
Reference Architecture, Deployment Topology, and Value Proposition

Telco Edge Workloads on Red Hat
OpenShift - Wavelength and Local Zones

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local
Zones: Reference Architecture, Deployment Topology, and Value
Proposition

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Table of Contents

Abstract and introduction .. i
Abstract ... 1

Are You Well-Architected? .. 2
Introduction ... 3
Hybrid cloud .. 4
Container platforms .. 5
RedHat OpenShift Container Platform .. 6
Red Hat OpenShift on AWS .. 8

Benefits of Red Hat OpenShift on AWS: ... 8
ROSA architecture ... 10
Value proposition of ROSA ... 12
AWS Local Zones ... 14
Red Hat OpenShift on AWS Local Zones ... 15

Reference architecture on AWS Local Zones .. 15
Red Hat OpenShift on AWS Local Zones - Deployments .. 17

Create the VPC and subnets .. 17
AWS Wavelength Zones .. 33

Reference architecture on AWS Wavelength Zones .. 34
Create a subnet in VPC for AWS Wavelength Zones ... 34
Create a MachineSet for Wavelength Zones ... 35

Potential use cases .. 36
Advantages of running telco edge workloads on Red Hat OpenShift in AWS 36

Conclusion .. 38
Contributors ... 39
Further reading .. 40
Document revisions ... 41
Notices .. 42
AWS Glossary ... 43

iii

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Telco Edge Workloads on Red Hat OpenShift -
Wavelength and Local Zones

Publication date: September 8, 2022 (Document revisions)

Abstract

Technology modernization is one of the core strategic initiatives by chief technology officers
(CTOs) and chief information officers (CIOs) to apply innovative technologies. Telecom and media
providers are disrupted every few years by market shifting innovations. To compete, they need to
develop and monetize on new services before they lose their competitive advantage.

Telco companies need rapid tools that allow them to move to the cloud and embrace the cloud
ecosystems. Container technologies have revolutionized the way infrastructure is deployed
and have become the standard for modernizing the next generation of applications using a
combination of agile, DevOps, and microservices methodologies.

Telco transformation requires a virtualized and containerized Telco cloud architecture to modernize
legacy networks. Container technologies act as the key enabler to meet the needs of cloud native
applications. This whitepaper outlines major use cases, provides a reference architecture, and
outlines best practices of hybrid cloud strategy for deploying telecom edge workloads using Red
Hat OpenShift on AWS, using AWS Wavelength and Local Zones.

Abstract 1

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Are You Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems.

Using the AWS Well-Architected Tool, available at no charge in the

AWS Management Console, you can review your workloads against these best practices by
answering a set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the

AWS Architecture Center.

2

https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/well-architected/

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Introduction

Containers are portable and highly efficient in encapsulating cloud native applications. They
enable a broad range of other technologies, such as automation and orchestration, continuous
integration/deployment (CI/CD), microservices, and immutable infrastructure. The International
Data Corporation (IDC) forecasts that by 2023, there will be roughly 1.8 billion enterprise
containers deployed, representing a five-year compound annual growth rate (CAGR) of 79%.

An effective cloud adoption program using practices guided by experience can lead organizations
to successful container-based software delivery infrastructure. Communications service providers
(CSPs) understand the necessity and importance of becoming cloud native, but don’t know where
to start. This whitepaper describes an approach for deploying Telco and Media Edge workloads as
containerized applications using Red Hat OpenShift on AWS across AWS Wavelength and Local
Zones.

IDC Report on Market Analysis Perspective: Worldwide Software-Defined Compute, 2020

IDC Report on Market Analysis Perspective: Worldwide Software-Defined Compute, 2020

3

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Hybrid cloud

Hybrid cloud combines and unifies public cloud and private cloud services from cloud vendors to
create a single, flexible, cost-optimized IT infrastructure. Many businesses and organizations now
adopt cloud computing as a key aspect of their technology strategy. Businesses are moving their
workloads to the AWS Cloud for greater agility, cost savings, performance, availability, resiliency,
and scalability.

While most applications can be easily migrated, some applications need to be re-architected or
modernized before they can be moved to the cloud. These applications must remain on-premises
due to low-latency, local data processing, high data transfer costs, or data residency requirements.
This leads many organizations to seek hybrid cloud architectures to integrate their on-premises
and cloud operations to support a broad spectrum of use cases.

Open hybrid cloud strategies rely on a combination of on-premises hardware providers, leaning
on multiple clouds for specific services. Red Hat OpenShift on AWS is designed to support IT
organizations across the open hybrid cloud, regardless of the technical makeup. With accelerating
5G adoption by CSPs and the expansion of both private and public mobile edge computing (MEC),
it’s imperative for CSPs to run their workload spread across regions and a combination of both on-
premises infrastructure near-edge and far-edge zones.

AWS Wavelength embeds AWS compute and storage services within 5G networks, providing
mobile edge computing infrastructure for developing, deploying, and scaling ultra-low-latency
applications. For ultra-reliable low latency (URLL) use cases like real-time gaming and live
streaming, augmented and virtual reality (AR/VR). In addition, local zones can place compute,
storage, and AWS native services close to large metro zones and industry centers.

4

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Container platforms

Containers provide a standard way to package your application code, configurations, and
dependencies into a single unit. Containers run as isolated processes on compute hosts and
share the host operating system and its hardware resources. A container can be moved between
environments and run without changes. Unlike virtual machines (VMs), containers don’t virtualize
a device, its operating system, and the underlying hardware. Only the app code, run time, system
tools, libraries, and settings are packaged inside the container. This approach makes a container
more lightweight, portable, and efficient than a VM. AWS has the richest container services
portfolio, with Amazon Elastic Kubernetes Service

(Amazon EKS), Amazon Elastic Container Service (Amazon ECS), AWS Fargate (serverless
Kubernetes) and Red Hat OpenShift Service on AWS (ROSA).

AWS container services portfolio

5

https://aws.amazon.com/eks/
https://aws.amazon.com/ecs/
https://aws.amazon.com/fargate/
https://aws.amazon.com/fargate/
https://aws.amazon.com/rosa/

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

RedHat OpenShift Container Platform

Red Hat OpenShift Container Platform is a comprehensive enterprise-ready container solution
built around Kubernetes. It includes both infrastructure and operations to enable the full stack
developer experience. Red Hat OpenShift combined with AWS helps teams accelerate development
and delivery of Kubernetes applications across a unified hybrid cloud environment. OpenShift
helps organizations implement a Kubernetes infrastructure designed for rapid application
development and deployment. By delivering more of the open-source projects you need along
with Kubernetes, the OpenShift platform enables IT operations and developers to collaborate
effectively and deploy containerized applications.

Red Hat OpenShift components

Red Hat OpenShift is designed to allow applications and the data centers that support them to
expand from just a few machines and applications to thousands of machines that serve millions of
clients. With its foundation in Kubernetes, OpenShift Container Platform incorporates the same
technology that serves as the engine for massive telecommunications, streaming video, gaming,
banking, and other applications. Kubernetes is an open-source container orchestration engine for
automating deployment, scaling, and management of containerized applications.

6

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

OpenShift architecture builds on top of Kubernetes and is comprised of three types of nodes:

• Control Plane Nodes — Kubernetes Control Plane Nodes that might provide additional
functionalities like the web console with self service capabilities

• Infrastructure Nodes — Kubernetes Worker nodes dedicated to host functionalities like routing
and registry

• App Nodes or Nodes — Kubernetes worker nodes used to run the microservices and
containerized applications deployed on OpenShift

7

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Red Hat OpenShift on AWS

Red Hat OpenShift Service on AWS (ROSA) is a fully managed and jointly supported Red
Hat OpenShift offering that combines the power of Red Hat OpenShift, the industry’s most
comprehensive enterprise Kubernetes platform, and the AWS public cloud. ROSA provides
an integrated experience to use OpenShift. If you’re already familiar with OpenShift, you can
accelerate your application development process by leveraging familiar OpenShift APIs and tools
for deployments on AWS. With ROSA, you can use the wide range of AWS compute, database,
analytics, ML, networking, mobile, and other services to build secure and scalable applications
faster. Red Hat OpenShift Service on AWS comes with pay-as-you-go hourly and annual billing, a
99.95% service-level agreement (SLA), and joint support from AWS and Red Hat.

Red Hat OpenShift deployment models

Benefits of Red Hat OpenShift on AWS:

• ROSA accelerates application development and testing lifecycles throughout the Enterprise IT
architecture without being bounded by the limitations of framework, any deployment topology,
or programming language inconsistencies.

• ROSA accelerates the adoption of DevOps so your development team can focus on designing and
testing applications rather than spending time in managing and deploying containers.

Benefits of Red Hat OpenShift on AWS: 8

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

• ROSA provides containerization for multitenancy, automatic provisioning, container security,
monitoring, automatic application scaling, continuous integration, and self-service for
developers.

Benefits of Red Hat OpenShift on AWS: 9

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

ROSA architecture

Red Hat OpenShift Service on AWS is a managed service, available on the AWS Management
Console, that makes it easier for Red Hat OpenShift customers to build, scale, and manage
containerized applications on AWS. With ROSA, customers can quickly and easily create Kubernetes
clusters using familiar Red Hat OpenShift APIs and tooling, and seamlessly have access to the full
breadth and depth of AWS services. ROSA streamlines moving on-premises Red Hat OpenShift
workloads to AWS, and offers a tighter integration with other AWS services. ROSA also enables
customers to access Red Hat OpenShift licensing, billing, and support directly through AWS,
delivering the simplicity of a single-vendor experience to customers.

Red Hat OpenShift on AWS private cluster architecture

Red Hat OpenShift Service on AWS uses the Red Hat enterprise Kubernetes platform. Kubernetes is
an open-source platform for managing containerized workloads and services across multiple hosts,
and offers management tools for deploying, automating, monitoring, and scaling containerized
apps with minimal to no manual intervention.

Relevant Kubernetes resources include:

• Cluster, compute pool, and compute node — A Kubernetes cluster consists of a control plane
and one or more compute nodes. Compute nodes are organized into compute pools of the type

10

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

or profile of central processing unit (CPU), memory, operating system, attached disks, and other
properties. The compute nodes correspond to the Kubernetes Node resource, and are managed
by a Kubernetes control plane that centrally controls and monitors all Kubernetes resources in
the cluster.

When you deploy the resources for a containerized app, the Kubernetes control plane decides
which compute node to deploy those resources on, accounting for the deployment requirements
and available capacity in the cluster. Kubernetes resources include services, deployments, and
pods.

• Namespace — Kubernetes namespaces are a way to divide your cluster resources into separate
areas that you can deploy apps and restrict access to – for example, if you want to share the
cluster with multiple teams, system resources that are configured for you are kept in separate
namespaces like kube-system. If you don't designate a namespace when you create a Kubernetes
resource, the resource is automatically created in the default namespace.

• Pod — Every containerized app that is deployed into a cluster is deployed, run, and managed by
a Kubernetes resource called a pod. Pods represent small deployable units in a Kubernetes cluster
and are used to group the containers that you want treated as a single unit. In most cases, each
container is deployed in its own pod. However, an app can require a container and other helper
containers to be deployed into one pod so that those containers can be addressed by using the
same private IP address.

• App — App can refer to a complete app or a component of an app. You can deploy components
of an app in separate pods or separate compute nodes.

• Service — A service is a Kubernetes resource that groups a set of pods and provides network
connectivity to these pods without exposing the actual private IP address of each pod. You can
use a service to make your app available within your cluster or to the public internet.

• Deployment — A deployment is a Kubernetes resource where you can specify information about
other resources or capabilities that are required to run your app, such as services, persistent
storage, or annotations. You configure a deployment in a configuration YAML file, and then apply
it to the cluster. The Kubernetes Control Plane configures the resources and deploys containers
into pods on the compute nodes with available capacity. The control plane also defines update
strategies for the hosted app, including the number of pods that you want to add during a
rolling update and the number of pods that can be unavailable at a time. When you perform a
rolling update, the deployment checks whether the update is working and stops the rollout when
failures are detected. A deployment is just one type of workload controller that you can use to
manage pods.

11

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Value proposition of ROSA

Red Hat OpenShift on AWS offers a wide range of benefits for developers, IT operations and
business leaders. Containers add a layer of abstraction that isn’t present in VMs. While VMs rely on
the infrastructure layer to provide benefits such as resilience, containers are cloud-native and are
built to be independent of their infrastructure. This abstraction also enhances security, not only
because patches can be rolled out faster, but also because just the container host can be patched
– as opposed to multiple, individual guest operating systems that each need attention. By making
application development faster, scaling easier, and management less complex, containers allow
providers to launch newer applications and services faster and gain a competitive advantage.

Red Hat and AWS have collaborated to make it easy to run Red Hat Enterprise Linux on AWS since
2008, and we are expanding on that collaboration for Red Hat OpenShift on AWS. You can now
acquire Red Hat OpenShift licensing through AWS, and then quickly deploy managed OpenShift
clusters in your account. By working together, we’re now able to provide ROSA with a set of
features for the best OpenShift experience on AWS.

• AWS Management Console integration and streamlined OpenShift cluster creation — You can
get started with the Red Hat OpenShift Service on AWS through the AWS Management Console,
and a new CLI and API to provision clusters in your account. After you’ve created your clusters,
you can manage them through the familiar OpenShift Console or with the OpenShift Cluster
Manager.

• Standard Red Hat OpenShift clusters consumption experience — To move more quickly,
customers find value in being able to use familiar skills and tooling. This new service has the
same familiar OpenShift APIs, so you can lean on existing skills and tools for operating your
clusters. Customers will continue to receive OpenShift updates with new feature releases and
share a common source for alignment with OpenShift Container Platform. ROSA supports the
same versions of OpenShift as Red Hat OpenShift Dedicated and OpenShift Container Platform
to achieve version consistency everywhere. ROSA adds a new API for cluster creation to alleviate
the burden of manually deploying the cluster in your existing VPC and account, without getting
in the way of how you use it.

• Out of the box integration with AWS infrastructure — Developers can easily deploy
applications with dependencies on AWS services by using the OpenShift Service Catalog and
AWS Service Broker, an implementation of the Open Service Broker API. The AWS Service Broker
provides an intermediate layer that allows users to deploy services using native manifests and
the OpenShift Console. AWS Service Broker supports a subset of AWS services, including Amazon

12

https://github.com/openservicebrokerapi/servicebroker/

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Relational Database Service (Amazon RDS), Amazon EMR, Amazon DynamoDB, Amazon Simple
Storage Service (Amazon S3), and Amazon Simple Queue Service (Amazon SQS).

• Managed service experience provided by both AWS and Red Hat — We want to help you
avoid going through multi-page manuals to stand up a production-grade OpenShift cluster on
AWS. Having your precious engineering resources spend cycles managing clusters for regular
maintenance isn’t the best way to keep them busy. Those engineering resources can (and should)
be used to create value to the business instead.

• Consumption-based pricing with no upfront costs — Our customers tell us that a consumption-
based model is one of the main reasons they moved to the cloud in the first place. Consumption-
based pricing allows you to experiment and fail fast, and customers have told us they want to
align their Red Hat OpenShift licensing consumption with how they plan to operate in AWS. As a
result, we are providing an hourly pay-as-you-go model and annual commitments for customers
who can take advantage of up-front commitments.

• Integrated AWS billing experience — While this is a service jointly managed and supported
by Red Hat and AWS, you only have to deal with a bill from a single vendor: AWS. Each AWS
service supporting your cluster components and application requirements is still a separate
billing line item, but now with the addition of your OpenShift subscription. For example, all the
infrastructure related components (instances, load balancers, storage) are reported as standard
AWS line items, while the Red Hat OpenShift subscription is listed with other AWS Marketplace
subscriptions. We think this is positive news for our joint AWS and Red Hat customers because
they can now have a unified vendor experience for adoption and continue to build on their
existing Red Hat relationship through AWS Marketplace private offers.

13

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

AWS Local Zones

A Local Zone is an extension of an AWS Region that is geographically close to your users. You
can extend any virtual private cloud (VPC) from the parent AWS Region into Local Zones by
creating a new subnet and assigning it to the AWS Local Zone. When you create a subnet in a
Local Zone, your VPC is extended to that Local Zone. The subnet in the Local Zone operates the
same as other subnets in your VPC. AWS Local Zones allow you to use select AWS services, like
compute and storage services, closer to more end users, giving them low latency access to their
local applications. AWS Local Zones are also connected to the parent region by using Amazon’s
redundant and high-bandwidth private network, giving applications running in AWS Local Zones
fast, secure, and seamless access to the rest of AWS services.

14

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Red Hat OpenShift on AWS Local Zones

Reference architecture on AWS Local Zones

Local Zones are designed to bring the core services needed for the latency sensitive portions of
your workload closer to end users, while Availability Zones provide access to the full array of AWS
services. Services such as Amazon Elastic Compute Cloud (Amazon EC2), Amazon Elastic Block
Store (Amazon EBS), Amazon VPC are locally available and can be used to serve end users in
geographic proximity with extremely low latency, while other AWS services like Amazon S3 and
Amazon Aurora are accessible privately in a VPC over an AWS private network.

Local Zones and Availability Zones help you build applications for high availability. AWS Local
Zones are a type of AWS infrastructure deployment that places compute, storage, database, and
other select services closer to large population, industry, and IT centers, enabling you to deliver
applications that require single-digit millisecond latency to end users. The AWS Local Zones can
run various AWS services such as Amazon Elastic Compute Cloud (Amazon EC2), Amazon Virtual
Private Cloud (Amazon VPC), Amazon Elastic Block Store (Amazon EBS), Amazon FSx, Amazon
Elastic Load Balancing, Amazon EMR, Amazon ElastiCache and Amazon Relational Database Service
(Amazon RDS) in geographic proximity to your end users, with more services to be added in the
future.

The following reference architecture illustrates the AWS Region us-east-1, two of its Availability
Zones, and two of its Local Zones. The VPC spans the Availability Zones and one of the Local Zones.
Each zone in the VPC has one subnet.

Reference architecture on AWS Local Zones 15

https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/ec2/
https://aws.amazon.com/vpc/
https://aws.amazon.com/vpc/
https://aws.amazon.com/ebs
https://aws.amazon.com/fsx
https://aws.amazon.com/emr
https://aws.amazon.com/rds/
https://aws.amazon.com/rds/

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Red Hat OpenShift on AWS Local Zone architecture

Reference architecture on AWS Local Zones 16

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Red Hat OpenShift on AWS Local Zones - Deployments

Deploy OpenShift worker nodes in AWS Local Zones to run latency-sensitive Kubernetes
applications closer to end users to enable real-time gaming, live streaming, augmented and virtual
reality (AR/VR), virtual workstations, and more. Another use case is to comply with state and
local data residency requirements in sectors such as healthcare, financial services, gaming, and
government.

We outline the deployment topology to deploy and manage a Red Hat OpenShift cluster in
Region us-east-1 and then deploy a worker node in Local Zone Atlanta, us-east-1-atl-1a.
We deploy Red Hat OpenShift using Installer-Provisioned-Infrastructure (IPI) on an existing VPC
with predefined subnets. IPI simplifies the creation of VPC and the required networking constructs
allocating the needed CIDR’s for additional subnets in the Local Zone.

Create the VPC and subnets

There are multiple ways to create the VPC and the subnets. You can use Terraform, AWS
CloudFormation, AWS CLI or AWS Management Console. We will use a CloudFormation template
from OpenShift documentation with the following parameters to create the VPC and the subnets.

1. CloudFormation template:

 vpc-parameters. json
 [
 {
 "ParameterKey": "VpcCidr",
 "ParameterValue": "10.0.0.0/16"
 },
 {
 "ParameterKey": "AvailabilityZoneCount",
 "ParameterValue": "3"
 },
 {
 "ParameterKey": "SubnetBits",
 "ParameterValue": "12"
 }
]

Create the VPC and subnets 17

https://docs.openshift.com/container-platform/4.6/installing/installing_aws/installing-aws-user-infra.html#installation-cloudformation-vpc_installing-aws-user-infra

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

2. Create the VPC and subnet using an AWS CLI command.

 $ aws cloudformation create-stack --stack-name localzones-vpc --template-
body file://localzones-vpc.yaml --parameters file://vpc-parameters.json —region us-
east-1

3. Verify the VPC and the subnets are created and CF stack template is completed.

Your VPCs

Your subnets

4. Deploy OpenShift using IPI on the VPC you have just created. Here is the install-
config.yaml sample configuration:

 baseDomain: ocp.ovsandbox.com
 compute:
 - architecture: amd64
 hyperthreading: Enabled
 name: worker
 platform: {}
 replicas: 2

Create the VPC and subnets 18

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 controlPlane:
 architecture: amd64
 hyperthreading: Enabled
 name: master
 platform: {}
 replicas: 3
 metadata:
 creationTimestamp: null
 name: lz
 networking:
 clusterNetwork:
 - cidr: 10.128.0.0/14
 hostPrefix: 23
 machineNetwork:
 - cidr: 10.0.0.0/16
 networkType: OVNKubernetes
 serviceNetwork:
 - 172.30.0.0/16
 platform:
 aws:
 region: us-east-1
 subnets:
 - subnet-0e45490fa22d0f9e2
 - subnet-0bb71030f8d9c1c94
 - subnet-07ca600d2216d395c
 - subnet-0e3f0599be5e5bec1
 - subnet-088b6cb411f8b0d5e
 - subnet-0be63e6b666d7d3c1
 publish: External
 pullSecret: '{"auths":...}'
 sshKey: |
 ecdsa-sha2-nistp256 AAA...

5. Create the OS cluster.

 $ openshift-install create cluster —log-level=debug

It takes approximately 30 min to create the cluster.

Create the VPC and subnets 19

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 INFO Install complete!
 INFO To access the cluster as the system:admin user when using 'oc', run
 'export KUBECONFIG=/home/ec2-user/ocp4/auth/kubeconfig'
 INFO Access the OpenShift web-console here: https://console-openshift-
console.apps.lz.ocp.ovsandbox.com
 INFO Login to the console with user: "kubeadmin", and password: ""
 INFO Time elapsed: 30m45s

6. Once the installation is complete, log in to the OpenShift web console to check if the cluster is
ready and operational.

Verify the OS cluster

7. Create the subnet in the cluster’s VPC for AWS Local Zone. In the AWS Management Console,
choose Services > VPC, then select Subnets. Create the subnet by providing the VPC ID, subnet
name, Local Zone for Availability Zone, and CIDR.

8. Associate the subnets and NATs from the AWS Local Zone to a route table from one of the
private subnets.

Create the VPC and subnets 20

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Subnet associations

A route to an existing NAT Gateway is added to the Local Zone private subnet.

9. Create a MachineSet for Local Zones. Verify what types of instances are available in the Local
Zone. In this deployment topology, we are using us-east-1-atl-1a.

 $ aws ec2 describe-instance-type-offerings --location-type "availability-
zone" --filters Name=location,Values=us-east-1-atl-1a --region us-east-1 —output
 table
 | DescribeInstanceTypeOfferings |
 +---+
 || InstanceTypeOfferings ||
 |+--------------+--------------------+---------------------+|
 || InstanceType | Location | LocationType ||
 |+--------------+--------------------+---------------------+|
 || c5d.2xlarge | us-east-1-atl-1a | availability-zone ||
 || t3.xlarge | us-east-1-atl-1a | availability-zone ||
 || t3.medium | us-east-1-atl-1a | availability-zone ||
 || r5d.2xlarge | us-east-1-atl-1a | availability-zone ||
 || g4dn.2xlarge| us-east-1-atl-1a | availability-zone ||

Create the VPC and subnets 21

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 |+--------------+--------------------+---------------------+|

We use a t3.xlarge instance type for the worker node. This instance type is supported in
OpenShift for a worker node. Next, create a MachineSet for the AWS Local Zones using t3.xlarge.
MachineSet has a template for machine specifications.

 $ oc get machinesets -n openshift-machine-api
 NAME DESIRED CURRENT READY AVAILABLE AGE
 lz-d8lbp-worker-us-east-1a 1 1 1 1 20h
 lz-d8lbp-worker-us-east-1b 0 0 20h
 lz-d8lbp-worker-us-east-1c 1 1 1 1 20h

10.Use an existing MachineSet template and modify it for the Local Zones.

 $ oc get machineset lz-d8lbp-worker-us-east-1a -n openshift-machine-api -
oyaml > lz-machineset.yaml

In the file, replace all instances of us-east-1a with us-east-1-
atl-1a, instanceType with t3.xlarge, and subnet id with the id of the subnet you created in
Local Zones. The YAML file should look like this:

 apiVersion: machine.openshift.io/v1beta1
 kind: MachineSet
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: lz-d8lbp
 name: lz-d8lbp-worker-us-east-1-atl-1a
 namespace: openshift-machine-api
 spec:
 replicas: 1
 selector:
 matchLabels:
 machine.openshift.io/cluster-api-cluster: lz-d8lbp
 machine.openshift.io/cluster-api-machineset: lz-d8lbp-worker-us-
east-1-atl-1a

Create the VPC and subnets 22

https://docs.openshift.com/container-platform/4.10/installing/installing_aws/installing-aws-customizations.html#installation-supported-aws-machine-types_installing-aws-customizations

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 template:
 metadata:
 labels:
 machine.openshift.io/cluster-api-cluster: lz-d8lbp
 machine.openshift.io/cluster-api-machine-role: worker
 machine.openshift.io/cluster-api-machine-type: worker
 machine.openshift.io/cluster-api-machineset: lz-d8lbp-worker-us-
east-1-atl-1a
 spec:
 lifecycleHooks: {}
 metadata: {}
 providerSpec:
 value:
 ami:
 id: ami-0efc96a4e17e7b048
 apiVersion: awsproviderconfig.openshift.io/v1beta1
 blockDevices:
 - ebs:
 encrypted: true
 iops: 0
 kmsKey:
 arn: ""
 volumeSize: 120
 volumeType: gp3
 credentialsSecret:
 name: aws-cloud-credentials
 deviceIndex: 0
 iamInstanceProfile:
 id: lz-d8lbp-worker-profile
 instanceType: t3.xlarge
 kind: AWSMachineProviderConfig
 metadata:
 creationTimestamp: null
 placement:
 availabilityZone: us-east-1-atl-1a
 region: us-east-1
 securityGroups:
 - filters:
 - name: tag:Name
 values:
 - lz-d8lbp-worker-sg
 subnet:
 id: subnet-049cd560localzone

Create the VPC and subnets 23

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 tags:
 - name: kubernetes.io/cluster/lz-d8lbp
 value: owned
 userDataSecret:
 name: worker-user-data

11.Apply the MachineSet Manifest.

 $ oc apply -f lz-machineset.yaml

12.Verify the new MachineSets.

 $ oc get machineset -n openshift-machine-api
 NAME DESIRED CURRENT READY AVAILABLE AGE
 lz-d8lbp-worker-us-east-1-atl-1a 1 1 1 1 15m
 lz-d8lbp-worker-us-east-1a 1 1 1 1 21h
 lz-d8lbp-worker-us-east-1b 0 0 21h
 lz-d8lbp-worker-us-east-1c 1 1 1 1 21h

13.Create a new machine and new OpenShift worker nodes.

 $ oc get machines -n openshift-machine-api
 NAME PHASE TYPE REGION ZONE AGE
 lz-d8lbp-master-0 Running m6i.xlarge us-east-1 us-east-1b 21h
 lz-d8lbp-master-1 Running m6i.xlarge us-east-1 us-east-1a 21h
 lz-d8lbp-master-2 Running m6i.xlarge us-east-1 us-east-1c 21h
 lz-d8lbp-worker-us-east-1-atl-1a-l5vk6 Running t3.xlarge us-east-1 us-
east-1-atl-1a 13m
 lz-d8lbp-worker-us-east-1a-5v8hf Running m6i.large us-east-1 us-east-1a 21h
 lz-d8lbp-worker-us-east-1c-jlhxj Running m6i.large us-east-1 us-east-1c 21h

14.Verify the OpenShift worker nodes.

 NAME STATUS ROLES AGE VERSION
 ip-10-0-109-180.ec2.internal Ready worker 10m v1.23.3+e419edf

Create the VPC and subnets 24

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 ip-10-0-49-112.ec2.internal Ready worker 21h v1.23.3+e419edf
 ip-10-0-61-95.ec2.internal Ready master 21h v1.23.3+e419edf
 ip-10-0-75-249.ec2.internal Ready master 21h v1.23.3+e419edf
 ip-10-0-86-163.ec2.internal Ready worker 21h v1.23.3+e419edf
 ip-10-0-86-234.ec2.internal Ready master 21h v1.23.3+e419edf

15.Verify OpenShift nodes at the Local Zone. Verify the new instance running at the Local Zone in
AWS Management Console.

 $ oc get nodes
 NAME STATUS ROLES AGE VERSION
 ip-10-0-109-180.ec2.internal Ready worker 10m v1.23.3+e419edf
 ip-10-0-49-112.ec2.internal Ready worker 21h v1.23.3+e419edf
 ip-10-0-61-95.ec2.internal Ready master 21h v1.23.3+e419edf
 ip-10-0-75-249.ec2.internal Ready master 21h v1.23.3+e419edf
 ip-10-0-86-163.ec2.internal Ready worker 21h v1.23.3+e419edf
 ip-10-0-86-234.ec2.internal Ready master 21h v1.23.3+e419edf

Local Zone node verification

16.Deploy the OSToy sample application. The OSToy sample application is a two-tier application
with the backend running on a worker node in the region and the frontend running on the node
from the local zone. Create a new project for the OSToy deployment:

Create the VPC and subnets 25

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 $ oc new-project ostoy

17.Label the worker nodes running in the region and local zone. Use nodeSelector, the simplest
recommended form of node selection constraint. Label the worker node running on availability
zone us-east-1a.

 $ oc label nodes ip-10-0-49-112.ec2.internal availabilityZone=us-east-1a

Label the worker node running on availability zone (local zone) us-east-1-atl-1a.

 . $ oc label nodes ip-10-0-109-180.ec2.internal availabilityZone=us-east-1-
atl-1a

18.Download the backend microservice deployment file.

 $ wget https://raw.githubusercontent.com/openshift-cs/rosaworkshop/master/
rosa-workshop/ostoy/yaml/ostoy-microservice-deployment.yaml

Modify the downloaded file, ostoy-microservice-deployment.yaml, by adding
a nodeSelector field the deployment configuration with the label you created for the application
to run on the node running on availability zone us-east-1a.

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: ostoy-microservice
 labels:
 app: ostoy
 spec:
 selector:
 matchLabels:
 app: ostoy-microservice
 replicas: 1

Create the VPC and subnets 26

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 template:
 metadata:
 labels:
 app: ostoy-microservice
 spec:
 containers:
 - name: ostoy-microservice
 image: quay.io/ostoylab/ostoy-microservice:1.4.0
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 8080
 protocol: TCP
 resources:
 requests:
 memory: "128Mi"
 cpu: "50m"
 limits:
 memory: "256Mi"
 cpu: "100m"
 nodeSelector:
 availabilityZone: us-east-1a

 apiVersion: v1
 kind: Service
 metadata:
 name: ostoy-microservice-svc
 labels:
 app: ostoy-microservice
 spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: 8080
 protocol: TCP
 selector:
 app: ostoy-microservice

19.Deploy the backend microservice using the deployment file.

 $ oc apply -f ostoy-microservice-deployment.yaml

Create the VPC and subnets 27

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 $ oc get po -owide
 NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
 ostoy-microservice-b74b4cc96-9stgc 1/1 Running 0 7s 10.128.2.102
 ip-10-0-49-112.ec2.internal <none> <none>

The backend microservice is running on node ip-10-0-49-112.ec2.internal from
availability zone us-east-1a.

20.Deploy the frontend services file and verify the created objects. Download the frontend
microservice deployment file:

 $ wget https://raw.githubusercontent.com/openshift-cs/rosaworkshop/master/
rosa-workshop/ostoy/yaml/ostoy-fe-deployment.yaml

Modify the downloaded file, ostoy-fe-deployment.yaml, by adding a nodeSelector field the
deployment configuration with the label you created for the application to run on the node
running on availability zone us-east-1-atl-1a.

 apiVersion: v1
 kind: PersistentVolumeClaim
 metadata:
 name: ostoy-pvc
 spec:
 accessModes:
 - ReadWriteOnce
 resources:
 requests:
 storage: 1Gi

 apiVersion: apps/v1
 kind: Deployment
 metadata:
 name: ostoy-frontend
 labels:
 app: ostoy
 spec:
 selector:
 matchLabels:

Create the VPC and subnets 28

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 app: ostoy-frontend
 strategy:
 type: Recreate
 replicas: 1
 template:
 metadata:
 labels:
 app: ostoy-frontend
 spec:
 containers:
 - name: ostoy-frontend
 image: quay.io/ostoylab/ostoy-frontend:1.4.0
 imagePullPolicy: IfNotPresent
 ports:
 - name: ostoy-port
 containerPort: 8080
 resources:
 requests:
 memory: "256Mi"
 cpu: "100m"
 limits:
 memory: "512Mi"
 cpu: "200m"
 volumeMounts:
 - name: configvol
 mountPath: /var/config
 - name: secretvol
 mountPath: /var/secret
 - name: datavol
 mountPath: /var/demo_files
 livenessProbe:
 httpGet:
 path: /health
 port: 8080
 initialDelaySeconds: 10
 periodSeconds: 5
 env:
 - name: ENV_TOY_SECRET
 valueFrom:
 secretKeyRef:
 name: ostoy-secret-env
 key: ENV_TOY_SECRET
 - name: MICROSERVICE_NAME

Create the VPC and subnets 29

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 value: OSTOY_MICROSERVICE_SVC
 volumes:
 - name: configvol
 configMap:
 name: ostoy-configmap-files
 - name: secretvol
 secret:
 defaultMode: 420
 secretName: ostoy-secret
 - name: datavol
 persistentVolumeClaim:
 claimName: ostoy-pvc
 nodeSelector:
 availabilityZone: us-east-1-atl-1a

 apiVersion: v1
 kind: Service
 metadata:
 name: ostoy-frontend-svc
 labels:
 app: ostoy-frontend
 spec:
 type: ClusterIP
 ports:
 - port: 8080
 targetPort: ostoy-port
 protocol: TCP
 name: ostoy
 selector:
 app: ostoy-frontend

 apiVersion: v1
 kind: Route
 metadata:
 name: ostoy-route
 spec:
 to:
 kind: Service
 name: ostoy-frontend-svc

 apiVersion: v1
 kind: Secret

Create the VPC and subnets 30

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 metadata:
 name: ostoy-secret-env
 type: Opaque
 data:
 ENV_TOY_SECRET: VGhpcyBpcyBhIHRlc3Q=

 kind: ConfigMap
 apiVersion: v1
 metadata:
 name: ostoy-configmap-files
 data:
 config.json: '{ "default": "123" }'

 apiVersion: v1
 kind: Secret
 metadata:
 name: ostoy-secret
 data:
 secret.txt:
 VVNFUk5BTUU9bXlfdXNlcgpQQVNTV09SRD1AT3RCbCVYQXAhIzYzMlk1RndDQE1UUWsKU01UUD1sb2NhbGhvc3QKU01UUF9QT1JUPTI1
 type: Opaque

 $ oc apply -f ostoy-fe-deployment.yaml
 W0315 18:23:16.888918 1906 shim_kubectl.go:58] Using non-groupfied API
 resources is deprecated and will be removed in a future release, update apiVersion
 to "route.openshift.io/v1" for your resource
 persistentvolumeclaim/ostoy-pvc created
 deployment.apps/ostoy-frontend created
 service/ostoy-frontend-svc created
 route.route.openshift.io/ostoy-route created
 secret/ostoy-secret-env created
 configmap/ostoy-configmap-files created
 secret/ostoy-secret created

21.Verify frontend application deployment. The frontend app is running on the node from local
zone.

 $ oc get po -owide
 NAME READY STATUS RESTARTS AGE IP NODE NOMINATED NODE READINESS GATES
 ostoy-frontend-8cbfcfd86-m4cjx 1/1 Running 0 53s 10.129.2.24
 ip-10-0-109-180.ec2.internal <none> <none>

Create the VPC and subnets 31

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

 ostoy-microservice-b74b4cc96-9stgc 1/1 Running 0 6m41s 10.128.2.102
 ip-10-0-49-112.ec2.internal <none> <none>

22.Get the route to the deployed application.

 $ oc get route
 NAME HOST/PORT PATH SERVICES PORT TERMINATION WILDCARD
 ostoy-route ostoy-route-ostoy.apps.lz.ocp.ovsandbox.com ostoy-frontend-svc
 <all> None

Note

At the time of this writing, Network Load Balancer (Network Load Balancer) is not
supported in AWS Local Zones; only Application Load Balancer (ALB) is supported. Red Hat
OpenShift currently supports only Network Load Balancer. However, ALB can be configured
as Ingress for the cluster. For the required steps to configure ALB, refer to Installing the
AWS Load Balancer Controller (ALB) on ROSA.

Create the VPC and subnets 32

https://aws.amazon.com/about-aws/global-infrastructure/localzones/features/?nc=sn&loc=2
https://mobb.ninja/docs/rosa/alb-sts/
https://mobb.ninja/docs/rosa/alb-sts/

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

AWS Wavelength Zones

Advances in radio technology have enabled 5G networks to provide high-density radio (air)
interfaces with extremely high bandwidth and reliability. However, improvements in the radio
network alone might not be enough to meet the low latency requirements set by the 5G standards.
Today, most consumer and enterprise applications that are accessed on mobile devices and
other mobile endpoints are hosted on application servers outside of the communications service
provider’s network.

Enabling applications to be run in edge computing infrastructure, close to end users, is essential to
improving application latency. By running an application closer to its end point, the latency that
comes from the number of hops needed for an application to reach the compute, storage, and
cloud services it requires can be reduced. Accessing these resources in the cloud using traditional
mobile architectures requires several hops on the network (from a device, to a cell tower, to
metro aggregation sites, to regional aggregation sites, to the internet, to the cloud—and then
back through those stops before getting back to the device). This creates tens to hundreds of
milliseconds of latency.

The 5G network is up to ten times faster than 4G, but to take full advantage of the latency
improvements that 5G offers, the number of network hops needs to be reduced.

33

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

AWS Wavelength for URRL and edge workloads

Reference architecture on AWS Wavelength Zones

AWS Local Zones are an extension of an AWS Region, and provide the ability to place resources
closer to the end users. In comparison, AWS Wavelength Zones allow developers to build
applications that deliver ultra-low latencies to 5G devices and end users. Wavelength deploys
standard AWS compute and storage services to the edge of telecommunication carriers' 5G
networks. From the technical architectural perspective, the approach is similar to AWS Local Zones.
The Amazon VPC can be extended to one or more Wavelength Zones and then use AWS resources
like Amazon EC2 instances to run applications that require ultra-low latency and a connection to
AWS services in the Region.

A Wavelength Zone is an isolated zone in the carrier location where the Wavelength infrastructure
is deployed; they’re tied to an AWS Region. A Wavelength Zone is a logical extension of a Region,
and is managed by the control plane in the Region. A Wavelength Zone is represented by a region
code followed by an identifier that indicates the Wavelength Zone (for example, us-east-1-wl1-
bos-wlz-1).

To use a Wavelength Zone, you must opt in to the zone. After you opt in, create an Amazon
VPC and subnet in the Wavelength Zone. Because deploying an OpenShift worker node on AWS
Wavelength Zones is similar to doing the same in AWS Local Zones, only the steps specific to this
setup are included.

Create a subnet in VPC for AWS Wavelength Zones

From the VPC where the OpenShift cluster is running, create a subnet for AWS Wavelength by
providing the VPC ID, subnet name, Availability Zone (select Wavelength Zone) and CIDR. After the
subnet for AWS Wavelength is created, create a Carrier gateway.

Reference architecture on AWS Wavelength Zones 34

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Opt in to the Wavelength Zone

Create a MachineSet for Wavelength Zones

Identically with how you create a MachineSet for Local Zones, create a MachineSet for Wavelength
Zones. Replace the local zone and subnet ID with wavelength ID, and the subnet ID for it. Then
apply the wavelength MachineSet to provision OpenShift worker nodes on the AWS Wavelength
Zones.

Create a MachineSet for Wavelength Zones 35

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Potential use cases

With global infrastructure that spans 77 Availability Zones in 24 AWS Regions, AWS enables
developers to serve end users with low latencies worldwide. The following use cases – interactive
applications, game streaming, virtual reality, near real-time rendering, industrial automation,
smart cities, IoT, and autonomous vehicles – can benefit from the architectures outlined in this
whitepaper.

• Connected vehicles — Cellular Vehicles to Everything (C-V2X) is an increasingly important
platform for enabling intelligent driving, real-time HD maps, road safety, and more. Low
latency access to compute infrastructure needed to run data processing and analytics on AWS
Wavelength and Local Zones enables real-time monitoring of data from sensors for secure
connectivity, in-car telematics, and autonomous driving.

• Real-time gaming — Real-time game streaming depends on low latency to preserve the user
experience. With AWS Wavelength, the most demanding games can be made available on end-
user devices that have limited processing power by streaming these games from game servers in
Wavelength Zones.

• Interactive live video streams — Wavelength provides the ultra-low latency needed to
livestream high-resolution video and high-fidelity audio, as well as to embed interactive
experiences into live video streams. Additionally, real-time video analytics provide the ability to
generate real-time stats that can enhance live event experiences.

• Smart factories — Industrial automation applications use machine learning (ML) inference at
the edge to analyze images and videos in order to detect quality issues on fast-moving assembly
lines and trigger actions to remediate the problem.

Advantages of running telco edge workloads on Red Hat
OpenShift in AWS

• Edge computing coupled with the 5G network enables new classes of cloud applications in areas
such as industrial robotic and drone automation, connected vehicles, and AR/VR infotainment.
Innovations in business models will follow. Edge computing is essential for many emerging
applications, which need local information processing to reduce the volume of traffic transported
back to centralized datacenters. By enabling compute capabilities closer to end users, developers

Advantages of running telco edge workloads on Red Hat OpenShift in AWS 36

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

and enterprises can provide innovative 5G applications and deliver immersive experiences to a
wide audience.

• Time-to-market is accelerated by allowing CSPs to quickly deploy new edge services that
leverage Amazon’s compute, network, and storage capabilities. CSPs can achieve more agility
because they do not need to install specialized new hardware to support changing business
requirements. Edge deployments allow CSPs to develop services to meet the growing Industry
4.0 demands, thus reducing the risk associated with new services.

• It delivers agility and flexibility by allowing you to quickly scale services to address changing
demands, and supports innovation by enabling service developers to self-manage their resources
and prototypes using the same platform that is used in production.

• It addresses customer demands in hours or minutes instead of weeks or days, without sacrificing
security or performance.

• It reduces operational costs by streamlining operations and automation that optimizes day-to-
day tasks and improves employee productivity.

Advantages of running telco edge workloads on Red Hat OpenShift in AWS 37

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Conclusion

Running Red Hat OpenShift on AWS on Local Zones and Wavelength Zones accelerates edge
deployments and offers many benefits. Containers and cloud are the top priorities for CTO/
CIO when it comes to digital transformation and innovation for customers. Deploying Red Hat
OpenShift on AWS is typically lower cost than traditional on-premises deployments, because you
pay only for the infrastructure needed while avoiding the more expensive costs of hosting that
infrastructure on-premises.

AWS also offers great flexibility, which allow you to scale hardware resources up or down as
required. And, of course, with multiple Regions and Availability Zones, AWS offers a great level of
reliability. When coupled with the high availability, orchestration, scalability, and high-performance
characteristics, AWS and Red Hat OpenShift together are a winning combination.

38

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Contributors

Contributors to this document include:

• Sankar Panneerselvam, Global GTMS Industry Specialist – Enterprise Digital Platforms, Amazon
Web Services – Telco, Media and Technology IBU

• Ovidiu Valeanu – Senior Partner Solutions Architect, Amazon Web Services – RedHat

39

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Further reading

For additional information, see:

• AWS and RedHat joint announcement

• RedHat OpenShift

• RedHat OpenShift on AWS Deployment Guide

40

https://aws.amazon.com/blogs/containers/aws-and-red-hat-extend-collaboration-annoucing-new-managed-red-hat-openshift-service-on-aws/
https://www.redhat.com/en/technologies/cloud-computing/openshift
https://docs.openshift.com/rosa/welcome/index.html

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Document revisions

Change Date Description

Initial publication September 8, 2022 Whitepaper published

41

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

42

Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones Reference Architecture, Deployment Topology, and Value Proposition

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

43

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones
	Table of Contents
	Telco Edge Workloads on Red Hat OpenShift - Wavelength and Local Zones
	Abstract

	Are You Well-Architected?
	Introduction
	Hybrid cloud
	Container platforms
	RedHat OpenShift Container Platform
	Red Hat OpenShift on AWS
	Benefits of Red Hat OpenShift on AWS:

	ROSA architecture
	Value proposition of ROSA
	AWS Local Zones
	Red Hat OpenShift on AWS Local Zones
	Reference architecture on AWS Local Zones

	Red Hat OpenShift on AWS Local Zones - Deployments
	Create the VPC and subnets

	AWS Wavelength Zones
	Reference architecture on AWS Wavelength Zones
	Create a subnet in VPC for AWS Wavelength Zones
	Create a MachineSet for Wavelength Zones

	Potential use cases
	Advantages of running telco edge workloads on Red Hat OpenShift in AWS

	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices
	AWS Glossary

