
AWS Whitepaper

Streaming Data Solutions on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Streaming Data Solutions on AWS AWS Whitepaper

Streaming Data Solutions on AWS: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Streaming Data Solutions on AWS AWS Whitepaper

Table of Contents

Abstract .. 1
Abstract ... 1

Introduction ... 2
Real-time and near-real-time application scenarios ... 2
Difference between batch and stream processing .. 3
Stream processing challenges .. 3

Streaming data solutions: examples .. 4
Scenario 1: Internet offering based on location .. 4

Amazon Kinesis Data Streams .. 4
Processing streams of data with AWS Lambda .. 6
Summary ... 7

Scenario 2: Near-real-time data for security teams .. 7
Amazon Data Firehose ... 8
Summary ... 13

Scenario 3: Preparing clickstream data for data insights processes .. 13
AWS Glue and AWS Glue streaming ... 14
Amazon DynamoDB .. 16
Amazon SageMaker and Amazon SageMaker service endpoints .. 16
Inferring data insights in real time ... 17
Summary ... 17

Scenario 4: Device sensors real-time anomaly detection and notifications 18
Amazon Managed Service for Apache Flink .. 19
Amazon Managed Service for Apache Flink for Apache Flink applications 19

Scenario 5: Real time telemetry data monitoring with Apache Kafka .. 22
Amazon Managed Streaming for Apache Kafka (Amazon MSK) ... 23
Migrating to Amazon MSK .. 24

Conclusion and contributors ... 28
Conclusion .. 28
Contributors ... 28

Document revisions ... 29

iii

Streaming Data Solutions on AWS AWS Whitepaper

Streaming Data Solutions on AWS

Publication date: September 1, 2021 (Document revisions)

Abstract

Data engineers, data analysts, and big data developers are looking to evolve their analytics
from batch to real-time so their companies can learn about what their customers, applications,
and products are doing right now and react promptly. This whitepaper discusses the evolution
of analytics from batch to real-time. It describes how services such as Amazon Kinesis Data
Streams, Amazon Data Firehose, Amazon EMR, Amazon Managed Service for Apache Flink,
Amazon Managed Streaming for Apache Kafka (Amazon MSK), and other services can be used to
implement real-time applications, and provides common design patterns using these services.

Abstract 1

https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-firehose/
https://aws.amazon.com/emr/
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/msk/

Streaming Data Solutions on AWS AWS Whitepaper

Introduction

Businesses today receive data at massive scale and speed due to the explosive growth of data
sources that continuously generate streams of data. Whether it is log data from application
servers, clickstream data from websites and mobile apps, or telemetry data from Internet of
Things (IoT) devices, it all contains information that can help you learn about what your customers,
applications, and products are doing right now.

Having the ability to process and analyze this data in real-time is essential to do things such as
continuously monitor your applications to ensure high service uptime and personalize promotional
offers and product recommendations. Real-time and near-real-time processing can also make other
common use cases, such as website analytics and machine learning, more accurate and actionable
by making data available to these applications in seconds or minutes instead of hours or days.

Real-time and near-real-time application scenarios

You can use streaming data services for real-time and near-real-time applications such as
application monitoring, fraud detection, and live leaderboards. Real-time use cases require
millisecond end-to-end latencies– from ingestion, to processing, all the way to emitting the
results to target data stores and other systems. For example, Netflix uses Amazon Kinesis Data
Streams to monitor the communications between all its applications so it can detect and fix issues
quickly, ensuring high service uptime and availability to its customers. While the most commonly
applicable use case is application performance monitoring, there are an increasing number of real-
time applications in ad tech, gaming, and IoT that fall under this category.

Common near-real-time use cases include analytics on data stores for data science and machine
learning (ML). You can use streaming data solutions to continuously load real-time data into your
data lakes. You can then update ML models more frequently as new data becomes available,
ensuring accuracy and reliability of the outputs. For example, Zillow uses Kinesis Data Streams
to collect public record data and multiple listing service (MLS) listings, and then provide home
buyers and sellers with the most up-to-date home value estimates in near-real-time. ZipRecruiter
uses Amazon MSK for their event logging pipelines, which are critical infrastructure components
that collect, store, and continually process over six billion events per day from the ZipRecruiter
employment marketplace.

Real-time and near-real-time application scenarios 2

https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/kinesis/data-streams/
https://aws.amazon.com/msk/

Streaming Data Solutions on AWS AWS Whitepaper

Difference between batch and stream processing

You need a different set of tools to collect, prepare, and process real-time streaming data than
those tools that you have traditionally used for batch analytics. With traditional analytics, you
gather the data, load it periodically into a database, and analyze it hours, days, or weeks later.
Analyzing real-time data requires a different approach. Stream processing applications process
data continuously in real-time, even before it is stored. Streaming data can come in at a blistering
pace and data volumes can vary up and down at any time. Stream data processing platforms have
to be able to handle the speed and variability of incoming data and process it as it arrives, often
millions to hundreds of millions of events per hour.

Stream processing challenges

Processing real-time data as it arrives can enable you to make decisions much faster than is
possible with traditional data analytics technologies. However, building and operating your own
custom streaming data pipelines is complicated and resource-intensive:

• You have to build a system that can cost-effectively collect, prepare, and transmit data coming
simultaneously from thousands of data sources.

• You need to fine-tune the storage and compute resources so that data is batched and
transmitted efficiently for maximum throughput and low latency.

• You have to deploy and manage a fleet of servers to scale the system so you can handle the
varying speeds of data you are going to throw at it.

Version upgrade is a complex and costly process. After you have built this platform, you have
to monitor the system and recover from any server or network failures by catching up on data
processing from the appropriate point in the stream, without creating duplicate data. You also
need a dedicated team for infrastructure management. All of this takes valuable time and money
and, at the end of the day, most companies just never get there and must settle for the status quo
and operate their business with information that is hours or days old.

Difference between batch and stream processing 3

Streaming Data Solutions on AWS AWS Whitepaper

Streaming data solutions: examples

To better understand how organizations are doing real-time data processing using AWS services,
this whitepaper uses five examples. Each example reviews a scenario and discusses in detail how
AWS real-time data streaming services are used to solve the problem.

Scenario 1: Internet offering based on location

Company InternetProvider provides internet services with a variety of bandwidth options to users
across the world. When a user signs up for internet, company InternetProvider provides the user
with different bandwidth options based on user’s geographic location. Given these requirements,
company InternetProvider implemented an Amazon Kinesis Data Streams to consume user details
and location. The user details and location are enriched with different bandwidth options prior to
publishing back to the application. AWS Lambda enables this real-time enrichment.

Processing streams of data with AWS Lambda

Amazon Kinesis Data Streams

Amazon Kinesis Data Streams enables you to build custom, real-time applications using popular
stream processing frameworks and load streaming data into many different data stores. A Kinesis
stream can be configured to continuously receive events from hundreds of thousands of data
producers delivered from sources like website click-streams, IoT sensors, social media feeds
and application logs. Within milliseconds, data is available to be read and processed by your
application.

When implementing a solution with Kinesis Data Streams, you create custom data-processing
applications known as Kinesis Data Streams applications. A typical Kinesis Data Streams application
reads data from a Kinesis stream as data records.

Scenario 1: Internet offering based on location 4

https://aws.amazon.com/lambda/
https://aws.amazon.com/kinesis/data-streams/

Streaming Data Solutions on AWS AWS Whitepaper

Data put into Kinesis Data Streams is ensured to be highly available and elastic, and is available in
milliseconds. You can continuously add various types of data such as clickstreams, application logs,
and social media to a Kinesis stream from hundreds of thousands of sources. Within seconds, the
data will be available for your Kinesis Applications to read and process from the stream.

Amazon Kinesis Data Streams is a fully managed streaming data service. It manages the
infrastructure, storage, networking, and configuration needed to stream your data at the level of
your data throughput.

Sending data to Amazon Kinesis Data Streams

There are several ways to send data to Kinesis Data Streams, providing flexibility in the designs of
your solutions.

• You can write code utilizing one of the AWS SDKs that are supported by multiple popular
languages.

• You can use the Amazon Kinesis Agent, a tool for sending data to Kinesis Data Streams.

The Amazon Kinesis Producer Library (KPL) simplifies the producer application development by
enabling developers to achieve high write throughput to one or more Kinesis data streams.

The KPL is an easy to use, highly configurable library that you install on your hosts. It acts as
an intermediary between your producer application code and the Kinesis Streams API actions.
For more information about the KPL and its ability to produce events synchronously and
asynchronously with code examples, refer to Writing to your Kinesis Data Streams Using the KPL

There are two different operations in the Kinesis Data Streams API that add data to a stream:
PutRecords and PutRecord. The PutRecords operation sends multiple records to your stream
per HTTP request while, PutRecord submits one record per HTTP request. To achieve higher
throughput for most applications, use PutRecords.

For more information about these APIs, refer to Adding Data to a Stream. The details for each API
operation can be found in the Amazon Kinesis Data Streams API Reference.

Processing data in Amazon Kinesis Data Streams

To read and process data from Kinesis streams, you need to create a consumer application. There
are varied ways to create consumers for Kinesis Data Streams. Some of these approaches include

Amazon Kinesis Data Streams 5

https://aws.amazon.com/kinesis/data-streams/faqs/#kinesisapp
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/streams/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-kpl.html
https://docs.aws.amazon.com/streams/latest/dev/kinesis-kpl-writing.html
https://docs.aws.amazon.com/streams/latest/dev/developing-producers-with-sdk.html#kinesis-using-sdk-java-add-data-to-stream
https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html

Streaming Data Solutions on AWS AWS Whitepaper

using Amazon Managed Service for Apache Flink to analyze streaming data using KCL, using AWS
Lambda, AWS Glue streaming ETL jobs, and using the Kinesis Data Streams API directly.

Consumer applications for Kinesis Data Streams can be developed using the KCL, which helps you
consume and process data from Kinesis Data Streams The KCL takes care of many of the complex
tasks associated with distributed computing such as load balancing across multiple instances,
responding to instance failures, checkpointing processed records, and reacting to resharding. The
KCL enables you to focus on the writing record-processing logic. For more information on how to
build your own KCL application, refer to Using the Kinesis Client Library.

You can subscribe Lambda functions to automatically read batches of records off your Kinesis
stream and process them if records are detected on the stream. AWS Lambda periodically polls the
stream (once per second) for new records and when it detects new records, it invokes the Lambda
function passing the new records as parameters. The Lambda function is only run when new
records are detected. You can map a Lambda function to a shared-throughput consumer (standard
iterator)

You can build a consumer that uses a feature called enhanced fan-out when you require dedicated
throughput that you do not want to contend with other consumers that are receiving data from the
stream. This feature enables consumers to receive records from a stream with throughput of up to
two MB of data per second per shard.

For most cases, using Managed Service for Apache Flink, KCL, AWS Glue, or AWS Lambda should be
used to process data from a stream. However, if you prefer, you can create a consumer application
from scratch using the Kinesis Data Streams API. The Kinesis Data Streams API provides the
GetShardIterator and GetRecords methods to retrieve data from a stream.

In this pull model, your code extracts data directly from the shards of the stream. For more
information about writing your own consumer application using the API, refer to Developing
Custom Consumers with Shared Throughput Using the AWS SDK for Java. Details about the API can
be found in the Amazon Kinesis Data Streams API Reference.

Processing streams of data with AWS Lambda

AWS Lambda enables you to run code without provisioning or managing servers. With Lambda, you
can run code for virtually any type of application or backend service with zero administration. Just
upload your code, and Lambda takes care of everything required to run and scale your code with
high availability. You can set up your code to automatically trigger from other AWS services, or call
it directly from any web or mobile app.

Processing streams of data with AWS Lambda 6

https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://docs.aws.amazon.com/streams/latest/dev/shared-throughput-kcl-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/enhanced-consumers.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/streams/latest/dev/developing-consumers-with-sdk.html
https://docs.aws.amazon.com/kinesis/latest/APIReference/Welcome.html
https://aws.amazon.com/lambda/faqs/

Streaming Data Solutions on AWS AWS Whitepaper

AWS Lambda integrates natively with Amazon Kinesis Data Streams . The polling, checkpointing,
and error handling complexities are abstracted when you use this native integration. This allows
the Lambda function code to focus on business logic processing.

You can map a Lambda function to a shared-throughput (standard iterator), or to a dedicated-
throughput consumer with enhanced fan-out. With a standard iterator, Lambda polls each shard
in your Kinesis stream for records using HTTP protocol. To minimize latency and maximize read
throughput, you can create a data stream consumer with enhanced fan-out. Stream consumers
in this architecture get a dedicated connection to each shard without competing with other
applications reading from the same stream.Amazon Kinesis Data Streams pushes records to
Lambda over HTTP/2.

By default, AWS Lambda invokes your function as soon as records are available in the stream. To
buffer the records for batch scenarios, you can implement a batch window for up to five minutes
at the event source. If your function returns an error, Lambda retries the batch until processing
succeeds or the data expires.

Summary

Company InternetProvider leveraged Amazon Kinesis Data Streams to stream user details and
location. The stream of record was consumed by AWS Lambda to enrich the data with bandwidth
options stored in the function’s library. After the enrichment, AWS Lambda published the
bandwidth options back to the application. Amazon Kinesis Data Streams and AWS Lambda
handled provisioning and management of servers, enabling company InternetProvider to focus
more on business application development.

Scenario 2: Near-real-time data for security teams

Company ABC2Badge provides sensors and badges for corporate or large-scale events such as AWS
re:Invent. Users sign up for the event and receive unique badges that the sensors pick up across
the campus. As users pass by a sensor, their anonymized information is recorded into a relational
database.

In an upcoming event, due to the high volume of attendees, ABC2Badge has been requested by
the event security team to gather data for the most concentrated areas of the campus every 15
minutes. This will give the security team enough time to react and disperse security personal
proportionally to concentrated areas. Given this new requirement from the security team and the
inexperience of building a streaming solution, to process date in near-real-time, ABC2Badge is
looking for a simple yet scalable and reliable solution.

Summary 7

https://reinvent.awsevents.com/
https://reinvent.awsevents.com/

Streaming Data Solutions on AWS AWS Whitepaper

Their current data warehouse solution is Amazon Redshift. While reviewing the features of the
Amazon Kinesis services, they recognized that Amazon Data Firehose can receive a stream of data
records, batch the records based on buffer size and/or time interval, and insert them into Amazon
Redshift. They created a Firehose delivery stream and configured it so it would copy data to their
Amazon Redshift tables every five minutes. As part of this new solution, they used the Amazon
Kinesis Agent on their servers. Every five minutes, Firehose loads data into Amazon Redshift, where
the business intelligence (BI) team is enabled to perform its analysis and send the data to the
security team every 15 minutes.

New solution using Amazon Data Firehose

Amazon Data Firehose

Amazon Data Firehose is the easiest way to load streaming data into AWS. It can capture,
transform, and load streaming data into Amazon Managed Service for Apache Flink, Amazon
Simple Storage Service (Amazon S3), Amazon Redshift, Amazon OpenSearch Service (OpenSearch
Service), and Splunk. Additionally, Firehose can load streaming data into any custom HTTP
endpoint or HTTP endpoints owned by supported third-party service providers.

Firehose enables near-real-time analytics with existing business intelligence tools and dashboards
that you’re already using today. It’s a fully managed serverless service that automatically scales to
match the throughput of your data and requires no ongoing administration. Firehose can batch,
compress, and encrypt the data before loading, minimizing the amount of storage used at the
destination and increasing security. It can also transform the source data using AWS Lambda and
deliver the transformed data to destinations. You configure your data producers to send data to
Firehose, which automatically delivers the data to the destination that you specify.

Amazon Data Firehose 8

https://aws.amazon.com/redshift/
https://aws.amazon.com/kinesis/data-firehose
https://aws.amazon.com/kinesis/data-analytics/
https://aws.amazon.com/s3/
https://aws.amazon.com/s3/
https://aws.amazon.com/redshift/
https://aws.amazon.com/opensearch-service/
https://www.splunk.com/
https://docs.aws.amazon.com/firehose/latest/dev/create-destination.html

Streaming Data Solutions on AWS AWS Whitepaper

Sending data to a Firehose delivery stream

To send data to your delivery stream, there are several options. AWS offers SDKs for many popular
programming languages, each of which provides APIs for Amazon Data Firehose. AWS has a utility
to help send data to your delivery stream. Firehose has been integrated with other AWS services to
send data directly from those services into your delivery stream.

Using Amazon Kinesis agent

Amazon Kinesis agent is a standalone software application that continuously monitors a set of log
files for new data to be sent to the delivery stream. The agent automatically handles file rotation,
checkpointing, retries upon failures, and emits Amazon CloudWatch metrics for monitoring and
troubleshooting of the delivery stream. Additional configurations, such data pre-processing,
monitoring multiple file directories, and writing to multiple delivery streams, can be applied to the
agent.

The agent can be installed on Linux or Windows-based servers such as web servers, log servers, and
database servers. Once the agent is installed, you simply specify the log files it will monitor and the
delivery stream it will send to. The agent will durably and reliably send new data to the delivery
stream.

Using API with AWS SDK and AWS services as a source

The Firehose API offers two operations for sending data to your delivery stream. PutRecord sends
one data record within one call. PutRecordBatch can send multiple data records within one call,
and can achieve higher throughput per producer. In each method, you must specify the name of
the delivery stream and the data record, or array of data records, when using this method. For
more information and sample code for the Firehose API operations, refer to Writing to a Firehose
Delivery Stream Using the AWS SDK.

Firehose also runs with Firehose, CloudWatch Logs, CloudWatch Events, Amazon Simple
Notification Service (Amazon SNS), Amazon API Gateway, and AWS IoT. You can scalably and
reliably send your streams of data, logs, events, and IoT data directly into a Firehose destination.

Processing data before delivery to destination

In some scenarios, you might want to transform or enhance your streaming data before it is
delivered to its destination. For example, data producers might send unstructured text in each
data record, and you need to transform it to JSON before delivering it to OpenSearch Service. Or

Amazon Data Firehose 9

https://aws.amazon.com/kinesis/data-firehose/
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-agents.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-sdk.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-kinesis-streams.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-logs.html
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-cloudwatch-events.html
https://aws.amazon.com/sns/
https://aws.amazon.com/sns/
https://aws.amazon.com/api-gateway/
https://docs.aws.amazon.com/firehose/latest/dev/writing-with-iot.html
https://aws.amazon.com/opensearch-service/

Streaming Data Solutions on AWS AWS Whitepaper

you might want to convert the JSON data into a columnar file format such as Apache Parquet or
Apache ORC before storing the data in Amazon S3.

Firehose has built-in data format conversion capability. With this, you can easily convert your
streams of JSON data into Apache Parquet or Apache ORC file formats.

Data transformation flow

To enable streaming data transformations, Firehose uses a Lambda function that you create to
transform your data. Firehose buffers incoming data to a specified buffer size for the function and
then invokes the specified Lambda function asynchronously. The transformed data is sent from
Lambda to Firehose, and Firehose delivers the data to the destination.

Data format conversion

You can also enable Firehose data format conversion, which will convert your stream of JSON
data to Apache Parquet or Apache ORC. This feature can only convert JSON to Apache Parquet or
Apache ORC. If you have data that is in CSV, you can transform that data via a Lambda function to
JSON, and then apply the data format conversion.

Data delivery

As a near-real-time delivery stream, Firehose buffers incoming data. After your delivery stream’s
buffering thresholds have been reached, your data is delivered to the destination you’ve
configured. There are some differences in how Firehose delivers data to each destination, which
this paper reviews in the following sections.

Amazon S3

Amazon S3 is object storage with a simple web service interface to store and retrieve any amount
of data from anywhere on the web. It’s designed to deliver 99.999999999% durability, and scale
past trillions of objects worldwide.

Data delivery to Amazon S3

For data delivery to Amazon S3, Firehose concatenates multiple incoming records based on the
buffering configuration of your delivery stream, and then delivers them to Amazon S3 as an S3
object. The frequency of data delivery to S3 is determined by the S3 buffer size (1 MB to 128 MB)
or buffer interval (60 seconds to 900 seconds), whichever comes first.

Amazon Data Firehose 10

https://parquet.apache.org/
https://orc.apache.org/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html
https://docs.aws.amazon.com/firehose/latest/dev/data-transformation.html
https://docs.aws.amazon.com/firehose/latest/dev/record-format-conversion.html
https://docs.aws.amazon.com/firehose/latest/dev/basic-deliver.html#s3-object-name
https://aws.amazon.com/s3/

Streaming Data Solutions on AWS AWS Whitepaper

Data delivery to your S3 bucket might fail for various reasons. For example, the bucket might not
exist anymore, or the AWS Identity and Access Management (IAM) role that Firehose assumes might
not have access to the bucket. Under these conditions, Firehose keeps retrying for up to 24 hours
until the delivery succeeds. The maximum data storage time of Firehose is 24 hours. If data delivery
fails for more than 24 hours, your data is lost.

Amazon Redshift

Amazon Redshift is a fast, fully managed data warehouse that makes it simple and cost-effective to
analyze all your data using standard SQL and your existing BI tools. It enables you to run complex
analytic queries against petabytes of structured data using sophisticated query optimization,
columnar storage on high-performance local disks, and massively parallel query running.

Data delivery to Amazon Redshift

For data delivery to Amazon Redshift, Firehose first delivers incoming data to your S3 bucket in the
format described earlier. Firehose then issues an Amazon Redshift COPY command to load the data
from your S3 bucket to your Amazon Redshift cluster.

The frequency of data COPY operations from S3 to Amazon Redshift is determined by how fast
your Amazon Redshift cluster can finish the COPY command. For an Amazon Redshift destination,
you can specify a retry duration (0–7200 seconds) when creating a delivery stream to handle data
delivery failures. Firehose retries for the specified time duration and skips that particular batch
of S3 objects if unsuccessful. The skipped objects' information is delivered to your S3 bucket as a
manifest file in the errors/ folder, which you can use for manual backfill.

Following is an architecture diagram of Firehose to Amazon Redshift data flow. Although this data
flow is unique to Amazon Redshift, Firehose follows similar patterns for the other destination
targets.

Data flow from Firehose to Amazon Redshift

Amazon Data Firehose 11

https://aws.amazon.com/iam/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://aws.amazon.com/redshift/

Streaming Data Solutions on AWS AWS Whitepaper

Amazon OpenSearch Service (OpenSearch Service)

OpenSearch Service is a fully managed service that delivers the OpenSearch easy-to-use APIs and
real-time capabilities along with the availability, scalability, and security required by production
workloads. OpenSearch Service makes it easy to deploy, operate, and scale OpenSearch for log
analytics, full text search, and application monitoring.

Data delivery to OpenSearch Service

For data delivery to OpenSearch Service, Firehose buffers incoming records based on the buffering
configuration of your delivery stream, and then generates an OpenSearch bulk request to index
multiple records to your OpenSearch cluster. The frequency of data delivery to OpenSearch Service
is determined by the OpenSearch buffer size (1 MB to 100 MB) and buffer interval (60 seconds to
900 seconds) values, whichever comes first.

For the OpenSearch Service destination, you can specify a retry duration (0–7200 seconds)
when creating a delivery stream. Firehose retries for the specified time duration, and then skips
that particular index request. The skipped documents are delivered to your S3 bucket in the
elasticsearch_failed/ folder, which you can use for manual backfill.

Amazon Data Firehose can rotate your OpenSearch Service index based on a time duration.
Depending on the rotation option you choose (NoRotation, OneHour, OneDay, OneWeek, or
OneMonth), Firehose appends a portion of the Coordinated Universal Time (UTC) arrival timestamp
to your specified index name.

Custom HTTP endpoint or supported third-party service provider

Firehose can send data either to Custom HTTP endpoints or supported third-party providers such
as Datadog, Dynatrace, LogicMonitor, MongoDB, New Relic, Splunk, and Sumo Logic.

Custom HTTP endpoint or supported third-party service provider

For Firehose to successfully deliver data to custom HTTP endpoints, these endpoints must accept
requests and send responses using certain Firehose request and response formats.

When delivering data to an HTTP endpoint owned by a supported third-party service provider,
you can use the integrated AWS Lambda service to create a function to transform the incoming
record(s) to the format that matches the format the service provider's integration is expecting.

For data delivery frequency, each service provider has a recommended buffer size. Work with your
service provider for more information on their recommended buffer size. For data delivery failure

Amazon Data Firehose 12

https://aws.amazon.com/opensearch-service/

Streaming Data Solutions on AWS AWS Whitepaper

handling, Firehose establishes a connection with the HTTP endpoint first by waiting for a response
from the destination. Firehose continues to establish connection, until the retry duration expires.
After that, Firehose considers it a data delivery failure and backs up the data to your S3 bucket.

Summary

Firehose can persistently deliver your streaming data to a supported destination. It’s a fully-
managed solution, requiring little or no development. For Company ABC2Badge, using Firehose
was a natural choice. They were already using Amazon Redshift as their data warehouse solution.
Because their data sources continuously wrote to transaction logs, they were able to leverage the
Amazon Kinesis Agent to stream that data without writing any additional code. Now that company
ABC2Badge has created a stream of sensor records and are receiving these records via Firehose,
they can use this as the basis for the security team use case.

Scenario 3: Preparing clickstream data for data insights
processes

Fast Sneakers is a fashion boutique with a focus on trendy sneakers. The price of any given pair of
shoes can go up or down depending on inventory and trends, such as what celebrity or sports star
was spotted wearing brand name sneakers on TV last night. It is important for Fast Sneakers to
track and analyze those trends to maximize their revenue.

Fast Sneakers does not want to introduce additional overhead into the project with new
infrastructure to maintain. They want to be able to split the development to the appropriate
parties, where the data engineers can focus on data transformation and their data scientists can
work on their ML functionality independently.

To react quickly and automatically adjust prices according to demand, Fast Sneakers streams
significant events (like click-interest and purchasing data), transforming and augmenting the event
data and feeding it to a ML model. Their ML model is able to determine if a price adjustment is
required. This allows Fast Sneakers to automatically modify their pricing to maximize profit on their
products.

Summary 13

Streaming Data Solutions on AWS AWS Whitepaper

Fast Sneakers real-time price adjustments

This architecture diagram shows the real-time streaming solution Fast Sneakers created utilizing
Kinesis Data Streams, AWS Glue, and DynamoDB Streams. By taking advantage of these services,
they have a solution that is elastic and reliable without needing to spend time on setting up and
maintaining the supporting infrastructure. They can spend their time on what brings value to their
company by focusing on a streaming extract, transform, load (ETL) job and their machine learning
model.

To better understand the architecture and technologies that are used in their workload, the
following are some details of the services used.

AWS Glue and AWS Glue streaming

AWS Glue is a fully managed ETL service that you can use to catalog your data, clean it, enrich it,
and move it reliably between data stores. With AWS Glue, you can significantly reduce the cost,
complexity, and time spent creating ETL jobs. AWS Glue is serverless, so there is no infrastructure
to set up or manage. You pay only for the resources consumed while your jobs are running.

Utilizing AWS Glue, you can create a consumer application with an AWS Glue streaming ETL job.
This enables you to utilize Apache Spark and other Spark-based modules writing to consume
and process your event data. The next section of this document goes into more depth about this
scenario.

AWS Glue and AWS Glue streaming 14

https://aws.amazon.com/glue/
https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html

Streaming Data Solutions on AWS AWS Whitepaper

AWS Glue Data Catalog

The AWS Glue Data Catalog contains references to data that is used as sources and targets of your
ETL jobs in AWS Glue. The AWS Glue Data Catalog is an index to the location, schema, and runtime
metrics of your data. You can use information in the Data Catalog to create and monitor your ETL
jobs. Information in the Data Catalog is stored as metadata tables, where each table specifies a
single data store. By setting up a crawler, you can automatically assess numerous types of data
stores, including DynamoDB, S3, and Java Database Connectivity (JDBC) connected stores, extract
metadata and schemas, and then create table definitions in the AWS Glue Data Catalog.

To work with Amazon Kinesis Data Streams in AWS Glue streaming ETL jobs, it is best practice to
define your stream in a table in an AWS Glue Data Catalog database. You define a stream-sourced
table with the Kinesis stream, one of the many formats supported (CSV, JSON, ORC, Parquet, Avro
or a customer format with Grok). You can manually enter a schema, or you can leave this step to
your AWS Glue job to determine during runtime of the job.

AWS Glue streaming ETL job

AWS Glue runs your ETL jobs in an Apache Spark serverless environment. AWS Glue runs these jobs
on virtual resources that it provisions and manages in its own service account. In addition to being
able to run Apache Spark based jobs, AWS Glue provides an additional level of functionality on top
of Spark with DynamicFrames.

DynamicFrames are distributed tables that support nested data such as structures and arrays.
Each record is self-describing, designed for schema flexibility with semi-structured data. A record
in a DynamicFrame contains both data and the schema describing the data. Both Apache Spark
DataFrames and DynamicFrames are supported in your ETL scripts, and you can convert them
back and forth. DynamicFrames provide a set of advanced transformations for data cleaning and
ETL.

By using Spark Streaming in your AWS Glue Job, you can create streaming ETL jobs that run
continuously, and consume data from streaming sources like Amazon Kinesis Data Streams, Apache
Kafka, and Amazon MSK. The jobs can clean, merge, and transform the data, then load the results
into stores including Amazon S3, Amazon DynamoDB, or JDBC data stores.

AWS Glue processes and writes out data in 100-second windows, by default. This allows data to
be processed efficiently, and permits aggregations to be performed on data arriving later than
expected. You can configure the window size by adjusting it to accommodate the speed in response
vs the accuracy of your aggregation. AWS Glue streaming jobs use checkpoints to track the data

AWS Glue and AWS Glue streaming 15

https://docs.aws.amazon.com/glue/latest/dg/populate-data-catalog.html
https://aws.amazon.com/glue
https://docs.aws.amazon.com/glue/latest/dg/aws-glue-api-crawler-pyspark-extensions-dynamic-frame.html

Streaming Data Solutions on AWS AWS Whitepaper

that has been read from the Kinesis Data Stream. For a walkthrough on creating a streaming ETL
job in AWS Glue you can refer to Adding Streaming ETL Jobs in AWS Glue

Amazon DynamoDB

Amazon DynamoDB is a key-value and document database that delivers single-digit millisecond
performance at any scale. It's a fully managed, multi-Region, multi-active, durable database with
built-in security, backup and restore, and in-memory caching for internet-scale applications.
DynamoDB can handle more than ten trillion requests per day, and can support peaks of more than
20 million requests per second.

Change data capture for DynamoDB streams

A DynamoDB stream is an ordered flow of information about changes to items in a DynamoDB
table. When you enable a stream on a table, DynamoDB captures information about every
modification to data items in the table. DynamoDB runs on AWS Lambda so that you can create
triggers—pieces of code that automatically respond to events in DynamoDB streams. With triggers,
you can build applications that react to data modifications in DynamoDB tables.

When a stream is enabled on a table, you can associate the stream Amazon Resource Name (ARN)
with a Lambda function that you write. Immediately after an item in the table is modified, a new
record appears in the table's stream. AWS Lambda polls the stream and invokes your Lambda
function synchronously when it detects new stream records.

Amazon SageMaker and Amazon SageMaker service endpoints

Amazon SageMaker is a fully managed platform that enables developers and data scientists with
the ability to build, train, and deploy ML models quickly and at any scale. SageMaker includes
modules that can be used together or independently to build, train, and deploy your ML models.
With Amazon SageMaker service endpoints, you can create managed hosted endpoint for real-time
inference with a deployed model that you developed within or outside of Amazon SageMaker.

By utilizing the AWS SDK, you can invoke a SageMaker endpoint passing content type information
along with content and then receive real-time predictions based on the data passed. This enables
you to keep the design and development of your ML models separated from your code that
performs actions on the inferred results.

This enables your data scientists to focus on ML, and the developers who are using the ML model
to focus on how they use it in their code. For more information on how to invoke an endpoint in
SageMaker, refer to InvokeEnpoint in the Amazon SageMaker API Reference.

Amazon DynamoDB 16

https://docs.aws.amazon.com/glue/latest/dg/add-job-streaming.html
https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Streams.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://aws.amazon.com/sagemaker/
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/sagemaker/latest/APIReference/API_runtime_InvokeEndpoint.html

Streaming Data Solutions on AWS AWS Whitepaper

Inferring data insights in real time

The previous architecture diagram shows that Fast Sneakers’ existing web application added a
Kinesis Data Stream containing click-stream events, which provides traffic and event data from
the website. The product catalog, which contains information such as categorization, product
attributes, and pricing, and the order table, which has data such as items ordered, billing, shipping,
and so on, are separate DynamoDB tables. The data stream source and the appropriate DynamoDB
tables have their metadata and schemas defined in the AWS Glue Data Catalog to be used by the
AWS Glue streaming ETL job.

By utilizing Apache Spark, Spark streaming, and DynamicFrames in their AWS Glue streaming ETL
job, Fast Sneakers is able to extract data from either data stream and transform it, merging data
from the product and order tables. With the hydrated data from the transformation, the datasets
to get inference results from are submitted to a DynamoDB table.

The DynamoDB Stream for the table triggers a Lambda function for each new record written. The
Lambda function submits the previously transformed records to a SageMaker Endpoint with the
AWS SDK to infer what, if any, price adjustments are necessary for a product. If the ML model
identifies an adjustment to the price is required, the Lambda function writes the price change to
the product in the catalog DynamoDB table.

Summary

Amazon Kinesis Data Streams makes it easy to collect, process, and analyze real-time, streaming
data so you can get timely insights and react quickly to new information. Combined with the AWS
Glue serverless data integration service, you can create real-time event streaming applications that
prepare and combine data for ML.

Because both Kinesis Data Streams and AWS Glue services are fully managed, AWS takes away the
undifferentiated heavy lifting of managing infrastructure for your big data platform, letting you
focus on generating data insights based on your data.

Fast Sneakers can utilize real-time event processing and ML to enable their website to make fully
automated real-time price adjustments, to maximize their product stock. This brings the most
value to their business while avoiding the need to create and maintain a big data platform.

Inferring data insights in real time 17

Streaming Data Solutions on AWS AWS Whitepaper

Scenario 4: Device sensors real-time anomaly detection and
notifications

Company ABC4Logistics transports highly flammable petroleum products such as gasoline,
liquid propane (LPG), and naphtha from the port to various cities. There are hundreds of vehicles
which have multiple sensors installed on them for monitoring things such as location, engine
temperature, temperature inside the container, driving speed, parking location, road conditions,
and so on. One of the requirements ABC4Logistics has is to monitor the temperatures of the engine
and the container in real-time and alert the driver and the fleet monitoring team in case of any
anomaly. To detect such conditions and generate alerts in real-time, ABC4Logistics implemented
the following architecture on AWS.

ABC4Logistics’s device sensors real-time anomaly detection and notifications architecture

Data from device sensors is ingested by AWS IoT Gateway, where the AWS IoT rules engine will
make the streaming data available in Amazon Kinesis Data Streams. Using Managed Service for
Apache Flink, ABC4Logistics can perform the real-time analytics on streaming data in Kinesis Data
Streams.

Using Managed Service for Apache Flink, ABC4Logistics can detect if temperature readings from
the sensors deviate from the normal readings over a period of ten seconds, and ingest the record
onto another Kinesis Data Streams instance, identifying the anomalous records. Amazon Kinesis
Data Streams then invokes Lambda functions, which can send the alerts to the driver and the fleet
monitoring team through Amazon SNS.

Scenario 4: Device sensors real-time anomaly detection and notifications 18

https://docs.aws.amazon.com/iot/latest/developerguide/iot-rules.html

Streaming Data Solutions on AWS AWS Whitepaper

Data in Kinesis Data Streams is also pushed down to Amazon Data Firehose. Amazon Data Firehose
persists this data in Amazon S3, allowing ABC4Logistics to perform batch or near-real time
analytics on sensor data. ABC4Logistics uses Amazon Athena to query data in Amazon S3, and
Amazon QuickSight for visualizations. For long-term data retention, the S3 Lifecycle policy is used
to archive data to Amazon S3 Glacier.

Important components of this architecture are detailed next.

Amazon Managed Service for Apache Flink

Amazon Managed Service for Apache Flink enables you to transform and analyze streaming data
and respond to anomalies in real time. It is a serverless service on AWS, which means Managed
Service for Apache Flink takes care of provisioning, and elastically scales the infrastructure to
handle any data throughput. This takes away all the undifferentiated heavy lifting of setting
up and managing the streaming infrastructure, and enables you to spend more time on writing
steaming applications.

With Amazon Managed Service for Apache Flink, you can interactively query streaming data using
multiple options, including Standard SQL, Apache Flink applications in Java, Python and Scala, and
build Apache Beam applications using Java to analyze data streams.

These options provide you with flexibility of using a specific approach depending on the complexity
level of streaming application and source/target support. The following section discusses Managed
Service for Apache Flink for Flink applications.

Amazon Managed Service for Apache Flink for Apache Flink
applications

Apache Flink is a popular open-source framework and distributed processing engine for stateful
computations over unbounded and bounded data streams. Apache Flink is designed to perform
computations at in-memory speed and at scale with support for exactly-one semantics. Apache
Flink-based applications help achieve low latency with high throughput in a fault tolerant manner.

With Amazon Managed Service for Apache Flink, you can author and run code against streaming
sources to perform time series analytics, feed real-time dashboards, and create real-time metrics
without managing the complex distributed Apache Flink environment. You can use the high-
level Flink programming features in the same way that you use them when hosting the Flink
infrastructure yourself.

Amazon Managed Service for Apache Flink 19

https://aws.amazon.com/athena/
https://aws.amazon.com/quicksight/
https://docs.aws.amazon.com/AmazonS3/latest/userguide/object-lifecycle-mgmt.html
https://aws.amazon.com/s3/glacier/
https://aws.amazon.com/kinesis/data-analytics/
https://flink.apache.org/
https://ci.apache.org/projects/flink/flink-docs-release-1.11/concepts/flink-architecture.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/what-is.html

Streaming Data Solutions on AWS AWS Whitepaper

Managed Service for Apache Flink enables you to create applications in Java, Scala, Python or SQL
to process and analyze streaming data. A typical Flink application reads the data from the input
stream or data location or source, transforms/filters or joins data using operators or functions, and
stores the data on output stream or data location, or sink.

The following architecture diagram shows some of the supported sources and sinks for the Apache
Flink application. In addition to the pre-bundled connectors for source/sink, you can also bring in
custom connectors to a variety of other source/sinks for Flink Applications on Managed Service for
Apache Flink.

Apache Flink application on Managed Service for Apache Flink for real-time stream processing

Developers can use their preferred IDE to develop Flink applications and deploy them on Managed
Service for Apache Flink from AWS Management Console or DevOps tools.

Amazon Managed Service for Apache Flink Studio

As part of Managed Service for Apache Flink service, Managed Service for Apache Flink Studio is
available for customers to interactively query data streams in real time, and easily build and run
stream processing applications using SQL, Python, and Scala. Studio notebooks are powered by
Apache Zeppelin.

Using Studio notebook, you have the ability to develop your Flink Application code in a notebook
environment, view results of your code in real time, and visualize it within your notebook. You can

Amazon Managed Service for Apache Flink for Apache Flink applications 20

https://aws.amazon.com/console/
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-notebook.html
https://zeppelin.apache.org/
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-notebook.html

Streaming Data Solutions on AWS AWS Whitepaper

create a Studio Notebook powered by Apache Zeppelin and Apache Flink with a single click from
Kinesis Data Streams and Amazon MSK console, or launch it from Managed Service for Apache
Flink Console.

Once you develop the code iteratively as part of the Managed Service for Apache Flink Studio,
you can deploy a notebook as a Apache Flink application, to run in streaming mode continuously,
reading data from your sources, writing to your destinations, maintaining long-running application
state, and scaling automatically based on the throughput of your source streams. Earlier, customers
used Managed Service for Apache Flink for SQL Applications for such interactive analytics of real-
time streaming data on AWS.

Managed Service for Apache Flink for SQL applications is still available, but for new projects, AWS
recommends that you use the new Managed Service for Apache Flink Studio. Managed Service for
Apache Flink Studio combines ease of use with advanced analytical capabilities, which makes it
possible to build sophisticated stream processing applications in minutes.

For making the Apache Flink application fault-tolerant, you can make use of checkpointing and
snapshots, as described in the Implementing Fault Tolerance in Managed Service for Apache Flink.

Apache Flink applications are useful for writing complex streaming analytics applications such
as applications with exactly-one semantics of data processing, checkpointing capabilities, and
processing data from data sources such as Kinesis Data Streams, Firehose, Amazon MSK, Rabbit
MQ, and Apache Cassandra including Custom Connectors.

After processing streaming data in the Flink application, you can persist data to various sinks or
destinations such as Amazon Kinesis Data Streams, Amazon Data Firehose, Amazon DynamoDB,
Amazon OpenSearch Service, Amazon Timestream, Amazon S3, and so on. The Apache Flink
application also provides sub-second performance guarantees.

Apache Beam applications for Managed Service for Apache Flink

Apache Beam is a programming model for processing streaming data. Apache Beam provides a
portable API layer for building sophisticated data-parallel processing pipelines that may be run
across a diversity of engines, or runners such as Flink, Spark Streaming, Apache Samza, and so on.

You can use the Apache Beam framework with your Apache Flink application to process streaming
data. Flink applications that use Apache Beam use Apache Flink runner to run Beam pipelines.

Amazon Managed Service for Apache Flink for Apache Flink applications 21

https://docs.aws.amazon.com/kinesisanalytics/latest/dev/what-is.html
https://aws.amazon.com/blogs/aws/introducing-amazon-kinesis-data-analytics-studio-quickly-interact-with-streaming-data-using-sql-python-or-scala/
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-fault.html
https://ci.apache.org/projects/flink/flink-docs-master/docs/concepts/stateful-stream-processing/
https://beam.apache.org/
https://beam.apache.org/documentation/runners/flink/

Streaming Data Solutions on AWS AWS Whitepaper

Summary

By making use of the AWS streaming services Amazon Kinesis Data Streams, Amazon Managed
Service for Apache Flink, and Amazon Data Firehose,

ABC4Logistics can detect anomalous patterns in temperature readings and notify the driver and
the fleet management team in real-time, preventing major accidents such as complete vehicle
breakdown or fire.

Scenario 5: Real time telemetry data monitoring with Apache
Kafka

ABC1Cabs is an online cab booking services company. All the cabs have IoT devices that gather
telemetry data from the vehicles. Currently, ABC1Cabs is running Apache Kafka clusters that are
designed for real-time event consumption, gathering system health metrics, activity tracking, and
feeding the data into Apache Spark Streaming platform built on a Hadoop cluster on-premises.

ABC1Cabs use OpenSearch Dashboards for business metrics, debugging, alerting, and creating
other dashboards. They are interested in Amazon MSK, Amazon EMR with Spark Streaming, and
OpenSearch Service with OpenSearch Dashboards. Their requirement is to reduce admin overhead
of maintaining Apache Kafka and Hadoop clusters, while using familiar open-source software and
APIs to orchestrate their data pipeline. The following architecture diagram shows their solution on
AWS.

Real-time processing with Amazon MSK and Stream processing using Apache Spark Streaming on
Amazon EMR and Amazon OpenSearch Service with OpenSearch Dashboards

The cab IoT devices collect telemetry data and send to a source hub. The source hub is configured
to send data in real time to Amazon MSK. Using the Apache Kafka producer library APIs, Amazon
MSK is configured to stream the data into an Amazon EMR cluster. The Amazon EMR cluster has a
Kafka client and Spark Streaming installed to be able to consume and process the streams of data.

Scenario 5: Real time telemetry data monitoring with Apache Kafka 22

Streaming Data Solutions on AWS AWS Whitepaper

Spark Streaming has sink connectors which can write data directly to defined indexes of
Elasticsearch. Elasticsearch clusters with OpenSearch Dashboards can be used for metrics and
dashboards. Amazon MSK, Amazon EMR with Spark Streaming, and OpenSearch Service with
OpenSearch Dashboards are all managed services, where AWS manages the undifferentiated
heavy lifting of infrastructure management of different clusters, which enables you to build your
application using familiar open-source software with few clicks. The next section takes a closer
look at these services.

Amazon Managed Streaming for Apache Kafka (Amazon MSK)

Apache Kafka is an open-source platform that enables customers to capture streaming data
like click stream events, transactions, IoT events, and application and machine logs. With this
information, you can develop applications that perform real-time analytics, run continuous
transformations, and distribute this data to data lakes and databases in real-time.

You can use Kafka as a streaming data store to decouple applications from producer and
consumers and enable reliable data transfer between the two components. While Kafka is a
popular enterprise data streaming and messaging platform, it can be difficult to set up, scale, and
manage in production.

Amazon MSK takes care of these managing tasks and makes it easy to set up, configure, and
run Kafka, along with Apache Zookeeper, in an environment following best practices for high
availability and security. You can still use Kafka's control-plane operations and data-plane
operations to manage producing and consuming data.

Because Amazon MSK runs and manages open-source Apache Kafka, it makes it easy for customers
to migrate and run existing Apache Kafka applications on AWS without needing to make changes
to their application code.

Scaling

Amazon MSK offers scaling operations so that user can scale the cluster actively while its running.
When creating an Amazon MSK cluster, you can specify the instance type of the brokers at cluster
launch. You can start with a few brokers within an Amazon MSK cluster. Then, using the AWS
Management Console or AWS CLI, you can scale up to hundreds of brokers per cluster.

Alternatively, you can scale your clusters by changing the size or family of your Apache Kafka
brokers. Changing the size or family of your brokers gives you the flexibility to adjust your Amazon
MSK cluster’s compute capacity for changes in your workloads. See Amazon MSK Pricing for
assistance in determining the correct number of brokers for your Amazon MSK cluster.

Amazon Managed Streaming for Apache Kafka (Amazon MSK) 23

https://aws.amazon.com/msk/pricing/

Streaming Data Solutions on AWS AWS Whitepaper

After creating the Amazon MSK cluster, you can increase the amount of EBS storage per broker
with exception of decreasing the storage. Storage volumes remain available during this scaling-up
operation. It offers two types of scaling operations: Auto Scaling and Manual Scaling.

Amazon MSKsupports automatic expansion of your cluster's storage in response to increased usage
using Application Auto Scaling policies. Your automatic scaling policy sets the target disk utilization
and the maximum scaling capacity.

The storage utilization threshold helps Amazon MSK to trigger an automatic scaling operation.
To increase storage using manual scaling, wait for the cluster to be in the ACTIVE state. Storage
scaling has a cooldown period of at least six hours between events. Even though the operation
makes additional storage available right away, the service performs optimizations on your cluster
that can take up to 24 hours or more.

The duration of these optimizations is proportional to your storage size. Additionally, it also offers
multi–Availability Zones replication within an AWS Region to provide High Availability.

Configuration

Amazon MSK provides a default configuration for brokers, topics, and Apache Zookeeper nodes.
You can also create custom configurations and use them to create new Amazon MSK clusters or
update existing clusters. When you create an MSK cluster without specifying a custom Amazon
MSK configuration, Amazon MSK creates and uses a default configuration. For a list of default
values, refer to Apache Kafka Configuration.

For monitoring purposes, Amazon MSK gathers Apache Kafka metrics and sends them to Amazon
CloudWatch, where you can view them. The metrics that you configure for your MSK cluster are
automatically collected and pushed to CloudWatch. Monitoring consumer lag enables you to
identify slow or stuck consumers that aren't keeping up with the latest data available in a topic.
When necessary, you can then take remedial actions, such as scaling or rebooting those consumers.

Migrating to Amazon MSK

Migrating from on premises to Amazon MSK can be achieved by one of the following methods.

• MirrorMaker2.0 — MirrorMaker2.0 (MM2) MM2 is a multi-cluster, data replication engine
based on Apache Kafka Connect framework. MM2 is a combination of an Apache Kafka source
connector and a sink connector. You can use a single MM2 cluster to migrate data between
multiple clusters. MM2 automatically detects new topics and partitions, while also ensuring

Migrating to Amazon MSK 24

https://docs.aws.amazon.com/msk/latest/developerguide/msk-default-configuration.html

Streaming Data Solutions on AWS AWS Whitepaper

the topic configurations are synced between clusters. MM2 supports migrations ACLs, topics
configurations, and offset translation. For more details related to migration, refer to Migrating
Clusters Using Apache Kafka's MirrorMaker. MM2 is used for use cases related to replication of
topics configurations and offset translation automatically.

• Apache Flink — MM2 supports at least once semantics. Records can be duplicated to the
destination and the consumers are expected to be idempotent to handle duplicate records. In
exactly-once scenarios, semantics are required customers can use Apache Flink. It provides an
alternative to achieve exactly once semantics.

Apache Flink can also be used for scenarios where data requires mapping or transformation
actions before submission to the destination cluster. Apache Flink provides connectors for
Apache Kafka with sources and sinks that can read data from one Apache Kafka cluster and write
to another. Apache Flink can be run on AWS by launching an Amazon EMR cluster or by running
Apache Flink as an application using Amazon Managed Service for Apache Flink.

• AWS Lambda — With support for Apache Kafka as an event source for AWS Lambda, customers
can now consume messages from a topic via a Lambda function. The AWS Lambda service
internally polls for new records or messages from the event source, and then synchronously
invokes the target Lambda function to consume these messages. Lambda reads the messages in
batches and provides the message batches to your function in the event payload for processing.
Consumed messages can then be transformed and/or written directly to your destination
Amazon MSK cluster.

Amazon EMR with Spark streaming

Amazon EMR is a managed cluster platform that simplifies running big data frameworks, such as
Apache Hadoop and Apache Spark on AWS, to process and analyze vast amounts of data.

Amazon EMR provides the capabilities of Spark and can be used to start Spark streaming to
consume data from Kafka. Spark Streaming is an extension of the core Spark API that enables
scalable, high-throughput, fault-tolerant stream processing of live data streams.

You can create an Amazon EMR cluster using the AWS Command Line Interface (AWS CLI) or on
the AWS Management Console and select Spark and Zeppelin in advanced configurations while
creating the cluster. As shown in the following architecture diagram, data can be ingested from
many sources such as Apache Kafka and Kinesis Data Streams, and can be processed using complex
algorithms expressed with high-level functions such as map, reduce, join and window. For more
information, refer to Transformations on DStreams.

Migrating to Amazon MSK 25

https://docs.aws.amazon.com/msk/latest/developerguide/migration.html
https://docs.aws.amazon.com/msk/latest/developerguide/migration.html
https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-flink.html
https://docs.aws.amazon.com/kinesisanalytics/latest/java/how-it-works.html
https://aws.amazon.com/lambda/
https://aws.amazon.com/emr
https://aws.amazon.com/elasticmapreduce/details/hadoop
https://spark.apache.org/
https://aws.amazon.com/cli/
https://aws.amazon.com/console/
https://spark.apache.org/docs/latest/streaming-programming-guide.html#transformations-on-dstreams

Streaming Data Solutions on AWS AWS Whitepaper

Processed data can be pushed out to filesystems, databases, and live dashboards.

Real-time streaming flow from Apache Kafka to Hadoop ecosystem

By default, Apache Spark Streaming has a micro-batch run model. However, since Spark 2.3 came
out, Apache has introduced a new low-latency processing mode called Continuous Processing,
which can achieve end-to-end latencies as low as one millisecond with at-least-once guarantees.

Without changing the Dataset/DataFrames operations in your queries, you can choose the mode
based on your application requirements. Some of the benefits of Spark Streaming are:

• It brings Apache Spark's language-integrated API to stream processing, letting you write
streaming jobs the same way you write batch jobs.

• It supports Java, Scala and Python.

• It can recover both lost work and operator state (such as sliding windows) out of the box, without
any extra code on your part.

• By running on Spark, Spark Streaming lets you reuse the same code for batch processing, join
streams against historical data, or run ad hoc queries on the stream state and build powerful
interactive applications, not just analytics.

• After the data stream is processed with Spark Streaming, OpenSearch Sink Connector can be
used to write data to the OpenSearch Service cluster, and in turn, OpenSearch Service with
OpenSearch Dashboards can be used as consumption layer.

Amazon OpenSearch Service with OpenSearch Dashboards

OpenSearch Service is a managed service that makes it easy to deploy, operate, and scale
OpenSearch clusters in the AWS Cloud. OpenSearch is a popular open-source search and analytics
engine for use cases such as log analytics, real-time application monitoring, and clickstream
analysis.

Migrating to Amazon MSK 26

https://spark.apache.org/docs/latest/streaming-programming-guide.html
https://docs.aws.amazon.com/elasticsearch-service/latest/developerguide/what-is-amazon-elasticsearch-service.html

Streaming Data Solutions on AWS AWS Whitepaper

OpenSearch Dashboards is an open-source data visualization and exploration tool used for log
and time-series analytics, application monitoring, and operational intelligence use cases. It offers
powerful and easy-to-use features such as histograms, line graphs, pie charts, heat maps, and
built-in geospatial support.

OpenSearch Dashboards provides tight integration with OpenSearch, a popular analytics and
search engine, which makes OpenSearch Dashboards the default choice for visualizing data stored
in OpenSearch. OpenSearch Service provides an installation of OpenSearch Dashboards with
every OpenSearch Service domain. You can find a link to OpenSearch Dashboards on your domain
dashboard on the OpenSearch Service console.

Summary

With Apache Kafka offered as a managed service on AWS, you can focus on consumption rather
than on managing the coordination between the brokers, which usually requires a detailed
understanding of Apache Kafka. Features such as high availability, broker scalability, and granular
access control are managed by the Amazon MSK platform.

ABC1Cabs utilized these services to build production application without needing infrastructure
management expertise. They could focus on the processing layer to consume data from Amazon
MSK and further propagate to visualization layer.

Spark Streaming on Amazon EMR can help real-time analytics of streaming data, and publishing on
OpenSearch Dashboards on Amazon OpenSearch Service for the visualization layer.

Migrating to Amazon MSK 27

https://aws.amazon.com/elasticsearch-service/the-elk-stack/kibana/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/what-is-elasticsearch/
https://aws.amazon.com/elasticsearch-service/the-elk-stack/kibana/

Streaming Data Solutions on AWS AWS Whitepaper

Conclusion and contributors

Conclusion

This document reviewed several scenarios for streaming workflows. In these scenarios, streaming
data processing provided the example companies with the ability to add new features and
functionality.

By analyzing data as it gets created, you will gain insights into what your business is doing right
now. AWS streaming services enable you to focus on your application to make time-sensitive
business decisions, rather than deploying and managing the infrastructure

Contributors

• Amalia Rabinovitch, Sr. Solutions Architect, AWS

• Priyanka Chaudhary, Data Lake, Data Architect, AWS

• Zohair Nasimi, Solutions Architect, AWS

• Rob Kuhr, Solutions Architect, AWS

• Ejaz Sayyed, Sr. Partner Solutions Architect, AWS

• Allan MacInnis, Solutions Architect, AWS

• Chander Matrubhutam, Product Marketing Manager, AWS

Conclusion 28

Streaming Data Solutions on AWS AWS Whitepaper

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Updated Updated for technical
accuracy

September 1, 2021

Initial publication Whitepaper first published July 1, 2017

29

	Streaming Data Solutions on AWS
	Table of Contents
	Streaming Data Solutions on AWS
	Abstract

	Introduction
	Real-time and near-real-time application scenarios
	Difference between batch and stream processing
	Stream processing challenges

	Streaming data solutions: examples
	Scenario 1: Internet offering based on location
	Amazon Kinesis Data Streams
	Sending data to Amazon Kinesis Data Streams
	Processing data in Amazon Kinesis Data Streams

	Processing streams of data with AWS Lambda
	Summary

	Scenario 2: Near-real-time data for security teams
	Amazon Data Firehose
	Sending data to a Firehose delivery stream
	Using Amazon Kinesis agent
	Using API with AWS SDK and AWS services as a source
	Processing data before delivery to destination
	Data transformation flow
	Data format conversion
	Data delivery

	Amazon S3
	Data delivery to Amazon S3

	Amazon Redshift
	Data delivery to Amazon Redshift

	Amazon OpenSearch Service (OpenSearch Service)
	Data delivery to OpenSearch Service

	Custom HTTP endpoint or supported third-party service provider
	Custom HTTP endpoint or supported third-party service provider

	Summary

	Scenario 3: Preparing clickstream data for data insights processes
	AWS Glue and AWS Glue streaming
	AWS Glue Data Catalog
	AWS Glue streaming ETL job

	Amazon DynamoDB
	Change data capture for DynamoDB streams

	Amazon SageMaker and Amazon SageMaker service endpoints
	Inferring data insights in real time
	Summary

	Scenario 4: Device sensors real-time anomaly detection and notifications
	Amazon Managed Service for Apache Flink
	Amazon Managed Service for Apache Flink for Apache Flink applications
	Amazon Managed Service for Apache Flink Studio
	Apache Beam applications for Managed Service for Apache Flink
	Summary

	Scenario 5: Real time telemetry data monitoring with Apache Kafka
	Amazon Managed Streaming for Apache Kafka (Amazon MSK)
	Scaling
	Configuration

	Migrating to Amazon MSK
	Amazon EMR with Spark streaming
	Amazon OpenSearch Service with OpenSearch Dashboards
	Summary

	Conclusion and contributors
	Conclusion
	Contributors

	Document revisions

