
Security Overview
of AWS Lambda

AWS Whitepaper

Security Overview of AWS Lambda AWS Whitepaper

Security Overview of AWS Lambda: AWS Whitepaper
Copyright © 2023 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Security Overview of AWS Lambda AWS Whitepaper

Table of Contents
Abstract and introduction i

Abstract ... 1
Are you Well-Architected? 1
Introduction 1

Benefits of Lambda 3
No servers to manage 3
Continuous scaling 3
Millisecond metering 3
Increases innovation 3
Modernize your applications 3
Support for developers ... 3

The Shared Responsibility Model ... 5
Data privacy 5
Security at rest ... 5
Security in transit ... 6
Operational security ... 6
Vulnerability management 6
Trusted code execution 6

Lambda functions and layers ... 8
Lambda invoke modes 9
Lambda executions 11

Lambda execution environments 11
Execution role 12
Lambda MicroVMs and Workers ... 12

Lambda isolation technologies 15
Storage and state 15

Runtime maintenance in Lambda 17
Monitoring and auditing Lambda functions 18

Amazon CloudWatch 18
Amazon CloudTrail .. 18
AWS X-Ray 18
AWS Config 18

Architecting and operating Lambda functions 19
Lambda and compliance 20
Lambda event sources 21
Conclusion 22
Contributors ... 23
Further reading 24
Document revisions 25
Notices 26
AWS glossary 27

iii

Security Overview of AWS Lambda AWS Whitepaper
Abstract

Security Overview of AWS Lambda
Publication date: December 27, 2022 (Document revisions (p. 25))

Abstract
This whitepaper presents a deep dive of the AWS Lambda service through a security lens. It provides a
well-rounded picture of the service, which is useful for new adopters, and deepens understanding of
Lambda for current users.

This whitepaper is intended for Chief Information Security Officers (CISOs), information security
engineers, enterprise architects, compliance teams, and any others interested in understanding the
underpinnings of AWS Lambda.

Are you Well-Architected?
The AWS Well-Architected Framework helps you understand the pros and cons of the decisions you make
when building systems in the cloud. The six pillars of the Framework allow you to learn architectural best
practices for designing and operating reliable, secure, efficient, cost-effective, and sustainable systems.
Using the AWS Well-Architected Tool, available at no charge in the AWS Management Console, you can
review your workloads against these best practices by answering a set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Introduction
AWS Lambda is an event-driven, serverless compute service that extends other AWS services with custom
logic, or creates other backend services that operate with scale, performance, and security. Lambda
can automatically run code in response to multiple events, such as HTTP requests through Amazon
API Gateway or function URL, modifications to objects in Amazon Simple Storage Service (Amazon S3)
buckets, table updates in Amazon DynamoDB, messages in Amazon Simple Queue Service (Amazon
SQS) notifications in Amazon Simple Notification Service (Amazon SNS), streaming data in Amazon
Kinesis, events or logs in Amazon CloudWatch, events in Amazon EventBridge and state transitions in
AWS Step Functions. You can also run code directly from any web or mobile app. Lambda runs code
on a highly available compute infrastructure and performs all the administration of the underlying
platform, including server and operating system maintenance, capacity provisioning and automatic
scaling, patching, code monitoring, and logging.

With Lambda, you can just upload your code and configure when to invoke it; Lambda takes care of
everything else required to run your code with high availability. Lambda integrates with many other AWS
services and enables you to create serverless applications or backend services, ranging from periodically
initiated, simple automation tasks to full-fledged microservices applications.

Lambda can also be configured to access resources within your Amazon Virtual Private Cloud, and by
extension, your on-premises resources.

You can easily wrap up Lambda with a strong security posture using AWS Identity and Access
Management (IAM), and other techniques discussed in this whitepaper to maintain a high level of
security and auditing, and to meet your compliance needs.

1

http://aws.amazon.com/lambda/
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html
http://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
http://aws.amazon.com/architecture/
http://aws.amazon.com/lambda/
http://aws.amazon.com/serverless/
http://aws.amazon.com/api-gateway/
http://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html
http://aws.amazon.com/s3/
http://aws.amazon.com/dynamodb/
http://aws.amazon.com/sqs/
http://aws.amazon.com/sns/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/kinesis/
http://aws.amazon.com/cloudwatch/
http://aws.amazon.com/eventbridge/
http://aws.amazon.com/step-functions/
http://aws.amazon.com/vpc/
http://aws.amazon.com/iam/
http://aws.amazon.com/iam/

Security Overview of AWS Lambda AWS Whitepaper
Introduction

The managed runtime environment model enables Lambda to manage much of the implementation
details of running serverless workloads. This model further reduces the attack surface while making
cloud security simpler. This whitepaper presents the underpinnings of that model, along with best
practices, to developers, security analysts, security and compliance teams, and other stakeholders.

2

https://software.intel.com/content/www/us/en/develop/articles/what-managed-runtime-environments-mrtes-mean-to-you.html

Security Overview of AWS Lambda AWS Whitepaper
No servers to manage

Benefits of Lambda
Customers who want to increase the creativity and speed of their development organizations without
compromising their IT team’s ability to provide a scalable, cost-effective, and manageable infrastructure
find that AWS Lambda enables them to trade operational complexity for agility and better pricing,
without compromising on scale or reliability.

Lambda offers many benefits, including the following:

No servers to manage
Lambda runs your code on highly available, fault-tolerant infrastructure spread across multiple
Availability Zones (AZs) in a single Region, seamlessly deploying code, and providing all the
administration, maintenance, and patches of the infrastructure. Lambda also provides built-in logging
and monitoring, including integration with Amazon CloudWatch, CloudWatch Logs, and AWS CloudTrail.

Continuous scaling
Lambda precisely manages scaling of your functions (or application) by running event initiated code in
parallel and processing each event individually.

Millisecond metering
With AWS Lambda, you are charged for every millisecond (ms) your code runs, and the number of times
your code is run. You pay for consistent throughput or run duration, instead of by server unit.

Increases innovation
Lambda frees up your programming resources by taking over the infrastructure management, allowing
you to focus more on innovation and development of business logic.

Modernize your applications
Lambda enables you to use functions with pre-trained machine learning (ML) models to inject artificial
intelligence into applications more easily. A single application programming interface (API) request can
classify images, analyze videos, convert speech to text, perform natural language processing, and more.

Support for developers
Lambda supports developers through the AWS Serverless Application Repository for discovering,
deploying, and publishing serverless applications; AWS Serverless Application Model for building
serverless applications and integrations with various integrated development environments (IDEs) (such

3

https://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Concepts.RegionsAndAvailabilityZones.html
http://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatchLogs/latest/APIReference/Welcome.html
http://aws.amazon.com/cloudtrail/
http://aws.amazon.com/serverless/serverlessrepo/
http://aws.amazon.com/serverless/sam/

Security Overview of AWS Lambda AWS Whitepaper
Support for developers

as AWS Cloud9, AWS Toolkit for Visual Studio, AWS Toolkits for Azure DevOps, and several others).
For more information, refer to AWS Toolkits for PyCharm, IntelliJ, and Visual Studio Code. Lambda is
integrated with additional AWS services to empower you to take advantage of the breadth and depth of
AWS when building serverless applications.

4

http://aws.amazon.com/cloud9/
http://aws.amazon.com/visualstudio/
http://aws.amazon.com/vsts/
http://aws.amazon.com/blogs/aws/new-aws-toolkits-for-pycharm-intellij-preview-and-visual-studio-code-preview/
https://docs.aws.amazon.com/lambda/latest/dg/invoking-lambda-function.html

Security Overview of AWS Lambda AWS Whitepaper
Data privacy

The Shared Responsibility Model
Security and Compliance is a shared responsibility between AWS and the customer. This shared
responsibility model can help relieve your operational burden, as AWS operates, manages, and controls
the components from the host operating system and virtualization layer, down to the physical security of
the facilities in which the service operates.

For AWS Lambda, AWS manages the underlying infrastructure and foundation services, the operating
system, and the application platform. You are responsible for the security of your code and AWS IAM to
the Lambda service and within your function.

The following figure shows the shared responsibility model as it applies to the common and distinct
components of AWS Lambda. AWS responsibilities appear below the dotted line in orange, and customer
responsibilities appear above the dotted line in blue.

Shared responsibility model for AWS Lambda

Data privacy
Lambda follows strict policies to protect customer privacy and confidentiality. Our customer data
handling policies restrict AWS employees from accessing customer content for any reason except those
authorized by the customer to support their investigation or to comply with a valid and binding law
enforcement request. Encryption at rest, customer managed AWS Key Management Service (AWS KMS)
key, encryption in transit, access control, General Data Protection Regulation (GDPR) compliance and
human access prevention are some examples of mechanisms employed by Lambda to protect customer
content.

Security at rest
Databases and storage systems used by Lambda are encrypted following the AWS best practices
guidelines. When applicable, Lambda-managed AWS KMS keys (KMS keys) in the customer account are
used to offer better traceability. The option to use customer-managed KMS keys is also provided for

5

http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/kms/
http://aws.amazon.com/compliance/gdpr-center/
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#kms_keys

Security Overview of AWS Lambda AWS Whitepaper
Security in transit

sensitive customer content. Refer to Customer keys and AWS keys for information about different key
management schemes provided by AWS KMS. For example, function runtime environment variables
are secured by encryption using a Lambda-managed KMS key (named aws/lambda) in the customer’s
account. You can optionally provide a per-function KMS key to Lambda for encrypting those variables.
This customer managed KMS key can be configured using the CreateFunction API during function
creation time, or later using UpdateFunctionConfiguration API. For more information, refer to
Securing environment variables.

Lambda functions deployed as container images are encrypted using an AWS Lambda-managed
KMS key. If a customer-managed KMS key is provided through the CreateFunction or
UpdateFunctionConfiguration APIs, that key is used instead of a Lambda-managed KMS key. When
the function container images are stored in Amazon Elastic Container Registry (Amazon ECR), customers
are responsible for protecting their images in ECR.

AWS X-Ray also encrypts data by default, and can be configured to use a customer-managed key. For
details, refer to Encrypt log data in CloudWatch Logs using AWS Key Management Service and Data
protection in AWS X-Ray.

Customer content, both ongoing and historical, is deleted by Lambda after account closure based on
the AWS data retention and deletion policy. Customers can also delete their data (including backups).
To delete the Lambda function, use DeleteFunction. To delete Lambda event source mappings that
invoke a function, use DeleteEventSourceMapping.

Security in transit
Lambda uses Transport Layer Security (TLS) 1.2+ for all public APIs. All communications are protected
by TLS 1.2+ when you manage Lambda resources through the AWS Management Console, the AWS
SDK, or the Lambda API. Internal communications are also secured by TLS unless the payload is already
encrypted. Customers can connect their functions to file systems; Lambda uses encryption in transit for
all connections. For more information, refer to Configuring file system access for Lambda functions.

Operational security
The Lambda service platform runs on Amazon Elastic Compute Cloud (Amazon EC2) instances based on
AWS Nitro System, which provides enhanced security by continuous monitoring and a reduced attack
surface by offloading virtualization and security functions to dedicated hardware and software. For
customer privacy, human access is disabled on hosts running customers’ Lambda functions. Access to
hosts running Lambda services for operational purposes is controlled by multi-layer access controls,
logging, monitoring, and audit.

Vulnerability management
Code releases go through security review and penetration testing. All technology stacks are regularly
scanned for vulnerabilities. An annual red team security testing and assessment is performed as an
additional security validation step.

Trusted code execution
Lambda provides a code signing feature to ensure only trusted code is run in your Lambda function.
When you enable code signing for a function, Lambda verifies (during every code deployment) that

6

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-mgmt
https://docs.aws.amazon.com/lambda/latest/dg/API_CreateFunction.html
https://docs.aws.amazon.com/lambda/latest/dg/API_UpdateFunctionConfiguration.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-envvars.html#configuration-envvars-encryption
https://docs.aws.amazon.com/lambda/latest/dg/images-create.html
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-mgmt
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#key-mgmt
http://aws.amazon.com/ecr/
https://docs.aws.amazon.com/AmazonECR/latest/userguide/encryption-at-rest.html
http://aws.amazon.com/xray/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/encrypt-log-data-kms.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-encryption.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-encryption.html
https://docs.aws.amazon.com/lambda/latest/dg/API_DeleteFunction.html
https://docs.aws.amazon.com/lambda/latest/dg/API_DeleteEventSourceMapping.html
http://aws.amazon.com/console/
http://aws.amazon.com/developer/tools/
http://aws.amazon.com/developer/tools/
https://docs.aws.amazon.com/lambda/latest/dg/API_Reference.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-filesystem.html
http://aws.amazon.com/ec2/
http://aws.amazon.com/ec2/nitro
https://csrc.nist.gov/glossary/term/red_team

Security Overview of AWS Lambda AWS Whitepaper
Trusted code execution

the code package is signed by a trusted source, the code has not been altered, and the signature has
not expired or been revoked. For information about how to use code signing, refer to Configuring code
signing for AWS Lambda.

7

https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-codesigning.html

Security Overview of AWS Lambda AWS Whitepaper

Lambda functions and layers
With Lambda, you can run code virtually with zero administration of the underlying infrastructure. You
are responsible only for the code that you provide Lambda, and the configuration of how Lambda runs
that code on your behalf. Today, Lambda supports two types of code resources: functions and layers.

A function is a resource which can be invoked to run your code in Lambda. A function can include a
common or shared resource called Layers. Layers can be used to share common code or data across
different functions or AWS accounts. You are responsible for the management of all the code contained
within your functions or layers. When Lambda receives the function or layer code from a customer,
Lambda protects access to it by encrypting it at rest using AWS KMS, and in-transit by using TLS 1.2+.

You can manage access to your functions and layers through AWS Lambda policies, or through resource-
based permissions. For a full list of supported IAM features, refer to AWS services that work with IAM.
The attribute-based access control (ABAC) in Lambda lets you control access to your function using tags
attached to Lambda functions. Refer to attribute-based access control for Lambda for more information.

You can also control the entire lifecycle of your functions and layers through Lambda's control plane
APIs. For example, you can choose to delete your function by calling DeleteFunction, or revoke
permissions from another account by calling RemovePermission.

8

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/lambda/latest/dg/attribute-based-access-control.html
https://alpha.www.docs.aws.a2z.com/lambda/latest/dg/API_DeleteFunction.html
https://alpha.www.docs.aws.a2z.com/lambda/latest/dg/API_RemovePermission.html

Security Overview of AWS Lambda AWS Whitepaper

Lambda invoke modes
The Invoke API can be called in two modes: event mode and request-response mode.

• Event mode queues the payload for an asynchronous invocation.
• Request-response mode synchronously invokes the function with the provided payload and returns a

response immediately.

In both cases, the function execution is always performed in a Lambda execution environment, but the
payload takes different paths. For more information, refer to Lambda execution environments (p. 11) in
this document.

You can also use other AWS services that perform invocations on your behalf. Which invoke mode is used
depends on which AWS service you are using, and how it is configured. For additional information on
how other AWS services integrate with Lambda, refer to Using AWS Lambda with other services.

When Lambda receives a request-response invoke, it is passed to the invoke service directly. If the invoke
service is unavailable, callers may temporarily queue the payload client-side to retry the invocation a
set number of times. If the invoke service receives the payload, the service then attempts to identify an
available execution environment for the request and passes the payload to that execution environment
to complete the invocation. If no existing or appropriate execution environments exist, one will be
dynamically created in response to the request. While in transit, invoke payloads sent to the invoke
service are secured with TLS 1.2+. Traffic within the Lambda service (from the load balancer down)
passes through an isolated internal virtual private cloud (VPC), owned by the Lambda service, within the
AWS Region to which the request was sent.

Invocation model for AWS Lambda request-response

Eventinvocation mode payloads are always queued for processing before invocation. All payloads are
queued for processing in an Amazon SQS queue. Queued events are always secured in-transit with TLS
1.2+, and are encrypted at rest using Server-Side-Encryption (SSE). The Amazon SQS queues used by
Lambda are managed by the Lambda service, and are not visible to you as a customer. Queued events
can be stored in a shared queue but may be migrated or assigned to dedicated queues depending on a
number of factors that cannot be directly controlled by customers (for example, rate of invoke, size of
events, and so on).

Queued events are retrieved in batches by Lambda’s poller fleet. The poller fleet is a group of Amazon
EC2 instances whose purpose is to process queued event invocations which have not yet been processed.
When the poller fleet retrieves a queued event that it needs to process, it does so by passing it to the
invoke service just like a customer would in a request-response mode invoke.

If the invocation cannot be performed, the poller fleet will temporarily store the event, in-memory, on
the host until it is either able to successfully complete the execution, or until the number of run retry

9

https://docs.aws.amazon.com/lambda/latest/dg/API_Invoke.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-context.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html

Security Overview of AWS Lambda AWS Whitepaper

attempts have been exceeded. No payload data is ever written to disk on the poller fleet itself. The
polling fleet can be tasked across AWS customers, allowing for the shortest time to invocation. For more
information about which services may take the event invocation mode, refer to Using AWS Lambda with
other services.

When an event fails all processing attempts, it is discarded by Lambda. The dead letter queue (DLQ)
feature allows sending unprocessed events from asynchronous invocations to an Amazon SQS queue
or an Amazon SNS topic defined by the customer. Enabling DLQ can help you to analyze unprocessed
events or to define a workflow to reprocess them. For more information, refer to Dead-letter queues.

Lambda also supports function URLs, a built-in HTTPS endpoint for invoking functions. This provides
developers with a simple way to configure HTTPS endpoints to a function without having to configure
Amazon API Gateway and Application Load Balancer (ALB). Function URLs do not support AWS WAF; if
you need WAF, use API Gateway instead. For more information, refer to Lambda function URLs.

10

https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-services.html
https://docs.aws.amazon.com/lambda/latest/dg/invocation-async.html#invocation-dlq
http://aws.amazon.com/apigateway
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-urls.html

Security Overview of AWS Lambda AWS Whitepaper
Lambda execution environments

Lambda executions

When Lambda runs a function on your behalf, it manages both provisioning and configuring the
underlying systems necessary to run your code. This enables your developers to focus on business logic
and writing code, not administering and managing underlying systems.

The Lambda service is split into the control plane and the data plane. Each plane serves a
distinct purpose in the service. The control plane provides the management APIs (for example,
CreateFunction, UpdateFunctionCode, PublishLayerVersion, and so on), and manages
integrations with all AWS services. Communications to the Lambda control plane are protected in-transit
by TLS. Customer content stored within Lambda's control plane is encrypted at rest using AWS KMS keys,
which are designed to protect the content from unauthorized disclosure or tampering.

The data plane is Lambda's invoke API that cues the invocation of Lambda functions. When a Lambda
function is invoked, the data plane allocates an execution environment on an AWS Lambda Worker (or
simply worker, a type of Amazon EC2 instance) to that function version, or chooses an existing execution
environment that has already been set up for that function version, which it then uses to complete the
invocation. For more information, refer to the AWS Lambda MicroVMs and Workers (p. 12) section of
this document.

Lambda execution environments
Each invocation is routed by Lambda's invoke service to an execution environment on a Worker that can
service the request. Other than through data plane, customers and other users cannot directly initiate
inbound/ingress network communications with an execution environment. This helps to ensure that
communications to your execution environment are authenticated and authorized.

Execution environments are reserved for a specific function version and cannot be reused across function
versions, functions, or AWS accounts. This means a single function which may have two different versions
would result in at least two unique execution environments.

Each execution environment may only be used for one concurrent invocation at a time, and they may
be reused across multiple invocations of the same function version for performance reasons. Depending
on a number of factors (for example, rate of invocation, function configuration, and so on), one or more
execution environments may exist for a given function version. With this approach, Lambda is able to
provide function version level isolation for its customers.

Lambda does not currently isolate invokes within a function version’s execution environment. What
this means is that one invoke may leave a state that may affect the next invoke (for example, files
written to /tmp or data in-memory). If you want to ensure that one invoke cannot affect another invoke,
we recommend that you create additional distinct functions. For example, you could create distinct
functions for complex parsing operations which are more error prone, and re-use functions which do
not perform security sensitive operations. Lambda does not currently limit the number of functions that
customers can create. For more information about limits, refer to the Lambda quotas page.

Execution environments are continuously monitored and managed by Lambda, and they may be created
or destroyed for any number of reasons including, but not limited to:

• A new invoke arrives and no suitable execution environment exists.

11

https://alpha.www.docs.aws.a2z.com/lambda/latest/dg/API_CreateFunction.html
https://alpha.www.docs.aws.a2z.com/lambda/latest/dg/API_UpdateFunctionCode.html
https://alpha.www.docs.aws.a2z.com/lambda/latest/dg/API_PublishLayerVersion.html
http://aws.amazon.com/ec2/
https://docs.aws.amazon.com/lambda/latest/dg/limits.html

Security Overview of AWS Lambda AWS Whitepaper
Execution role

• An internal runtime or Worker software deployment occurs.

• A new provisioned concurrency configuration is published.

• The lease time on the execution environment, or the Worker, is approaching or has exceeded max
lifetime.

• Other internal workload rebalancing processes.

You can manage the number of pre-provisioned execution environments that exist for a function version
by configuring provisioned concurrency on their function configuration. When configured to do so,
Lambda will create, manage, and ensure the configured number of execution environments always exist.
This ensures that you have greater control over start-up performance of their serverless applications at
any scale.

Other than through a provisioned concurrency configuration, you cannot deterministically control the
number of execution environments that are created or managed by Lambda in response to invocations.

Execution role
Each Lambda function must also be configured with an execution role, which is an IAM role that is
assumed by the Lambda service when performing control plane and data plane operations related to the
function. The Lambda service assumes this role to fetch temporary security credentials which are then
available as environment variables during a function’s invocation. For performance reasons, the Lambda
service will cache these credentials, and may re-use them across different execution environments which
use the same execution role.

To ensure adherence to least privilege principle, Lambda recommends that each function has its own
unique role, and that it is configured with the minimum set of permissions it requires.

The Lambda service may also assume the execution role to perform certain control plane operations
such as those related to creating and configuring elastic network interfaces (ENIs) for VPC functions,
sending logs to Amazon CloudWatch Application Insights, sending traces to AWS X-Ray, or other non-
invoke related operations. You can always review and audit these use cases by reviewing audit logs in
AWS CloudTrail.

For more information on this subject, refer to the AWS Lambda execution role documentation.

Lambda MicroVMs and Workers
Lambda will create its execution environments on a fleet of Amazon EC2 instances called AWS Lambda
Workers. Workers are bare metal Amazon EC2 AWS Nitro instances which are launched and managed
by Lambda in a separate isolated AWS account which is not visible to customers. Workers have one
or more hardware-virtualized Micro Virtual Machines (MVM) created by Firecracker. Firecracker is an
open-source Virtual Machine Monitor (VMM) that uses Linux’s Kernel-based Virtual Machine (KVM) to
create and manage MVMs. It is purpose-built for creating and managing secure, multi-tenant container
and function-based services that provide serverless operational models. For more information about
Firecracker's security model, refer to the Firecracker project website.

As a part of the shared responsibility model, Lambda is responsible for maintaining the security
configuration, controls, and patching level of the Workers. The Lambda team uses Amazon Inspector to
discover known potential security issues, as well as other custom security issue notification mechanisms
and pre-disclosure lists, so that you don’t need to manage the underlying security posture of their
execution environment.

12

https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/configuration-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-eni.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-application-insights.html
http://aws.amazon.com/xray/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-intro-execution-role.html
https://searchservervirtualization.techtarget.com/definition/bare-metal-environment
http://aws.amazon.com/ec2/nitro/
https://firecracker-microvm.github.io/
http://aws.amazon.com/inspector/

Security Overview of AWS Lambda AWS Whitepaper
Lambda MicroVMs and Workers

Isolation model for AWS Lambda Workers

Workers have a maximum lease lifetime of 14 hours. When a Worker approaches maximum lease time,
no further invocations are routed to it, MVMs are gracefully terminated, and the underlying Worker
instance is terminated. Lambda continuously monitors and alarms on lifecycle activities of its fleet’s
lifetime.

All data plane communications to workers are encrypted using Advanced Encryption Standard with
Galois/Counter Mode (AES-GCM). Other than through data plane operations, you cannot directly interact
with a worker as it hosted in a network isolated Amazon VPC managed by Lambda in the Lambda service
accounts.

When a Worker needs to create a new execution environment, it is given time-limited authorization to
access customer function artifacts. These artifacts are specifically optimized for Lambda’s execution
environment and workers. Function code which is uploaded using the ZIP format is optimized once, and
then is stored in an encrypted format using an AWS-managed key and AES-GCM.

Functions uploaded to Lambda using the container image format are also optimized. The container
image is first downloaded from its original source, optimized into distinct chunks, and then stored as
encrypted chunks using an authenticated convergent encryption method which uses a combination of
AES-GCM and SHA-256 MAC. The convergent encryption method allows Lambda to securely deduplicate
encrypted chunks. All keys required to decrypt customer content is protected using a customer managed
AWS KMS key. If a customer-managed key is not provided, an AWS KMS key owned by the customer and
managed by Lambda is used. When a customer-managed KMS key is used, KMS key usage by the Lambda
service is available to customers in AWS CloudTrail logs for tracking and auditing.

SnapStart is a performance optimization feature in Lambda to reduce a Java function's startup
latency, commonly known as cold start time. With SnapStart, Lambda takes a Firecracker MicroVM
snapshot of the initialized execution environment (memory and disk) when you publish a version
and persists the encrypted snapshot. Upon concurrency scale-ups, Lambda clones this snapshotted
sandbox and resumes the function execution from the pre-initialized state. SnapStart is currently
supported with the Java11 runtime. SnapStart isn't supported with provisioned concurrency, arm64
architecture, extensions, Amazon Elastic File System (Amazon EFS), and ephemeral storage greater than
512 MB. If your application uses random values, you must evaluate your function code and verify that
it is resilient to snapshot operations. For more information, refer to Handling uniqueness with Lambda
SnapStart. If your code deals with network connections, you may need to validate and re-establish them
as necessary. You can use a runtime hook to re-establish connections. Network connections established
by an AWS SDK are mostly automatically resumed. For other connections, review the Best practices
for working with Lambda SnapStart If your function deals with ephemeral data, such as temporary
credentials or cached timestamps, during the initialization phase, you can use a runtime hook to refresh
temporary data.

13

https://developer.apple.com/documentation/cryptokit/sha256
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html
https://docs.aws.amazon.com/lambda/latest/dg/provisioned-concurrency.html
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html
https://docs.aws.amazon.com/lambda/latest/dg/foundation-arch.html
https://docs.aws.amazon.com/lambda/latest/dg/using-extensions.html
https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart-uniqueness.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart-uniqueness.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart-runtime-hooks.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart-best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/snapstart-best-practices.html

Security Overview of AWS Lambda AWS Whitepaper
Lambda MicroVMs and Workers

If you want to prevent certain data from being stored in a snapshot, use a beforeCheckpoint runtime
hook to delete the data before Lambda creates the snapshot. Snapshots are encrypted using a customer-
unique AWS KMS key in the customer account managed by Lambda, similarly to the encryption for
container images above; however, chunks are not deduplicated in this case. You can also use a customer
managed AWS KMS key for control over the key. If a function is not invoked for 14 consecutive days, the
snapshot is deleted. All resources associated with the deleted snapshot are removed in compliance with
GDPR retention policies.

14

https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk
https://docs.aws.amazon.com/kms/latest/developerguide/concepts.html#customer-cmk

Security Overview of AWS Lambda AWS Whitepaper
Storage and state

Lambda isolation technologies
Lambda uses a variety of open-source and proprietary isolation technologies to protect Workers and
execution environments. Each execution environment contains a dedicated copy of the following items:

• The code of the particular function version.
• Any AWS Lambda layers selected for your function version.
• The chosen function runtime (for example, Java 11, NodeJS 12, Python 3.8, and so on) or the

function's custom runtime.
• A writeable /tmp directory.
• A minimal Linux user space based on Amazon Linux 2.

Execution environments are isolated from one another using several container-like technologies built
into the Linux kernel, along with AWS proprietary isolation technologies. These technologies include:

• Control groups (cgroups) – Used to constrain the function's access to CPU and memory.
• Namespaces – Each execution environment runs in a dedicated namespace. We do this by having

unique group process IDs, user IDs, network interfaces, and other resources managed by the Linux
kernel.

• seccomp-bpf – To limit the system calls (syscalls) that can be used from within the execution
environment.

• iptables and routing tables – To prevent ingress network communications and to isolate network
connections between MVMs.

• chroot – Provide scoped access to the underlying filesystem.
• Firecracker configuration – Used to rate limit block device and network device throughput.
• Firecracker security features – For more information about Firecracker's current security design, refer

to Firecracker's latest design document.

Along with AWS proprietary isolation technologies, these mechanisms provide strong isolation between
execution environments.

Storage and state
Execution environments are never reused across different function versions or customers, but a single
environment can be reused between invocations of the same function version. This means data and
state can persist between invocations. Data and/or state may continue to persist for hours before it is
destroyed as a part of normal execution environment lifecycle management.

For performance reasons, functions can take advantage of this behavior to improve efficiency by
keeping and reusing local caches or long-lived connections between invocations. Inside an execution
environment, these multiple invocations are handled by a single process, so any process-wide state (such
as a static state in Java) can be available for future invocations to reuse, if the invocation occurs on a
reused execution environment.

Each Lambda execution environment also includes a writeable filesystem, available at /tmp. This storage
is not accessible or shared across execution environments. As with the process state, files written to /tmp
remain for the lifetime of the execution environment. This allows expensive transfer operations, such as
downloading machine learning (ML) models, to be amortized across multiple invocations. Functions that

15

https://docs.aws.amazon.com/lambda/latest/dg/configuration-layers.html
https://www.computerhope.com/jargon/u/user-space.htm
http://aws.amazon.com/amazon-linux/
https://github.com/firecracker-microvm/firecracker/blob/master/docs/design.md

Security Overview of AWS Lambda AWS Whitepaper
Storage and state

don’t want to persist data between invocations should either not write to /tmp, or delete their files from
/tmp between invocations. The /tmp directory is encrypted at rest.

If you want to persist data to the file system outside of the execution environment, consider integrating
Lambda with Amazon EFS. For more information, refer to Using Amazon EFS with Lambda.

If you don’t want to persist data or state across invocations, we recommend that you do not use the
execution context or execution environment to store data or state. If you want to actively prevent data or
state leaking across invocations, we recommend you create distinct functions for each state. We do not
recommend that you use or store security sensitive state into the execution environment, as it may be
mutated between invocations. We recommend recalculating the state on each invocation instead.

16

https://docs.aws.amazon.com/lambda/latest/dg/services-efs.html
https://docs.aws.amazon.com/lambda/latest/dg/running-lambda-code.html

Security Overview of AWS Lambda AWS Whitepaper

Runtime maintenance in Lambda
Lambda provides support for these runtimes by continuously scanning for and deploying compatible
updates and security patches, and by performing other runtime maintenance activities. This enables
you to focus on just the maintenance and security of any code included in your function and layer.
The Lambda team uses Amazon Inspector to discover known security issues, as well as other custom
security issues notification mechanisms and pre-disclosure lists to ensure that our runtime languages
and execution environment remain patched. If any new patches or updates are identified, Lambda tests
and deploys the runtime updates without any involvement from customers. For more information about
Lambda's compliance program, refer to the Lambda and compliance (p. 20) section of this document.

Typically, no action is required to pick up the latest patches for supported Lambda runtimes, but
sometimes action might be required to test patches before they are deployed (for example, known
incompatible runtime patches). If any action is required by customers, Lambda will contact them through
the Personal AWS Health Dashboard, through the AWS account's email, or through other means.

You can use other programming languages in Lambda by implementing a custom runtime. For custom
runtimes, maintenance of the runtime becomes the customer's responsibility, including making sure that
the custom runtime includes the latest security patches. For more information, refer to Custom AWS
Lambda runtimes in the AWS Lambda Developer Guide.

When upstream runtime language maintainers mark their language End-Of-Life (EOL), Lambda honors
this by no longer supporting the runtime language version. When runtime versions are marked as
deprecated in Lambda, Lambda stops supporting the creation of new functions and updates to existing
functions that were authored in the deprecated runtime. To alert you of upcoming runtime deprecations,
Lambda sends out notifications to customers of the upcoming deprecation date, and what they can
expect.

Lambda does not provide security updates, technical support, or hotfixes for deprecated runtimes, and
reserves the right to disable invocations of functions configured to run on a deprecated runtime at any
time. If you want to continue to run deprecated or unsupported runtime versions, you can create your
own custom AWS Lambda runtime. For details on when runtimes are deprecated, refer to our runtime
deprecation policy.

17

https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtimes-custom.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html
https://docs.aws.amazon.com/lambda/latest/dg/runtime-support-policy.html

Security Overview of AWS Lambda AWS Whitepaper
Amazon CloudWatch

Monitoring and auditing Lambda
functions

You can monitor and audit Lambda functions with many AWS services and methods, including the
following services.

Amazon CloudWatch
AWS Lambda automatically monitors Lambda functions on your behalf. Through Amazon CloudWatch,
it reports metrics such as the number of requests, the execution duration per request, and the number
of requests resulting in an error. These metrics are exposed at the function level, which you can then
leverage to set CloudWatch alarms. For a list of metrics exposed by Lambda, refer to Working with
Lambda function metrics.

Amazon CloudTrail
Using AWS CloudTrail, you can implement governance, compliance, operational auditing, and risk
auditing of your entire AWS account, including Lambda. CloudTrail enables you to log, continuously
monitor, and retain account activity related to actions across your AWS infrastructure, providing a
complete event history of actions taken through the AWS Management Console, AWS SDKs, command
line tools, and other AWS services. Using CloudTrail, you can optionally encrypt the log files using AWS
KMS and also use the CloudTrail log file integrity validation for positive assertion.

AWS X-Ray
Using AWS X-Ray, you can analyze and debug production and distributed Lambda-based applications,
which enables you to understand the performance of your application and its underlying services, so
you can eventually identify and troubleshoot the root cause of performance issues and errors. The X-Ray
end-to-end view of requests as they travel through your application shows a map of the application’s
underlying components, so you can analyze applications during development and in production.

AWS Config
With AWS Config, you can track configuration changes to the Lambda functions (including deleted
functions), runtime environments, tags, handler name, code size, memory allocation, timeout
settings, and concurrency settings, along with Lambda IAM execution role, subnet, and security group
associations. This gives you a holistic view of the Lambda function’s lifecycle and enables you to surface
that data for potential audit and compliance requirements.

18

http://aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-functions-metrics.html
http://aws.amazon.com/console/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/encrypting-cloudtrail-log-files-with-aws-kms.html
http://aws.amazon.com/kms/
http://aws.amazon.com/kms/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-log-file-validation-intro.html
http://aws.amazon.com/xray/
http://aws.amazon.com/config/

Security Overview of AWS Lambda AWS Whitepaper

Architecting and operating Lambda
functions

This section discusses Lambda architecture and operations. For information about standard best
practices for serverless applications, refer to the Serverless Applications Lens whitepaper, which defines
and explores the pillars of the AWS Well Architected Framework in a serverless context.

• Operational Excellence Pillar – The ability to run and monitor systems to deliver business value and
to continually improve supporting processes and procedures.

• Security Pillar – The ability to protect information, systems, and assets while delivering business value
through risk assessment and mitigation strategies.

• Reliability Pillar – The ability of a system to recover from infrastructure or service disruptions,
dynamically acquire computing resources to meet demand, and mitigate disruptions such as
misconfigurations or transient network issues.

• Performance Efficiency Pillar – The efficient use of computing resources to meet requirements and
the maintenance of that efficiency as demand changes and technologies evolve.

• Cost Optimization Pillar – The continual process of refinement and improvement to ensure that
business outcomes are achieved while minimizing cost as demand changes and technologies evolve.

The Serverless Applications Lens whitepaper includes topics such as logging metrics and alarming,
throttling and limits, assigning permissions to Lambda functions, and making sensitive data available to
Lambda functions.

19

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html
http://aws.amazon.com/architecture/well-architected/

Security Overview of AWS Lambda AWS Whitepaper

Lambda and compliance
As mentioned in the Shared Responsibility Model (p. 5) section, you are responsible for determining which
compliance regime applies to your data. After you have determined your compliance regime needs,
you can use the various Lambda features to match those controls. You can contact AWS experts (such
as Solution Architects, domain experts, technical account managers, and other human resources) for
assistance. However, AWS cannot advise you on whether (or which) compliance regimes are applicable to
a particular use case.

Lambda Federal Information Processing Standard (FIPS) endpoint operates using FIPS 140-2 validated
cryptographic modules. Lambda customers are responsible for encrypting and storing data they process
in a way that meets their organizational requirements for data security.

For an up-to-date list of compliance information for Lambda, refer to the AWS Services in Scope by
Compliance Program page. Because of the sensitive nature of some compliance reports, they cannot be
shared publicly. For access to these reports, you can sign into the AWS Management Console and use
AWS Artifact, a no-cost, self- service portal, for on-demand access to AWS compliance reports

20

http://aws.amazon.com/compliance/fips/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/artifact/

Security Overview of AWS Lambda AWS Whitepaper

Lambda event sources
Lambda integrates with more than 140 AWS services via direct integration and the Amazon EventBridge
event bus. The commonly used Lambda event sources are:

• Amazon API Gateway
• Amazon CloudWatch Events
• Amazon CloudWatch Logs
• Amazon DynamoDB Streams
• Amazon EventBridge
• Amazon Kinesis Data Streams
• Amazon S3
• Amazon SNS
• Amazon SQS
• AWS Step Functions

With these event sources, you can:

• Use AWS IAM to manage access to the service and resources securely.
• Encrypt your data at-rest. All services encrypt data in transit.
• Access from your Amazon Virtual Private Cloud using VPC endpoints (powered by AWS PrivateLink.
• Use Amazon CloudWatch Application Insights to collect, report, and alarm on metrics.
• Use AWS CloudTrail to log, continuously monitor, and retain account activity related to actions across

your AWS infrastructure, providing a complete event history of actions taken through the AWS
Management Console, AWS SDKs, command line tools, and other AWS services.

21

https://docs.aws.amazon.com/eventbridge/latest/userguide/create-event-bus.html
http://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/WhatIsCloudWatchLogs.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.Lambda.html
http://aws.amazon.com/eventbridge/
http://aws.amazon.com/kinesis/data-streams/
http://aws.amazon.com/s3/
http://aws.amazon.com/sns/
http://aws.amazon.com/sqs/
http://aws.amazon.com/step-functions/?step-functions.sort-by=item.additionalFields.postDateTime&step-functions.sort-order=desc
http://aws.amazon.com/iam/
http://aws.amazon.com/vpc/
http://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/cloudwatch-application-insights.html
http://aws.amazon.com/tools/

Security Overview of AWS Lambda AWS Whitepaper

Conclusion
AWS Lambda offers a powerful toolkit for building secure and scalable applications. Many of the best
practices for security and compliance in Lambda are the same as in all AWS services, but some are
particular to Lambda. This whitepaper described the benefits of Lambda, its suitability for applications,
and the Lambda-managed runtime environment. It also includes information about monitoring and
auditing, and security and compliance best practices. As you think about your next implementation,
consider what you learned about AWS Lambda, and how it might improve your next workload solution.

22

Security Overview of AWS Lambda AWS Whitepaper

Contributors
Contributors to this document include:

• Mayank Thakkar, Senior Manager (Global Accounts)
• Marc Brooker, Senior Principal Engineer (AWS Serverless)
• AWS Lambda Security Team

23

Security Overview of AWS Lambda AWS Whitepaper

Further reading
For additional information, refer to:

• AWS Architecture Center
• The AWS Shared Responsibility Model, which explains how AWS thinks about security in general.
• The AWS risk and compliance program, which provides an overview of compliance in AWS.
• The Serverless Applications Lens, which covers the AWS Well-Architected Framework identifies key

elements to ensure your workloads are architected according to best practices.
• Introduction to AWS Security, which provides a broad introduction to thinking about security in AWS.

24

http://aws.amazon.com/architecture/
http://aws.amazon.com/compliance/shared-responsibility-model/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Risk_and_Compliance_Whitepaper.pdf
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/introduction-aws-security/welcome.html

Security Overview of AWS Lambda AWS Whitepaper

Document revisions
To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Document updated (p. 25) New feature updates. December 27, 2022

Document updated (p. 25) Terminology update. April 6, 2022

Initial publication (p. 25) Significant updates. February 15, 2021

Initial publication (p. 25) Whitepaper published. January 3, 2019

25

Security Overview of AWS Lambda AWS Whitepaper

Notices
Customers are responsible for making their own independent assessment of the information in this
document. This document: (a) is for informational purposes only, (b) represents current AWS product
offerings and practices, which are subject to change without notice, and (c) does not create any
commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services
are provided “as is” without warranties, representations, or conditions of any kind, whether express or
implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements,
and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

26

Security Overview of AWS Lambda AWS Whitepaper

AWS glossary
For the latest AWS terminology, see the AWS glossary in the AWS General Reference.

27

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Security Overview of AWS Lambda
	Table of Contents
	Security Overview of AWS Lambda
	Abstract
	Are you Well-Architected?
	Introduction

	Benefits of Lambda
	No servers to manage
	Continuous scaling
	Millisecond metering
	Increases innovation
	Modernize your applications
	Support for developers

	The Shared Responsibility Model
	Data privacy
	Security at rest
	Security in transit
	Operational security
	Vulnerability management
	Trusted code execution

	Lambda functions and layers
	Lambda invoke modes
	Lambda executions
	Lambda execution environments
	Execution role
	Lambda MicroVMs and Workers

	Lambda isolation technologies
	Storage and state

	Runtime maintenance in Lambda
	Monitoring and auditing Lambda functions
	Amazon CloudWatch
	Amazon CloudTrail
	AWS X-Ray
	AWS Config

	Architecting and operating Lambda functions
	Lambda and compliance
	Lambda event sources
	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices
	AWS glossary

