Há mais exemplos de AWS SDK disponíveis no repositório AWS Doc SDK Examples
As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Exemplos do Amazon Textract usando AWS CLI
Os exemplos de código a seguir mostram como realizar ações e implementar cenários comuns usando o AWS Command Line Interface com o Amazon Textract.
Ações são trechos de código de programas maiores e devem ser executadas em contexto. Embora as ações mostrem como chamar perfis de serviço individuais, você pode ver as ações no contexto em seus cenários relacionados.
Cada exemplo inclui um link para o código-fonte completo, em que você pode encontrar instruções sobre como configurar e executar o código.
Tópicos
Ações
O código de exemplo a seguir mostra como usar analyze-document.
- AWS CLI
-
Como analisar texto em um documento
O exemplo de
analyze-documenta seguir mostra como analisar texto em um documento.Linux/macOS:
aws textract analyze-document \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]'Windows:
aws textract analyze-document \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\",\"FORMS\"]" \ --regionregion-nameSaída:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "87586964-d50d-43e2-ace5-8a890657b9a0", "a1e72126-21d9-44f4-a8d6-5c385f9002ba", "e889d012-8a6b-4d2e-b7cd-7a8b327d876a" ] } ], "BlockType": "PAGE", "Id": "c2227f12-b25d-4e1f-baea-1ee180d926b2" } ], "DocumentMetadata": { "Pages": 1 } }Para obter mais informações, consulte Analyzing Document Text with Amazon Textract Guia do desenvolvedor do Amazon Textract
-
Para obter detalhes da API, consulte AnalyzeDocument
em Referência de AWS CLI Comandos.
-
O código de exemplo a seguir mostra como usar detect-document-text.
- AWS CLI
-
Como detectar texto em um documento
O exemplo de
detect-document-texta seguir mostra como detectar texto em um documento.Linux/macOS:
aws textract detect-document-text \ --document '{"S3Object":{"Bucket":"bucket","Name":"document"}}'Windows:
aws textract detect-document-text \ --document "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --regionregion-nameSaída:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "896a9f10-9e70-4412-81ce-49ead73ed881", "0da18623-dc4c-463d-a3d1-9ac050e9e720", "167338d7-d38c-4760-91f1-79a8ec457bb2" ] } ], "BlockType": "PAGE", "Id": "21f0535e-60d5-4bc7-adf2-c05dd851fa25" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "62490c26-37ea-49fa-8034-7a9ff9369c9c", "1e4f3f21-05bd-4da9-ba10-15d01e66604c" ] } ], "Confidence": 89.11581420898438, "Geometry": { "BoundingBox": { "Width": 0.33642634749412537, "Top": 0.17169663310050964, "Left": 0.13885067403316498, "Height": 0.49159330129623413 }, "Polygon": [ { "Y": 0.17169663310050964, "X": 0.13885067403316498 }, { "Y": 0.17169663310050964, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.47527703642845154 }, { "Y": 0.6632899641990662, "X": 0.13885067403316498 } ] }, "Text": "He llo,", "BlockType": "LINE", "Id": "896a9f10-9e70-4412-81ce-49ead73ed881" }, { "Relationships": [ { "Type": "CHILD", "Ids": [ "19b28058-9516-4352-b929-64d7cef29daf" ] } ], "Confidence": 85.5694351196289, "Geometry": { "BoundingBox": { "Width": 0.33182239532470703, "Top": 0.23131252825260162, "Left": 0.5091826915740967, "Height": 0.3766750991344452 }, "Polygon": [ { "Y": 0.23131252825260162, "X": 0.5091826915740967 }, { "Y": 0.23131252825260162, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.8410050868988037 }, { "Y": 0.607987642288208, "X": 0.5091826915740967 } ] }, "Text": "worlc", "BlockType": "LINE", "Id": "0da18623-dc4c-463d-a3d1-9ac050e9e720" } ], "DocumentMetadata": { "Pages": 1 } }Para obter mais informações, consulte Detecting Document Text with Amazon Textract Guia do desenvolvedor do Amazon Textract
-
Para obter detalhes da API, consulte DetectDocumentText
em Referência de AWS CLI Comandos.
-
O código de exemplo a seguir mostra como usar get-document-analysis.
- AWS CLI
-
Como obter os resultados de uma análise assíncrona de texto em um documento com várias páginas
O exemplo de
get-document-analysisa seguir mostra como obter os resultados de uma análise assíncrona de texto em um documento com várias páginas.aws textract get-document-analysis \ --job-iddf7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b\ --max-results1000Saída:
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "75966e64-81c2-4540-9649-d66ec341cd8f", "bb099c24-8282-464c-a179-8a9fa0a057f0", "5ebf522d-f9e4-4dc7-bfae-a288dc094595" ] } ], "BlockType": "PAGE", "Id": "247c28ee-b63d-4aeb-9af0-5f7ea8ba109e", "Page": 1 } ], "NextToken": "cY1W3eTFvoB0cH7YrKVudI4Gb0H8J0xAYLo8xI/JunCIPWCthaKQ+07n/ElyutsSy0+1VOImoTRmP1zw4P0RFtaeV9Bzhnfedpx1YqwB4xaGDA==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }Para obter mais informações, consulte Detecting and Analyzing Text in Multi-Page Documents no Guia do desenvolvedor do Amazon Textract
-
Para obter detalhes da API, consulte GetDocumentAnalysis
em Referência de AWS CLI Comandos.
-
O código de exemplo a seguir mostra como usar get-document-text-detection.
- AWS CLI
-
Para obter os resultados de uma detecção assíncrona de texto em um documento com várias páginas
O exemplo
get-document-text-detectiona seguir mostra como obter os resultados de uma detecção assíncrona de texto em um documento com várias páginas.aws textract get-document-text-detection \ --job-id57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9\ --max-results1000Saída
{ "Blocks": [ { "Geometry": { "BoundingBox": { "Width": 1.0, "Top": 0.0, "Left": 0.0, "Height": 1.0 }, "Polygon": [ { "Y": 0.0, "X": 0.0 }, { "Y": 0.0, "X": 1.0 }, { "Y": 1.0, "X": 1.0 }, { "Y": 1.0, "X": 0.0 } ] }, "Relationships": [ { "Type": "CHILD", "Ids": [ "1b926a34-0357-407b-ac8f-ec473160c6a9", "0c35dc17-3605-4c9d-af1a-d9451059df51", "dea3db8a-52c2-41c0-b50c-81f66f4aa758" ] } ], "BlockType": "PAGE", "Id": "84671a5e-8c99-43be-a9d1-6838965da33e", "Page": 1 } ], "NextToken": "GcqyoAJuZwujOT35EN4LCI3EUzMtiLq3nKyFFHvU5q1SaIdEBcSty+njNgoWwuMP/muqc96S4o5NzDqehhXvhkodMyVO5OJGyms5lsrCxibWJw==", "DocumentMetadata": { "Pages": 1 }, "JobStatus": "SUCCEEDED" }Para obter mais informações, consulte Detecting and Analyzing Text in Multi-Page Documents no Guia do desenvolvedor do Amazon Textract
-
Para obter detalhes da API, consulte GetDocumentTextDetection
em Referência de AWS CLI Comandos.
-
O código de exemplo a seguir mostra como usar start-document-analysis.
- AWS CLI
-
Como começar a analisar texto em um documento com várias páginas
O exemplo de
start-document-analysisa seguir mostra como iniciar a análise assíncrona de texto em um documento com várias páginas.Linux/macOS:
aws textract start-document-analysis \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --feature-types '["TABLES","FORMS"]' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"Windows:
aws textract start-document-analysis \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --feature-types "[\"TABLES\", \"FORMS\"]" \ --regionregion-name\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"Saída:
{ "JobId": "df7cf32ebbd2a5de113535fcf4d921926a701b09b4e7d089f3aebadb41e0712b" }Para obter mais informações, consulte Detecting and Analyzing Text in Multi-Page Documents no Guia do desenvolvedor do Amazon Textract
-
Para obter detalhes da API, consulte StartDocumentAnalysis
em Referência de AWS CLI Comandos.
-
O código de exemplo a seguir mostra como usar start-document-text-detection.
- AWS CLI
-
Como começar a detectar texto em um documento com várias páginas
O exemplo de
start-document-text-detectiona seguir mostra como iniciar a detecção assíncrona de texto em um documento com várias páginas.Linux/macOS:
aws textract start-document-text-detection \ --document-location '{"S3Object":{"Bucket":"bucket","Name":"document"}}' \ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleARN"Windows:
aws textract start-document-text-detection \ --document-location "{\"S3Object\":{\"Bucket\":\"bucket\",\"Name\":\"document\"}}" \ --regionregion-name\ --notification-channel"SNSTopicArn=arn:snsTopic,RoleArn=roleArn"Saída:
{ "JobId": "57849a3dc627d4df74123dca269d69f7b89329c870c65bb16c9fd63409d200b9" }Para obter mais informações, consulte Detecting and Analyzing Text in Multi-Page Documents no Guia do desenvolvedor do Amazon Textract
-
Para obter detalhes da API, consulte StartDocumentTextDetection
em Referência de AWS CLI Comandos.
-