Creating a batch segment job - Amazon Personalize

Creating a batch segment job

If you used a USER_SEGMENTATION recipe, you can create batch segment jobs to get user segments with your solution version. Each user segment is sorted in descending order based on the probability that each user will interact with items in your inventory. Depending on the recipe, your input data must be a list of items (Item-Affinity recipe) or item attributes (Item-Attribute-Affinity recipe) in JSON format. You can create a batch segment job with the Amazon Personalize console, the AWS Command Line Interface (AWS CLI), or AWS SDKs.

When generating user segments, Amazon Personalize considers all data that you imported individually (including streamed interactions after you create a new solution version), but only bulk data imported that you imported with an import mode of FULL (replacing existing data). For more information about the batch workflow in Amazon Personalize, including permissions requirements and preparing and importing input data, see Getting batch recommendations and user segments.

Creating a batch segment job (console)

After you have completed Preparing and importing batch input data, you are ready to create a batch segment job. This procedure assumes that you have already created a solution and a solution version (trained model) with a USER_SEGEMENTATION recipe.

To get create a batch segment job (console)

  1. Open the Amazon Personalize console at https://console.aws.amazon.com/personalize/home and sign in to your account.

  2. On the Datasets group page, choose your dataset group.

  3. Choose batch segment jobs in the navigation pane, then choose Create batch segment job.

  4. In batch segment job details, for Batch segment job name, specify a name for your batch segment job.

  5. For Solution, choose the solution and then choose the Solution version ID that you want to use to generate the recommendations. You can create batch segment jobs only if you used a USER_SEGEMENTATION recipe.

  6. For Number of users, optionally specify the number of users Amazon Personalize generates for each user segment. The default is 25.

  7. For Input source, specify the Amazon S3 path to your input file or use the Browse S3 to choose your Amazon S3 bucket.

    Use the following syntax: s3://<name of your S3 bucket>/<folder name>/<input JSON file name>

    Your input data must be in the correct format for the recipe your solution uses. For input data examples see Input and output JSON examples.

  8. For Output destination, specify the path to your output location or use the Browse S3 to choose your Amazon S3 bucket. We recommend using a different location for your output data (either a folder or a different Amazon S3 bucket).

    Use the following syntax: s3://<name of your S3 bucket>/<output folder name>/

  9. For IAM role, choose one of the following:

    • Choose Create and use new service role and enter the Service role name to create a new role, or

    • If you've already created a role with the correct permissions, choose Use an existing service role and choose the IAM role.

    The role you use must have read and write access to your input and output Amazon S3 buckets respectively.

  10. For Filter configuration optionally choose a filter to apply a filter to the user segments. If your filter uses placeholder parameters, make sure the values for the parameters are included in your input JSON. For more information see Providing filter values in your input JSON.

  11. For Tags, optionally add any tags. For more information about tagging Amazon Personalize resources, see Tagging Amazon Personalize resources.

  12. Choose Create batch segment job. Batch segment job creation starts and the Batch segment jobs page appears with the Batch segment job detail section displayed.

  13. When the batch segment job's status changes to Active, you can retrieve the job's output from the designated output Amazon S3 bucket. The output file's name will be of the format input-name.out.

Creating a batch segment job (AWS CLI)

After you have completed Preparing and importing batch input data, you are ready to create a batch segment job using the following create-batch-segment-job code. Specify a job name, replace Solution version ARN with the Amazon Resource Name (ARN) of your solution version, and replace the IAM service role ARN with the ARN of the IAM service role you created for Amazon Personalize during set up. This role must have read and write access to your input and output Amazon S3 buckets respectively. For num-results specify the number of users you want Amazon Personalize to predict for each line of input data. Optionally provide a filter-arn to filter user segments. If your filter uses placeholder parameters, make sure the values for the parameters are included in your input JSON. For more information see Filtering batch recommendations and user segments.

Replace S3 input path and S3 output path with the Amazon S3 path to your input file and output locations. We recommend using a different location for your output data (either a folder or a different Amazon S3 bucket). Use the following syntax for input and output locations: s3://<name of your S3 bucket>/<folder name>/<input JSON file name> and s3://<name of your S3 bucket>/<output folder name>/.

aws personalize create-batch-segment-job \ --job-name Job name \ --solution-version-arn Solution version ARN \ --num-results The number of predicted users \ --filter-arn Filter ARN \ --job-input s3DataSource={path=s3://S3 input path} \ --job-output s3DataDestination={path=s3://S3 output path} \ --role-arn IAM service role ARN { "batchSegmentJobArn": "arn:aws:personalize:us-west-2:acct-id:batch-segment-job/batchSegmentJobName" }

Creating a batch segment job (AWS SDKs)

After you have completed Preparing and importing batch input data, you are ready to create a batch segment job with the CreateBatchSegmentJob operation. The following code shows how to create a batch segment job. Give the job a name, specify the Amazon Resource Name (ARN) of the solution version to use, specify the ARN for your Amazon Personalize IAM role, and specify the Amazon S3 path to your input file and output locations. Your IAM service role must have read and write access to your input and output Amazon S3 buckets respectively.

We recommend using a different location for your output data (either a folder or a different Amazon S3 bucket). Use the following syntax for input and output locations: s3://<name of your S3 bucket>/<folder name>/<input JSON file name> and s3://<name of your S3 bucket>/<output folder name>/.

For numResults, specify the number of users you want Amazon Personalize to predict for each line of input data. Optionally provide a filter ARN to filter user segments. If your filter uses placeholder parameters, make sure the values for the parameters are included in your input JSON. For more information see Filtering batch recommendations and user segments.

SDK for Python (Boto3)
import boto3 personalize_rec = boto3.client(service_name='personalize') personalize_rec.create_batch_segment_job ( solutionVersionArn = "Solution version ARN", jobName = "Job name", numResults = Number of predicted users, filterArn = Filter ARN roleArn = "IAM service role ARN", jobInput = {"s3DataSource": {"path": "s3://<name of your S3 bucket>/<folder name>/<input JSON file name>"}}, jobOutput = {"s3DataDestination": {"path": "s3://<name of your S3 bucket>/<output folder name>/"}} )
SDK for Java 2.x
public static String createBatchSegmentJob(PersonalizeClient personalizeClient, String solutionVersionArn, String jobName, String filterArn, int numResults, String s3InputDataSourcePath, String s3DataDestinationPath, String roleArn, String explorationWeight, String explorationItemAgeCutOff) { long waitInMilliseconds = 60 * 1000; String status; String batchSegmentJobArn; try { // Set up data input and output parameters. S3DataConfig inputSource = S3DataConfig.builder() .path(s3InputDataSourcePath) .build(); S3DataConfig outputDestination = S3DataConfig.builder() .path(s3DataDestinationPath) .build(); BatchSegmentJobInput jobInput = BatchSegmentJobInput.builder() .s3DataSource(inputSource) .build(); BatchSegmentJobOutput jobOutputLocation = BatchSegmentJobOutput.builder() .s3DataDestination(outputDestination) .build(); CreateBatchSegmentJobRequest createBatchSegmentJobRequest = CreateBatchSegmentJobRequest.builder() .solutionVersionArn(solutionVersionArn) .filterArn(filterArn) .jobInput(jobInput) .jobOutput(jobOutputLocation) .jobName(jobName) .numResults(numResults) .roleArn(roleArn) .build(); batchSegmentJobArn = personalizeClient.createBatchSegmentJob(createBatchSegmentJobRequest) .batchSegmentJobArn(); DescribeBatchSegmentJobRequest describeBatchSegmentJobRequest = DescribeBatchSegmentJobRequest.builder() .batchSegmentJobArn(batchSegmentJobArn) .build(); long maxTime = Instant.now().getEpochSecond() + 3 * 60 * 60; // wait until the batch segment job is complete. while (Instant.now().getEpochSecond() < maxTime) { BatchSegmentJob batchSegmentJob = personalizeClient .describeBatchSegmentJob(describeBatchSegmentJobRequest) .batchSegmentJob(); status = batchSegmentJob.status(); System.out.println("batch segment job status: " + status); if (status.equals("ACTIVE") || status.equals("CREATE FAILED")) { break; } try { Thread.sleep(waitInMilliseconds); } catch (InterruptedException e) { System.out.println(e.getMessage()); } } return batchSegmentJobArn; } catch (PersonalizeException e) { System.out.println(e.awsErrorDetails().errorMessage()); } return ""; }
SDK for JavaScript v3
// Get service clients module and commands using ES6 syntax. import { CreateBatchSegmentJobCommand } from "@aws-sdk/client-personalize"; import { personalizeClient } from "./libs/personalizeClients.js"; // Or, create the client here. // const personalizeClient = new PersonalizeClient({ region: "REGION"}); // Set the batch segment job's parameters. export const createBatchSegmentJobParam = { jobName: 'NAME', jobInput: { /* required */ s3DataSource: { /* required */ path: 'INPUT_PATH', /* required */ // kmsKeyArn: 'INPUT_KMS_KEY_ARN' /* optional */' } }, jobOutput: { /* required */ s3DataDestination: { /* required */ path: 'OUTPUT_PATH', /* required */ // kmsKeyArn: 'OUTPUT_KMS_KEY_ARN' /* optional */' } }, roleArn: 'ROLE_ARN', /* required */ solutionVersionArn: 'SOLUTION_VERSION_ARN', /* required */ numResults: 20 /* optional */ }; export const run = async () => { try { const response = await personalizeClient.send(new CreateBatchSegmentJobCommand(createBatchSegmentJobParam)); console.log("Success", response); return response; // For unit tests. } catch (err) { console.log("Error", err); } }; run();

Processing the batch job might take a while to complete. You can check a job's status by calling DescribeBatchSegmentJob and passing a batchSegmentJobArn as the input parameter. You can also list all Amazon Personalize batch segment jobs in your AWS environment by calling ListBatchSegmentJobs.