
AWS Whitepaper

Choosing an AWS NoSQL Database

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Choosing an AWS NoSQL Database AWS Whitepaper

Choosing an AWS NoSQL Database: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Choosing an AWS NoSQL Database AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Introduction ... 1
Are you Well-Architected? .. 2

Types of NoSQL databases ... 3
Understanding Amazon NoSQL data stores ... 8

Amazon DynamoDB .. 11
Amazon Keyspaces (for Apache Cassandra) .. 12
Amazon Neptune .. 13
Amazon Timestream .. 13
Amazon ElastiCache ... 14
Amazon DocumentDB .. 14
Amazon MemoryDB for Redis .. 15

Decision making .. 17
Considerations ... 20

Best practices and limitations ... 20
Some customer journeys and lessons learned ... 20
References .. 21

Developer references .. 21
Training and guidance ... 22

Conclusion .. 23
Contributors ... 24
Document revisions ... 25
Notices .. 26
AWS Glossary ... 27

iii

Choosing an AWS NoSQL Database AWS Whitepaper

Choosing an AWS NoSQL Database

Publication date: April 25, 2023 (Document revisions)

Over the past decade, modern applications have started using NoSQL databases to manage the
three Vs commonly associated with Big Data applications:

• Volume — Amount of data

• Velocity — Speed with which data is generated

• Variety — Structured and unstructured data generated by humans or machines

NoSQL does not describe one single technology. it is a variety of non-relational technologies
and architectures aiming to address the challenges of new use cases. Some of the popular types
of NoSQL databases include key-value, document, graph, and wide-column. These databases
are becoming more popular as organizations create larger volumes and a greater variety of
unstructured data.

NoSQL databases help developers manage the challenge of ever-expanding diversity of data types
and data models, and are highly effective at handling unpredictable data, often with faster query
speeds. Different NoSQL database options are available, and finding the right NoSQL database
remains challenging because there are many options with varying architectures.

To help navigate the selection process, this whitepaper provides guidance on selecting the right
NoSQL database for specific use cases. It is intended for cloud architects, database architects and
application developers building modern applications on AWS and considering using a NoSQL
database.

Introduction

For decades, the predominant data model used for application development was relational
databases. The relational model has been the mainstay of data storage systems since its inception
by Edgar F. Codd in 1969. Commercially, vendors such as IBM, Oracle, and Microsoft have had
tremendous success with their database products, which are all based on the relational model.

The amount of data that exists today is growing at an unprecedented rate, and this has put an
increasing amount of pressure on the database systems that are tasked with storing and managing
this data. Modern business systems manage increasingly large volumes of heterogeneous data. This

Introduction 1

Choosing an AWS NoSQL Database AWS Whitepaper

is driven in part by the adoption of microservices, the Internet of Things (IoT), the amount and size
of the data being captured, and the requirements for many types of specialized analytics.

To address these challenges, NoSQL databases have gained increased acceptance when developing
modern business systems. NoSQL databases are purpose-built for specific data models, and allow
for flexible schemas to meet these modern storage and heterogeneous data requirements.

At AWS, we recognize that different NoSQL database technologies solve different problems.
Consider this AWS Bookstore Demo Application as an example. It contains multiple experiences
such a shopping cart, product search, recommendations, and a “top sellers” list.

For each of these use cases, the app makes use of a purpose-built database, so the developer never
has to compromise on functionality, performance, or scale. However, selecting the right NoSQL
database can be a complex and challenging process due to the different types of NoSQL databases
available, each with its own strengths and weaknesses.

To make an informed decision, it is important to consider several key factors, including the data
model, scalability, consistency, availability, and durability. This whitepaper provides guidance on
selecting the right NoSQL database for specific use cases by offering a detailed comparison of
the five most common AWS noSQL databases and their features, insights into the strengths and
limitations of different databases, understand their use cases, and use the decision framework to
make an informed decision on which database to choose based on your specific needs.

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems.

Using the AWS Well-Architected Tool, available at no charge in the AWS Management Console, you
can review your workloads against these best practices by answering a set of questions for each
pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Are you Well-Architected? 2

https://github.com/aws-samples/aws-bookstore-demo-app
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/

Choosing an AWS NoSQL Database AWS Whitepaper

Types of NoSQL databases

To support specific needs and use cases, NoSQL databases use a variety of data models for
managing and accessing the data. The following section describes some of the common NoSQL
database categories:

• Key-value pair

• Document-oriented

• Column-oriented

• Graph-based

• Time series

These types of databases are optimized specifically for applications that need large data volumes,
flexible data models, and low latency. To achieve these objectives, NoSQL databases employ
various techniques, and it's important to note that not all database options prioritize the same set
of factors that are mentioned here:

• Consistency

• Atomicity, Consistency, Isolation, and Durability (ACID) transactions

• Query language and data access richness (simplified Create, Read, Update, and Delete (CRUD)-
style operations with known predictable cost)

• Sharding/partitioning of data sets on primary identifier keys

• Shifting the burden of data and schema validation to the application (removing referential
integrity enforcement by the database and so on)

Here’s a brief overview of most popular NoSQL data models.

1. Key-value — A key-value data store is a type of database that stores data as a collection of key-
value pairs. In this type of data store, each data item is identified by a unique key, and the value
associated with that key can be anything, such as a string, number, object, or even another data
structure.

3

https://www.databricks.com/glossary/acid-transactions
https://nordicapis.com/crud-vs-rest-whats-the-difference/
https://nordicapis.com/crud-vs-rest-whats-the-difference/
https://hazelcast.com/glossary/sharding/
https://aws.amazon.com/nosql/key-value/

Choosing an AWS NoSQL Database AWS Whitepaper

An example of data stored as key-value pairs.

AWS offers Amazon DynamoDB as a key-value managed database service.

2. Document — In a document database, the data is stored in documents. Each document is
typically a nested structure of keys and values. The values can be atomic data types, or complex
elements such as lists, arrays, nested objects, or child collections (for example, a collection in
the document database is analogous to a table in a relational database, except there is no single
schema enforced upon all documents).

Documents are retrieved by unique keys. It may also be possible to retrieve only parts of a
document--for example, the cost of an item--to run queries such as aggregation, querying using
examples based on a text string, or even full-text search. Most document databases also allow
you to define secondary indexes.

You can transfer the application code object model directly into a document using several
different formats. The most commonly used are JavaScript Object Notation (JSON), Binary
JavaScript Object Notation (BSON), and Extensible Markup Language (XML).

4

https://aws.amazon.com/dynamodb/
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/XML

Choosing an AWS NoSQL Database AWS Whitepaper

An example of a document data model

AWS offers a specialized document database service called Amazon DocumentDB (with
MongoDB compatibility).

3. Wide-column — A wide column data store is a type of NoSQL database that stores data in
columns rather than rows, making it highly scalable and flexible. In a wide column data store,
data is organized into column families, which are groups of columns that share the same
attributes. Each row in a wide column data store is identified by a unique row key, and the
columns in that row are further divided into column names and values.

Unlike traditional relational databases, which have a fixed number of columns and data types,
wide column data stores allow for a variable number of columns and support multiple data
types. The most significant benefit of having column-oriented databases is that you can store

5

https://aws.amazon.com/documentdb/
https://aws.amazon.com/documentdb/
https://www.scylladb.com/glossary/wide-column-database/

Choosing an AWS NoSQL Database AWS Whitepaper

large amounts of data within a single column. This feature allows you to reduce disk resources
and the time it takes to retrieve information from it.

An example of the kind of data you might store in a wide-column data store

AWS offers Amazon Keyspaces (for Apache Cassandra) as a wide-column managed database
service.

4. Graph — Graph databases are used to store and query highly connected data. Data can be
modeled in the form of entities (also referred to as nodes, or vertices) and the relationships
between those entities (also referred to as edges). The strength or nature of the relationships
also carry significant meaning in graph databases.

Users can then traverse the graph structure by starting at a defined set of nodes or edges and
travel across the graph, along defined relationship types or strengths, until they reach some
defined condition. Results can be returned in the form of literals, lists, maps, or graph traversal
paths. Graph databases provide a set of query languages that contain syntax designed for
traversing a graph structure, or matching a certain structural pattern.

6

https://aws.amazon.com/keyspaces/
https://aws.amazon.com/nosql/graph/

Choosing an AWS NoSQL Database AWS Whitepaper

An example of a social network graph. Given the people (nodes) and their relationships (edges), you
can find out who the "friends of friends" of a particular person are—for example, the friends of
Howard's friends.

AWS offers Amazon Neptune as a managed graph database service.

5. Time series — A time series database is designed to store and retrieve data records that are
sequenced by time, which are sets of data points that are associated with timestamps and stored
in time sequence order. Time series databases make it easy to measure how measurements or

7

https://aws.amazon.com/neptune/
https://www.influxdata.com/time-series-database/

Choosing an AWS NoSQL Database AWS Whitepaper

events change over time; for example, temperature readings from weather sensors or intraday
stock prices.

An example of a series data model

AWS offers Amazon Timestream as a managed time series database service.

Understanding Amazon NoSQL data stores

AWS provides the broadest selection of managed NoSQL databases, allowing you to save, grow,
and innovate faster. With Amazon NoSQL databases, you get high performance, enterprise-grade
security, automatic, and instant scalability. The following table lists some of the AWS managed
NoSQL database services offered, and their key characteristics:

Table 1 — AWS database service comparison

AWS database service Use cases Strengths Security Performance Cross-Region resiliency

Amazon DocumentD
B (with MongoDB
compatibility)*

User profile/personaliz
ation, catalogs, mobile,
and content managemen

Flexible schema and
indexing, ad hoc queries
on any attributes,

Capability to enable data
encryption at rest and in
transit

Millions of requests per
second with millisecond
latency

DocumentDB Global
clusters

Understanding Amazon NoSQL data stores 8

https://aws.amazon.com/timestream/

Choosing an AWS NoSQL Database AWS Whitepaper

AWS database service Use cases Strengths Security Performance Cross-Region resiliency

• Mid TB range

• Data format: JSCO,
BSON, XML

• NoSQL type: document

• Consistency: strong/ev
entual

t, retail and marketing
(for example, tracking
customers who purchase
similar items)

including nested attribute
s

Amazon DynamoDB*

• High TB range

• Data format: JSON,
BSON, or XML

• NoSQL type: key-value
, document

• Consistency: strong/ev
entual

• User preferences

• Session management

• Shopping cart

• Product catalog

• High-traffic web apps

• Near real-time bidding

• Performance at scale

• Serverless

• Simple data model

Encrypts all data at rest by
default, row/column level
security

Single digit milliseco
nd at any scale, In-
memory acceleration with
DynamoDB (DAX) for low
latency access to eventuall
y consistent data

Global tables

Amazon Keyspaces (for
Apache Cassandra)

• Data format: JSON

• NoSQL type: wide
column

• Consistency: one,
local_one, local-quo
rum

High scalable apps for:

• Equipment maintenance

• Fleet management

• Route optimization

• Extreme write speeds
with relatively less
velocity reads

• Being serverless,
allocates storage and
read/write throughput
directly to tables

• Tables are encrypted by
default

• Capability to enable data
encryption at rest and in
transit

Single digit millisecond
response at any scale

Multi-Region Replication

Understanding Amazon NoSQL data stores 9

https://docs.aws.amazon.com/keyspaces/latest/devguide/multiRegion-replication.html

Choosing an AWS NoSQL Database AWS Whitepaper

AWS database service Use cases Strengths Security Performance Cross-Region resiliency

Amazon Neptune*

• Mid TB range

• Data format: Germalin,
RDF, open Cypher

• NoSQL type: graph

• Consistency:
immediate consistency

• Recommendations

• Social patterns

• relationship traversal

• Fraud detection

• Risk assessment

• Highly connected
data is locally indexed
and purpose-built to
answer questions about
relationships

• Optimized for efficient
storage and retrieval

Capability to enable data
encryption at rest and in
transit

High throughput, low
latency

• Cross-Region snapshot

• Neptune streams to
replicate data between
cross-Region clusters

Amazon Timestream*

• NoSQL type: TimeSerie
s

• Consistency: eventual

• Server metrics

• Application performance
monitoring

• Network data

• IoT apps

• Sensor data

• Events

• Clicks

• Financial forecasting

• Many other types of
analytics data

Analytics over time series
data

Encrypts all data by
default

Capable of ingesting
trillions of events daily.
The adaptive SQL query
engine provides rapid
point-in-time queries with
its in-memory store, and
fast analytical queries
through its magnetic store

Cross-Region backup

Amazon ElastiCache for
Memcached

• Low TB range

• NoSQL type: in-
memory, key-value

• Caching repeat requests

• Sticky sessions (to store
session state)

• Simple caching model

• Multi-threaded
performance

Capability to enable data
encryption at rest and in
transit

Sub-millisecond response
time

N/A

Understanding Amazon NoSQL data stores 10

Choosing an AWS NoSQL Database AWS Whitepaper

AWS database service Use cases Strengths Security Performance Cross-Region resiliency

Amazon ElastiCache for
Redis

• Low TB range

• NoSQL type: in-
memory, key-value

• Gaming leaderboards

• Geospatial applications

• Complex data structure
s

• Sorting and ranking

• Pub/sub messaging

• Geospatial capabilities

Capability to enable data
encryption at rest and in
transit

Sub-millisecond response
time

Global datastores

Amazon MemoryDB for
Redis

• NoSQL type: in-
memory, database

• Consistency: strong/ev
entual

• High concurrency

• Streaming media

• Data feeds

• Durable database

• Complex data structure
s

Capability to enable data
encryption at rest and in
transit

Microsecond read and
single-digit millisecond
write latency

Cross-Region snapshot

* ACID compliant

NoSQL databases

• Amazon DynamoDB

• Amazon Keyspaces (for Apache Cassandra)

• Amazon Neptune

• Amazon Timestream

• Amazon ElastiCache

• Amazon DocumentDB (with MongoDB compatibility)

• Amazon MemoryDB for Redis

Amazon DynamoDB

Amazon DynamoDB is a fully managed NoSQL database service. Some key capabilities of
DynamoDB include:

• High performance — Designed to provide single-digit millisecond latency for read and write
operations at any scale.

Amazon DynamoDB 11

https://aws.amazon.com/dynamodb/

Choosing an AWS NoSQL Database AWS Whitepaper

• Scalability — The ability to automatically scale throughput capacity in response to demand, so
you can start small and scale as needed.

• Flexibility — Supports both document and key-value data models, and provides rich data types
such as lists and maps, making it easy to store any type of data.

• Durability — Provides consistent, single-digit millisecond performance for read and write
operations, even in the face of hardware failures.

• Global tables — DynamoDB global tables provides multi-Region data replication which makes it
easy to build globally distributed applications.

• Integrations — Integration with other AWS services such as AWS Lambda, Amazon Simple
Storage Service (Amazon S3), Amazon DynamoDB Streams, and Amazon Kinesis, making it
easy to build serverless and data-driven applications. Amazon DynamoDB integrates with
Amazon CloudWatch Contributor Insights to provide information about the most accessed and
throttled items in a table or index. DynamoDB delivers this information to you using CloudWatch
Contributor Insights rules, reports, and graphs of report data.

Amazon Keyspaces (for Apache Cassandra)

Amazon Keyspaces (for Apache Cassandra) (Amazon Keyspaces) is a fully managed, Apache
Cassandra-compatible database service. Some key features of Amazon Keyspaces include:

• Apache Cassandra compatibility ‑— Full compatibility with Cassandra, allowing you to use your
existing Cassandra applications and tools with minimal changes.

• Scalability — Designed to handle millions of requests per second and terabytes of data, making
it suitable for high-scale applications.

• Serverless — Instead of deploying, managing, and maintaining storage and compute resources
for your workload through nodes in a cluster, Amazon Keyspaces allocates storage and read/
write throughput resources directly to tables.

• Global distribution — Supports global distribution of data, allowing you to store and access
data from multiple Regions, reducing latency and improving application performance.

• Monitoring and management — Provides an easy-to-use, web-based console for monitoring
and managing your database, as well as integration with Amazon CloudWatch for metrics and
alerts.

• Integration with other AWS services — Integration with other AWS services such as Amazon S3,
Amazon Redshift, and Amazon EMR, making it easy to build data-driven applications.

Amazon Keyspaces (for Apache Cassandra) 12

https://aws.amazon.com/dynamodb/global-tables/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://aws.amazon.com/kinesis/
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/ContributorInsights.html
https://aws.amazon.com/keyspaces/
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/pm/redshift
https://aws.amazon.com/emr/

Choosing an AWS NoSQL Database AWS Whitepaper

• Highly available and secure — Data is replicated automatically across multiple AWS Availability
Zones using a replication factor of three. Amazon Keyspaces encrypts all customer data at rest by
default, and is integrated with AWS IAM to help you manage access to your tables and data.

Amazon Neptune

Amazon Neptune is a fully managed graph database service. Neptune makes it easy to build and
run applications that work with highly connected datasets, including for ID, graph/C360, security,
fraud, and knowledge graph applications. Some key features of Amazon Neptune include:

• High performance — Provides low-latency and high-throughput performance for both read and
write operations, making it suitable for real-time applications.

• Scalability — Neptune can handle billions of vertices and edges, and is designed to
automatically scale to meet the demands of your application.

• Compatibility — Supports the popular graph query languages, including Apache TinkerPop
Gremlin and SPARQL, making it easy to use with existing applications and tools.

• Durability — Automatically replicates data across multiple Availability Zones (AZs) for high
availability (HA) and data durability.

• Integration with other AWS services — Integration with other AWS services such as Amazon
S3, Amazon OpenSearch Service, and Amazon SageMaker, making it easy to build data-driven
applications.

• Management and monitoring — Provides an easy-to-use, web-based console for monitoring
and managing your database, as well as integration with Amazon CloudWatch for metrics and
alerts.

Amazon Timestream

Amazon Timestream is a managed time series database. It is specifically designed to handle time-
stamped data, such as IoT device data and operational logs, and provides a fast, scalable and cost-
effective way to store and analyze large amounts of time series data.

Some of the key features of Amazon Timestream include:

• Scalable storage — Automatically scales storage as your data grows, so you don’t have to worry
about running out of space.

Amazon Neptune 13

https://aws.amazon.com/neptune/
https://www.c360live.com/
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html
https://www.ontotext.com/knowledgehub/fundamentals/what-is-sparql/
https://aws.amazon.com/about-aws/global-infrastructure/regions_az/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/sagemaker/
https://aws.amazon.com/timestream/

Choosing an AWS NoSQL Database AWS Whitepaper

• Fast querying — Provides fast and efficient querying of your time series data, allowing you to
quickly and easily analyze your data.

• Integrations — Integration with other AWS services, such as Amazon Kinesis, Amazon S3, and
Amazon QuickSight, making it easy to collect, store and analyze your data.

• Cost-effective — Provides cost-effective storage and analysis of your time series data, with the
ability to choose between standard and memory-optimized performance tiers.

Amazon ElastiCache

Amazon ElastiCache is a web service that makes it easy to deploy, operate, and scale an in-memory
cache in the cloud. It provides a simple way to cache frequently-used data in memory, reducing
the need to repeatedly fetch this data from a slower disk-based data store such as a relational
database.

ElastiCache supports two popular in-memory cache engines: Memcached and Redis. These engines
can be used to significantly improve the performance of web applications, mobile apps, gaming
platforms

Some of the key features of Amazon ElastiCache include:

• Easy setup —Providing a simple, one-click setup process, making it easy to get started with in-
memory caching.

• Scalable performance —Automatically scales cache nodes as your application's needs change, so
you can easily adjust cache performance to meet the demands of your application.

• High availability —Provides built-in replication and failover capabilities, ensuring high
availability and durability of your cache data.

• Integrations —integration with other AWS services, such as Amazon Elastic Compute Cloud
(Amazon EC2), Amazon Relational Database Service (Amazon RDS), and Amazon S3, making it
easy to use caching in your overall application architecture.

Amazon DocumentDB (with MongoDB compatibility)

Amazon DocumentDB (with MongoDB compatibility) (Amazon DocumentDB) is a fully managed,
scalable, and highly available document database service. It is designed to be compatible with
the MongoDB API, allowing you to use existing MongoDB applications and tools with Amazon
DocumentDB.

Amazon ElastiCache 14

https://aws.amazon.com/quicksight/
https://aws.amazon.com/elasticache/
https://memcached.org/
https://redis.io/
https://aws.amazon.com/ec2/
https://aws.amazon.com/rds/
https://aws.amazon.com/documentdb/
https://www.mongodb.com/

Choosing an AWS NoSQL Database AWS Whitepaper

DocumentDB supports a range of use cases, such as content management systems, e-commerce
applications, and mobile backends. It allows you to store and retrieve JSON-like documents, with
support for complex queries, indexing, and aggregation. It also supports transactions, allowing you
to group multiple write operations into a single atomic unit of work.

Some of the key features of Amazon DocumentDB include:

• Compatibility — DocumentDB is compatible with existing MongoDB drivers and tools, and
applications can be used with DocumentDB with little or no change.

• Scalability — DocumentDB Elastic Clusters scale within minutes to handle millions of reads and
writes with petabytes of storage capacity, helping you cost-effectively meet the needs of your
most demanding document workloads.

• Flexibility — Supports a flexible data model that allows you to store and retrieve JSON-like
documents with varying structure and complexity. This makes it well-suited for a wide range of
use cases, such as content management, user profiles, product catalogs, and more.

• Durability — Designed to provide high durability and availability for your data. It provides
automatic backup and recovery, point-in-time recovery, and data replication across multiple
Availability Zones for high availability and disaster recovery (DR). DocumentDB automatically
backs up your data and transaction logs to Amazon S3, which is designed for 99.999999999%
durability. This helps ensure that your data is protected against data loss or corruption, even in
the event of a disaster or outage.

• Global clusters — DocumentDB global clusters provides disaster recovery from Region-wide
outages and enables low-latency global reads.

• Integration with other AWS services — You can integrate with AWS Glue to import and export
data from and to DocumentDB to other AWS services such as Amazon S3, Amazon Redshift,
and Amazon OpenSearch Service.

Amazon MemoryDB for Redis

Amazon MemoryDB for Redis (MemoryDB) is a fully managed, in-memory database service. It
is designed to provide high performance and low latency for applications that require fast and
frequent access to data.

Some of the key features of MemoryDB include:

• Compatibility — Compatibility with Redis, an open-source, in-memory data store that is widely
used for caching, near real-time analytics, and other high-performance applications. MemoryDB

Amazon MemoryDB for Redis 15

https://docs.aws.amazon.com/documentdb/latest/developerguide/docdb-using-elastic-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
https://aws.amazon.com/glue/
https://aws.amazon.com/s3/
https://aws.amazon.com/redshift/
https://aws.amazon.com/opensearch-service/
https://aws.amazon.com/memorydb/

Choosing an AWS NoSQL Database AWS Whitepaper

supports the same set of Redis data types and parameters, and requires no code change to
migrate from Redis.

• Scalability — Designed to be highly available and durable, with automatic failover and data
replication across multiple Availability Zones for high availability and disaster recovery.

• Data durability — Data is stored across multiple Availability Zones, while ensuring single-digit
millisecond response using AWS proprietary architecture design.

• Support for security features such as Amazon Virtual Private Cloud (Amazon VPC), encryption
with AWS Key Management Service (AWS KMS), and authentication and authorization with Redis
ACLs.

• Flexibility — Provides a number of features and capabilities to help you optimize your
application's performance, including read and write replicas, Multi-AZ deployments, automatic
scaling, and flexible pricing options based on usage. MemoryDB is well-suited for a wide range of
use cases, including caching, near real-time analytics, and session stores. It is particularly useful
for applications that require fast and frequent access to data, such as gaming, e-commerce, and
advertising.

Amazon NoSQL databases integrate with AWS Identity and Access Management (AWS IAM) for
access control and security. IAM allows you to manage access to your NoSQL databases by creating
policies that define permissions for specific users, groups, or roles. You can use IAM to control
access to specific tables or resources within your NoSQL databases, as well as to enforce fine-
grained permissions for read and write operations.

Amazon MemoryDB for Redis 16

https://aws.amazon.com/vpc/
https://aws.amazon.com/kms/
https://aws.amazon.com/iam/

Choosing an AWS NoSQL Database AWS Whitepaper

Decision making

This section outlines a decision framework you can use to help you determine which AWS-managed
NoSQL database service, or combination of database services would fit your workload needs best.

While there is no simple formula you can follow that is comprehensive enough to apply generally,
there are a few important questions related to your application that should be answered during the
selection process:

What type of data is your application planning to persist (such as JSON structures, telemetry
data, image files, geospatial data)?

Different databases allow you to access stored data differently. If you plan to store unstructured
data such as images or encoded payloads, you need a data store that can store and retrieve
the entire unstructured binary payload fast, but may need a rich set of data access features to
introspect the unstructured data.

Conversely, a catalog system needs a richer feature set to access data based on patterns, but also
allow for flexibility to expand the set of attributes collected for each item in the catalog. These
capabilities may be more important than the absolute fastest way to retrieve data access.

What performance requirements and service-level commitments have you made to your end
users (for example, a service level agreement that guarantees microsecond or millisecond-level
response latency for queries)?

If your workload requires extremely high read performance with a response time measured in
microseconds rather than single-digit milliseconds, then you may consider using in-memory
caching solutions alongside your database, or a database that supports in-memory data access.

Also consider how predictable your performance needs to be. A database such as Amazon
DynamoDB can deliver consistent, predictable response latencies to reads and writes, but it does
so because it supports a small number of query patterns that have a known cost. It’s a great fit for
point queries accessing one or a very small number of records at high frequency.

If your data access patterns require accessing a variable or unpredictable number of records or
volume of data, your performance will also have more variability. Consider also that modern
architectures are implemented using decoupled microservices, each with different date access
requirements, compounding the end-to-end latency or performance of the end user request.

17

https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html

Choosing an AWS NoSQL Database AWS Whitepaper

What are your resiliency requirements?

Workloads with high availability requirements (such as mission-critical applications that can’t
tolerate any downtime) can span multiple Regions to provide further resiliency in case a specific
AWS region becomes unreachable. For example, you can use DynamoDB global tables to deploy
globally across supported Regions and read or write to the local copies of the tables concurrently.
Amazon DocumentDB also supports multiple Regions through Amazon DocumentDB global
clusters, but you can only write in the primary Region cluster.

After you address these questions, you can use the following decision tree for further direction on
how to narrow down your choices. The decision tree covers two scenarios:

1. If you’re already using a NoSQL database on premises and would like to consider migrating to a
fully managed scalable, highly available AWS NoSQL database service, start your review of our
decision tree at Step 1.

2. If you want to modernize your application and are considering a NoSQL database, you can use
the decision tree to choose the most appropriate AWS-managed NoSQL database service for
your use case based on your requirements by starting at Step 2, You can start eith the data
model that is appropriate for your use case.

18

https://aws.amazon.com/dynamodb/global-tables/
https://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html
https://docs.aws.amazon.com/documentdb/latest/developerguide/global-clusters.html

Choosing an AWS NoSQL Database AWS Whitepaper

19

Choosing an AWS NoSQL Database AWS Whitepaper

Considerations

Best practices and limitations

• For implementation best practices and limitations, refer to the AWS documentation for the
respective database service.

• If your use cases use relatively static schemas, perform complex table lookups, require accessing
data across multiple keys and might experience high service throughputs it might be a better fit
for Amazon RDS offerings.

Some customer journeys and lessons learned

• Amazon DynamoDB on Production: FinBox’s Compilation of Lessons Learned in a Year

• Refer to this case study to learn how McAfee’s use case of migrating from Microsoft SQL server
to DynamoDB to power their next generation messaging platform to drive ecommerce business

• Watch this video on why Amazon Fulfillment choose Amazon DocumentDB to power their
inventory authority platform (IAP), considerations for performance and scale, and some learnings
from their experience

• Watch this video to hear about FINRA’s story on how they modernized their data collection
platform used by FINRA customers from a relational database using XML to Amazon
DocumentDB.

• Idea to product: PricewaterhouseCoopers launches Check-In within three months on Amazon
Keyspaces

• Watch this video to learn about the key features of ElastiCache for Redis and dive deep into how
Groupon uses ElastiCache for deal curation.

• Blog post on how Near was able to reduce latency by four times and achieve 99.9% uptime of its
critical RTB platform applications by moving to ElastiCache.

• LexisNexis presentation on using graph to store relationships between legal documents using
Amazon Neptune.

• Cox Automotive presentation on using graph to store relationships between user identities on
their web platforms to power marketing and advertising.

Best practices and limitations 20

https://docs.aws.amazon.com/index.html?nc2=h_ql_doc_do_v
https://aws.amazon.com/pm/rds/?p=ft&c=db&z=3
https://aws.amazon.com/blogs/startups/what-finbox-learned-using-dynamodb/
https://aws.amazon.com/solutions/case-studies/mcafee-dynamodb-case-study/
https://aws.amazon.com/documentdb/customers/fulfillment-by-amazon/
https://aws.amazon.com/documentdb/customers/finra/
https://www.finra.org/#/
https://aws.amazon.com/blogs/database/idea-to-product-pwc-launches-check-in-within-three-months-on-amazon-keyspaces/
https://aws.amazon.com/blogs/database/idea-to-product-pwc-launches-check-in-within-three-months-on-amazon-keyspaces/
https://www.youtube.com/watch?v=QEKDpToureQ
https://aws.amazon.com/blogs/database/how-near-reduced-latency-by-four-times-and-achieved-99-9-uptime-by-migrating-to-amazon-elasticache/
https://near.com/
https://www.lexisnexis.com/en-us/gateway.page
https://youtu.be/9ZXxFKEvMgs
https://aws.amazon.com/neptune/
https://www.coxautoinc.com/
https://www.youtube.com/watch?v=I7_b1xkQ7Dc
https://www.youtube.com/watch?v=I7_b1xkQ7Dc

Choosing an AWS NoSQL Database AWS Whitepaper

References

• Scale and performance characteristics of Timestream – Deriving near real-time insights over
petabytes of time series data with Amazon Timestream.

• This blog post provides you with a quick summary and set of resources for common topics so you
can quickly ramp up on Amazon DocumentDB.

• This blog post provides improved performance characteristics of Amazon Keyspaces, lightweight
transactions API, advanced design patterns, and operational best practices.

• AWS Online Tech Talks: ElasticCache best practices

• Getting started with Amazon Neptune by creating a graph of all of your AWS resources.

• How to migrate an application from using GridFS to using Amazon S3 and Amazon DocumentDB.

• Graph data model lets you traverse through relationships without requiring joins and indexes.
For more information, refer to the "How Do I Know I Need an Amazon Neptune Graph
Database?” video.

• Graph data model lets you traverse through relationships without requiring joins and indexes.
For more information, refer to "How Do I Know I Need an Amazon Neptune Graph Database?”.

• Complex data models (such as arrays, nested fields, and deep relationships) let you consider a
wider range of application needs. For more information, refer to the “When to use DocumentDB
vs DynamoDB” video.

• DynamoDB provides extreme scale for certain data access patterns. For more information, refer
to “How to determine if Amazon DynamoDB is appropriate for your needs”.

• Refer to this tech talk to learn about DocumentDB use cases, and how Amazon DocumentDB
cluster architecture provides better performance, scalability, and availability.

• Amazon MemoryDB for Redis is a durable, in-memory database for workloads that require an
ultra-fast Redis-compatible primary database. If you require sub-millisecond performance and
need to add persistence and durability, consider using MemoryDB rather than in-memory cache
for Redis. Refer to this tech talk to learn about Amazon MemoryDB for Redis.

Developer references

• Why purpose-built database? This hands-on tutorial will help you get an idea of how AWS
NoSQL databases can help run your specific workloads.

References 21

https://aws.amazon.com/blogs/database/deriving-real-time-insights-over-petabytes-of-time-series-data-with-amazon-timestream/
https://aws.amazon.com/blogs/database/ramping-up-on-amazon-documentdb-with-mongodb-compatibility/
https://aws.amazon.com/blogs/database/improved-performance-for-lightweight-transactions-with-amazon-keyspaces/
https://www.youtube.com/watch?v=OeCzNhsV1OY
https://aws.amazon.com/blogs/database/graph-your-aws-resources-with-amazon-neptune/
https://aws.amazon.com/blogs/database/migrate-an-application-from-using-gridfs-to-using-amazon-s3-and-amazon-documentdb-with-mongodb-compatibility/
https://www.mongodb.com/docs/manual/core/gridfs/
https://www.youtube.com/watch?v=nNZcl_cVzhE
https://www.youtube.com/watch?v=nNZcl_cVzhE
https://www.youtube.com/watch?v=nNZcl_cVzhE
https://aws.amazon.com/documentdb/resources/video-documentdb-twitch/
https://aws.amazon.com/documentdb/resources/video-documentdb-twitch/
https://aws.amazon.com/blogs/database/how-to-determine-if-amazon-dynamodb-is-appropriate-for-your-needs-and-then-plan-your-migration/
https://www.youtube.com/watch?v=PK-LLTn2hVY
https://www.youtube.com/watch?v=Jbq_XZMZEKY
https://aws.amazon.com/getting-started/hands-on/purpose-built-databases/why-purpose-built-databases/

Choosing an AWS NoSQL Database AWS Whitepaper

Training and guidance

• To ensure that development teams were comfortable with transitioning to Amazon, it essential
to train the teams on AWS NoSQL databases and cloud-based design patterns (tech talks,
workshops, and Immersion Days.)

Training and guidance 22

https://workshops.aws/
https://immersionday.com/

Choosing an AWS NoSQL Database AWS Whitepaper

Conclusion

NoSQL databases have become increasingly popular over the years due to their scalability,
flexibility, and ability to handle large volumes of complex data. This whitepaper has provided
an overview of the different types of NoSQL databases, including document-based, key-value,
column-family, and graph databases, as well as their unique strengths and weaknesses.

It has also explored the various NoSQL database services offered by Amazon Web Services,
including Amazon DynamoDB, Amazon Keyspaces, Amazon Neptune, Amazon DocumentDB, and
Amazon MemoryDB for Redis. We hope it helps you make an informed decision on which database
to choose based on your specific needs.

23

Choosing an AWS NoSQL Database AWS Whitepaper

Contributors

Contributors to this document include:

• Ashish Bhatia, Senior Solution Architect, Amazon Web Services

• Malathi Pinnamaneni, Senior Solution Architect, Amazon Web Services

24

Choosing an AWS NoSQL Database AWS Whitepaper

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Minor update Updated Amazon Keyspaces
information. Minor editorial
corrections throughout.

July 28, 2023

Initial publication Whitepaper published. April 25, 2023

25

Choosing an AWS NoSQL Database AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2023 Amazon Web Services, Inc. or its affiliates. All rights reserved.

26

Choosing an AWS NoSQL Database AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

27

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Choosing an AWS NoSQL Database
	Table of Contents
	Choosing an AWS NoSQL Database
	Introduction
	Are you Well-Architected?

	Types of NoSQL databases
	Understanding Amazon NoSQL data stores
	Amazon DynamoDB
	Amazon Keyspaces (for Apache Cassandra)
	Amazon Neptune
	Amazon Timestream
	Amazon ElastiCache
	Amazon DocumentDB (with MongoDB compatibility)
	Amazon MemoryDB for Redis

	Decision making
	Considerations
	Best practices and limitations
	Some customer journeys and lessons learned
	References
	Developer references
	Training and guidance

	Conclusion
	Contributors
	Document revisions
	Notices
	AWS Glossary

