that you’ve specified. This situation also occurs when you use Athena to
run queries on CloudTrail logs. The aws:ViaAWSService IAM policy condition provides a way to
implement an exception for some of these common scenarios where your IAM credentials are used
in requests made by AWS on your behalf.

When AWS uses a service principal or SLR to interact with your resources, the source of that
interaction is typically a network owned by AWS. In order to allow this access, you need to create
an exception to the trusted network control in a resource-based policy since SCPs don’t apply
to service principals or SLRs. A typical example of this pattern is CloudTrail log delivery to your
Amazon S3 bucket.

The last consideration in implementing network controls is AWS services that operate in compute
environments that are not part of your network. For example, Lambda functions and SageMaker
Studio Notebooks both provide an option to run in AWS-owned networks.

Some of these services provide a configuration option for running the service in your VPC as well.
If you want to use the same VPC network boundary for these services, you should monitor and,
where possible, enforce it using the VPC configuration.

For example, customers can enforce AWS Lambda function deployments and updates to use
Amazon Virtual Private Cloud (Amazon VPC) settings with IAM condition keys, use AWS Config
Rules to audit this configuration, and then implement remediation with AWS Config Remediation
Actions and AWS Systems Manager Automation documents.

Only expected networks 15

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-servicerole.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-iam-servicerole.html
https://docs.aws.amazon.com/athena/latest/ug/cloudtrail-logs.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html
https://docs.aws.amazon.com/sagemaker/latest/dg/studio-notebooks-and-internet-access.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html#vpc-conditions
https://docs.aws.amazon.com/config/latest/developerguide/lambda-inside-vpc.html
https://docs.aws.amazon.com/config/latest/developerguide/lambda-inside-vpc.html
https://docs.aws.amazon.com/config/latest/developerguide/remediation.html
https://docs.aws.amazon.com/config/latest/developerguide/remediation.html

Building A Data Perimeter on AWS AWS Whitepaper

It is important to note that not all AWS services are hosted as an AWS-owned endpoint authorized
with IAM; for example, Amazon Relational Database Service (Amazon RDS) databases. Instead,
these services expose their data plane inside a customer VPC.

The data plane is the part of the service that provides the day-to-day functionality of that
thing. For MySQL RDS, it would be the IP address of the RDS instance on port 3306. Network
controls such as firewalls or security groups should be used as part of your network boundary to
prevent access to AWS services that are hosted in customer VPCs, but are not authorized with IAM
credentials. Additionally, customers should leverage alternative authentication and authorization
systems to access those services, such as AWS Secrets Manager for Amazon RDS access, when
possible.

Refer to the AWS data perimeter policy examples repo for templates and instructions on how to
create the required SCPs and resource-based policies to achieve this objective as well as create
any required exceptions. Specifically, look at the network perimeter policy, the Amazon S3 bucket
policy statement with “Sid” : “EnforceNetworkPerimeter”, and the data perimeter
governance policy (for preventing non-VPC deployments of Lambda and SageMaker) for details on
how to write policies for this objective as well as manage exceptions.

Mobile devices

In on-premises networks, there are some resources that are physically static, such as servers. Other
resources such as laptops, however, are inherently mobile and can connect to networks outside of
your control.

For example, a laptop could be connected to a corporate network when accessing data, which is
temporarily stored locally, but then joins a public Wi-Fi network and sends the data to a personal
Amazon S3 bucket. This network access pattern could allow access to unintended resources by
bypassing corporate network controls and is a use case that you will need to consider with care.

Customers have generally tried to solve this problem with preventative controls such as always-on
VPNs to keep devices connected to a corporate network. They also use detective controls (including
agents) to monitor traffic and identify when preventative controls are disabled.

However, these controls aren’t fool-proof. There is still some risk that the device could join non-
corporate networks. Virtual Desktop Infrastructure (VDI) is typically implemented when the risk of
being able to operate a device outside of a controlled network is unacceptable and requires forcing
access to AWS resources from non-mobile assets.

Mobile devices 16

https://aws.amazon.com/secrets-manager/
https://github.com/aws-samples/data-perimeter-policy-examples
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/service_control_policies/network_perimeter_policy.json
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/resource_based_policies/s3_bucket_policy.json
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/resource_based_policies/s3_bucket_policy.json
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/service_control_policies/
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/service_control_policies/

Building A Data Perimeter on AWS AWS Whitepaper

Amazon WorkSpaces offers a VDI solution that can be used to require users, developers, and data
scientists to use a static asset to interact with AWS resources that is subject to the same network
controls as other resources in AWS VPCs. VDI solutions can also be operated by customers natively
using Amazon Elastic Compute Cloud (Amazon EC2) instances in a VPC.

Additional considerations

There are a few additional considerations for specific scenarios when building a data perimeter on
AWS.

Amazon S3 resource considerations

Amazon S3 is widely used to store and present publicly available website content and public data
sets. Access to this content is typically performed anonymously, meaning that the HTTP requests
do not have an authorization header or query string parameter generated from AWS credentials.

You might need this anonymous access for users to browse internet websites from VPC networks
or on-premises networks that are routed through VPC endpoints. It is also used for workloads that
might need to access public data (such as package repositories hosted on Amazon S3 or agent
downloads). In order to allow this type of access, you can allow anonymous GetObject API calls in
your VPC endpoint policies. This is true whether the Amazon S3 content is being accessed using the
virtual or path style endpoints or is being accessed via an Amazon S3 website endpoint.

Access to all other Amazon S3 APIs should be authenticated. Refer to the S3 endpoint policy
example, which includes details of how to allow anonymous GetObject API calls while enforcing
authentication and guardrails for intended resources for the remainder of Amazon S3 actions. The
example lists specific AWS resources, but you might also need unauthenticated access to resources
where you do not know the bucket or object names (for example, downloading static content on a
website in your browser). For those scenarios, you might want to use a dedicated Amazon S3 VPC
endpoint that allows unauthenticated GetObject API calls for all Amazon S3 resources that is just
used for networks where you expect this scenario to be required.

Cross-Region requests

VPC endpoints only support routing AWS API calls to service endpoints that are in the same Region
as the VPC endpoint itself. For example, an Amazon S3 VPC endpoint in a VPC in us-east-1 only
supports routing traffic for requests made to Amazon S3 buckets in us-east-1. A call to PutObject
for a bucket in us-west-2 would not traverse the VPC endpoint and would not have the endpoint

Additional considerations 17

https://aws.amazon.com/workspaces/
https://docs.aws.amazon.com/AmazonS3/latest/dev/WebsiteAccessPermissionsReqd.html
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/vpc_endpoint_policies/s3_endpoint_policy.json

Building A Data Perimeter on AWS AWS Whitepaper

policy applied to the request. To ensure the intended security controls are applied consistently, you
can handle cross-Region requests in three ways:

• Prevent cross-Region API calls using a proxy. This does not require inspecting Transport Layer
Security (TLS) and can be done by looking at the hostname in the CONNECT request. You can also
use Server Name Indication (SNI) because the hostname presented in the ClientHello includes
the AWS Region in the domain name of the URL (with the exception of global services).

• Use a centralized VPC endpoint approach for each Region and share Route 53 private hosted
zones (PHZ) for the endpoints. This allows instances to resolve the out-of-Region endpoint
domain name locally and send their request directly to the VPC endpoint. This pattern is
described in more detail in Centralized access to VPC private endpoints.

• If you use HTTP/S proxies in your environment, you can use them to forward out-of-Region
requests. There are two variations for this option:

• Use proxy-chaining - The proxy in the local Region forwards traffic to a peer proxy running in
a VPC in the destination Region. The out-of-Region proxy delivers the traffic to the appropriate
VPC endpoint in its Region. See ??? for an example proxy configuration that implements
this proxy-chaining solution. The following diagram demonstrates a high-level reference
architecture.

Cross-Region requests 18

https://docs.aws.amazon.com/whitepapers/latest/aws-fault-isolation-boundaries/global-services.html
https://docs.aws.amazon.com/whitepapers/latest/building-scalable-secure-multi-vpc-network-infrastructure/centralized-access-to-vpc-private-endpoints.html

Building A Data Perimeter on AWS AWS Whitepaper

Using proxy-chaining to send out-of-Region requests through VPC endpoints

• Implement a centralized VPC endpoint approach using shared Route 53 private hosted
zones - The local proxy uses AWS-provided VPC DNS and sends the request directly to the
out-of-Region VPC endpoint. This eliminates the need to configure proxy-chaining, but does
require the creation of a PHZ for each endpoint that will need to be shared with every VPC
hosting a proxy. Refer to Cross Region endpoint access for more details.

Cross-Region requests 19

https://docs.aws.amazon.com/whitepapers/latest/building-scalable-secure-multi-vpc-network-infrastructure/centralized-access-to-vpc-private-endpoints.html#interface-vpc-endpoints

Building A Data Perimeter on AWS AWS Whitepaper

Forwarding out-of-Region requests using a shared Route 53 PHZ

Preventing access to temporary credentials

Except for the cases of credential theft or leakage, the only other way for an unintended entity to
gain access to temporary credentials derived from IAM roles that are part of my AWS is through
misconfigured IAM role trust policies.

IAM role trust policies define the principals that you trust to assume an IAM role. A role trust policy
is a required resource-based policy that is attached to a role in IAM. The principals that you can
specify in the trust policy include users, roles, accounts, and services.

Preventing access to temporary credentials 20

Building A Data Perimeter on AWS AWS Whitepaper

The trust policy can be configured to help ensure that no one from outside your account or
organization can be authorized to assume the role. Audit all IAM role trust policies and ensure
either of the following are true:

• If the trusted entity is an IAM principal, such as a role or user, the trust policy uses either the
aws:PrincipalOrgId or aws:PrincipalOrgPaths condition. Exceptions can be created with
an allow list of known, external, expected accounts and they should use the sts:ExternalId
condition.

• If the trusted entity is an AWS service, being either a service principal or IAM service-linked role,
as a best practice, the trust policy should not trust more than one AWS service in order to apply
least privilege.

Refer to IAM role trust policy example for more details.

Resource sharing and external targets

The final consideration are services that allow resource sharing or targeting external resources.
With these services, you cannot use a condition such as aws:ResourceOrgId because the
resource being evaluated in the policy belongs to your AWS organization, but its configuration
specifies a resource that does not.

Instead, you will need to use different approaches to prevent sharing resources with AWS accounts
outside of your organization. AWS has several services that allow you to share a resource with
another account or target a resource in another account. Some options include:

• Amazon S3 - Amazon S3 buckets can be made public by using bucket policies or with access
control lists (ACLs). You should disable ACLs and deny ACL updates on your Amazon S3 buckets
and enforce block public access as a best practice.

• Amazon Machine Images (AMI) - AMIs can be shared with other accounts or made public with
the ModifyImageAttribute API. You can deny this action in an SCP and create an exception
for a privileged IAM principal if required.

• Amazon EBS Snapshots - Amazon EBS Snapshots can be shared with other accounts or made
public with the ModifySnapshotAttribute API. You can deny this action in an SCP and create
an exception for a privileged IAM principal if required.

• Amazon RDS Snapshots - Amazon RDS Snapshots can be shared with other accounts or made
public with the ModifyDBSnapshotAttribute API. You can deny this action in an SCP and
create an exception for a privileged IAM principal if required.

Resource sharing and external targets 21

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/resource_based_policies/iam_role_trust_policy.json
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ensure-object-ownership.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/access-control-block-public-access.html

Building A Data Perimeter on AWS AWS Whitepaper

• AWS Resource Access Manager (AWS RAM) - AWS RAM is a service that allows sharing various
types of resources with other AWS accounts. Sharing with AWS RAM can be constrained to your
AWS organization using the ram:RequestedAllowsExternalPrincipals IAM condition.

• Amazon CloudWatch Logs Subscription Filters - You can send CloudWatch Logs to cross
account destinations. You can deny this action in an SCP and create an exception for a privileged
IAM principals using a principal tag.

• Amazon EventBridge Targets - You can add targets to an EventBridge rule that are in different
accounts than the event bus. Use the events:TargetArn IAM condition to limit which accounts
can be used as targets for EventBridge rules or create an exception for privileged IAM principals
using a principal tag.

AWS RAM allows for conditioning on sharing outside of your AWS organization in an SCP. For the
rest of the services, you can use IAM policies to prevent the actions altogether. However, this isn’t
always practical. In these cases, you can either allow just privileged roles to take those actions, or
you can build detective controls and remediate the configuration using services such as AWS Config
or EventBridge.

For example, an EventBridge rule can look for PutSubscriptionFilter events and invoke a
Lambda function to evaluate the destination Amazon Resource Name (ARN) in the subscription. If
the ARN is for a resource not in the AWS organization, the function can remove the subscription.
Refer to data perimeter governancy policy statements PreventRAMExternalResourceShare,
PreventExternalResourceShare, and PreventPublicBucketACL for more detailed
examples of policies you can use to prevent resource sharing and create required exceptions.

AWS Management Console

The AWS Management Console can be configured to use a Private Access option. This capability
allows you to prevent users from signing in to unintended AWS accounts from within your network.
You can use it to limit access to the management console to only a specified set of AWS accounts
or organizations. AWS Management Console Private Access helps ensure only trusted identities
are allowed from your expected networks. Refer to the documentation for supported AWS
Regions, service consoles, and features. Instructions for implementing VPC endpoint policies with
the aws:PrincipalOrgID condition to enforce only trusted identities and considerations for
enforcing only expected networks with aws:SourceVpc can also be found in the documentation.

AWS Management Console 22

https://github.com/aws-samples/data-perimeter-policy-examples/blob/main/service_control_policies/
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/console-private-access.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/console-private-access.html#supported-regions-consoles
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/console-private-access.html#supported-regions-consoles
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/implementing-console-private-access-policies.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/identity-other-policy-types.html
https://docs.aws.amazon.com/awsconsolehelpdocs/latest/gsg/identity-other-policy-types.html

Building A Data Perimeter on AWS AWS Whitepaper

Conclusion

This paper has reviewed how to implement a data perimeter on AWS using SCPs, resource-based
policies, and VPC endpoint policies. These controls are used to ensure Only Trusted Identities,
Only Trusted Resources, and Only Expected Networks are allowed access to my AWS.

The following is a list of the recommendations made throughout this paper as part of achieving the
perimeter’s six objectives.

• Use the aws:PrincipalOrgId condition in resource-based policies and VPC endpoint policies
to help prevent unintended principals. Use the aws:PrincipalIsAWSService condition to
create exceptions in resource-based policies and VPC endpoint policies for AWS services.

• Use the aws:ResourceOrgId condition in SCPs to help prevent your IAM principals from
accessing unintended resources. Additionally, add this condition to your VPC endpoint policies
as a defense in depth approach. Create exceptions using a NotAction list in your SCPs and list
explicit resources that should be trusted in your VPC endpoint policies. Use the aws:CalledVia
condition to allow specific AWS services to access resources you don’t own.

• Use an SCP to prevent access from unexpected network locations. Additionally, add similar
policy statements to your resource-based policies as a defense in depth approach. Use the
aws:ViaAWSService condition to create exceptions when AWS acts on your behalf using your
credentials.

• Audit all resource-based policies and VPC endpoint policies to ensure that guardrail controls are
applied to help prevent misconfiguration. Use IAM Access Analyzer to review resource-based
policy configuration.

• Block all outbound internet access, except for required AWS endpoints and allowed external
services that are dependencies for your workloads. This prevents data movement to non-AWS
destinations, out-of-Region AWS endpoints, and unintended VPC hosted data plane services (like
Amazon RDS instances).

• Route out-of-Region requests through VPC endpoints so that the network boundary controls are
consistently applied.

• Where AWS provides an option to run a resource publicly or inside a customer-owned VPC, use
the VPC configuration (that is, Amazon OpenSearch Service (OpenSearch Service), Amazon
SageMaker notebooks, and AWS Lambda) and turn off the public access options (for example,
Amazon Redshift and Amazon RDS) in order to use network controls.

23

https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/lambda
https://aws.amazon.com/redshift

Building A Data Perimeter on AWS AWS Whitepaper

• Configure IAM Role Trust Policies with condition statements, limiting access to only intended
principals when the trusted entity is an IAM principal (as opposed to an AWS service principal).

• Prevent external resource sharing and targeting external resources with an SCP.

• Use the AWS Management Console Private Access feature to help ensure users can only access
intended AWS accounts and organizations from your expected networks.

24

Building A Data Perimeter on AWS AWS Whitepaper

Appendix A – Proxy configuration example

The following configuration is for a Squid-based proxy running in us-east-1 with peers in us-west-2
and eu-west-1. It denies all other traffic for the amazonaws.com domain, but allows all other
domains to be forwarded normally. This configuration will need to be kept up to date with global
AWS services that do not use a Region name in their domain name.

 cache_effective_user squid
prefer_direct off
nonhierarchical_direct off

Define acls for local networks that are forwarding here
acl rfc_1918 src 10.0.0.0/8 # RFC1918 possible internal network
acl rfc_1918 src 172.16.0.0/12 # RFC1918 possible internal network
acl rfc_1918 src 192.168.0.0/16 # RFC1918 possible internal network
acl localnet src fc00::/7 # RFC 4193 local private network range
acl localnet src fe80::/10 # RFC 4291 link-local (directly plugged) machines
acl localnet src 127.0.0.1 # localhost loopback

Additional ACLs
acl ssl_ports port 443 # ssl
acl safe_ports port 80 # http
acl safe_ports port 21 # ftp
acl safe_ports port 443 # https
acl safe_ports port 70 # gopher
acl safe_ports port 210 # wais
acl safe_ports port 1025-65535 # unregistered ports
acl safe_ports port 280 # http-mgmt
acl safe_ports port 488 # gss-http
acl safe_ports port 591 # filemaker
acl safe_ports port 777 # multiling http
acl CONNECT method CONNECT

Define acls for amazonaws.com
acl aws_domain dstdomain .amazonaws.com
acl us_east_1 dstdomain .s3.amazonaws.com
acl us_east_1 dstdomain .sts.amazonaws.com
acl us_east_1 dstdomain .cloudfront.amazonaws.com
acl us_west_2 dstdomain .globalaccelerator.amazonaws.com
acl us_east_1 dstdomain .iam.amazonaws.com
acl us_east_1 dstdomain .route53.amazonaws.com

25

Building A Data Perimeter on AWS AWS Whitepaper

acl us_east_1 dstdomain .queue.amazonaws.com
acl us_east_1 dstdomain .sdb.amazonaws.com
acl us_east_1 dstdomain .waf.amazonaws.com
acl us_east_1 dstdomain .us-east-1.amazonaws.com
acl us_east_2 dstdomain .us-east-2.amazonaws.com
acl us_west_2 dstdomain .us-west-2.amazonaws.com
acl eu_west_1 dstdomain .eu-west-1.amazonaws.com
acl us_east_1_alt dstdom_regex \.us-east-1\..*?\.amazonaws.com
acl us_east_2_alt dstdom_regex \.us-east-2\..*?\.amazonaws.com
acl us_west_2_alt dstdom_regex \.us-west-2\..*?\.amazonaws.com
acl eu_west_1_alt dstdom_regex \.eu-west-1\..*?\.amazonaws.com

Deny access to anything other than SSL
http_access deny !safe_ports
http_access deny CONNECT !ssl_ports

Now specify the cache peer for each Region
never_direct allow us_east_2
never_direct allow us_east_2_alt
never_direct allow us_west_2
never_direct allow us_west_2_alt
never_direct allow eu_west_1
never_direct allow eu_west_1_alt
cache_peer us-east-2.proxy.local parent 3128 0 no-query proxy-only name=cmh
cache_peer_access cmh allow us_east_2
cache_peer_access cmh allow us_east_2_alt
cache_peer us-west-2.proxy.local parent 3128 0 no-query proxy-only name=pdx
cache_peer_access pdx allow us_west_2
cache_peer_access pdx allow us_west_2_alt
cache_peer eu-west-1.proxy.local parent 3128 0 no-query proxy-only name=dub
cache_peer_access dub allow eu_west_1
cache_peer_access dub allow eu_west_1_alt

Only allow cachemgr access from localhost
http_access allow localhost manager
http_access deny manager

Explicitly allow approved AWS Regions so we can block
all other Regions using .amazonaws.com below
http_access allow rfc_1918 us_east_1
http_access allow rfc_1918 us_east_2
http_access allow rfc_1918 us_west_2
http_access allow rfc_1918 eu_west_1
http_access allow rfc_1918 us_east_1_alt

26

Building A Data Perimeter on AWS AWS Whitepaper

http_access allow rfc_1918 us_east_2_alt
http_access allow rfc_1918 us_west_2_alt
http_access allow rfc_1918 eu_west_1_alt

Block all other AWS Regions
http_access deny aws_domain

Allow all other access from local networks
http_access allow rfc_1918
http_access allow localnet

Finally deny all other access to the proxy
http_access deny all

Listen on 3128
http_port 3128

Logging
access_log stdio:/var/log/squid/access.log
strip_query_terms off
logfile_rotate 1

Turn off caching
cache deny all

Enable the X-Forwarded-For header
forwarded_for on

Suppress sending squid version information
httpd_suppress_version_string on

How long to wait when shutting down squid
shutdown_lifetime 30 seconds

Hostname
visible_hostname aws_proxy

Prefer ipv4 over v6
dns_v4_first on

27

Building A Data Perimeter on AWS AWS Whitepaper

Contributors

Contributors to this document include:

• Michael Haken, Principal Solutions Architect, Amazon Web Services

28

Building A Data Perimeter on AWS AWS Whitepaper

Further reading

For additional information, refer to:

• Data perimeter on AWS

• Blog - Establishing a data perimeter on AWS: Overview

• Blog - Establishing a data perimeter on AWS: Allow only trusted identities to access company
data

• Blog - IAM makes it easier for you to manage permissions for AWS services accessing your
resources

• Data Perimeter Workshop

• Data Perimeter Policy Examples

• Centralized access to VPC private endpoints

29

https://aws.amazon.com/identity/data-perimeters-on-aws/
https://aws.amazon.com/blogs/security/establishing-a-data-perimeter-on-aws/
https://aws.amazon.com/blogs/security/establishing-a-data-perimeter-on-aws-allow-only-trusted-identities-to-access-company-data/
https://aws.amazon.com/blogs/security/establishing-a-data-perimeter-on-aws-allow-only-trusted-identities-to-access-company-data/
https://aws.amazon.com/blogs/security/iam-makes-it-easier-to-manage-permissions-for-aws-services-accessing-resources/
https://aws.amazon.com/blogs/security/iam-makes-it-easier-to-manage-permissions-for-aws-services-accessing-resources/
https://catalog.us-east-1.prod.workshops.aws/v2/workshops/a11f0f32-cc23-4c95-b243-43c53bdc7177/en-US/
https://github.com/aws-samples/data-perimeter-policy-examples
https://docs.aws.amazon.com/whitepapers/latest/building-scalable-secure-multi-vpc-network-infrastructure/centralized-access-to-vpc-private-endpoints.html

Building A Data Perimeter on AWS AWS Whitepaper

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated to centralize all
policy examples in the AWS
policy example repo

June 12, 2023

Whitepaper updated Updated to add guidance for
using aws:ResourceOrgId ,
added additional policy
examples, and organizational
updates

April 26, 2022

Whitepaper updated Content and policy example
updates

September 8, 2021

Initial publication Whitepaper first published July 1, 2021

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser that
you are using.

30

Building A Data Perimeter on AWS AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2023 Amazon Web Services, Inc. or its affiliates. All rights reserved.

31

Building A Data Perimeter on AWS AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

32

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Building A Data Perimeter on AWS
	Table of Contents
	Building a Data Perimeter on AWS
	Are you Well-Architected?
	Introduction

	Perimeter overview
	Perimeter objectives
	AWS services
	Service control policies
	Resource-based policies
	VPC endpoint policies
	Summary

	Perimeter implementation
	Only trusted identities
	Only trusted resources
	Only expected networks
	Mobile devices

	Additional considerations
	Amazon S3 resource considerations
	Cross-Region requests
	Preventing access to temporary credentials
	Resource sharing and external targets
	AWS Management Console

	Conclusion
	Appendix A – Proxy configuration example
	Contributors
	Further reading
	Document history
	Notices
	AWS Glossary

