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Practicing Continuous Integration and Continuous 
Delivery on AWS

Publication date: July 24, 2023 (Document revisions)

This paper explains the features and benefits of using continuous integration and continuous 
delivery (CI/CD) along with Amazon Web Services (AWS) tooling in your software development 
environment. Continuous integration and continuous delivery are best practices and a vital part of 
a DevOps initiative.
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The challenge of software delivery

Enterprises today face the challenges of rapidly changing competitive landscapes, evolving security 
requirements, and performance scalability. Enterprises must bridge the gap between operations 
stability and rapid feature development. Continuous integration and continuous delivery (CI/CD) 
are practices that enable rapid software changes while maintaining system stability and security.

Amazon realized early on that the business needs of delivering features for Amazon.com retail 
customers, Amazon subsidiaries, and Amazon Web Services (AWS) would require new and 
innovative ways of delivering software. At the scale of a company like Amazon, thousands of 
independent software teams must be able to work in parallel to deliver software quickly, securely, 
reliably, and with zero tolerance for outages.

By learning how to deliver software at high velocity, Amazon and other forward-thinking 
organizations pioneered DevOps . DevOps is a combination of cultural philosophies, practices, 
and tools that increases an organization’s ability to deliver applications and services at high 
velocity. Using DevOps principles, organizations can evolve and improve products at a faster pace 
than organizations that use traditional software development and infrastructure management 
processes. This speed enables organizations to better serve their customers and compete more 
effectively in the market.

Some of these principles, such as two-pizza teams, microservices, and service-oriented architecture 
(SOA), are out of the scope of this whitepaper. This whitepaper discusses the CI/CD capability that 
Amazon has built and continuously improved. CI/CD is key to delivering software features rapidly 
and reliably.

AWS now offers these CI/CD capabilities as a set of developer services such as Amazon 
CodeCatalyst and AWS CodePipeline. Developers and IT operations professionals practicing 
DevOps can use these services to rapidly, safely, and securely deliver software. Together, they 
help you securely store and apply version control to your application's source code. Amazon 
CodeCatalyst is a fully managed, unified software development service that makes it faster to build 
and deliver software on AWS. For an existing environment, AWS CodePipeline has the flexibility 
to integrate each service independently with your existing tools. These are highly available, easily 
integrated services that can be accessed through the AWS Management Console, AWS application 
programming interfaces (APIs), and AWS software development toolkits (SDKs) like any other AWS 
service
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What is continuous integration and continuous delivery/
deployment?

This section discusses the practices of continuous integration and continuous delivery and explains 
the difference between continuous delivery and continuous deployment.

Continuous integration

Continuous integration (CI) is a software development practice where developers regularly merge 
their code changes into a central repository, after which automated builds and tests are run. CI 
most often refers to the build or integration stage of the software release process and requires 
both an automation component (for example a CI or build service) and a cultural component 
(for example learning to integrate frequently). The key goals of CI are to find and address bugs 
more quickly, improve software quality, and reduce the time it takes to validate and release new 
software updates.

Continuous integration focuses on smaller commits and smaller code changes to integrate. A 
developer commits code at regular intervals, at minimum once a day. The developer pulls code 
from the code repository to ensure the code on the local host is merged before pushing to the 
build server. At this stage the build server runs the various tests and either accepts or rejects the 
code commit.

It takes time to automate builds as well as testing of projects into a full continuous integration 
process. A few common challenges in this process are caused by the increased frequency of 
commits, as this causes a higher maintenance burden on the single source code repository, 
and increases hardware requirements to accommodate the testing of every change. Additional 
challenges include the creation of testing environments that represent production without 
inclusion of sensitive data, providing visibility of the testing process to the team, and providing 
easy access to any version of the application.

Continuous delivery and deployment

Continuous delivery (CD) is a software development practice where code changes are automatically 
built, tested, and prepared for production release. It expands on continuous integration by 
deploying all code changes to a testing environment, a production environment, or both after 
the build stage has been completed. Continuous delivery can be fully automated with a workflow 
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process or partially automated with manual steps at critical points. When continuous delivery is 
properly implemented, developers always have a deployment-ready build artifact that has passed 
through a standardized test process.

With continuous deployment, revisions are deployed to a production environment automatically 
without explicit approval from a developer, making the entire software release process automated. 
This, in turn, allows for a continuous customer feedback loop early in the product lifecycle.

Continuous delivery is not continuous deployment

One misconception about continuous delivery is that it means every change committed is applied 
to production immediately after passing automated tests. However, the point of continuous 
delivery is not to apply every change to production immediately, but to ensure that every change is 
ready to go to production.

Before deploying a change to production, you can implement a decision process to ensure that the 
production deployment is authorized and audited. This decision can be made by a person and then 
run by the tooling.

Using continuous delivery, the decision to go live becomes a business decision, not a technical one. 
The technical validation happens on every commit.

Rolling out a change to production is not a disruptive event. Deployment doesn’t require the 
technical team to stop working on the next set of changes, and it doesn’t need a project plan, 
handover documentation, or a maintenance window. Deployment becomes a repeatable process 
that has been carried out and proven multiple times in testing environments.

Continuous delivery is not continuous deployment 4
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Benefits of continuous delivery

CD provides numerous benefits for your software development team including automating the 
process, improving developer productivity, improving code quality, and delivering updates to your 
customers faster.

Automate the software release process

CD provides a method for your team to check in code that is automatically built, tested, and 
prepared for release to production so that your software delivery is efficient, resilient, rapid, and 
secure.

Improve developer productivity

CD practices help your team’s productivity by freeing developers from manual tasks, untangling 
complex dependencies, and returning focus to delivering new features in software. Instead of 
integrating their code with other parts of the business and spending cycles on how to deploy this 
code to a platform, developers can focus on coding logic that delivers the features you need.

Improve code quality

CD can help you discover and address bugs early in the delivery process before they grow into 
larger problems later. Your team can easily perform additional types of code tests because the 
entire process has been automated. With the discipline of more testing more frequently, teams 
can iterate faster with immediate feedback on the impact of changes. This enables teams to 
drive quality code with a high assurance of stability and security. Developers will know through 
immediate feedback whether the new code works and whether any breaking changes or bugs were 
introduced. Mistakes caught early on in the development process are the easiest to fix.

Deliver updates faster

CD helps your team deliver updates to customers quickly and frequently. When CI/CD is 
implemented, the velocity of the entire team, including the release of features and bug fixes, is 
increased. Enterprises can respond faster to market changes, security challenges, customer needs, 
and cost pressures. For example, if a new security feature is required, your team can implement 
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CI/CD with automated testing to introduce the fix quickly and reliably to production systems with 
high confidence. What used to take weeks and months can now be done in days or even hours.

Deliver updates faster 6
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Implementing continuous integration and continuous 
delivery

This section discusses the ways in which you can begin to implement a CI/CD model in your 
organization. This whitepaper doesn’t discuss how an organization with a mature DevOps and 
cloud transformation model builds and uses a CI/CD pipeline. To help you on your DevOps journey, 
AWS has a number of certified DevOps Partners who can provide resources and tooling. For more 
information on preparing for a move to the AWS Cloud, refer to the Building a Cloud Operating 
Model.

A pathway to continuous integration/continuous delivery

CI/CD can be pictured as a workflow or pipeline (refer to the following figure), where new code is 
submitted on one end, tested over a series of stages (source, build, staging, and production), and 
then published as production-ready code. If your organization is new to CI/CD it can approach this 
pipeline in an iterative fashion. This means that you should start small, and iterate at each stage so 
that you can understand and develop your code in a way that will help your organization grow.

CI/CD pipeline

Each stage of the CI/CD pipeline is structured as a logical unit in the delivery process. In addition, 
each stage acts as a gate that vets a certain aspect of the code. As the code progresses through 
the pipeline, the assumption is that the quality of the code is higher in the later stages because 
more aspects of it continue to be verified. Problems uncovered in an early stage stop the code from 
progressing through the pipeline. Results from the tests are immediately sent to the team, and all 
further builds and releases are stopped if software does not pass the stage.

These stages are suggestions. You can adapt the stages based on your business need. Some 
stages can be repeated for multiple types of testing, security, and performance. Depending on the 
complexity of your project and the structure of your teams, some stages can be repeated several 
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times at different levels. For example, the end product of one team can become a dependency in 
the project of the next team. This means that the first team’s end product is subsequently staged 
as an artifact in the next team’s project.

The presence of a CI/CD pipeline will have a large impact on maturing the capabilities of your 
organization. The organization should start with small steps and not try to build a fully mature 
pipeline, with multiple environments, many testing phases, and automation in all stages at the 
start. Keep in mind that even organizations that have highly mature CI/CD environments still need 
to continuously improve their pipelines.

Building a CI/CD-enabled organization is a journey, and there are many destinations along the 
way. The next section discusses a possible pathway that your organization could take, starting with 
continuous integration through the levels of continuous delivery.

Continuous integration

Continuous integration—source and build

The first phase in the CI/CD journey is to develop maturity in continuous integration. You should 
make sure that all of the developers regularly commit their code to a central repository (such as 
one hosted in CodeCatalyst, CodeCommit or GitHub) and merge all changes to a release branch 
for the application. No developer should be holding code in isolation. If a feature branch is needed 
for a certain period of time, it should be kept up to date by merging from upstream as often as 
possible. Frequent commits and merges with complete units of work are recommended for the 
team to develop discipline and are encouraged by the process. A developer who merges code early 
and often, will likely have fewer integration issues down the road.

Continuous integration 8
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You should also encourage developers to create unit tests as early as possible for their applications 
and to run these tests before pushing the code to the central repository. Errors caught early in the 
software development process are the cheapest and easiest to fix.

When the code is pushed to a branch in a source code repository, a workflow engine monitoring 
that branch will send a command to a builder tool to build the code and run the unit tests in a 
controlled environment. The build process should be sized appropriately to handle all activities, 
including pushes and tests that might happen during the commit stage, for fast feedback. Other 
quality checks, such as unit test coverage, style check, and static analysis, can happen at this stage 
as well. Finally, the builder tool creates one or more binary builds and other artifacts, like images, 
stylesheets, and documents for the application.

Continuous delivery: creating a staging environment

Continuous delivery—staging

Continuous delivery (CD) is the next phase and entails deploying the application code in a staging 
environment, which is a replica of the production stack, and running more functional tests. The 
staging environment could be a static environment premade for testing, or you could provision and 
configure a dynamic environment with committed infrastructure and configuration code for testing 
and deploying the application code.

Continuous delivery: creating a staging environment 9
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Continuous delivery: creating a production environment

Continuous delivery—production

In the deployment/delivery pipeline sequence, after the staging environment, is the production 
environment, which is also built using infrastructure as code (IaC).

Continuous deployment

Continuous deployment

The final phase in the CI/CD deployment pipeline is continuous deployment, which may include 
full automation of the entire software release process including deployment to the production 
environment. In a fully mature CI/CD environment, the path to the production environment is fully 
automated, which allows code to be deployed with high confidence.

Continuous delivery: creating a production environment 10
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Maturity and beyond

As your organization matures, it will continue to develop the CI/CD model to include more of the 
following improvements:

• More staging environments for specific performance, compliance, security, and user interface (UI) 
tests

• Unit tests of infrastructure and configuration code along with the application code

• Integration with other systems and processes such as code review, issue tracking, and event 
notification

• Integration with database schema migration (if applicable)

• Additional steps for auditing and business approval

Even the most mature organizations that have complex multi-environment CI/CD pipelines 
continue to look for improvements. DevOps is a journey, not a destination. Feedback about the 
pipeline is continuously collected and improvements in speed, scale, security, and reliability are 
achieved as a collaboration between the different parts of the development teams. Having a single 
place to collaborate across the teams for example, using Amazon CodeCatalyst, allows the teams 
to have visibility to build and deliver software products with confidence.

Teams

AWS recommends organizing three developer teams for implementing a CI/CD environment: an 
application team, an infrastructure team, and a tools team (refer to the following figure). This 
organization represents a set of best practices that have been developed and applied in fast-
moving startups, large enterprise organizations, and in Amazon itself.

Maturity and beyond 11
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Application, infrastructure, and tools teams

Application team

The application team creates the application. Application developers own the backlog, stories, 
and unit tests, and they develop features based on a specified application target. This team’s 
organizational goal is to minimize the time these developers spend on non-core application tasks. 
Amazon CodeCatalyst allows the application team to maintain and manage issue tracking within 
the tool for collaboration.

In addition to having functional programming skills in the application language, the application 
team should have platform skills and an understanding of system configuration. This will enable 
them to focus solely on developing features and hardening the application.

Infrastructure team

The infrastructure team writes the code that both creates and configures the infrastructure needed 
to run the application. The infrastructure team is responsible for specifying what resources are 
needed, and it works closely with the application team.

The team should have skills in infrastructure provisioning methods, such as AWS CDK, AWS 
CloudFormation or HashiCorp Terraform. The team may also need to develop configuration 
automation skills with tools such as Ansible, and Puppet.

Application team 12
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Tools team

The tools team builds and manages the CI/CD pipeline. They are responsible for the infrastructure 
and tools that make up the pipeline. They create a tool that is used by the application and 
infrastructure teams in the organization. The organization needs to continuously mature its tools 
team, so that the tools team stays one step ahead of the maturing application and infrastructure 
teams.

The tools team must be skilled in building and integrating all parts of the CI/CD pipeline. This 
includes building source control repositories, workflow engines, build environments, testing 
frameworks, and artifact repositories. This team may choose to implement a tool such as Amazon 
CodeCatalyst, and AWS CodePipeline as well as Jenkins, GitHub, or other similar tools. Some 
organizations might call this a DevOps team, but AWS discourages this and instead encourages 
thinking of DevOps as the sum of the people, processes, and tools in software delivery.

Tools team 13
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Testing stages in continuous integration and continuous 
delivery

The three CI/CD teams should incorporate testing into the software development lifecycle at 
the different stages of the CI/CD pipeline. Overall, testing should start as early as possible. The 
following testing pyramid is a concept provided by Mike Cohn in Succeeding with Agile. It shows the 
various software tests in relation to their cost and speed at which they run.

CI/CD testing pyramid

Unit tests are on the bottom of the pyramid. They are both the fastest to run and the least 
expensive. Therefore, unit tests should make up the bulk of your testing strategy. A good rule of 
thumb is about 70 percent. Unit tests should have near-complete code coverage because bugs 
caught in this phase can be fixed quickly and cheaply.

Service, component, and integration tests are above unit tests on the pyramid. These tests require 
detailed environments and therefore, are more costly in infrastructure requirements and slower 
to run. Performance and compliance tests are the next level. They require production-quality 
environments and are more expensive yet. UI and user acceptance tests are at the top of the 
pyramid and require production-quality environments as well.

14
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All of these tests are part of a complete strategy to assure high-quality software. However, for 
speed of development, emphasis is on the number of tests and the coverage in the bottom half of 
the pyramid.

The following sections discuss the CI/CD stages.

Setting up the source

At the beginning of the project, it’s essential to set up a source where you can store your raw code 
and configuration and schema changes. In the source stage, choose a source code repository such 
as one hosted in GitHub, Amazon CodeCatalyst, or AWS CodeCommit.

Setting up and running builds

Build automation is essential to the CI process. When setting up build automation, the first task is 
to choose the right build tool. There are many build tools, such as:

• Ant, Maven, and Gradle for Java and Kotlin

• esbuild, Rollup, Webpack, and Vite for JavaScript and TypeScript

• Cargo for Rust

• Make for C/C++

• Go Build for Go

• Rake for Ruby

The build tool that will work best for you depends on the programming language of your project 
and the skill set of your team. After you choose the build tool, all the dependencies need to be 
clearly defined in the build scripts, along with the build steps. It’s also a best practice to version the 
final build artifacts, which makes it easier to deploy and to keep track of issues.

Building

In the build stage, the build tools will take any change to the source code repository as input, build 
the software, and run the following types of tests:

Unit Testing – Tests a specific section of code to ensure the code does what it is expected to do. 
The unit testing is performed by software developers during the development phase. At this stage, 

Setting up the source 15
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a static code analysis, data flow analysis, code coverage, and other software verification processes 
can be applied.

Static Code Analysis – This test is performed without actually running the application after the 
build and unit testing. This analysis can help to find coding errors and security holes, and it also can 
ensure conformance to coding guidelines.

Static Application Security Testing (SAST) – This test is used to analyze code against security 
violations such as XML External Entity Processing ,SQL Injection and Cross Site Scripting. As soon 
as violations are detected, the build will fail and any progress will be blocked in the pipeline. For 
further details, see Security in every stage of CI/CD pipeline.

Secrets Detection – This check is used to identify secrets such as usernames, passwords, and access 
keys in code. As soon as secrets are discovered, the build will fail immediately. For further details, 
see Security in every stage of CI/CD pipeline.

Software Composition Analysis (SCA) – SCA tools enable users to manage and analyze the 
open-source components in their applications. They also verify licensing and assess security 
vulnerabilities. SCA tools can launch workflows to fix these vulnerabilities. Any findings that exceed 
the configured threshold will immediately fail the build and stop any forward progress in the 
pipeline. These tools also require a software bill of materials (SBOM) existence. For further details, 
see Security in every stage of CI/CD pipeline.

Software Bill of Materials (SBOM) – SBOM is a reporting mechanism to detail all the components 
and dependencies involved in the development and delivery of an application. This will allow 
visibility of product components, assure file integrity, leverage licensing governance, and robust 
vulnerability scanning. For further details, see Security in every stage of CI/CD pipeline.

Staging

In the staging phase, full environments are created that mirror the eventual production 
environment. The following tests are performed:

Integration testing – Verifies the interfaces between components against software design. 
Integration testing is an iterative process and facilitates building robust interfaces and system 
integrity.

Component testing – Tests message passing between various components and their outcomes. A 
key goal of this testing could be idempotency in component testing. Tests can include extremely 
large data volumes, or edge situations and abnormal inputs.

Staging 16

https://owasp.org/www-community/vulnerabilities/XML_External_Entity_(XXE)_Processing
https://owasp.org/www-community/attacks/SQL_Injection
https://owasp.org/www-community/attacks/xss/


Practicing Continuous Integration and Continuous Delivery on AWS AWS Whitepaper

System testing – Tests the system end-to-end and verifies if the software satisfies the business 
requirement. This might include testing the user interface (UI), API, backend logic, and end state.

Performance testing – Determines the responsiveness and stability of a system as it performs 
under a particular workload. Performance testing also is used to investigate, measure, validate, 
or verify other quality attributes of the system, such as scalability, reliability, and resource usage. 
Types of performance tests might include load tests, stress tests, and spike tests. Performance tests 
are used for benchmarking against predefined criteria.

Compliance testing – Checks whether the code change complies with the requirements of a 
nonfunctional specification and/or regulations. It determines if you are implementing and meeting 
the defined standards.

User acceptance testing – Validates the end-to-end business flow. This testing is performed by an 
end user in a staging environment and confirms whether the system meets the requirements of the 
requirement specification. Typically, customers employ alpha and beta testing methodologies at 
this stage.

Dynamic Application Security Testing (DAST) - This type of testing is used to check for security 
problems in an application while it is running. DAST tools evaluate the application by attacking 
like a malicious user would from outside. For further details, see Security in every stage of CI/CD 
pipeline.

Production

Finally, after passing the previous tests, the staging phase is repeated in a production environment. 
In this phase, a final Canary test can be completed by deploying the new code only on a 
small subset of servers or even one server, or one AWS Region before deploying code to the 
entire production environment. Specifics on how to safely deploy to production are covered in
Deployment methods.

The next section discusses building the pipeline to incorporate these stages and tests

Production 17
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Building the pipeline

This section discusses building the pipeline. Start by establishing a pipeline with just the 
components needed for CI and then transition later to a continuous delivery pipeline with more 
components and stages. This section also discusses how you can consider using AWS Lambda 
functions and manual approvals for large projects, plan for multiple teams, branches, and AWS 
Regions.

Starting with a minimum viable pipeline for continuous 
integration

Your organization’s journey toward continuous delivery begins with a minimum viable pipeline 
(MVP). As discussed in Implementing continuous integration and continuous delivery, teams can 
start with a very simple process, such as implementing a pipeline that performs a code style check 
or a single unit test without deployment.

A key component is a continuous delivery orchestration tool. To help you build this pipeline, 
Amazon provides you with services such as Amazon CodeCatalyst.

Amazon CodeCatalyst workflows are continuous integration and continuous delivery (CI/CD) 
pipelines that enable you to easily build, test and deploy applications. CodeCatalyst Workflows 
help you reliably deliver high-quality application updates frequently, quickly and securely. 
CodeCatalyst uses a visual editor or YAML to quickly assemble and configure actions to compose 
workflows that automate your CI/CD pipeline, test reporting and other manual processes. You can 
get started with a new project from scratch or by using a blueprint from a library of blueprints for 
popular cloud architecture and application types. if you use a blueprint, a default workflow will 
be created from the main branch of your repository, that you can then customize. To create a new 
workflow, once you launch a new project in Amazon CodeCatalyst, navigate to CI/CD > Workflows 
and create a new workflow.

Starting with a minimum viable pipeline for continuous integration 18
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The following is an example of a workflow that includes actions to build, test and deploy backend 
and frontend code.

Starting with a minimum viable pipeline for continuous integration 19
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Amazon CodeCatalyst supports many purpose build actions developed by AWS as well as third 
parties such as GitHub Actions. To deploy an application or resource through CodeCatalyst, you 
can specify a deploy action inside the workflow. A deploy action is a workflow building block that 
defines what you want to deploy, where you want to deploy it, and how you want to deploy it 
(for example, using a blue/green scheme). Using deploy actions within a workflow, allows for 
traceability, automatic rollbacks, and monitoring of your deployment as it progresses through the 
various stages of your workflow and deployment.

AWS CodePipeline is a CI/CD service that can be used through the AWS Management Console 
for fast and reliable application and infrastructure updates. AWS CodePipeline builds, tests, and 
deploys your code every time there is a code change, based on the release process models you 
define. This enables you to rapidly and reliably deliver features and updates. You can easily build 
out an end-to-end solution by using our pre-built plugins for popular third-party services like 
GitHub or by integrating your own custom plugins into any stage of your release process. With AWS 
CodePipeline, you only pay for what you use. There are no upfront fees or long-term commitments.

The steps of AWS CodePipeline map directly to the source, build, staging, and production CI/CD 
stages. While continuous delivery is desirable, you could start out with a simple two-step pipeline 
that checks the source repository and performs a build action:
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AWS CodePipeline — source and build stages

For AWS CodePipeline, the source stage can accept inputs from GitHub, AWS CodeCommit, 
Atlassian Bitbucket, and Amazon Simple Storage Service (Amazon S3). Automating the build 
process is a critical first step for implementing continuous delivery and moving toward continuous 
deployment. Eliminating human involvement in producing build artifacts removes the burden from 
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your team, minimizes errors introduced by manual packaging, and allows you to start packaging 
consumable artifacts more often.

AWS CodePipeline works seamlessly with AWS CodeBuild, a fully managed build service, to make 
it easier to set up a build step within your pipeline that packages your code and runs unit tests. 
With AWS CodeBuild, you don’t need to provision, manage, or scale your own build servers. AWS 
CodeBuild scales continuously and processes multiple builds concurrently so your builds are not 
left waiting in a queue. AWS CodePipeline also integrates with build servers such as Jenkins, Solano 
CI, and TeamCity.

For example, in the following build stage, three actions (unit testing, code style checks, and code 
metrics collection) run in parallel. Using AWS CodeBuild, these steps can be added as new projects 
without any further effort in building or installing build servers to handle the load.

AWS CodePipeline — build functionality

The source and build stages shown in the figure AWS CodePipeline — source and build stages, along 
with supporting processes and automation, support your team’s transition toward a Continuous 
Integration. At this level of maturity, developers need to regularly pay attention to build and test 
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results. They need to grow and maintain a healthy unit test base as well. This, in turn, bolsters the 
entire team’s confidence in the CI/CD pipeline and furthers its adoption.
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AWS CodePipeline stages

Continuous delivery pipeline

After the continuous integration pipeline has been implemented and supporting processes have 
been established, your teams can start transitioning toward the continuous delivery pipeline. This 
transition requires teams to automate both building and deploying applications.

A continuous delivery pipeline is characterized by the presence of staging and production steps, 
where the production step is performed after a manual approval.

In the same manner as the continuous integration pipeline was built, your teams can gradually 
start building a continuous delivery pipeline by writing their deployment scripts.

Depending on the needs of an application, some of the deployment steps can be abstracted by 
existing AWS services. For example, AWS CodePipeline directly integrates with AWS CodeDeploy, 
a service that automates code deployments to Amazon EC2 instances and instances running on-
premises.

AWS has detailed documentation on how to implement and integrate AWS CodeDeploy with your 
infrastructure and pipeline. If you are using Amazon CodeCatalyst, reference the documentation
for deploying using workflows. You can add a deploy action (for example, Deploy to Amazon ECS) 
to your workflow that defines what you want to deploy, where you want to deploy it, and how you 
want to deploy it (for example, using a blue/green scheme).

After your team successfully automates the deployment of the application, deployment stages can 
be expanded with various tests. For example you can add other out-of-the-box integrations with 
services like Ghost Inspector, Runscope, and others as shown in the following figure.
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AWS CodePipeline—code tests in deployment stages

Adding Lambda actions

AWS CodePipeline support integration with AWS Lambda. This integration enables implementing 
a broad set of tasks, such as creating custom resources in your environment, integrating with third-
party systems (such as Slack), and performing checks on your newly deployed environment.

Lambda functions can be used in CI/CD pipelines to do many tasks based on your needs. Some 
examples include:

• Roll out changes to your environment by applying or updating an AWS CloudFormation 
template.

• Create resources on demand in one stage of a pipeline using AWS CloudFormation and delete 
them in another stage.

• Deploy to Amazon Elastic Container Service (ECS) Docker instances.

• Back up resources before building or deploying by creating an AMI snapshot.

• Add integration with third-party products to your pipeline, such as posting messages to an 
Internet Relay Chat (IRC) client.
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Manual approvals

Add an approval action to a stage in a pipeline at the point where you want the pipeline processing 
to stop so that someone with the required AWS Identity and Access Management (IAM) permissions 
can approve or reject the action.

If the action is approved, the pipeline processing resumes. If the action is rejected—or if no one 
approves or rejects the action within seven days of the pipeline reaching the action and stopping—
the result is the same as an action failing, and the pipeline processing does not continue.
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AWS CodeDeploy—manual approvals
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Deploying infrastructure code changes in a CI/CD pipeline

AWS CodePipeline lets you select AWS CloudFormation as a deployment action in any stage of your 
pipeline. You can then choose the specific action you would like AWS CloudFormation to perform, 
such as creating or deleting stacks and creating or executing change sets.

A stack is an AWS CloudFormation concept and represents a group of related AWS resources. 
While there are many ways of provisioning infrastructure as code (IaC), AWS CloudFormation is a 
comprehensive tool recommended by AWS as a scalable, complete solution that can describe the 
most comprehensive set of AWS resources as code. AWS recommends using AWS CloudFormation 
in an AWS CodePipeline project to track infrastructure changes and tests.

CI/CD for serverless applications

Amazon CodeCatalyst makes building CI/CD pipelines or workflows easy for serverless applications. 
You can use one of the serverless blueprints from the library of blueprints to kickstart a project 
within minutes. You can also use AWS CodePipeline, AWS CodeBuild, and AWS CloudFormation 
to build CI/CD pipelines for serverless applications. Serverless applications integrate managed 
services such as Amazon Cognito, Amazon S3, and Amazon DynamoDB with event-driven service, 
and AWS Lambda to deploy applications in a manner which doesn’t require managing servers. 
If you are a serverless application developer, you can use the combination of AWS CodePipeline, 
AWS CodeBuild, and AWS CloudFormation to automate the building, testing, and deployment of 
serverless applications that are expressed in templates built with the AWS Serverless Application 
Model. For more information, refer to the AWS Lambda documentation for Rolling deployments for 
Lambda functions.

You can also create secure CI/CD pipelines that follow your organization’s best practices with CDK 
Pipelines or AWS Serverless Application Model Pipelines (AWS SAM Pipelines). AWS SAM Pipelines 
are a new feature of AWS SAM CLI that give you access to benefits of CI/CD in minutes, such as 
accelerating deployment frequency, shortening lead time for changes, and reducing deployment 
errors. AWS SAM Pipelines come with a set of default pipeline templates for AWS CodeBuild/
CodePipeline that follow AWS deployment best practices. For more information and to view the 
tutorial, refer to the blog Introducing AWS SAM Pipelines.
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Pipelines for multiple teams, branches, and AWS Regions

For a large project, it’s not uncommon for multiple project teams to work on different components. 
If multiple teams use a single code repository, it can be mapped so that each team has its own 
branch. There should also be an integration or release branch for the final merge of the project. If a 
service-oriented or microservice architecture is used, each team could have its own code repository.

In the first scenario, if a single pipeline is used it’s possible that one team could affect the other 
teams’ progress by blocking the pipeline. AWS recommends that you create specific pipelines for 
team branches and another release pipeline for the final product delivery.

Pipeline integration with AWS CodeBuild

AWS CodeBuild is designed to enable your organization to build a highly available build process 
with almost unlimited scale. AWS CodeBuild provides quickstart environments for a number of 
popular languages plus the ability to run any Docker container that you specify.

With the advantages of tight integration with AWS CodeCommit, AWS CodePipeline, and AWS 
CodeDeploy, as well as Git and CodePipeline Lambda actions, the CodeBuild service is highly 
flexible.

Software can be built through the inclusion of a buildspec.yml file that identifies each of the build 
steps, including pre- and post- build actions, or specified actions through the CodeBuild tool.

You can view detailed history of each build using the CodeBuild dashboard. Events are stored as 
Amazon CloudWatch Logs log files.
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CloudWatch Logs log files in AWS CodeBuild

Pipeline integration with Jenkins

You can use the Jenkins build tool to create delivery pipelines. These pipelines use standard jobs 
that define steps for implementing continuous delivery stages. However, this approach might not 
be optimal for larger projects because the current state of the pipeline doesn’t persist between 
Jenkins restarts, implementing manual approval is not straightforward, and tracking the state of a 
complex pipeline can be complicated.

Instead, AWS recommends that you implement continuous delivery with Jenkins by using the
AWS Code Pipeline Plugin. This plugin allows complex workflows to be described using Groovy-
like domain-specific language and can be used to orchestrate complex pipelines. The AWS Code 
Pipeline plugin’s functionality can be enhanced by the use of satellite plugins such as the Pipeline 
Stage View Plugin, which visualizes the current progress of stages defined in a pipeline, or Pipeline 
Multibranch Plugin, which groups builds from different branches.
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AWS recommends that you store your pipeline configuration in Jenkinsfile and have it checked 
into a source code repository. This allows for tracking changes to pipeline code and becomes even 
more important when working with the Pipeline Multibranch Plugin. AWS also recommends that 
you divide your pipeline into stages. This logically groups the pipeline steps and also enables the 
Pipeline Stage View Plugin to visualize the current state of the pipeline.

The following figure shows a sample Jenkins pipeline, with four defined stages visualized by the 
Pipeline Stage View Plugin.

Defined stages of Jenkins pipeline visualized by the Pipeline Stage View Plugin
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Deployment methods

You can consider multiple deployment strategies and variations for rolling out new versions of 
software in a continuous delivery process. This section discusses the most common deployment 
methods: all at once (deploy in place), rolling, immutable, and blue/green.

The following table summarizes the characteristics of each deployment method.

Method Impact 
of failed 
deploymen 
t

Deploy 
time

Zero 
downtime

No DNS 
change

Rollback 
process

Code 
deployed 
to

Deploy in 
place

Downtime 1x ☓ ✓ Re-deploy Existing 
instances

Rolling Single 
batch out 
of service. 
Any 
successfu 
l batches 
prior to 
failure 
running 
new 
application 
version.

2x ✓ ✓ Re-deploy Existing 
instances

Immutable Minimal 4x ✓ ✓ Re-deploy New 
instances

Traffic 
splitting

Minimal 4x ✓ ✓ Re-route 
traffic and 
terminate 
new 
instances

New 
instances
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Method Impact 
of failed 
deploymen 
t

Deploy 
time

Zero 
downtime

No DNS 
change

Rollback 
process

Code 
deployed 
to

Blue/green Minimal 4x ✓ ☓ Switch 
back to old 
environme 
nt

New 
instances

All at once (in-place deployment)

All at once (in-place deployment) is a method you can use to roll out new application code to an 
existing fleet of servers. This method replaces all the code in one deployment action. It requires 
downtime because all servers in the fleet are updated at once. There is no need to update existing 
DNS records. In case of a failed deployment, the only way to restore operations is to redeploy the 
code on all servers again.

Rolling deployment

With rolling deployment, the fleet is divided into portions so that all of the fleet isn’t upgraded 
at once. During the deployment process two software versions, new and old, are running on the 
same fleet. This method allows a zero-downtime update. If the deployment fails, only the updated 
portion of the fleet will be affected.

A variation of the rolling deployment method, called canary release, involves deployment of the 
new software version on a very small percentage of servers at first. This way, you can observe how 
the software behaves in production on a few servers, while minimizing the impact of breaking 
changes. If there is an elevated rate of errors from a canary deployment, the software is rolled 
back. Otherwise, the percentage of servers with the new version is gradually increased.

Immutable and blue/green deployment

The immutable pattern specifies a deployment of application code by starting an entirely new set 
of servers with a new configuration or version of application code. This pattern leverages the cloud 
capability that new server resources are created with simple API calls.
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The blue/green deployment strategy is a type of immutable deployment which also requires 
creation of another environment. Once the new environment is up and passed all tests, traffic is 
shifted to this new deployment. Crucially the old environment, that is the "blue" environment, is 
kept idle in case a rollback is needed.
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Security in every stage of CI/CD pipeline

Security must be applied to every component of the infrastructure, including CI/CD pipelines, from 
the moment a single line of code is written to the stages where it's deployed. That deployment 
can include multiple environments, identities, systems, and any applications which interact with 
it. During its journey, it's modified and updated continuously. The following image shows different 
stages of a typical CI/CD pipeline.

Due to the nature of continuous integration, every change needs to be monitored and made 
sure that it's safe to release towards the environment you are building. For every stage, there are 
multiple controls that can be embedded to the process whereas tool integrations are not sufficient 
by themselves for a secure CI/CD pipeline. From the people, process and technology perspective:

• People delivering, handling and monitoring the code must have the awareness towards secure 
coding practices. They should stick to these guidelines and must never abandon them to deliver 
faster.

• Processes must be defined and reiterated continuously to make sure that security bar is 
consistent across each and every stage of the pipeline.

• Technologies must be implemented to support the process mentioned above in each and every 
stage and must never be circumvented.

Security checks must be applied throughout the build process which will stop the process if a 
security concern exists. The following is a sample of some technologies that can be integrated 
throughout the CI/CD pipeline. Review the Deployment Pipeline Reference Architecture for a more 
complete list.
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Security is a shared responsibility between AWS and customers. Refer to the security
documentation to understand how to apply the shared responsibility model when using Amazon 
CodeCatalyst.

Pre-commit hooks

Pre-commit hooks are pieces of code or scripts that are run at the developer’s environment 
(workstation, CodeCatalyst Dev Environments, AWS Cloud9, or any other environment where code 
is developed) before a change to code is committed to the pipeline. Hooks are controls that can be 
configured per general practices or company policies and any code update that is not compliant 
against those policies are blocked till they are corrected.

IDE tools and plugins

Integrated Development Environment (IDE) is the tool which most developers use to write their 
code. IDEs bring convenience to the developers with built-in or deployable plugins which can walk 
through the code including but not limited to detecting potential issues, giving recommendations 
for improvements, linting, formatting, beautifying and securing it.

Static Application Security Testing (SAST)

SAST also known as static analysis or static code analysis are tools that detect bugs by analyzing 
the source code. SAST tools are built with the general approach of working backwards by 
dissecting the vulnerabilities to define possible attack methodologies and generate signatures 
against them to act as a preventative measure.

Software Composition Analysis (SCA)

SCA is an automated process to identify the open-source packages that are in use within the code 
to define vulnerabilities and potential compliance-based issues. SCA tools identify open-source 
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packages in an application and all the vulnerabilities that are present in them. They can also check 
the licenses for each package, check dependencies and bring infrastructure as code (IaC) manifests 
for potential vulnerabilities in containerized environments.

Dynamic Application Security Testing (DAST)

DAST tools also named as black-box solutions, test the applications during the lifecycle of their 
operations and give recommendations towards potential vulnerabilities and compliance issues. 
Since they monitor the behavior of the applications, they tend to generate less false positives 
compared to SAST tools.

Interactive Application Security Testing (IAST)

IAST tools are a combination of SAST and DAST tools and embody both tools’ advantages within. 
They are usually facilitated during the test and QA stages since it is the closest version of the 
production-level code. While running dynamically to identify the issues like a DAST tool, it will also 
be run inside the application server to evaluate the code like a SAST tool. The findings are real-time 
and IAST tools are also useful for API testing.

Penetration testing

Penetration testing aims to make sure that no vulnerability or non-compliant assets go unnoticed 
towards the end-product. Both tool and human based penetration testing methodologies are used 
towards applications and both have their benefits towards detecting vulnerabilities. Penetration 
testing should be done with a multi-directional approach while traversing the application to 
monitor and detect possible different behaviors of the application and user experiences.

Red/Blue/Purple teaming

Red/Blue/Purple teams are security experts with different roles to simulate real-life cyber-attacks. 
Their aim is to pinpoint system deficits, improve protection mechanisms and processes, and 
maximize the efficiency of the infrastructure while minimizing the risk. Red teams represent the 
attackers, blue teams operate as defenders, and purple teams include members from both teams 
to fulfill a multi-faceted approach and bring various perspectives for security.
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Software Bill of Materials (SBoM)

SBoM is a complete, formally structured list of components, libraries and modules that are required 
to build a given piece of software and the supply chain relationships between them. In the United 
States, SBoMs are required in government contracts through Executive Order 14028.

Why is SBoM important?

SBoM serves three main purposes:

• Intellectual Property (IP) Management: IP Management is a process that manages the creations 
of the mind and human intellect. The main types of IP include but not limited to patents, 
copyrights, trademarks, trade secrets, and source code. For that reason, export compliance, 
open-source license compliance and regular audits are core components of the IP Management 
process.

• Software Supply Chain Security: What goes into your software is quite critical and placing 
proactive measures avoid managing failures during the production phases. Continuous 
Vulnerability Management, implementation of End-Of-Life processes for software and building 
standardized high assurance systems are important steps towards building a Secure Software 
Supply Chain.

• Asset Management: You cannot manage what you do not see therefore to know and understand 
what your company has as assets, how they operate and interact individually and with each other 
is important to make improvements. It is also crucial to monitor and document all the assets to 
ensure only authorized parts are used to protect the supply chain.

Software Supply Chain

Software Supply Chain represents everything that is part of an application or interacts with 
it, during the entire software development life cycle (SDLC). It is composed of components, 
libraries, tools, elements, sources, and processes with subcomponents including but not limited to 
application dependencies, container (Operating System) packages, application package managers, 
Operating System package managers, unmanaged source files, unmanaged binaries, and snippets 
within proprietary code.

Security Risks towards any of those components will serve as the weakest link to the overall supply 
chain therefore it is vital to monitor and handle each component vigorously.
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Mitigating all chain threats may not be possible at first but managing the risks and prioritizing 
them while applying general security practices will have a positive impact to the overall risk. Some 
of the practices including but not limited to are:

• Apply least privilege to resources across the software supply chain, enable multi-factor 
authentication and use strong passwords. Store password in encrypted password vaults and 
facilitate password-less authentication systems where applicable.

• Increase employee security awareness with regular trainings, enablement sessions and game 
days.

• Continuously monitor, update, and harden your devices. Isolate, prioritize, and maintain systems 
with critical vulnerabilities.

• Know, monitor, and assess your suppliers starting with Direct (Tier-1) suppliers and going down 
the line by covering all of your suppliers.

• Implement secure coding practices and publish them internally for easy access so that they are 
used across the board and become as part of a developers’ coding practice.

• Apply security in every stage of the CI/CD pipeline.
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Database schema changes

It’s common for modern software to have a database layer. While we do not recommend the use 
of relational DBs for new projects due to scaling and other issues, many existing projects use 
relational database technology and would like to adopt CI/CD. When a relational database is used, 
it’s often necessary to modify the database in the continuous delivery process. Handling changes 
in a relational database requires special consideration, and it offers other challenges than the ones 
present when deploying application binaries. Usually, when you upgrade an application binary, 
you stop the application, upgrade it, and then start it again. You don't really bother about the 
application state, which is handled outside of the application.

When upgrading databases, you do need to consider the state because a database contains much 
state but comparatively little logic and structure.

The database schema before and after a change is applied should be considered as different 
versions of the database. You could use tools such as Liquibase and Flyway to manage the versions.

In general, these tools employ some variant of the following methods:

• Add a table to the database where a database version is stored.

• Keep track of database change commands and bunch them together in versioned change sets. In 
the case of Liquibase, these changes are stored in XML files. Flyway employs a slightly different 
method where the change sets are handled as separate SQL files or occasionally as separate Java 
classes for more complex transitions.

• When Liquibase is being asked to upgrade a database, it looks at the metadata table and 
determines which change sets to run in order to bring the database up-to-date with the latest 
version.
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Summary of best practices

The following are some best practices for CI/CD.

Do:

• Treat your infrastructure as code:

• Use version control for your infrastructure code.

• Make use of bug tracking/ticketing systems.

• Have peers review changes before applying them.

• Establish infrastructure code patterns/designs.

• Test infrastructure changes like code changes.

• Put developers into integrated teams of no more than 12 self-sustaining members.

• Have all developers commit code to the main branch frequently, with no long-running feature 
branches.

• Consistently adopt a build system such as Maven or Gradle across your organization and 
standardize builds.

• Bake security into your code pipeline.

• Have developers build unit tests toward 100% coverage of the code base.

• Ensure that unit tests are 70% of the overall testing in duration, number, and scope.

• Ensure that unit tests are up-to-date and not neglected. Unit test failures should be fixed, not 
bypassed.

• Treat your continuous delivery configuration as code.

• Establish role-based security controls (that is, who can do what and when):

• Monitor/track every resource possible.

• Alert on services, availability, and response times.

• Capture, learn, and improve.

• Share access with everyone on the team.

• Plan metrics and monitoring into the lifecycle.

• Keep and track standard metrics:

• Number of builds.

• Number of deployments.

43



Practicing Continuous Integration and Continuous Delivery on AWS AWS Whitepaper

• Average time for changes to reach production.

• Average time from first pipeline stage to each stage.

• Number of changes reaching production.

• Average build time.

• Use multiple distinct pipelines for each branch and team.

Don’t:

• Have long-running branches with large complicated merges.

• Have manual tests.

• Have manual approval processes, gates, code reviews, and security reviews.
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Conclusion

Continuous integration and continuous delivery provide an ideal scenario for your organization’s 
application teams. Your developers simply push code to a repository. This code will be integrated, 
tested, deployed, tested again, merged with infrastructure, go through security and quality reviews, 
and be ready to deploy with extremely high confidence.

When CI/CD is used, code quality is improved and software updates are delivered quickly and 
with high confidence that there will be no breaking changes. The impact of any release can be 
correlated with data from production and operations. It can be used for planning the next cycle, 
too—a vital DevOps practice in your organization’s cloud transformation.
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Further reading

For more information on the topics discussed in this whitepaper, refer to the following:

• Overview of Deployment Options on AWS

• Amazon CodeCatalyst

• Blue/Green Deployments on AWS

• Setting up CI/CD pipeline by integrating Jenkins with AWS CodeBuild and AWS CodeDeploy

• Microservices on AWS

• Docker on AWS
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Notices

Customers are responsible for making their own independent assessment of the information in 
this document. This document: (a) is for informational purposes only, (b) represents current AWS 
product offerings and practices, which are subject to change without notice, and (c) does not create 
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or 
services are provided "as is" without warranties, representations, or conditions of any kind, whether 
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by 
AWS agreements, and this document is not part of, nor does it modify, any agreement between 
AWS and its customers.

© 2023 Amazon Web Services, Inc. or its affiliates. All rights reserved.
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AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.
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