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Abstract

Data engineers, data analysts, and big data developers are looking to evolve their analytics 
from batch to real-time so their companies can learn about what their customers, applications, 
and products are doing right now and react promptly. This whitepaper discusses the evolution 
of analytics from batch to real-time. It describes how services such as Amazon Kinesis Data 
Streams, Amazon Data Firehose, Amazon EMR, Amazon Managed Service for Apache Flink,
Amazon Managed Streaming for Apache Kafka ( Amazon MSK), and other services can be used to 
implement real-time applications, and provides common design patterns using these services.
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Introduction

Businesses today receive data at massive scale and speed due to the explosive growth of data 
sources that continuously generate streams of data. Whether it is log data from application 
servers, clickstream data from websites and mobile apps, or telemetry data from Internet of 
Things (IoT) devices, it all contains information that can help you learn about what your customers, 
applications, and products are doing right now.

Having the ability to process and analyze this data in real-time is essential to do things such as 
continuously monitor your applications to ensure high service uptime and personalize promotional 
offers and product recommendations. Real-time and near-real-time processing can also make other 
common use cases, such as website analytics and machine learning, more accurate and actionable 
by making data available to these applications in seconds or minutes instead of hours or days.

Real-time and near-real-time application scenarios

You can use streaming data services for real-time and near-real-time applications such as 
application monitoring, fraud detection, and live leaderboards. Real-time use cases require 
millisecond end-to-end latencies– from ingestion, to processing, all the way to emitting the 
results to target data stores and other systems. For example, Netflix uses Amazon Kinesis Data 
Streams to monitor the communications between all its applications so it can detect and fix issues 
quickly, ensuring high service uptime and availability to its customers. While the most commonly 
applicable use case is application performance monitoring, there are an increasing number of real-
time applications in ad tech, gaming, and IoT that fall under this category.

Common near-real-time use cases include analytics on data stores for data science and machine 
learning (ML). You can use streaming data solutions to continuously load real-time data into your 
data lakes. You can then update ML models more frequently as new data becomes available, 
ensuring accuracy and reliability of the outputs. For example, Zillow uses Kinesis Data Streams 
to collect public record data and multiple listing service (MLS) listings, and then provide home 
buyers and sellers with the most up-to-date home value estimates in near-real-time. ZipRecruiter 
uses Amazon MSK for their event logging pipelines, which are critical infrastructure components 
that collect, store, and continually process over six billion events per day from the ZipRecruiter 
employment marketplace.

Real-time and near-real-time application scenarios 2
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Difference between batch and stream processing

You need a different set of tools to collect, prepare, and process real-time streaming data than 
those tools that you have traditionally used for batch analytics. With traditional analytics, you 
gather the data, load it periodically into a database, and analyze it hours, days, or weeks later. 
Analyzing real-time data requires a different approach. Stream processing applications process 
data continuously in real-time, even before it is stored. Streaming data can come in at a blistering 
pace and data volumes can vary up and down at any time. Stream data processing platforms have 
to be able to handle the speed and variability of incoming data and process it as it arrives, often 
millions to hundreds of millions of events per hour.

Stream processing challenges

Processing real-time data as it arrives can enable you to make decisions much faster than is 
possible with traditional data analytics technologies. However, building and operating your own 
custom streaming data pipelines is complicated and resource-intensive:

• You have to build a system that can cost-effectively collect, prepare, and transmit data coming 
simultaneously from thousands of data sources.

• You need to fine-tune the storage and compute resources so that data is batched and 
transmitted efficiently for maximum throughput and low latency.

• You have to deploy and manage a fleet of servers to scale the system so you can handle the 
varying speeds of data you are going to throw at it.

Version upgrade is a complex and costly process. After you have built this platform, you have 
to monitor the system and recover from any server or network failures by catching up on data 
processing from the appropriate point in the stream, without creating duplicate data. You also 
need a dedicated team for infrastructure management. All of this takes valuable time and money 
and, at the end of the day, most companies just never get there and must settle for the status quo 
and operate their business with information that is hours or days old.

Difference between batch and stream processing 3
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Streaming data solutions: examples

To better understand how organizations are doing real-time data processing using AWS services, 
this whitepaper uses five examples. Each example reviews a scenario and discusses in detail how 
AWS real-time data streaming services are used to solve the problem.

Scenario 1: Internet offering based on location

Company InternetProvider provides internet services with a variety of bandwidth options to users 
across the world. When a user signs up for internet, company InternetProvider provides the user 
with different bandwidth options based on user’s geographic location. Given these requirements, 
company InternetProvider implemented an Amazon Kinesis Data Streams to consume user details 
and location. The user details and location are enriched with different bandwidth options prior to 
publishing back to the application. AWS Lambda enables this real-time enrichment.

Processing streams of data with AWS Lambda

Amazon Kinesis Data Streams

Amazon Kinesis Data Streams enables you to build custom, real-time applications using popular 
stream processing frameworks and load streaming data into many different data stores. A Kinesis 
stream can be configured to continuously receive events from hundreds of thousands of data 
producers delivered from sources like website click-streams, IoT sensors, social media feeds 
and application logs. Within milliseconds, data is available to be read and processed by your 
application.

When implementing a solution with Kinesis Data Streams, you create custom data-processing 
applications known as Kinesis Data Streams applications. A typical Kinesis Data Streams application 
reads data from a Kinesis stream as data records.

Scenario 1: Internet offering based on location 4
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Data put into Kinesis Data Streams is ensured to be highly available and elastic, and is available in 
milliseconds. You can continuously add various types of data such as clickstreams, application logs, 
and social media to a Kinesis stream from hundreds of thousands of sources. Within seconds, the 
data will be available for your Kinesis Applications to read and process from the stream.

Amazon Kinesis Data Streams is a fully managed streaming data service. It manages the 
infrastructure, storage, networking, and configuration needed to stream your data at the level of 
your data throughput.

Sending data to Amazon Kinesis Data Streams

There are several ways to send data to Kinesis Data Streams, providing flexibility in the designs of 
your solutions.

• You can write code utilizing one of the AWS SDKs that are supported by multiple popular 
languages.

• You can use the Amazon Kinesis Agent, a tool for sending data to Kinesis Data Streams.

The Amazon Kinesis Producer Library (KPL) simplifies the producer application development by 
enabling developers to achieve high write throughput to one or more Kinesis data streams.

The KPL is an easy to use, highly configurable library that you install on your hosts. It acts as 
an intermediary between your producer application code and the Kinesis Streams API actions. 
For more information about the KPL and its ability to produce events synchronously and 
asynchronously with code examples, refer to Writing to your Kinesis Data Streams Using the KPL

There are two different operations in the Kinesis Data Streams API that add data to a stream:
PutRecords and PutRecord. The PutRecords operation sends multiple records to your stream 
per HTTP request while, PutRecord submits one record per HTTP request. To achieve higher 
throughput for most applications, use PutRecords.

For more information about these APIs, refer to Adding Data to a Stream. The details for each API 
operation can be found in the Amazon Kinesis Data Streams API Reference.

Processing data in Amazon Kinesis Data Streams

To read and process data from Kinesis streams, you need to create a consumer application. There 
are varied ways to create consumers for Kinesis Data Streams. Some of these approaches include 
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using Amazon Managed Service for Apache Flink to analyze streaming data using KCL, using AWS 
Lambda, AWS Glue streaming ETL jobs, and using the Kinesis Data Streams API directly.

Consumer applications for Kinesis Data Streams can be developed using the KCL, which helps you 
consume and process data from Kinesis Data Streams The KCL takes care of many of the complex 
tasks associated with distributed computing such as load balancing across multiple instances, 
responding to instance failures, checkpointing processed records, and reacting to resharding. The 
KCL enables you to focus on the writing record-processing logic. For more information on how to 
build your own KCL application, refer to Using the Kinesis Client Library.

You can subscribe Lambda functions to automatically read batches of records off your Kinesis 
stream and process them if records are detected on the stream. AWS Lambda periodically polls the 
stream (once per second) for new records and when it detects new records, it invokes the Lambda 
function passing the new records as parameters. The Lambda function is only run when new 
records are detected. You can map a Lambda function to a shared-throughput consumer (standard 
iterator)

You can build a consumer that uses a feature called enhanced fan-out when you require dedicated 
throughput that you do not want to contend with other consumers that are receiving data from the 
stream. This feature enables consumers to receive records from a stream with throughput of up to 
two MB of data per second per shard.

For most cases, using Managed Service for Apache Flink, KCL, AWS Glue, or AWS Lambda should be 
used to process data from a stream. However, if you prefer, you can create a consumer application 
from scratch using the Kinesis Data Streams API. The Kinesis Data Streams API provides the
GetShardIterator and GetRecords methods to retrieve data from a stream.

In this pull model, your code extracts data directly from the shards of the stream. For more 
information about writing your own consumer application using the API, refer to Developing 
Custom Consumers with Shared Throughput Using the AWS SDK for Java. Details about the API can 
be found in the Amazon Kinesis Data Streams API Reference.

Processing streams of data with AWS Lambda

AWS Lambda enables you to run code without provisioning or managing servers. With Lambda, you 
can run code for virtually any type of application or backend service with zero administration. Just 
upload your code, and Lambda takes care of everything required to run and scale your code with 
high availability. You can set up your code to automatically trigger from other AWS services, or call 
it directly from any web or mobile app.

Processing streams of data with AWS Lambda 6
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AWS Lambda integrates natively with Amazon Kinesis Data Streams . The polling, checkpointing, 
and error handling complexities are abstracted when you use this native integration. This allows 
the Lambda function code to focus on business logic processing.

You can map a Lambda function to a shared-throughput (standard iterator), or to a dedicated-
throughput consumer with enhanced fan-out. With a standard iterator, Lambda polls each shard 
in your Kinesis stream for records using HTTP protocol. To minimize latency and maximize read 
throughput, you can create a data stream consumer with enhanced fan-out. Stream consumers 
in this architecture get a dedicated connection to each shard without competing with other 
applications reading from the same stream.Amazon Kinesis Data Streams pushes records to 
Lambda over HTTP/2.

By default, AWS Lambda invokes your function as soon as records are available in the stream. To 
buffer the records for batch scenarios, you can implement a batch window for up to five minutes 
at the event source. If your function returns an error, Lambda retries the batch until processing 
succeeds or the data expires.

Summary

Company InternetProvider leveraged Amazon Kinesis Data Streams to stream user details and 
location. The stream of record was consumed by AWS Lambda to enrich the data with bandwidth 
options stored in the function’s library. After the enrichment, AWS Lambda published the 
bandwidth options back to the application. Amazon Kinesis Data Streams and AWS Lambda 
handled provisioning and management of servers, enabling company InternetProvider to focus 
more on business application development.

Scenario 2: Near-real-time data for security teams

Company ABC2Badge provides sensors and badges for corporate or large-scale events such as AWS 
re:Invent. Users sign up for the event and receive unique badges that the sensors pick up across 
the campus. As users pass by a sensor, their anonymized information is recorded into a relational 
database.

In an upcoming event, due to the high volume of attendees, ABC2Badge has been requested by 
the event security team to gather data for the most concentrated areas of the campus every 15 
minutes. This will give the security team enough time to react and disperse security personal 
proportionally to concentrated areas. Given this new requirement from the security team and the 
inexperience of building a streaming solution, to process date in near-real-time, ABC2Badge is 
looking for a simple yet scalable and reliable solution.

Summary 7
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Their current data warehouse solution is Amazon Redshift. While reviewing the features of the 
Amazon Kinesis services, they recognized that Amazon Data Firehose can receive a stream of data 
records, batch the records based on buffer size and/or time interval, and insert them into Amazon 
Redshift. They created a Firehose delivery stream and configured it so it would copy data to their 
Amazon Redshift tables every five minutes. As part of this new solution, they used the Amazon 
Kinesis Agent on their servers. Every five minutes, Firehose loads data into Amazon Redshift, where 
the business intelligence (BI) team is enabled to perform its analysis and send the data to the 
security team every 15 minutes.

New solution using Amazon Data Firehose

Amazon Data Firehose

Amazon Data Firehose is the easiest way to load streaming data into AWS. It can capture, 
transform, and load streaming data into Amazon Managed Service for Apache Flink, Amazon 
Simple Storage Service (Amazon S3), Amazon Redshift, Amazon OpenSearch Service (OpenSearch 
Service), and Splunk. Additionally, Firehose can load streaming data into any custom HTTP 
endpoint or HTTP endpoints owned by supported third-party service providers.

Firehose enables near-real-time analytics with existing business intelligence tools and dashboards 
that you’re already using today. It’s a fully managed serverless service that automatically scales to 
match the throughput of your data and requires no ongoing administration. Firehose can batch, 
compress, and encrypt the data before loading, minimizing the amount of storage used at the 
destination and increasing security. It can also transform the source data using AWS Lambda and 
deliver the transformed data to destinations. You configure your data producers to send data to 
Firehose, which automatically delivers the data to the destination that you specify.

Amazon Data Firehose 8
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Sending data to a Firehose delivery stream

To send data to your delivery stream, there are several options. AWS offers SDKs for many popular 
programming languages, each of which provides APIs for Amazon Data Firehose. AWS has a utility 
to help send data to your delivery stream. Firehose has been integrated with other AWS services to 
send data directly from those services into your delivery stream.

Using Amazon Kinesis agent

Amazon Kinesis agent is a standalone software application that continuously monitors a set of log 
files for new data to be sent to the delivery stream. The agent automatically handles file rotation, 
checkpointing, retries upon failures, and emits Amazon CloudWatch metrics for monitoring and 
troubleshooting of the delivery stream. Additional configurations, such data pre-processing, 
monitoring multiple file directories, and writing to multiple delivery streams, can be applied to the 
agent.

The agent can be installed on Linux or Windows-based servers such as web servers, log servers, and 
database servers. Once the agent is installed, you simply specify the log files it will monitor and the 
delivery stream it will send to. The agent will durably and reliably send new data to the delivery 
stream.

Using API with AWS SDK and AWS services as a source

The Firehose API offers two operations for sending data to your delivery stream. PutRecord sends 
one data record within one call. PutRecordBatch can send multiple data records within one call, 
and can achieve higher throughput per producer. In each method, you must specify the name of 
the delivery stream and the data record, or array of data records, when using this method. For 
more information and sample code for the Firehose API operations, refer to Writing to a Firehose 
Delivery Stream Using the AWS SDK.

Firehose also runs with Firehose, CloudWatch Logs, CloudWatch Events, Amazon Simple 
Notification Service (Amazon SNS), Amazon API Gateway, and AWS IoT. You can scalably and 
reliably send your streams of data, logs, events, and IoT data directly into a Firehose destination.

Processing data before delivery to destination

In some scenarios, you might want to transform or enhance your streaming data before it is 
delivered to its destination. For example, data producers might send unstructured text in each 
data record, and you need to transform it to JSON before delivering it to OpenSearch Service. Or 
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you might want to convert the JSON data into a columnar file format such as Apache Parquet or
Apache ORC before storing the data in Amazon S3.

Firehose has built-in data format conversion capability. With this, you can easily convert your 
streams of JSON data into Apache Parquet or Apache ORC file formats.

Data transformation flow

To enable streaming data transformations, Firehose uses a Lambda function that you create to 
transform your data. Firehose buffers incoming data to a specified buffer size for the function and 
then invokes the specified Lambda function asynchronously. The transformed data is sent from 
Lambda to Firehose, and Firehose delivers the data to the destination.

Data format conversion

You can also enable Firehose data format conversion, which will convert your stream of JSON 
data to Apache Parquet or Apache ORC. This feature can only convert JSON to Apache Parquet or 
Apache ORC. If you have data that is in CSV, you can transform that data via a Lambda function to 
JSON, and then apply the data format conversion.

Data delivery

As a near-real-time delivery stream, Firehose buffers incoming data. After your delivery stream’s 
buffering thresholds have been reached, your data is delivered to the destination you’ve 
configured. There are some differences in how Firehose delivers data to each destination, which 
this paper reviews in the following sections.

Amazon S3

Amazon S3 is object storage with a simple web service interface to store and retrieve any amount 
of data from anywhere on the web. It’s designed to deliver 99.999999999% durability, and scale 
past trillions of objects worldwide.

Data delivery to Amazon S3

For data delivery to Amazon S3, Firehose concatenates multiple incoming records based on the 
buffering configuration of your delivery stream, and then delivers them to Amazon S3 as an S3 
object. The frequency of data delivery to S3 is determined by the S3 buffer size (1 MB to 128 MB) 
or buffer interval (60 seconds to 900 seconds), whichever comes first.

Amazon Data Firehose 10
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Data delivery to your S3 bucket might fail for various reasons. For example, the bucket might not 
exist anymore, or the AWS Identity and Access Management (IAM) role that Firehose assumes might 
not have access to the bucket. Under these conditions, Firehose keeps retrying for up to 24 hours 
until the delivery succeeds. The maximum data storage time of Firehose is 24 hours. If data delivery 
fails for more than 24 hours, your data is lost.

Amazon Redshift

Amazon Redshift is a fast, fully managed data warehouse that makes it simple and cost-effective to 
analyze all your data using standard SQL and your existing BI tools. It enables you to run complex 
analytic queries against petabytes of structured data using sophisticated query optimization, 
columnar storage on high-performance local disks, and massively parallel query running.

Data delivery to Amazon Redshift

For data delivery to Amazon Redshift, Firehose first delivers incoming data to your S3 bucket in the 
format described earlier. Firehose then issues an Amazon Redshift COPY command to load the data 
from your S3 bucket to your Amazon Redshift cluster.

The frequency of data COPY operations from S3 to Amazon Redshift is determined by how fast 
your Amazon Redshift cluster can finish the COPY command. For an Amazon Redshift destination, 
you can specify a retry duration (0–7200 seconds) when creating a delivery stream to handle data 
delivery failures. Firehose retries for the specified time duration and skips that particular batch 
of S3 objects if unsuccessful. The skipped objects' information is delivered to your S3 bucket as a 
manifest file in the errors/ folder, which you can use for manual backfill.

Following is an architecture diagram of Firehose to Amazon Redshift data flow. Although this data 
flow is unique to Amazon Redshift, Firehose follows similar patterns for the other destination 
targets.

Data flow from Firehose to Amazon Redshift

Amazon Data Firehose 11
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Amazon OpenSearch Service (OpenSearch Service)

OpenSearch Service is a fully managed service that delivers the OpenSearch easy-to-use APIs and 
real-time capabilities along with the availability, scalability, and security required by production 
workloads. OpenSearch Service makes it easy to deploy, operate, and scale OpenSearch for log 
analytics, full text search, and application monitoring.

Data delivery to OpenSearch Service

For data delivery to OpenSearch Service, Firehose buffers incoming records based on the buffering 
configuration of your delivery stream, and then generates an OpenSearch bulk request to index 
multiple records to your OpenSearch cluster. The frequency of data delivery to OpenSearch Service 
is determined by the OpenSearch buffer size (1 MB to 100 MB) and buffer interval (60 seconds to 
900 seconds) values, whichever comes first.

For the OpenSearch Service destination, you can specify a retry duration (0–7200 seconds) 
when creating a delivery stream. Firehose retries for the specified time duration, and then skips 
that particular index request. The skipped documents are delivered to your S3 bucket in the
elasticsearch_failed/ folder, which you can use for manual backfill.

Amazon Data Firehose can rotate your OpenSearch Service index based on a time duration. 
Depending on the rotation option you choose (NoRotation, OneHour, OneDay, OneWeek, or
OneMonth), Firehose appends a portion of the Coordinated Universal Time (UTC) arrival timestamp 
to your specified index name.

Custom HTTP endpoint or supported third-party service provider

Firehose can send data either to Custom HTTP endpoints or supported third-party providers such 
as Datadog, Dynatrace, LogicMonitor, MongoDB, New Relic, Splunk, and Sumo Logic.

Custom HTTP endpoint or supported third-party service provider

For Firehose to successfully deliver data to custom HTTP endpoints, these endpoints must accept 
requests and send responses using certain Firehose request and response formats.

When delivering data to an HTTP endpoint owned by a supported third-party service provider, 
you can use the integrated AWS Lambda service to create a function to transform the incoming 
record(s) to the format that matches the format the service provider's integration is expecting.

For data delivery frequency, each service provider has a recommended buffer size. Work with your 
service provider for more information on their recommended buffer size. For data delivery failure 
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handling, Firehose establishes a connection with the HTTP endpoint first by waiting for a response 
from the destination. Firehose continues to establish connection, until the retry duration expires. 
After that, Firehose considers it a data delivery failure and backs up the data to your S3 bucket.

Summary

Firehose can persistently deliver your streaming data to a supported destination. It’s a fully-
managed solution, requiring little or no development. For Company ABC2Badge, using Firehose 
was a natural choice. They were already using Amazon Redshift as their data warehouse solution. 
Because their data sources continuously wrote to transaction logs, they were able to leverage the 
Amazon Kinesis Agent to stream that data without writing any additional code. Now that company
ABC2Badge has created a stream of sensor records and are receiving these records via Firehose, 
they can use this as the basis for the security team use case.

Scenario 3: Preparing clickstream data for data insights 
processes

Fast Sneakers is a fashion boutique with a focus on trendy sneakers. The price of any given pair of 
shoes can go up or down depending on inventory and trends, such as what celebrity or sports star 
was spotted wearing brand name sneakers on TV last night. It is important for Fast Sneakers to 
track and analyze those trends to maximize their revenue.

Fast Sneakers does not want to introduce additional overhead into the project with new 
infrastructure to maintain. They want to be able to split the development to the appropriate 
parties, where the data engineers can focus on data transformation and their data scientists can 
work on their ML functionality independently.

To react quickly and automatically adjust prices according to demand, Fast Sneakers streams 
significant events (like click-interest and purchasing data), transforming and augmenting the event 
data and feeding it to a ML model. Their ML model is able to determine if a price adjustment is 
required. This allows Fast Sneakers to automatically modify their pricing to maximize profit on their 
products.

Summary 13
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Fast Sneakers real-time price adjustments

This architecture diagram shows the real-time streaming solution Fast Sneakers created utilizing 
Kinesis Data Streams, AWS Glue, and DynamoDB Streams. By taking advantage of these services, 
they have a solution that is elastic and reliable without needing to spend time on setting up and 
maintaining the supporting infrastructure. They can spend their time on what brings value to their 
company by focusing on a streaming extract, transform, load (ETL) job and their machine learning 
model.

To better understand the architecture and technologies that are used in their workload, the 
following are some details of the services used.

AWS Glue and AWS Glue streaming

AWS Glue is a fully managed ETL service that you can use to catalog your data, clean it, enrich it, 
and move it reliably between data stores. With AWS Glue, you can significantly reduce the cost, 
complexity, and time spent creating ETL jobs. AWS Glue is serverless, so there is no infrastructure 
to set up or manage. You pay only for the resources consumed while your jobs are running.

Utilizing AWS Glue, you can create a consumer application with an AWS Glue streaming ETL job. 
This enables you to utilize Apache Spark and other Spark-based modules writing to consume 
and process your event data. The next section of this document goes into more depth about this 
scenario.

AWS Glue and AWS Glue streaming 14
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AWS Glue Data Catalog

The AWS Glue Data Catalog contains references to data that is used as sources and targets of your 
ETL jobs in AWS Glue. The AWS Glue Data Catalog is an index to the location, schema, and runtime 
metrics of your data. You can use information in the Data Catalog to create and monitor your ETL 
jobs. Information in the Data Catalog is stored as metadata tables, where each table specifies a 
single data store. By setting up a crawler, you can automatically assess numerous types of data 
stores, including DynamoDB, S3, and Java Database Connectivity (JDBC) connected stores, extract 
metadata and schemas, and then create table definitions in the AWS Glue Data Catalog.

To work with Amazon Kinesis Data Streams in AWS Glue streaming ETL jobs, it is best practice to 
define your stream in a table in an AWS Glue Data Catalog database. You define a stream-sourced 
table with the Kinesis stream, one of the many formats supported (CSV, JSON, ORC, Parquet, Avro 
or a customer format with Grok). You can manually enter a schema, or you can leave this step to 
your AWS Glue job to determine during runtime of the job.

AWS Glue streaming ETL job

AWS Glue runs your ETL jobs in an Apache Spark serverless environment. AWS Glue runs these jobs 
on virtual resources that it provisions and manages in its own service account. In addition to being 
able to run Apache Spark based jobs, AWS Glue provides an additional level of functionality on top 
of Spark with DynamicFrames.

DynamicFrames are distributed tables that support nested data such as structures and arrays. 
Each record is self-describing, designed for schema flexibility with semi-structured data. A record 
in a DynamicFrame contains both data and the schema describing the data. Both Apache Spark
DataFrames and DynamicFrames are supported in your ETL scripts, and you can convert them 
back and forth. DynamicFrames provide a set of advanced transformations for data cleaning and 
ETL.

By using Spark Streaming in your AWS Glue Job, you can create streaming ETL jobs that run 
continuously, and consume data from streaming sources like Amazon Kinesis Data Streams, Apache 
Kafka, and Amazon MSK. The jobs can clean, merge, and transform the data, then load the results 
into stores including Amazon S3, Amazon DynamoDB, or JDBC data stores.

AWS Glue processes and writes out data in 100-second windows, by default. This allows data to 
be processed efficiently, and permits aggregations to be performed on data arriving later than 
expected. You can configure the window size by adjusting it to accommodate the speed in response 
vs the accuracy of your aggregation. AWS Glue streaming jobs use checkpoints to track the data 

AWS Glue and AWS Glue streaming 15

https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
https://aws.amazon.com/glue
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame.html


Streaming Data Solutions on AWS AWS Whitepaper

that has been read from the Kinesis Data Stream. For a walkthrough on creating a streaming ETL 
job in AWS Glue you can refer to Adding Streaming ETL Jobs in AWS Glue

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit millisecond 
performance at any scale. It's a fully managed, multi-Region, multi-active, durable database with 
built-in security, backup and restore, and in-memory caching for internet-scale applications. 
DynamoDB can handle more than ten trillion requests per day, and can support peaks of more than 
20 million requests per second.

Change data capture for DynamoDB streams

A DynamoDB stream is an ordered flow of information about changes to items in a DynamoDB 
table. When you enable a stream on a table, DynamoDB captures information about every 
modification to data items in the table. DynamoDB runs on AWS Lambda so that you can create 
triggers—pieces of code that automatically respond to events in DynamoDB streams. With triggers, 
you can build applications that react to data modifications in DynamoDB tables.

When a stream is enabled on a table, you can associate the stream Amazon Resource Name (ARN) 
with a Lambda function that you write. Immediately after an item in the table is modified, a new 
record appears in the table's stream. AWS Lambda polls the stream and invokes your Lambda 
function synchronously when it detects new stream records.

Amazon SageMaker and Amazon SageMaker service endpoints

Amazon SageMaker is a fully managed platform that enables developers and data scientists with 
the ability to build, train, and deploy ML models quickly and at any scale. SageMaker includes 
modules that can be used together or independently to build, train, and deploy your ML models. 
With Amazon SageMaker service endpoints, you can create managed hosted endpoint for real-time 
inference with a deployed model that you developed within or outside of Amazon SageMaker.

By utilizing the AWS SDK, you can invoke a SageMaker endpoint passing content type information 
along with content and then receive real-time predictions based on the data passed. This enables 
you to keep the design and development of your ML models separated from your code that 
performs actions on the inferred results.

This enables your data scientists to focus on ML, and the developers who are using the ML model 
to focus on how they use it in their code. For more information on how to invoke an endpoint in 
SageMaker, refer to InvokeEnpoint in the Amazon SageMaker API Reference.
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Inferring data insights in real time

The previous architecture diagram shows that Fast Sneakers’ existing web application added a 
Kinesis Data Stream containing click-stream events, which provides traffic and event data from 
the website. The product catalog, which contains information such as categorization, product 
attributes, and pricing, and the order table, which has data such as items ordered, billing, shipping, 
and so on, are separate DynamoDB tables. The data stream source and the appropriate DynamoDB 
tables have their metadata and schemas defined in the AWS Glue Data Catalog to be used by the 
AWS Glue streaming ETL job.

By utilizing Apache Spark, Spark streaming, and DynamicFrames in their AWS Glue streaming ETL 
job, Fast Sneakers is able to extract data from either data stream and transform it, merging data 
from the product and order tables. With the hydrated data from the transformation, the datasets 
to get inference results from are submitted to a DynamoDB table.

The DynamoDB Stream for the table triggers a Lambda function for each new record written. The 
Lambda function submits the previously transformed records to a SageMaker Endpoint with the 
AWS SDK to infer what, if any, price adjustments are necessary for a product. If the ML model 
identifies an adjustment to the price is required, the Lambda function writes the price change to 
the product in the catalog DynamoDB table.

Summary

Amazon Kinesis Data Streams makes it easy to collect, process, and analyze real-time, streaming 
data so you can get timely insights and react quickly to new information. Combined with the AWS 
Glue serverless data integration service, you can create real-time event streaming applications that 
prepare and combine data for ML.

Because both Kinesis Data Streams and AWS Glue services are fully managed, AWS takes away the 
undifferentiated heavy lifting of managing infrastructure for your big data platform, letting you 
focus on generating data insights based on your data.

Fast Sneakers can utilize real-time event processing and ML to enable their website to make fully 
automated real-time price adjustments, to maximize their product stock. This brings the most 
value to their business while avoiding the need to create and maintain a big data platform.

Inferring data insights in real time 17
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Scenario 4: Device sensors real-time anomaly detection and 
notifications

Company ABC4Logistics transports highly flammable petroleum products such as gasoline, 
liquid propane (LPG), and naphtha from the port to various cities. There are hundreds of vehicles 
which have multiple sensors installed on them for monitoring things such as location, engine 
temperature, temperature inside the container, driving speed, parking location, road conditions, 
and so on. One of the requirements ABC4Logistics has is to monitor the temperatures of the engine 
and the container in real-time and alert the driver and the fleet monitoring team in case of any 
anomaly. To detect such conditions and generate alerts in real-time, ABC4Logistics implemented 
the following architecture on AWS.

ABC4Logistics’s device sensors real-time anomaly detection and notifications architecture

Data from device sensors is ingested by AWS IoT Gateway, where the AWS IoT rules engine will 
make the streaming data available in Amazon Kinesis Data Streams. Using Managed Service for 
Apache Flink, ABC4Logistics can perform the real-time analytics on streaming data in Kinesis Data 
Streams.

Using Managed Service for Apache Flink, ABC4Logistics can detect if temperature readings from 
the sensors deviate from the normal readings over a period of ten seconds, and ingest the record 
onto another Kinesis Data Streams instance, identifying the anomalous records. Amazon Kinesis 
Data Streams then invokes Lambda functions, which can send the alerts to the driver and the fleet 
monitoring team through Amazon SNS.

Scenario 4: Device sensors real-time anomaly detection and notifications 18
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Data in Kinesis Data Streams is also pushed down to Amazon Data Firehose. Amazon Data Firehose 
persists this data in Amazon S3, allowing ABC4Logistics to perform batch or near-real time 
analytics on sensor data. ABC4Logistics uses Amazon Athena to query data in Amazon S3, and
Amazon QuickSight for visualizations. For long-term data retention, the S3 Lifecycle policy is used 
to archive data to Amazon S3 Glacier.

Important components of this architecture are detailed next.

Amazon Managed Service for Apache Flink

Amazon Managed Service for Apache Flink enables you to transform and analyze streaming data 
and respond to anomalies in real time. It is a serverless service on AWS, which means Managed 
Service for Apache Flink takes care of provisioning, and elastically scales the infrastructure to 
handle any data throughput. This takes away all the undifferentiated heavy lifting of setting 
up and managing the streaming infrastructure, and enables you to spend more time on writing 
steaming applications.

With Amazon Managed Service for Apache Flink, you can interactively query streaming data using 
multiple options, including Standard SQL, Apache Flink applications in Java, Python and Scala, and 
build Apache Beam applications using Java to analyze data streams.

These options provide you with flexibility of using a specific approach depending on the complexity 
level of streaming application and source/target support. The following section discusses Managed 
Service for Apache Flink for Flink applications.

Amazon Managed Service for Apache Flink for Apache Flink 
applications

Apache Flink is a popular open-source framework and distributed processing engine for stateful 
computations over unbounded and bounded data streams. Apache Flink is designed to perform 
computations at in-memory speed and at scale with support for exactly-one semantics. Apache 
Flink-based applications help achieve low latency with high throughput in a fault tolerant manner.

With Amazon Managed Service for Apache Flink, you can author and run code against streaming 
sources to perform time series analytics, feed real-time dashboards, and create real-time metrics 
without managing the complex distributed Apache Flink environment. You can use the high-
level Flink programming features in the same way that you use them when hosting the Flink 
infrastructure yourself.
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Managed Service for Apache Flink enables you to create applications in Java, Scala, Python or SQL 
to process and analyze streaming data. A typical Flink application reads the data from the input 
stream or data location or source, transforms/filters or joins data using operators or functions, and 
stores the data on output stream or data location, or sink.

The following architecture diagram shows some of the supported sources and sinks for the Apache 
Flink application. In addition to the pre-bundled connectors for source/sink, you can also bring in 
custom connectors to a variety of other source/sinks for Flink Applications on Managed Service for 
Apache Flink.

Apache Flink application on Managed Service for Apache Flink for real-time stream processing

Developers can use their preferred IDE to develop Flink applications and deploy them on Managed 
Service for Apache Flink from AWS Management Console or DevOps tools.

Amazon Managed Service for Apache Flink Studio

As part of Managed Service for Apache Flink service, Managed Service for Apache Flink Studio is 
available for customers to interactively query data streams in real time, and easily build and run 
stream processing applications using SQL, Python, and Scala. Studio notebooks are powered by
Apache Zeppelin.

Using Studio notebook, you have the ability to develop your Flink Application code in a notebook 
environment, view results of your code in real time, and visualize it within your notebook. You can 
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create a Studio Notebook powered by Apache Zeppelin and Apache Flink with a single click from 
Kinesis Data Streams and Amazon MSK console, or launch it from Managed Service for Apache 
Flink Console.

Once you develop the code iteratively as part of the Managed Service for Apache Flink Studio, 
you can deploy a notebook as a Apache Flink application, to run in streaming mode continuously, 
reading data from your sources, writing to your destinations, maintaining long-running application 
state, and scaling automatically based on the throughput of your source streams. Earlier, customers 
used Managed Service for Apache Flink for SQL Applications for such interactive analytics of real-
time streaming data on AWS.

Managed Service for Apache Flink for SQL applications is still available, but for new projects, AWS 
recommends that you use the new Managed Service for Apache Flink Studio. Managed Service for 
Apache Flink Studio combines ease of use with advanced analytical capabilities, which makes it 
possible to build sophisticated stream processing applications in minutes.

For making the Apache Flink application fault-tolerant, you can make use of checkpointing and 
snapshots, as described in the Implementing Fault Tolerance in Managed Service for Apache Flink.

Apache Flink applications are useful for writing complex streaming analytics applications such 
as applications with exactly-one semantics of data processing, checkpointing capabilities, and 
processing data from data sources such as Kinesis Data Streams, Firehose, Amazon MSK, Rabbit 
MQ, and Apache Cassandra including Custom Connectors.

After processing streaming data in the Flink application, you can persist data to various sinks or 
destinations such as Amazon Kinesis Data Streams, Amazon Data Firehose, Amazon DynamoDB, 
Amazon OpenSearch Service, Amazon Timestream, Amazon S3, and so on. The Apache Flink 
application also provides sub-second performance guarantees.

Apache Beam applications for Managed Service for Apache Flink

Apache Beam is a programming model for processing streaming data. Apache Beam provides a 
portable API layer for building sophisticated data-parallel processing pipelines that may be run 
across a diversity of engines, or runners such as Flink, Spark Streaming, Apache Samza, and so on.

You can use the Apache Beam framework with your Apache Flink application to process streaming 
data. Flink applications that use Apache Beam use Apache Flink runner to run Beam pipelines.
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Summary

By making use of the AWS streaming services Amazon Kinesis Data Streams, Amazon Managed 
Service for Apache Flink, and Amazon Data Firehose,

ABC4Logistics can detect anomalous patterns in temperature readings and notify the driver and 
the fleet management team in real-time, preventing major accidents such as complete vehicle 
breakdown or fire.

Scenario 5: Real time telemetry data monitoring with Apache 
Kafka

ABC1Cabs is an online cab booking services company. All the cabs have IoT devices that gather 
telemetry data from the vehicles. Currently, ABC1Cabs is running Apache Kafka clusters that are 
designed for real-time event consumption, gathering system health metrics, activity tracking, and 
feeding the data into Apache Spark Streaming platform built on a Hadoop cluster on-premises.

ABC1Cabs use OpenSearch Dashboards for business metrics, debugging, alerting, and creating 
other dashboards. They are interested in Amazon MSK, Amazon EMR with Spark Streaming, and 
OpenSearch Service with OpenSearch Dashboards. Their requirement is to reduce admin overhead 
of maintaining Apache Kafka and Hadoop clusters, while using familiar open-source software and 
APIs to orchestrate their data pipeline. The following architecture diagram shows their solution on 
AWS.

Real-time processing with Amazon MSK and Stream processing using Apache Spark Streaming on 
Amazon EMR and Amazon OpenSearch Service with OpenSearch Dashboards

The cab IoT devices collect telemetry data and send to a source hub. The source hub is configured 
to send data in real time to Amazon MSK. Using the Apache Kafka producer library APIs, Amazon 
MSK is configured to stream the data into an Amazon EMR cluster. The Amazon EMR cluster has a 
Kafka client and Spark Streaming installed to be able to consume and process the streams of data.

Scenario 5: Real time telemetry data monitoring with Apache Kafka 22
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Spark Streaming has sink connectors which can write data directly to defined indexes of 
Elasticsearch. Elasticsearch clusters with OpenSearch Dashboards can be used for metrics and 
dashboards. Amazon MSK, Amazon EMR with Spark Streaming, and OpenSearch Service with 
OpenSearch Dashboards are all managed services, where AWS manages the undifferentiated 
heavy lifting of infrastructure management of different clusters, which enables you to build your 
application using familiar open-source software with few clicks. The next section takes a closer 
look at these services.

Amazon Managed Streaming for Apache Kafka (Amazon MSK)

Apache Kafka is an open-source platform that enables customers to capture streaming data 
like click stream events, transactions, IoT events, and application and machine logs. With this 
information, you can develop applications that perform real-time analytics, run continuous 
transformations, and distribute this data to data lakes and databases in real-time.

You can use Kafka as a streaming data store to decouple applications from producer and 
consumers and enable reliable data transfer between the two components. While Kafka is a 
popular enterprise data streaming and messaging platform, it can be difficult to set up, scale, and 
manage in production.

Amazon MSK takes care of these managing tasks and makes it easy to set up, configure, and 
run Kafka, along with Apache Zookeeper, in an environment following best practices for high 
availability and security. You can still use Kafka's control-plane operations and data-plane 
operations to manage producing and consuming data.

Because Amazon MSK runs and manages open-source Apache Kafka, it makes it easy for customers 
to migrate and run existing Apache Kafka applications on AWS without needing to make changes 
to their application code.

Scaling

Amazon MSK offers scaling operations so that user can scale the cluster actively while its running. 
When creating an Amazon MSK cluster, you can specify the instance type of the brokers at cluster 
launch. You can start with a few brokers within an Amazon MSK cluster. Then, using the AWS 
Management Console or AWS CLI, you can scale up to hundreds of brokers per cluster.

Alternatively, you can scale your clusters by changing the size or family of your Apache Kafka 
brokers. Changing the size or family of your brokers gives you the flexibility to adjust your Amazon 
MSK cluster’s compute capacity for changes in your workloads. See Amazon MSK Pricing for 
assistance in determining the correct number of brokers for your Amazon MSK cluster.
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After creating the Amazon MSK cluster, you can increase the amount of EBS storage per broker 
with exception of decreasing the storage. Storage volumes remain available during this scaling-up 
operation. It offers two types of scaling operations: Auto Scaling and Manual Scaling.

Amazon MSKsupports automatic expansion of your cluster's storage in response to increased usage 
using Application Auto Scaling policies. Your automatic scaling policy sets the target disk utilization 
and the maximum scaling capacity.

The storage utilization threshold helps Amazon MSK to trigger an automatic scaling operation. 
To increase storage using manual scaling, wait for the cluster to be in the ACTIVE state. Storage 
scaling has a cooldown period of at least six hours between events. Even though the operation 
makes additional storage available right away, the service performs optimizations on your cluster 
that can take up to 24 hours or more.

The duration of these optimizations is proportional to your storage size. Additionally, it also offers 
multi–Availability Zones replication within an AWS Region to provide High Availability.

Configuration

Amazon MSK provides a default configuration for brokers, topics, and Apache Zookeeper nodes. 
You can also create custom configurations and use them to create new Amazon MSK clusters or 
update existing clusters. When you create an MSK cluster without specifying a custom Amazon 
MSK configuration, Amazon MSK creates and uses a default configuration. For a list of default 
values, refer to Apache Kafka Configuration.

For monitoring purposes, Amazon MSK gathers Apache Kafka metrics and sends them to Amazon 
CloudWatch, where you can view them. The metrics that you configure for your MSK cluster are 
automatically collected and pushed to CloudWatch. Monitoring consumer lag enables you to 
identify slow or stuck consumers that aren't keeping up with the latest data available in a topic. 
When necessary, you can then take remedial actions, such as scaling or rebooting those consumers.

Migrating to Amazon MSK

Migrating from on premises to Amazon MSK can be achieved by one of the following methods.

• MirrorMaker2.0 — MirrorMaker2.0 (MM2) MM2 is a multi-cluster, data replication engine 
based on Apache Kafka Connect framework. MM2 is a combination of an Apache Kafka source 
connector and a sink connector. You can use a single MM2 cluster to migrate data between 
multiple clusters. MM2 automatically detects new topics and partitions, while also ensuring 
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the topic configurations are synced between clusters. MM2 supports migrations ACLs, topics 
configurations, and offset translation. For more details related to migration, refer to Migrating 
Clusters Using Apache Kafka's MirrorMaker. MM2 is used for use cases related to replication of 
topics configurations and offset translation automatically.

• Apache Flink — MM2 supports at least once semantics. Records can be duplicated to the 
destination and the consumers are expected to be idempotent to handle duplicate records. In 
exactly-once scenarios, semantics are required customers can use Apache Flink. It provides an 
alternative to achieve exactly once semantics.

Apache Flink can also be used for scenarios where data requires mapping or transformation 
actions before submission to the destination cluster. Apache Flink provides connectors for 
Apache Kafka with sources and sinks that can read data from one Apache Kafka cluster and write 
to another. Apache Flink can be run on AWS by launching an  Amazon EMR cluster or by running 
Apache Flink as an application using Amazon Managed Service for Apache Flink.

• AWS Lambda — With support for Apache Kafka as an event source for AWS Lambda, customers 
can now consume messages from a topic via a Lambda function. The AWS Lambda service 
internally polls for new records or messages from the event source, and then synchronously 
invokes the target Lambda function to consume these messages. Lambda reads the messages in 
batches and provides the message batches to your function in the event payload for processing. 
Consumed messages can then be transformed and/or written directly to your destination 
Amazon MSK cluster.

Amazon EMR with Spark streaming

Amazon EMR is a managed cluster platform that simplifies running big data frameworks, such as
Apache Hadoop and Apache Spark on AWS, to process and analyze vast amounts of data.

Amazon EMR provides the capabilities of Spark and can be used to start Spark streaming to 
consume data from Kafka. Spark Streaming is an extension of the core Spark API that enables 
scalable, high-throughput, fault-tolerant stream processing of live data streams.

You can create an Amazon EMR cluster using the AWS Command Line Interface (AWS CLI) or on 
the AWS Management Console and select Spark and Zeppelin in advanced configurations while 
creating the cluster. As shown in the following architecture diagram, data can be ingested from 
many sources such as Apache Kafka and Kinesis Data Streams, and can be processed using complex 
algorithms expressed with high-level functions such as map, reduce, join and window. For more 
information, refer to Transformations on DStreams.
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Processed data can be pushed out to filesystems, databases, and live dashboards.

Real-time streaming flow from Apache Kafka to Hadoop ecosystem

By default, Apache Spark Streaming has a micro-batch run model. However, since Spark 2.3 came 
out, Apache has introduced a new low-latency processing mode called Continuous Processing, 
which can achieve end-to-end latencies as low as one millisecond with at-least-once guarantees.

Without changing the Dataset/DataFrames operations in your queries, you can choose the mode 
based on your application requirements. Some of the benefits of Spark Streaming are:

• It brings Apache Spark's language-integrated API to stream processing, letting you write 
streaming jobs the same way you write batch jobs.

• It supports Java, Scala and Python.

• It can recover both lost work and operator state (such as sliding windows) out of the box, without 
any extra code on your part.

• By running on Spark, Spark Streaming lets you reuse the same code for batch processing, join 
streams against historical data, or run ad hoc queries on the stream state and build powerful 
interactive applications, not just analytics.

• After the data stream is processed with Spark Streaming, OpenSearch Sink Connector can be 
used to write data to the OpenSearch Service cluster, and in turn, OpenSearch Service with 
OpenSearch Dashboards can be used as consumption layer.

Amazon OpenSearch Service with OpenSearch Dashboards

OpenSearch Service is a managed service that makes it easy to deploy, operate, and scale 
OpenSearch clusters in the AWS Cloud. OpenSearch is a popular open-source search and analytics 
engine for use cases such as log analytics, real-time application monitoring, and clickstream 
analysis.

Migrating to Amazon MSK 26

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/what-is-amazon-elasticsearch-service.html


Streaming Data Solutions on AWS AWS Whitepaper

OpenSearch Dashboards is an open-source data visualization and exploration tool used for log 
and time-series analytics, application monitoring, and operational intelligence use cases. It offers 
powerful and easy-to-use features such as histograms, line graphs, pie charts, heat maps, and 
built-in geospatial support.

OpenSearch Dashboards provides tight integration with OpenSearch, a popular analytics and 
search engine, which makes OpenSearch Dashboards the default choice for visualizing data stored 
in OpenSearch. OpenSearch Service provides an installation of OpenSearch Dashboards with 
every OpenSearch Service domain. You can find a link to OpenSearch Dashboards on your domain 
dashboard on the OpenSearch Service console.

Summary

With Apache Kafka offered as a managed service on AWS, you can focus on consumption rather 
than on managing the coordination between the brokers, which usually requires a detailed 
understanding of Apache Kafka. Features such as high availability, broker scalability, and granular 
access control are managed by the Amazon MSK platform.

ABC1Cabs utilized these services to build production application without needing infrastructure 
management expertise. They could focus on the processing layer to consume data from Amazon 
MSK and further propagate to visualization layer.

Spark Streaming on Amazon EMR can help real-time analytics of streaming data, and publishing on
OpenSearch Dashboards on Amazon OpenSearch Service for the visualization layer.
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Conclusion and contributors

Conclusion

This document reviewed several scenarios for streaming workflows. In these scenarios, streaming 
data processing provided the example companies with the ability to add new features and 
functionality.

By analyzing data as it gets created, you will gain insights into what your business is doing right 
now. AWS streaming services enable you to focus on your application to make time-sensitive 
business decisions, rather than deploying and managing the infrastructure
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