
AWS Whitepaper

Overview of Deployment Options on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Overview of Deployment Options on AWS AWS Whitepaper

Overview of Deployment Options on AWS: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Overview of Deployment Options on AWS AWS Whitepaper

Table of Contents

Abstract .. 1
Abstract ... 1

Introduction ... 2
AWS Deployment Services .. 3

AWS CloudFormation ... 3
AWS Elastic Beanstalk ... 6
AWS CodeDeploy .. 9

AWS CodeDeploy for AWS Lambda .. 12
Amazon Elastic Container Service .. 12

Amazon ECS Anywhere .. 16
Amazon Elastic Container Service on AWS Outposts .. 17

Amazon Elastic Kubernetes Service ... 17
Amazon EKS Anywhere ... 21

AWS App Runner .. 21
Amazon Lightsail .. 23

Amazon Lightsail Containers .. 24
Red Hat OpenShift Service on AWS ... 25
AWS Local Zones .. 25
AWS Wavelength .. 26
Additional Deployment Services ... 26

Amazon Simple Storage Service .. 26
AWS Proton .. 26
AWS App2Container ... 27
AWS Copilot ... 27
AWS Serverless Application Model ... 28
AWS Cloud Development Kit (AWS CDK) ... 28
Amazon EC2 Image Builder .. 29

Deployment strategies .. 32
Prebaking vs. bootstrapping AMIs .. 32
Blue/green deployments .. 32
Rolling deployments .. 33
Canary deployments .. 33
In-place deployments .. 34
Combining Deployment Services .. 34

iii

Overview of Deployment Options on AWS AWS Whitepaper

Conclusion .. 35
Contributors ... 36
Further Reading ... 37
Document Revisions .. 38
Notices .. 39

iv

Overview of Deployment Options on AWS AWS Whitepaper

Overview of Deployment Options on AWS

Publication date: May 31, 2024 (Document Revisions)

Abstract

Amazon Web Services (AWS) offers multiple options for provisioning infrastructure and deploying
your applications. Whether your application architecture is a simple three-tier web application or
a complex set of workloads, AWS offers deployment services to meet the requirements of your
application and your organization.

This whitepaper is intended for individuals looking for an overview of the different deployment
services offered by AWS. It lays out common features available in these deployment services, and
articulates basic strategies for deploying and updating application stacks.

Abstract 1

Overview of Deployment Options on AWS AWS Whitepaper

Introduction

Designing a deployment solution for your application is a critical part of building a well-architected
application on AWS. Based on the nature of your application and the underlying services that it
requires, you can use AWS services to create a flexible deployment solution that can be tailored to
fit the needs of both your application and your organization.

The constantly growing catalog of AWS services not only complicates the process of deciding which
services will compose your application architecture, but also the process of deciding how you will
create, manage, and update your application. When designing a deployment solution on AWS, you
should consider how your solution will address the following capabilities:

• Provision - Create the raw infrastructure or managed service infrastructure required for your
application.

• Configure - Customize your infrastructure based on environment, runtime, security, availability,
performance, network or other application requirements.

• Deploy - Install or update your application components onto infrastructure resources and
manage the transition from a previous application version to a new application version.

• Scale - Proactively or reactively adjust the amount of resources available to your application
based on a set of user-defined criteria.

• Monitor - Provide visibility into the resources that are launched as part of your application
architecture. Track resource usage, deployment success or failure, application health, application
logs, configuration drift, and more.

This whitepaper highlights the deployment services offered by AWS and outlines strategies for
designing a successful deployment architecture for any type of application.

2

Overview of Deployment Options on AWS AWS Whitepaper

AWS Deployment Services

The task of designing a scalable, efficient, and cost-effective deployment solution should not
be limited to how you will update your application version, but should also consider how you
will manage supporting infrastructure throughout the complete application lifecycle. Resource
provisioning, configuration management, application deployment, software updates, monitoring,
access control, and other concerns are all important factors to consider when designing a
deployment solution.

AWS services can provide management capabilities for one or more aspects of your application
lifecycle. Depending on your desired balance of control (manual management of resources) versus
convenience (AWS management of resources) and the type of application, these services can be
used on their own or combined to create a feature-rich deployment solution. This section will
provide an overview of the AWS services that can be used to enable organizations to more rapidly
and reliably build and deliver applications.

AWS CloudFormation

AWS CloudFormation is a service that enables customers to provision and manage almost any AWS
resource using a custom template language expressed in YAML or JSON. An AWS CloudFormation
template creates infrastructure resources in a group called a stack, and allows you to define and
customize all components needed to operate your application while retaining full control of
these resources. Using templates introduces the ability to implement version control on your
infrastructure, and the ability to quickly and reliably replicate your infrastructure.

AWS CloudFormation offers granular control over the provisioning and management of all
application infrastructure components, from low-level components such as route tables or subnet
configurations, to high-level components such as CloudFront distributions. AWS CloudFormation
is commonly used with other AWS deployment services or third-party tools, combining AWS
CloudFormation with more specialized deployment services to manage deployments of application
code onto infrastructure components.

AWS offers extensions to the CloudFormation service in addition to its base features:

• AWS Cloud Development Kit (AWS CDK) is an open source software development kit (SDK)
to programmatically model AWS infrastructure with TypeScript, JavaScript, Python, Java, or
C#/.NET.

AWS CloudFormation 3

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cdk/

Overview of Deployment Options on AWS AWS Whitepaper

• AWS Serverless Application Model (AWS SAM) is an open source framework to simplify building
serverless applications on AWS. It provides shorthand syntax to express functions, APIs,
databases, and event source mappings.

Table 1: AWS CloudFormation deployment features

Capability Description

Provision CloudFormation will automatically create and
update infrastructure components that are
defined in a template.

Refer to AWS CloudFormation Best Practices
 for more details on creating infrastructure
using AWS CloudFormation templates.

Configure AWS CloudFormation templates offer
extensive flexibility to customize and update
all infrastructure components.

Refer to AWS CloudFormation Template
Anatomy for more details on customizing
templates.

Deploy Update your AWS CloudFormation templates
to alter the resources in a stack. Depending
on your application architecture, you might
need an additional deployment service to
update the application version running on
your infrastructure.

Refer to Deploying Applications on Amazon
EC2 with AWS CloudFormation for more
details on how AWS CloudFormation can be
used as a deployment solution.

Scale AWS CloudFormation will not automatic
ally handle infrastructure scaling on your

AWS CloudFormation 4

https://aws.amazon.com/serverless/sam/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/deploying.applications.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/deploying.applications.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

behalf; however, you can configure auto
scaling policies for your resources in a AWS
CloudFormation template.

Monitor AWS CloudFormation provides native
monitoring of the success or failure of updates
to infrastructure defined in a template, as well
as drift detection to monitor when resources
defined in a template do not meet specifica
tions. Additional monitoring solutions will
need to be in place for application-level
monitoring and metrics.

Refer to Monitoring the Progress of a
Stack Update for more details on how AWS
CloudFormation monitors infrastructure
updates.

The following diagram shows a common use case for AWS CloudFormation. Here, AWS
CloudFormation templates are created to define all infrastructure components necessary to
create a simple three-tier web application. In this example, we are using bootstrap scripts
defined in AWS CloudFormation to deploy the latest version of our application onto Amazon EC2
instances; however, it is also a common practice to combine additional deployment services with
AWS CloudFormation (using AWS CloudFormation only for its infrastructure management and
provisioning capabilities). Note that more than one AWS CloudFormation template is used to
create the infrastructure. In the diagram, AWS CloudFormation is used to create all infrastructure
components including IAM roles, VPCs, subjects, route tables, security groups, and Amazon S3
bucket policies. Separate AWS CloudFormation templates are used to build each domain of the
application architecture.

AWS CloudFormation 5

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-monitor-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-monitor-stack.html

Overview of Deployment Options on AWS AWS Whitepaper

AWS CloudFormation use case

AWS Elastic Beanstalk

AWS Elastic Beanstalk is an easy-to-use service for deploying and scaling web applications
and services developed with Java, .NET, .NET Core, PHP, Node.js, Python, Ruby, Go, or Docker
on familiar servers such as Apache, Nginx, Passenger, and IIS. Elastic Beanstalk is a complete
application management solution, and manages all infrastructure and platform tasks on your
behalf.

AWS Elastic Beanstalk 6

https://aws.amazon.com/elasticbeanstalk/

Overview of Deployment Options on AWS AWS Whitepaper

With Elastic Beanstalk, you can quickly deploy, manage, and scale applications without the
operational burden of managing infrastructure. Elastic Beanstalk reduces management complexity
for web applications, making it a good choice for organizations that are new to AWS or wish to
deploy a web application as quickly as possible.

When using Elastic Beanstalk as your deployment solution, simply upload your source code
and Elastic Beanstalk will provision and operate all necessary infrastructure, including servers,
databases, load balancers, networks, and auto scaling groups. Although these resources are created
on your behalf, you retain full control of these resources, allowing developers to customize as
needed. Elastic Beanstalk meets the criteria for ISO, PCI, SOC 1, SOC 2, and SOC 3 compliance
along with the criteria for HIPAA eligibility. This means applications running on Elastic Beanstalk
can process regulated financial data or protected health information (PHI).

Table 2: AWS Elastic Beanstalk Deployment Features

Capability Description

Provision Elastic Beanstalk will create all infrastructure
components necessary to operate a web
application or service that runs on one of its
supported platforms. If you need additiona
l infrastructure, this will have to be created
outside of Elastic Beanstalk.

Refer to Elastic Beanstalk Platforms for more
details on the web application platforms
supported by Elastic Beanstalk.

Configure Elastic Beanstalk provides a wide range of
options for customizing the resources in your
environment.

Refer to Configuring Elastic Beanstalk
 environments for more information about
customizing the resources that are created by
Elastic Beanstalk.

Deploy Elastic Beanstalk automatically handles
application deployments, and creates an

AWS Elastic Beanstalk 7

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts-all-platforms.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

environment that runs a new version of your
application without impacting existing users.

Refer to Deploying Applications to AWS Elastic
Beanstalk for more details on application
deployments with Elastic Beanstalk.

Scale Elastic Beanstalk uses Elastic Load Balancing
and Auto Scaling to automatically scale your
application in and out based on its specific
needs. Multiple availability zones give you an
option to improve application reliability and
availability.

Refer to Auto Scaling Group for your Elastic
Beanstalk Environment for more details about
auto scaling with Elastic Beanstalk.

Monitor Elastic Beanstalk offers built-in environme
nt monitoring for applications including
deployment success/failures, environment
health, resource performance, and application
logs.

Refer to Monitoring an Environment for more
details on full-stack monitoring with Elastic
Beanstalk.

Graviton support AWS Graviton arm64-based processors deliver
the best price performance for your cloud
workloads running in Amazon EC2. With AWS
Graviton on Elastic Beanstalk, you can select
Amazon EC2 instance types to meet optimizat
ion needs of your workloads and benefit from
improved price performance over a comparabl
e x86-based processor.

AWS Elastic Beanstalk 8

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html

Overview of Deployment Options on AWS AWS Whitepaper

Elastic Beanstalk makes it easy for web applications to be quickly deployed and managed in AWS.
The following example shows a general use case for Elastic Beanstalk as it is used to deploy a
simple web application. All application infrastructure (including security groups, IAM roles, and
CloudWatch alarms) is created and managed by Elastic Beanstalk. The Amazon EC2 instances are
automatically provisioned with runtime environment and deployment packages. Elastic Beanstalk
environments can integrate with resources like Amazon Relational Database Service (Amazon RDS)
that are created outside of Elastic Beanstalk.

AWS Elastic Beanstalk use case

AWS CodeDeploy

AWS CodeDeploy is a fully managed deployment service that automates application deployments
to compute services such as Amazon EC2, Amazon Elastic Container Service (Amazon ECS), AWS
Lambda, or on-premises servers. Organizations can use CodeDeploy to automate deployments
of an application and remove error prone manual operations from the deployment process.
CodeDeploy can be used with a wide variety of application content including code, serverless
functions, configuration files, and more.

CodeDeploy is intended to be used as a building block service that is focused on helping application
developers deploy and update software that is running on existing infrastructure. It is not an end-
to-end application management solution, and is intended to be used in conjunction with other

AWS CodeDeploy 9

https://aws.amazon.com/codedeploy/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/

Overview of Deployment Options on AWS AWS Whitepaper

AWS deployment services such as AWS CodeStar, AWS CodePipeline, other AWS Developer Tools,
and third-party services (see AWS CodeDeploy Product Integrations for a complete list of product
integrations) as part of a complete CI/CD pipeline. Additionally, CodeDeploy does not manage the
creation of resources on behalf of the user.

Table 3: AWS CodeDeploy deployment features

Capability Description

Provision CodeDeploy is intended for use with existing
compute resources and does not create
resources on your behalf. CodeDeploy requires
compute resources to be organized into a
construct called a deployment group in order
to deploy application content.

Refer to Working with Deployment Groups
in CodeDeploy for more details on linking
CodeDeploy to compute resources.

Configure CodeDeploy uses an application specification
file to define customizations for compute
resources.

Refer to CodeDeploy AppSpec File Reference
 for more details on the resource customiza
tions with CodeDeploy.

Deploy Depending on the type of compute resource
that CodeDeploy is used with, CodeDeploy
offers different strategies for deploying your
application.

Refer to Working with Deployments in
CodeDeploy for more details on the types of
deployment processes that are supported.

Scale CodeDeploy does not support scaling of your
underlying application infrastructure; however,

AWS CodeDeploy 10

https://aws.amazon.com/codestar/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/codedeploy/product-integrations/
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployments.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployments.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

depending on your deployment configura
tions, it might create additional resources to
support blue/green deployments.

Monitor CodeDeploy can monitor the success or failure
of deployments and offers a history of all
deployments, but does not provide performan
ce or application-level metrics.

Refer to Monitoring Deployments in
CodeDeploy for more details on the types of
monitoring capabilities offered by CodeDeploy

The following diagram illustrates a general use case for CodeDeploy as part of a complete CI/
CD solution. In this example, CodeDeploy is used in conjunction with additional AWS Developer
Tools, namely AWS CodePipeline (automate CI/CD pipelines), AWS CodeBuild (build and test
application components), and AWS CodeCommit (source code repository) to deploy an application
onto a group of Amazon EC2 instances. CodeDeploy is used with other tools as part of a complete
CI/CD pipeline. CodeDeploy manages deployment of application components onto compute
resources that are part of a deployment group. All infrastrtcure components are created outside of
CodeDeploy.

AWS CodeDeploy use case

AWS CodeDeploy 11

https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-configurations.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring.html
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codecommit/

Overview of Deployment Options on AWS AWS Whitepaper

AWS CodeDeploy for AWS Lambda

AWS CodeDeploy for AWS Lambda enables you to automate your serverless deployments, giving
you greater control and visibility over your application releases. You can use CodeDeploy to
deploy a new version of your serverless function to a small percentage of users or traffic and
gradually increase traffic as you gain confidence in the new version. With CodeDeploy, you can
define deployment groups, which represent a set of Lambda functions that receive traffic from
the same event source. For example, you can create a deployment group for a set of Lambda
functions that are initiated by API Gateway or an Amazon EventBridge rule. You can then create
a deployment using CodeDeploy, which deploys the new version of your erverless function to a
specified deployment group.

CodeDeploy also enables you to define a deployment configuration, which specifies the settings
for a deployment, such as the deployment type, deployment strategy, and traffic shifting rules. You
can use the Canary deployment strategy to deploy the new version of your serverless function to
a small percentage of traffic and monitor the health and performance of the new version before
increasing traffic to it.

By using CodeDeploy for serverless, you can automate your deployment process, reduce the time
and effort required to release new versions of your application, and increase the stability and
reliability of your serverless functions.

Amazon Elastic Container Service

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration
service that supports Docker containers and allows you to easily run applications on a managed
cluster. Amazon ECS eliminates the need to install, operate, and scale container management
infrastructure, and simplifies the creation of environments with familiar AWS core features like
Security Groups, Elastic Load Balancing, and AWS Identity and Access Management (IAM).

When running applications on Amazon ECS, you can choose to provide the underlying compute
power for your containers with Amazon EC2 instances or with AWS Fargate, a serverless compute
engine for containers. In either case, Amazon ECS automatically places and scales your containers
onto your cluster according to configurations defined by the user. Although Amazon ECS does not
create infrastructure components such as Load Balancers or IAM roles on your behalf, the Amazon
ECS service provides a number of APIs to simplify the creation and use of these resources in an
Amazon ECS cluster.

AWS CodeDeploy for AWS Lambda 12

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/iam/?nc=bc&pg=f-mr
https://aws.amazon.com/fargate/

Overview of Deployment Options on AWS AWS Whitepaper

Amazon ECS allows developers to have direct, fine-grained control over all infrastructure
components, allowing for the creation of custom application architectures. Additionally, Amazon
ECS supports different deployment strategies to update your application container images.

Table 4: Amazon ECS deployment features

Capability Description

Provision Amazon ECS will provision new application
container instances and compute resources
based on scaling policies and Amazon ECS
configurations. Infrastructure resources such
as Load Balancers will need to be created
outside of Amazon ECS.

Refer to Getting Started with Amazon ECS for
more details on the types of resources that
can be created with Amazon ECS.

Configure Amazon ECS supports customization of the
compute resources created to run a container
ized application, as well as the runtime
conditions of the application containers (for
example, environment variables, exposed
ports, reserved memory/CPU). Customiza
tion of underlying compute resources is only
available if using Amazon EC2 instances.

Refer to Creating a Cluster for more details on
how to customize an Amazon ECS cluster to
run containerized applications.

Deploy Amazon ECS supports several deployment
strategies for you containerized applications.

Refer to Amazon ECS Deployment Types for
more details on the types of deployment
processes that are supported.

Amazon Elastic Container Service 13

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_GetStarted.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-types.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

Scale Amazon ECS can be used with auto scaling
policies to automatically adjust the number
of containers running in your Amazon ECS
cluster.

Refer to Service Auto Scaling for more details
on configuring auto scaling for your container
ized applications on Amazon ECS.

Monitor Amazon ECS supports monitoring compute
resources and application containers with
CloudWatch.

Refer to Monitoring Amazon ECS for more
details on the types of monitoring capabilities
offered by Amazon ECS.

The following diagram illustrates Amazon ECS being used to manage a simple containerized
application. In this example, infrastructure components are created outside of Amazon ECS, and
Amazon ECS is used to manage the deployment and operation of application containers on the
cluster

Amazon Elastic Container Service 14

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_monitoring.html

Overview of Deployment Options on AWS AWS Whitepaper

Amazon ECS use case

Note

• Application infrastructure (including Amazon Elastic Container Registry (Amazon
ECR) repositories, Amazon ECS configurations, and Load Balancers) is provisioned and
managed outside of your Amazon ECS deployment.

• Amazon ECS manages the deployment of application containers running inside the
Amazon ECS service as tasks that are sourced from a container registry like Amazon ECR.

Amazon ECS supports multiple container instance types such as Linux and Windows, as well as
external instance types such as an on-premises virtual machine (VM) with Amazon ECS Anywhere.

Amazon Elastic Container Service 15

Overview of Deployment Options on AWS AWS Whitepaper

Amazon ECS Anywhere

Amazon ECS Anywhere allows you to run Amazon ECS tasks anywhere, whether it's on-premises
or in other cloud environments. With Amazon ECS Anywhere, you can easily deploy and manage
containerized applications across your hybrid infrastructure, while maintaining a consistent
operational experience. The service works by extending the Amazon ECS platform to any
environment, including on-premises data centers, remote offices, and other cloud environments.
It enables you to use the same familiar Amazon ECS APIs and tooling to deploy and manage
containers across all of your environments, without having to worry about the underlying
infrastructure.

Amazon ECS Anywhere uses the Amazon ECS agent to manage the deployment and lifecycle of
containers, enabling you to use the same Amazon ECS task definitions and configuration files
that you use in the AWS Cloud. This can help to simplify the process of deploying and managing
containers across your hybrid infrastructure, and reduce the time and effort r equired for manual
configuration and management.

With Amazon ECS Anywhere, you can also leverage other AWS services, such as IAM, AWS
CloudFormation, and Amazon ECR, to manage your containerized applications. This can help to
ensure that your applications are secure, compliant, and integrated with other AWS services.

Amazon ECS Anywhere architecture

Amazon ECS Anywhere 16

https://aws.amazon.com/ecs/anywhere/

Overview of Deployment Options on AWS AWS Whitepaper

Amazon Elastic Container Service on AWS Outposts

Amazon ECS on AWS Outposts is a fully managed AWS service that enables you to run Amazon
ECS tasks on-premises, using the same APIs and tooling that you use in the AWS Cloud. With
Amazon ECS on AWS Outposts, you can deploy and manage containerized applications in a
consistent and familiar way, whether you're running them on-premises or in the cloud. AWS
Outposts is a fully managed service that extends AWS infrastructure, services, APIs, and tools
to your on-premises environments. With Amazon ECS on AWS Outposts, you can run Amazon
ECS tasks on hardware that is dedicated to your organization, without having to worry about the
underlying infrastructure. This can help to ensure that your applications are deployed in a secure
and compliant manner, while also enabling you to take advantage of the flexibility and scalability
of the cloud.

Amazon ECS on AWS Outposts works by deploying a set of AWS services and APIs to your on-
premises environment, which enables you to run Amazon ECS tasks on dedicated hardware. This
includes the Amazon ECS agent, which manages the deployment and lifecycle of containers,
and the AWS Outposts infrastructure, which provides a secure and compliant environment for
running containerized applications. With Amazon ECS on AWS Outposts, you can use the same
Amazon ECS APIs and tooling that you use in the AWS Cloud, making it easy to deploy and manage
containerized applications in a consistent and familiar way. This can help to reduce the time and
effort required for manual configuration and management, and improve consistency and reliability
across your hybrid infrastructure. Amazon ECS on AWS Outposts also integrates with other AWS
services, such as IAM, AWS CloudFormation, and Amazon ECR, to manage your containerized
applications. This can help to ensure that your applications are secure, compliant, and integrated
with other AWS services.

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a fully-managed, certified Kubernetes
conformant service that simplifies the process of building, securing, operating, and maintaining
Kubernetes clusters on AWS. Amazon EKS integrates with core AWS services such as CloudWatch,
Auto Scaling Groups, and IAM to provide a seamless experience for monitoring, scaling, and load
balancing your containerized applications.

Amazon EKS provides a scalable, highly-available control plane for Kubernetes workloads.
When you run applications on Amazon EKS, as with Amazon ECS, you can choose to provide the
underlying compute power for your containers with Amazon EC2 instances or with AWS Fargate.

Amazon Elastic Container Service on AWS Outposts 17

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs-on-outposts.html
https://aws.amazon.com/eks/
https://kubernetes.io/

Overview of Deployment Options on AWS AWS Whitepaper

Amazon VPC Lattice is a fully managed application networking service built directly into the AWS
networking infrastructure that you can use to connect, secure, and monitor your services across
multiple accounts and virtual private clouds (VPCs). With Amazon EKS, you can leverage VPC
Lattice through the use of the AWS Gateway API Controller, an implementation of the Kubernetes
Gateway API. Using VPC Lattice, you can set up cross-cluster connectivity with standard Kubernetes
semantics in a simple and consistent manner.

You can use Amazon EKS with any of the following deployment options:

• Amazon EKS Distro – Amazon EKS Distro is a distribution of the same open-source Kubernetes
software and dependencies deployed by Amazon EKS in the cloud. Amazon EKS Distro follows
the same Kubernetes version release cycle as Amazon EKS and is provided as an open-source
project. To learn more, see Amazon EKS Distro.

• Amazon EKS on AWS Outposts – AWS Outposts enables native AWS services, infrastructure, and
operating models in your on-premises facilities. Amazon EKS on AWS Outposts, you can choose
to run extended or local clusters. With extended clusters, the Kubernetes control plane runs in
an AWS Region and the nodes run on AWS Outposts. With local clusters, the entire Kubernetes
cluster runs locally on AWS Outposts, including both the Kubernetes control plane and nodes.

• Amazon EKS Anywhere – Amazon EKS Anywhere is a deployment option for Amazon EKS that
enables you to easily create and operate Kubernetes clusters on-premises. Both Amazon EKS and
Amazon EKS Anywhere are built on the Amazon EKS Distro. To learn more about Amazon EKS
Anywhere, see Running Hybrid Container workloads with Amazon EKS Anywhere, Amazon EKS
Anywhere Overview, and Comparing Amazon EKS Anywhere to Amazon EKS.

When choosing which deployment options to use for your Kubernetes cluster, consider the
following:

Table 5: Kubernetes deployment features

Feature Amazon EKS Amazon EKS on
AWS Outposts

Amazon EKS
Anywhere

Amazon EKS
Distro

Hardware AWS-supplied AWS-supplied Supplied by you Supplied by you

Deployment
location

AWS Cloud Your data center Your data center Your data center

Amazon Elastic Kubernetes Service 18

https://aws.amazon.com/eks/eks-distro/
https://distro.eks.amazonaws.com/
https://aws.amazon.com/eks/eks-anywhere/
https://d1.awsstatic.com/kubernetes-pmm/eks-a/getting-started/AWS_Whitepaper_Running_Hybrid_Container_Workloads_with_Amazon_EKS_Anywhere.pdf
https://anywhere.eks.amazonaws.com/docs/overview/
https://anywhere.eks.amazonaws.com/docs/overview/
https://anywhere.eks.amazonaws.com/docs/concepts/eksafeatures/#comparing-amazon-eks-anywhere-to-amazon-eks

Overview of Deployment Options on AWS AWS Whitepaper

Feature Amazon EKS Amazon EKS on
AWS Outposts

Amazon EKS
Anywhere

Amazon EKS
Distro

Kubernetes
control plane
location

AWS Cloud AWS Cloud or
your data center

Your data center Your data center

Kubernetes data
plane location

AWS Cloud Your data center Your data center Your data center

Support AWS support AWS support AWS support OSS community
support

Table 6: Amazon EKS deployment features

Capability Description

Provision Amazon EKS provisions certain resources to
support containerized applications:

• Load Balancers, if needed

• Compute resources, or workers (Amazon EKS
supports Windows and Linux)

• Application Container Instances, or pods

Refer to Getting Started with Amazon EKS for
more details on Amazon EKS cluster provision
ing.

Configure Amazon EKS supports customization of
the compute resources (workers) if you use
Amazon EC2 instances to supply compute
power. Amazon EKS also supports customiza
tion of the runtime conditions of the applicati
on containers (pods).

Amazon Elastic Kubernetes Service 19

https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

Refer to Worker Nodes and Fargate Pod
Configuration documentation for more details.

Deploy Amazon EKS supports the same deploymen
t strategies as Kubernetes. See Writing a
Kubernetes Deployment Spec -> Strategy for
more details.

Scale Amazon EKS scales workers with Kubernetes
Cluster Autoscaler, and pods with Kubernete
s Horizontal Pod Autoscaler and Kubernete
s Vertical Pod Autoscaler. Amazon EKS
also supports Karpenter, an open source,
flexible, high-performance Kubernetes cluster
autoscaler to help improve your application
availability and cluster efficiency by rapidly
launching right-sized compute resources in
response to changing application load.

Monitor The Amazon EKS control plane logs provide
audit and diagnostic information directly to
CloudWatch Logs. The Amazon EKS control
plane also integrates with AWS CloudTrail to
record actions taken in Amazon EKS.

Refer to Logging and Monitoring Amazon EKS
for more details.

Amazon EKS allows organizations to leverage open source Kubernetes tools and plugins, and can
be a good choice for organizations migrating to AWS with existing Kubernetes environments.
The following diagram illustrates Amazon EKS being used to manage a general containerized
application.

Amazon Elastic Kubernetes Service 20

https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://karpenter.sh/
https://docs.aws.amazon.com/eks/latest/userguide/logging-monitoring.html

Overview of Deployment Options on AWS AWS Whitepaper

Amazon EKS use case

Amazon EKS Anywhere

Amazon EKS Anywhere lets you create and operate Kubernetes clusters on your own infrastructure.
Amazon EKS Anywhere builds on the strengths of Amazon EKS Distro and provides open-source
software that’s up to date and patched so you can have an on-premises Kubernetes environment
that’s more r eliable than a self-managed Kubernetes offering.

Amazon EKS Anywhere creates a Kubernetes cluster on-premises to a chosen provider. Supported
providers include Bare Metal (via Tinkerbell), CloudStack, and vSphere. To manage that cluster, you
can run cluster create and delete commands from an Ubuntu or Mac Administrative machine.

AWS App Runner

AWS App Runner is a fully managed container application service that lets you build, deploy, and
run containerized web applications and API services without prior infrastructure or container
experience. App Runner connects directly to your code or image repository. It provides an
automatic integration and delivery pipeline with fully managed operations, high performance,
scalability, and security.

App Runner takes your source code or source image from a repository and then creates and
maintains a running web service for you in the AWS Cloud. Typically, you need to call just one

Amazon EKS Anywhere 21

https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/apprunner/

Overview of Deployment Options on AWS AWS Whitepaper

App Runner action, CreateService, to create your service. With a source image repository, you
provide a ready-to-use container image that App Runner can deploy to run your web service.
With a source code repository, you provide your code and instructions for building and running
a web service and you target a specific runtime environment. App Runner supports several
programming platforms, each with one or more managed runtimes for platform major versions.
App Runner supports container images as well as runtimes and web frameworks including Node.js
and Python. App Runner monitors the number of concurrent requests sent to your application and
automatically adds additional instances based on request volume. If your application receives no
incoming requests, App Runner will scale the containers down to a provisioned instance, a CPU-
throttled instance ready to serve incoming requests within milliseconds.

At this time, App Runner can retrieve your source code from a GitHub repository, or retrieve your
source image from Amazon ECR in your AWS account.

The following diagram shows an overview of the App Runner service architecture. In the diagram,
there are two example services: one deploys source code from GitHub, and the other deploys a
source image from Amazon ECR.

AWS App Runner 22

Overview of Deployment Options on AWS AWS Whitepaper

App Runner use case

App Runner supports full stack development, including both frontend and backend web
applications that use HTTP and HTTPS protocols. These applications include API services, backend
web services, and websites. App Runner supports container images as well as runtimes and web
frameworks including Node.js and Python.

Amazon Lightsail

Amazon Lightsail is a simple and cost-effective cloud service that makes it easy for small
businesses, startups, and individuals to deploy and manage their applications in the cloud. It
provides a user-friendly interface that abstracts away much of the underlying infrastructure

Amazon Lightsail 23

https://aws.amazon.com/lightsail/

Overview of Deployment Options on AWS AWS Whitepaper

management and makes it easy to launch and run applications in the cloud. With Lightsail, you
can quickly deploy and manage virtual private servers (VPS), databases, and storage instances.
The service provides pre-configured instances that are optimized for various workloads, such
as WordPress, Drupal, and Joomla, among others. This can help to reduce the time and effort
required to set up and configure your environment. Lightsail also provides an integrated load
balancer and automatic scaling, enabling you to handle changes in traffic demand without manual
intervention. The service also provides monitoring and alerting, so you can stay on top of the
health and performance of your applications.

One of the key benefits of Lightsail is its simplicity and ease of use. The service is designed to be
accessible to users with minimal cloud computing experience, making it a good option for small
businesses or individuals who want to get started quickly in the cloud. Additionally, Lightsail is
cost-effective, with predictable pricing that includes compute, storage, and data transfer.

Amazon Lightsail Containers

Amazon Lightsail Containers is a fully managed container service AWS that makes it easy to deploy
and manage containerized applications in the cloud. It provides a simple and cost-effective way
to launch and run containers using popular container management tools, such as Docker and
Kubernetes.

Lightsail Containers provides an integrated environment for building, testing, and deploying
containerized applications. It simplifies the process of deploying and managing containers by
providing a user-friendly interface that abstracts away much of the underlying infrastructure
management.

With Lightsail Containers, you can deploy your containerized applications to a VPC in just a few
clicks. The service provides pre-configured container images for popular programming languages,
such as Node.js, Python, Ruby, and Java. This can help to reduce the time and effort required to set
up and configure your container environment.

Lightsail Containers also provides an integrated load balancer that can automatically distribute
traffic across your container instances, improving application availability and scalability.
Additionally, the service provides automatic scaling of container instances, enabling you to handle
changes in traffic demand without manual intervention.

With Lightsail Containers, you can monitor the performance of your containerized applications
using built-in metrics and logs. You can also integrate with other AWS services, such as Amazon S3,

Amazon Lightsail Containers 24

Overview of Deployment Options on AWS AWS Whitepaper

Amazon RDS, and AWS CodePipeline, to create a fully automated and integrated CI/CD pipeline for
your containerized applications.

Red Hat OpenShift Service on AWS

Red Hat OpenShift Service on AWS (ROSA) is a managed service that’s available through the AWS
Management Console. With ROSA, as a Red Hat OpenShift user, you can build, scale, and manage
containerized applications on AWS. You can use ROSA to create Kubernetes clusters using the Red
Hat OpenShift APIs and tools, and have access to the full breadth and depth of AWS services. ROSA
streamlines moving on-premises Red Hat OpenShift workloads to AWS, and offers tight integration
with other AWS services. You can also access Red Hat OpenShift licensing, billing, and support all
directly through AWS.

Each ROSA cluster comes with a fully managed control plane and compute nodes. Installation,
management, maintenance, and upgrades are performed by Red Hat SRE with joint Red Hat and
Amazon support. Cluster services (such as logging, metrics, and monitoring) are available as well.
Only Red Hat Enterprise Linux CoreOS (RHCOS) workers are supported by ROSA.

ROSA will integrate with a range of AWS compute, storage, database, analytics, machine learning,
networking, mobile, and various application services, which will enable customers to benefit
from the robust portfolio of AWS services that scale on-demand across the globe. These AWS
native services will be directly accessible to quickly deploy and scale services through the same
management interface.

AWS Local Zones

An AWS Local Zone is an extension of an AWS Region in close geographic proximity to your users.
Local Zones have their own connections to the internet and support AWS Direct Connect. Resources
that are created in a Local Zone can serve local users with low-latency communications. A Local
Zone is represented by a Region code followed by an identifier that indicates the location (for
example, us-west-2-lax-1a).

Amazon ECS supports workloads that use Local Zones when low latency or local data processing is
a requirement. The Amazon ECS control plane will always run in the AWS Region.

Amazon EKS supports certain resources in Local Zones. This includes self-managed Amazon
EC2 nodes, Amazon EBS volumes, and Application Load Balancers. The Amazon EKS managed

Red Hat OpenShift Service on AWS 25

https://aws.amazon.com/rosa/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html

Overview of Deployment Options on AWS AWS Whitepaper

Kubernetes control plane always runs in the AWS Region. The Amazon EKS managed Kubernetes
control plane can't run in the Local Zone. Because Local Zones appear as a subnet within your VPC,
Kubernetes sees your Local Zone resources as part of that subnet.

AWS Wavelength

AWS Wavelength is an AWS infrastructure that allows you to deploy workloads closer to 5G-
connected users and devices. You can use Wavelength to deploy Amazon EC2 instances, Amazon
EKS clusters, and a suite of supported partner solutions available on the AWS Marketplace.
Wavelength Zones are logically isolated data centers within telecommunication providers’
networks that are connected back to the AWS Region through redundant, low latency, and high-
throughput connectivity.

Some of the key features of Wavelength include the ability to create Amazon EC2 instances,
Amazon EBS volumes, and Amazon VPC subnets and carrier gateways in Wavelength Zones.
You can also use services that orchestrate or work with Amazon EC2, Amazon EBS, and Amazon
VPC such as Amazon EC2 Auto Scaling, Amazon EKS clusters, Amazon ECS clusters, Amazon EC2
Systems Manager, Amazon CloudWatch, AWS CloudTrail, AWS CloudFormation, and Application
Load Balancer. Wavelength services are part of a VPC connected over a reliable, high-bandwidth
connection to an AWS Region for easy access to services including Amazon DynamoDB and Amazon
Relational Database Service (Amazon RDS).

Additional Deployment Services

Amazon Simple Storage Service (Amazon S3) can be used as a web server for static content and
single-page applications (SPA). Combined with Amazon CloudFront to increase performance in
static content delivery, using Amazon S3 can be a simple and powerful way to deploy and update
static content. More details on this approach can be found in Hosting Static Websites on AWS
whitepaper.

AWS Proton

AWS Proton is a fully managed service that simplifies and automates the process of deploying and
managing microservices and container-based applications. It provides a unified and consistent
deployment experience that integrates with popular DevOps tools and services, making it easier
to manage and streamline application development. Proton enables developers to define and

AWS Wavelength 26

https://aws.amazon.com/wavelength/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/whitepapers/latest/build-static-websites-aws/build-static-websites-aws.html
https://aws.amazon.com/proton/

Overview of Deployment Options on AWS AWS Whitepaper

create application components, such as infrastructure, code, and pipelines, as reusable templates.
These templates can be used to create multiple environments, such as development, testing, and
production, and can be shared across teams or organizations. This approach helps to reduce the
complexity of deploying and managing microservices and container-based applications, which can
be time-consuming and error-prone.

AWS Proton provides pre-built templates for common types of microservices, such as web
applications, APIs, and databases, that can be customized to meet specific needs. It also integrates
with popular DevOps tools such as AWS CodePipeline, AWS CodeCommit, and AWS CodeBuild, to
enable continuous integration and deployment (CI/CD) workflows.

By using AWS Proton, developers can reduce the time and effort required to deploy and manage
microservices and container-based applications. This approach enables teams to focus on
developing and improving their applications, rather than spending time on the deployment and
management process.

AWS App2Container

AWS App2Container is a command line tool for migrating and modernizing Java and .NET web
applications into container format. App2Container analyzes and builds an inventory of applications
running in bare metal, virtual machines, Amazon EC2 instances, or in the cloud. You simply select
the application you want to containerize, and App2Container packages the application artifact and
identified dependencies into container images, configures the network ports, and generates the
ECS task and Kubernetes pod definitions. App2Container identifies the supported ASP.NET and
Java applications running in a virtual machine to build a comprehensive inventory all applications
in your environment. App2Container can containerize ASP.NET web applications running in IIS on
Windows or Java Applications running on Linux, standalone or on application servers such as JBoss,
Apache Tomcat, Springboot, IBM Websphere, and Oracle Weblogic.

AWS Copilot

AWS Copilot is a command line interface (CLI) that you can use to quickly launch and manage
containerized applications on AWS. It simplifies running applications on Amazon ECS, Fargate, and
App Runner. AWS Copilot currently supports Linux, macOS, and Windows systems. Copilot enables
you to use service patterns like a load balanced web service to provision infrastructure, deploy
to multiple environments like testing or production, and even use an AWS CodePipeline release
pipeline for automated deployments.

AWS App2Container 27

https://aws.amazon.com/app2container
https://aws.amazon.com/containers/copilot/

Overview of Deployment Options on AWS AWS Whitepaper

AWS Serverless Application Model

The AWS Serverless Application Model (AWS SAM) is an open source framework for building
serverless applications. It provides shorthand syntax to express functions, APIs, databases, and
event source mappings. With just a few lines per resource, you can define the application you want
and model it using YAML. During deployment, SAM transforms and expands the SAM syntax into
AWS CloudFormation syntax, enabling you to build serverless applications faster.

The AWS SAM CLI is an open source command-line tool that makes it easy to develop, test, and
deploy serverless applications on AWS. It is a command-line interface for building serverless
applications using the AWS SAM specification, which is an extension of AWS CloudFormation.

The AWS SAM CLI enables developers to define and test their serverless applications locally before
deploying them to AWS. It provides a local testing environment that simulates AWS Lambda and
API Gateway, enabling developers to test their code and configurations before deploying them to
the cloud.

The AWS SAM CLI also includes a variety of helpful features, such as automatic code deployment,
logging, and debugging capabilities. It enables developers to build, package, and deploy their
applications with a single command, reducing the time and effort required to deploy and manage
serverless applications.

Additionally, the AWS SAM CLI provides support for various programming languages, including
Node.js, Python, Java, and .NET Core, among others. This allows developers to use their preferred
programming language and tools to build and deploy their serverless applications.

AWS SAM CLI integrates with other AWS services, such as AWS CodePipeline and AWS CodeBuild,
to provide a fully automated and integrated CI/CD pipeline for serverless applications. It also
enables developers to use other AWS services, such as Amazon S3, Amazon DynamoDB, and
Amazon SNS, as part of their serverless applications.

AWS Cloud Development Kit (AWS CDK)

The AWS Cloud Development Kit (AWS CDK) (AWS CDK) is an open source software development
framework for defining cloud infrastructure as code with modern programming languages and
deploying it through AWS CloudFormation. AWS Cloud Development Kit (AWS CDK) accelerates
cloud development using common programming languages to model your applications. The AWS
CDK lets you build reliable, scalable, cost-effective applications in the cloud with the considerable
expressive power of a programming language.

AWS Serverless Application Model 28

https://aws.amazon.com/serverless/sam/
https://aws.amazon.com/cdk/

Overview of Deployment Options on AWS AWS Whitepaper

Think of the AWS CDK as a developer-centric toolkit leveraging the full power of modern
programming languages to define your AWS infrastructure as code. When AWS CDK applications
are run, they compile down to fully formed CloudFormation JSON/YAML templates that are
then submitted to the CloudFormation service for provisioning. Because the AWS CDK leverages
CloudFormation, you still enjoy all the benefits CloudFormation provides such as safe deployment,
automatic rollback, and drift detection.

This approach yields many benefits, including:

• Build with high-level constructs that automatically provide sensible, secure defaults for your
AWS resources, defining more infrastructure with less code.

• Use programming idioms like parameters, conditionals, loops, composition, and inheritance to
model your system design from building blocks provided by AWS and others.

• Put your infrastructure, application code, and configuration all in one place, ensuring that at
every milestone you have a complete, cloud-deployable system.

• Employ software engineering practices such as code reviews, unit tests, and source control to
make your infrastructure more robust.

• AWS Solutions Constructs is an open-source library extension of AWS CDK. AWS Solutions
Constructs provides you with a collection of vetted, multi-service architecture patterns built
using the best practices established by the AWS Well-Architected Framework.

AWS Serverless Application Model and AWS CDK both abstract AWS infrastructure as code making
it easier for you to define your cloud infrastructure. AWS SAM is specifically focused on serverless
use cases and architectures and allows you to define your infrastructure in compact, declarative
JSON/YAML templates. AWS CDK offers broad coverage across all of AWS services and allows you
to define cloud infrastructure in modern programming languages

Amazon EC2 Image Builder

EC2 Image Builder simplifies the building, testing, and deployment of VM and container images for
use on AWS or on-premises. Keeping VM and container images up-to-date can be time consuming,
resource intensive, and error-prone. Currently, customers either manually update and snapshot
VMs or have teams that build automation scripts to maintain images. Image Builder significantly
reduces the effort of keeping images up-to-date and secure by providing a simple graphical
interface, built-in automation, and AWS-provided security settings. With Image Builder, there are
no manual steps for updating an image nor do you have to build your own automation pipeline.

Amazon EC2 Image Builder 29

https://aws.amazon.com/image-builder/

Overview of Deployment Options on AWS AWS Whitepaper

Image Builder is offered at no cost, other than the cost of the underlying AWS resources used to
create, store, and share the images.

EC2 Image Builder can help make deployments easier on AWS by simplifying the process of
creating and managing custom images for use with Amazon EC2, containers, and on-premises
servers. The service provides a simplified and flexible way to create and manage custom images,
with automated build pipelines that enable you to streamline the image creation and management
process.

EC2 Image Builder provides a user-friendly interface that abstracts away much of the underlying
infrastructure management, making it easier for developers to create and manage custom images.
With EC2 Image Builder, developers can specify the operating system, applications, and packages
they want to include in the image, and the service automates the process of building and testing
the image, including updates, patches, and security fixes. Automated build pipelines enable
developers to streamline the image creation and management process, reducing the time and
effort required for manual image creation and testing. This can help to improve consistency, reduce
errors, and ensure that images are up-to-date, secure, and compliant.

The following are some of the benefits of EC2 Image Builder:

• Simplified image creation: EC2 Image Builder provides a simplified and flexible way to create
custom images for use with Amazon EC2, containers, and on-premises servers. This can help to
reduce the time and effort required to create and maintain custom images, and enable you to
focus on other aspects of deployment, such as application development and testing.

• Automated image build pipelines: EC2 Image Builder provides automated pipelines for building,
testing, and deploying custom images, which can help to streamline the image creation and
management process. This can help to ensure that your images are up-to-date, secure, and
compliant, and reduce the time and effort required for manual image creation and testing.

• Integration with AWS services: EC2 Image Builder integrates with other AWS services, such
as Amazon Elastic Container Registry (ECR) and Amazon Elastic Kubernetes Service (EKS), to
enable you to build custom images for use with containers. This can help to streamline the
container build and deployment process, enabling you to build custom images that include your
applications, libraries, and configurations.

• Flexible image creation: EC2 Image Builder provides a flexible way to create custom images,
enabling you to specify the operating system, applications, and packages you want to include
in the image. This can help to ensure that your images are tailored to your specific use case and
requirements, and reduce the risk of errors or incompatibilities during deployment.

Amazon EC2 Image Builder 30

Overview of Deployment Options on AWS AWS Whitepaper

• Improved image security and compliance: EC2 Image Builder enables you to automate image
testing, including vulnerability and compliance scans, to ensure that your images are secure and
compliant. This can help to reduce the risk of security breaches and improve compliance, and
enable you to deploy your applications with confidence.

Amazon EC2 Image Builder 31

Overview of Deployment Options on AWS AWS Whitepaper

Deployment strategies

In addition to selecting the right tools to update your application code and supporting
infrastructure, implementing the right deployment processes is a critical part of a complete, well-
functioning deployment solution. The deployment processes that you choose to update your
application can depend on your desired balance of control, speed, cost, risk tolerance, and other
factors.

Each AWS deployment service supports a number of deployment strategies. This section will
provide an overview of general-purpose deployment strategies that can be used with your
deployment solution.

Prebaking vs. bootstrapping AMIs

If your application relies heavily on customizing or deploying applications onto Amazon EC2
instances, then you can optimize your deployments through bootstrapping and prebaking practices.

Installing your application, dependencies, or customizations whenever an Amazon EC2 instance is
launched is called bootstrapping an instance. If you have a complex application or large downloads
required, this can slow down deployments and scaling events.

An Amazon Machine Image (AMI) provides the information required to launch an instance
(operating systems, storage volumes, permissions, software packages, etc.). You can launch
multiple, identical instances from a single AMI. Whenever an EC2 instance is launched, you select
the AMI that is to be used as a template. Prebaking is the process of embedding a significant
portion of your application artifacts within an AMI.

Prebaking application components into an AMI can speed up the time to launch and operationalize
an Amazon EC2 instance. Prebaking and bootstrapping practices can be combined during
the deployment process to quickly create new instances that are customized to the current
environment.

Blue/green deployments

A blue/green deployment is a deployment strategy in which you create two separate, but
identical environments. One environment (blue) is running the current application version and
one environment (green) is running the new application version. Using a blue/green deployment
strategy increases application availability and reduces deployment risk by simplifying the rollback

Prebaking vs. bootstrapping AMIs 32

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Overview of Deployment Options on AWS AWS Whitepaper

process if a deployment fails. Once testing has been completed on the green environment, live
application traffic is directed to the green environment and the blue environment is deprecated.

A number of AWS deployment services support blue/green deployment strategies including
Elastic Beanstalk, OpsWorks, CloudFormation, CodeDeploy, and Amazon ECS. Refer to Blue/Green
Deployments on AWS for more details and strategies for implementing blue/green deployment
processes for your application.

Rolling deployments

A rolling deployment is a deployment strategy that slowly replaces previous versions of an
application with new versions of an application by completely replacing the infrastructure on which
the application is running. For example, in a rolling deployment in Amazon ECS, containers running
previous versions of the application will be replaced one-by-one with containers running new
versions of the application.

A rolling deployment is generally faster than a blue/green deployment; however, unlike a blue/
green deployment, in a rolling deployment there is no environment isolation between the old
and new application versions. This allows rolling deployments to complete more quickly, but also
increases risks and complicates the process of rollback if a deployment fails.

Rolling deployment strategies can be used with most deployment solutions. Refer to
CloudFormation Update Policies for more information on rolling deployments with
CloudFormation; Rolling Updates with Amazon ECS for more details on rolling deployments with
Amazon ECS; Elastic Beanstalk Rolling Environment Configuration Updates for more details on
rolling deployments with Elastic Beanstalk; and Using a Rolling Deployment in AWS OpsWorks for
more details on rolling deployments with OpsWorks.

Canary deployments

Canary deployments are a type of blue/green deployment strategy that is more risk-averse. This
strategy involves a phased approach in which traffic is shifted to a new version of the application in
two increments. The first increment is a small percentage of the traffic, which is referred to as the
canary group. This group is used to test the new version, and if it is successful, the traffic is shifted
to the new version in the second increment.

Canary deployments can be implemented in two steps or linearly. In the two-step approach, the
new application code is deployed and exposed for trial. Upon acceptance, it is rolled out either

Rolling deployments 33

https://docs.aws.amazon.com/whitepapers/latest/blue-green-deployments/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/blue-green-deployments/welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-updatepolicy.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-type-ecs.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rollingupdates.html
https://docs.aws.amazon.com/opsworks/latest/userguide/best-deploy.html#best-deploy-rolling
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/canary-deployments.html

Overview of Deployment Options on AWS AWS Whitepaper

to the rest of the environment or in a linear fashion. The linear approach involves incrementally
increasing traffic to the new version of the application until all traffic flows to the new release.

In-place deployments

An in-place deployment is a deployment strategy that updates the application version without
replacing any infrastructure components. In an in-place deployment, the previous version of the
application on each compute resource is stopped, the latest application is installed, and the new
version of the application is started and validated. This allows application deployments to proceed
with minimal disturbance to underlying infrastructure.

An in-place deployment allows you to deploy your application without creating new infrastructure;
however, the availability of your application can be affected during these deployments. This
approach also minimizes infrastructure costs and management overhead associated with creating
new resources.

Refer to Overview of an in-place deployment for more details on using in-place deployment
strategies with CodeDeploy.

Combining Deployment Services

There is not a “one size fits all” deployment solution on AWS. In the context of designing a
deployment solution, it is important to consider the type of application as this can dictate which
AWS services are most appropriate. To deliver complete functionality to provision, configure,
deploy, scale, and monitor your application, it is often necessary to combine multiple deployment
services

A common pattern for applications on AWS is to use CloudFormation (and its extensions) to
manage general-purpose infrastructure, and use a more specialized deployment solution for
managing application updates. In the case of a containerized application, CloudFormation could be
used to create the application infrastructure, and Amazon ECS and Amazon EKS could be used to
provision, deploy, and monitor containers.

AWS deployment services can also be combined with third-party deployment services. This allows
organizations to easily integrate AWS deployment services into their existing CI/CD pipelines
or infrastructure management solutions. For example, OpsWorks can be used to synchronize
configurations between on-premises and AWS nodes, and CodeDeploy can be used with a number
of third-party CI/CD services as part of a complete pipeline.

In-place deployments 34

https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/in-place-deployments.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html#welcome-deployment-overview-in-place

Overview of Deployment Options on AWS AWS Whitepaper

Conclusion

AWS provides number of tools to simplify and automate the provisioning of infrastructure and
deployment of applications; each deployment service offers different capabilities for managing
applications. To build a successful deployment architecture, evaluate the available features of each
service against the needs your application and your organization.

35

Overview of Deployment Options on AWS AWS Whitepaper

Contributors

Contributors to this document include:

• Manikandan Chandrasekaran, Principal Technologist

• Anil Nadiminti, Senior Solutions Architect

• Bryant Bost, AWS ProServe Consultant

36

Overview of Deployment Options on AWS AWS Whitepaper

Further Reading

For additional information, see:

• AWS Whitepapers page

• Introduction to DevOps on AWS - Deployment Strategies

37

https://aws.amazon.com/whitepapers/
https://docs.aws.amazon.com/whitepapers/latest/introduction-devops-aws/deployment-strategies.html

Overview of Deployment Options on AWS AWS Whitepaper

Document Revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Updated throughout for
latest deployment services
and strategies

May 31, 2024

Minor update Blue/Green Deployments
section revised for clarity.

April 8, 2021

Whitepaper updated Updated with latest services
and features.

June 3, 2020

Initial publication Whitepaper first published March 1, 2015

38

Overview of Deployment Options on AWS AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2024 Amazon Web Services, Inc. or its affiliates. All rights reserved.

39

	Overview of Deployment Options on AWS
	Table of Contents
	Overview of Deployment Options on AWS
	Abstract

	Introduction
	AWS Deployment Services
	AWS CloudFormation
	AWS Elastic Beanstalk
	AWS CodeDeploy
	AWS CodeDeploy for AWS Lambda

	Amazon Elastic Container Service
	Amazon ECS Anywhere
	Amazon Elastic Container Service on AWS Outposts

	Amazon Elastic Kubernetes Service
	Amazon EKS Anywhere

	AWS App Runner
	Amazon Lightsail
	Amazon Lightsail Containers

	Red Hat OpenShift Service on AWS
	AWS Local Zones
	AWS Wavelength
	Additional Deployment Services
	
	AWS Proton
	AWS App2Container
	AWS Copilot
	AWS Serverless Application Model
	AWS Cloud Development Kit (AWS CDK)
	Amazon EC2 Image Builder

	Deployment strategies
	Prebaking vs. bootstrapping AMIs
	Blue/green deployments
	Rolling deployments
	Canary deployments
	In-place deployments
	Combining Deployment Services

	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Notices

