As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Analisando texto do documento com o Amazon Textract
Para analisar texto em um documento, você usa oAnalyzeDocumente passe um arquivo de documento como entrada.AnalyzeDocument
Retorna uma estrutura JSON que contenha o texto analisado. Para obter mais informações, consulte Analisar documentos.
Você pode fornecer um documento de entrada como uma matriz de bytes de imagem (bytes de imagem codificados em base64) ou um objeto do Amazon S3. Neste procedimento, você carrega um arquivo de imagem no bucket do S3 e especifica o nome do arquivo.
Para analisar texto em um documento (API)
Se ainda não tiver feito isso:
Criar ou atualizar um usuário do IAM com
AmazonTextractFullAccess
eAmazonS3ReadOnlyAccess
permissões. Para obter mais informações, consulte Etapa 1: Configurar uma conta da AWS e criar um usuário do IAM.Instale e configure a AWS CLI e os SDKs da AWS. Para obter mais informações, consulte Etapa 2: Configurar aAWS CLIeAWSSDKs da.
-
Carregue uma imagem que contenha um documento no bucket do S3.
Para obter instruções, consulteCarregar objetos no Amazon S3noGuia do usuário do Amazon Simple Storage Service.
Use os exemplos a seguir para chamar a operação
AnalyzeDocument
.- Java
O código de exemplo a seguir exibe o documento e as caixas ao redor de itens detectados.
Na função
main
, substitua os valores debucket
edocument
Com os nomes do bucket do Amazon S3 e da imagem usada na etapa 2.//Loads document from S3 bucket. Displays the document and polygon around detected lines of text. package com.amazonaws.samples; import java.awt.*; import java.awt.image.BufferedImage; import java.util.List; import javax.imageio.ImageIO; import javax.swing.*; import com.amazonaws.services.s3.AmazonS3; import com.amazonaws.services.s3.AmazonS3ClientBuilder; import com.amazonaws.services.s3.model.S3ObjectInputStream; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.AnalyzeDocumentRequest; import com.amazonaws.services.textract.model.AnalyzeDocumentResult; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.BoundingBox; import com.amazonaws.services.textract.model.Document; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.Point; import com.amazonaws.services.textract.model.Relationship; import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration; public class AnalyzeDocument extends JPanel { private static final long serialVersionUID = 1L; BufferedImage image; AnalyzeDocumentResult result; public AnalyzeDocument(AnalyzeDocumentResult documentResult, BufferedImage bufImage) throws Exception { super(); result = documentResult; // Results of text detection. image = bufImage; // The image containing the document. } // Draws the image and text bounding box. public void paintComponent(Graphics g) { int height = image.getHeight(this); int width = image.getWidth(this); Graphics2D g2d = (Graphics2D) g; // Create a Java2D version of g. // Draw the image. g2d.drawImage(image, 0, 0, image.getWidth(this), image.getHeight(this), this); // Iterate through blocks and display bounding boxes around everything. List<Block> blocks = result.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); switch(block.getBlockType()) { case "KEY_VALUE_SET": if (block.getEntityTypes().contains("KEY")){ ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(255,0,0)); } else { //VALUE ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(0,255,0)); } break; case "TABLE": ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(0,0,255)); break; case "CELL": ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(255,255,0)); break; case "SELECTION_ELEMENT": if (block.getSelectionStatus().equals("SELECTED")) ShowSelectedElement(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(0,0,255)); break; default: //PAGE, LINE & WORD //ShowBoundingBox(height, width, block.getGeometry().getBoundingBox(), g2d, new Color(200,200,0)); } } // uncomment to show polygon around all blocks //ShowPolygon(height,width,block.getGeometry().getPolygon(),g2d); } // Show bounding box at supplied location. private void ShowBoundingBox(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d, Color color) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(color); g2d.drawRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } private void ShowSelectedElement(int imageHeight, int imageWidth, BoundingBox box, Graphics2D g2d, Color color) { float left = imageWidth * box.getLeft(); float top = imageHeight * box.getTop(); // Display bounding box. g2d.setColor(color); g2d.fillRect(Math.round(left), Math.round(top), Math.round(imageWidth * box.getWidth()), Math.round(imageHeight * box.getHeight())); } // Shows polygon at supplied location private void ShowPolygon(int imageHeight, int imageWidth, List<Point> points, Graphics2D g2d) { g2d.setColor(new Color(0, 0, 0)); Polygon polygon = new Polygon(); // Construct polygon and display for (Point point : points) { polygon.addPoint((Math.round(point.getX() * imageWidth)), Math.round(point.getY() * imageHeight)); } g2d.drawPolygon(polygon); } //Displays information from a block returned by text detection and text analysis private void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println(" Detected text: " + block.getText()); System.out.println(" Type: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println(" Confidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println(" Cell information:"); System.out.println(" Column: " + block.getColumnIndex()); System.out.println(" Row: " + block.getRowIndex()); System.out.println(" Column span: " + block.getColumnSpan()); System.out.println(" Row span: " + block.getRowSpan()); } System.out.println(" Relationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println(" Type: " + relationship.getType()); System.out.println(" IDs: " + relationship.getIds().toString()); } } else { System.out.println(" No related Blocks"); } System.out.println(" Geometry"); System.out.println(" Bounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println(" Polygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println(" Entity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println(" Entity Type: " + entityType); } } else { System.out.println(" No entity type"); } if(block.getBlockType().equals("SELECTION_ELEMENT")) { System.out.print(" Selection element detected: "); if (block.getSelectionStatus().equals("SELECTED")){ System.out.println("Selected"); }else { System.out.println(" Not selected"); } } if(block.getPage()!=null) System.out.println(" Page: " + block.getPage()); System.out.println(); } public static void main(String arg[]) throws Exception { // The S3 bucket and document String document = ""; String bucket = ""; AmazonS3 s3client = AmazonS3ClientBuilder.standard() .withEndpointConfiguration( new EndpointConfiguration("https://s3.amazonaws.com","us-east-1")) .build(); // Get the document from S3 com.amazonaws.services.s3.model.S3Object s3object = s3client.getObject(bucket, document); S3ObjectInputStream inputStream = s3object.getObjectContent(); BufferedImage image = ImageIO.read(inputStream); // Call AnalyzeDocument EndpointConfiguration endpoint = new EndpointConfiguration( "https://textract.us-east-1.amazonaws.com", "us-east-1"); AmazonTextract client = AmazonTextractClientBuilder.standard() .withEndpointConfiguration(endpoint).build(); AnalyzeDocumentRequest request = new AnalyzeDocumentRequest() .withFeatureTypes("TABLES","FORMS") .withDocument(new Document(). withS3Object(new S3Object().withName(document).withBucket(bucket))); AnalyzeDocumentResult result = client.analyzeDocument(request); // Create frame and panel. JFrame frame = new JFrame("RotateImage"); frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); AnalyzeDocument panel = new AnalyzeDocument(result, image); panel.setPreferredSize(new Dimension(image.getWidth(), image.getHeight())); frame.setContentPane(panel); frame.pack(); frame.setVisible(true); } }
- AWS CLI
-
Esse comando da AWS CLI exibe a saída JSON da operação da CLI
detect-document-text
.Substitua os valores de
Bucket
eName
Com os nomes do bucket do Amazon S3 e do documento usado na etapa 2.aws textract analyze-document \ --document '{"S3Object":{"Bucket":"
bucket
","Name":"document
"}}' \ --feature-types '["TABLES","FORMS"
]' - Python
-
O código de exemplo a seguir exibe o documento e as caixas ao redor de itens detectados.
Na função
main
, substitua os valores debucket
edocument
Com os nomes do bucket do Amazon S3 e do documento usado na etapa 2.#Analyzes text in a document stored in an S3 bucket. Display polygon box around text and angled text import boto3 import io from io import BytesIO import sys import math from PIL import Image, ImageDraw, ImageFont def ShowBoundingBox(draw,box,width,height,boxColor): left = width * box['Left'] top = height * box['Top'] draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],outline=boxColor) def ShowSelectedElement(draw,box,width,height,boxColor): left = width * box['Left'] top = height * box['Top'] draw.rectangle([left,top, left + (width * box['Width']), top +(height * box['Height'])],fill=boxColor) # Displays information about a block returned by text detection and text analysis def DisplayBlockInformation(block): print('Id: {}'.format(block['Id'])) if 'Text' in block: print(' Detected: ' + block['Text']) print(' Type: ' + block['BlockType']) if 'Confidence' in block: print(' Confidence: ' + "{:.2f}".format(block['Confidence']) + "%") if block['BlockType'] == 'CELL': print(" Cell information") print(" Column:" + str(block['ColumnIndex'])) print(" Row:" + str(block['RowIndex'])) print(" Column Span:" + str(block['ColumnSpan'])) print(" RowSpan:" + str(block['ColumnSpan'])) if 'Relationships' in block: print(' Relationships: {}'.format(block['Relationships'])) print(' Geometry: ') print(' Bounding Box: {}'.format(block['Geometry']['BoundingBox'])) print(' Polygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == "KEY_VALUE_SET": print (' Entity Type: ' + block['EntityTypes'][0]) if block['BlockType'] == 'SELECTION_ELEMENT': print(' Selection element detected: ', end='') if block['SelectionStatus'] =='SELECTED': print('Selected') else: print('Not selected') if 'Page' in block: print('Page: ' + block['Page']) print() def process_text_analysis(bucket, document): #Get the document from S3 s3_connection = boto3.resource('s3') s3_object = s3_connection.Object(bucket,document) s3_response = s3_object.get() stream = io.BytesIO(s3_response['Body'].read()) image=Image.open(stream) # Analyze the document client = boto3.client('textract') image_binary = stream.getvalue() response = client.analyze_document(Document={'Bytes': image_binary}, FeatureTypes=["TABLES", "FORMS"]) ### Alternatively, process using S3 object ### #response = client.analyze_document( # Document={'S3Object': {'Bucket': bucket, 'Name': document}}, # FeatureTypes=["TABLES", "FORMS"]) ### To use a local file ### # with open("pathToFile", 'rb') as img_file: ### To display image using PIL ### # image = Image.open() ### Read bytes ### # img_bytes = img_file.read() # response = client.analyze_document(Document={'Bytes': img_bytes}, FeatureTypes=["TABLES", "FORMS"]) #Get the text blocks blocks=response['Blocks'] width, height =image.size draw = ImageDraw.Draw(image) print ('Detected Document Text') # Create image showing bounding box/polygon the detected lines/text for block in blocks: DisplayBlockInformation(block) draw=ImageDraw.Draw(image) if block['BlockType'] == "KEY_VALUE_SET": if block['EntityTypes'][0] == "KEY": ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,'red') else: ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height,'green') if block['BlockType'] == 'TABLE': ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height, 'blue') if block['BlockType'] == 'CELL': ShowBoundingBox(draw, block['Geometry']['BoundingBox'],width,height, 'yellow') if block['BlockType'] == 'SELECTION_ELEMENT': if block['SelectionStatus'] =='SELECTED': ShowSelectedElement(draw, block['Geometry']['BoundingBox'],width,height, 'blue') #uncomment to draw polygon for all Blocks #points=[] #for polygon in block['Geometry']['Polygon']: # points.append((width * polygon['X'], height * polygon['Y'])) #draw.polygon((points), outline='blue') # Display the image image.show() return len(blocks) def main(): bucket = '' document = '' block_count=process_text_analysis(bucket,document) print("Blocks detected: " + str(block_count)) if __name__ == "__main__": main()
- Node.js
-
O código de exemplo a seguir exibe o documento e as caixas ao redor de itens detectados.
No código abaixo, substitua os valores de
bucket
ephoto
Com os nomes do bucket do Amazon S3 e do documento usado na etapa 2. Substitua o valor deregion
Com a região associada à sua conta do.// Import required AWS SDK clients and commands for Node.js import { AnalyzeDocumentCommand } from "@aws-sdk/client-textract"; import { TextractClient } from "@aws-sdk/client-textract"; // Set the AWS Region. const REGION = "region"; //e.g. "us-east-1" // Create SNS service object. const textractClient = new TextractClient({ region: REGION }); const bucket = 'buckets' const photo = 'photo' // Set params const params = { Document: { S3Object: { Bucket: bucket, Name: photo }, }, FeatureTypes: ['TABLES', 'FORMS'], } const displayBlockInfo = async (response) => { try { response.Blocks.forEach(block => { console.log(`ID: ${block.Id}`) console.log(`Block Type: ${block.BlockType}`) if ("Text" in block && block.Text !== undefined){ console.log(`Text: ${block.Text}`) } else{} if ("Confidence" in block && block.Confidence !== undefined){ console.log(`Confidence: ${block.Confidence}`) } else{} if (block.BlockType == 'CELL'){ console.log("Cell info:") console.log(` Column Index - ${block.ColumnIndex}`) console.log(` Row - ${block.RowIndex}`) console.log(` Column Span - ${block.ColumnSpan}`) console.log(` Row Span - ${block.RowSpan}`) } if ("Relationships" in block && block.Relationships !== undefined){ console.log(block.Relationships) console.log("Geometry:") console.log(` Bounding Box - ${JSON.stringify(block.Geometry.BoundingBox)}`) console.log(` Polygon - ${JSON.stringify(block.Geometry.Polygon)}`) } console.log("-----") }); } catch (err) { console.log("Error", err); } } const analyze_document_text = async () => { try { const analyzeDoc = new AnalyzeDocumentCommand(params); const response = await textractClient.send(analyzeDoc); //console.log(response) displayBlockInfo(response) return response; // For unit tests. } catch (err) { console.log("Error", err); } } analyze_document_text()
Execute o exemplo. Os exemplos Python e Java exibem a imagem do documento com as seguintes caixas delimitadoras coloridas:
Vermelho — Objetos KEY Block
Verde — VALUE Block objetos
Azul — Objetos TABLE Block
Amarelo — Objetos CELL Block
Os elementos de seleção selecionados são preenchidos com azul.
OAWS CLIO exemplo da exibe somente a saída JSON do
AnalyzeDocument
operação.