
AWS Whitepaper

Development and Test on Amazon Web
Services

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Development and Test on Amazon Web Services AWS Whitepaper

Development and Test on Amazon Web Services: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Development and Test on Amazon Web Services AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Abstract ... 1
Are you Well-Architected? .. 1
Introduction ... 2

Development phase ... 4
Source code repository .. 4
Project management tools ... 4
On-demand development environments .. 8

Stopping vs. ending Amazon EC2 instances .. 9
Integrating with AWS APIs and IDE enhancements .. 10

Build phase .. 12
Schedule builds ... 12
On-demand builds ... 12
Storing build artifacts ... 14

Testing phase ... 16
Automating test environments ... 16

Provisioning instances .. 17
Provisioning databases .. 17
Provisioning complete environments ... 18

Load testing .. 18
Network load testing ... 20
Load testing for AWS ... 20
Cost optimization with Spot instances .. 21

User acceptance testing .. 21
Side-by-side testing ... 22
Fault-tolerance testing .. 23

Resource management .. 24
Cost allocation and multiple AWS accounts ... 24

Conclusion .. 26
Contributors ... 27
Further reading .. 28
Document revisions ... 29
Notices .. 30
AWS Glossary ... 32

iii

Development and Test on Amazon Web Services AWS Whitepaper

Development and Test on Amazon Web Services

Publication date: June 29, 2021 (Document revisions)

Abstract

This whitepaper describes how Amazon Web Services (AWS) adds value in the various phases of the
software development cycle, with specific focus on development and test. For the development
phase, this whitepaper:

• Shows you how to use AWS for managing version control

• Describes project management tools, the build process, and environments hosted on AWS

• Illustrates best practices

For the test phase, this whitepaper describes how to manage test environments and run various
kinds of tests, including load testing, acceptance testing, fault tolerance testing, and so on.

AWS provides unique advantages in each of these scenarios and phases, enabling you to choose
the ones most appropriate for your software development project. The intended audiences for this
paper are project managers, developers, testers, systems architects, or anyone involved in software
production activities.

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS
Management Console, you can review your workloads against these best practices by answering a
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Abstract 1

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/

Development and Test on Amazon Web Services AWS Whitepaper

Introduction

Organizations write software for various reasons, ranging from core business needs (when the
organization is a software vendor) to customizing or integrating software. Organizations also
create different types of software: web applications, standalone applications, automated agents,
and so on. In all such cases, development teams are pushed to deliver software of high quality as
quickly as possible to reduce the time to market or time to production.

In this document, “development and test” refers to the various tools and practices applied
when producing software. Regardless of the type of software to be developed, a proper set of
development and test practices is key to success. However, producing applications not only requires
software engineers, but also IT resources, which are subject to constraints like time, money, and
expertise.

The software lifecycle typically consists of the following main elements:

Elements of the software lifecycle

Introduction 2

Development and Test on Amazon Web Services AWS Whitepaper

This whitepaper covers aspects of the development, build, and test phases. For each of these
phases, you need different types of IT infrastructure. AWS provides multiple benefits to software
development teams. AWS offers on-demand access to a wide range of cloud infrastructure services,
charging only for the resources that are used.

AWS helps eliminate both the need for costly hardware and the administrative pain that goes with
owning and operating it.

Owning hardware and IT infrastructure usually involves a capital expenditure for a three-five year
period, where most development and test teams need compute or storage for hours, days, weeks,
or months. This difference in timescales can cause friction due to the difficulty for IT operations
to satisfy simultaneous requests from project teams, even as they are constrained by a fixed set of
resources. The result is that project teams spend a lot of time justifying, sourcing, and holding on
to resources. This time could be spent focusing on the main job.

By provisioning only the resources needed for the duration of development phases, test runs, or
complete test campaigns, your company can achieve important savings compared to investing
up front in traditional hardware. With the right level of granularity, you can allocate resources
depending on each project’s needs and budget. In addition to those economic benefits, AWS also
offers significant operational advantages, such as the ability to set up a development and test
infrastructure in a matter of minutes rather than weeks or months, and to scale capacity up and
down to provide the IT resources needed, only when they are needed.

This document highlights some of the best practices and recommendations around development
and test on AWS. For example, for the development phase, this document discusses how
to securely and durably set up tools and processes such as version control, collaboration
environments, and automated build processes. For the testing phase, this document discusses
how to set up test environments in an automated fashion, and how to run various types of tests,
including side-by-side tests, load tests, stress tests, resilience tests, and more.

Introduction 3

Development and Test on Amazon Web Services AWS Whitepaper

Development phase
Regardless of team size, software type being developed, or project duration, development tools
are mandatory to rationalize the process, coordinate efforts, and centralize production. Like any
IT system, development tools require proper administration and maintenance. Operating such
tools on AWS not only relieves your development team from low-level system maintenance tasks
such as network configuration, hardware setup, and so on, but also facilitates the completion of
more complex tasks. The following sections describe how to operate the main components of
development tools on AWS.

Source code repository

The source code repository is a key tool for development teams. As such, it needs to be available,
and the data it contains (source files under version control) needs to be durably stored, with proper
backup policies. Ensuring these two characteristics— availability and durability—requires resources,
expertise, and time investment that typically aren’t a core competency of a software development
team.

Building a source code repository on AWS involves creating an AWS CodeCommit repository. AWS
CodeCommit is a secure, highly scalable, managed source control service that hosts private Git
repositories. It eliminates the need for you to operate your own source control system, and there is
no hardware to provision and scale or software to install, configure, and operate.

You can use CodeCommit to store anything from code to binaries, and it supports the standard
functionality of GitHub, allowing it to work seamlessly with your existing GitHub-based tools. Your
team can also use CodeCommit’s online code tools to browse, edit, and collaborate on projects.

CodeCommit enables you to store any number of files, and there are no repository size limits. In
a few simple steps, you can find information about a repository and clone it to your computer,
creating a local repository where you can make changes and then push them to the CodeCommit
repository. You can work from the command line on your local machines or use a GUI-based editor.

Project management tools

In addition to the source code repository, teams often use additional tools such as issue tracking,
project tracking, code quality analysis, collaboration, content sharing, and so on. Most of the
time, those tools are provided as web applications. Like any other classic web application, they
require a server to run, and frequently a relational database. The web components can be installed

Source code repository 4

https://docs.aws.amazon.com/codecommit/latest/userguide/welcome.html

Development and Test on Amazon Web Services AWS Whitepaper

on Amazon Elastic Compute Cloud (Amazon EC2), with the database using Amazon Relational
Database Service (Amazon RDS) for data storage.

Within minutes, you can create Amazon EC2 instances, which are virtual machines over which you
have complete control. A variety of different operating systems and distributions are available
as Amazon Machine Images (AMIs). An AMI is a template that contains a software configuration
(operating system, application server, and applications) that you can run on Amazon EC2. After
you’ve properly installed and configured the project management tool, AWS recommends you
create an AMI from this setup so you can quickly recreate that instance without having to reinstall
and reconfigure the software.

Project management tools have the same needs as source code repositories: they need to be
available, and data has to be durably stored. While you can mitigate the loss of code analysis
reports by recreating them against the desired repository version, losing project or issue tracking
information might have more serious consequences. You can address the availability of the project
management web application service by using AMIs to create replacement Amazon EC2 instances
in case of failure.

You can store the application’s data separately from the host system to simplify maintenance or
migration operations. Amazon Elastic Block Store (Amazon EBS) provides off-instance storage
volumes that persist independently from the life of an instance. After you create a volume, you can
attach it to a running Amazon EC2 instance. As such, an Amazon EBS volume is provisioned and
attached to the instance to store the data of the version control repository.

You achieve durability by taking point-in-time snapshots of the EBS volume containing the
repository data. EBS snapshots are stored in Amazon Simple Storage Service (Amazon S3), a highly
durable and scalable data store. Objects in Amazon S3 are redundantly stored on multiple devices
across multiple facilities in an AWS Region. You can automate the creation and management of
snapshots using Amazon Data Lifecycle Manager.

These snapshots can be used as the starting point for new Amazon EBS volumes, and can protect
your data for long-term durability. In case of a failure, you can recreate the application data
volume from the snapshots, and recreate the application instance from an AMI.

To facilitate proper durability and restoration, Amazon Relational Database Service (Amazon RDS)
offers an easy way to set up, operate, and scale a relational database in AWS. It provides cost-
efficient and resizable capacity while managing time-consuming database administration tasks,
freeing the project team from this responsibility. Amazon RDS Database instances (DB instances)
can be provisioned in a matter of minutes.

Project management tools 5

https://aws.amazon.com/ec2/
https://docs.aws.amazon.com/rds/index.html
https://docs.aws.amazon.com/rds/index.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://aws.amazon.com/ebs/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/snapshot-lifecycle.html
https://aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Overview.DBInstance.html

Development and Test on Amazon Web Services AWS Whitepaper

Optionally, Amazon RDS will ensure that the relational database software stays up to date with the
latest patches. The automated backup feature of Amazon RDS enables point-in-time recovery for
DB instances, allowing restoration of a DB instance to any point in time within the backup retention
period.

An Elastic IP address provides a static endpoint to an Amazon EC2 instance, and can be used
in combination with DNS (for example, behind a DNS CNAME). This helps teams to access their
hosted services, such as the project management tool, in a consistent way, even if infrastructure
is changed underneath; for example, when scaling up or down, or when a replacement instance is
provisioned.

An elastic IP address provides a static endpoint to an Amazon EC2 instance

Note

: For even quicker and easier deployment, many project management tools are available
from the AWS Marketplace or as Amazon Machine Images.

As your development team grows or adds more tools to the project management instance, you
might require extra capacity for both the web application instance and the DB instance. In AWS,

Project management tools 6

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html#CNAMEFormat
https://aws.amazon.com/marketplace/b/2649274011/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Development and Test on Amazon Web Services AWS Whitepaper

scaling instances vertically is an easy and straightforward operation. You simply stop the EC2
instance, change the instance type, and start the instance.

Alternatively, you can create a new web application server from the AMI on a more powerful
Amazon EC2 instance type, and replace the previous server. You can use horizontal scaling by using
Elastic Load Balancing, adding more instances to the system by using AWS Auto Scaling. In this
case, as you have more than one node, you can use Elastic Load Balancing to distribute the load
across all application nodes. Amazon RDS DB instances can scale compute and memory resources
with a few clicks on the AWS Management Console.

Use Elastic Load Balancing to distribute the load across all application nodes

When you want to quickly set up a software development project on AWS and don’t want to
configure custom project management tools on EC2, you can use AWS CodeStar. AWS CodeStar
comes with a unified project dashboard and integration with Atlassian JIRA software, a third-party
issue tracking and project management tool. With the AWS CodeStar project dashboard, you can
easily track your entire software development process, from a backlog work item to production
code deployment.

Project management tools 7

https://docs.aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/console/
https://www.atlassian.com/software/jira

Development and Test on Amazon Web Services AWS Whitepaper

On-demand development environments

Developers primarily use their local laptops or desktops to run their development environments.
This is typically where the integrated development environment (IDE) is installed, where unit tests
are run, where source code is checked in, and so on.

However, there are a few cases where on-demand development environments hosted in AWS are
helpful.

AWS Cloud9 is a cloud-based IDE that enables you to write, run, and debug your code with just a
browser. It includes a code editor, debugger, and terminal. AWS Cloud9 comes prepackaged with
essential tools for popular programming languages, including JavaScript, Python, PHP, Ruby, Go,
C++, and more, so you don’t need to install files or configure your development machine to start
new projects. Because your AWS Cloud9 IDE is cloud-based, you can work on your projects from
your office, home, or anywhere using an internet-connected machine. With AWS Cloud9, you can
quickly share your development environment with your team, enabling you to pair program and
track each other's inputs in real time.

Some development projects may use specialized sets of tools that would be cumbersome or
resource-intensive to install and maintain these on local machines, especially if the tools are used
infrequently. For such cases, you can prepare and configure development environments with
required tools (development tools, source control, unit test suites, IDEs, and so on), and then
bundle them as AMIs.

You can easily start the right environment and have it up and running in minimal time and with
minimal effort. When you no longer need the environment, you can shut it down to free up
resources. This can also be helpful if you need to switch context in the middle of having code
checked out and work in progress. Instead of managing branches or dealing with partial check-ins,
you can spin up a new temporary environment.

On AWS, you have access to a variety of different instance types, some with very specific hardware
configurations. If you are developing specifically for a given configuration, it may be helpful to
have a development environment on the same platform where the system is going to run. Amazon
WorkSpaces enables you to provision virtual, cloud-based Microsoft Windows or Amazon Linux
desktops for your users to run IDEs using your favorite applications such as Visual Studio, IntelliJ,
Eclipse, AWS CLI, AWS SDK tools, Visual Studio Code, Eclipse, Atom, and many more.

The concept of hosted desktops is not limited to development environments; it can apply to other
roles or functions as well. For more complex working environments, AWS CloudFormation makes

On-demand development environments 8

https://aws.amazon.com/cloud9/
https://aws.amazon.com/ec2/instance-types
https://aws.amazon.com/workspaces/
https://aws.amazon.com/workspaces/
https://aws.amazon.com/cloudformation/

Development and Test on Amazon Web Services AWS Whitepaper

it easy to set up collections of AWS resources. This topic is discussed further in the Testing section
of this document. In many cases, such environments are set up within the Amazon Virtual Private
Cloud (Amazon VPC), which enables you to extend your on-premises private network to the cloud.
You can then provision the development environments as if they were on the local network, but
instead they are running in AWS. This can be helpful if such environments require any on-premises
resources such as Lightweight Directory Access Protocol (LDAP).

The following diagram shows a deployment where development environments are running on
Amazon EC2 instances within an Amazon VPC. Those instances are remotely accessed from an
enterprise network, through a secure VPN connection.

Development environments running on Amazon EC2 instances within an Amazon VPC

Stopping vs. ending Amazon EC2 instances

Whenever development environments are not used; for example, during the hours when you are
not working, or when a specific project is on hold, you can easily shut them down to save resources
and cost. There are two possibilities:

• Stopping the instances, which is roughly equivalent to hibernating the operating system

• Ending the instances, which is roughly equivalent to discarding the operating system

Stopping vs. ending Amazon EC2 instances 9

https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/

Development and Test on Amazon Web Services AWS Whitepaper

When you stop an instance (possible for Amazon EBS−backed AMIs), the compute resources are
released and no further hourly charges for the instance apply. The Amazon EBS volume stores
the state, and next time you start the instance, it will have the working data as it did before you
stopped it.

Note

: any data stored on ephemeral drives will not be available after a stop/start sequence.

When you end an instance, the root device and any other devices attached during the instance
launch are automatically deleted (unless the DeleteOnTermination flag of a volume is set to
“false”), meaning that data may be lost if there is no backup or snapshot available for the
deleted volumes. An ended instance doesn’t exist anymore and must be recreated from an AMI if
needed. You would typically end the instance of a development environment if all work has been
completed and/or the specific environment will not be used anymore.

If you use AWS Cloud9 IDE, the EC2 instance that AWS Cloud9 connects to by default stops 30
minutes after you close the IDE, and restarts automatically when you open the IDE. As a result, you
typically only incur EC2 instance charges for when you are actively working.

If you chose to run your development environments on EC2 instances, you can use AWS Instance
Scheduler to automatically stop your instances during weekends or non- working schedules. This
can help reduce the instance utilization and overall spend.

Integrating with AWS APIs and IDE enhancements

With AWS, you can now code against and control IT infrastructure, either if the target platform
of your project is AWS, or if the project is about orchestrating resources in AWS. For such cases,
you can use the various AWS SDKs to easily integrate their applications with AWS APIs, taking the
complexity out of coding directly against a web service interface and dealing with details around
authentication, retries, error handling, and so on. The AWS SDK tools are available for multiple
languages: C++, Go, JavaScript, Node.js, Python, Java, .Net, PHP, Ruby, and for mobile platforms
Android and iOS.

AWS also offers IDE tools that make it easier for you to interact with AWS from within your IDEs,
such as:

• AWS Toolkit for Visual Studio

Integrating with AWS APIs and IDE enhancements 10

https://aws.amazon.com/cloud9/
https://aws.amazon.com/solutions/implementations/instance-scheduler/
https://aws.amazon.com/solutions/implementations/instance-scheduler/
https://aws.amazon.com/sdk-for-cpp/
https://aws.amazon.com/sdk-for-go/
https://aws.amazon.com/sdk-for-browser/
https://aws.amazon.com/sdk-for-node-js/
https://aws.amazon.com/sdk-for-python/
https://aws.amazon.com/sdk-for-java/
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-php/
https://aws.amazon.com/sdk-for-ruby/
https://aws.amazon.com/mobile
https://aws.amazon.com/visualstudio/

Development and Test on Amazon Web Services AWS Whitepaper

• AWS Toolkit for VS Code

• AWS Toolkit for Eclipse

• AWS Toolkit for IntelliJ IDEA

• AWS Toolkit for PyCharm

• AWS Toolkit for Azure DevOps

• AWS Toolkit for Rider

• AWS Toolkit for WebStorm

For developing and building Serverless applications, AWS offers the Serverless Application
Model (AWS SAM) open-source framework, which can be used with the AWS toolkits mentioned
previously.

Integrating with AWS APIs and IDE enhancements 11

https://aws.amazon.com/visualstudiocode/
https://aws.amazon.com/eclipse/
https://aws.amazon.com/intellij/
https://aws.amazon.com/pycharm/
https://aws.amazon.com/vsts/
https://aws.amazon.com/rider/
https://aws.amazon.com/webstorm/
https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/serverless/sam/

Development and Test on Amazon Web Services AWS Whitepaper

Build phase

The process of building an application involves many steps, including compilation, resource
generation, and packaging. For large applications, each step involves multiple dependencies such
as building internal libraries, using helper applications, generating resources in different formats,
generating the documentation, and so on.

Some projects might require building the deliverables for multiple CPU architectures, platforms,
or operating systems. The complete build process can take many hours, which has a direct impact
on the agility of the software development team. This impact is even stronger on teams adopting
approaches like continuous integration where every commit to the source repository triggers an
automated build, followed by test suites.

Schedule builds

To mitigate this problem, teams working on projects with lengthy build times often adopt the
“nightly build” (or neutral build) approach, or break the project into smaller sub- projects (or a
combination of both). Doing nightly builds involves a build machine checking out the latest source
code from the repository and building the project deliverables overnight. Development teams
may not build as many versions as they would like, and the build should be completed in time
for testing to begin the next day. Breaking down a project into smaller, more manageable parts
might be a solution if each sub-project builds faster independently. However, an integration step
combining all the different sub-projects is still often necessary for the team to keep an eye on the
overall project, and to ensure the different parts still work well together.

On-demand builds

A more practical solution is to use more computational power for the build process. On traditional
environments where the build server runs on hardware acquired by the organization, this option
might not be viable due to economic constraints or provisioning delays. A build server running on
an Amazon EC2 instance can be scaled up vertically in a matter of minutes, reducing build time by
providing more CPU or memory capacity when needed.

For teams with multiple builds triggered within the same day, a single Amazon EC2 instance might
not be able to produce the builds quickly enough. A solution would be to take advantage of the on-
demand and pay-as-you-go nature of AWS CodeBuild to run multiple builds in parallel. Every time

Schedule builds 12

https://aws.amazon.com/devops/continuous-integration/
https://aws.amazon.com/codebuild/

Development and Test on Amazon Web Services AWS Whitepaper

a new build is requested by the development team or triggered by a new commit to the source
code repository, AWS CodeBuild creates a temporary compute container of the class defined in
the build project and immediately processes each build as submitted. You can run separate builds
concurrently without waiting in a queue. This also enables you to schedule automated builds at a
specific time window.

If you use a build tool on EC2 instances running as a fleet of worker nodes, the task distribution
to the worker nodes can be done using a queue holding all the builds to process. Worker nodes
pick the next build to process as they are free. To implement this system, Amazon Simple Queue
Service (Amazon SQS) offers a reliable, highly scalable, hosted queue service. Amazon SQS makes
it easy to create an automated build workflow, working in close conjunction with Amazon EC2
and other AWS infrastructure services. In this setup, developers commit code to the source code
repository, which in turn pushes a build message into an Amazon SQS queue. The worker nodes
poll this queue to pull a message and run the build locally according to the parameters contained
in the message (for example, the branch or source version to use).

You can further enhance this setup by dynamically adjusting the pool of worker nodes consuming
the queue. Auto Scaling is a service that makes it easy to scale the number of worker nodes up or
down automatically according to predefined conditions. With Auto Scaling, worker nodes’ capacity
can increase seamlessly during demand spikes to maintain quick build generation, and decrease
automatically during demand lulls to minimize costs.

You can define scaling conditions using Amazon CloudWatch, a monitoring service for AWS Cloud
resources. For example, Amazon CloudWatch can monitor the number of messages in the build
queue and notify Auto Scaling that more or less capacity is needed depending on the number of
messages in the queue. The following diagram summarizes this scenario:

On-demand builds 13

https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-codebuild-tutorial.html
https://aws.amazon.com/sqs/
https://aws.amazon.com/sqs/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/cloudwatch/

Development and Test on Amazon Web Services AWS Whitepaper

Amazon CloudWatch can monitor the number of messages in the build queue and notify Auto Scaling
that more or less capacity is needed

Storing build artifacts

Every time you produce a build, you need to store the output somewhere. Amazon S3 is an
appropriate service for this. Initially, the amount of data to be stored for a given project is
small, but it grows over time as you produce more builds. Here the pay-as- you-go and capacity
characteristics of S3 are particularly attractive. When you no longer need the build output, you
can delete it, or use the S3 lifecycle policies to delete or archive the objects to Amazon S3 Glacier
storage class. AWS CodeBuild by default uses S3 buckets to store the build outputs.

To distribute the build output (for example, to be deployed in test, staging, or production, or to
be downloaded to clients), AWS offers several options. You can distribute build output packages
directly out of S3 by configuring bucket policies and/or ACLs to restrict the distribution. You can
also share the output object using an S3 presigned URL.

Another option is to use Amazon CloudFront, a web service for content delivery, which makes it
easy to distribute packages to end users with low latency and high data transfer speeds, thereby

Storing build artifacts 14

https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://aws.amazon.com/glacier
https://docs.aws.amazon.com/AmazonS3/latest/userguide/ShareObjectPreSignedURL.html
https://aws.amazon.com/cloudfront/

Development and Test on Amazon Web Services AWS Whitepaper

improving the end user experience. This can be helpful, for example, when a large number of
clients are downloading install packages or updates. Amazon CloudFront offers several options; for
example, to authorize and/or restrict access, though a full discussion of this is out of scope for this
document.

Storing build artifacts 15

Development and Test on Amazon Web Services AWS Whitepaper

Testing phase

Tests are a critical part of software development. They ensure software quality, but more
importantly, they help find issues early in the development phase, lowering the cost of fixing them
later during the project. Tests come in many forms: unit tests, performance tests, user acceptance
tests, integration tests, and so on, and all require IT resources to run. Test teams face the same
challenges as development teams: the need for enough IT resources, but only during the limited
duration of the test runs. Test environments change frequently and are different from project to
project, and may require different IT infrastructure or have varying capacity needs.

The AWS on-demand and pay-as-you-go value propositions are well adapted to those
constraints. AWS enables your test teams to eliminate both the need for costly hardware and the
administrative pain that goes along with owning and operating it.

AWS also offers significant operational advantages for testers. Test environments can be set up in
minutes rather than weeks or months, and a variety of resources, including different instance types,
are available to run tests whenever they are needed.

Automating test environments

There are many software tools and frameworks available for automating the process of running
tests, but proper infrastructure must be in place. This involves provisioning infrastructure resources,
initializing the resources with a sample dataset, deploying the software to be tested, orchestrating
the test runs, and collecting results. The challenge is not only to have enough resources to deploy
the complete application with all the different servers or services it might require, but to be able
to initialize the test environment with the right software and the right data over and over. Test
environments should be identical between test runs; otherwise, it is more difficult to compare
results.

Another important benefit of running tests on AWS is the ability to automate them in various ways.
You can create and manage test environments programmatically using the AWS APIs, CLI tools, or
AWS SDKs. Tasks that require human intervention in classic environments (allocating a new server,
allocating and attaching storage, allocating a database, and so on) can be fully automated on AWS
using AWS CodePipeline and AWS CloudFormation.

For testers, designing tests suites on AWS means being able to automate a test down to the
operation of the components, which are traditionally static hardware devices.

Automating test environments 16

https://aws.amazon.com/codepipeline/
https://aws.amazon.com/cloudformation/

Development and Test on Amazon Web Services AWS Whitepaper

Automation makes test teams more efficient by removing the effort of creating and initializing test
environments, and less error prone by limiting human intervention during

the creation of those environments. An automated test environment can be linked to the build
process, following continuous integration principles. Every time a successful build is produced, a
test environment can be provisioned and automated tests run on it.

The following sections describe how to automatically provision Amazon EC2 instances, databases,
and complete environments.

Provisioning instances

You can easily provision Amazon EC2 instances from AMIs. An AMI encapsulates the operating
system and any other software or configuration files pre-installed on the instance. When you
launch the instance, all the applications are already loaded from the AMI and ready to run. For
information about creating AMIs, refer to the Amazon EC2 documentation. The challenge with
AMI-based deployments is that each time you need to upgrade software, you have to create a
new AMI. Although the process of creating a new AMI (and deleting an old one) can be completely
automated using EC2 Image Builder, you must define a strategy for managing and maintaining
multiple versions of AMIs.

An alternative approach is to include only components into the AMI that don’t change often
(operating system, language platform and low-level libraries, application server, and so on). More
volatile components, like the application under development, can be fetched and deployed to
the instance at runtime. For more details on how to create self- bootstrapped instances, refer to
Bootstrapping.

Provisioning databases

Test databases can be efficiently implemented as Amazon RDS database instances. Your test teams
can instantiate a fully operational database easily, and load a test dataset from a snapshot. To
create this test dataset, you first provision an Amazon RDS instance. After injecting the dataset,
you create a snapshot of the instance. From that time, every time you need a test database for a
test environment, you can create one as an Amazon RDS instance from that initial snapshot. Refer
to Restoring from a DB snapshot. Each Amazon RDS instance started from the same snapshot will
contain the same dataset, which helps ensure that your tests are consistent.

Provisioning instances 17

https://aws.amazon.com/devops/continuous-integration/
http://docs.amazonwebservices.com/AWSEC2/latest/UserGuide/creating-an-ami.html
https://aws.amazon.com/image-builder/
https://docs.aws.amazon.com/cdk/latest/guide/bootstrapping.html
http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
http://docs.amazonwebservices.com/AmazonRDS/latest/UserGuide/USER_RestoreFromSnapshot.html

Development and Test on Amazon Web Services AWS Whitepaper

Provisioning complete environments

While you can create complex test environments containing multiple instances using the AWS APIs,
command line tools, or the AWS Management Console, AWS CloudFormation makes it even easier
to create a collection of related AWS resources and provision them in an orderly and predictable
fashion.

AWS CloudFormation uses templates to create and delete a collection of resources together as a
single unit (a stack). A complete test environment running on AWS can be described in a template,
which is a text file in JSON or YAML format. Because templates are just text files, you can edit and
manage them in the same source code repository you use for your software development project.
That way, the template will mirror the status of the project, and test environments matching older
source versions can be easily provisioned. This is particularly useful when dealing with regression
bugs. In just a few steps, you can provision the full test environment, enabling developers and
testers to simulate a bug detected in older versions of the software.

AWS CloudFormation templates also support parameters that can be used to specify a specific
software version to be loaded, the Amazon EC2 instance sizes for the test environment, the dataset
to be used for the databases, and so on.

Provisioning cloud applications can be a challenging process that requires you to perform manual
actions, write custom scripts, maintain templates, or learn domain- specific languages. You
can now use the AWS Cloud Development Kit (AWS CDK) (AWS CDK), an open-source software
development framework for defining cloud infrastructure-as-code with modern programming
languages, and deploying it through AWS CloudFormation. AWS CDK uses familiar programming
languages such as TypeScript, JavaScript, Python, Java, C# / .Net, and Go for modeling your
applications.

For more information about how to create and automate deployments on AWS using AWS
CloudFormation, refer to AWS CloudFormation Resources.

Load testing

Functionality tests running in controlled environments are valuable tools to ensure software
quality, but they give little information on how an application or a complete deployment will
perform under heavy load. For example, some websites are specifically created to provide a service
for a limited time: ticket sales for sports events, special sales, limited edition launches, and so on.
Such websites must be developed and architected to perform efficiently during peak usage periods.

Provisioning complete environments 18

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cdk/
https://aws.amazon.com/cloudformation/aws-cloudformation-articles-and-tutorials/

Development and Test on Amazon Web Services AWS Whitepaper

In some cases, the project requirements clearly state the minimum performance metrics to be
met under heavy load conditions (for example, search results must be returned in under 100
milliseconds (ms) for up to 10,000 concurrent requests), and load tests are exercised to ensure that
the system can sustain the load within those limits.

For other cases, it is not possible or practical to specify the load a system should sustain. In
such cases, load tests are performed to measure the behavior under heavy load conditions.
The objective is to gradually increase the load of a system, to determine the point where the
performance degrades in such a way that the system cannot operate anymore.

Load tests simulate heavy inputs that exercise and stress a system. Depending on the project,
inputs can be a large number of concurrent incoming requests, a huge dataset to process, and so
on. One of the main difficulties in load testing is generating large enough amounts of inputs to
push the tested system to its limits. Typically, you need large amounts of IT resources to deploy the
system to test, and to generate the test input, which requires further infrastructure. Because load
tests generally don’t run for more than a couple of hours, the AWS pay-as-you-go model nicely fits
this use case.

You can also automate load tests using the techniques described in the previous section, enabling
your testers to exercise them more frequently to ensure that each major change to the project
doesn’t adversely affect system performance and efficiency. Conversely, by launching automated
load tests, you can discover whether a new algorithm, caching layer, or architecture design is more
efficient and benefits the project.

Note

: For quick and easy setup, testing tools and solutions are also available from the AWS
Marketplace.

In Serverless architectures using AWS services such as AWS Lambda, Amazon API Gateway, AWS
Step Functions, and so on, load testing can help identify custom code in Lambda functions that
may not run efficiently as traffic scales up. It also helps to determine an optimum timeout value by
analyzing your functions’ running duration to identify problems with a dependency service. One of
the most popular tools to perform this task is Artillery Community Edition, which is an open-source
tool for testing serverless APIs. You can also use Distributed Load Testing on AWS to automate
application testing, understand how it performs at scale, and fix bottlenecks before releasing your
application.

Load testing 19

https://aws.amazon.com/marketplace/b/2649283011/
https://aws.amazon.com/marketplace/b/2649283011/
https://aws.amazon.com/lambda/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/step-functions/
https://aws.amazon.com/step-functions/
https://artillery.io/
https://aws.amazon.com/solutions/implementations/distributed-load-testing-on-aws/

Development and Test on Amazon Web Services AWS Whitepaper

Network load testing

Testing an application or service for network load involves sending large numbers of requests to
the system being tested. There are many software solutions available to simulate request scenarios,
but using multiple Amazon EC2 instances may be necessary to generate enough traffic. Amazon
EC2 instances are available on-demand and are charged by the hour, which makes them well suited
for network load testing scenarios. Keep in mind the characteristics of different instance types.
Generally, larger instance types provide more input/output (I/O) network capacity, the primary
resource consumed during network load tests.

With AWS, test teams can also perform network load testing on applications that run outside of
AWS. Having load test agents dispersed in different Regions of AWS enables testing from different
geographies; for example, to get a better understanding of the end user experience. In that
scenario, it makes sense to collect log information from the instances that simulate the load. Those
logs contain important information such as response times from the tested system. By running the
load agents from different Regions, the response time of the tested application can be measured
for different geographies. This can help you understand the worldwide user experience.

Because you can end load-testing Amazon EC2 instances right after the test, you should transfer
log data to S3 for storage and later analysis.

When you plan to run high volume network load tests directly from your EC2 instances to other
EC2 instances, follow the Amazon EC2 Testing Policy.

Load testing for AWS

Load testing an application running on AWS is useful to make sure that elasticity features are
correctly implemented. Testing a system for network load is important to make sure that for web
front-ends, Auto Scaling, and Elastic Load Balancing configurations are correct. Auto Scaling offers
many parameters and can use multiple conditions defined with Amazon CloudWatch to scale the
number of front-end instances up or down.

These parameters and conditions influence how fast an Auto Scaling group will add or remove
instances. An Amazon EC2 instance’s post-provisioning time might also affect an application’s
ability to scale up quickly enough. After initialization of the operating system running on Amazon
EC2 instances, additional services are initialized, such as web servers, application servers, memory
caches, middleware services, and so on. The initialization time of these different services affects
the scale-up delay, especially when additional software packages need to be pulled down from a

Network load testing 20

https://aws.amazon.com/ec2/testing/
https://aws.amazon.com/articles/best-practices-in-evaluating-elastic-load-balancing/
http://docs.amazonwebservices.com/AutoScaling/latest/DeveloperGuide/Welcome.html

Development and Test on Amazon Web Services AWS Whitepaper

repository. Load testing provides valuable metrics on how fast additional capacity can be added
into a particular system.

Auto Scaling is not only used for front-end systems. You might also use it for scaling internal
groups of instances, such as consumers polling an Amazon SQS queue or workers and deciders
participating in an Amazon Simple Workflow Service (Amazon SWF) workflow. In both cases, load
testing the system can help ensure you’ve correctly implemented and configured Auto Scaling
groups or other automated scaling techniques to make your final application as cost-effective and
scalable as possible.

Cost optimization with Spot instances

Load testing can require many instances, especially when exercising systems that are designed to
support a high amount of load. While you can provision Amazon EC2 instances on-demand and
discard them when the test is completed while only paying by the hour, there is an even more cost-
effective way to perform those tests using Amazon EC2 Spot Instances.

Spot Instances enable customers to bid for unused Amazon EC2 capacity. Instances are charged the
Spot Price set by Amazon EC2, which fluctuates depending on the supply of and demand for Spot
Instance capacity. To use Spot Instances, place a Spot Instance request specifying the instance type,
the desired Availability Zone, the number of Spot Instances to run, and the maximum price to pay
per instance hour.

The Spot Instance Price history for the past 90 days is available via the Amazon EC2 API or the
AWS Management Console. If the maximum price bid exceeds the current Spot Price, the request is
fulfilled and instances are started. The instances run until either they are ended or the Spot Price
increases above the maximum price, whichever is sooner.

Refer to Testimonials and Case Studies to read about other customers’ case studies and
testimonials on EC2 Spot instances.

User acceptance testing

The objective of user acceptance testing is to present the current release to a testing team
representing the final user base, to determine if the project requirements and specification are
met. When users can test the software earlier, they can spot conceptual weaknesses that have been
introduced during the analysis phase, or clarify gray areas in the project requirements.

By testing the software more frequently, users can identify functional implementation errors
and user interface or application flow misconceptions earlier, lowering the cost and impact of

Cost optimization with Spot instances 21

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-short-and-long-polling.html
https://aws.amazon.com/swf/
https://aws.amazon.com/ec2/spot-instances/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#concepts-availability-zones
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-spot-instances-history.html
https://aws.amazon.com/ec2/spot/testimonials/

Development and Test on Amazon Web Services AWS Whitepaper

correcting them. Flaws detected by user acceptance testing may be very difficult to detect by other
means. The more often you conduct acceptance tests, the better for the project, because end users
provide valuable feedback to development teams as requirements evolve.

However, like any other test practice, acceptance tests require resources to run the environment
where the application to be tested will be deployed. As described in previous sections, AWS
provides on-demand capacity as needed in a cost-effective way, which is also appropriate for
acceptance testing. Using some of the techniques described previously, AWS enables complete
automation of the process of provisioning new test environments and of disposing environments
no longer needed. Test environments can be provided for certain times only, or continuously from
the latest source code version, or for every major release.

By deploying the acceptance test environment within Amazon VPC, internal users can transparently
access the application to be tested. Such an application can also be integrated with other
production services inside the company, such as LDAP, email servers, and so on, offering a test
environment to the end users that is even closer to the real and final production environment.

Side-by-side testing

Side-by-side testing is a method used to compare a control system to a test system. The goal is
to assess whether changes applied to the test system improve a desired metric compared to the
control system. You can use this technique to optimize the performance of complex systems where
a multitude of different parameters can potentially affect the overall efficiency. Knowing which
parameter will have the desired effect is not always obvious, especially when multiple components
are used together and influence the performance of each other.

You can also use this technique when introducing important changes to a project, such as new
algorithms, caches, different database engines, or third-party software. In such cases, the objective
is to ensure your changes positively affect the global performance of the system.

After you’ve deployed the test and control systems, send the same input to both, using load-
testing techniques or simple test inputs. Finally, collect performance metrics and logs from both
systems and compare them to determine if the changes you introduced in the test system present
an improvement over the control system.

By provisioning complete test environments on-demand, you can perform side-by-side tests
efficiently. While you can do side-by-side testing without automated environment provisioning,
using the automation techniques described above makes it easier to perform those tests whenever

Side-by-side testing 22

Development and Test on Amazon Web Services AWS Whitepaper

needed, taking advantage of the pay-as-you-go model of AWS. In contrast, with traditional
hardware, it may not be possible to run multiple test environments for multiple projects
simultaneously.

Side-by-side tests are also valuable from a cost optimization point of view. By comparing two
environments in different AWS accounts, you can easily come up with cost and performance ratios
to compare both environments. By continuously testing architecture changes for cost performance,
you can optimize your architectures for efficiency.

Fault-tolerance testing

When AWS is the target production environment for the application you’ve developed, some
specific test practices provide insights into how the system will handle corner cases, such as
component failures. AWS offers many options for building fault-tolerant systems. Some services
are inherently fault-tolerant, for example, Amazon S3, Amazon DynamoDB, Amazon SimpleDB,
Amazon SQS, Amazon Route 53, Amazon CloudFront, and so on. Other services such as Amazon
EC2, Amazon EBS, and Amazon RDS provide features that help architect fault-tolerant and highly
available systems.

For example, Amazon RDS offers the Multi-Availability Zone option that enhances database
availability by automatically provisioning and managing a replica in a different Availability Zone.
For more information, see the resources available in the AWS Architecture Center.

Many AWS customers run mission-critical applications on AWS, and they need to make sure their
architecture is fault tolerant. As a result, an important practice for all systems is to test their fault-
tolerance capability. While a test scenario exercises the system (using similar techniques to load
testing), some components are taken down on purpose to check if the system is able to recover
from such simulated failure. You can use the AWS Management Console or the CLI to interact with
the test environment.

For example, you might end Amazon EC2 instances, and then test whether an Auto Scaling group is
working as expected and a replacement instance automatically provisioned. You can also automate
this kind of test by integrating AWS Fault Injection Simulator with your CI/CD pipeline. It is a best
practice is to use automated tools that, for example, occasionally and randomly disrupt Amazon
EC2 instances. With Fault Injection Simulator, you can stress an application by creating disruptive
events, such as a sudden increase in CPU or memory consumption, to observe how the system
responds and implement improvements.

Fault-tolerance testing 23

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.MultiAZ.html
https://aws.amazon.com/architecture/
https://aws.amazon.com/fis/
https://en.wikipedia.org/wiki/CI/CD

Development and Test on Amazon Web Services AWS Whitepaper

Resource management

With AWS, your development and test teams can have their own resources, scaled according to
their own needs. Provisioning complex environments or platforms composed of multiple resources
can be done using AWS CloudFormation stacks, or some of the other automation techniques
described in this whitepaper. In large organizations comprising multiple teams, it is a good practice
to create an internal role or service responsible for centralizing and managing IT resources running
on AWS. This role typically consists of:

• Promoting the internal development and test practices described here

• Developing and maintaining template AMIs and template AWS CloudFormation stacks with the
different tools and platforms used in your organization

• Collecting resource requests from project teams, and provisioning resources on AWS according to
your organization’s policies, including network configuration (such as Amazon VPC) and security
configurations (such as Security Groups and IAM credentials)

• Monitoring resource usage and charges using AWS Cost Explorer, and allocating these to team
budgets

You can use the Service Catalog to achieve the tasks above or you might want to develop your own
internal provisioning and management portal for a tighter integration with internal processes. You
can do this by using one of the AWS SDKs, which allow programmatic access to resources running
on AWS.

Cost allocation and multiple AWS accounts

Some customers have found it helpful to create specific accounts for development and test
activities. This can be important when your production environment also runs on AWS and you
need to separate teams and responsibilities. Separate accounts are isolated from each other
by default, so that, for example, development and test users do not interfere with production
resources. To enable collaboration, AWS offers a number of features that enable sharing of
resources across accounts, such as Amazon S3 objects, AMIs, and Amazon EBS snapshots.

To separate out and allocate the cost for the various activities and phases of the development and
test cycle, AWS offers various options. One option is to use separate accounts (for example, for
development, testing, staging, and production), and each account will have its own bill. You can

Cost allocation and multiple AWS accounts 24

https://aws.amazon.com/aws-cost-management/aws-cost-explorer/
https://aws.amazon.com/servicecatalog/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/UsingObjects.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSSnapshots.html

Development and Test on Amazon Web Services AWS Whitepaper

also consolidate multiple accounts using consolidated billing for AWS Organizations to simplify
costs and take advantage of quantity discounts with a single bill.

Another option is to make use of the monthly cost allocation report, which enables you to organize
and track your AWS costs by using resource tagging. In the context of development and test, tags
can represent the various stages or teams of the development cycle, though you are free to choose
the dimensions you find most helpful.

Cost allocation and multiple AWS accounts 25

https://aws.amazon.com/organizations/
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/configurecostallocreport.html

Development and Test on Amazon Web Services AWS Whitepaper

Conclusion

Development and test practices require certain resources at certain times for the development
cycle. In traditional environments, those resources might not be available at all, or not in the
necessary timeframe. When those resources are available, they provide a fixed amount of capacity
that is either insufficient (especially in variable activities like testing), or wasted (but paid for) when
the resources are not used. For more information, see the Auto Scaling documentation.

AWS offers a cost-effective alternative to traditional development and test infrastructures. Instead
of waiting weeks or even months for hardware, you can instantly provision resources, scale up as
the workload grows, and release resources when they are no longer needed.

Whether development and test environments consist of a few instances or hundreds, whether they
are needed for a few hours or 24/7, you still pay only for what you use. AWS is a programming-
language and operating system−agnostic platform, and you can choose the development platform
or programming model used in your business. This flexibility enables you to focus on your project,
not on operating and maintaining your infrastructure.

AWS also enables possibilities that are difficult to realize with traditional hardware. You can fully
automate resources on AWS so that environments can be provisioned and decommissioned without
human intervention. You can start development environments on-demand; kick off builds when
needed, unconstrained by the availability of resources; provision test resources; and automatically
orchestrate entire test runs or campaigns.

AWS offers you the ability to experiment and iterate with a rapidly changeable infrastructure. Your
project teams are free to use inexpensive capacity to perform any kind of tests or to experiment
with new ideas, with no upfront expenses or long-term commitments, making AWS a platform of
choice for development and test.

26

https://docs.aws.amazon.com/autoscaling/ec2/userguide/what-is-amazon-ec2-auto-scaling.html

Development and Test on Amazon Web Services AWS Whitepaper

Contributors

The following individuals and organizations contributed to this document:

• Rakesh Singh, Sr. Technical Account Manager, AMER-World Wide Public Sector

• Carlos Conde

• Attila Narin

27

Development and Test on Amazon Web Services AWS Whitepaper

Further reading

• Developer Tools on AWS

• How AWS Pricing Works (whitepaper)

• AWS Architecture Center

• AWS Whitepapers & Guides

28

https://aws.amazon.com/products/developer-tools/
https://docs.aws.amazon.com/whitepapers/latest/how-aws-pricing-works/introduction.html
https://aws.amazon.com/architecture
https://aws.amazon.com/whitepapers/

Development and Test on Amazon Web Services AWS Whitepaper

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated for latest technolog
ies and services.

June 29, 2021

Initial publication Whitepaper published. November 2, 2012

29

Development and Test on Amazon Web Services AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

Contents

Introduction 1

Development phase 2

Source code repository 3

Project management tools 3

On-demand development environments 6

Integrating with AWS APIs and IDE enhancements 9

Build phase 10

Schedule builds 10

On-demand builds 10

Storing build artifacts 12

Testing phase 13

Automating test environments 13

Load testing 15

User acceptance testing 18

30

Development and Test on Amazon Web Services AWS Whitepaper

Side-by-side testing 19

Fault-tolerance testing 20

Resource management 21

Cost allocation and multiple AWS accounts 21

Conclusion 22

Contributors 23

Further reading 23

Document revisions 23

31

Development and Test on Amazon Web Services AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

32

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Development and Test on Amazon Web Services
	Table of Contents
	Development and Test on Amazon Web Services
	Abstract
	Are you Well-Architected?
	Introduction

	Development phase
	Source code repository
	Project management tools
	On-demand development environments
	Stopping vs. ending Amazon EC2 instances

	Integrating with AWS APIs and IDE enhancements

	Build phase
	Schedule builds
	On-demand builds
	Storing build artifacts

	Testing phase
	Automating test environments
	Provisioning instances
	Provisioning databases
	Provisioning complete environments

	Load testing
	Network load testing
	Load testing for AWS
	Cost optimization with Spot instances

	User acceptance testing
	Side-by-side testing
	Fault-tolerance testing

	Resource management
	Cost allocation and multiple AWS accounts

	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices
	AWS Glossary

