
AWS Whitepaper

Optimizing MySQL Running on Amazon
EC2 Using Amazon EBS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS: AWS
Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Introduction ... 1

Terminology ... 2
MySQL on AWS deployment options ... 3
Amazon EC2 block-level storage options ... 5
EBS volume features ... 6

EBS monitoring ... 6
EBS durability and availability ... 6
EBS snapshots ... 6
EBS security ... 7
Elastic Volumes ... 8

EBS volume types .. 9
General Purpose SSD volumes .. 9
Provisioned IOPS SSD (io1) volumes ... 10

MySQL considerations ... 11
Caching ... 11
Database writes .. 11
MySQL read replica configuration .. 12
MySQL replication considerations .. 13
Switching from a physical environment to AWS ... 13

MySQL backups ... 15
Backup methodologies .. 15
Creating snapshots of an EBS RAID array ... 17
Monitoring MySQL and EBS volumes .. 18
Latency ... 18
Throughput .. 20

MySQL benchmark observations and considerations .. 21
The test environment .. 21
Tuned compared to default configuration parameter testing .. 23
Comparative analysis of different storage types ... 25

Sysbench client and MySQL server setup .. 25
Results ... 26

Conclusion .. 28
Contributors ... 29

iii

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Further reading .. 30
Document history .. 31
Notices .. 32
AWS Glossary ... 33

iv

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Optimizing MySQL Running on Amazon EC2 Using
Amazon EBS

Publication date: December 7, 2021 (Document history)

This whitepaper is intended for Amazon Web Services (AWS) customers who are considering
deploying their MySQL database on Amazon Elastic Compute Cloud (Amazon EC2) using Amazon
Elastic Block Store (Amazon EBS) volumes. This whitepaper describes the features of EBS volumes
and how they can affect the security, availability, durability, cost, and performance of MySQL
databases. There are many deployment options and configurations for MySQL on Amazon EC2.
This whitepaper provides performance benchmark metrics and general guidance so AWS customers
can make an informed decision about whether to deploy their MySQL workloads on Amazon EC2.

Introduction

MySQL is one of the world’s most popular open-source relational database engines. Its unique
storage architecture provides you with many different ways of customizing database configuration
according to the needs of your application. It supports transaction processing and high-volume
operations. Apart from the robustness of the database engine, another benefit of MySQL is that
the total cost of ownership is low. Several companies are moving their MySQL workloads into the
cloud to extend the cost and performance benefits. AWS offers many compute and storage options
that can help you optimize your MySQL deployments.

Introduction 1

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Terminology

The following definitions are for the common terms that will be referenced throughout this paper:

• IOPS — Input/output (I/O) operations per second (Ops/s).

• Throughput — Read/write transfer rate to storage (MB/s).

• Latency — Delay between sending an I/O request and receiving an acknowledgment (ms).

• Block size — Size of each I/O (KB).

• Page size — Internal basic structure to organize the data in the database files (KB).

• Amazon Elastic Block Store (Amazon EBS) volume — Persistent block-level storage devices
for use with Amazon Elastic Compute Cloud (Amazon EC2) instances. This whitepaper focuses
on solid state drive (SSD) EBS volume types optimized for transactional workloads involving
frequent read/write operations with small I/O size, where the dominant performance attribute is
IOPS.

• Amazon EBS General Purpose SSD volume — General Purpose SSD volume that provides
a balance of price and performance. AWS recommends these volumes for most workloads.
Currently, AWS offer two types of General Purpose SSD volumes: gp2 and gp3.

• Amazon EBS Provisioned IOPS SSD volume — Highest performance SSD volume designed for
high performance for mission-critical, low-latency, or high-throughput workloads. Currently AWS
offer two types of Provisioned IOPS SSD volumes: io1 and io2.

• Amazon EBS Throughput Optimized hard disk drive (HDD) (st1) volume — Low- cost HDD
volume designed for frequently accessed, throughput-intensive workloads.

2

https://aws.amazon.com/ebs/
https://aws.amazon.com/ec2/

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

MySQL on AWS deployment options

AWS provides various options to deploy MySQL like a fully managed database service, Amazon
Relational Database Service (Amazon RDS) for MySQL. The Amazon Aurora database engine is
designed to be wire-compatible with MySQL 5.6 and 5.7 using the InnoDB storage engine. You can
also host MySQL on Amazon EC2 and self-manage the database, or browse the third-party MySQL
offerings on the AWS Marketplace. This whitepaper explores the implementation and deployment
considerations for MySQL on Amazon EC2 using Amazon EBS for storage.

Although Amazon RDS and Amazon Aurora with MySQL compatibility is a good choice for most of
the use cases on AWS, deployment on Amazon EC2 might be more appropriate for certain MySQL
workloads. With Amazon RDS you can connect to the database itself, which gives you access to the
familiar capabilities and configurations in MySQL; however, access to the operating system (OS)
isn’t available. This is an issue when you need OS-level access due to specialized configurations that
rely on low-level OS settings, such as when using MySQL Enterprise tools. For example, enabling
MySQL Enterprise Monitor requires OS-level access to gather monitoring information. As another
example, MySQL Enterprise Backup requires OS-level access to access the MySQL data directory. In
such cases, running MySQL on Amazon EC2 is a better alternative.

MySQL can be scaled vertically by adding additional hardware resources (CPU, memory, disk,
network) to the same server. For both Amazon RDS and Amazon EC2, you can change the EC2
instance type to match the resources required by your MySQL database. Amazon Aurora provides a
Serverless MySQL-Compatible Edition that allows compute capacity to be auto scaled on demand
based on application needs. Both Amazon RDS and Amazon EC2 have an option to use EBS General
Purpose SSD and EBS Provisioned IOPS volumes. The maximum provisioned storage limit for
Amazon RDS database (DB) instances running MySQL is 64 TB. The EBS volume for MySQL on
Amazon EC2, conversely, supports up to 16 TB per volume.

Horizontal scaling is also an option in MySQL, where you can add MySQL secondary servers or read
replicas so that you can accommodate additional read traffic into your database. With Amazon
RDS, you can easily enable this option through the AWS Management Console with click of a
button, Command Line Interface (CLI), or REST API. Amazon RDS for MySQL allows up to five
read replicas. There are certain cases where you might need to enable specific MySQL replication
features. Some of these features may require OS access to MySQL or advanced privileges to access
certain system procedures and tables.

MySQL on Amazon EC2 is an alternative to Amazon RDS and Aurora for certain use cases. It allows
you to migrate new or existing workloads that have very specific requirements. Choosing the right

3

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/aurora/
https://aws.amazon.com/marketplace

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

compute, network, and—especially—storage configurations while taking advantage of its features
plays a crucial role in achieving good performance at an optimal cost for your MySQL workloads.

4

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Amazon EC2 block-level storage options

There are two block-level storage options for EC2 instances. The first option is an instance store,
which consists of one or more instance store volumes exposed as block I/O devices. An instance
store volume is a disk that is physically attached to the host computer that runs the EC2 virtual
machine (VM). You must specify instance store volumes when you launch the EC2 instance. Data
on instance store volumes will not persist if the instance stops, ends, or if the underlying disk drive
fails.

The second option is an EBS volume, which provides off-instance storage that will persist
independently from the life of the instance. The data on the EBS volume persists even if the EC2
instance that the volume is attached to shuts down or there is a hardware failure on the underlying
host. The data persists on the volume until the volume is explicitly deleted. Refer to Solid state
drives (SSD) in the AWS documentation for the details about SSD-backed EBS volumes.

Due to the immediate proximity of the instance to the instance store volume, the I/O latency
to an instance store volume tends to be lower than to an EBS volume. Use cases for instance
store volumes include acting as a layer of cache or buffer, storing temporary database tables or
logs, or providing storage for read replicas. For a list of the instance types that support instance
store volumes, refer to Amazon EC2 instance store within the Amazon EC2 User Guide for Linux
instances. The remainder of this paper focuses on EBS volume-backed EC2 instances.

5

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#solid-state-drives
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#solid-state-drives
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/InstanceStorage.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

EBS volume features

EBS monitoring

Amazon EBS automatically sends data points to Amazon CloudWatch for one-minute intervals
at no charge. Amazon CloudWatch metrics are statistical data that you can use to view, analyze,
and set alarms on the operational behavior of your volumes. The EBS metrics can be viewed by
selecting the monitoring tab of the volume in the Amazon EC2 console. For more information
about the EBS metrics collected by CloudWatch, refer to the Amazon CloudWatch metrics for
Amazon EBS.

EBS durability and availability

Durability in the storage subsystem for MySQL is especially important if you are storing user data,
valuable production data, and individual data points. EBS volumes are designed for reliability
with a 0.1 percent to 0.2 percent annual failure rate (AFR) compared to the typical 4 percent of
commodity disk drives. EBS volumes are backed by multiple physical drives for redundancy that is
replicated within the Availability Zone to protect your MySQL workload from component failure.

EBS snapshots

You can perform backups of your entire MySQL database using EBS snapshots. These snapshots are
stored in Amazon Simple Storage Service (S3), which is designed for 99.999999999% (11 nines)
of durability. To satisfy your recovery point and recovery time objectives, you can schedule EBS
snapshots using Amazon CloudWatch Events.

Apart from providing backup, other reasons for creating EBS snapshots of your MySQL database
include:

• Set up a non-production or test environment — You can share the EBS snapshot to duplicate
the installation of MySQL in different environments and also share between different AWS
accounts within the same Region. For example, you can restore a snapshot of your MySQL
database that’s in a production environment to a test environment to duplicate and troubleshoot
production issues.

• Disaster recovery — EBS snapshots can be copied from one AWS Region to another for site
disaster recovery.

EBS monitoring 6

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/WhatIsCloudWatch.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cloudwatch_ebs.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using_cloudwatch_ebs.html
https://aws.amazon.com/ebs/features/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/TakeScheduledSnapshot.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/TakeScheduledSnapshot.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

A volume that is restored from a snapshot loads slowly in the background, which means that you
can start using your MySQL database right away. When you perform a query on MySQL that finds
a table that has not been downloaded yet, the data will be downloaded from Amazon S3. You
also have the option of enabling Amazon EBS fast snapshot restore to create a volume from a
snapshot that is fully initialized at creation. Refer to Amazon EBS fast snapshot restore for more
information. Best practices for restoring EBS snapshots are discussed in the MySQL backups section
of this whitepaper.

EBS security

Amazon EBS supports several security features you can use from volume creation to utilization.
These features prevent unauthorized access to your MySQL data.

You can use tags and resource-level permissions to enforce security on your volumes upon creation.
Tags are key-value pairs that you can assign to your AWS resources as part of infrastructure
management. These tags are typically used to track resources, control cost, implement compliance
protocols, and control access to resources through AWS Identity and Access Management (IAM)
policies. You can assign tags on EBS volumes during creation time, which allows you to enforce the
management of your volume as soon as it is created.

Additionally, you can have granular control on who can create or delete tags through the IAM
resource-level permissions. This granularity of control extends to the RunInstances and
CreateVolume APIs where you can write IAM policies that requires the encryption of the EBS
volume upon creation.

After the volume is created, you can use the IAM resource-level permissions for Amazon EC2 API
actions where you can specify the authorized users or groups who can attach, delete, or detach EBS
volumes to EC2 instances.

Protection of data in transit and at rest is crucial in most MySQL implementations. You can use
Secure Sockets Layer (SSL) to encrypt the connection from your application to your MySQL
database. To encrypt your data at rest, you can enable volume encryption during creation time.
The new volume will get a unique 256-bit AES key, which is protected by the fully managed AWS
Key Management Service. EBS snapshots created from the encrypted volumes are automatically
encrypted.

The Amazon EBS encryption feature is available on all current generation instance types. For more
information on the supported instance types, refer to the Amazon EBS Encryption documentation.

EBS security 7

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-fast-snapshot-restore.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-iam-actions-resources.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-supported-iam-actions-resources.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EBSEncryption.html#EBSEncryption_supported_instances

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Elastic Volumes

The Elastic Volumes feature of EBS SSD volumes allows you to dynamically change the size,
performance, and type of EBS volume in a single API call or within the AWS Management Console
without any interruption of MySQL operations. This simplifies some of the administration and
maintenance activities of MySQL workloads running on current generation EC2 instances.

You can call the ModifyVolume API to dynamically increase the size of the EBS volume if the
MySQL database is running low on usable storage capacity. Note that decreasing the size of the
EBS volume isn’t supported, so AWS recommends that you do not over-allocate the EBS volume
size any more than necessary to avoid paying for extra resources that you do not use.

In situations where there is a planned increase in your MySQL utilization, you can either change
your volume type or add additional IOPS. The time it takes to complete these changes will depend
on the size of your MySQL volume. You can monitor the progress of the volume modification either
through the AWS Management Console or CLI. You can also create CloudWatch Events to send
alerts after the changes are complete.

Elastic Volumes 8

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html#current-gen-instances
https://docs.aws.amazon.com/AWSEC2/latest/APIReference/API_ModifyVolume.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

EBS volume types

General Purpose SSD volumes

General Purpose SSD volumes are designed to provide a balance of price and performance.

The General Purpose SSD (gp3) volumes offer cost-effective storage that is ideal for a broad range
of database workloads. These volumes deliver a consistent baseline rate of 3,000 IOPS and 125
MiB/s, included with the price of storage. You can provision additional IOPS (up to 16,000) and
throughput (up to 1,000 MiB/s) for an additional cost. The maximum ratio of Provisioned IOPS
to provisioned volume size is 500 IOPS per GiB. The maximum ratio of provisioned throughput to
Provisioned IOPS is .25 MiB/s per IOPS. The following volume configurations support provisioning
either maximum IOPS or maximum throughput:

• 32 GiB or larger: 500 IOPS/GiB x 32 GiB = 16,000 IOPS

• 8 GiB or larger and 4,000 IOPS or higher: 4,000 IOPS x 0.25 MiB/s/IOPS = 1,000 MiB/s

The older General Purpose SSD (gp2) volume is also a good option because it also offers balanced
price and performance. To maximize the performance of the gp2 volume, you need to know how
the burst bucket works. The size of the gp2 volume determines the baseline performance level of
the volume and how quickly it can accumulate I/O credits. Depending on the volume size, baseline
performance ranges between a minimum of 100 IOPS up to a maximum of 16,000 IOPS. Volumes
earn I/O credits at the baseline performance rate of 3 IOPS/GiB of volume size. The larger the
volume size, the higher the baseline performance and the faster I/O credits accumulate. Refer
to General Purpose SSD volumes (gp2) for more information related to I/O characteristics and
burstable performance of gp2 volumes.

In addition to changing the volume type, size and provisioned throughput (for gp3 only); you
can also use RAID 0 to stripe multiple gp2 or gp3 volumes together to achieve greater I/O
performance. The RAID 0 configuration distributes the I/O across volumes in a stripe. Adding an
additional volume also increases the throughput of your MySQL database. Throughput is the read/
write transfer rate, which is the I/O block size multiplied by the IOPS rate performed on the disk.
AWS recommends adding the same volume size into the stripe set since the performance of the
stripe is limited to the worst performing volume in the set. Also consider fault tolerance in RAID
0. A loss of a single volume results in a complete data loss for the array. If possible, use RAID 0 in

General Purpose SSD volumes 9

https://aws.amazon.com/blogs/database/understanding-burst-vs-baseline-performance-with-amazon-rds-and-gp2/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#IOcredit
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_gp2

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

a MySQL primary/secondary environment where data is already replicated in multiple secondary
nodes.

Provisioned IOPS SSD (io1) volumes

Provisioned IOPS SSD (io1 and io2) volumes are designed to meet the needs of I/O-intensive
workloads, particularly database workloads that are sensitive to storage performance and
consistency. Provisioned IOPS SSD volumes use a consistent IOPS rate, which you specify when
you create the volume, and Amazon EBS delivers the provisioned performance 99.9 percent of the
time.

• io1 volumes are designed to provide 99.8 to 99.9 percent volume durability with an annual
failure rate (AFR) no higher than 0.2 percent, which translates to a maximum of two volume
failures per 1,000 running volumes over a one-year period.

• io2 volumes are designed to provide 99.999 percent volume durability with an AFR no higher
than 0.001 percent, which translates to a single volume failure per 100,000 running volumes
over a one-year period.

The maximum ratio of Provisioned IOPS to requested volume size (in GiB) is 50:1 for io1 volumes,
and 500:1 for io2 volumes. For example, a 100 GiB io1 volume can be provisioned with up to 5,000
IOPS, while a 100 GiB io2 volume can be provisioned with up to 50,000 IOPS.

To maximize the volume throughput, AWS recommends using an EBS-optimized EC2 instance
type (note that most new EC2 instances are EBS-optimized by default, with no extra charge). This
provides dedicated throughput between your EBS volume and EC2 instance. As instance size and
type affects volume throughput, choose an instance that has more channel bandwidth than the
maximum throughput of the io1 volume.

For example, an r5.12xlarge instance provides a maximum bandwidth of 9,500 MB/s. Therefore,
it can more than handle the 1,187.5 MB/s maximum throughput of the io1 volume. Another
approach to increasing io1 throughput is to configure RAID 0 on your EBS volumes. For more
information about RAID configuration, refer to RAID configuration in the Amazon EC2 User Guide.

Provisioned IOPS SSD (io1) volumes 10

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-volume-types.html#EBSVolumeTypes_piops
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-optimized.html#current
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/raid-config.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

MySQL considerations

MySQL offers a lot of parameters that you can tune to obtain optimal performance for every type
of workload. This section focuses on the MySQL InnoDB storage engine. It also looks at the MySQL
parameters that you can optimize to improve performance related to the I/O of EBS volumes.

Caching

Caching is an important feature in MySQL. Knowing when MySQL will perform a disk I/O instead
of accessing the cache will help you tune for performance. When you are reading or writing data,
an InnoDB buffer pool caches your table and index data. This in-memory area resides between your
read/write operations and the EBS volumes. Disk I/O will occur if the data you are reading isn’t in
the cache or when the data from dirty (that is, modified only in memory) InnoDB pages needs to be
flushed to disk.

The buffer pool uses the Least Recently Used (LRU) algorithm for cached pages. When you size the
buffer pool too small, the buffer pages may have to be constantly flushed to and from the disk,
which affects performance and lowers the query concurrency. The default size of the buffer pool
is 128 MB. You can set this value to 80 percent of your server’s memory; however, be aware that
there may be paging issues if other processes are consuming memory. Increasing the size of the
buffer pool works well when your dataset and queries can take advantage of it. For example, if you
have one GiB of data and the buffer pool is configured at 5 GiB, then increasing the buffer pool size
to 10 GiB will not make your database faster. A good rule of thumb is that the buffer pool should
be large enough to hold your “hot” dataset, which is composed of the rows and indexes that are
used by your queries. Starting in MySQL 5.7 version, the innodb_buffer_pool_size can be set
dynamically, which allows you to resize the buffer pool without restarting the server.

Database writes

InnoDB does not write directly to disk. Instead, it first writes the data into a double write buffer.
Dirty pages are the modified portion of these in-memory areas. The dirty pages are flushed if
there isn’t enough free space. The default setting (innodb_flush_neighbors = 1) results in a
sequential I/O by flushing the contiguous dirty pages in the same extent from the buffer pool. This
option should be turned off (by setting innodb_flush_neighbors = 0) so you can maximize
the performance by spreading the write operations over your EBS SSD volumes.

Caching 11

https://dev.mysql.com/doc/refman/5.7/en/innodb-parameters.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Another parameter that can be modified for write-intensive workloads is
innodb_log_file_size. When the size of your log file is large there are fewer data flushes,
which reduces disk I/O. However, if your log file is too big, you will generally have a longer recovery
time after a crash. MySQL recommends that the size of your log files should be large enough
where your MySQL server will spread out the checkpoint flush activity over a longer period. The
recommendation from MySQL is to size the log file to where it can accommodate an hour of write
activity.

MySQL read replica configuration

MySQL allows you to replicate your data so you can scale out your read-heavy workloads with
primary / secondary (read replica) configuration. You can create multiple copies of your MySQL
database into one or more secondary databases so that you can increase the read throughput of
your application. The availability of your MySQL database can be increased with the secondary.
When a primary instance fails one of the secondary servers can be promoted, reducing the recovery
time.

MySQL supports different replication methods. There is the traditional binary log file position-
based replication where the primary’s binary log is synchronized with the secondary’s relay log. The
following diagram shows the binary log file position-based replication process.

Binary log file position-based replication process

MySQL read replica configuration 12

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Replication between primary and secondary using global transaction identifiers (GTIDs) was
introduced in MySQL 5.6. A GTID is a unique identifier created and associated with each transaction
committed on the server of origin (primary). This identifier is unique not only to the server on
which it originated, but is unique across all servers in a given replication setup. With GTID-based
replication, it is no longer necessary to keep track of the binary log file or position on the primary
to replay those events on the secondary. The benefits of this solution include a more malleable
replication topology, simplified failover, and improved management of multi-tiered replication.

MySQL replication considerations

Prior to MySQL 5.6, replication was single threaded, with only one event occurring at a time.
Achieving throughput in this case was usually done by pushing a lot of commands at low latency.
To obtain larger I/O throughput, your storage volume requires a larger queue depth. An EBS io1
SSD volume can have up to 20,000 IOPS, which, in turn, means it has a larger queue depth. AWS
recommends using this volume type on workloads that require heavy replication.

As mentioned in the Provisioned IOPS SSD volumes section of this document, RAID 0 increases
the performance and throughput of EBS volumes for your MySQL database. You can join several
volumes together in a RAID 0 configuration to use the available bandwidth of the EBS-optimized
instances to deliver the additional network throughput dedicated to EBS. For MySQL 5.6 and
above, replication is multi-threaded. This performs well on EBS volumes because it relies on
parallel requests to achieve maximum I/O throughput. During replication there are sequential and
random traffic patterns.

There are the sequential writes for the binary log (binlog) shipment from the primary server and
sequential reads of the binlog and relay log. Additionally, there is the traffic of regular random
updates to your data files. Using RAID 0 in this case improves the parallel workloads since it
spreads the data across the disks and their queues. However, you must be aware of the penalty
from the sequential and single-threaded workloads because extra synchronization is needed to
wait for the acknowledgments from all members in the stripe. Only use RAID 0 if you need more
throughput than that which the single EBS volume can provide.

Switching from a physical environment to AWS

Customers migrating from their physical MySQL Server environment into AWS usually have a
battery-backed caching RAID controller, which allows data in the cache to survive a power failure.
Synchronous operations are set up so that all I/O is committed to the RAID controller cache instead

MySQL replication considerations 13

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

of the OS main memory. Therefore, it is the controller instead of the OS that completes the write
process. Due to this environment, the following MySQL parameters are used to ensure that there is
no data loss:

On the Primary Side

sync_binlog = 1
innodb_flush_log_at_trx_commit=1

On the Secondary Side

sync_master_info = 1
sync_relay_log = 1
sync_relay_log_info = 1
innodb_flush_log_at_trx_commit=1

These parameters will cause MySQL to call fsync() to write the data from the buffer cache to the
disk after any operation with the binlog and relay log. This is an expensive operation that increases
the amount of disk I/O.

The immediate synchronize log to disk MySQL parameter does not provide any benefit for EBS
volumes. In fact, it causes degraded performance. EBS volumes are automatically replicated within
an Availability Zone, which protects them from component failures. Turning off the sync_binlog
parameter allows the OS to determine when to flush the bin and relay log buffers to the disk,
reducing I/O.

The innodb_flush_log_at_trx_commit=1 is required for full ACID compliance. If you need
to synchronize the log to disk for every transaction, then you may want to consider increasing the
IOPS and throughput of the EBS volume. In this situation, you may want to separate the binlog and
relay log from your data files as separate EBS volumes. You can use Provisioned IOPS SSD volumes
for the binlog and relay log to have more predictable performance. You may also use the local SSD
of the MySQL secondary instance if you need more throughput and IOPS.

Switching from a physical environment to AWS 14

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

MySQL backups

Backup methodologies

There are several approaches to protecting your MySQL data depending on your Recovery Time
Objective (RTO) and Recovery Point Objective (RPO) requirements. The choice of performing a hot
or cold backup is based on the uptime requirement of the database. When it comes meeting your
RPO, your backup approach will be based the logical database level or the physical EBS volume-
level backup. This section explores the two general backup methodologies.

The first general approach is to back up your MySQL data using database-level methodologies. This
can include making a hot backup with MySQL Enterprise Backup, making backups with mysqldump
or mysqlpump, or by making incremental backups by enabling binary logging.

If the primary database server exhibits performance issues during a backup, a replication secondary
database server or a read replica database server can be created to provide the source data for the
backups to alleviate the backup load from the primary database server. One approach can be to
back up from a secondary server’s SSD data volume to a backup server’s Throughput Optimized
HDD (st1) volume. The high throughput of 500 MiB/s per volume and large 1 MiB I/O block size
make it an ideal volume type for sequential backups meaning it can use the larger I/O blocks. The
following diagram shows a backup server using the MySQL secondary server to read the backup
data.

Backup methodologies 15

https://www.mysql.com/products/enterprise/backup.html
https://dev.mysql.com/doc/refman/5.7/en/mysqldump.html
https://dev.mysql.com/doc/refman/5.7/en/mysqlpump.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Using an st1 volume as a backup source

Another option is to have the MySQL secondary server back up the database files directly to
Amazon Elastic File System (Amazon EFS) or Amazon S3. Amazon EFS is an elastic file system that
stores its data redundantly across multiple Availability Zones. Both the primary and the secondary
instances can attach to the EFS file system. The secondary instance can initiate a backup to the
EFS file system from where the primary instance can do a restore. Amazon S3 can also be used as a
backup target. Amazon S3 can be used in a manner similar to Amazon EFS except that Amazon S3
is object-based storage rather than a file system. The following diagram depicts the option of using
Amazon EFS or Amazon S3 as a backup target.

Using Amazon EFS or Amazon S3 as a backup target

The second general approach is to use volume-level EBS snapshots. Snapshots are incremental
backups, which means that only the blocks on the device that have changed after your most recent
snapshot are saved. This minimizes the time required to create the snapshot and saves on storage
costs. When you delete a snapshot, only the data unique to that snapshot is removed. Active
snapshots contain all of the information needed to restore your data (from the time the snapshot
was taken) to a new EBS volume.

One consideration when utilizing EBS snapshots for backups is to make sure the MySQL data
remains consistent. During an EBS snapshot, any data not flushed from the InnoDB buffer cache to
disk will not be captured. There is a MySQL command flush tables with read lock that will flush all
the data in the tables to disk and only allow database reads but put a lock on database writes. The

Backup methodologies 16

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

lock only needs to last for a brief period of time until the EBS snapshot starts. The snapshot will
take a point-in-time capture of all the content within that volume. The database lock needs to be
active until the snapshot process starts, but it doesn’t have to wait for the snapshot to complete
before releasing the lock.

You can also combine these approaches by using database-level backups for more granular objects,
such as databases or tables, and using EBS snapshots for larger scale operations, such as recreating
the database server, restoring the entire volume, or migrating a database server to another
Availability Zone or another Region for disaster recovery (DR).

Creating snapshots of an EBS RAID array

When you take a snapshot of an attached EBS volume that is in use, the snapshot excludes data
cached by applications or the operating system. For a single EBS volume, this might not be a
problem. However, when cached data is excluded from snapshots of multiple EBS volumes in a
RAID array, restoring the volumes from the snapshots can degrade the integrity of the array.

When creating snapshots of EBS volumes that are configured in a RAID array, it is critical that there
is no data I/O to or from the volumes when the snapshots are created. RAID arrays introduce data
interdependencies and a level of complexity not present in a single EBS volume configuration.

To create an application-consistent snapshot of your RAID array, stop applications from writing
to the RAID array, and flush all caches to disk. At the database level (recommended), you can
use the flush tables with read lock command. Then ensure that the associated EC2 instance is no
longer writing to the RAID array by taking steps such as freezing the file system with the sync and
fsfreeze commands, unmounting the RAID array, or shutting down the associated EC2 instance.
After completing the steps to halt all I/O, take a snapshot of each EBS volume.

Restoring a snapshot creates a new EBS volume, then you assemble the new EBS volumes to build
the RAID volumes. After that you mount the file system and then start the database. To avoid the
performance degradation after the restore, AWS recommends initializing the EBS volume. The
initialization of a large EBS volume can take some time to complete because data blocks have to
be fetched from the S3 bucket where the snapshots are stored. To make the database available in
a shorter amount of time, the initialization of the EBS volume can be done through multi-threaded
reads of all the required database files for the engine recovery.

Creating snapshots of an EBS RAID array 17

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-creating-snapshot.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ebs-initialize.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Monitoring MySQL and EBS volumes

Monitoring provides visibility into your MySQL workload. Understanding the resource utilization
and performance of MySQL usually involves correlating the data from the database performance
metrics gathered from MySQL and infrastructure-related metrics in CloudWatch. There are many
tools that you can use to monitor MySQL, some of which include:

• Tools from MySQL, such as MySQL Enterprise Monitor, MySQL Workbench Performance, and
MySQL Query Analyzer

• Third-party software tools and plugins

• MySQL monitoring tools in the AWS Marketplace

When the bottleneck for MySQL performance is related to storage, database administrators usually
look at latency when they run into performance issues of transactional operations. Further, if the
performance is degraded due to MySQL loading or replicating data, then throughput is evaluated.
These issues are diagnosed by looking at the EBS volume metrics collected by CloudWatch.

Latency

Latency is defined as the delay between request and completion. Latency is experienced by slow
queries, which can be diagnosed in MySQL by enabling the MySQL performance schema. Latency
can also occur at the disk I/O-level, which can be viewed in the “Average Read Latency (ms/op)”
and “Average Write Latency (ms/op)” in the monitoring tab of the EC2 console. This section covers
the factors contributing to high latency.

High latency can result from exhausting the available Provisioned IOPS in your EBS volume. For
gp2 volumes, the CloudWatch metric BurstBalance is presented so that you can determine if you
have depleted the available credit for IOPS. When bandwidth (KiB/s) and throughput (Ops/s) are
reduced, latency (ms/op) increases.

Monitoring MySQL and EBS volumes 18

https://www.mysql.com/products/enterprise/monitor.html
https://www.mysql.com/products/workbench/performance/
https://www.mysql.com/products/enterprise/query.html
https://aws.amazon.com/marketplace/search/results?searchTerms=mysql&category=2649280011&page=1
https://aws.amazon.com/cloudwatch/
http://dev.mysql.com/doc/refman/5.7/en/performance-schema.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

BurstBalance metric showing that when bandwidth and throughput are reduced, latency increases

Disk queue length can also contribute to high latency. Disk queue length refers to the outstanding
read/write requests that are waiting for resources to be available. The CloudWatch metric
VolumeQueueLength shows the number of pending read/write operation requests for the
volume. This metric is an important measurement to monitor if you have reached the full
utilization of the Provisioned IOPS on your EBS volumes. Ideally, the EBS volumes must maintain
an average queue length of about one per minute for every 200 Provisioned IOPS. Use the
following formula to calculate how many IOPS will be consumed based on the disk queue length:

Consumed IOPS = 200 IOPS * VolumeQueueLength

For example, say you have assigned 2,000 IOPS to your EBS volume. If the VolumeQueueLength
increases to 10, then you consume all of your 2000 Provisioned IOPS, which results in increased
latency.

Pending MySQL operations will stack up if you observe the increase of the VolumeQueueLength
without any corresponding increase in the Provisioned IOPS, as shown in the following screenshot.

Average queue length and average read latency metrics

Latency 19

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Throughput

Throughput is the read/write transfer rate to storage. It affects MySQL database replication,
backup, and import/export activities. When considering which AWS storage option to use to
achieve high throughput, you must also consider that MySQL has random I/O caused by small
transactions that are committed to the database. To accommodate these two different types of
traffic patterns, our recommendation is to use io1 volumes on an EBS-optimized instance. In terms
of throughput, io1 volumes have a maximum of 320 MB/s per volume, while gp2 volumes have a
maximum of 160 MB/s per volume.

Insufficient throughput to underlying EBS volumes can cause MySQL secondary servers to lag,
and can also cause MySQL backups to take longer to complete. To diagnose throughput issues,
CloudWatch provides the metrics Volume Read/Write Bytes (the amount of data being transferred)
and Volume Read/Write Ops (the number of I/O operations).

In addition to using CloudWatch metrics, AWS recommends reviewing the AWS Trusted Advisor to
check alerts when an EBS volume attached to an instance isn’t EBS-optimized. EBS optimization
ensures dedicated network throughput for your volumes. An EBS-optimized instance has
segregated traffic, which is useful as many EBS volumes have significant network I/O activities.
Most new instances are EBS-optimized by default, at no extra charge.

Throughput 20

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

MySQL benchmark observations and considerations

Testing your MySQL database will help you determine what type of volume you need and ensure
that you are choosing the most cost-effective and performant solution.

There are a couple of ways to determine the number of IOPS that you need. For an existing
workload, you can monitor the current consumption of EBS volume IOPS through the CloudWatch
metrics detailed in the Monitoring MySQL and EBS volumes section of this document.

If this is a new workload, you can do a synthetic test, which will provide you with the maximum
number of IOPS that your new AWS infrastructure can achieve. If you are moving your workload to
the AWS Cloud, you can run a tool such as iostat to profile the IOPS required by your workload.
While you can use a synthetic test to estimate your storage performance needs, the best way to
quantify your storage performance needs is through profiling an existing production database if
that is an option.

Performing a synthetic test on the EBS volume allows you to specify the amount of concurrency
and throughput that you want to simulate. Testing will allow you to determine the maximum
number of IOPS and throughput needed for your MySQL workload.

There are a couple of tools that you can use:

• Mysqlslap is an application that emulates client load for MySQL Server.

• Sysbench is a popular open-source benchmark used to test open-source database management
systems (DBMS).

The test environment

To simulate the MySQL client for the Sysbench tests, this example uses an r5.8xlarge instance type
with a 10-gigabit network interface.

Table 1: Sysbench machine specifications

Sysbench server

Instance type r5.8xlarge

The test environment 21

http://dev.mysql.com/doc/refman/5.7/en/mysqlslap.html
https://dev.mysql.com/downloads/benchmarks.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Sysbench server

Memory 256 GB

CPU 32 vCPUs

All of the MySQL servers tested on used the r5.8xlarge instance type.

Table 2: MySQL server machine specifications

MySQL server

Instance type r5.8xlarge

Memory 256 GB

CPU 32 vCPUs

Storage 500 GB gp2 EBS Volume

Root volume 256 GB gp2

MySQL data volume 500 GB (gp2, gp3, io1 or io2)

To increase performance on the Sysbench Linux client, enable Receive Packet Steering (RPS) and
Receive Flow Steering (RFS). RPS generates a hash to determine which CPU will process the packet.
RFS handles the distribution of packets to the available CPUs.

Enable RPS with the following shell command:

sudo sh -c 'for x in /sys/class/net/eth0/queues/rx-*; do echo ffffffff > $x/rps_cpus;
 done'
sudo sh -c "echo 4096 > /sys/class/net/eth0/queues/rx-0/rps_flow_cnt"

sudo sh -c "echo 4096 > /sys/class/net/eth0/queues/rx-1/rps_flow_cnt

Enable RFS with the following shell command:

sudo sh -c "echo 32768 > /proc/sys/net/core/rps_sock_flow_entries"

The test environment 22

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Tuned compared to default configuration parameter testing

Perform a Sysbench test to compare the difference between tuned MySQL and default parameter
configurations (refer to Table 3). Use a MySQL dataset of 100 tables with 10 million records per
table for the test.

Table 3: MySQL parameters

Parameters Default Tuned

innodb_buffer_pool_size 134MB 193G

innodb_flush_method fsync (Linux) O_DIRECT

innodb_flush_neighbors 1 0

innodb_log_file_size 50MB 256MB

Run the following Sysbench read/write command:

$ sysbench ./oltp_read_write.lua <connection info> --table_size=10000000 --max-
requests=0
--simple-ranges=0 --distinct-ranges=0 --sum-ranges=0 --order-ranges=0 --point-
selects=0
--time=3600 --threads=1024 --rand-type=uniform run

Results of the Sysbench test are presented in Table 4. Under optimized conditions, the MySQL
server processed approximately 12 times the number of transactions per section compared to the
default configuration.

Table 4: Sysbench results

Sysbench metrics Default Tuned

Queries:

Read 17511928 223566532

Write 5003408 63876152

Tuned compared to default configuration parameter testing 23

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Sysbench metrics Default Tuned

Other 2501704 31938076

Total 25017040 319380760

Transactions 1250852 (347.37 per sec.) 15969038 (4434.57 per sec.)

Queries 25017040 (6947.43 per sec.) 319380760 (88691.33 per
sec.)

ignored errors: 0 (0.00 per sec.) 0 (0.00 per sec.)

reconnects: 0 (0.00 per sec.) 0 (0.00 per sec.)

General statistics:

Total time 3600.9046s 3601.0355s

Total number of events 1250852 15969038

Latency (ms):

min 7.72 4.843

avg 2947.65 230.90

max 95885.04 6158.04

95th percentile 9284.15 1258.08

sum 3687074024.45 3687189581.27

Thread fairness:

events (avg/stddev): 1221.5352/48.86 15594.7637/45.63

runtime (avg/stddev): 3600.6582/0.11 3600.7711/0.04

Other InnoDB configuration options to consider for better performance of heavy I/O MySQL
workloads are detailed in the MySQL Optimizing InnoDB Disk I/O documentation. When

Tuned compared to default configuration parameter testing 24

https://dev.mysql.com/doc/refman/5.7/en/optimizing-innodb-diskio.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

considering these configurations, AWS suggests performing a test after deployment to ensure that
it will be safe for your application.

Comparative analysis of different storage types

Conduct the test across four different MySQL server configurations with the following
configurations:

• MySQL Server - EBS General Purpose SSD (gp2)

• 500 GB SQL data drive

• 1,500 baseline IOPS / 3,000 burstable IOPS

• MySQL Server - EBS Provisioned IOPS SSD (gp3)

• 500 GB SQL data drive

• 3,000 Provisioned IOPS

• MySQL Server - EBS Provisioned IOPS SSD (io1)

• 500 GB SQL data drive

• 3,000 Provisioned IOPS

• MySQL Server - EBS Provisioned IOPS SSD (io2)

• 500 GB SQL data drive

• 3,000 Provisioned IOPS

Note

Unless specified, all EBS volumes are unencrypted.

Sysbench client and MySQL server setup

Table 5: Server setup for MySQL database and Sysbench client

Comparative analysis of different storage types 25

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Use case Instance
type

vCPUs Memory Instance
storage

EBS-optim
ized

Network

MySQL
database

r5.8xlarg
e

32 256 EBS only Yes 10 Gigabit

Sysbench
client
(AWS
Cloud9)

r5.8xlarg
e

32 256 EBS only Yes 10 Gigabit

Tests were performed using Sysbench read/write OLTP test by running the following Sysbench
command below over a one-hour period.

$ sysbench ./oltp_read_write.lua <connection info> --table_size=10000000
--max-requests=0 --simple-ranges=0 --distinct-ranges=0 --sum-ranges=0
--order-ranges=0 --point-selects=0 --time=3600 --threads=1024
--rand-type=uniform run

Results

The various tests of the four different volume configurations yielded similar results, with each
server processing approximately 3,600 Sysbench transactions per second. There was no discernible
workload difference is noticed while running performance consistency test in all four volumes.
Upon closer examination, you observe that the minimum latency is offered by the IO2 volume and
less than one millisecond latency is observed for the same workload.

Table 6: Performance analysis of same MySQL workload on different EBS volume types

Sysbench
metrics

gp2 gp3 io1 io2

SQL statistics

read queries 17511928 181507690 188343428 186051460

write queries 5003408 51859340 53812408 53157560

Results 26

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Sysbench
metrics

gp2 gp3 io1 io2

other queries 2501704 25929670 26906204 26578780

total queries 25017040 259296700 269062040 265787800

transactions 12508520

(3470.37 per
sec.)

12964835
(3600.93 per
sec.)

13453102
(3733.12 per
sec.)

13289390
(3690.20 per
sec.)

queries 250170400

(69470.43 per
sec.)

259296700
 (72018.53 per
sec.)

269062040
 (74662.42 per
sec.)

265787800
 (73803.92 per
sec.)

Latency (ms)

min 7.72 6.82 6.1 6.02

avg 294.65 284.35 274.24 277.45

max 95885.04 43718.24 33179.31 34803.75

95th percentile 928.15 816.63 943.16 861.95

sum 3687074024.45 3686559158.83 3689386834.2 3687138536.08

EBS statistics

Write latency
(ms)

1.1 1.01 0.994 0.824

Volume queue
length (count)

3.49 3.01 3.227 2.71

Results 27

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Conclusion

The AWS Cloud provides several options for deploying MySQL and the infrastructure supporting it.
Amazon RDS for MySQL provides a very good platform to operate, scale, and manage your MySQL
database in AWS. It removes much of the complexity of managing and maintaining your database,
allowing you to focus on improving your applications.

However, there are some cases where MySQL on Amazon EC2 and Amazon EBS that work better for
some workloads and configurations. It is important to understand your MySQL workload and test
it. This can help you decide which EC2 server and storage to use for optimal performance and cost.

For a balanced performance and cost consideration, General Purpose SSD Amazon EBS volumes
(gp2 and gp3) are good options. To maximize the benefit of gp2, you need to understand and
monitor the burst credit. This will help you determine whether you should consider other volume
types. On the other hand, gp3 provides predictable 3,000 IOPS baseline performance and 125
MiB/s, regardless of volume size. With gp3 volumes, you can provision IOPS and throughput
independently, without increasing storage size, at costs up to 20 percent lower per GB compared to
gp2 volumes.

If you have mission critical MySQL workloads that need more consistent IOPS, then you should use
Provisioned IOPS volumes (io1 or io2).

To maximize the benefit of both General Purpose and Provisioned IOPS volume types, AWS
recommends using EBS-optimized EC2 instances and tuning your database parameters to optimize
storage consumption. This ensures dedicated network bandwidth for your EBS volumes. You can
cost effectively operate your MySQL database in AWS without sacrificing performance by taking
advantage of the durability, availability, and elasticity of the EBS volumes.

28

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Contributors

Contributors to this document include:

• Marie Yap, Enterprise Solutions Architect, Amazon Web Services

• Ricky Chang, Cloud Infrastructure Architect, Amazon Web Services

• Kehinde Otubamowo, Database Partner Solutions Architect, Amazon Web Services

• Arnab Saha, Cloud Support DBA, Amazon Web Services

• Chi Dinjors, Cloud Support Engineer, Amazon Web Services

29

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Further reading

For additional information, refer to:

• AWS Architecture Center

• MySQL Performance Tuning and Optimization Resources

• MySQL 5.7 Performance Tuning Immediately After Installation

• MySQL on EC2: Consistent Backup and Log Purging using EBS Snapshots and N2WS

• MySQL Database Backup Methods

30

https://aws.amazon.com/architecture/
https://www.mysql.com/why-mysql/performance/index.html
https://www.percona.com/blog/mysql-5-7-performance-tuning-immediately-after-installation/
https://n2ws.com/blog/aws-sql-server-backup/mysql-backup-log-purging-ebs-snapshots
https://dev.mysql.com/doc/refman/5.7/en/backup-methods.html

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated for technical
accuracy.

December 7, 2021

Initial publication Whitepaper first published. November 1, 2017

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser that
you are using.

31

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

32

Optimizing MySQL Running on Amazon EC2 Using Amazon EBS AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

33

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Optimizing MySQL Running on Amazon EC2 Using Amazon EBS
	Table of Contents
	Optimizing MySQL Running on Amazon EC2 Using Amazon EBS
	Introduction

	Terminology
	MySQL on AWS deployment options
	Amazon EC2 block-level storage options
	EBS volume features
	EBS monitoring
	EBS durability and availability
	EBS snapshots
	EBS security
	Elastic Volumes

	EBS volume types
	General Purpose SSD volumes
	Provisioned IOPS SSD (io1) volumes

	MySQL considerations
	Caching
	Database writes
	MySQL read replica configuration
	MySQL replication considerations
	Switching from a physical environment to AWS

	MySQL backups
	Backup methodologies
	Creating snapshots of an EBS RAID array
	Monitoring MySQL and EBS volumes
	Latency
	Throughput

	MySQL benchmark observations and considerations
	The test environment
	Tuned compared to default configuration parameter testing
	Comparative analysis of different storage types
	Sysbench client and MySQL server setup
	Results

	Conclusion
	Contributors
	Further reading
	Document history
	Notices
	AWS Glossary

