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Abstract

The scalable nature and variable demand of computational fluid dynamics (CFD) workloads makes 
them well suited for a cloud computing environment. This whitepaper describes best practices for 
running CFD workloads on Amazon Web Services (AWS). Use this document to learn more about 
AWS services, and the related quick start tools that simplify getting started with running CFD cases 
on AWS.

Introduction

Fluid dynamics is the study of the motion of fluids, usually in the presence of an object. Typical 
fluid flows of interest to engineers and scientist include flow in pipes, through engines, and around 
objects, such as buildings, automobiles, and airplanes. Computational fluid dynamics (CFD) is 
the study of these flows using a numerical approach. CFD involves the solution of conservation 
equations (mass, momentum, energy, and others) in a finite domain.

Many CFD tools are currently available, including specialized and in-house tools. This variety is the 
result of the broad domain of physical problems solved with CFD. There is not a universal code for 
all applications, although there are packages that offer great capabilities. Broad CFD capabilities 
are available in commercial packages, such as ANSYS Fluent, Siemens Simcenter STAR-CCM+, 
Metacomp Technologies CFD++, and open-source packages, such as OpenFOAM and SU2.

A typical CFD simulation involves the following four steps:

• Define the geometry — In some cases, this step is simple, such as modeling flow in a duct. 
In other cases, this step involves complex components and moving parts, such as modeling a 
gas turbine engine. For many cases, the geometry creation is extremely time-consuming. The 
geometry step is graphics intensive and requires a capable graphics workstation, preferably with 
a Graphics Processing Unit (GPU). Often, the geometry is provided by a designer, but the CFD 
engineer must “clean” the geometry for input into the flow solver or mesh generation tool. This 
can be a tedious and time-consuming step and can sometimes require a large amount of system 
memory (RAM) depending on the complexity of the geometry.
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• Generate the mesh or grid — Mesh generation is a critical step because computational accuracy 
is dependent on the size, cell location, and skewness or orthogonality of the cells. In the 
following figure, a hybrid mesh is shown on a slice through an aircraft wing. Mesh generation 
can be iterative with the solution, where fixes to the mesh are driven by an understanding of 
flow features and gradients in the solution. Meshing is frequently an interactive process and its 
elliptical nature generally requires a substantial amount of memory. Like geometry definition, 
generating a single mesh can take hours, days, weeks, and sometimes months. Many mesh 
generation codes are still limited to a single node, so general-purpose Amazon Elastic Compute 
Cloud (Amazon EC2) instances, such as the M family, or memory-optimized instances, such as the 
R family, are often used.

Mesh generation

• Solve for the solution — This step is the primary focus of this whitepaper. For some solutions, 
tens of thousands of cores (processors) run over weeks to achieve a solution. Conversely, some 
jobs may run in just minutes when scaled out appropriately.

There are choices for model equations depending on the desired solution fidelity. The Navier-
Stokes equations form the basis of the solved equations for most fluid calculations. The addition 
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of chemical reactions, liquid and gas multi-phase flows, and many other physical properties 
create increasing complexity. For example, increasing the fidelity of turbulence modeling is 
achieved with various approximate equation sets such as Reynolds Average Navier-Stokes 
(RANS), Large Eddy Simulation (LES), Delayed Detached Eddy Simulation (DDES), and Direct 
Numerical Simulation (DNS). These approaches typically do not change the fundamental 
computational characteristics or scaling of the simulation.

• Post process through visualization — Examples of this step include the creation of images, 
video, and post processing of flow fields, such as creating total forces and moments. Similar 
to the geometry and mesh steps, this can be graphics and memory intensive, and graphics 
processing units (GPUs) are often favored.

Post-processing visualization

Introduction 3



Computational Fluid Dynamics on AWS AWS Whitepaper

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions 
you make when building systems in the cloud. The six pillars of the Framework allow you to learn 
architectural best practices for designing and operating reliable, secure, efficient, cost-effective, 
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS 
Management Console, you can review your workloads against these best practices by answering a 
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture 
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

4

https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/


Computational Fluid Dynamics on AWS AWS Whitepaper

Why CFD on AWS?

AWS is a great place to run CFD cases. CFD workloads are typically tightly coupled workloads 
using a Message Passing Interface (MPI) implementation and relying on a large number of cores 
across many nodes. Many of the AWS instance types, such as the compute family instance types, 
are designed to include support for this type of workload. AWS has network options that support 
extreme scalability and short turn-around time as necessary.

CFD workloads typically scale well on the cloud. Most codes rely on domain decomposition to 
distribute portions of the calculation to the compute nodes. A case can be run highly parallel to 
receive results in minutes. Additionally, large numbers of cases can run simultaneously as efficiently 
and cheaply as possible to allow the timely completion of all cases.

The cloud offers a quick way to deploy and turn around CFD workloads at any scale without the 
need to own your own infrastructure. You can run jobs that once were in the realm of national labs 
or large industry. In just an hour or two, you can deploy CFD software, upload input files, launch 
compute nodes, and complete jobs on a large number of cores. When your job completes, results 
can be visualized and downloaded, and then all resources can be ended – so you only pay for what 
you use. If preferred, your results can be securely archived on AWS using a storage service, such as
Amazon Simple Storage Service (Amazon S3). Due to cloud scalability, you have the option to run 
multiple cases simultaneously with a dedicated cluster for each case.

The cloud accommodates the variable demand of CFD. Often, there is a need to run a large 
number of cases as quickly as possible. Situations can require a sudden burst of tens, hundreds, or 
thousands of calculations immediately, and then perhaps no runs until the next cycle. The need 
to run a large number of cases could be for a preliminary design review, or perhaps a sweep of 
cases for the creation of a solution database. On the cloud, the cost is the same to run many jobs 
simultaneously, in parallel, as it is to run them serially, so you can get your data more quickly and 
at no extra cost. The cost savings in engineering time is an often-forgotten part of cost analysis. 
Running in parallel can be an ideal solution for design optimization.

Cloud computing is a strong choice for other CFD steps. You can easily change the underlying 
hardware configuration to handle the geometry, meshing, and post-processing. With remote 
visualization software available to handle the display, you can manage the GPU instance running 
your post-processing visualization from any screen (laptop, desktop, web browser) as though you 
were working on a large workstation.

5
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Getting started with AWS

To begin, you must create an AWS account and an AWS Identity and Access Management (IAM) 
user. An IAM user is a user within your AWS account. The IAM user allows authentication and 
authorization to AWS resources. Multiple IAM users can be created if multiple people need access 
to the same AWS account.

During the first year after account activation, many AWS services are available for free with 
the AWS Free Tier. The free-tier program provides an opportunity to learn about AWS without 
incurring significant charges. It provides an offset to charges incurred while training on AWS. 
However, the compute-heavy nature of CFD means that charges are regularly not covered by the 
free tier. Training helps limit mistakes resulting in unnecessary charges. You can also set up AWS 
billing alarms to alert you of estimated charges.

After creating an AWS account, you are provided with what is referred to as your root user. It 
is recommended that you do not use this root user for anything other than billing. Instead, set 
up privileged users (through IAM) for day-to-day usage of AWS. IAM users are useful because 
they help you securely control access to AWS resources within your account. Use IAM to control 
authentication and authorization for resources. Create IAM users for everyone, including yourself, 
and preserve the root user for the required account and service management tasks.

By default, your account is limited on the number of instances that you can launch in a Region, 
which is a physical location around the world where AWS clusters data centers. These limits are 
initially set low to prevent unnecessary charges, but you can raise them to preferred values. CFD 
applications often require a large number of compute instances simultaneously. The ability and 
advantages of scaling horizontally are highly desirable for high performance computing (HPC) 
workloads. However, you may need to request an increase to the Amazon EC2 service limits before 
deploying a large workload to either one large cluster, or too many smaller clusters at once.

If you want to understand more about the underlying services, a few foundational tutorials can be 
helpful to get started on AWS:

• Amazon EC2 is the Amazon Web Service you use to create and run compute nodes in the cloud. 
AWS calls these compute nodes “instances”. This Launch a Linux Virtual Machine with Amazon 
Lightsail tutorial will help you successfully launch a Linux compute node on Amazon EC2 within 
our AWS Free Tier.

• Amazon S3 is a service that enables you to store your data (referred to as objects) at massive 
scale. This Store and Retrieve a File with Amazon S3 tutorial will help you store your files in the 
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cloud using Amazon S3 by creating an Amazon S3 bucket, uploading a file, retrieving the file, 
and deleting the file.

• AWS Command Line Interface (AWS CLI) is a common programmatic tool for automating AWS 
resources. For example, you can use it to deploy AWS infrastructure or manage data in S3. In this
AWS Command Line Interface tutorial, you learn how to use the AWS CLI to access Amazon S3. 
You can then easily build your own scripts for moving your files to the cloud and easily retrieving 
them as needed.

• AWS Budgets gives you the ability to set custom budgets that alert you when your costs or usage 
exceed (or are forecasted to exceed) your budgeted amount. In the Control your AWS costs with 
the AWS Free Tier and AWS Budgets tutorial, you learn how to control your costs while exploring 
AWS service offerings using the AWS Free Tier, then using AWS Budgets to set up a cost budget 
to monitor any costs associated with your usage.

A dedicated Running CFD on AWS workshop has been created to guide you through the process of 
running your CFD codes on AWS. This workshop has step-by-step instructions for common codes 
like Simcenter STAR-CCM+, OpenFOAM, and ANSYS Fluent.

Additionally, the AWS Well-Architected Framework High Performance Computing (HPC) Lens
covers common HPC scenarios and identifies key elements to ensure that your workloads are 
architected according to best practices. It focuses on how to design, deploy, and architect your HPC 
workloads on the AWS Cloud.

7

https://aws.amazon.com/cli/
https://aws.amazon.com/getting-started/tutorials/backup-to-s3-cli/?trk=gs_card
https://aws.amazon.com/aws-cost-management/aws-budgets/
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?trk=gs_card
https://aws.amazon.com/getting-started/tutorials/control-your-costs-free-tier-budgets/?trk=gs_card
https://cfd-on-pcluster.workshop.aws/
https://docs.aws.amazon.com/wellarchitected/latest/high-performance-computing-lens/welcome.html


Computational Fluid Dynamics on AWS AWS Whitepaper

CFD approaches on AWS
Most CFD solvers have locality of data and use sparse matrix solvers. Once properly organized 
(application dependent), a well-configured job exhibits good strong and weak scaling on simple 
AWS cluster architectures. “Structured” and “Unstructured” codes are commonly run on AWS. 
Spectral and pseudo-spectral methods involve fast Fourier transforms (FFTs), and while less 
common than traditional CFD algorithms, they also scale well on AWS. Your architectural decisions 
have tradeoffs, and AWS makes it quick and easy to try different architectures to optimize for cost 
and performance.

Architectures

There are two primary design patterns to consider when choosing an AWS architecture for CFD 
applications: the traditional cluster and the cloud native cluster. Customers choose their preferred 
architecture based on the use case and the CFD users’ needs. For example, use cases that require 
frequent involvement and monitoring, such as when you need to start and stop the CFD case 
several times on the way to convergence, often prefer a traditional style cluster.

Conversely, cases that are easily automated often prefer a cloud native setup, which enables you to 
easily submit large numbers of cases simultaneously or automate your run for a complete end-to-
end solution. Cloud native is useful when cases require special pre- or post-processing steps which 
benefit from automation. Whether choosing traditional or cloud native architectures, the cloud 
offers the advantage of elastic scalability — enabling you to only consume and pay for resources 
when you need them.

Traditional cluster environments

In the cloud, a traditional cluster is also referred to as a persistent cluster due to the persistence 
of minimal AWS infrastructure required for preserving the cluster environment. Examples of 
persistent infrastructure include a node running a scheduler and hosting data even after a 
completed run campaign. The persistent cluster mimics a traditional on-premises cluster or 
supercomputer experience. Clusters include a login instance with a scheduler that allows multiple 
users to submit jobs. The compute node fleet can be a fixed size or a dynamic group to increase 
and decrease the number of compute instances depending on the jobs submitted.

AWS ParallelCluster is an example of a persistent cluster that simplifies the deployment and 
management of HPC clusters in the AWS Cloud. It enables you to quickly launch and terminate an 
HPC compute environment in AWS as needed. AWS ParallelCluster orchestrates the creation of the 
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required resources (for example, compute nodes and shared filesystems) and provides an automatic 
scaling mechanism to adjust the size of the cluster to match the submitted workload. You can use 
AWS ParallelCluster with a variety of batch schedulers, including Slurm and AWS Batch.

Example AWS ParallelCluster architecture

An AWS ParallelCluster architecture enables the following workflow:

• Creating a desired configuration through a text file

• Launching a cluster through the AWS ParallelCluster Command Line Utility (CLI)

• Orchestrating AWS services automatically through AWS CloudFormation

• Accessing the cluster through the command line with Secure Shell Protocol (SSH) or graphically 
with NICE DCV

Cloud native environments

A cloud native cluster is also called an ephemeral cluster due to its relatively short lifetime. A 
cloud native approach to tightly coupled HPC ties each run, or sweep of runs, to its own cluster. 
For each case, resources are provisioned and launched, data is placed on the instances, jobs run 
across multiple instances, and case output is retrieved automatically or sent to Amazon S3. Upon 
job completion, the infrastructure is ended. Clusters designed this way are ephemeral, treat 
infrastructure as code, and allow for complete version control of infrastructure changes. Login 
nodes and job schedulers are less critical and often not used at all with an ephemeral cluster. The 
following are a few frequently used methods to implement such a design:

• Scripted approach — A common quick-start approach for CFD users getting started with AWS 
is to combine a custom Amazon Machine Image (AMI) with the AWS CLI and a bash script. After 
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launching an Amazon EC2 instance, software can be added to the instance and an AMI is created 
to be used as the starting point for all compute nodes. It is typical to set up the SSH files and the
.bashrc file before creating the custom AMI or “golden image.” Although many CFD solvers do 
not require a shared file location, one can easily be created with an exported network file system 
(NFS) volume, or with Amazon FSx for Lustre, an AWS managed Lustre file system.

• API based — If preferred, an automated deployment can be developed with one of the Software 
Development Kits (SDKs), such as Python, available for programming an end-to-end solution.

• CloudFormation templates — AWS CloudFormation is an AWS Cloud native approach to 
provisioning AWS resources based on a JSON or YAML template. AWS CloudFormation offers an 
easily version-controlled cluster provisioning capability.

• AWS Batch — AWS Batch is a cloud-native, container-based approach that enables CFD users 
to efficiently run hundreds of thousands of batch computing jobs in containers on AWS. 
AWS Batch dynamically provisions the optimal quantity and type of compute resources (for 
example, compute or memory-optimized instances) based on the volume and specific resource 
requirements of the batch jobs submitted.

With AWS Batch, there is no need to install and manage batch computing software or server 
infrastructure that you use to run your jobs — enabling you to focus on analyzing results and 
solving problems. AWS Batch plans, schedules, and runs your batch computing workloads across 
the full range of AWS compute services and features, such as Amazon EC2 and Spot Instances. 
AWS Batch can also be used as a job scheduler with AWS ParallelCluster.

Software

Installation

CFD software can either be installed into a base AMI, or it can be used from prebuilt AMIs from 
the AWS Marketplace. If installing into a base AMI, a custom AMI can be created to launch new 
instances with the software already installed. The AWS Marketplace offers a listing of software 
from individual software vendors, which offer software included with AWS services. Finally, you can 
also add the installation to the cluster deployment scripts and run them at cluster creation.

Licensing

Many commercial CFD solvers are licensed and may require access to a license server, such as
FlexNet Publisher. Licensing software in the cloud is much like licensing with any other cluster. If 
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a license server is necessary, you can configure your networking to use an existing on-premises 
server, or you can host the license server on the cloud.

If hosting the license server on AWS, burstable general-purpose T instances in small sizes, such as 
micro, can be used for cost-effective hosting. A Reserved Instance purchase for the license server 
provides further cost savings.

The FlexNet Publisher license relies on the network interface’s MAC address. The easiest way 
to retrieve the new MAC address for your license is to launch the instance and retrieve the MAC 
address before the license is issued. You can preserve the MAC address by changing the ending 
behavior to prevent deletion of the network interface if the instance is ever terminated. When 
hosting your own license server, confirm that the security group for the license-server instance 
allows connectivity on the appropriate ports required by the software package.

If accessing an on-premises license server, create an AWS Site-to-Site VPN for your Virtual Private 
Cloud (VPC), or alternatively, if on-premises firewalls allow, you may be able to access the on-
premises license server through SSH tunneling.

Cloud-friendly licensing through power-on-demand licensing keys is also growing in popularity and 
relies on submitting a job with a key provided by the software provider.

Setup

There are multiple strategies for setting up software in clusters. The most widely used examples 
are below:

Create a custom AMI

This method features the shortest application startup time and avoids potential bottlenecks when 
accessing a single shared resource. This is the preferred means of distribution for large-scale runs 
(tens of thousands of MPI ranks) or applications that must load a large number of shared libraries. 
A drawback is the larger AMI size, which incurs more cost for Amazon Elastic Block Store (Amazon 
EBS).

Share an Amazon EBS volume via NFS

This method installs the necessary software into a single Amazon EBS volume, creates an NFS 
export on a single instance, and mounts the NFS share on all of the compute instances. This 
approach reduces the Amazon EBS footprint because only one Amazon EBS volume must be 
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created for the software. This method is useful for large software packages and moderate scale 
runs (up to thousands of MPI ranks).

To optimize input/output (I/O) performance, different EBS volume types are available offering 
different performance characteristics. A tradeoff with this method is a small amount of added 
network traffic and a potential bottleneck with a single instance hosting the NFS share. Ensuring a 
larger NFS host instance with additional network capabilities mitigates these concerns.

To make this approach repeatable, the exported NFS directory can be decoupled from the root 
volume, stored on a separate Amazon EBS volume, and created from an Amazon EBS snapshot. 
This approach is similar to the custom AMI method, but instead it isolates software from the root 
volume. An additional Amazon EBS volume is created from an Amazon EBS snapshot at instance 
launch and is mounted as an additional disk to the compute instance. The snapshot used to create 
the volume contains the software installation. Decoupling the user software from operating 
system updates that are necessary on the root volume reduces the complexity of maintenance. 
Furthermore, the user can rely on the latest AMI releases for the compute instances, which provide 
an up-to-date system without maintaining a custom AMI.

Use a managed shared file system

This approach installs the CFD software into an AWS managed file system service, such as Amazon 
FSx for Lustre or Amazon Elastic File System (Amazon EFS), and mounts the shared file system 
on all of the compute instances. Amazon FSx for Lustre provides a high-performance, parallel 
file system optimized for HPC workloads. Lustre is optimized for simultaneous access, and its 
performance can be scaled independently from any single instance size.

FSx for Lustre works natively with Amazon S3 and can be automatically populated with data 
residing in S3, which enables users to have a Lustre file system running only while compute jobs 
are active and easily discard it afterwards.

Amazon EFS provides a simple, scalable, fully managed elastic NFS file system that can be used 
as a location for home directories. However, EFS is not recommended for other aspects of a CFD 
cluster, such as hosting simulation data or compiling a solver, due to performance considerations.

Maintenance

New feature releases and patches to existing software are a frequent need in the CFD application 
workflow. All distribution strategies can be fully automated. When using the AMI or Amazon EBS 
snapshot strategy, the software update cycle can be isolated from the application runs. Once a 
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new AMI or snapshot has been created and tested, the cluster is reconfigured to pick up the latest 
version. Software updates cycles in the strategies using file sharing via NFS or FSx for Lustre must 
be coordinated with application runs because a live system is being altered.

In general, automating CFD application installation with scripting tools is recommended and 
is usually referred to as a Continuous Integration/Continuous Deployment (CI/CD) pipeline on 
AWS. The automation process reduces the manual processes required to build and deploy new 
software and security patches to HPC systems. This is useful if you want to use the latest features 
in software packages with fast update cycles. You can read more about CI/CD pipelines in the AWS 
Continuous Delivery documentation.

Cluster lifecycle

AWS offers a variety of unique ways to design architectures that deploy HPC workloads. Your 
choice of deployment method for a particular workload depends on a number of factors, including 
your desired user experience, degree of automation, experience with AWS, preferred scripting 
languages, size and number of cases, and the lifecycle of your data. The High Performance 
Computing Lens whitepaper covers additional best practices for architectures beyond what is 
discussed in this paper.

While the architecture for a cluster is typically unique and tailored for the workload, all HPC 
clusters benefit from lifecycle planning and management of the cluster and the data produced — 
allowing for optimized performance, reliability, and cost.

It is not unusual for an on-premises cluster to run for many years, perhaps without significant 
operating system (OS) update or modification, until the hardware is obsolete thus rendering it 
useless. In contrast, AWS regularly releases new services and updates to improve performance and 
lower costs. The easiest way to take advantage of new AWS capabilities, such as new instances, 
is by maintaining the cluster as a script or template. AWS refers to this as “Infrastructure as 
Code” because it allows for the creation of clusters quickly, provides repeatable automation, and 
maintains reliable version control.

Examples of “cluster as code” are the AWS ParallelCluster configuration file, deployment scripts, 
or CloudFormation templates. These text-based configurations are easy to modify for a new 
capability or workload.

A view of the cluster lifecycle includes infrastructure as code that starts before the cluster is 
deployed with the maintenance of the deployment scripts. Elements of a cluster maintained as 
code include:
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• Base AMI to build your cluster

• Automated software installation scripts

• Configuration files, such as scheduler configs, MPI configurations, and .bashrc

• Text description of the infrastructure, such as a CloudFormation template, or an AWS 
ParallelCluster configuration file

• Script to initiate cluster deployment and subsequent software installation

While the nature of a cluster changes depending on the type of workload, the most cost-effective 
clusters are those that are deployed only when they are actively being used.

The cluster lifecycle can have a significant impact on costs. For example, it is common with many 
traditional on-premises clusters to maintain a large storage volume. This is not necessary in the 
cloud because data can be easily moved to S3 where it is reliably and cheaply stored. Maintaining a 
cluster as code allows you to place a cluster under version control and repeatedly deploy replicas if 
needed.

Each cluster maintained as code can be instantiated multiple times if multiple clusters are required 
for testing, onboarding new users, or running a large number of cases in parallel. If set up correctly, 
you avoid idle infrastructure when jobs are not running.

CFD case scalability

CFD cases that cross multiple nodes raise the question, “How will my application scale on AWS?” 
CFD solvers depend heavily on the solver algorithm’s ability to scale compute tasks efficiently in 
parallel across multiple compute resources. Parallel performance is often evaluated by determining 
an application’s scale-up. Scale-up is a function of the number of processors used and is defined as 
the time it takes to complete a run on one processor, divided by the time it takes to complete the 
same run on the number of processors used for the parallel run.

Scale-up equation

Scaling is considered to be excellent when the scale-up is close to or equal to the number of 
processors on which the application is run. An example of scale up as a function of core count is 
shown in the following figure.

CFD case scalability 14
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Strong scaling demonstrated for a 14M cell external aerodynamics use case

The example case in preceding figure is a 14 million cell external aerodynamics calculation using 
a cell-centered unstructured solver. The mesh is composed largely of hexahedra. The black line 
shows the ideal or perfect scalability. The blue diamond-based curve shows the actual scale-up for 
this case as a function of increasing processor count. Excellent scaling is seen to almost 1000 cores 
for this small-sized case. This example was run on Amazon EC2 c5n.18xlarge instances, with Elastic 
Fabric Adapter (EFA), and using a fully loaded compute node.

Fourteen million cells is a relatively small CFD case by today’s standards. A small case was 
purposely chosen for the discussion on scalability because small cases are more difficult to scale. 
The idea that small cases are harder than large cases to scale may seem counter intuitive, but 
smaller cases have less total compute to spread over a large number of cores. An understanding of 
strong scaling vs. weak scaling offers more insight.

CFD case scalability 15
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Strong scaling vs. weak scaling

Case scalability can be characterized two ways: strong scaling or weak scaling. Weak does not mean 
inadequate — it is a technical term facilitating the description of the type of scaling.

Strong scaling, as demonstrated in the following figure, is a traditional view of scaling, where a 
problem size is fixed and spread over an increasing number of processors. As more processors are 
added to the calculation, good strong scaling means that the time to complete the calculation 
decreases proportionally with increasing processor count.

In comparison, weak scaling does not fix the problem size used in the evaluation, but purposely 
increases the problem size as the number of processors also increases. The ratio of the problem 
size to the number of processors on which the case is run is constant. For a CFD calculation, 
problem size most often refers to the number of cells or nodes in the mesh for a similar 
configuration.

An application demonstrates good weak scaling when the time to complete the calculation remains 
constant as the ratio of compute effort to the number of processors is held constant. Weak scaling 
offers insight into how an application behaves with varying case size. Well-written CFD solvers 
offer excellent weak scaling capability allowing for more cores to be used when running bigger 
applications. The scalability of CFD cases can then be determined by looking at a normalized plot 
of scale-up based on the number of mesh cells per core (cells/core). An example plot is shown in 
the following figure.

Strong scaling vs. weak scaling 16
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Scale-up and efficiency as a function of cells per processor

Running efficiency

Efficiency is defined as the scale-up divided by the number of processors used in the calculation. 
Scale-up and efficiency as a function of cells/core is shown in the preceding figure. In this figure, 
the cells per core are on the horizontal axis. The blue diamond-based line shows scale-up as a 
function of mesh cells per processor. The vertical axis for scale-up is on the left-hand side of the 
graph as indicated by the lower blue arrow. The orange circle-based line shows efficiency as a 
function of mesh cells per core. The vertical axis for efficiency is shown on the right side of the 
graph and is indicated by the upper orange arrow.

Running efficiency and scale-up equation

Running efficiency 17
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For similar case types, running with similar solver settings, a plot like the one in this figure can help 
you choose the desired efficiency and number of cores running for a given case.

Efficiency remains at about 100% between approximately 200,000 mesh cells per core and 
100,000 mesh cells per core. Efficiency starts to fall off at about 50,000 mesh cells per core. An 
efficiency of at least 80% is maintained until 20,000 mesh cells per core, for this case. Decreasing 
mesh cells per core leads to decreased efficiency because the total computational effort per core is 
reduced. The inefficiencies that show up at higher core counts come from a variety of sources and 
are caused by “serial” work. Serial work is the work that cannot be effectively parallelized. Serial 
work comes from solver inefficiencies, I/O inefficiencies, unequal domain decomposition, additional 
physical modeling such as radiative effects, additional user-defined functions, and eventually, from 
the network as core count continues to increase.

Turn-around time and cost

Plots of scale-up and efficiency offer an understanding about how a case or application scales. 
However, what matters most HPC users is case turn-around time and cost. A plot of turn-around 
time versus CPU cost for this case is shown in the following figure. As the number of cores 
increases, the inefficiency also increases, which leads to increased costs.

Turn-around time and cost 18
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Cost for per run based on on-demand pricing for the c5n.18xlarge instance as a function of turn-
around time

In the preceding figure, the turn-around time is shown on the horizontal axis. The cost is shown 
on the vertical axis. The price is based on the “on-demand” price of a c5n.18xlarge for 1000 
iterations, and only includes the computational costs. Small costs are also incurred for data 
storage. Minimum cost was obtained at approximately 50,000 cells per core or more. As the 
efficiency is 100% over a range of core counts, the price is the same regardless of the number of 
cores. Many users choose a cell count per core to achieve the lowest possible cost.

As core count goes up, inefficiencies start to show up, but turn-around time continues to drop. 
When a fast turn-around is needed, users may choose a large number of cores to accelerate the 
time to solution. For this case, a turn-around time of about five minutes can be obtained by 
running on about 20,000 cells per core. When considering total cost, the inclusion of license costs 
may make the fastest run the cheapest run.

Turn-around time and cost 19
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Optimizing HPC components

The AWS Cloud provides a broad range of scalable, flexible infrastructure services that you select 
to match your workloads and tasks. This gives you the ability to choose the most appropriate mix 
of resources for your specific applications. Cloud computing makes it easy to experiment with 
infrastructure components and architecture design. The HPC solution components listed below 
are a great starting point to set up and manage your HPC cluster. Always test various solution 
configurations to find the best performance at the lowest cost.

Compute

The optimal compute solution for a particular HPC architecture depends on the workload 
deployment method, degree of automation, usage patterns, and configuration. Different compute 
solutions may be chosen for each step of a process. Selecting the appropriate compute solution for 
an architecture can lead to higher performance efficiency and lower cost.

There are multiple compute options available on AWS, and at a high level, they are separated 
into three categories: instances, containers, and functions. Amazon EC2 instances, or servers, 
are resizable compute capacity in the cloud. Containers provide operating system virtualization 
for applications that share an underlying operating system installed on a server. Functions are 
a serverless computing model that allows you to run code without thinking about provisioning 
and managing the underlying servers. For CFD workloads, EC2 instances are the primary compute 
choice.

Amazon EC2 lets you choose from a variety of compute instance types that can be configured to 
suit your needs. Instances come in different families and sizes to offer a wide variety of capabilities. 
Some instance families target specific workloads, for example, compute-, memory-, or GPU-
intensive workloads, while others are general purpose. Both the targeted-workload and general-
purpose instance families are useful for CFD applications based on the step in the CFD process.

When considering CFD steps, different instance types can be targeted for pre-processing, solving, 
and post-processing. In pre-processing, the geometry step can benefit from an instance with a 
GPU, while the mesh generation stage may require a higher memory-to-core ratio, such as general-
purpose or memory-optimized instances. When solving CFD cases, evaluate your case size and 
cluster size.

If the case is spread across multiple instances, the memory requirements are low per core, and 
compute-optimized instances are recommended as the most cost-effective and performant choice. 

Compute 20
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If a single-instance calculation is desired, it may require more memory per core and benefit from a 
general-purpose, or memory-optimized instance.

Optimal performance is typically obtained with compute-optimized instances (Intel, AMD, or 
Graviton), and when using multiple instances with cells per core below 100,000, instances with 
higher network throughput and packet rate performance are preferred. Refer to the Instance Type 
Matrix for instance details.

AWS enables simultaneous multithreading (SMT), or hyper-threading technology for Intel 
processors, commonly referred to as “hyperthreading” by default for supported processors. 
Hyperthreading improves performance for some systems by allowing multiple threads to be 
run simultaneously on a single core. Most CFD applications do not benefit from hyperthreading, 
and therefore, disabling it tends to be the preferred environment. Hyperthreading is easily 
disabled in Amazon EC2. Unless an application has been tested with hyperthreading enabled, it 
is recommended that hyperthreading be disabled and that processes are launched and pinned to 
individual cores.

There are many compute options available to optimize your compute environment. Cloud 
deployment allows for experimentation on every level from operating system to instance type to 
bare-metal deployments. Time spent experimenting with cloud-based clusters is vital to achieving 
the desired performance.

Network

Most CFD workloads exceed the capacity of a single compute node and require a cluster-based 
solution. A crucial factor in achieving application performance with a multi-node cluster is 
optimizing the performance of the network connecting the compute nodes.

Launching instances within a cluster placement group provides consistent, low latency within 
a cluster. Instances launched within a cluster placement group are also launched to the same 
Availability Zone.

To further improve the network performance between EC2 instances, you can use an Elastic Fabric 
Adapter (EFA) on select instance types. EFA is designed for tightly coupled HPC workloads by 
providing an operating system (OS)-bypass capability and hardware-designed reliability to take 
advantage of the EC2 network. It works well with CFD solvers. OS-bypass is an access model that 
allows an application to bypass the operating system’s TCP/IP stack and communicate directly with 
the network device. This provides lower and more consistent latency and higher throughput than 
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the TCP transport traditionally used. When using EFA, your normal IP traffic remains routable and 
can communicate with other network resources.

CFD applications use EFA through a message passing interface (MPI) implementation using the
Libfabric API. EFA usage can be confirmed with the MPI runtime debugging output. Each MPI 
implementation has environment variables or command-line flags for verbose debugging output 
or explicitly setting the fabric provider. These options vary by MPI implementation, and access to 
these options vary by CFD application. Refer to Getting Started with EFA and MPI documentation
for additional details.

Storage

AWS provides many storage options for CFD, including object storage with Amazon S3, block 
storage with Amazon EBS, temporary block-level storage with Amazon EC2 instance store, and file 
storage with Amazon FSx for Lustre. You can utilize all these storage types for certain aspects of 
your CFD workload.

A vital part of working with CFD solvers on AWS is the management of case data, which includes 
files such as CAD, meshes, input files, and output figures. In general, all CFD users want to maintain 
availability of the data when it is in use and to archive a subset of the data if it’s needed at some 
point in the future.

An efficient data lifecycle uses a combination of storage types and tiers to minimize costs. Data is 
described as hot, warm, and cold, depending on the immediate need of the data.

• Hot data is data that you need immediately, such as a case or sweep of cases about to be 
deployed.

• Warm data is your data, which is not needed at the moment, but it may be used sometime in the 
near future; perhaps within the next six months.

• Cold data is data that may not ever be used again, but it is stored for archival purposes.

Your data lifecycle can occur only within AWS, or it can be combined with an on-premises 
workflow. For example, you may move case data, such as a case file, from your local computing 
facilities, to Amazon S3, and then to an EC2 cluster. Completed runs can traverse the same path 
in reverse back to your on-premises environment or to Amazon S3 where they can remain in the 
S3 Standard or S3 Infrequent Access storage class, or transitioned to Amazon S3 Glacier through a
lifecycle rule for archiving. Amazon S3 Glacier and S3 Glacier Deep Archive are S3 storage tiers that 
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offer deep discounts on storage for archival data. The following figure is an example data lifecycle 
for CFD.

Data lifecycle

1. Transferring input data to AWS

2. Running your simulation with input (hot) data

3. Storing your output (warm) data

4. Archiving inactive (cold) data

Transferring input data

Input data, such as a CAD file, may start on-premises and be transferred to AWS. Input data is 
often transferred to Amazon S3 and stored until you are ready to run your simulation. S3 offers 
highly scalable, reliable, durable, and secure storage. An S3 workflow decouples storage from your 
compute cluster and provides a cost-effective approach. Alternatively, you can transfer your input 
data to an existing file system at runtime. This approach is generally slower and less cost effective 
when compared to S3 because it requires more expensive resources, such as compute instances or 
managed file systems, to be running for the duration of the transfer.

For the data transfer, you can choose a manual, scripted, or managed approach. Manual and 
scripted approaches can use the AWS CLI for transferring data to S3, which helps optimize the 
data transfer to S3 by running parallel uploads. A managed approach can use a service, such as
AWS DataSync, to move input data to AWS. AWS DataSync makes it simple and fast to move large 
amounts of data online between on-premises storage and Amazon S3.
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Running your CFD simulation

Input data for your CFD simulation is considered “hot” data when you are ready to run your 
simulation. This data is often accessed in a shared file system or placed on the head node if the 
CFD application does not require a shared drive.

If your CFD workload requires a high-performance file system, Amazon FSx for Lustre is highly 
recommended. FSx for Lustre works natively with Amazon S3, making it easy for you to access the 
input data that is already stored in S3. When linked to an S3 bucket, an FSx for Lustre file system 
transparently presents S3 objects as files and allows you to write results back to S3.

During the simulation, you can periodically checkpoint and write intermediate results to your S3 
data repository. FSx for Lustre automatically transfers Portable Operating System Interface (POSIX) 
metadata for files, directories, and symbolic links (symlinks) when importing and exporting data to 
and from the linked data repository on S3. This allows you to maintain access controls and restart 
your workload at any time using the latest data stored in S3.

When your workload is done, you can write final results from your file system to your S3 data 
repository and delete your file system.

Storing output data

Output data from your simulation is considered “warm” data after the simulation finishes. For 
a cost-effective workflow, transfer the output data off of your cluster and terminate the more 
expensive compute and storage resources. If you stored your data in an Amazon EBS volume, 
transfer your output data to S3 with the AWS CLI. If you used FSx for Lustre, create a data 
repository task to manage the transfer of output data and metadata to S3 or export your files with
HSM commands. You can also periodically push the output data to S3 with a data repository task.

Archiving inactive data

After your output data is stored in S3 and is considered cold or inactive, transition it to a more 
cost-effective storage class, such as Amazon S3 Glacier and S3 Glacier Deep Archive. These storage 
classes allow you to archive older data more affordably than with the S3 Standard storage class. 
Objects in S3 Glacier and S3 Glacier Deep Archive are not available for real-time access and must 
be restored if needed. Restoring objects incurs a cost, and to keep costs low yet suitable for varying 
needs, S3 Glacier and S3 Glacier Deep Archive provide multiple retrieval options.
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Storage summary

Use the following table to select the best storage solution for your workload:

Table 1 — Storage services and their uses

Service Description Use

Amazon EBS Block storage Block storage or export as a 
Network File System (NFS) 
share

Amazon FSx for Lustre Managed Lustre Fast parallel high-perf 
ormance file system 
optimized for HPC workloads

Amazon S3 Object storage Store case files, input, and 
output data

Amazon S3 Glacier Archival storage Long-term storage of archival 
data

Amazon EFS Managed NFS Network File System (NFS) to 
share files across multiple 
instances. Occasionally used 
for home directories. Not 
generally recommended for 
CFD cases.

Visualization

A graphical interface is useful throughout the CFD solution process, from building meshes, 
debugging flow-solution errors, and visualizing the flow field. Many CFD solvers include 
visualization packages as part of their installation. As an example, ParaView is packaged with
OpenFOAM. In addition to visualization tools within the CFD suites, there are third-party 
visualization tools, which can be more powerful, adaptable, and general.
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Post processing in AWS can reduce manual extractions, lower time to results, and decrease data 
transfer costs. Visualization is often performed remotely with either an application that supports 
client-server mode or with remote visualization of the server desktop. Client-server mode works 
well on AWS and can be implemented in the same way as other remote desktop set-ups. When 
using client-server mode for an application, it is important to connect to the server using the public 
IP address and not the private IP address, unless you have private network connectivity configured, 
such as a Site-to-Site VPN.

AWS offers NICE DCV for local display of remote desktops. NICE DCV is easy to implement and is 
free to use with EC2. There are a variety of ways to add NICE DCV to your HPC cluster. The simplest 
approach is to launch AWS ParallelCluster. If you are using AWS ParallelCluster, you can enable 
NICE DCV on the head node when launching the cluster with a short addition in the configuration 
file. A graphics-intensive instance can be easily launched running a Linux or Windows NICE DCV 
AMI to have NICE DCV pre-installed. Refer to Getting Started with NICE DCV on Amazon EC2 for 
more information.

AWS also offers managed desktop and application streaming services, such as Amazon WorkSpaces
or Amazon AppStream 2.0. Amazon WorkSpaces is a Desktop-as-a-Service solution providing Linux 
or Windows desktops while Amazon AppStream 2.0 is a non-persistent application and desktop 
streaming service for Windows environments.

In general, visualizing CFD results on AWS reduces the need to download large data back to on-
premises storage, and it helps reduce cost and increase productivity.
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Costs

AWS offers a pay-as-you-go approach for pricing for cloud services. You pay only for the individual 
services you need, for as long as you use them, without long-term contracts or complex licensing. 
Some services and tools incur no charge, such as AWS ParallelCluster, AWS Batch, and AWS 
CloudFormation; however, the underlying AWS components used to run cases incur charges.

AWS charges arise primarily from the compute resources required for the CFD solution. Storage 
and data transfer also incur charges. Depending on your implementation, you may use additional 
services in your architecture, such as AWS Lambda, Amazon Simple Notification Service (Amazon 
SNS), or Amazon CloudWatch, but cost accumulated by usage of these services is rarely significant 
when compared to the compute costs for CFD.

It is common to stand up a cluster for only the time period in which it is needed. In a simple 
scenario, costs are associated with EC2 instances and Amazon EBS volumes. Costs incurred after 
shut down of the cluster include any snapshots taken of Amazon EBS volumes and any data stored 
on Amazon S3.

While data transfer into Amazon EC2 from the internet is free, data transfer out of AWS can incur 
modest charges. Many users choose to leave their data in S3 and only move the smaller post-
processed data out of AWS. Data can also be transitioned to Amazon S3 Glacier for archival storage 
to reduce long-term storage costs.

When AWS ParallelCluster is maintained for an extended period of time, the login node and 
Amazon EBS volumes continue to incur costs. The compute nodes scale up and down as needed, 
which minimizes costs to only reflect the times when the cluster is being used.

When developing an architecture, you must monitor your workload (automatically through 
monitoring solutions or manually through the console) and ensure that your resources scale up and 
down as expected. Occasionally, hung jobs or other factors can prevent your resources from scaling 
properly. Logging on to the compute node and checking processes with a tool, such as top or htop, 
can help debug issues.

AWS provides four different ways to pay for EC2 instances:

• On-Demand Instances

• Reserved Instances

• Savings Plans
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• Spot Instances

Amazon EC2 instance costs can be minimized by using Spot Instances, Savings Plans, and Reserved 
Instances.

• On-Demand Instances — With On-Demand Instances, you pay for compute capacity by the hour 
or the second, depending on which you run. No long-term commitments or upfront payments 
are needed. You can increase or decrease your compute capacity depending on the demands of 
your application and only pay the specified per-hour rates for the instance you use.

On-Demand Instances are the highest cost model for computing and require no upfront 
commitment. Cost saving is gained because costs are only incurred while the instances are in a 
running state. For a dynamic workload, the savings can be large. Savings occur because you can 
select the newest processor types, which may speed up the computations significantly.

• Reserved Instances — Reserved Instances (RIs) provide you with a significant discount (up 
to 75%) compared to On-Demand Instance pricing. For customers that have steady state or 
predictable usage and can commit to using EC2 over a 1- or 3-year term, Reserved Instances 
provide significant savings compared to using On-Demand Instances.

• Savings Plans — Savings Plans are a flexible pricing model that provides savings of up to 72% 
on your AWS compute usage. This pricing model offers lower prices on Amazon EC2 instances 
usage, regardless of instance family, size, OS, tenancy or AWS Region, and also applies to AWS 
Fargate usage.

Savings Plans offer significant savings over On-Demand Instances, just like EC2 Reserved 
Instances, in exchange for a commitment to use a specific amount of compute power (measured 
in $/hour) for a one- or three-year period. You can sign up for Savings Plans for a one- or three-
year term and easily manage your plans by taking advantage of recommendations, performance 
reporting, and budget alerts in the AWS Cost Explorer.

• Spot Instances — Amazon EC2 Spot Instances let you take advantage of unused EC2 capacity 
at up to a 90% discount compared to On-Demand prices. However, Spot Instances can be 
interrupted when EC2 needs to reclaim the capacity. Spot Instances are frequently the most cost-
effective resource for flexible or fault-tolerant workloads and can also be used for CFD cases. 
Spot availability varies by spot pool (for example, Region, Availability Zone, and instance type). 
Consider your deployment strategy and interruption impact when determining the most cost-
effective resources for your case.
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When a Spot Instance is interrupted, your case is interrupted. The interruption impact to your 
case depends on how your CFD application handles the interruption, and you can minimize this 
impact by checkpointing your simulation if supported. In addition, you can minimize the risk 
of Spot Instance interruption by working with the Spot Advisor, being flexible on instance type 
and Availability Zone, and using advanced features, such as the capacity-optimized allocation 
strategy in EC2 Fleet, to launch your Spot Instances. Overall, the need to occasionally restart a 
workload can be offset by the cost savings of Spot Instances.

• Combined approach — You can easily combine Spot Instances with On-Demand and RIs to 
further optimize workload cost with performance. For example, in the following figure, you could 
use Reserved Instances for your daily workloads, Spot Instances for component exploration, and 
On-Demand Instances for design review.

EC2 cost optimization for CFD cases
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Conclusion

This whitepaper describes best practices for using AWS for computational fluid dynamics (CFD). 
The paper presents the advantages of using AWS for CFD workloads, covers the getting started 
process, discusses AWS approaches for CFD, and addresses the options for optimizing the HPC 
components for CFD workloads. Following the best practices presented in this paper allows you to 
architect and optimize your environment for CFD workloads.
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Further reading

For additional information, refer to:

• CFD Workshop

• CFD on AWS

• HPC on AWS

• AWS Well-Architected Framework

• Introduction to HPC on AWS
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Notices

Customers are responsible for making their own independent assessment of the information in 
this document. This document: (a) is for informational purposes only, (b) represents current AWS 
product offerings and practices, which are subject to change without notice, and (c) does not create 
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or 
services are provided “as is” without warranties, representations, or conditions of any kind, whether 
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by 
AWS agreements, and this document is not part of, nor does it modify, any agreement between 
AWS and its customers.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.
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AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.
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