
AWS Whitepaper

Best Practices Design Patterns: Optimizing
Amazon S3 Performance

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Best Practices Design Patterns: Optimizing Amazon S3 Performance:
AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Table of Contents

Abstract .. 1
Abstract ... 1

Introduction ... 2
Performance Guidelines for Amazon S3 .. 4

Measure Performance .. 4
Scale Storage Connections Horizontally .. 4
Use Byte-Range Fetches ... 5
Retry Requests for Latency-Sensitive Applications ... 5
Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region 5
Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance 5
Use the Latest Version of the AWS SDKs .. 6

Performance Design Patterns for Amazon S3 ... 7
Using Caching for Frequently Accessed Content ... 7
Timeouts and Retries for Latency-Sensitive Applications .. 8
Horizontal Scaling and Request Parallelization for High Throughput ... 9
Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data
Transfers ... 10

Contributors ... 12
Document Revisions .. 13
Notices .. 14

iii

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Best Practices Design Patterns: Optimizing Amazon S3
Performance

Initial publication date: June 2019 (Document Revisions)

Abstract

When building applications that upload and retrieve storage from Amazon S3, follow the AWS best
practices guidelines to optimize performance. AWS also offers more detailed Performance Design
Patterns.

Abstract 1

https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-performance-design-patterns.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Introduction

Your applications can easily achieve thousands of transactions per second in request performance
when uploading and retrieving storage from Amazon S3. Amazon S3 automatically scales to high
request rates. For example, your application can achieve at least 3,500 PUT/COPY/POST/DELETE
and 5,500 GET/HEAD requests per second per prefix in a bucket. There are no limits to the number
of prefixes in a bucket. You can increase your read or write performance by parallelizing reads. For
example, if you create 10 prefixes in an Amazon S3 bucket to parallelize reads, you could scale your
read performance to 55,000 read requests per second.

Some data lake applications on Amazon S3 scan many millions or billions of objects for queries
that run over petabytes of data. These data lake applications achieve single- instance transfer rates
that maximize the network interface use for their Amazon EC2 instance, which can be up to 100
Gb/s on a single instance. These applications then aggregate throughput across multiple instances
to get multiple terabits per second.

Other applications are sensitive to latency, such as social media messaging applications. These
applications can achieve consistent small object latencies (and first- byte-out latencies for larger
objects) of roughly 100–200 milliseconds.

Other AWS services can also help accelerate performance for different application architectures.
For example, if you want higher transfer rates over a single HTTP connection or single-digit
millisecond latencies, use Amazon CloudFront or Amazon ElastiCache for caching with Amazon S3.

Additionally, if you want fast data transport over long distances between a client and an S3 bucket,
use Amazon S3 Transfer Acceleration. Transfer Acceleration uses the globally distributed edge
locations in CloudFront to accelerate data transport over geographical distances.

If your Amazon S3 workload uses server-side encryption with AWS Key Management Service (SSE-
KMS), see AWS KMS Limits in the AWS Key Management Service Developer Guide for information
about the request rates supported for your use case.

The following topics describe best practice guidelines and design patterns for optimizing
performance for applications that use Amazon S3.

This guidance supersedes any previous guidance on optimizing performance for Amazon S3. For
example, previously Amazon S3 performance guidelines recommended randomizing prefix naming
with hashed characters to optimize performance for frequent data retrievals. You no longer have

2

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
https://docs.aws.amazon.com/kms/latest/developerguide/limits.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

to randomize prefix naming for performance, and can use sequential date-based naming for your
prefixes. Refer to Performance Guidelines and Performance Design Patterns for the most current
information about performance optimization for Amazon S3.

3

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Performance Guidelines for Amazon S3

To obtain the best performance for your application on Amazon S3, AWS recommends the
following guidelines.

Topics

• Measure Performance

• Scale Storage Connections Horizontally

• Use Byte-Range Fetches

• Retry Requests for Latency-Sensitive Applications

• Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region

• Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance

• Use the Latest Version of the AWS SDKs

Measure Performance

When optimizing performance, look at network throughput, CPU, and Dynamic Random Access
Memory (DRAM) requirements. Depending on the mix of demands for these different resources,
it might be worth evaluating different Amazon EC2 instance types. For more information about
instance types, see Instance Types in the Amazon EC2 User Guide for Linux Instances.

It’s also helpful to look at DNS lookup time, latency, and data transfer speed using HTTP analysis
tools when measuring performance.

Scale Storage Connections Horizontally

Spreading requests across many connections is a common design pattern to horizontally scale
performance. When you build high performance applications, think of Amazon S3 as a very large
distributed system, not as a single network endpoint like a traditional storage server. You can
achieve the best performance by issuing multiple concurrent requests to Amazon S3. Spread
these requests over separate connections to maximize the accessible bandwidth from Amazon S3.
Amazon S3 doesn't have any limits for the number of connections made to your bucket.

Measure Performance 4

https://docs.aws.amazon.com/ec2/index.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Use Byte-Range Fetches

Using the Range HTTP header in a GET Object request, you can fetch a byte-range from an
object, transferring only the specified portion. You can use concurrent connections to Amazon
S3 to fetch different byte ranges from within the same object. This helps you achieve higher
aggregate throughput versus a single whole-object request. Fetching smaller ranges of a large
object also allows your application to improve retry times when requests are interrupted. For more
information, see Getting Objects.

Typical sizes for byte-range requests are 8 MB or 16 MB. If objects are PUT using a multipart
upload, it’s a good practice to GET them in the same part sizes (or at least aligned to part
boundaries) for best performance. GET requests can directly address individual parts; for example,
GET ?partNumber=N.

Retry Requests for Latency-Sensitive Applications

Aggressive timeouts and retries help drive consistent latency. Given the large scale of Amazon S3, if
the first request is slow, a retried request is likely to take a different path and quickly succeed. The
AWS SDKs have configurable timeout and retry values that you can tune to the tolerances of your
specific application.

Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in
the Same AWS Region

Although S3 bucket names are globally unique, each bucket is stored in a Region that you select
when you create the bucket. To optimize performance, we recommend that you access the bucket
from Amazon EC2 instances in the same AWS Region when possible. This helps reduce network
latency and data transfer costs.

For more information about data transfer costs, see Amazon S3 Pricing.

Use Amazon S3 Transfer Acceleration to Minimize Latency
Caused by Distance

Amazon S3 Transfer Acceleration manages fast, easy, and secure transfers of files over long
geographic distances between the client and an S3 bucket. Transfer Acceleration takes advantage

Use Byte-Range Fetches 5

https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/GettingObjectsUsingAPIs.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingBucket.html
https://aws.amazon.com/s3/pricing/
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

of the globally distributed edge locations in Amazon CloudFront. As the data arrives at an edge
location, it is routed to Amazon S3 over an optimized network path. Transfer Acceleration is ideal
for transferring gigabytes to terabytes of data regularly across continents. It's also useful for clients
that upload to a centralized bucket from all over the world.

You can use the Amazon S3 Transfer Acceleration Speed Comparison tool to compare accelerated
and non-accelerated upload speeds across Amazon S3 Regions. The Speed Comparison tool uses
multipart uploads to transfer a file from your browser to various Amazon S3 Regions with and
without using Amazon S3 Transfer Acceleration.

Use the Latest Version of the AWS SDKs

The AWS SDKs provide built-in support for many of the recommended guidelines for optimizing
Amazon S3 performance. The SDKs provide a simpler API for taking advantage of Amazon S3 from
within an application and are regularly updated to follow the latest best practices. For example, the
SDKs include logic to automatically retry requests on HTTP 503 errors and are investing in code to
respond and adapt to slow connections.

The SDKs also provide the Transfer Manager, which automates horizontally scaling connections
to achieve thousands of requests per second, using byte-range requests where appropriate. It’s
important to use the latest version of the AWS SDKs to obtain the latest performance optimization
features.

You can also optimize performance when you are using HTTP REST API requests. When using the
REST API, you should follow the same best practices that are part of the SDKs. Allow for timeouts
and retries on slow requests, and multiple connections to allow fetching of object data in parallel.
For information about using the REST API, see the Amazon Simple Storage Service API Reference.

Use the Latest Version of the AWS SDKs 6

https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html#transfer-acceleration-why-use
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html
https://docs.aws.amazon.com/AmazonS3/latest/API/

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Performance Design Patterns for Amazon S3

When designing applications to upload and retrieve storage from Amazon S3, use our best
practices design patterns for achieving the best performance for your application. We also offer
Performance Guidelines for you to consider when planning your application architecture.

To optimize performance, you can use the following design patterns.

Topics

• Using Caching for Frequently Accessed Content

• Timeouts and Retries for Latency-Sensitive Applications

• Horizontal Scaling and Request Parallelization for High Throughput

• Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data Transfers

Using Caching for Frequently Accessed Content

Many applications that store data in Amazon S3 serve a “working set” of data that is repeatedly
requested by users. If a workload is sending repeated GET requests for a common set of objects,
you can use a cache such as Amazon CloudFront, Amazon ElastiCache, or AWS Elemental
MediaStore to optimize performance. Successful cache adoption can result in low latency and high
data transfer rates. Applications that use caching also send fewer direct requests to Amazon S3,
which can help reduce request costs.

Amazon CloudFront is a fast content delivery network (CDN) that transparently caches data from
Amazon S3 in a large set of geographically distributed points of presence (PoPs). When objects
might be accessed from multiple Regions, or over the internet, CloudFront allows data to be cached
close to the users that are accessing the objects. This can result in high performance delivery
of popular Amazon S3 content. For information about CloudFront, see the Amazon CloudFront
Developer Guide.

Amazon ElastiCache is a managed, in-memory cache. With ElastiCache, you can provision Amazon
EC2 instances that cache objects in memory. This caching results in orders of magnitude reduction
in GET latency and substantial increases in download throughput. To use ElastiCache, you modify
application logic to both populate the cache with hot objects and check the cache for hot objects
before requesting them from Amazon S3. For examples of using ElastiCache to improve Amazon S3
GET performance, see the blog post Turbocharge Amazon S3 with Amazon ElastiCache (Redis OSS).

Using Caching for Frequently Accessed Content 7

https://docs.aws.amazon.com/AmazonS3/latest/dev/optimizing-perforance-guidelines.html
https://docs.aws.amazon.com/cloudfront/index.html
https://docs.aws.amazon.com/elasticache/index.html
https://docs.aws.amazon.com/mediastore/index.html
https://docs.aws.amazon.com/mediastore/index.html
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://docs.aws.amazon.com/AmazonCloudFront/latest/DeveloperGuide/
https://aws.amazon.com/blogs/storage/turbocharge-amazon-s3-with-amazon-elasticache-for-redis/

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

AWS Elemental MediaStore is a caching and content distribution system specifically built for
video workflows and media delivery from Amazon S3. MediaStore provides end-to-end storage
APIs specifically for video, and is recommended for performance- sensitive video workloads. For
information about MediaStore, see the AWS Elemental MediaStore User Guide.

Timeouts and Retries for Latency-Sensitive Applications

There are certain situations where an application receives a response from Amazon S3 indicating
that a retry is necessary. Amazon S3 maps bucket and object names to the object data associated
with them. If an application generates high request rates (typically sustained rates of over 5,000
requests per second to a small number of objects), it might receive HTTP 503 slowdown responses.
If these errors occur, each AWS SDK implements automatic retry logic using exponential backoff.
If you are not using an AWS SDK, you should implement retry logic when receiving the HTTP 503
error. For information about back-off techniques, see Error Retries and Exponential Backoff in AWS
in the Amazon Web Services General Reference.

Amazon S3 automatically scales in response to sustained new request rates, dynamically
optimizing performance. While Amazon S3 is internally optimizing for a new request rate, you will
receive HTTP 503 request responses temporarily until the optimization completes. After Amazon
S3 internally optimizes performance for the new request rate, all requests are generally served
without retries.

For latency-sensitive applications, Amazon S3 advises tracking and aggressively retrying slower
operations. When you retry a request, we recommend using a new connection to Amazon S3 and
performing a fresh DNS lookup.

When you make large variably sized requests (for example, more than 128 MB), we advise tracking
the throughput being achieved and retrying the slowest 5 percent of the requests. When you
make smaller requests (for example, less than 512 KB), where median latencies are often in the
tens of milliseconds range, a good guideline is to retry a GET or PUT operation after 2 seconds. If
additional retries are needed, the best practice is to back off. For example, we recommend issuing
one retry after 2 seconds and a second retry after an additional 4 seconds.

If your application makes fixed-size requests to Amazon S3, you should expect more consistent
response times for each of these requests. In this case, a simple strategy is to identify the slowest
1 percent of requests and to retry them. Even a single retry is frequently effective at reducing
latency.

Timeouts and Retries for Latency-Sensitive Applications 8

https://docs.aws.amazon.com/mediastore/latest/ug/
https://docs.aws.amazon.com/general/latest/gr/api-retries.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

If you are using AWS Key Management Service (AWS KMS) for server-side encryption, see Quotas in
the AWS Key Management Service Developer Guide for information about the request rates that are
supported for your use case.

Horizontal Scaling and Request Parallelization for High
Throughput

Amazon S3 is a very large distributed system. To help you take advantage of its scale, we
encourage you to horizontally scale parallel requests to the Amazon S3 service endpoints. In
addition to distributing the requests within Amazon S3, this type of scaling approach helps
distribute the load over multiple paths through the network.

For high-throughput transfers, Amazon S3 advises using applications that use multiple connections
to GET or PUT data in parallel. For example, this is supported by Amazon S3 Transfer Manager
in the AWS Java SDK, and most of the other AWS SDKs provide similar constructs. For some
applications, you can achieve parallel connections by launching multiple requests concurrently
in different application threads, or in different application instances. The best approach to take
depends on your application and the structure of the objects that you are accessing.

You can use the AWS SDKs to issue GET and PUT requests directly rather than employing the
management of transfers in the AWS SDK. This approach lets you tune your workload more
directly, while still benefiting from the SDK’s support for retries and its handling of any HTTP 503
responses that might occur. As a general rule, when you download large objects within a Region
from Amazon S3 to Amazon EC2, we suggest making concurrent requests for byte ranges of an
object at the granularity of 8–16 MB. Make one concurrent request for each 85–90 MB/s of desired
network throughput. To saturate a 10 Gb/s network interface card (NIC), you might use about 15
concurrent requests over separate connections. You can scale up the concurrent requests over more
connections to saturate faster NICs, such as 25 Gb/s or 100 Gb/s NICs.

Measuring performance is important when you tune the number of requests to issue concurrently.
We recommend starting with a single request at a time. Measure the network bandwidth being
achieved and the use of other resources that your application uses in processing the data. You
can then identify the bottleneck resource (that is, the resource with the highest usage), and hence
the number of requests that are likely to be useful. For example, if processing one request at a
time leads to a CPU usage of 25 percent, it suggests that up to four concurrent requests can be
accommodated.

Measurement is essential, and it is worth confirming resource use as the request rate is increased.

Horizontal Scaling and Request Parallelization for High Throughput 9

https://docs.aws.amazon.com/kms/latest/developerguide/limits.html
https://docs.aws.amazon.com/sdk-for-java/v1/developer-guide/examples-s3-transfermanager.html
https://docs.aws.amazon.com/ec2/index.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

If your application issues requests directly to Amazon S3 using the REST API, we recommend using
a pool of HTTP connections and re-using each connection for a series of requests. Avoiding per-
request connection setup removes the need to perform TCP slow-start and Secure Sockets Layer
(SSL) handshakes on each request. For information about using the REST API, see the Amazon S3
REST API Introduction.

Finally, it’s worth paying attention to DNS and double-checking that requests are being spread over
a wide pool of Amazon S3 IP addresses. DNS queries for Amazon S3 cycle through a large list of IP
endpoints. But caching resolvers or application code that reuses a single IP address do not benefit
from address diversity and the load balancing that follows from it. Network utility tools such as
the netstat command line tool can show the IP addresses being used for communication with
Amazon S3, and we provide guidelines for DNS configurations to use. For more information about
these guidelines, see Request routing.

Using Amazon S3 Transfer Acceleration to Accelerate
Geographically Disparate Data Transfers

Amazon S3 Transfer Acceleration is effective at minimizing or eliminating the latency caused by
geographic distance between globally dispersed clients and a regional application using Amazon
S3. Transfer Acceleration uses the globally distributed edge locations in CloudFront for data
transport. The AWS edge network has points of presence in more than 50 locations. Today, it is
used to distribute content through CloudFront and to provide rapid responses to DNS queries made
to Amazon Route 53.

The edge network also helps to accelerate data transfers into and out of Amazon S3. It is ideal for
applications that transfer data across or between continents, have a fast internet connection, use
large objects, or have a lot of content to upload. As the data arrives at an edge location, data is
routed to Amazon S3 over an optimized network path. In general, the farther away you are from
an Amazon S3 Region, the higher the speed improvement you can expect from using Transfer
Acceleration.

You can set up Transfer Acceleration on new or existing buckets. You can use a separate Amazon
S3 Transfer Acceleration endpoint to use the AWS edge locations. The best way to test whether
Transfer Acceleration helps client request performance is to use the Amazon S3 Transfer
Acceleration Speed Comparison tool. Network configurations and conditions vary from time
to time and from location to location. So, you are charged only for transfers where Amazon
S3 Transfer Acceleration can potentially improve your upload performance. For information

Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data Transfers 10

https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/API/
https://docs.aws.amazon.com/AmazonS3/latest/dev/DNSConsiderations.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html
https://docs.aws.amazon.com/route53/index.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html#transfer-acceleration-why-use
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration.html#transfer-acceleration-why-use

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

about using Transfer Acceleration with different AWS SDKs, see Amazon S3 Transfer Acceleration
Examples.

Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data Transfers 11

https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/transfer-acceleration-examples.html

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Contributors

Contributors to this document include:

• Mai-Lan Tomsen Bukovec, VP, Amazon S3

• Andy Warfield, Senior Principal Engineer, Amazon S3

• Tim Harris, Principal Engineer, Amazon S3

12

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Document Revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Updated Reviewed for technical
accuracy

March 10, 2021

Initial publication Initial publication June 1, 2019

13

Best Practices Design Patterns: Optimizing Amazon S3 Performance AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

14

	Best Practices Design Patterns: Optimizing Amazon S3 Performance
	Table of Contents
	Best Practices Design Patterns: Optimizing Amazon S3 Performance
	Abstract

	Introduction
	Performance Guidelines for Amazon S3
	Measure Performance
	Scale Storage Connections Horizontally
	Use Byte-Range Fetches
	Retry Requests for Latency-Sensitive Applications
	Combine Amazon S3 (Storage) and Amazon EC2 (Compute) in the Same AWS Region
	Use Amazon S3 Transfer Acceleration to Minimize Latency Caused by Distance
	Use the Latest Version of the AWS SDKs

	Performance Design Patterns for Amazon S3
	Using Caching for Frequently Accessed Content
	Timeouts and Retries for Latency-Sensitive Applications
	Horizontal Scaling and Request Parallelization for High Throughput
	Using Amazon S3 Transfer Acceleration to Accelerate Geographically Disparate Data Transfers

	Contributors
	Document Revisions
	Notices

