Exemplos de código para inferência em lote - Amazon Bedrock

As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.

Exemplos de código para inferência em lote

Os exemplos de código neste capítulo mostram como criar um trabalho de inferência em lote, visualizar informações sobre ele e interrompê-lo. Selecione um idioma para ver um exemplo de código para ele:

Python

Crie um JSONL arquivo chamado abc.jsonl que contém pelo menos o número mínimo de registros (consulteCotas do Amazon Bedrock). Você pode usar o seguinte conteúdo como primeira linha e entrada:

{ "recordId": "CALL0000001", "modelInput": { "anthropic_version": "bedrock-2023-05-31", "max_tokens": 1024, "messages": [ { "role": "user", "content": [ { "type": "text", "text": "Summarize the following call transcript: ..." } ] } ] } }

Crie um bucket S3 chamado amzn-s3-demo-bucket-input e faça o upload do arquivo para ele. Em seguida, crie um bucket S3 chamado amzn-s3-demo-bucket-output para gravar seus arquivos de saída. Execute o seguinte trecho de código para enviar um trabalho e obter o jobArn da resposta:

import boto3 bedrock = boto3.client(service_name="bedrock") inputDataConfig=({ "s3InputDataConfig": { "s3Uri": "s3://amzn-s3-demo-bucket-input/abc.jsonl" } }) outputDataConfig=({ "s3OutputDataConfig": { "s3Uri": "s3://amzn-s3-demo-bucket-output/" } }) response=bedrock.create_model_invocation_job( roleArn="arn:aws:iam::123456789012:role/MyBatchInferenceRole", modelId="anthropic.claude-3-haiku-20240307-v1:0", jobName="my-batch-job", inputDataConfig=inputDataConfig, outputDataConfig=outputDataConfig ) jobArn = response.get('jobArn')

Devolva o status do trabalho.

bedrock.get_model_invocation_job(jobIdentifier=jobArn)['status']

Listar trabalhos de inferência em lote que Failed.

bedrock.list_model_invocation_jobs( maxResults=10, statusEquals="Failed", sortOrder="Descending" )

Interrompa o trabalho que você começou.

bedrock.stop_model_invocation_job(jobIdentifier=jobArn)
Java
package com.amazon.aws.sample.bedrock.inference; import com.amazonaws.services.bedrock.AmazonBedrockAsync; import com.amazonaws.services.bedrock.AmazonBedrockAsyncClientBuilder; import com.amazonaws.services.bedrock.model.CreateModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.CreateModelInvocationJobResult; import com.amazonaws.services.bedrock.model.GetModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.GetModelInvocationJobResult; import com.amazonaws.services.bedrock.model.InvocationJobInputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobOutputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobS3InputDataConfig; import com.amazonaws.services.bedrock.model.InvocationJobS3OutputDataConfig; import com.amazonaws.services.bedrock.model.ListModelInvocationJobsRequest; import com.amazonaws.services.bedrock.model.ListModelInvocationJobsResult; import com.amazonaws.services.bedrock.model.StopModelInvocationJobRequest; import com.amazonaws.services.bedrock.model.StopModelInvocationJobResult; public class BedrockAsyncInference { private final AmazonBedrockAsync amazonBedrockAsyncClient = AmazonBedrockAsyncClientBuilder.defaultClient(); public void createModelInvokeJobSampleCode() { final InvocationJobS3InputDataConfig invocationJobS3InputDataConfig = new InvocationJobS3InputDataConfig() .withS3Uri("s3://batch-input/abc.jsonl") .withS3InputFormat("JSONL"); final InvocationJobInputDataConfig inputDataConfig = new InvocationJobInputDataConfig() .withS3InputDataConfig(invocationJobS3InputDataConfig); final InvocationJobS3OutputDataConfig invocationJobS3OutputDataConfig = new InvocationJobS3OutputDataConfig() .withS3Uri("s3://batch-output/"); final InvocationJobOutputDataConfig invocationJobOutputDataConfig = new InvocationJobOutputDataConfig() .withS3OutputDataConfig(invocationJobS3OutputDataConfig); final CreateModelInvocationJobRequest createModelInvocationJobRequest = new CreateModelInvocationJobRequest() .withModelId("anthropic.claude-3-haiku-20240307-v1:0") .withJobName("unique-job-name") .withRoleArn("arn:aws:iam::123456789:role/bedrock-role") .withClientRequestToken("Client-token") .withInputDataConfig(inputDataConfig) .withOutputDataConfig(invocationJobOutputDataConfig); final CreateModelInvocationJobResult createModelInvocationJobResult = amazonBedrockAsyncClient .createModelInvocationJob(createModelInvocationJobRequest); System.out.println(createModelInvocationJobResult.getJobArn()); } public void getModelInvokeJobSampleCode() { final GetModelInvocationJobRequest getModelInvocationJobRequest = new GetModelInvocationJobRequest() .withJobIdentifier("jobArn"); final GetModelInvocationJobResult getModelInvocationJobResult = amazonBedrockAsyncClient .getModelInvocationJob(getModelInvocationJobRequest); } public void listModelInvokeJobSampleCode() { final ListModelInvocationJobsRequest listModelInvocationJobsRequest = new ListModelInvocationJobsRequest() .withMaxResults(10) .withNameContains("matchin-string"); final ListModelInvocationJobsResult listModelInvocationJobsResult = amazonBedrockAsyncClient .listModelInvocationJobs(listModelInvocationJobsRequest); } public void stopModelInvokeJobSampleCode() { final StopModelInvocationJobRequest stopModelInvocationJobRequest = new StopModelInvocationJobRequest() .withJobIdentifier("jobArn"); final StopModelInvocationJobResult stopModelInvocationJobResult = amazonBedrockAsyncClient .stopModelInvocationJob(stopModelInvocationJobRequest); } }