
AWS Whitepaper

Migrating Your Databases to Amazon
Aurora

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migrating Your Databases to Amazon Aurora: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Abstract ... 1
Are you Well-Architected? .. 1
Introduction ... 1

Database migration considerations .. 4
Migration phases .. 4
Application considerations .. 4

Evaluate Aurora features ... 4
Performance considerations .. 4

Sharding and read replica considerations ... 5
Reliability considerations .. 6
Cost and licensing considerations ... 6
Other migration considerations .. 7

Estimate code change effort .. 7
Application availability during migration ... 7
Modify connection string during migration .. 7

Planning your database migration process ... 9
Homogeneous migration .. 9

Homogeneous migration with downtime .. 9
Homogeneous migration with near-zero downtime ... 10

Heterogeneous migration ... 11
Schema migration ... 11
Data migration .. 11

Migrating large databases to Amazon Aurora ... 12
Partition and shard consolidation on Amazon Aurora ... 12
Migration options at a glance ... 13

RDS snapshot migration ... 15
Estimating space requirements for snapshot migration .. 16
Migrating a DB snapshot using the console ... 17

Migration using Aurora Read Replica ... 22
Create Amazon Aurora read replica from an existing Amazon RDS instance 23
Stop writes to the Amazon RDS MySQL instance ... 24
Promote Amazon Aurora read replica to be a standalone database cluster 24
Begin writes on Amazon Aurora read replica immediately after starting promotion 25

iii

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Important points to consider .. 26
Aurora read replica vs other methods: .. 27

Migrating the database schema ... 29
Homogeneous schema migration ... 29
Heterogeneous schema migration .. 30
Schema migration using the AWS Schema Conversion Tool ... 31

Migrating data ... 41
Introduction and general approach to AWS DMS ... 41
Migration methods ... 41
Migration procedure .. 42

Create target database .. 43
Copy schema .. 43
Create an AWS DMS replication instance .. 43
Define database source and target endpoints .. 46
Create and run a migration task ... 48

Testing and cutover ... 52
Migration testing .. 52
Cutover ... 53
Pre-cutover actions .. 53
Cutover ... 54

Post-cutover checks .. 54
Conclusion .. 55
Contributors ... 56
Further reading .. 57
Document history .. 58
Notices .. 59
AWS Glossary ... 60

iv

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migrating Your Databases to Amazon Aurora

Publication date: July 28, 2021 (Document history)

Abstract

Amazon Aurora is a MySQL and PostgreSQL-compatible, enterprise grade relational database
engine. Amazon Aurora is a cloud-native database that overcomes many of the limitations of
traditional relational database engines. The goal of this whitepaper is to highlight best practices of
migrating your existing databases to Amazon Aurora. It presents migration considerations and the
step-by-step process of migrating open- source and commercial databases to Amazon Aurora with
minimum disruption to the applications.

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS
Management Console, you can review your workloads against these best practices by answering a
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Introduction

For decades, traditional relational databases have been the primary choice for data storage and
persistence. These database systems continue to rely on monolithic architectures and were not
designed to take advantage of cloud infrastructure. These monolithic architectures present many
challenges, particularly in areas such as cost, flexibility, and availability. In order to address these
challenges, AWS redesigned relational database for the cloud infrastructure and introduced
Amazon Aurora.

Amazon Aurora is a MySQL and PostgreSQL-compatible relational database engine that combines
the speed, availability, and security of high-end commercial databases with the simplicity and cost-
effectiveness of open-source databases. Aurora provides up to five times better performance than

Abstract 1

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/
https://aws.amazon.com/rds/aurora/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

MySQL, three times better performance than PostgreSQL and comparable performance of high-
end commercial databases. Amazon Aurora is priced at 1/10th the cost of commercial engines.

Amazon Aurora is available through the Amazon Relational Database Service (Amazon RDS)
platform. Like other Amazon RDS databases, Aurora is a fully managed database service. With the
Amazon RDS platform, most database management tasks such as hardware provisioning, software
patching, setup, configuration, monitoring, and backup are completely automated.

Amazon Aurora is built for mission-critical workloads and is highly available by default. An Aurora
database cluster spans multiple Availability Zones in a Region, providing out-of-the-box durability
and fault tolerance to your data across physical data centers. An Availability Zone is composed of
one or more highly available data centers operated by Amazon. Availability Zones are isolated from
each other and are connected through low-latency links. Each segment of your database volume is
replicated six times across these Availability Zones.

Amazon Aurora enables dynamic resizing for database storage space. Aurora cluster volumes
automatically grow as the amount of data in your database increases with no performance or
availability impact—so there is no need for estimating and provisioning large amount of database
storage ahead of time. The storage space allocated to your Amazon Aurora database cluster will
automatically increase up to a maximum size of 128 tebibytes (TiB) and will automatically decrease
when data is deleted.

Aurora's automated backup capability supports point-in-time recovery of your data, enabling
you to restore your database to any second during your retention period, up to the last five
minutes. Automated backups are stored in Amazon Simple Storage Service (Amazon S3), which is
designed for 99.999999999% durability. Amazon Aurora backups are automatic, incremental, and
continuous and have no impact on database performance.

For applications that need read-only replicas, you can create up to 15 Aurora Replicas per Aurora
database with very low replica lag. These replicas share the same underlying storage as the source
instance, lowering costs and avoiding the need to perform writes at the replica nodes. Optionally,
Aurora Global Database can be used for high read throughputs across six Regions up to 90 read
replicas.

Amazon Aurora is highly secure and allows you to encrypt your databases using keys that you
create and control through AWS Key Management Service (AWS KMS). On a database instance
running with Amazon Aurora encryption, data stored at rest in the underlying storage is encrypted,
as are the automated backups, snapshots, and replicas in the same cluster. Amazon Aurora uses
SSL (AES-256) to secure data in transit.

Introduction 2

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

For a complete list of Aurora features, refer to the Amazon Aurora product page. Given the rich
feature set and cost effectiveness of Amazon Aurora, it is increasingly viewed as the go-to database
for mission-critical applications.

Amazon Aurora Serverless v2 is the new version of Aurora Serverless, an on- demand, automatic
scaling configuration of Amazon Aurora that automatically starts up, shuts down, and scales
capacity up or down based on your application's needs. It scales instantly from hundreds to
hundreds-of-thousands of transactions in a fraction of a second. As it scales, it adjusts capacity in
fine-grained increments to provide just the right amount of database resources that the application
needs. There is no database capacity for you to manage, you pay only for the capacity your
application consumes, and you can save up to 90% of your database cost compared to the cost of
provisioning capacity for peak.

Aurora Serverless v2 is a simple and cost-effective option for any customer who cannot easily
allocate capacity because they have variable and infrequent workloads or have a large number of
databases. If you can predict your application’s requirements and prefer the cost certainty of fixed-
size instances, then you may want to continue using fixed-size instances.

Amazon Aurora capabilities discussed in this whitepaper apply to both MySQL and PostgreSQL
database engines, unless otherwise specified. However, the migration practices discussed in
this paper are specific to Aurora MySQL database engine. For more information about Aurora
best practices specific to PostgreSQL database engine, refer to Working with Amazon Aurora
PostgreSQL in the Amazon Aurora user guide.

Introduction 3

https://aws.amazon.com/rds/aurora/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.AuroraPostgreSQL.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Database migration considerations

A database represents a critical component in the architecture of most applications. Migrating
the database to a new platform is a significant event in an application’s lifecycle and may have an
impact on application functionality, performance, and reliability. You should take a few important
considerations into account before embarking on your first migration project to Amazon Aurora.

Migration phases

Because database migrations tend to be complex, we advocate taking a phased, iterative approach.

Migration phases

Application considerations

Evaluate Aurora features

Although most applications can be architected to work with many relational database engines, you
should make sure that your application works with Amazon Aurora.

Amazon Aurora is designed to be wire-compatible with MySQL 5.6 and 5.7. Therefore, most of the
code, applications, drivers, and tools that are used today with MySQL databases can be used with
Aurora with little or no change.

However, certain MySQL features, like the MyISAM storage engine, are not available with Amazon
Aurora. Also, due to the managed nature of the Aurora service, SSH access to database nodes is
restricted, which may affect your ability to install third-party tools or plugins on the database host.

Performance considerations

Database performance is a key consideration when migrating a database to a new platform.
Therefore, many successful database migration projects start with performance evaluations of the
new database platform. Although the Amazon Aurora Performance Assessment whitepaper gives
you a decent idea of overall database performance, these benchmarks do not emulate the data

Migration phases 4

https://d1.awsstatic.com/product-marketing/Aurora/RDS_Aurora_Performance_Assessment_Benchmarking_v1-2.pdf

Migrating Your Databases to Amazon Aurora AWS Whitepaper

access patterns of your applications. For more useful results, test the database performance for
time-sensitive workloads by running your queries (or subset of your queries) on the new platform
directly.

Consider these strategies:

• If your current database is MySQL, migrate to Amazon Aurora with downtime and performance
test your database with a test or staging version of your application or by replaying the
production workload.

• If you are on a non-MySQL-compliant engine, you can selectively copy the busiest tables to
Amazon Aurora and test your queries for those tables. This gives you a good starting point.
Of course, testing after complete data migration will provide a full picture of real-world
performance of your application on the new platform.

Amazon Aurora delivers comparable performance with commercial engines and significant
improvement over MySQL performance. It does this by tightly integrating the database engine with
an SSD-based virtualized storage layer designed for database workloads. This reduces writes to
the storage system, minimizes lock contention, and eliminates delays created by database process
threads.

Our tests with SysBench on r5.16xlarge instances show that Amazon Aurora delivers close to
800,000 reads per second and 200,000 writes per second, five times higher than MySQL running
the same benchmark on the same hardware.

One area where Amazon Aurora significantly improves upon traditional MySQL is highly concurrent
workloads. In order to maximize your workload’s throughput on Amazon Aurora, we recommend
architecting your applications to drive a large number of concurrent queries.

Sharding and read replica considerations

If your current database is sharded across multiple nodes, you may have an opportunity to combine
these shards into a single Aurora database during migration. A single Amazon Aurora instance can
scale up to 128 TB, supports thousands of tables, and supports a significantly higher number of
reads and writes than a standard MySQL database.

If your application is read/write heavy, consider using Aurora read replicas for offloading read-only
workload from the primary database node. Doing this can improve concurrency of your primary
database for writes and will improve overall read and write performance. Using read replicas can

Sharding and read replica considerations 5

Migrating Your Databases to Amazon Aurora AWS Whitepaper

also lower your costs in a Multi-AZ configuration since you may be able to use smaller instances
for your primary instance while adding failover capabilities in your database cluster. Aurora read
replicas offer near-zero replication lag and you can create up to 15 read replicas.

Reliability considerations

An important consideration with databases is high availability and disaster recovery. Determine the
recovery time objective (RTO) and recovery point objective (RPO) requirements of your application.
With Amazon Aurora, you can significantly improve both these factors.

Amazon Aurora reduces database restart times to less than 60 seconds in most database crash
scenarios. Aurora also moves the buffer cache out of the database process and makes it available
immediately at restart time. In rare scenarios of hardware and Availability Zone failures, recovery is
automatically handled by the database platform.

Aurora is designed to provide you zero RPO recovery within an AWS Region, which is a major
improvement over on-premises database systems. Aurora maintains six copies of your data across
three Availability Zones and automatically attempts to recover your database in a healthy AZ with
no data loss. In the unlikely event that your data is unavailable within Amazon Aurora storage, you
can restore from a DB snapshot or perform a point-in-time restore operation to a new instance.

For cross-Region DR, Amazon Aurora also offers a global database feature, designed for globally
distributed transactions applications, allowing a single Amazon Aurora database to span multiple
AWS Regions. Aurora uses storage-based replication to replicate your data to other Regions with
typical latency of less than one second and without impacting database performance. This enables
fast local reads with low latency in each Region, and provides disaster recovery from Region-
wide outages. You can promote the secondary AWS Region for read-write workloads in case of an
outage or disaster in less than one minute.

You also have the option to create an Aurora Read Replica of an Aurora MySQL DB cluster in a
different AWS Region, by using MySQL binary log (binlog) replication.

Each cluster can have up to five Read Replicas created this way, each in a different Region.

Cost and licensing considerations

Owning and running databases come with associated costs. Before planning a database
migration, an analysis of the total cost of ownership (TCO) of the new database platform is
imperative. Migration to a new database platform should ideally lower the total cost of ownership

Reliability considerations 6

Migrating Your Databases to Amazon Aurora AWS Whitepaper

while providing your applications with similar or better features. If you are running an open-
source database engine (MySQL, Postgres), your costs are largely related to hardware, server
management, and database management activities. However, if you are running a commercial
database engine (Oracle, SQL Server, DB2, and so on), a significant portion of your cost is database
licensing.

Since Aurora is available at one-tenth of the cost of commercial engines, many applications moving
to Aurora are able to significantly reduce their TCO. Even if you are running on an open-source
engine like MySQL or Postgres, with Aurora’s high performance and dual purpose read replicas, you
can realize meaningful savings by moving to Amazon Aurora. Refer to the Amazon Aurora Pricing
page for more information.

Other migration considerations

Once you have considered application suitability, performance, TCO, and reliability factors, you
should think about what it would take to migrate to the new platform.

Estimate code change effort

It is important to estimate the amount of code and schema changes that you need to perform
while migrating your database to Amazon Aurora. When migrating from MySQL-compatible
databases, negligible code changes are required. However, when migrating from non-MySQL
engines, you may be required to make schema and code changes. The AWS Schema Conversion
Tool can help to estimate that effort (refer to the the section called “Schema migration using the
AWS Schema Conversion Tool” section in this document).

Application availability during migration

You have options of migrating to Amazon Aurora by taking a predictable downtime approach with
your application or by taking a near-zero downtime approach. The approach you choose depends
on the size of your database and the availability requirements of your applications. Whatever
the case, it’s a good idea to consider the impact of the migration process on your application and
business before starting with a database migration. The next few sections explain both approaches
in detail.

Modify connection string during migration

You need a way to point the applications to your new database. One option is to modify the
connection strings for all of the applications. Another common option is to use DNS. In this case,

Other migration considerations 7

https://aws.amazon.com/rds/aurora/pricing/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

you don’t use the actual host name of your database instance in your connection string. Instead,
consider creating a canonical name (CNAME) record that points to the host name of your database
instance. Doing this allows you to change the endpoint to which your application points in a single
location rather than tracking and modifying multiple connection string settings. If you choose to
use this pattern, be sure to pay close attention to the time to live (TTL) setting for your CNAME
record. If this value is set too high, then the host name pointed to by this CNAME might be cached
longer than desired. If this value is set too low, additional overhead might be placed on your client
applications by having to resolve this CNAME repeatedly. Though use cases differ, a TTL of five
seconds is usually a good place to start.

Modify connection string during migration 8

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-creating.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values-basic.html#rrsets-values-basic-ttl

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Planning your database migration process

The previous section discussed some of the key considerations to take into account while migrating
databases to Amazon Aurora. Once you have determined that Aurora is the right fit for your
application, the next step is to decide on a preliminary migration approach and create a database
migration plan.

Homogeneous migration

If your source database is a MySQL 5.6 or 5.7 compliant database (MySQL, MariaDB, Percona, and
so on.), then migration to Aurora is quite straightforward.

Homogeneous migration with downtime

If your application can accommodate a predictable length of downtime during off-peak hours,
migration with the downtime is the simplest option and is a highly recommended approach. Most
database migration projects fall into this category as most applications already have a well-defined
maintenance window. You have the following options to migrate your database with downtime.

• RDS snapshot migration — If your source database is running on Amazon RDS MySQL 5.6 or
5.7, you can simply migrate a snapshot of that database to Amazon Aurora. For migrations
with downtime, you either have to stop your application or stop writing to the database while
snapshot and migration is in progress. The time to migrate primarily depends upon the size
of the database and can be determined ahead of the production migration by running a test
migration. Snapshot migration option is explained in the RDS snapshot migration section of this
document.

• Migration using native MySQL tools — You may use native MySQL tools to migrate your data
and schema to Aurora. This is a great option when you need more control over the database
migration process, you are more comfortable using native MySQL tools, and other migration
methods are not performing as well for your use case. You can create a dump of your data
using the mysqldump utility, and then import that data into an existing Amazon Aurora MySQL
DB cluster. For more information, refer to Migrating from MySQL to Amazon Aurora by using
mysqldump. You can copy the full and incremental backup files from your database to an
Amazon S3 bucket, and then restore an Amazon Aurora MySQL DB cluster from those files. This
option can be considerably faster than migrating data using mysqldump. For more information,
refer to Migrating data from MySQL by using an Amazon S3 bucket.

Homogeneous migration 9

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.mysqldump
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.ExtMySQL.html#AuroraMySQL.Migrating.ExtMySQL.S3

Migrating Your Databases to Amazon Aurora AWS Whitepaper

• Migration using AWS Database Migration Service (AWS DMS) — One-time migration using
AWS DMS is another tool for moving your source database to Amazon Aurora. Before you can
use AWS DMS to move the data, you need to copy the database schema from source to target
using native MySQL tools. For the step-by-step process, refer to the Migrating data section of
this document. Using AWS DMS is a great option when you don’t have experience using native
MySQL tools.

Homogeneous migration with near-zero downtime

In some scenarios you might want to migrate your database to Aurora with minimal downtime.
Here are two examples:

• When your database is relatively large and the migration time using downtime options is longer
than your application maintenance window.

• When you want to run source and target databases in parallel for testing purposes.

In such cases, you can replicate changes from your source MySQL database to Aurora in real time
using replication. You have a couple of options to choose from:

• Near-zero downtime migration using MySQL binlog replication — Amazon Aurora supports
traditional MySQL binlog replication. If you are running MySQL database, chances are that you
are already familiar with classic binlog replication setup. If that’s the case, and you want more
control over the migration process, one-time database load using native tools coupled with
binlog replication gives you a familiar migration path to Aurora.

• Near-zero downtime migration using AWS Database Migration Service (AWS DMS) — In
addition to supporting one-time migration, AWS DMS also supports real-time data replication
using change data capture (CDC) from source to target. AWS DMS takes care of the complexities
related to initial data copy, setting up replication instances, and monitoring replication. After the
initial database migration is complete, the target database remains synchronized with the source
for as long as you choose. If you are not familiar with binlog replication, AWS DMS is the next
best option for homogenous, near-zero downtime migrations to Amazon Aurora. Refer to the the
section called “Introduction and general approach to AWS DMS” section of this document.

• Near-zero downtime migration using Aurora Read Replica — If your source database is running
on Amazon RDS MySQL 5.6 or 5.7, you can migrate from a MySQL DB instance to an Aurora
MySQL DB cluster by creating an Aurora read replica of your source MySQL DB instance. When
the replica lag between the MySQL DB instance and the Aurora Read Replica is zero, you can

Homogeneous migration with near-zero downtime 10

Migrating Your Databases to Amazon Aurora AWS Whitepaper

direct your client applications to the Aurora read replica. This migration option is explained in the
Migration using Aurora Read Replica section of this document.

Heterogeneous migration

If you are looking to migrate a non-MySQL-compliant database (Oracle, SQL Server, PostgresSQL,
and so on) to Amazon Aurora, several options can help you accomplish this migration quickly and
easily.

Schema migration

Schema migration from a non-MySQL-compliant database to Amazon Aurora can be achieved
using the AWS Schema Conversion Tool. This tool is a desktop application that helps you convert
your database schema from an Oracle, Microsoft SQL Server, or PostgreSQL database to an
Amazon RDS MySQL DB instance or an Amazon Aurora DB cluster. In cases where the schema
from your source database cannot be automatically and completely converted, the AWS Schema
Conversion Tool provides guidance on how you can create the equivalent schema in your target
Amazon RDS database. For details, refer to the Migrating the database schema section of this
document.

Data migration

While supporting homogenous migrations with near-zero downtime, AWS Database Migration
Service (AWS DMS) also supports continuous replication across heterogeneous databases and is a
preferred option to move your source database to your target database, for both migrations with
downtime and migrations with near-zero downtime. Once the migration has started, AWS DMS
manages all the complexities of the migration process like data type transformation, compression,
and parallel transfer (for faster data transfer) while ensuring that data changes to the source
database that occur during the migration process are automatically replicated to the target.

Besides using AWS DMS, you can use various third-party tools like Qlik Replicate, Tungsten
Replicator, Oracle Golden Gate, etc. to migrate your data to Amazon Aurora. Whatever tool you
choose, take performance and licensing costs into consideration before finalizing your toolset for
migration.

Heterogeneous migration 11

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migrating large databases to Amazon Aurora

Migration of large datasets presents unique challenges in every database migration project. Many
successful large database migration projects use a combination of the following strategies:

• Migration with continuous replication — Large databases typically have extended downtime
requirements while moving data from source to target. To reduce the downtime, you can first
load baseline data from source to target and then enable replication (using MySQL native tools,
AWS DMS, or third-party tools) for changes to catch up.

• Copy static tables first — If your database relies on large static tables with reference data, you
may migrate these large tables to the target database before migrating your active dataset. You
can use AWS DMS to copy tables selectively or export and import these tables manually.

• Multiphase migration — Migration of large database with thousands of tables can be broken
down into multiple phases. For example, you may move a set of tables with no cross joins queries
every weekend until the source database is fully migrated to the target database. Note that in
order to achieve this, you need to make changes in your application to connect to two databases
simultaneously while your dataset is on two distinct nodes. Although this is not a common
migration pattern, this is an option nonetheless.

• Database cleanup — Many large databases contain data and tables that remain unused. In many
cases, developers and DBAs keep backup copies of tables in the same database, or they just
simply forget to drop unused tables. Whatever the reason, a database migration project provides
an opportunity to clean up the existing database before the migration. If some tables are not
being used, you might either drop them or archive them to another database. You might also
delete old data from large tables or archive that data to flat files.

Partition and shard consolidation on Amazon Aurora

If you are running multiple shards or functional partitions of your database to achieve high
performance, you have an opportunity to consolidate these partitions or shards on a single Aurora
database. A single Amazon Aurora instance can scale up to 128 TB, supports thousands of tables,
and supports a significantly higher number of reads and writes than a standard MySQL database.
Consolidating these partitions on a single Aurora instance not only reduces the total cost of
ownership and simplify database management, but it also significantly improves performance of
cross-partition queries.

Migrating large databases to Amazon Aurora 12

Migrating Your Databases to Amazon Aurora AWS Whitepaper

• Functional partitions — Functional partitioning means dedicating different nodes to different
tasks. For example, in an ecommerce application, you might have one database node serving
product catalog data, and another database node capturing and processing orders. As a result,
these partitions usually have distinct, nonoverlapping schemas.

• Consolidation strategy — Migrate each functional partition as a distinct schema to your target
Aurora instance. If your source database is MySQL compliant, use native MySQL tools to migrate
the schema and then use AWS DMS to migrate the data, either one time or continuously using
replication. If your source database is non-MySQL complaint, use AWS Schema Conversion Tool
to migrate the schemas to Aurora and use AWS DMS for one-time load or continuous replication.

• Data shards — If you have the same schema with distinct sets of data across multiple nodes, you
are leveraging database sharding. For example, a high-traffic blogging service may shard user
activity and data across multiple database shards while keeping the same table schema.

• Consolidation strategy — Since all shards share the same database schema, you only need
to create the target schema once. If you are using a MySQL- compliant database, use native
tools to migrate the database schema to Aurora. If you are using a non-MySQL database, use
AWS Schema Conversion Tool to migrate the database schema to Aurora. Once the database
schema has been migrated, it is best to stop writes to the database shards and use native
tools or an AWS DMS one-time data load to migrate an individual shard to Aurora. If writes to
the application cannot be stopped for an extended period, you might still use AWS DMS with
replication but only after proper planning and testing.

Migration options at a glance

Table 1 — Migration options

Source database type Migration with downtime Near-zero downtime
migration

Amazon RDS MySQL Option 1: RDS snapshot
migration

Option 2: Manual migration
using native tools*

Option 1: Migration using
native tools + binlog replicati
on

Option 2: Migrate using
Aurora Read Replica

Migration options at a glance 13

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Source database type Migration with downtime Near-zero downtime
migration

Option 3: Schema migration
using native tools and data
load using AWS DMS

Option 3: Schema migration
using native tools + AWS DMS
for data movement

MySQL Amazon EC2 or on-
premises

Option 1: Migration using
native tools

Option 2: Schema migration
with native tools + AWS DMS
for data load

Option 1: Migration using
native tools + binlog replicati
on

Option 2: Schema migration
using native tools + AWS DMS
to move data

Oracle/SQL server Option 1: AWS Schema
Conversion Tool + AWS DMS
(recommended)

Option 2: Manual or third-
party tool for schema
conversion + manual or third-
party data load in target

Option 1: AWS Schema
Conversion Tool + AWS DMS
(recommended)

Option 2: Manual or third-par
ty tool for schema conversion
+ manual or third-party data
load in target + third-party
tool for replication.

Other non-MySQL databases Option: Manual or third-par
ty tool for schema conversion
+ manual or third-party data
load in target

Option: Manual or third-par
ty tool for schema conversion
+ manual or third-party data
load in target + third-party
tool for replication (GoldenGa
te and so on.)

*MySQL Native tools: mysqldump, SELECT INTO OUTFILE, third-party tools like mydumper/
myloader.

Migration options at a glance 14

Migrating Your Databases to Amazon Aurora AWS Whitepaper

RDS snapshot migration

To use RDS snapshot migration to move to Aurora, your MySQL database must be running on
Amazon RDS MySQL 5.6 or 5.7, and you must make an RDS snapshot of the database. This
migration method does not work with on-premises databases or databases running on Amazon
Elastic Compute Cloud (Amazon EC2). Also, if you are running your Amazon RDS MySQL database
on a version earlier than 5.6, you would need to upgrade it to 5.6 as a prerequisite.

The biggest advantage to this migration method is that it is the simplest and requires the fewest
number of steps. In particular, it migrates over all schema objects, secondary indexes, and stored
procedures along with all of the database data.

During snapshot migration without binlog replication, your source database must either be
offline or in a read-only mode (so that no changes are being made to the source database during
migration). To estimate downtime, you can simply use the existing snapshot of your database to do
a test migration. If the migration time fits within your downtime requirements, then this may be
the best method for you. Note that in some cases, migration using AWS DMS or native migration
tools can be faster than using snapshot migration.

If you can’t tolerate extended downtime, you can achieve near-zero downtime by creating an
Aurora Read Replica from a source RDS MySQL. This migration option is explained in the Migrating
using Aurora Read Replica section in this document.

You can migrate either a manual or an automated DB snapshot. The general steps you must take
are as follows:

1. Determine the amount of space that is required to migrate your Amazon RDS MySQL instance to
an Aurora DB cluster. For more information, see the next section.

2. Use the Amazon RDS console to create the snapshot in the Region where the Amazon RDS
MySQL instance is located.

3. Use the Migrate Database feature on the console to create an Amazon Aurora DB cluster that
will be populated using the DB snapshot from the original DB instance of MySQL.

15

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Note

Some MyISAM tables might not convert without errors and may require manual changes.
For instance, the InnoDB engine does not permit an autoincrement field to be part of a
composite key. Also, spatial indexes are not currently supported.

Estimating space requirements for snapshot migration

When you migrate a snapshot of a MySQL DB instance to an Aurora DB cluster, Aurora uses an
Amazon Elastic Block Store (Amazon EBS) volume to format the data from the snapshot before
migrating it. There are some cases where additional space is needed to format the data for
migration. The two features that can potentially cause space issues during migration are MyISAM
tables and using the ROW_FORMAT=COMPRESSED option. If you are not using either of these
features in your source database, then you can skip this section because you should not have space
issues. During migration, MyISAM tables are converted to InnoDB and any compressed tables are
uncompressed. Consequently, there must be adequate room for the additional copies of any such
tables.

The size of the migration volume is based on the allocated size of the source MySQL database that
the snapshot was made from. Therefore, if you have MyISAM or compressed tables that make up a
small percentage of the overall database size and there is available space in the original database,
then migration should succeed without encountering any space issues. However, if the original
database would not have enough room to store a copy of converted MyISAM tables as well as
another (uncompressed) copy of compressed tables, then the migration volume will not be big
enough. In this situation, you would need to modify the source Amazon RDS MySQL database to
increase the database size allocation to make room for the additional copies of these tables, take a
new snapshot of the database, and then migrate the new snapshot.

When migrating data into your DB cluster, observe the following guidelines and limitations:

• Although Amazon Aurora supports up to 128 TB of storage, the process of migrating a snapshot
into an Aurora DB cluster is limited by the size of the Amazon EBS volume of the snapshot, and
therefore is limited to a maximum size of 16 TB.

• Non-MyISAM tables in the source database can be up to 16 TB in size. However, due to additional
space requirements during conversion, make sure that none of the MyISAM and compressed
tables being migrated from your MySQL DB instance exceed 8 TB in size.

Estimating space requirements for snapshot migration 16

Migrating Your Databases to Amazon Aurora AWS Whitepaper

You might want to modify your database schema (convert MyISAM tables to InnoDB and remove
ROW_FORMAT=COMPRESSED) prior to migrating it into Amazon Aurora. This can be helpful in the
following cases:

• You want to speed up the migration process.

• You are unsure of how much space you need to provision.

• You have attempted to migrate your data and the migration has failed due to a lack of
provisioned space.

Make sure that you are not making these changes in your production Amazon RDS MySQL database
but rather on a database instance that was restored from your production snapshot. For more
details, refer to the Amazon Relational Database Service User Guide.

Migrating a DB snapshot using the console

You can migrate a DB snapshot of an Amazon RDS MySQL DB instance to create an Aurora DB
cluster. The new DB cluster is populated with the data from the original Amazon RDS MySQL DB
instance. The DB snapshot must have been made from an RDS DB instance running MySQL 5.6 or
5.7. For information about creating a DB snapshot, refer to Creating a DB snapshot in the Amazon
RDS User Guide.

If the DB snapshot is not in the Region where you want to locate your Aurora DB cluster, use the
Amazon RDS console to copy the DB snapshot to that Region. For information about copying a DB
snapshot, refer to Copying a snapshot in Amazon RDS User Guide.

To migrate a MySQL DB snapshot using the AWS Management Console, do the following:

1. Sign in to the AWS Management Console and open the Amazon RDS console (sign in required).

2. Choose Snapshots.

3. On the Snapshots page, choose the Amazon RDS MySQL snapshot that you want to migrate into
an Aurora DB cluster.

4. Choose Migrate Database.

5. On the Migrate Database page, specify the values that match your environment and processing
requirements as shown in the following illustration. For descriptions of these options, refer to
Migrating an RDS for MySQL snapshot to Aurora in the Amazon Aurora User Guide.

Migrating a DB snapshot using the console 17

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CreateSnapshot.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/USER_CopySnapshot.html
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Amazon RDS console: snapshot migration screens

Migrating a DB snapshot using the console 18

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migrating a DB snapshot using the console 19

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Amazon RDS console: snapshot migration screens

Amazon RDS console: snapshot migration screens

6. Choose Migrate to migrate your DB snapshot.

Migrating a DB snapshot using the console 20

Migrating Your Databases to Amazon Aurora AWS Whitepaper

In the list of instances, choose the appropriate arrow icon to show the DB cluster details and
monitor the progress of the migration. This details panel displays the cluster endpoint used to
connect to the primary instance of the DB cluster. For more information on connecting to an
Amazon Aurora DB cluster, refer to Connecting to an Amazon Aurora DB cluster in the Amazon
Aurora User Guide.

Migrating a DB snapshot using the console 21

https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/Aurora.Connecting.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migration using Aurora Read Replica

Aurora uses MySQL DB engines binary log replication functionality to create a special type of DB
cluster called an Aurora read replica for a source MySQL DB instance. Updates made to the source
instance are asynchronously replicated to Aurora Read Replica.

To use Aurora Read Replica to migrate from RDS MySQL, your MySQL database must be running on
Amazon RDS MySQL 5.6 or 5.7. This migration method does not work with on-premises databases
or databases running on Amazon Elastic Compute Cloud (Amazon EC2). Also, if you are running
your Amazon RDS MySQL database on a version earlier than 5.6, you would need to upgrade it to
5.6 as a prerequisite.

You can migrate your existing Amazon RDS MySQL databases to Amazon Aurora using Aurora Read
Replica. This solution is beneficial since it's completely managed and does not involve manually
configuring replication functionality to reduce downtime during migration.

These are the high-level steps to be performed:

1. Begin writes on the source Amazon RDS database (to simulate traffic in the real world).

2. Create an Amazon Aurora read replica from the existing Amazon RDS MySQL instance.

3. Stop writes to the Amazon RDS MySQL instance.

4. Wait for the replication lag between Amazon RDS MySQL and Amazon Aurora read replica to be
zero.

5. Promote Amazon Aurora read replica to be a standalone database cluster.

6. Begin writes on Amazon Aurora read replica, immediately after starting promotion.

Although the promotion process is fairly quick, it can still add valuable seconds in the downtime
window of your application, especially if the recovery time objective (RTO) for cutover is only for
a few seconds instead of approximately 30 seconds. The key point in the above process which
reduces the downtime window is the ability for the applications to read and write to the Amazon
Aurora read replica immediately after the promotion process is started instead of waiting for it to
complete.

The only time writes on the Aurora read replica should be on hold is when writing has stopped on
source Amazon RDS and the replica lag reaches zero.

22

https://aws.amazon.com/rds
https://aws.amazon.com/rds/aurora/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

To get started, you must have an existing Amazon RDS MySQL instance.

Create Amazon Aurora read replica from an existing Amazon
RDS instance

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the MySQL DB instance that you want to use as the source for your Aurora read replica.

4. For Actions, choose Create Aurora read replica.

5. Choose the DB cluster specifications as mentioned in Migrating data from a MySQL DB instance
to an Amazon Aurora MySQL DB cluster by using an Aurora read replica and click Create read
replica.

6. After Aurora replica is successfully completed, you should see a replica cluster along with RDS
MySQL instance.

Create Amazon Aurora read replica from an existing Amazon RDS instance 23

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Replica.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Stop writes to the Amazon RDS MySQL instance

Stop writing to the source RDS database and wait for the replica lag between Amazon RDS MySQL
and Amazon Aurora read replica to come down to zero. You can check replica lag by running the
SHOW SLAVE STATUS command on Aurora read replica and checking the Seconds behind Master
value.

SHOW SLAVE STATUS \G

Promote Amazon Aurora read replica to be a standalone
database cluster

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Databases.

3. Choose the DB cluster for the Aurora read replica.

4. For Actions, choose Promote.

5. Choose Promote read replica.

Stop writes to the Amazon RDS MySQL instance 24

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

As an alternative, you can issue the following AWS CLI command instead of using the AWS
Management Console:

aws rds promote-read-replica-db-cluster \
 --db-cluster-identifier myreadreplicacluster

Begin writes on Amazon Aurora read replica immediately after
starting promotion

Immediately after starting the promotion process, issue writes to the Amazon Aurora read replica.
To validate if your writes are anyway affected during the promotion process, we will start inserting
records into Aurora read replica as soon as we start the promotion.

After promotion is complete, you can confirm that the promotion has completed by using the
following procedure.

1. Sign in to the AWS Management Console and open the Amazon RDS console at https://
console.aws.amazon.com/rds/.

2. In the navigation pane, choose Events.

3. On the Events page, verify that there is a Promoted Read Replica cluster to a stand-alone
database cluster event for the cluster that you promoted.

It took around 15 to 20 seconds for the promotion process (replica cluster to change status to
regional cluster).

Begin writes on Amazon Aurora read replica immediately after starting promotion 25

https://console.aws.amazon.com/rds/
https://console.aws.amazon.com/rds/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

After promotion is complete, the primary MySQL DB instance and the Aurora read replica are
unlinked, and you can safely delete the DB instance if you want.

Note

PostgreSQL follows the same process as the one described previously for MySQL for
migration.

Important points to consider

• If your application uses a DNS solution like Amazon Route53, consider the DNS TTL (Time-To-
Live) of approximately five seconds when switching the Amazon RDS endpoint with Amazon
Aurora endpoint.

• Perform this operation during non-peak hours or at another time when writes to the primary DB
cluster are minimal.

• You cannot delete the primary MySQL DB instance or unlink the DB Instance and the Aurora read
replica during promotion time.

• If you write before replica lag reaches zero, then the replication is at the risk of breaking and
you’ll have to delete and recreate the Aurora read replica.

• Be prepared for the Amazon Aurora Read Replica to catch up with Amazon RDS when you
initially create it. It could take several hours per tebibyte (TiB) of data. The source RDS instance is
available throughout the initial load.

• Version compatibility - The RDS for PostgreSQL version must be lower than or equal to a
supported Aurora PostgreSQL version in the same major version. For example, you can replicate
data between an RDS for PostgreSQL version 11.7 DB instance and an Aurora PostgreSQL
version 11.7 or higher 11 version DB cluster, but not an Aurora PostgreSQL version 11.6 DB

Important points to consider 26

https://aws.amazon.com/route53/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

cluster. You cannot downgrade your version, so if you running on MySQL 8 in RDS, you can’t
create an Aurora read replica with MySQL 5.7.

• Rollback option: If you wish to conduct sanity checks on the new primary on Amazon Aurora, you
can let the Amazon RDS MySQL instance run after promotion of Amazon Aurora and rollback
to Amazon RDS in case of any issues Identified by pointing the application back to the Amazon
RDS endpoint. The time required for sanity checks will add to application downtime as once
the switchover is done, Amazon Aurora does not replicate back to Amazon RDS in a managed
fashion, although this can be done natively.

Aurora read replica vs other methods:

Using Amazon Aurora read replica is great when you are looking to make use of a managed
solution while migrating from Amazon RDS (MySQL or PostgreSQL) to Amazon Aurora. This
method also applies only in case of homogenous migration of MySQL and PostgreSQL engines.
With this method, you can only move an Amazon RDS MySQL to an Amazon Aurora MySQL
instance and an Amazon RDS PostgreSQL to an Amazon Aurora PostgreSQL instance, not MySQL
or PostgreSQL instances running on EC2. Heterogenous migration across engines is not supported
when using an Aurora read-replica method such as Amazon RDS Oracle, SQL Server, MariaDB.

If the above doesn’t fit your requirement, you could adopt other options for near-zero downtime
migration from your source MySQL to Aurora MySQL platform:

1. Native tools + binlog replication: This method is a manual one and applies to homogenous
migrations and can be very effective in that scenario. Using native tools such as mysqldump and
binary logging for MySQL near-zero downtime migration can be achieved. This method can be
used for small-scale migrations when the MySQL database is running on-premises or on MySQL
EC2 prior to 5.6 or 5.7 versions.

2. RDS snapshot + binlog replication: Instead of using native tools, another method for
homogenous migration is to use RDS snapshot of the RDS read replica and create an Aurora
database cluster from it. Along with binary logging, this method will help is a near-zero
downtime migration as well. This method however is only supported for RDS MySQL 5.6 or 5.7
and migrating only to the same version is supported, not 5.6 to 5.7. This method again requires
some amount of manual work by configuring the binary logging between source and target.

3. Database Migration Service (DMS): You can use AWS Database Migration Service (AWS
DMS) to migrate your data among homogeneous migrations such as MySQL to MySQL. DMS
supports both heterogeneous migrations between different platform such as Oracle to MySQL

Aurora read replica vs other methods: 27

https://dev.mysql.com/doc/refman/8.0/en/mysqldump.html
https://docs.aws.amazon.com/AmazonRDS/latest/AuroraUserGuide/AuroraMySQL.Migrating.RDSMySQL.Import.html
https://aws.amazon.com/rds/features/read-replicas/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

and homogeneous migrations such as MySQL to MySQL. AWS DMS can do a one-time data
migration, or it can do a continuous replication of the data for near-zero downtime migration
using its Change Data Capture (CDC) feature Please refer to migrating from MySQL to Amazon
Aurora. AWS DMS might also be advantageous if your migration project requires advanced data
transformations such as remapping schema or table names, advanced data filtering, migrating
and replicating multiple database servers into a single Aurora DB cluster.

Review the limitations for AWS DMS before using this method.

Note

Since AWS DMS CDC uses plain SQL statements from binlog to apply the changes in target
database, it might be slower and more resource-intensive than native primary/replica
binary log replication in MySQL. Hence, it is recommended to use the native self-managed
or managed features for homogenous migrations and DMS for heterogenous migrations.

Aurora read replica vs other methods: 28

https://aws.amazon.com/blogs/database/migrating-from-mysql-to-amazon-aurora-using-aws-sct-and-aws-dms/
https://aws.amazon.com/blogs/database/migrating-from-mysql-to-amazon-aurora-using-aws-sct-and-aws-dms/
https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.MySQL.html#CHAP_Source.MySQL.Limitations

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migrating the database schema

RDS DB snapshot migration migrates both the full schema and data to the new Aurora instance.
However, if your source database location or application uptime requirements do not allow the use
of RDS snapshot migration, then you first need to migrate the database schema from the source
database to the target database before you can move the actual data. A database schema is a
skeleton structure that represents the logical view of the entire database, and typically includes the
following:

• Database storage objects — Tables, columns, constraints, indexes, sequences, user-defined
types, and data types

• Database code objects — Functions, procedures, packages, triggers, views, materialized views,
events, SQL scalar functions, SQL inline functions, SQL table functions, attributes, variables,
constants, table types, public types, private types, cursors, exceptions, parameters, and other
objects

In most situations, the database schema remains relatively static, and therefore you don’t need
downtime during the database schema migration step. The schema from your source database can
be extracted while your source database is up and running without affecting the performance. If
your application or developers do make frequent changes to the database schema, make sure that
these changes are either paused while the migration is in process, or are accounted for during the
schema migration process.

Depending on the type of your source database, you can use the techniques discussed in the next
sections to migrate the database schema. As a prerequisite to schema migration, you must have a
target Aurora database created and available.

Homogeneous schema migration

If your source database is MySQL 5.6-compliant and is running on Amazon RDS, Amazon EC2, or
outside AWS, you can use native MySQL tools to export and import the schema.

• Exporting database schema — You can use the mysqldump client utility to export the database
schema. To run this utility, you need to connect to your source database and redirect the output
of mysqldump command to a flat file. The –no-data option ensures that only database schema is
exported without any actual table data. For the complete mysqldump command reference, refer
to mysqldump — A Database Backup Program.

Homogeneous schema migration 29

https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.6/en/mysqldump.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

mysqldump –u source_db_username –p --no-data --routines --triggers

–databases source_db_name > DBSchema.sql

• Importing database schema into Aurora — To import the schema to your Aurora instance,
connect to your Aurora database from a MySQL command line client (or a corresponding
Windows client) and direct the contents of the export file into MySQL.

mysql –h aurora-cluster-endpoint -u username -p < DBSchema.sql

Note the following:

• If your source database contains stored procedures, triggers, and views, you need to remove
DEFINER syntax from your dump file. A simple Perl command to do that is given below. Doing
this creates all triggers, views, and stored procedures with the current connected user as
DEFINER. Be sure to evaluate any security implications this might have.

$perl -pe 's/\sDEFINER=`[^`]+`@`[^`]+`//' < DBSchema.sql >

DBSchemaWithoutDEFINER.sql

• Amazon Aurora supports InnoDB tables only. If you have MyISAM tables in your source database,
Aurora automatically changes the engine to InnoDB when the CREATE TABLE command is run.

• Amazon Aurora does not support compressed tables (that is, tables created with
ROW_FORMAT=COMPRESSED). If you have compressed tables in your source database, Aurora
automatically changes ROW_FORMAT to COMPACT when the CREATE TABLE command is run.

Once you have successfully imported the schema into Amazon Aurora from your MySQL 5.6-
compliant source database, the next step is to copy the actual data from the source to the target.
For more information, refer to the Introduction and general approach to AWS DMS section of this
document.

Heterogeneous schema migration

If your source database isn’t MySQL compatible, you must convert your schema to a format
compatible with Amazon Aurora. Schema conversion from one database engine to another
database engine is a nontrivial task and may involve rewriting certain parts of your database and

Heterogeneous schema migration 30

Migrating Your Databases to Amazon Aurora AWS Whitepaper

application code. You have two main options for converting and migrating your schema to Amazon
Aurora:

• AWS Schema Conversion Tool — The AWS Schema Conversion Tool makes heterogeneous
database migrations easy by automatically converting the source database schema and a
majority of the custom code, including views, stored procedures, and functions, to a format
compatible with the target database. Any code that cannot be automatically converted is clearly
marked so that it can be manually converted. You can use this tool to convert your source
databases running on either Oracle or Microsoft SQL Server to an Amazon Aurora, MySQL, or
PostgreSQL target database in either Amazon RDS or Amazon EC2. Using the AWS Schema
Conversion Tool to convert your Oracle, SQL Server, or PostgreSQL schema to an Aurora-
compatible format is the preferred method.

• Manual schema migration and third-party tools — If your source database is not Oracle, SQL
Server, or PostgreSQL, you can either manually migrate your source database schema to Aurora
or use third-party tools to migrate schema to a format that is compatible with MySQL 5.6.
Manual schema migration can be a fairly involved process depending on the size and complexity
of your source schema. In most cases, however, manual schema conversion is worth the effort
given the cost savings, performance benefits, and other improvements that come with Amazon
Aurora.

Schema migration using the AWS Schema Conversion Tool

The AWS Schema Conversion Tool provides a project-based user interface to automatically convert
the database schema of your source database into a format that is compatible with Amazon
Aurora. It is highly recommended that you use AWS Schema Conversion Tool to evaluate the
database migration effort and for pilot migration before the actual production migration.

The following description walks you through the high-level steps of using AWS the Schema
Conversion Tool. For detailed instructions, refer to the AWS Schema Conversion Tool User Guide.

1. First, install the tool. The AWS Schema Conversion Tool is available for the Microsoft Windows,
macOS X, Ubuntu Linux, and Fedora Linux.

Detailed download and installation instructions can be found in the Installing, verifying, and
updating AWS SCT section of the user guide. Where you install AWS Schema Conversion Tool
is important. The tool needs to connect to both source and target databases directly in order

Schema migration using the AWS Schema Conversion Tool 31

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/Welcome.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_SchemaConversionTool.GettingStarted.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

to convert and apply schema. Make sure that the desktop where you install AWS Schema
Conversion Tool has network connectivity with the source and target databases.

2. Install JDBC drivers. The AWS Schema Conversion Tool uses JDBC drivers to connect to the
source and target databases. In order to use this tool, you must download these JDBC drivers to
your local desktop. For instructions for driver download, refer to Installing the required database
drivers in the AWS Schema Conversion Tool User Guide. Also, check the AWS forum for AWS
Schema Conversion Tool for instructions on setting up JDBC drivers for different database
engines.

3. Create a target database. Create an Amazon Aurora target database. For instructions on creating
an Amazon Aurora database, see Creating an Amazon Aurora DB Cluster in the Amazon RDS User
Guide.

4. Open the AWS Schema Conversion Tool and start the New Project Wizard.

Create a new AWS Schema Conversion Tool project

5. Configure the source database and test connectivity between AWS Schema Conversion Tool
and the source database. Your source database must be reachable from your desktop for this to
work, so make sure that you have the appropriate network and firewall settings in place.

Schema migration using the AWS Schema Conversion Tool 32

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_Installing.html#CHAP_Installing.JDBCDrivers
https://forums.aws.amazon.com/forum.jspa?forumID=208
https://forums.aws.amazon.com/forum.jspa?forumID=208
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create New Database Migration Project wizard

6. In the next screen, select the schema of your source database that you want to convert to
Amazon Aurora.

Schema migration using the AWS Schema Conversion Tool 33

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Select Schema step of the migration wizard

7. Run the database migration assessment report. This report provides important information
regarding the conversion of the schema from your source database to your target Amazon
Aurora instance. It summarizes all of the schema conversion tasks and details the action items
for parts of the schema that cannot be automatically converted to Aurora. The report also
includes estimates of the amount of effort that it will take to write the equivalent code in your
target database that could not be automatically converted.

8. Choose Next to configure the target database. You can view this migration report again later.

Schema migration using the AWS Schema Conversion Tool 34

Migrating Your Databases to Amazon Aurora AWS Whitepaper

The Create New Database Migration report

9. Configure the target Amazon Aurora database and test connectivity between the AWS Schema
Conversion Tool and the source database. Your target database must be reachable from your
desktop for this to work, so make sure that you have appropriate network and firewall settings
in place.

10.Choose Finish to go to the project window.

11.Once you are at the project window, you have already established a connection to the source
and target database and are now ready to evaluate the detailed assessment report and migrate
the schema.

12.In the left panel that displays the schema from your source database, choose a schema object to
create an assessment report for. Right-click the object and choose Create Report.

Schema migration using the AWS Schema Conversion Tool 35

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Choose Create Report

The Summary tab displays the summary information from the database migration assessment
report. It shows items that were automatically converted and items that could not be
automatically converted.

For schema items that could not be automatically converted to the target database engine,
the summary includes an estimate of the effort that it would take to create a schema that
is equivalent to your source database in your target DB instance. The report categorizes the
estimated time to convert these schema items as follows:

• Simple – Actions that can be completed in less than one hour.

• Medium – Actions that are more complex and can be completed in one to four hours.

• Significant – Actions that are very complex and will take more than four hours to complete.

Schema migration using the AWS Schema Conversion Tool 36

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migration report

Note

Important: If you are evaluating the effort required for your database migration project,
this assessment report is an important artifact to consider. Study the assessment report
in details to determine what code changes are required in the database schema and
what impact the changes might have on your application functionality and design.

13.The next step is to convert the schema. The converted schema is not immediately applied to
the target database. Instead, it is stored locally until you explicitly apply the converted schema
to the target database. To convert the schema from your source database, choose a schema

Schema migration using the AWS Schema Conversion Tool 37

Migrating Your Databases to Amazon Aurora AWS Whitepaper

object to convert from the left panel of your project. Right-click the object and choose Convert
schema, as shown in the following illustration.

Choose Convert schema

This action adds converted schema to the right panel of the project window and shows objects
that were automatically converted by the AWS Schema Conversion Tool.

You can respond to the action items in the assessment report in different ways:

• Add equivalent schema manually — You can write the portion of the schema that can be
automatically converted to your target DB instance by choosing Apply to database in the right
panel of your project. The schema that is written to your target DB instance won't contain
the items that couldn't be automatically converted. Those items are listed in your database
migration assessment report.

After applying the schema to your target DB instance, you can then manually create the
schema in your target DB instance for the items that could not be automatically converted.
In some cases, you may not be able to create an equivalent schema in your target DB
instance. You might need to redesign a portion of your application and database to use the
functionality that is available from the DB engine for your target DB instance. In other cases,
you can simply ignore the schema that can't be automatically converted.

Schema migration using the AWS Schema Conversion Tool 38

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Note

Caution: If you manually create the schema in your target DB instance, do not choose
Apply to database until after you have saved a copy of any manual work that you have
done. Applying the schema from your project to your target DB instance overwrites
schema of the same name in the target DB instance, and you lose any updates that you
added manually.

• Modify your source database schema and refresh the schema in your project — For some
items, you might be best served to modify the database schema in your source database
to the schema that is compatible with your application architecture and that can also be
automatically converted to the DB engine of your target DB instance. After updating the
schema in your source database and verifying that the updates are compatible with your
application, choose Refresh from Database in the left panel of your project to update the
schema from your source database. You can then convert your updated schema and generate
the database migration assessment report again. The action item for your updated schema no
longer appears.

14.When you are ready to apply your converted schema to your target Aurora instance, choose
the schema element from the right panel of your project. Right- click the schema element and
choose Apply to database, as shown in the following figure.

Schema migration using the AWS Schema Conversion Tool 39

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Choose Apply to database

Note

The first time that you apply your converted schema to your target DB instance,
the AWS Schema Conversion Tool adds an additional schema (AWS_ORACLE_EXT or
AWS_SQLSERVER_EXT) to your target DB instance. This schema implements system
functions of the source database that are required when writing your converted schema to
your target DB instance. Do not modify this schema, or you might encounter unexpected
results in the converted schema that is written to your target DB instance. When your
schema is fully migrated to your target DB instance, and you no longer need the AWS
Schema Conversion Tool, you can delete the AWS_ORACLE_EXT or AWS_SQLSERVER_EXT
schema.

The AWS Schema Conversion Tool is an easy-to-use addition to your migration toolkit. For
additional best practices related to AWS Schema Conversion Tool, refer to the Best practices for the
AWS SCT topic in the AWS Schema Conversion Tool User Guide.

Schema migration using the AWS Schema Conversion Tool 40

https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_BestPractices.html
https://docs.aws.amazon.com/SchemaConversionTool/latest/userguide/CHAP_BestPractices.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Migrating data

After the database schema has been copied from the source database to the target Aurora
database, the next step is to migrate actual data from source to target. While data migration can
be accomplished using different tools, AWS recommends moving data using the AWS Database
Migration Service (AWS DMS) as it provides both the simplicity and the features needed for the
task at hand.

Introduction and general approach to AWS DMS

The AWS Database Migration Service (AWS DMS) makes it easy for customers to migrate
production databases to AWS with minimal downtime. You can keep your applications running
while you are migrating your database. In addition, the AWS Database Migration Service
ensures that data changes to the source database that occur during and after the migration
are continuously replicated to the target. Migration tasks can be set up in minutes in the AWS
Management Console. The AWS Database Migration Service can migrate your data to and from
widely used database platforms, such as Oracle, SQL Server, MySQL, PostgreSQL, Amazon Aurora,
MariaDB, and Amazon Redshift.

The service supports homogenous migrations such as Oracle to Oracle, as well as heterogeneous
migrations between different database platforms, such as Oracle to Amazon Aurora or SQL Server
to MySQL. You can perform one-time migrations, or you can maintain continuous replication
between databases without a customer having to install or configure any complex software.

AWS DMS works with databases that are on premises, running on Amazon EC2, or running on
Amazon RDS. However, AWS DMS does not work in situations where both the source database and
the target database are on premises; one endpoint must be in AWS.

AWS DMS supports specific versions of Oracle, SQL Server, Amazon Aurora, MySQL, and
PostgreSQL. For currently supported versions, refer to Sources for data migration. However, this
whitepaper is just focusing on Amazon Aurora as a migration target.

Migration methods

AWS DMS provides three methods for migrating data:

• Migrate existing data — This method creates the tables in the target database, automatically
defines the metadata that is required at the target, and populates the tables with data from

Introduction and general approach to AWS DMS 41

https://docs.aws.amazon.com/dms/latest/userguide/CHAP_Source.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

the source database (also referred to as a “full load”). The data from the tables is loaded in
parallel for improved efficiency. Tables are only created in case of homogenous migrations, and
secondary indexes aren’t created automatically by AWS DMS. Read further for details.

• Migrate existing data and replicate ongoing changes — This method does a full load, as
described above, and in addition captures any ongoing changes being made to the source
database during the full load and stores them on the replication instance. Once the full load is
complete, the stored changes are applied to the destination database until it has been brought
up to date with the source database. Additionally, any ongoing changes being made to the
source database continue to be replicated to the destination database to keep them in sync. This
migration method is very useful when you want to perform a database migration with very little
downtime.

• Replicate data changes only — This method just reads changes from the recovery log file of the
source database and applies these changes to the target database on an ongoing basis. If the
target database is unavailable, these changes are buffered on the replication instance until the
target becomes available.

• When AWS DMS is performing a full load migration, the processing puts a load on the tables
in the source database, which could affect the performance of applications that are hitting this
database at the same time. If this is an issue, and you cannot shut down your applications during
the migration, you can consider the following approaches:

• Running the migration at a time when the application load on the database is at its lowest point.

• Creating a read replica of your source database and then performing the AWS DMS migration
from the read replica.

Migration procedure

The general outline for using AWS DMS is as follows:

1. Create a target database.

2. Copy the schema.

3. Create an AWS DMS replication instance.

4. Define the database source and target endpoints.

5. Create and run a migration task.

Migration procedure 42

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create target database

Create your target Amazon Aurora database cluster using the procedure outlined in Creating
an Amazon Aurora DB Cluster. You should create the target database in the Region and with an
instance type that matches your business requirements. Also, to improve the performance of the
migration, verify that your target database does not have multi-AZ deployment enabled; you can
enable that once the load has finished.

Copy schema

Additionally, you should create the schema in this target database. AWS DMS supports basic
schema migration, including the creation of tables and primary keys. However, AWS DMS doesn't
automatically create secondary indexes, foreign keys, stored procedures, users, and so on, in the
target database. For full schema migration details, refer to the Migrating the database schema
section of this document.

Create an AWS DMS replication instance

In order to use the AWS DMS service, you must create an AWS DMS replication instance, which runs
in your VPC. This instance reads the data from the source database, performs the specified table
mappings, and writes the data to the target database. In general, using a larger replication instance
size speeds up the database migration (although the migration can also be gated by other factors
such as the capacity of the source and target databases, connection latency, and so on.). Also, your
replication instance can be stopped once your database migration is complete.

AWS Database Migration Service

AWS DMS currently supports burstable, compute and memory-optimized instance classes for
replication instances. The burstable instance classes are low-cost standard instances designed to
provide a baseline level of CPU performance with the ability to burst above the baseline. They are

Create target database 43

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html
https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.CreateInstance.html

Migrating Your Databases to Amazon Aurora AWS Whitepaper

suitable for developing, configuring, and testing your database migration process as well as for
periodic data migration tasks that can benefit from the CPU burst capability.

The compute-optimized instance classes are designed to deliver the highest level of processor
performance and achieve significantly higher packet per second (PPS) performance, lower network
jitter, and lower network latency. You should use this instance class if you are performing large
heterogeneous migrations and want to minimize the migration time.

The memory-optimized instance classes are designed for migrations or replications of high-
throughput transaction systems which can consume large amounts of CPU and memory.

AWS DMS Storage is primarily consumed by log files and cached transactions. Normally, doing a
full load does not require a significant amount of instance storage on your AWS DMS replication
instance. However, if you are doing replication along with your full load, then the changes to the
source database are stored on the AWS DMS replication instance while the full load is taking place.
If you are migrating a very large source database that is also receiving a lot of updates while the
migration is in progress, then a significant amount of instance storage could be consumed.

The instances come with 50 GB of instance storage but can be scaled up as appropriate. Normally,
this amount of storage should be more than adequate for most migration scenarios. However, it's
always a good idea to pay attention to storage-related metrics. Make sure to scale up your storage
if you find you are consuming more than the default allocation.

Also, in some extreme cases where very large databases with very high transaction rates are being
migrated with replication enabled, it is possible that the AWS DMS replication may not be able to
catch up in time. If you encounter this situation, it may be necessary to stop the changes to the
source database for some number of minutes in order for the replication to catch up before you
repoint your application to the target Aurora DB.

Create an AWS DMS replication instance 44

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create an AWS DMS replication instance 45

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create replication instance page in the AWS DMS console

Options on the create replication instance page in the AWS DMS console

Define database source and target endpoints

A database endpoint is used by the replication instance to connect to a database. To perform
a database migration, you must create both a source database endpoint and a target database
endpoint. The specified database endpoints can be on premises, running on Amazon EC2, or
running on Amazon RDS, but the source and target cannot both be on premises.

AWS highly recommendeds that you test your database endpoint connection after you define it.
The same page used to create a database endpoint can also be used to test it, as explained later in
this paper.

Note: If you have foreign key constraints in your source schema, when creating your target
endpoint you need to enter the following for Extra connection attributes in the Advanced section:

initstmt=SET FOREIGN_KEY_CHECKS=0

This disables the foreign key checks while the target tables are being loaded. This in turn prevents
the load from being interrupted by failed foreign key checks on partially loaded tables.

Define database source and target endpoints 46

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Define database source and target endpoints 47

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create database endpoint page in the AWS DMS console

Create and run a migration task

Now that you have created and tested your source database endpoint and your target database
endpoint, you can create a task to do the data migration. When you create a task, you specify
the replication instance that you have created, the database migration method type (discussed
earlier), the source database endpoint, and your target database endpoint for your Amazon Aurora
database cluster.

Also, under Task Settings, if you have already created the full schema in the target database,
then you should change the Target table preparation mode to Do nothing rather than using the
default value of Drop tables on target. The latter can cause you to lose aspects of your schema
definition like foreign key constraints when it drops and recreates tables.

When creating a task, you can create table mappings that specify the source schema along with
the corresponding tables to be migrated to the target endpoint. The default mapping method
migrates all source tables to target tables of the same name if they exist. Otherwise, it creates the
source table(s) on the target (depending on your task settings). Additionally, you can create custom
mappings (using a JSON file) if you want to migrate only certain tables or if you want to have more
control over the field and table mapping process. You can also choose to migrate only one schema
or all schemas from your source endpoint.

Create and run a migration task 48

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create database migration task page in the AWS DMS console

Create and run a migration task 49

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Create and run a migration task 50

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Task settings page in the AWS DMS console

You can use the AWS Management Console to monitor the progress of your AWS Database
Migration Service (AWS DMS) tasks. You can also monitor the resources and network connectivity
used. The AWS DMS console shows basic statistics for each task, including the task status, percent
complete, elapsed time, and table statistics, as the following image shows.

AWS DMS Console task statistics

Additionally, you can select a task and display performance metrics for that task, including
throughput, records per second migrated, disk and memory use, and latency.

Create and run a migration task 51

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Testing and cutover

Once the schema and data have been successfully migrated from the source database to Amazon
Aurora, you are now ready to perform end-to-end testing of your migration process. The testing
approach should be refined after each test migration, and the final migration plan should include a
test plan that ensures adequate testing of the migrated database.

Migration testing

Table 2 — Migration testing

Test category Purpose

Basic acceptance tests These pre-cutover tests should be automatic
ally run upon completion of the data
migration process. Their primary purpose
is to verify whether the data migration was
successful. Following are some common
outputs from these tests:

Total number of items processed

Total number of items imported

Total number of items skipped

Total number of warnings

Total number of errors

If any of these totals reported by the tests
deviate from the expected values, then it
means the migration was not successful, and
the issues need to be resolved before moving
to the next step in the process or the next
round of testing.

Migration testing 52

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Test category Purpose

Functional tests These post-cutover tests exercise the
functionality of the application(s) using Aurora
for data storage. They include a combination
of automated and manual tests. The primary
purpose of the functional tests is to identify
problems in the application caused by the
migration of the data to Aurora.

Nonfunctional tests These post-cutover tests assess the nonfuncti
onal characteristics of the application, such as
performance under varying levels of load.

User acceptance tests These post-cutover tests should be run by the
end users of the application once the final
data migration and cutover is complete. The
purpose of these tests is for the end users to
decide if the application is sufficiently usable
to meet its primary function in the organizat
ion.

Cutover

Once you have completed the final migration and testing, it is time to point your application to the
Amazon Aurora database. This phase of migration is known as cutover. If the planning and testing
phase has been run properly, cutover should not lead to unexpected issues.

Pre-cutover actions

• Choose a cutover window — Identify a block of time when you can accomplish cutover to the
new database with minimum disruption to the business. Normally you would select a low activity
period for the database (typically nights and/or weekends).

• Make sure changes are caught up — If a near-zero downtime migration approach was used to
replicate database changes from the source to the target database, make sure that all database

Cutover 53

Migrating Your Databases to Amazon Aurora AWS Whitepaper

changes are caught up and your target database is not significantly lagging behind the source
database.

• Prepare scripts to make the application configuration changes — In order to accomplish the
cutover, you need to modify database connection details in your application configuration files.
Large and complex applications may require updates to connection details in multiple places.
Make sure you have the necessary scripts ready to update the connection configuration quickly
and reliably.

• Stop the application — Stop the application processes on the source database and put
the source database in read-only mode so that no further writes can be made to the source
database. If the source database changes aren’t fully caught up with the target database, wait for
some time while these changes are fully propagated to the target database.

• Run pre-cutover tests — Run automated pre-cutover tests to make sure that the data migration
was successful.

Cutover

• Run cutover — If pre-cutover checks were completed successfully, you can now point your
application to Amazon Aurora. Run scripts created in the pre-cutover phase to change the
application configuration to point to the new Aurora database.

• Start your application — At this point, you may start your application. If you have an ability to
stop users from accessing the application while the application is running, exercise that option
until you have run your post-cutover checks.

Post-cutover checks

• Run post-cutover tests — Run predefined automated or manual test cases to make sure your
application works as expected with the new database. It’s a good strategy to start testing read-
only functionality of the database first before running tests that write to the database.

• Enable user access and closely monitor — If your test cases were run successfully, you may give
user access to the application to complete the migration process. Both application and database
should be closely monitored at this time.

Cutover 54

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Conclusion

Amazon Aurora is a high performance, highly available, and enterprise-grade database built for the
cloud. Leveraging Amazon Aurora can result in better performance and greater availability than
other open-source databases and lower costs than most commercial grade databases. This paper
proposes strategies for identifying the best method to migrate databases to Amazon Aurora and
details the procedures for planning and completing those migrations. In particular, AWS Database
Migration Service (AWS DMS) as well as the AWS Schema Conversion Tool are the recommended
tools for heterogeneous migration scenarios. These powerful tools can greatly reduce the cost and
complexity of database migrations.

55

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Contributors

Contributors to this document include:

• Puneet Agarwal, Solutions Architect, Amazon Web Services

• Chetan Nandikanti, Database Specialist Solutions Architect, Amazon Web Services

• Scott Williams, Solutions Architect, Amazon Web Services

• Jonathan Doe, Solutions Architect, Amazon Web Services

• Achin Agrawal, Senior Solutions Architect, Amazon Web Services

56

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Further reading

For additional information, refer to:

• Amazon Aurora Product Details

• Amazon Aurora FAQs

• AWS Database Migration Service

• AWS Database Migration Service FAQs

57

https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/rds/aurora/faqs/
https://aws.amazon.com/dms/
https://aws.amazon.com/dms/faqs/

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated the migration
method using Aurora
Read Replica to reduce the
downtime when migrating
from Amazon RDS MySQL to
a few seconds.

June 29, 2023

Whitepaper updated Reviewed for technical
accuracy.

July 28, 2021

Initial publication Whitepaper published. June 10, 2016

58

Migrating Your Databases to Amazon Aurora AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022, Amazon Web Services, Inc. or its affiliates. All rights reserved.

59

Migrating Your Databases to Amazon Aurora AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

60

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Migrating Your Databases to Amazon Aurora
	Table of Contents
	Migrating Your Databases to Amazon Aurora
	Abstract
	Are you Well-Architected?
	Introduction

	Database migration considerations
	Migration phases
	Application considerations
	Evaluate Aurora features
	Performance considerations

	Sharding and read replica considerations
	Reliability considerations
	Cost and licensing considerations
	Other migration considerations
	Estimate code change effort
	Application availability during migration
	Modify connection string during migration

	Planning your database migration process
	Homogeneous migration
	Homogeneous migration with downtime
	Homogeneous migration with near-zero downtime

	Heterogeneous migration
	Schema migration
	Data migration

	Migrating large databases to Amazon Aurora
	Partition and shard consolidation on Amazon Aurora
	Migration options at a glance

	RDS snapshot migration
	Estimating space requirements for snapshot migration
	Migrating a DB snapshot using the console

	Migration using Aurora Read Replica
	Create Amazon Aurora read replica from an existing Amazon RDS instance
	Stop writes to the Amazon RDS MySQL instance
	Promote Amazon Aurora read replica to be a standalone database cluster
	Begin writes on Amazon Aurora read replica immediately after starting promotion
	Important points to consider
	Aurora read replica vs other methods:

	Migrating the database schema
	Homogeneous schema migration
	Heterogeneous schema migration
	Schema migration using the AWS Schema Conversion Tool

	Migrating data
	Introduction and general approach to AWS DMS
	Migration methods
	Migration procedure
	Create target database
	Copy schema
	Create an AWS DMS replication instance
	Define database source and target endpoints
	Create and run a migration task

	Testing and cutover
	Migration testing
	Cutover
	Pre-cutover actions
	Cutover
	Post-cutover checks

	Conclusion
	Contributors
	Further reading
	Document history
	Notices
	AWS Glossary

