
AWS Technical Guide

Replatform .NET Applications with
Windows Containers

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Replatform .NET Applications with Windows Containers AWS Technical Guide

Replatform .NET Applications with Windows Containers: AWS
Technical Guide

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Replatform .NET Applications with Windows Containers AWS Technical Guide

Table of Contents

Abstract ... i
Overview .. 2
Before you begin ... 4

Understand your drivers ... 4
Choosing container orchestration ... 5
Tools and libraries .. 6

Best practices ... 8
Choosing a Windows Server version .. 8
Treat container instances as ephemeral servers .. 9
Use multi-stage builds for container images ... 9
Caching layer strategy ... 10

Cost considerations ... 12
Cloud computing .. 12
AWS pricing model .. 12
AWS container services ... 13
Cost comparison ... 14

Summary by service ... 14
Self-managed containers on Amazon EC2 .. 15

Operational costs (staffing) .. 16
Architecture overview ... 17
Walkthrough .. 20

Prerequisites .. 21
Deploy the AWS environment .. 21

Connect to deployment .. 24
Set up App2Container prerequisites .. 29
Install and initialize App2Container ... 36
Containerization .. 39
Deployment ... 44

Logging and monitoring ... 54
Security .. 57

Windows authentication ... 57
Join the ECS instance (host) to the domain ... 58
Configure a group Managed Service Account in the Active Directory domain 58
Change your Dockerfile to support Windows authentication ... 59

iii

Replatform .NET Applications with Windows Containers AWS Technical Guide

Create the CredentialSpec file ... 60
Configure ECS Task Definition with CredentialSpec ... 61
Using a load balancer with Windows Authentication ... 62
Authenticating with AWS services .. 62

Service-linked role .. 63
Container instance role .. 63
Task execution role ... 64
Task role .. 65

AWS SDK for .NET credential loading .. 66
In-flight data protection using encryption .. 67
TLS termination at the load balancer .. 68
End-to-end encryption .. 68
Terminate TLS at the container level ... 69
Decrypt and re-encrypt ... 69

Source code .. 70
Conclusion .. 71
Contributors ... 72
Document history .. 73
Notices .. 74
AWS Glossary ... 75

iv

Replatform .NET Applications with Windows Containers AWS Technical Guide

Replatform .NET Applications with Windows Containers

Publication date: January 4, 2022 (Document history)

Today, many architects, developers, and IT practitioners want to replatform their .NET Framework
applications by moving them from Windows Virtual Machines (VMs) to Windows containers.
This guide outlines a methodology to assess applications that are suitable to move to Windows
containers, describes the business and technical benefits, and offers a prescriptive procedure using
a sample application and reference architecture to guide organizations in the delivery of this
process.

For comments, corrections, or questions, send an email to
<windowsmodernization@amazon.com>.

1

Replatform .NET Applications with Windows Containers AWS Technical Guide

Overview

Containers are becoming the primary technology for packaging and deploying applications.
International Data Corporation (IDC) estimates that the number of container instances installed
globally by enterprises (excluding public cloud providers) increased 133 percent year-over-year
to 273.5 million instances in 2020, and is expected to grow five times to 1.39 billion instances
by 2023. Within this enterprise containers install base, Windows container instances accounted
for 19.5 million instances (7.1 percent of total) in 2020, and is expected to grow 8 times to 156.9
million instances (11.2 percent of total) by 2023. (Source: IDC Container Infrastructure Software
Market Assessment: x86 Containers Forecast, 2018-2023, Doc# US46185620, April 2020.) The
trend is clear that enterprises are adopting and standardizing the use of containers.

Before exploring how to complete the replatforming of existing .NET applications to Windows
containers, this guide examines the reasons driving enterprises toward this approach.

The Windows operating system (OS) preexisted container technology. There were fundamental
pieces of the OS that required changes to enable Windows to run in containers. Because of this,
Windows containers were not introduced until 2016, three years after Docker released Linux
containers. Kubernetes only recently debuted support for running Windows containers as worker
nodes in April 2019.

Because of these releases, organizations have been moving their existing .NET Framework
applications to Windows containers to improve their development agility, optimize the utilization
of their infrastructure resources, increase their application portability across environments, and
control the boundaries of their applications with container isolation. Windows containers also
created an opportunity for organizations to migrate their existing .NET applications running on
end-of-life versions, such as Windows Server 2003 and Windows Server 2008, to newer Windows
Server versions with minimal code changes.

However, the benefits of Windows containers do not come without challenges. Existing
development and IT teams that are well versed in building and running Windows-based
applications today may lack hands-on experience with containers. This requires teams to develop
new skillsets, operational techniques, and architectural designs to successfully deploy container-
based applications in production. For example, when moving to Windows containers, teams must
choose their Windows container type, runtime version, and orchestration engine to use. Teams
must understand the technical nuances of Windows containers that require workarounds because
of their early state of maturity. Additionally, new organizational practices, such as DevOps, are

2

https://www.idc.com/getdoc.jsp?containerId=US46185620
https://www.idc.com/getdoc.jsp?containerId=US46185620

Replatform .NET Applications with Windows Containers AWS Technical Guide

recommended to take full advantage of the automation that containers facilitate. All of these
pieces contribute to the complexity that organizations face when adopting containers and this
guide aims to demystify this picture to help teams adopt Windows containers where it makes sense
for their technology stack.

3

Replatform .NET Applications with Windows Containers AWS Technical Guide

Before you begin

Understand your drivers

Before you begin, take the time to understand your business and technical drivers and work
backwards from your desired results to form a plan of action. Common business and technical
drivers that motivate the approach to replatforming existing .NET Framework applications to
Windows containers are outlined in the following tables.

Table 1 — Business drivers

Driver Description Solution

Accelerate innovation Development and IT teams
spend most of their time
maintaining existing applicati
ons rather than innovating.

Adopt containers to facilitat
e DevOps practices and
automation.

Lower total cost of ownership
(TCO)

Infrastructure is underutilized
and operational overhead
slows teams down.

Move to containers to
optimize resource utilization,
and invest in automation to
reduce manual processes for
operations.

Address skills gap Internal expertise in cloud-
native technologies creates
barriers to cloud adoption
and modernization.

Use Amazon Web Services
(AWS) official trainings and
experts to upskill your staff.

Standardize technology Different teams are using
different tools which creates
inefficiencies and prevents
standardization.

Adopt containers for both
Linux and Windows workloads
to harmonize technology
investments and internal
knowledge base.

Table 2 — Technical drivers

Understand your drivers 4

Replatform .NET Applications with Windows Containers AWS Technical Guide

Driver Description Solution

Increase productivity Manual processes slow teams
down and cause delays in
release cycles.

Adopt DevOps practices and
automation.

Scale with traffic demands Applications are provisioned
for peak load and underutilize
infrastructure resources.

Use container auto scaling
and stateless applications to
scale up and down as traffic
demands.

Predictable performance
across environments

Application behavior is not
consistent across environme
nts leading to unforeseen
problems.

Use containers for isolation
and consistent behavior
across environments.

If these drivers resonate with you and your teams, then replatforming your .NET Framework
applications to Windows containers might be a good approach to optimize your existing Windows
workloads. There are many options for modernizing your existing .NET Framework applications
that also include refactoring to the cross-platform .NET 5+ and Linux, breaking down monoliths to
microservices, and rewriting the application to be event-driven with serverless functions and AWS
Lambda. Although these other approaches have their own unique set of benefits, replatforming
to Windows containers is a common approach to optimize existing deployments, introduce cloud-
native technologies to your teams, prepare for migrations, and to harden security.

Choosing container orchestration

As you replatform your application, you can select a container orchestrator that is most suitable
for your requirements. 80 percent of all containers in the cloud run on AWS, and customers have
a broad set of options to run and manage their containers on AWS. When choosing your container
orchestration option, start with the question “How much of the container infrastructure do you
want to manage?”

• Amazon Elastic Container Service (Amazon ECS) on AWS Fargate — AWS Fargate is a
technology that you can use with Amazon ECS to run containers without having to manage
servers or clusters of Amazon Elastic Compute Cloud (Amazon EC2) instances. With AWS Fargate,
you no longer have to provision, configure, or scale clusters of virtual machines to run containers.

Choosing container orchestration 5

https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/fargate/
https://aws.amazon.com/ecs/
https://aws.amazon.com/what-are-containers
https://aws.amazon.com/ec2/

Replatform .NET Applications with Windows Containers AWS Technical Guide

This removes the need to choose server types, decide when to scale your clusters, or optimize
cluster packing.

When you run your tasks and services with the Fargate launch type, you package your application
in containers, specify the CPU and memory requirements, define networking and identity and
access management policies, and launch the application. Each Fargate task has its own isolation
boundary and does not share the underlying kernel, CPU resources, memory resources, or elastic
network interface with another task.

• Amazon Elastic Kubernetes Service (Amazon EKS) — Amazon EKS is a managed service
that allows you to run Kubernetes on AWS without needing to install and operate your own
Kubernetes control plane or worker nodes. Amazon EKS provisions and scales the Kubernetes
control plane, including the API servers and backend persistence layer, across multiple AWS
Availability Zones for high availability and fault tolerance. Amazon EKS integrates with various
AWS services such as Elastic Load Balancing (ELB), AWS Identity and Access Management (IAM),
Amazon Virtual Private Cloud (Amazon VPC), and AWS CloudTrail to provide scalability and
security for your applications.

• Amazon Elastic Container Service (Amazon ECS) — Amazon ECS is a highly scalable, high-
performance container management service that supports Docker containers and allows you to
run applications on a managed cluster of Amazon EC2 instances. With simple API calls, you can
launch and stop container-enabled applications, query the complete state of your cluster, and
access many familiar features like security groups, ELB, Amazon Elastic Block Store (Amazon EBS)
volumes, and IAM roles. You can use Amazon ECS to schedule the placement of containers across
your cluster based on your resource needs and availability requirements.

• Self-managed containers on Amazon EC2 — EC2 virtual machines give you full control of your
server clusters and provide a broad range of customization options. You can choose Amazon EC2
to run your container orchestration if you need full control over the installation, configuration,
and management of the container orchestration environment.

Tools and libraries

AWS has many tools available for developers and IT practitioners to build and run container
applications and infrastructure. The following table covers some of the primary tools that are
useful for the replatforming process. You will use many of these tools and Amazon ECS in the
Walkthrough section of this guide. For the latest news and releases, refer to the .NET on AWS
landing page.

Tools and libraries 6

https://aws.amazon.com/eks/
https://kubernetes.io/
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/iam/
https://aws.amazon.com/vpc/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/ecs/
https://aws.amazon.com/ebs/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://aws.amazon.com/getting-started/launch-a-virtual-machine-B-0/
https://aws.amazon.com/developer/language/net/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Table 3 – Tools and libraries

Tool or library Description

AWS SDK for .NET Use AWS services with purpose-built .NET
libraries and APIs

AWS Cloud Development Kit (AWS CDK) Define AWS infrastructure directly in code with
the Cloud Development Kit for .NET

AWS Toolkit for Visual Studio Extension for Visual Studio to create, debug,
and deploy applications on AWS

AWS App2Container Command-line tool to automate packaging
applications into container images

AWS Porting Assistant for .NET An analysis tool to assist with porting .NET
Framework applications to .NET Core

AWS Extensions for .NET CLI Build .NET Core applications with the .NET
command-line interface (CLI)

AWS Tools for PowerShell Manage AWS services and resources with
PowerShell

AWS Toolkit for Azure DevOps Extension for Azure DevOps to deploy
applications on AWS

AWS CLI Unified tool to manage your AWS services

AWS Copilot CLI Simple declarative set of commands to deploy
containers

Tools and libraries 7

https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/cdk/
https://aws.amazon.com/visualstudio/
https://aws.amazon.com/app2container/
https://aws.amazon.com/porting-assistant-dotnet/
https://github.com/aws/aws-extensions-for-dotnet-cli
https://aws.amazon.com/powershell/
https://aws.amazon.com/vsts/
https://aws.amazon.com/cli/
https://aws.amazon.com/containers/copilot/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Best practices

Choosing a Windows Server version

There are two primary release channels available for Windows Server 2019: the Long-Term
Servicing Channel and the Semi-Annual Channel.

• Long-Term Servicing Channel (LTSC) — This is the release model that most customers use
in production (formerly called the Long-Term Servicing Branch) where a new major version is
released every 2–3 years. With LTSC, there are five years of mainstream support and five years of
extended support.

This channel is appropriate for systems that require a longer servicing option and functional
stability. Deployments of Windows Server 2019 and earlier versions of Windows Server are not
affected by the Semi-Annual Channel releases. The LTSC receives ongoing security and non-
security updates, but it does not receive new features and functionality.

• Semi-Annual Channel — The Semi-Annual Channel is for customers who are innovating quickly
to take advantage of new operating system capabilities at a faster pace, especially for containers
and microservices. Windows Server products in the Semi-Annual Channel have new releases
available twice a year, in spring and fall.

Each release is supported for 18 months from the initial release. Most of the Semi-Annual
Channel features are rolled into the next LTSC release of Windows Server. The editions,
functionality, and supporting content might vary from release to release. In this model, Windows
Server releases are identified by the year and month of release: for example, in 2017, a release in
the ninth month (September) would be identified as version 1709.

Note

Microsoft has announced it is dropping Semi-Annual Channel (SAC) releases for Windows
Server. Starting with Windows Server 2022 there will be only one release on the LTSC. It
will get 10 years’ support (five years mainstream, and five years extended).

Choosing a Windows Server version 8

Replatform .NET Applications with Windows Containers AWS Technical Guide

Treat container instances as ephemeral servers

Windows administrator and IT professionals are responsible for several tasks that include OS
patching, managing backups, restoring tests, and maintaining a healthy state for the applications
they manage. These tasks change when using Windows containers and Amazon ECS because the
containers should not be treated as an ordinary Windows Server instances. Rather, they should be
treated as ephemeral instances that can be frequently removed, added, and replaced.

The Amazon ECS Windows container instance’s sole purpose is to run containers, which drastically
reduces management tasks compared to a Windows Server directly hosting an application. For
example, when an Amazon ECS cluster is created, an AWS Auto Scaling group for the cluster
is automatically created, which can be used to scale-in and scale-out the cluster based on the
application’s capacity requirements. Additionally, EC2 Image Builder can be used to automate the
creation and deployment of container images so that the images remain up to date, consistent, and
secure across the cluster. For details, refer to Building your own Amazon ECS–optimized Windows
AMI.

Use multi-stage builds for container images

One of the most challenging parts to building container images is constraining the image size. Each
instruction in the Dockerfile adds a layer to the image, and you need to clean up any unneeded
artifacts before moving on to the next layer. To write an efficient Dockerfile, you have traditionally
needed to employ tricks and other logic to keep the layers as small as possible and to ensure that
each layer has the artifacts it needs from the previous layer and nothing else.

A common practice referred to as the builder pattern is to have one Dockerfile for development and
a slimmed-down Dockerfile for production that only contains your application and the minimum
dependencies required to run it. However, maintaining multiple Dockerfiles introduces surface area
for error and adds to the maintenance overhead.

For example, in the following Dockerfile, the first block builds the .NET application and the second
block uses the resulting image to build the Windows container image. This process is referred to as
multi-stage builds.

FROM mcr.microsoft.com/dotnet/framework/sdk:4.8 AS build
WORKDIR /app

Treat container instances as ephemeral servers 9

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cluster-auto-scaling.html
https://aws.amazon.com/image-builder/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-custom-ami.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-custom-ami.html
https://docs.docker.com/engine/reference/builder/

Replatform .NET Applications with Windows Containers AWS Technical Guide

copy csproj and restore as distinct layers
COPY *.sln .
COPY aspnetmvcapp/*.csproj ./aspnetmvcapp/
COPY aspnetmvcapp/*.config ./aspnetmvcapp/
RUN nuget restore

copy everything else and build app
COPY aspnetmvcapp/. ./aspnetmvcapp/
WORKDIR /app/aspnetmvcapp
RUN msbuild /p:Configuration=Release -r:False

FROM mcr.microsoft.com/dotnet/framework/aspnet:4.8 AS runtime
WORKDIR /inetpub/wwwroot
COPY --from=build /app/aspnetmvcapp/. ./

For more information on Docker best practices, refer to Docker development best practices and
Best practices for writing Dockerfiles.

Caching layer strategy

Windows container images are large, ranging from 3.8 GB on disk for a Windows container image
containing .NET framework based on Windows Server SAC edition to 5.1 GB on Windows Server
2019 LTSC. It’s essential to implement a Windows container image layer caching strategy when
utilizing EC2 Auto Scaling groups to avoid delays during task launch.

A common strategy is to pre-populate container images on the Amazon Machine Image (AMI) used
by the Auto Scaling group to avoid two time-expensive Docker operations:

• Downloading the image from the repository

• Extracting the image as layers on the local operating system

The download and extraction phase consumes sequential I/O operations per second on the disk
that directly impacts the container instance’s performance until all images are downloaded and
extracted. Also, it imposes a delay on the container’s readiness to receive traffic, because the
process can take two to five minutes to complete, depending on the size of the image.

The Amazon ECS container instances should be treated as ephemeral servers. There is an option
to use EC2 Image Builder to build your own AMI with all of the necessary patches and security
configuration. This service also enables you to include an additional step in the EC2 Image Builder

Caching layer strategy 10

https://docs.docker.com/develop/dev-best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.aws.amazon.com/autoscaling/ec2/userguide/AutoScalingGroup.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://webapp.io/blog/what-is-an-ephemeral-environment/
https://aws.amazon.com/image-builder/

Replatform .NET Applications with Windows Containers AWS Technical Guide

pipeline to download and extract Docker images directly on the AMI, which reduces the time it
takes to launch an EC2-based task on your Amazon ECS cluster.

For more information on caching layer strategy, refer to Speeding up Windows container launch
times with EC2 Image Builder and image cache strategy.

Caching layer strategy 11

https://aws.amazon.com/blogs/containers/speeding-up-windows-container-launch-times-with-ec2-image-builder-and-image-cache-strategy/
https://aws.amazon.com/blogs/containers/speeding-up-windows-container-launch-times-with-ec2-image-builder-and-image-cache-strategy/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Cost considerations

Cloud computing

With cloud computing, companies have access to a scalable platform, low-cost storage, database
technologies, and tools on which to build enterprise-grade solutions. Cloud computing helps
businesses reduce costs and complexity, adjust capacity on-demand, accelerate time to market,
increase opportunities for innovation, and enhance security.

Weighing the financial considerations of operating an on-premises data center compared to
using cloud infrastructure is not as simple as comparing hardware, storage, and compute costs.
Whether you own your own data center or rent space at a colocation facility, you have to manage
investments that include capital expenditures, operational expenditures, staffing, opportunity
costs, licensing, and facilities overhead.

AWS pricing model

AWS offers a simple, consistent, pay-as-you-go pricing model, so you are charged only for the
resources you consume. With this model, there are no upfront fees, minimum commitments, and
long-term contracts required. There is also flexibility to choose the pricing model that best fits your
needs if the pay-as-you-go model is not optimal for your use case. Short descriptions of all of these
pricing models follow.

• On-Demand Instance — With On-Demand Instances, you pay for compute capacity by the
second with no minimum commitments required.

• Savings Plans — A flexible pricing model offering lower prices compared to On-Demand pricing,
in exchange for a specific usage commitment (measured by hourly rate) for a one-year or three-
year period. AWS offers three types of Savings Plans:

• Compute Savings Plans

• EC2 Instance Savings Plans

• Amazon SageMaker Savings Plans

Compute Savings Plans apply to usage across Amazon EC2, AWS Lambda, and AWS Fargate.

• Reserved Instance — For longer-term savings, you can purchase in advance. In addition to
providing a significant discount (up to 60 percent) compared to On-Demand Instance pricing,
Reserved Instances allow you to reserve capacity.

Cloud computing 12

Replatform .NET Applications with Windows Containers AWS Technical Guide

• Spot Instance — You can bid for unused Amazon EC2 capacity. Instances are charged the Spot
Price, which is set by Amazon EC2 and fluctuates, depending on supply and demand. For more
information, refer to Amazon EC2 Spot Instances.

For more information, refer to the AWS Cloud Economics Center and Savings Plans.

AWS container services

There are several cost aspects to consider when running applications on AWS. These include but
are not limited to storage, data transfer, service usage, compute, and operations. When considering
replatforming to Windows containers, it’s important to evaluate the resource utilization of
the existing application. One of the primary benefits of containers is the ability to bin-pack
several containerized application instances on a reduced footprint of infrastructure. This leads to
improvements in resource utilization which can result in considerable cost savings.

A common concern when considering a replatforming effort is the cost of changing application
code or introducing new DevOps processes needed to build and deploy the application. When
targeting Windows containers, application developers can minimize the number of changes needed
for this new environment, and in many cases find that there are no changes required to the code
itself. Modifying CI/CD processes to deliver container images as the build artifact as opposed
to traditional application binaries require changes, but has the benefit of removing the step of
installing and configuring code in the target environment; instead, the container image can be fully
configured at build time and tested as part of the build pipeline prior to delivery.

Finally, there is an additional cost component that is frequently overlooked which is managing
the server infrastructure and application deployment. In a traditional on-premises environment,
application servers must be configured to run the application as part of the application
deployment process; this can be a time-consuming process, and dependencies may differ from
application to application.

The fact that the application container image delivers the application dependencies and
application code as a single, pre-packaged build artifact dramatically simplifies the deployment
process and time needed for any troubleshooting. Additionally, this delivery mechanism decouples
the configuration and patching of servers from the run environment, and allows the operations
management team to have a single, unified process for managing the server infrastructure, which
reduces management overhead.

AWS container services 13

https://aws.amazon.com/ec2/spot/
https://aws.amazon.com/economics/
https://aws.amazon.com/savingsplans/
https://en.wikipedia.org/wiki/CI/CD

Replatform .NET Applications with Windows Containers AWS Technical Guide

Cost comparison

There are four different services that AWS provides to run Windows container-based applications
(containers on Amazon EC2, Amazon EKS, Amazon ECS, and AWS Fargate). To understand the cost
implications of running containers on each of these services, this guide presents an example of a
simple application architecture and compares the cost of running it on each service with an On-
Demand pricing model in the us-east-1 Region. You can choose a different pricing structure such
as Spot Instances or Saving Plans, which are supported for the services covered in this guide. The
examples in the following sections were generated by the AWS Pricing Calculator.

This guide focuses on compute (where the containers run) and operations cost (staffing) of
managing the compute resources. It does not include the cost consolidation of bin-packing
applications or of running a database to simplify the analysis.

As the baseline for the comparison, this guide uses an application running on Windows in Amazon
EC2, as shown in the following diagram.

Legacy .NET application running on EC2 Windows

Summary by service

The following table represents the summary of running the above application on each AWS
container service. These figures include the cost of compute, the Amazon VPC, and ELB. You can
see that running on Linux costs less than running on Windows for each service which is influenced
by the license-included cost of Windows. Additionally, the cost for Amazon EKS compared to the
other options is higher due to the per-cluster cost of cluster management.

Cost comparison 14

https://calculator.aws/#/estimate?id=962adcc4611ed94c0aef310846f355dc2b247ba9

Replatform .NET Applications with Windows Containers AWS Technical Guide

Table 4 – Monthly cost summary by service

Service Monthly cost

Amazon EC2 $192.57 (details)

Amazon EKS $265.57 (details)

Amazon ECS $192.57 (details)

AWS Fargate $124.41 (details)

Self-managed containers on Amazon EC2

Running self-managed containers on Amazon EC2 gives you the highest level of control over
the underlying compute but it comes with the highest TCO as you manage the entirety of the
container’s lifecycle. Additionally, you are responsible for optimally utilizing the underlying
compute, rather than leaving this to the managed container orchestrator. For more information,
refer to the details links in the preceding table.

• Amazon EKS — With Amazon EKS, you pay $0.10 per hour for each cluster that you create.
You can use a single Amazon EKS cluster to run multiple applications by taking advantage of
Kubernetes namespaces and IAM security policies. You can run Windows containers on Amazon
EKS using the Amazon EC2 launch type and on-premises using AWS Outposts or Amazon EKS
Anywhere.

If you are using Amazon EC2 (including with Amazon EKS–managed node groups), you pay for
AWS resources (such as EC2 instances or EBS volumes) you create to run your Kubernetes worker
nodes. You only pay for what you use, as you use it; there are no minimum fees and no upfront
commitments.

The calculations in this guide use Amazon EC2 for compute. For more details on Amazon EKS
pricing, refer to the Amazon EKS pricing webpage.

• Amazon ECS — With Amazon ECS, there is no additional charge for the cluster orchestrator. You
can run Windows containers on Amazon ECS using the Amazon EC2 launch type and on-premises
using AWS Outposts or Amazon ECS Anywhere. Again, you only pay for what you use, as you use
it; there are no minimum fees and no upfront commitments.

Self-managed containers on Amazon EC2 15

https://calculator.aws/#/estimate?id=0edb5bb42e05b928bb33280f39eb5ce8d1320d9a
https://calculator.aws/#/estimate?id=eb7d83bfdc8604447dca6c0fa873d679d3ef90f9
https://calculator.aws/#/estimate?id=0edb5bb42e05b928bb33280f39eb5ce8d1320d9a
https://calculator.aws/#/estimate?id=451e0a2f96e0d7f1ae05291abad50165cb72bbc9
https://aws.amazon.com/outposts/
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/eks/eks-anywhere/
https://aws.amazon.com/eks/pricing/

Replatform .NET Applications with Windows Containers AWS Technical Guide

The calculations in this guide use EC2 for compute. For more details on ECS pricing, refer to the
Amazon ECS pricing webpage.

• AWS Fargate — With AWS Fargate, there are no upfront costs and you pay only for the resources
you use. You pay for the amount of vCPU, memory, and storage resources consumed by your
containerized applications running on Amazon ECS or Amazon EKS.

The calculations in this guide use Fargate for compute. For more details on Fargate pricing, refer
to the AWS Fargate pricing webpage.

Operational costs (staffing)

One of the benefits of using managed services is that you can save time by not having to perform
operations that are considered undifferentiated heavy lifting. Managed services in AWS such as
Amazon ECS and Amazon EKS remove the burden of managing your container orchestrator, freeing
your resources to focus more on building your applications to drive business outcomes.

Operational costs (staffing) 16

https://aws.amazon.com/ecs/pricing/
https://aws.amazon.com/ecs/
https://aws.amazon.com/eks/
https://aws.amazon.com/fargate/pricing/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Architecture overview

It’s common for enterprise .NET applications built in the last decade to follow a layered n-tier
architectural approach. The functionality for different aspects of the application is logically
separated yet bundled together as interdependent code modules. There are multiple advantages
of an n-tier architecture. They’re easy to develop, more feasible to test if the application size is
small, and can scale vertically. However, as more functionality is added and the code base grows,
the applications become cumbersome to manage, change, and scale. State-dependent applications
are particularly difficult to scale horizontally, and the compute capacity must be provisioned to
consider the peak load.

This guide uses the familiar MvcMusicStore reference application, which is built on an n-tier
approach using ASP.NET MVC and .NET Framework. It maintains a session state in memory, and it
can scale vertically by default. The data persistence layer uses Microsoft SQL Server. The high-level
architecture for this application follows.

MvcMusicStore legacy architecture

Many customers start their cloud journey with a lift-and-shift approach, running their n-tier .NET
Framework applications on EC2 without any code changes. It’s common for these deployments
to have more than one EC2 Windows instance with an Application Load Balancer, routing the
user requests to one of the EC2 instances. A stateful application can have session affinity (sticky

17

https://en.wikipedia.org/wiki/Multitier_architecture
https://github.com/aws-samples/dotnet-modernization-music-store
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/

Replatform .NET Applications with Windows Containers AWS Technical Guide

sessions) enabled at the Application Load Balancer level to create an affinity between a client and a
specific EC2 instance.

Along with the Application Load Balancer, developers can use AWS Auto Scaling to monitor an
application and automatically adjust capacity to maintain steady, predictable performance at the
lowest possible cost. Amazon RDS for SQL Server is a managed database service that frees you up
to focus on application development by managing time-consuming database administration tasks,
including provisioning, backups, software patching, monitoring, and hardware scaling.

In this guide, you replatform this traditional n-tier .NET Framework application to run on Amazon
ECS using AWS App2Container. As mentioned in the previous sections, running self-managed
containers on Amazon EC2 and Amazon EKS is also an option, but Amazon ECS is a simple yet
powerful place to start if you and your teams are new to containers.

Amazon ECS runs natively with AWS services such as Application Load Balancer and Auto Scaling,
allowing developers to start with the minimum amount of compute to meet user requirements
and scale dynamically as the incoming traffic increases. The high-level architecture for the
containerized version of this application follows, and is the target of the transformation detailed
in this guide. In the following diagram, the 1 vCPU, 2 GB blocks represent the Amazon ECS tasks
where the application containers run.

MvcMusicStore architecture on Amazon Elastic Container Service

18

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/rds/sqlserver/
https://aws.amazon.com/app2container/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Additional benefits of moving to containers are realized when teams also implement automation
and DevOps. A cloud-optimized, containerized application allows you to quickly and frequently
deliver consistent applications to your users. A common development pipeline for nearly
continuous deployment with AWS follows.

A common development pipeline for nearly continuous deployment with AWS

Now that you have an idea of the before and after state of the application that you will modernize
in this guide, walk through the procedural guidance to complete this transformation quickly and
safely.

19

Replatform .NET Applications with Windows Containers AWS Technical Guide

Walkthrough

This walkthrough uses the MvcMusicStore application to demonstrate how to replatform an
ASP.NET MVC and Entity Framework-based application that runs on Internet Information Services
(IIS) to Windows containers. You will use a tool named AWS App2Container to containerize and
deploy it. This tool is provided free of charge and it automates many of the steps necessary
to convert an existing VM-based IIS application to one hosted in a container. Additionally, the
tool can be used to deploy the containerized application to AWS and create a CI/CD pipeline so
that changes to the application can be reliably pushed to the deployment environment. This
walkthrough focuses on only the application component (not the database migration) of the
following architecture.

MvcMusicStore application architecture

For this walkthrough, there are three stages:

1. Prerequisites — Prepare the AWS environment for replatforming.

2. Containerization — Use App2Container to analyze and containerize the app.

3. Deployment — Use App2Container to deploy the containerized app to Amazon ECS and create a
CI/CD pipeline.

20

https://github.com/aws-samples/dotnet-modernization-music-store
https://aws.amazon.com/app2container/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Note

Do not forget to end your AWS resources upon completion of the walkthrough. This can
be accomplished by going to the CloudFormation service in the AWS Management Console
and deleting each stack.

Topics

• Prerequisites

• Connect to deployment

• Set up App2Container prerequisites

• Install and initialize App2Container

• Containerization

• Deployment

Prerequisites

Deploy the AWS environment

1. If you do not have an AWS account, follow the How do I create and activate a new AWS
account? article to create one that you will use throughout this walkthrough.

2. Download the App2Container demo CloudFormation template to your local machine for the
AWS environment that you will deploy for the demo environment.

3. Deploy the AWS environment with CloudFormation (sign-in required).

4. In the Create stack dialog box in Specify template, choose Upload a template file, and select
the app2container_demo_template.yml file that you downloaded to your local machine.
Choose Next.

Prerequisites 21

https://aws.amazon.com/console/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account/
https://raw.githubusercontent.com/aws-samples/dotnet-modernization-music-store/ca7f3705feeaf69d36fd161fb53a3bf9c4e15655/static/app2container_demo_template.yml
https://us-west-2.console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/create/template

Replatform .NET Applications with Windows Containers AWS Technical Guide

Create stack dialog box

5. In the Specify stack details dialog box, enter App2Container-Demo as the stack name. You
can optionally add your public IP address in the YourIPAddress field to limit the access only to
your IP address. The default value (0.0.0.0/0) will allow traffic for all IP addresses. Choose Next.

Deploy the AWS environment 22

Replatform .NET Applications with Windows Containers AWS Technical Guide

Specify stack details dialog box

6. In the Configure stack options dialog box, don’t make any changes, and choose Next.

7. In the Capabilities and transforms dialog box, review, scroll to the bottom of the page, and
check all check boxes. Choose Create stack.

Deploy the AWS environment 23

Replatform .NET Applications with Windows Containers AWS Technical Guide

Capabilities and transforms dialog box

• If the deployment fails, go to the deployment stack Events tab and confirm the root cause.
A common root cause is ecsExecutionRole or ecsAutoscaleRole IAM roles already
exist in the AWS account. Delete them and re-run deployment of the environment from the
CloudFormation template.

• When the template is in the CREATE_COMPLETE status, you can find information about
created source environment by going to AWS Management Console > CloudFormation,
choosing App2Container-Demo stack, and choosing the Outputs tab.

Outputs tab of the App2Container-Demo stack dialog box

Connect to deployment

In the previous section, you deployed the stack for your environment that included three EC2
instances. The first EC2 instance is a Windows Server 2019 instance for the worker machine
where you will run App2Container, the second is a Windows Server 2012 instance running the
MvcMusicStore application, and the third is a Windows instance running SQL Server. Before you
proceed to setting up App2Container, confirm that the deployment succeeded:

1. Go to CloudFormation in the AWS Management Console and select the App2Container-Demo
stack that you launched in the previous step.

2. On the Outputs tab, select the SSHKeyURL link. This brings you to the Secure Shell (SSH) key
that will be used to retrieve Administrator access. Save the key to your local machine.

Connect to deployment 24

Replatform .NET Applications with Windows Containers AWS Technical Guide

Select the SSHKeyURL link

3. Go the EC2 service in the AWS Management Console and navigate to your instances.

4. Select the Source-NET-Webserver instance, and choose Connect in the upper-right corner.

Select the Source-NET-Webserver instance and choose Connect

5. In the Connect to instance dialog box, choose the RDP client tab, and select Get password. A
popup box appears.

Connect to deployment 25

Replatform .NET Applications with Windows Containers AWS Technical Guide

Choose the RDP client tab and select Get password

6. In the Get password popup box, paste the SSH key that you saved to your local machine and
select Decrypt Password. Copy the password that appears on the screen to your local machine.
You will need it to log in to the remote machine through Remote Desktop Protocol (RDP).

7. Go back to your Instances view and copy the Public IPv4 DNS string for the web server instance
to your local machine.

Copy the Public IPv4 DNS string for the web server instance to your local machine

8. Go to your DBServer instance and copy the Private IPv4 address to your local machine. You will
need this while editing the Web.config file for the application to connect to the database.

Copy the Private IPv4 address to your local machine

9. Open Remote Desktop Connection on your local machine and paste the web server DNS string
into the Connection field.

10.Enter Administrator as the user name, and choose Connect.

Connect to deployment 26

Replatform .NET Applications with Windows Containers AWS Technical Guide

Enter Administrator as the user name and choose Connect

11.After you are connected to the web server instance, open PowerShell.

12.Run the following command to configure your application to connect to the database. Replace
<change-this-to-your-private-db-ip> with the private IPv4 address of your database
instance that you copied in step 8.

(Get-Content C:/dotnet-modernization-music-
store/MvcMusicStore/Web.config).replace('Data Source=.',
'Data Source=<change-this-to-your-private-db-ip>') | Set-Content
C:/dotnet-modernization-music-store/MvcMusicStore/Web.config

13.Go to Administrative Tools > Internet Information Services (IIS) Manager. Choose the
MvcMusicStore application from the left pane.

14.Choose Restart in the right pane, and then choose Browse 8081. The MvcMusicStore user
interface should appear in the internet browser.

Connect to deployment 27

Replatform .NET Applications with Windows Containers AWS Technical Guide

Internet Information Services (IIS) Manager

MvcMusicStore user interface

15.Now that you have confirmed that the application is successfully running in your environment,
you need to install WinRM so that App2Container can remotely connect to your web server
instance to analyze and containerize your application. Run the following in PowerShell:

Connect to deployment 28

Replatform .NET Applications with Windows Containers AWS Technical Guide

cd Downloads
.\WinRMSetup.ps1

You should observe the following output:

PowerShell output

You have confirmed that your MvcMusicStore application is running on the web server instance on
IIS. Additionally, you have set up your web server instance with WinRM so that App2Container can
remotely access it from the worker machine. You are ready to move on to the next step to set up
App2Container.

Set up App2Container prerequisites

App2Container needs access to AWS services to run most of its commands. There are two very
different sets of permissions needed to run App2Container commands:

• The General Purpose user or group can run all of the commands except commands that are run
with the --deploy option.

• For deployment, App2Container must be able to create or update AWS objects for container
management services (Amazon ECR with Amazon ECS, Amazon EKS, or Fargate) and to create CI/
CD pipelines with AWS CodePipeline. This requires elevated permissions that should only be used
for deployment.

AWS recommends that you create general purpose IAM resources, and if you plan to use
App2Container to deploy your containers or create pipelines, that you create separate IAM
resources for deployment which has elevated rights.

Set up App2Container prerequisites 29

Replatform .NET Applications with Windows Containers AWS Technical Guide

For simplicity in this guide, you will create a user with Administrator rights so it can deploy
a containerized application using the AWS services for deployment that are supported by
App2Container.

To create the user:

1. Navigate to the IAM service in the AWS Management Console. In the left pane, choose Users >
Add user.

2. Select the Programmatic access type.

3. Choose Next: Permissions.

Add user dialog box

4. Set permissions for the App2container user by choosing Attach existing policies directory.

Set up App2Container prerequisites 30

Replatform .NET Applications with Windows Containers AWS Technical Guide

5. Select AdministratorAccess, and choose Next: Tags.

Note

AdministratorAccess should be used only for demonstration purposes. Review the
official documentation for real use cases.

Select AdministratorAccess, and choose Next: Tags

6. Review and create your user. On the following screen, download the access key ID and secret
access key to your local machine.

Set up App2Container prerequisites 31

https://docs.aws.amazon.com/app2container/latest/UserGuide/iam-a2c.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

Download the access key ID and secret access key to your local machine

App2Container uses AWS Secrets Manager to manage the credentials for connecting your worker
machine to application servers to run remote commands. Secrets Manager encrypts your secrets
for storage, and provides an Amazon Resource Name (ARN) for you to access the secret. When
you run the remote configure command, you provide the secret ARN for App2Container to use to
connect to your target server when running the remote command.

To store a new secret:

1. Navigate to AWS Secrets Manager in the AWS Management Console, and choose Store a new
secret.

Choose Store a new secret

2. Choose Other type of secrets and add the following parameters. Choose Next.

Set up App2Container prerequisites 32

https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

Add the parameters and choose Next

3. In Name and description, enter a secret name and description. Choose Next.

Set up App2Container prerequisites 33

Replatform .NET Applications with Windows Containers AWS Technical Guide

Enter a secret name and description, and choose Next

4. On the next screen, leave the defaults in place, and choose Next.

5. After you store the password, choose it from the Secrets list. This will take you to a screen with
the secret details. Copy the secret ARN to your local machine, because you will need this later.

Set up App2Container prerequisites 34

Replatform .NET Applications with Windows Containers AWS Technical Guide

Retrieve the secret ARN from the Secrets detail page

Now that you have your IAM role and secret created, log in to your worker machine and configure
the AWS CLI with these newly created access objects.

To configure the AWS CLI:

1. Go to the EC2 service in the AWS Management Console, choose your worker machine instance,
and choose Connect in the upper right of the screen.

Choose your worker machine instance, and choose Connect in the upper right of the screen

2. Follow the same steps as detailed earlier in the Connect to deployment section to get the
password for the worker machine. Copy that password to your local machine and use it to
connect to the worker machine using Remote Desktop Connection.

3. When you are connected to the worker machine, open PowerShell and run the following:

aws configure

AWS Access Key ID [None]: <<add AWS access key from previous steps>>
AWS Secret Access Key [None]: <<add AWS secret access key from previous steps>>
Default region name [None]: us-west-2
Default output format [None]: [blank]

Set up App2Container prerequisites 35

Replatform .NET Applications with Windows Containers AWS Technical Guide

With this step, you have set up your environment prerequisites, and are ready for App2Container
installation on your environment. In the next section, you will install App2Container on your worker
machine and set it up to start your containerization process.

Install and initialize App2Container

Now that you have set up your environment for replatforming, you will install and initialize
App2Container on your worker machine. App2Container can be run locally on the same machine
as the application, or it can be run remotely from a separate machine. This walkthrough uses the
latter approach, using App2Container’s remote functionality.

To install and initialize App2Container on your worker machine:

1. On the worker machine, open a web browser and download the AWSApp2Container Windows
installer to your server.

2. The installer file is saved to the Downloads folder. Navigate to the Downloads folder and
extract the AWSApp2Container-installer-windows.zip file.

3. Run the install.ps1 PowerShell script and enter R when prompted by the command output.
Then press y to accept the terms and conditions.

Install and initialize App2Container 36

https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/AWSApp2Container-installer-windows.zip
https://app2container-release-us-east-1.s3.us-east-1.amazonaws.com/latest/windows/AWSApp2Container-installer-windows.zip

Replatform .NET Applications with Windows Containers AWS Technical Guide

install.ps1 PowerShell script

Now you will perform the one-time initialization command for App2Container. This interactive
command prompts for the information required to set up the App2Container environment.

4. Go to Amazon S3 in the AWS Management Console and create an S3 bucket where
App2Container will store artifacts during the containerization process. Enter a unique name for
your bucket.

Create bucket dialog box

5. On your worker machine, run the following command.

app2container init

Run the app2container init command

Table 5 — App2Container PowerShell initialization parameter description

Install and initialize App2Container 37

Replatform .NET Applications with Windows Containers AWS Technical Guide

Parameter Value

Workspace directory path Leave default (C:\Users\Administr
ator\AppData\Local\app2cont
ainer)

AWS profile Y (Contains information needed to run
App2Container)

S3 bucket Enter the S3 bucket name that you created
in the previous step (such as app2conta
iner-demo-artifacts-july-2021)

AWS Region us-west-2 (default)

Permission to collect metrics Leave default (allow App2Container to
collect information about the host operating
system, app type, and the commands run)

Enforce signed images Leave default (optionally require that images
are signed using Docker Content Trust)

6. Now you need to give App2Container the information it needs to access your web server
instance. You do this by running the following command and providing the following
information in the command prompts.

app2container remote configure

Table 6 — App2Container web server access parameters

Parameter Value

Server IP address Web server Private IPv4 address (found at
the EC2 > Source-NET-Webserver > Details
> Private IPv4 Address)

Server FQDN Leave blank

Install and initialize App2Container 38

Replatform .NET Applications with Windows Containers AWS Technical Guide

Parameter Value

Secret ARN ARN for the secret you created in AWS Secret
Manager

Continue to another server? n

Configuring App2Container for remote access to IIS web server

This concludes the prerequisite steps to run App2Container on your worker machine. In the next
section, you will use App2Container to discover, analyze, and containerize the MvcMusicStore
application that is running on the web server instance without directly touching the application
server.

Containerization

Because you are using the worker machine for all of your App2container process, you will use a
remote process. After you run the remote commands from your worker machine, it will connect
with your application web server and run the commands on it.

The following steps will allow you to containerize .NET applications running on a remote server
using App2Container:

1. Run the app2container remote inventory command (as follows) for App2Container to
gather the .NET applications that are running on your web server.

app2container remote inventory --target <webserver-private-ip>

Containerization 39

Replatform .NET Applications with Windows Containers AWS Technical Guide

App2Container output for retrieving the inventory of .NET applications from a server

2. Confirm that your application is listed in the inventory.json file at the location specified in
the tool’s output.

Confirm that your application is listed in the inventory.json file

3. Locate the application ID for the application in the inventory.json file and then run the
following command, replacing net-app-id with the application ID that you located in the
inventory.json.

 app2container remote analyze --application-id <net-app-id> --target <webserver-
private-ip>

App2Container successfully analyzes a .NET application for containerization

4. Open the analysis.json file at the location specified in the tool’s output.

This file has two sections, EDITABLE and NON-EDITABLE. The EDITABLE section includes
container parameters that specify settings such as containerBaseImage or image tag. These
parameters will be used in the subsequent containerization process.

The containerBaseImage is not populated in the file. This is because App2Container will
automatically configure the image during the next containerization step using the worker

Containerization 40

Replatform .NET Applications with Windows Containers AWS Technical Guide

machine version to determine the containerBaseImage to use. However, to provide visibility
into the behavior, populate that field in the analysis.json file with mcr.microsoft.com/
dotnet/framework/aspnet:4.8-windowsservercore-ltsc2019, as shown in the
following figure, and save the file.

Note

This guide recommends that you use the SAC version for container-based applications
because it has the most up-to-date improvements for Windows containers. However,
App2Container requires the containerBaseImage to match the worker machine
version and SAC version 2004 does not have a desktop experience. We chose LTSC
version 2019 to provide a more effective walkthrough. If you use SAC version 2004,
deploy a worker machine of that version and replace containerBaseImage with the
4.8-windowsservercore-2004 tag.

Populate the field in the analysis.json file with mcr.microsoft.com/dotnet/framework/
aspnet:4.8-windowsservercore-ltsc2019

The NON-EDITABLE section of analysis.json includes application-level information
that App2Container uses during the containerization step such as OS data, ports in use,
dependencies, software libraries, and so on.

Containerization 41

Replatform .NET Applications with Windows Containers AWS Technical Guide

5. Now you will transform your application with App2Container by extracting the artifacts from
the worker machine which will be used to produce the container image. The extraction process
takes a few minutes and App2Container will create a ZIP file that includes all of the artifacts.
As a suggested next step from the app2container analyze command output, run the
app2container remote extract command to retrieve all application artifacts to the worker
machine. Update the application-id and target IP address based on your environment.

 app2container remote extract --application-id <net-app-id> --target <webserver-
private-ip>

App2Container successfully extracting the artifacts required for containerization

6. Now you will run the app2container containerize command to create the container image
based on the extracted files. This process will take several minutes, because the worker machine
needs to download the container image .NET framework base layers, extract, and build the
container image.

 app2container containerize --input-archive C:\Users\Administrator\AppData\Local
\app2container\remote\<webserver-private-ip>\<application-id>\<application-id>

After the process completes, you will see the following output:

App2Container successfully creates a container image of the .NET application

7. Run docker images to see the container image that App2Container created for you using the
windowsservercore-ltsc-2019 and latest image tag.

Containerization 42

Replatform .NET Applications with Windows Containers AWS Technical Guide

List of container images available on the local machine

8. Running the app2container containerize command creates a deployment.json file inside
the application folder as noted in the output of the command. This file includes the AWS
deployment configurations and you can update this file to fit your desired target environment
such as changing the VPC or defining the CPU/memory allocation. Open the deployment.json
file and ensure that createEcsArtifacts is set to true and set the target vpc-id to deploy
the application to the target environment that you deployed previously. You can find the target
vpc-id in the VPC service in the AWS Management Console.

Target vpc-id

Containerization 43

Replatform .NET Applications with Windows Containers AWS Technical Guide

Sample deployment.json file

You have successfully containerized your application, and are ready to deploy your newly
containerized application to AWS. In the next section you will deploy your application to Amazon
ECS.

Deployment

You will use App2Container to generate the artifacts needed to deploy your application container
in AWS. App2Container pre-fills key values in the artifacts based on your profile, the application
analysis, and best practices. In this guide you will deploy your application to Amazon ECS; however,
Amazon EKS is also a supported option.

1. Run app2container generate app-deployment to automatically create a CloudFormation
template for deploying the MvcMusicStore application to Amazon ECS.

Deployment 44

Replatform .NET Applications with Windows Containers AWS Technical Guide

 app2container generate app-deployment --application-id <net-app-id>

This process will take a few minutes to complete, and will result in the following output.

Successful generation of CloudFormation template for MvcMusic deployment

This process creates an Amazon ECR repository and pushes your app image to the registry. It
also creates an ECS task definition and registers it with ECS, then uploads all CloudFormation
resources to the selected S3 bucket. Lastly, it creates a CloudFormation template for the
deployment and fills it with the generated configurations from the previous steps. You can verify
the creation of these assets by viewing the services in the AWS Management Console and by
confirming the ecs-master.yml file in the location specified in the output of the tool.

2. Launch the CloudFormation stack by running the suggested aws cloudformation deploy
command to pin the tool’s output. Replace the values in the following template with your actual
value for your application’s ID.

aws cloudformation deploy --template-file
C:\Users\Administrator\AppData\Local\app2container\<net-app-id>
\EcsDeployment\ecs-master.yml --capabilities CAPABILITY_NAMED_IAM
--stack-name a2c-<net-app-id>-ECS

This process will take several minutes to complete while the infrastructure is deployed in AWS.
You can track the progress in the CloudFormation service in the AWS Management Console.
When the command completes, the result will be the following output.

Deployment 45

Replatform .NET Applications with Windows Containers AWS Technical Guide

Successful deployment using CloudFormation template

3. After your stack is deployed, you can verify that your containerized application is successfully
running by navigating to Amazon ECS in the EC2 console. In Amazon ECS, choose Clusters in the
left pane, and choose the link for your newly created cluster.

Choose Clusters in the left pane and choose the link for your newly created cluster

4. Select the link to Amazon ECS running on your ECS cluster.

Deployment 46

Replatform .NET Applications with Windows Containers AWS Technical Guide

Choose the link to Amazon ECS running on your ECS cluster

5. Select the Target Group Name link.

Select the Target Group Name link

6. Select the target group.

Select the target group

7. Select the Load Balancers details link.

Deployment 47

Replatform .NET Applications with Windows Containers AWS Technical Guide

Select the Load Balancers details link

8. On the Load Balancers page, note the DNS name in the Basic Configuration details. Copy and
paste the DNS link into your browser to view your containerized application running in Amazon
ECS.

Copy and paste the DNS link into your browser to view your containerized application running in
Amazon ECS

Deployment 48

Replatform .NET Applications with Windows Containers AWS Technical Guide

Containerized application

Now that you have your application up and running, you will create a CI/CD pipeline for it using
App2Container.

To create a CI/CD pipeline:

1. Navigate to Amazon ECS in the AWS Management Console and copy your Cluster name and
Service name to your local machine.

Deployment 49

Replatform .NET Applications with Windows Containers AWS Technical Guide

Copy your Cluster name and Service name to your local machine

2. On your worker machine, open the pipeline.json file at C:\Users\Administrator
\AppData\Local\app2container\<net-app-id>\ and fill in the values for the
beta.clusterName and beta.serviceName based on your deployment. Additionally, change
beta.enabled to true, and save the file.

Open the pipeline.json file

3. Open PowerShell and run the app2container generate pipeline command as follows:

Deployment 50

Replatform .NET Applications with Windows Containers AWS Technical Guide

app2container generate pipeline --application-id <net-app-id>

4. You should see the following output:

PowerShell output

5. Run the suggested aws cloudformation deploy command to deploy your pipeline to AWS.

aws cloudformation deploy --template-file
C:\Users\Administrator\AppData\Local\app2container\<net-app-id>\
Artifacts\Pipeline\CodePipeline\ecs-pipeline-master.yml
--capabilities CAPABILITY_NAMED_IAM CAPABILITY_AUTO_EXPAND
--stack-name a2c-<net-app-id>-ecs-pipeline-stack

This will take several minutes, because the command will not complete until the pipeline phases
complete. Part of this is a build phase, which requires a build of the application (and Windows
Server base image). You can monitor the progress in the CloudFormation service in the AWS
Management Console. You will see the following output upon completion:

Successful creation of the pipeline using CloudFormation

To confirm that the pipeline was successfully created, go to the CodePipeline service in the AWS
Management Console and choose your newly created pipeline.

Deployment 51

Replatform .NET Applications with Windows Containers AWS Technical Guide

Confirm successful completion of newly created pipeline

You have successfully containerized a Windows VM-based application and deployed it on Amazon
ECS with a fully automated CI/CD pipeline. The following figure shows the architecture for this
setup. If you are interested in doing a migration of the SQL Server instance running on Amazon
EC2 to Amazon Relational Database Service, refer to the Amazon RDS for SQL Server Workshop.

Deployment 52

https://workshops.aws/card/Amazon%20RDS%20for%20SQL%20Server%20Workshop

Replatform .NET Applications with Windows Containers AWS Technical Guide

Architecture for containerizing a Windows VM-based application and deploying it on Amazon ECS
with a fully automated CI/CD pipeline

Deployment 53

Replatform .NET Applications with Windows Containers AWS Technical Guide

Logging and monitoring

Monitoring is an important part of maintaining the reliability, availability, and performance of your
applications running on Amazon ECS. Collect monitoring data from all of the parts of your AWS
stack so you can more easily debug a multi-point failure if one occurs. AWS provides several tools
for monitoring your Amazon ECS resources and responding to potential incidents. Refer to the
following table for details on each service.

Table 7 — Monitoring services

Service Description

Amazon CloudWatch Alarms For clusters with tasks or services using the
EC2 launch type, you can use CloudWatch
Alarms to scale in and scale out the container
instances based on CloudWatch metrics, such
as cluster memory reservation.

Amazon CloudWatch Logs Monitor, store, and access the log files from
the containers in your Amazon ECS tasks by
specifying the awslogs log driver in your task
definitions. This is the only supported method
for accessing logs for tasks using the Fargate
launch type, but also works with tasks using
the EC2 launch type.

Amazon CloudWatch Events Match events and route them to one or more
target functions or streams to make changes,
capture state information, and take corrective
action.

AWS CloudTrail CloudTrail provides a record of actions taken
by a user, role, or an AWS service in Amazon
ECS. Using the information collected by
CloudTrail, you can determine the request that
was made to Amazon ECS, the IP address from
which the request was made, who made the

54

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://aws.amazon.com/cloudtrail/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Service Description

request, when it was made, and additional
details.

AWS Trusted Advisor Trusted Advisor draws upon best practices
learned from serving hundreds of thousands
of AWS customers. Trusted Advisor inspects
your AWS environment and then makes
recommendations when opportunities exist to
save money, improve system availability and
performance, or help close security gaps.

Amazon ECS events and Amazon EventBridge Amazon ECS events for EventBridge receives
near real-time notifications regarding the
current state of your Amazon ECS clusters. If
your tasks are using the Fargate launch type,
you can see the state of your tasks. If your
tasks are using the EC2 launch type, you can
see the state of both the container instances
and the current state of all tasks running on
those container instances. For services, you
can see events related to the health of your
service.

55

https://aws.amazon.com/premiumsupport/technology/trusted-advisor/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch_event_stream.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

Service Description

AWS X-Ray AWS X-Ray helps developers analyze and
debug production, distributed applications,
such as those built using a microservices
architecture. With X-Ray, you can understan
d how your application and its underlyin
g services are performing to identify and
troubleshoot the root cause of performance
issues and errors.

You can use the X-Ray SDK and AWS service
integration to instrument requests to your
applications that are running locally or on
AWS compute services such as Amazon EC2,
AWS Elastic Beanstalk, Amazon ECS, and AWS
Lambda.

56

https://aws.amazon.com/xray/
https://aws.amazon.com/elasticbeanstalk/

Replatform .NET Applications with Windows Containers AWS Technical Guide

Security

When you migrate your .NET applications to containers, many of the same security concerns
as non-containerized environments need to be addressed. This section walks through the
primary security components of running containerized applications in AWS. It covers how to use
Windows authentication for user and application authentication, and how to control access of the
containerized applications to other AWS services using IAM.

Topics

• Windows authentication

• Join the ECS instance (host) to the domain

• Configure a group Managed Service Account in the Active Directory domain

• Change your Dockerfile to support Windows authentication

• Create the CredentialSpec file

• Configure ECS Task Definition with CredentialSpec

• Using a load balancer with Windows Authentication

• Authenticating with AWS services

• AWS SDK for .NET credential loading

Windows authentication

Many .NET applications use Windows (or integrated) authentication to enable users to sign in using
their Active Directory domain credentials. Applications can also utilize Active Directory service
accounts to connect to network resources such as SQL Server databases. If an application running
on an EC2 instance (application server) needs access to a SQL Server database running on another
EC2 instance (database server), both EC2 instances need to either join the same domain or join
different domains with a trust relationship between them. Windows containers cannot be joined by
domain, but they can be configured to use Active Directory identities.

To enable an application running inside a container to authenticate against a domain:

1. Join the ECS instance (host) to the domain.

2. Configure a group Managed Service Account (gMSA) in the domain.

3. Change your Dockerfile to support windows authentication.

Windows authentication 57

Replatform .NET Applications with Windows Containers AWS Technical Guide

4. Create the CredentialSpec file.

5. Configure the ECS Task Definition with CredentialSpec.

Join the ECS instance (host) to the domain

There are many ways to join the ECS instance to an Active Directory domain. It can be done
manually (by connecting to the instance through RDP) or automatically. AWS enables you to save
costs by automatically reducing compute capacity in times of low demand, and provision more
capacity when demand increases. To take advantage of this elasticity, a best practice is to use Auto
Scaling groups for provisioning ECS instances.

The User Data section in the launch template/configuration that is used with the Auto Scaling
group can include domain join commands. If your Active Directory domain is based on AWS
Directory Service or you use AD Connector to connect to an on-premises Active Directory domain,
you can use AWS Systems Manager Run Command and run the AWS-JoinDirectoryServiceDomain
document. There are two prerequisites to using this approach that are described as follows.

1. If the ECS instances and the Active Directory domain are provisioned in different VPCs, make
sure they that the VPCs can communicate through VPC peering or transit gateway.

2. The ECS instances need permissions (through IAM policies) to communicate to the Systems
Manager and Directory Service APIs. AWS recommends creating custom policies that take into
account your system needs and security requirements. However, as a starting point, you can use
the following policies:

• AmazonSSMManagedInstanceCore — This AWS managed policy enables an instance to use
Systems Manager service core functionality.

• AmazonSSMDirectoryServiceAccess — This AWS managed policy allows AWS Systems
Manager Agent (SSM Agent) to access AWS Directory Service on your behalf for requests to
join the Active Directory domain by the managed instance.

Configure a group Managed Service Account in the Active
Directory domain

A group Managed Service Account (gMSA) is a type of service account available in Windows Server
2012 and later. When a container is configured to use a gMSA, it does not know the password for
the account. The gMSA password is configured on the Active Directory domain controller. When

Join the ECS instance (host) to the domain 58

https://docs.aws.amazon.com/systems-manager/latest/userguide/execute-remote-commands.html
https://aws.amazon.com/premiumsupport/knowledge-center/ec2-systems-manager-dx-domain/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/tgw/what-is-transit-gateway.html
https://docs.aws.amazon.com/systems-manager/latest/userguide/setup-instance-profile.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

a container using gMSA runs on a domain-joined ECS instance, the ECS instance retrieves the
password for the gMSA from the Active Directory domain controller and passes it to the container.
It is recommended to create a security group for each gMSA account and add ECS instances (that
will use the gMSA account) to the security group. This limits access to the gMSA to only the ECS
instances that need it.

The following PowerShell snippet demonstrates how to create a security group, create a gMSA,
and add the ECS Container Instance to the security group. To run the following commands, you will
need to use an account that belongs to the Domain Admins security group or has been delegated
the Create the msDS-GroupManagedServiceAccount objects permission. On the machine that
you are running these commands on, you will need to install Remote Server Administration Tools.

Create the AD group
New-ADGroup -Name "Amazon ECS Authorized Container instances"
-SamAccountName "ECSContainerInstances" -GroupScope DomainLocal

Create the gMSA
New-ADServiceAccount -Name "gmsaecs" -DnsHostName "gmsaecs.YOURDOMAIN_FQDN"
-ServicePrincipalNames "host/gmsaecs", "host/gmsaecs.YOURDOMAIN_FQDN"
-PrincipalsAllowedToRetrieveManagedPassword "ECSContainerInstances"

Add your ECS Container Instance to the AD group
Add-ADGroupMember -Identity "ECSContainerInstances"
-Members "ECSContainerInstances01$", "ECSContainerInstances02$",
"ECSContainerInstances03$"

Change your Dockerfile to support Windows authentication

The following snippet demonstrates how to configure your IIS application running inside a
container to use a gMSA. The following Dockerfile instructions install and configure Windows
authentication inside the container, and on IIS.

Install Windows Auth in IIS Feature
RUN Install-WindowsFeature -Name Web-Windows-Auth –IncludeAllSubFeature

Configure the IIS Application Pool account to use Network Service account.
That enables it to leverage gMSA.
RUN Import-Module WebAdministration; Set-ItemProperty IIS:\AppPools\SiteName
-name processModel.identityType -value 2

Change your Dockerfile to support Windows authentication 59

Replatform .NET Applications with Windows Containers AWS Technical Guide

Disable Anonymous authentication on IIS
RUN Import-Module WebAdministration; Set-WebConfigurationProperty
-Filter '/system.webServer/security/authentication/anonymousAuthentication'
-Name Enabled -Value False -PSPath 'IIS:\' -Location 'SiteName'

Enable Windows Authentication
RUN Import-Module WebAdministration; Set-WebConfigurationProperty
-Filter '/system.webServer/security/authentication/windowsAuthentication'
-Name Enabled -Value True -PSPath 'IIS:\' -Location 'SiteName'

Create the CredentialSpec file

In the previous sections, you joined your ECS instance to an Active Directory domain, created a
gMSA, and configured your application to use the gMSA. In this section, you will configure your
ECS Task Definition to use the gMSA using a credential spec file. A credential spec file is a JSON
document that contains metadata about your gMSA account.

To create the credential spec file, you can run the following PowerShell cmdlets. You will need to
run these cmdlets on either the ECS instance, or a domain joined EC2 instance that has the RSAT
AS PowerShell tools installed. For more information on how to create a credential spec file, refer to
the Create gMSAs for Windows containers documentation.

#Install the CredentialSpec module
Install-Module CredentialSpec

#Create a credential spec using the gMSA name at the provided path
New-CredentialSpec -AccountName gmsaecs -Path "C:\gmsa\gmsaecs_credspec.json"

The following snippet shows an example credential spec file.

{
 "CmsPlugins": [
 "ActiveDirectory"
],
 "DomainJoinConfig": {
 "Sid": "S-1-5-21-2554468230-2647958158-2204241789",
 "MachineAccountName": "gmsaecs",
 "Guid": "8665abd4-e947-4dd0-9a51-f8254943c90b",
 "DnsTreeName": "example.com",

Create the CredentialSpec file 60

https://docs.microsoft.com/en-us/virtualization/windowscontainers/manage-containers/manage-serviceaccounts

Replatform .NET Applications with Windows Containers AWS Technical Guide

 "DnsName": "example.com",
 "NetBiosName": "example"
 },
 "ActiveDirectoryConfig": {
 "GroupManagedServiceAccounts": [
 {
 "Name": "gmsaecs",
 "Scope": "example.com"
 }
]
 }
}

Configure ECS Task Definition with CredentialSpec

After you have created the credential spec file, you will reference it in your ECS task definition.
Keeping the gMSA metadata in a credential spec file (separate from the Dockerfile) gives you
the ability to change the gMSA used by your application in the future without the need for code
changes in the application.

Amazon ECS supports the following ways to reference the credential spec file in the
dockerSecurityOptions field of a task definition. For more information and example task
definitions, refer to the Amazon ECS documentation.

Add the credential spec to an Amazon S3 bucket, then reference the ARN of the Amazon S3 bucket
in the dockerSecurityOptions field of the task definition. Your Amazon ECS task execution role
must have the s3:Get* and s3:List* permissions on your S3 bucket and the credential spec
object.

{
 "family": "",
 "executionRoleArn": "",
 "containerDefinitions": [
 {
 "name": "",
 ...
 "dockerSecurityOptions": [
 "credentialspec:arn:aws:s3:::${BucketName}/${ObjectName}"
],
 ...

Configure ECS Task Definition with CredentialSpec 61

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows-gmsa.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

 }
],
 ...
}

Using a load balancer with Windows Authentication

A typical architecture for a containerized ASP.NET application would involve ELB. A load balancer
automatically distributes incoming traffic across multiple targets such as EC2 instances, containers,
and IP addresses, in one or more Availability Zones. Windows Authentication requires that the
source port be preserved in the connection from the client to the server. A Network Load Balancer
with a TCP listener will preserve the source port for a load balanced connection. For that reason,
use a Network Load Balancer when using Windows Authentication.

This section covered how to enable users to sign in using their Active Directory domain credentials,
and how your applications can also utilize Active Directory service accounts to connect to network
resources, such as SQL Server databases. When running containers, you also must consider access
control to AWS resources that may occur during container related lifecycle activities. IAM helps you
securely control access granted to Amazon ECS, Amazon ECS container agent, and your application
during these events.

Authenticating with AWS services

Amazon ECS provides multiple levels to secure your applications and clusters using IAM while
containerized applications interact with other AWS services. The following diagram depicts the
types of roles Amazon ECS supports when using the EC2 launch type.

Types of roles Amazon ECS supports when using the EC2 launch type

Using a load balancer with Windows Authentication 62

Replatform .NET Applications with Windows Containers AWS Technical Guide

Service-linked role

There are multiple activities that the Amazon ECS runs while it orchestrates your container
workloads. Amazon ECS uses a service-linked role for the permissions it requires to call other AWS
services on your behalf. These include services such as Amazon EC2 to manage elastic network
interfaces, ELB to manage targets, and Amazon Route 53 for creating health checks. A more
detailed list can be found on the Service-linked role for Amazon ECS page.

Amazon ECS service-linked role architecture

Container instance role

The container instance role is the IAM role used as the Instance role by EC2 instances running
your containers. This role is also used by the Amazon ECS container agent to make calls to AWS
services and connect with the Amazon ECS to register container instances, report status, and get
commands. Other examples include the agent starting a telemetry session, or creating the Amazon
ECS cluster if one does not already exist. A more detailed list can be found on the Amazon ECS
container instance IAM role page.

Service-linked role 63

https://aws.amazon.com/route53/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/using-service-linked-roles.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

Container instance role architecture

Task execution role

The task execution role grants the Amazon ECS container agent permission to make AWS API calls
on your behalf when an Amazon ECS task is started. An example of an activity that the Amazon
ECS Agent runs during this time is pulling container images from a private repository, and private
registry authentication needs to be configured.

Another use case where this role is required is injecting sensitive data into your containers. You
might choose to store sensitive data (such as database connection strings) in either AWS Secrets
Manager or AWS Systems Manager Parameter Store, and reference them in your container
definition. Sensitive data is injected into your container as environment variables when the
container is initially started without having to write code to retrieve the values.

If the secret or Parameter Store parameter is subsequently updated or rotated, the container will
not receive the updated value automatically. Either launch a new task, or if your task is part of a
service, you can update the service and use the Force new deployment option to force the service
to launch a fresh task.

For Windows tasks that are configured to use the awslogs logging driver, set the
ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE environment variable on your container
instance. This can be done with user data using the following syntax:

Task execution role 64

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/Welcome.html#welcome-task-sched
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/private-auth.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task_execution_IAM_role.html#task-execution-secrets
https://aws.amazon.com/secrets-manager/
https://aws.amazon.com/secrets-manager/
https://docs.aws.amazon.com/systems-manager/latest/userguide/systems-manager-parameter-store.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

<PowerShell>
[Environment]::SetEnvironmentVariable("ECS_ENABLE_AWSLOGS_EXECUTIONROLE_OVERRIDE",
 $TRUE, "Machine")
Initialize-ECSAgent -Cluster '<cluster name>' -LoggingDrivers '["json-file","awslogs"]'
 -EnableTaskIAMRole
</PowerShell>

Task execution role architecture

Task role

The task role is the IAM role assigned to the Containers instances created as part of the Amazon
ECS task. This role provides applications using the AWS SDK or CLI the AWS credentials used to
make API requests to authorized AWS services. For example, you can set the policy associated with
the task role to allow your application to read/write items from or to DynamoDB, publish an event
to an EventBridge bus, or start an AWS Step Functions workflow.

One of the requirements that must be met to enable IAM roles for tasks on Windows is that the
EnableTaskIAMRole option be set when you launch an EC2 instance. This can be done by using a
user data script. For example:

<PowerShell>
Import-Module ECSTools
Initialize-ECSAgent -Cluster '<cluster name>' -EnableTaskIAMRole
</PowerShell>

Task role 65

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html
https://aws.amazon.com/step-functions/
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows_task_IAM_roles.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

Additionally, before containers can access the credential proxy on the container instance to get
credentials, the container instance must be bootstrapped with the required networking commands.
The following code example script should be run on your containers when they start.

$gateway = (Get-NetRoute | Where { $_.DestinationPrefix -eq '0.0.0.0/0' } | Sort-Object
 RouteMetric | Select NextHop).NextHop
$ifIndex = (Get-NetAdapter -InterfaceDescription "Hyper-V Virtual Ethernet*" | Sort-
Object | Select ifIndex).ifIndex
New-NetRoute -DestinationPrefix 169.254.170.2/32 -InterfaceIndex $ifIndex -NextHop
 $gateway # credentials API
New-NetRoute -DestinationPrefix 169.254.169.254/32 -InterfaceIndex $ifIndex -NextHop
 $gateway # metadata API

For a complete list of requirements, refer to the Windows IAM roles for tasks page on the Amazon
ECS Developer Guide.

Now that you know how to enable IAM roles for Amazon ECS Tasks on Windows, learn how your
application code can assume the role.

Task role architecture

AWS SDK for .NET credential loading

The AWS SDKs take the complexity out of coding by providing language-specific APIs for AWS
services. One of the ways the AWS SDK for .NET helps is by seamlessly loading the IAM credentials
at runtime. The AWS SDK for .NET searches for credentials in a certain order and uses the first

AWS SDK for .NET credential loading 66

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/windows_task_IAM_roles.html

Replatform .NET Applications with Windows Containers AWS Technical Guide

available set for the current application. In its simplest form, credential loading is transparent, as
can be seen by the following code example that lists the objects in an S3 bucket.

var s3Client = new AmazonS3Client();
var listRequest = new ListObjectsRequest
{
 BucketName = "SampleBucket",
};

ListObjectsResponse response = await s3Client.ListObjectsAsync(listRequest);

foreach (var item in response.S3Objects)
{
 Console.WriteLine("key = {0} size = {1}", item.Key, item.Size);
}

The parameterless constructors for AWS service clients (AmazonS3Client in this example) rely on
the FallbackCredentialsFactory to load the credentials using a well-known credential and profile
resolution order and includes support for Amazon ECS. This provides a frictionless developer
experience while still ensuring credentials remain secure.

This section covered the various IAM roles involved in a container’s lifecycle, including how to
securely retrieve temporary credentials using the AWS SDK for .NET. Your security journey does not
end here. Consider how to keep data secure both in transit and at rest.

In-flight data protection using encryption

By default, API calls to Amazon ECS travel through the public internet. To keep that traffic within
the AWS global network, you can configure Amazon ECS to use an interface VPC endpoint.
Interface endpoints are powered by AWS PrivateLink, a technology that enables you to privately
access Amazon ECS APIs by using private IP addresses. PrivateLink restricts all network traffic
between your VPC and Amazon ECS to the Amazon network. You don't need an internet gateway,
NAT device, or virtual private gateway.

You can create VPC endpoints for Amazon ECS, Amazon ECS container agent, and Amazon ECS
telemetry in the Region where your containers are deployed. VPC endpoints currently do not
support cross-Region requests, so if you have a multi-Region deployment, consider following the
recommendations in the Integrating cross VPC ECS cluster for enhanced security with AWS App
Mesh blog post. For more information on building a scalable multi-Region architecture in AWS,

In-flight data protection using encryption 67

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TFallbackCredentialsFactory.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/creds-assign.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/creds-assign.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html#ecs-setting-up-vpc-create
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html#ecs-setting-up-vpc-create
https://aws.amazon.com/blogs/containers/appmesh-integrating-cross-vpc-ecs-cluster-for-enhanced-security/
https://aws.amazon.com/blogs/containers/appmesh-integrating-cross-vpc-ecs-cluster-for-enhanced-security/

Replatform .NET Applications with Windows Containers AWS Technical Guide

refer to the Building a Scalable and Secure Multi-VPC AWS Network Infrastructure whitepaper. If
you are using Amazon ECS’ integration with Secrets Manager or Systems Manager Parameter Store
for sensitive data, you will also need to configure VPC endpoints for each of these services.

In addition to securing network traffic by restricting it to the AWS network, you can encrypt data
in transit between your application and AWS services by enforcing the use of TLS 1.2 when using
the AWS SDK for .NET. The following sections review the various approaches to using encryption in
transit for applications running on Amazon ECS.

TLS termination at the load balancer

It’s a best practice to enforce TLS termination at the load balancer and both Application Load
Balancers and Network Load Balancers support TLS termination. Terminating TLS connections at
the load balancer frees up your backend containers from the work of encrypting and decrypting
your traffic. Your containers handle plain HTTP requests while offloading the complexity of
managing HTTPS connections to the Load Balancers.

This approach also simplifies certificate management since the certificates are now deployed to the
load balancers instead of backend containers. Additionally, you can use AWS Certificate Manager
at no charge to securely store, expire, rotate, and update your certificates. This process involves
adding a TLS listener to your load balancer, configuring the backend container to listen on an
unencrypted port, such as part 80 (HTTP), and configuring the listener on the load balancer to
forward traffic to the unencrypted port used by your container. Refer to the TLS Termination for
Network Load Balancers blog post for more information.

TLS termination at Application Load Balancer

End-to-end encryption

Terminating TLS connections at the load balancer and using HTTP on the backend may be
sufficient for your application. However, if you are developing an application that needs to comply
with strict external regulations, you may be required to secure all network connections. You

TLS termination at the load balancer 68

https://d1.awsstatic.com/whitepapers/building-a-scalable-and-secure-multi-vpc-aws-network-infrastructure.pdf
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/vpc-endpoints.html#ecs-setting-up-secrets
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/enforcing-tls.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/enforcing-tls.html
https://aws.amazon.com/about-aws/whats-new/2019/01/network-load-balancer-now-supports-tls-termination/
https://aws.amazon.com/certificate-manager/
https://aws.amazon.com/blogs/aws/new-tls-termination-for-network-load-balancers/
https://aws.amazon.com/blogs/aws/new-tls-termination-for-network-load-balancers/

Replatform .NET Applications with Windows Containers AWS Technical Guide

can configure the load balancer to either pass TLS traffic through untouched (terminate TLS at
container), or decrypt and re-encrypt for end-to-end encryption.

Terminate TLS at the container level

This process involves adding an unencrypted listener to your load balancer, configuring backend
containers to listen on the secure port and terminate HTTPS connections, and configuring the
listener on the load balancer to forward traffic to the secure port used by the backend containers.

TLS termination at the container level

Decrypt and re-encrypt

This process involves adding a TLS listener to your load balancer, configuring backend containers
to listen on the secure port, terminate HTTPS connections, using a self-signed certificate, and
configuring the listener on the load balancer to forward traffic to the secure port used by the
backend containers.

Re-encrypt traffic using self-signed certificate

Terminate TLS at the container level 69

Replatform .NET Applications with Windows Containers AWS Technical Guide

Source code

The source code used in this guide is hosted on GitHub at aws-samples/dotnet-modernization-
music-store. The starting point for the replatforming walkthrough is the main branch that we
containerize and deploy to Amazon ECS using AWS App2Container.

70

https://github.com/aws-samples/dotnet-modernization-music-store/tree/main
https://github.com/aws-samples/dotnet-modernization-music-store/tree/main
https://github.com/aws-samples/dotnet-modernization-music-store

Replatform .NET Applications with Windows Containers AWS Technical Guide

Conclusion

This guide describes the business and technical aspects of replatforming an existing .NET
Framework application to Windows containers. Anyone tasked with evaluating modernization of
Windows applications can use this guide to better understand how to approach and complete a
replatforming strategy to accelerate innovation, lower TCO, and increase developer productivity for
their organization.

71

Replatform .NET Applications with Windows Containers AWS Technical Guide

Contributors

Contributors to this document include:

• Andy Hopper, Principal Solutions Architect, Amazon Web Services

• Carlos Santos, Sr. Solutions Architect, Amazon Web Services

• Marcio Morales, Sr. Solutions Architect, Amazon Web Services

• Neeraj Handa, Sr. Solutions Architect, Amazon Web Services

• Chris Splinter, Sr. Product Manager, Amazon Web Services

• Yuvraj Mehta, Sr. Product Manager, Amazon Web Services

72

Replatform .NET Applications with Windows Containers AWS Technical Guide

Document history

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Initial publication Whitepaper first published. January 4, 2022

Note

To subscribe to RSS updates, you must have an RSS plug-in enabled for the browser that
you are using.

73

Replatform .NET Applications with Windows Containers AWS Technical Guide

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

74

Replatform .NET Applications with Windows Containers AWS Technical Guide

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

75

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Replatform .NET Applications with Windows Containers
	Table of Contents
	Replatform .NET Applications with Windows Containers
	Overview
	Before you begin
	Understand your drivers
	Choosing container orchestration
	Tools and libraries

	Best practices
	Choosing a Windows Server version
	Treat container instances as ephemeral servers
	Use multi-stage builds for container images
	Caching layer strategy

	Cost considerations
	Cloud computing
	AWS pricing model
	AWS container services
	Cost comparison
	Summary by service

	Self-managed containers on Amazon EC2
	Operational costs (staffing)

	Architecture overview
	Walkthrough
	Prerequisites
	Deploy the AWS environment

	Connect to deployment
	Set up App2Container prerequisites
	Install and initialize App2Container
	Containerization
	Deployment

	Logging and monitoring
	Security
	Windows authentication
	Join the ECS instance (host) to the domain
	Configure a group Managed Service Account in the Active Directory domain
	Change your Dockerfile to support Windows authentication
	Create the CredentialSpec file
	Configure ECS Task Definition with CredentialSpec
	Using a load balancer with Windows Authentication
	Authenticating with AWS services
	Service-linked role
	Container instance role
	Task execution role
	Task role

	AWS SDK for .NET credential loading
	In-flight data protection using encryption
	TLS termination at the load balancer
	End-to-end encryption
	Terminate TLS at the container level
	Decrypt and re-encrypt

	Source code
	Conclusion
	Contributors
	Document history
	Notices
	AWS Glossary

