As traduções são geradas por tradução automática. Em caso de conflito entre o conteúdo da tradução e da versão original em inglês, a versão em inglês prevalecerá.
Detectando ou analisando texto em um documento de várias páginas
Este procedimento mostra como detectar ou analisar texto em um documento de várias páginas usando operações de detecção do Amazon Textract, um documento armazenado em um bucket do Amazon S3, um tópico do Amazon SNS e uma fila do Amazon SQS. O processamento de documentos de várias páginas é uma operação assíncrona. Para obter mais informações, consulte Chamando operações assíncronas do Amazon Textract.
Você pode escolher o tipo de processamento que deseja que o código faça: detecção de texto, análise de texto ou análise de despesas.
Os resultados do processamento são retornados em uma matriz deBlockObjetos, que diferem dependendo do tipo de processamento usado.
Para detectar texto em documentos de várias páginas ou analisar, faça o seguinte:
-
Crie o tópico do Amazon SNS e a fila do Amazon SQS.
-
Assinar a fila do tópico do.
-
Conceda permissão ao tópico do para enviar mensagens à fila do.
-
Comece a processar o documento. Use a operação apropriada para o tipo de análise escolhido:
-
StartDocumentTextDetectionpara tarefas de detecção de texto.
-
StartDocumentAnalysispara tarefas de análise de texto.
-
StartExpenseAnalysispara tarefas de análise de despesas.
-
-
Obtenha o status de conclusão a partir da fila do Amazon SQS. O código de exemplo rastreia o identificador da tarefa (
JobId
) que é retornado peloStart
operação. Ele somente obtém os resultados para identificadores de trabalho correspondentes que são lidos a partir do status de conclusão. Isso é importante se outros aplicativos estiverem usando a mesma fila do e tópico do. Para simplificar, o exemplo exclui trabalhos não correspondentes. Considere adicionar as tarefas excluídas a uma fila de mensagens mortas do Amazon SQS para mais investigações. -
Obtenha e exiba os resultados do processamento chamando a operação apropriada para o tipo de análise escolhido:
-
GetDocumentTextDetectionpara tarefas de detecção de texto.
-
GetDocumentAnalysispara tarefas de análise de texto.
-
GetExpenseAnalysispara tarefas de análise de despesas.
-
-
Exclua o tópico do Amazon SNS e a fila do Amazon SQS.
Executando operações assíncronas
O código de exemplo para este procedimento é fornecido em Java, Python e oAWS CLI. Antes de começar, instale o apropriadoAWSSDK. Para obter mais informações, consulte Etapa 2: Configurar aAWS CLIeAWSSDKs da.
Para detectar ou analisar texto em um documento de várias páginas
-
Configure o acesso de usuário ao Amazon Textract e configure o acesso do Amazon Textract ao Amazon SNS. Para obter mais informações, consulte Configurando o Amazon Textract para operações assíncronas. Para concluir este procedimento, você precisa de um documento de várias páginas em formato PDF. Ignorar as etapas 3 — 6 porque o código de exemplo cria e configura o tópico do Amazon SNS e a fila do Amazon SQS. Se completNo exemplo da CLI, você não precisa configurar uma fila SQS.
-
Faça upload de um arquivo de documento de várias páginas em formato PDF ou TIFF para o seu bucket do Amazon S3. (Documentos de página única em formato JPEG, PNG, TIFF ou PDF também podem ser processados).
Para obter instruções, consulteFazer upload de objetos no Amazon S3noGuia do usuário do Amazon Simple Storage Service.
-
Use o seguinteAWS SDK for Java, SDK for Python (Boto3) ouAWS CLIcódigo para detectar texto ou analisar texto em um documento de várias páginas. No
main
função:-
Substitua o valor de
roleArn
Com o ARN da função do IAM no qual você salvouDando acesso ao Amazon Textract ao seu tópico do Amazon SNS. -
Substitua os valores de
bucket
edocument
Com o bucket e o nome do arquivo do documento especificado na etapa 2. -
Substitua o valor do
type
parâmetro de entrada doProcessDocument
Função com o tipo de processamento que você deseja fazer. Usar oProcessType.DETECTION
para detectar texto. Usar oProcessType.ANALYSIS
para analisar texto. -
Para o exemplo Python, substitua o valor de
region_name
com a região em que seu cliente está operando.
Para oAWS CLIPor exemplo, faça o seguinte:
-
Ao ligarStartDocumentTextDetection, substitua o valor de
bucket-name
Com o nome do seu bucket do S3 e substituafile-name
Com o nome do arquivo especificado na etapa 2. Especifique a região do bucket substituindoregion-name
Com o nome da sua região. Observe que o exemplo da CLI não faz uso do SQS. -
Ao ligarGetDocumentTextDetectionsubstituir
job-id-number
com ojob-id
Retornado porStartDocumentTextDetection. Especifique a região do bucket substituindoregion-name
Com o nome da sua região.
- Java
-
package com.amazonaws.samples; import java.util.Arrays; import java.util.HashMap; import java.util.List; import java.util.Map; import com.amazonaws.auth.policy.Condition; import com.amazonaws.auth.policy.Policy; import com.amazonaws.auth.policy.Principal; import com.amazonaws.auth.policy.Resource; import com.amazonaws.auth.policy.Statement; import com.amazonaws.auth.policy.Statement.Effect; import com.amazonaws.auth.policy.actions.SQSActions; import com.amazonaws.services.sns.AmazonSNS; import com.amazonaws.services.sns.AmazonSNSClientBuilder; import com.amazonaws.services.sns.model.CreateTopicRequest; import com.amazonaws.services.sns.model.CreateTopicResult; import com.amazonaws.services.sqs.AmazonSQS; import com.amazonaws.services.sqs.AmazonSQSClientBuilder; import com.amazonaws.services.sqs.model.CreateQueueRequest; import com.amazonaws.services.sqs.model.Message; import com.amazonaws.services.sqs.model.QueueAttributeName; import com.amazonaws.services.sqs.model.SetQueueAttributesRequest; import com.amazonaws.services.textract.AmazonTextract; import com.amazonaws.services.textract.AmazonTextractClientBuilder; import com.amazonaws.services.textract.model.Block; import com.amazonaws.services.textract.model.DocumentLocation; import com.amazonaws.services.textract.model.DocumentMetadata; import com.amazonaws.services.textract.model.GetDocumentAnalysisRequest; import com.amazonaws.services.textract.model.GetDocumentAnalysisResult; import com.amazonaws.services.textract.model.GetDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.GetDocumentTextDetectionResult; import com.amazonaws.services.textract.model.NotificationChannel; import com.amazonaws.services.textract.model.Relationship; import com.amazonaws.services.textract.model.S3Object; import com.amazonaws.services.textract.model.StartDocumentAnalysisRequest; import com.amazonaws.services.textract.model.StartDocumentAnalysisResult; import com.amazonaws.services.textract.model.StartDocumentTextDetectionRequest; import com.amazonaws.services.textract.model.StartDocumentTextDetectionResult; import com.fasterxml.jackson.databind.JsonNode; import com.fasterxml.jackson.databind.ObjectMapper;; public class DocumentProcessor { private static String sqsQueueName=null; private static String snsTopicName=null; private static String snsTopicArn = null; private static String roleArn= null; private static String sqsQueueUrl = null; private static String sqsQueueArn = null; private static String startJobId = null; private static String bucket = null; private static String document = null; private static AmazonSQS sqs=null; private static AmazonSNS sns=null; private static AmazonTextract textract = null; public enum ProcessType { DETECTION,ANALYSIS } public static void main(String[] args) throws Exception { String document = "document"; String bucket = "bucket"; String roleArn="role"; sns = AmazonSNSClientBuilder.defaultClient(); sqs= AmazonSQSClientBuilder.defaultClient(); textract=AmazonTextractClientBuilder.defaultClient(); CreateTopicandQueue(); ProcessDocument(bucket,document,roleArn,ProcessType.DETECTION); DeleteTopicandQueue(); System.out.println("Done!"); } // Creates an SNS topic and SQS queue. The queue is subscribed to the topic. static void CreateTopicandQueue() { //create a new SNS topic snsTopicName="AmazonTextractTopic" + Long.toString(System.currentTimeMillis()); CreateTopicRequest createTopicRequest = new CreateTopicRequest(snsTopicName); CreateTopicResult createTopicResult = sns.createTopic(createTopicRequest); snsTopicArn=createTopicResult.getTopicArn(); //Create a new SQS Queue sqsQueueName="AmazonTextractQueue" + Long.toString(System.currentTimeMillis()); final CreateQueueRequest createQueueRequest = new CreateQueueRequest(sqsQueueName); sqsQueueUrl = sqs.createQueue(createQueueRequest).getQueueUrl(); sqsQueueArn = sqs.getQueueAttributes(sqsQueueUrl, Arrays.asList("QueueArn")).getAttributes().get("QueueArn"); //Subscribe SQS queue to SNS topic String sqsSubscriptionArn = sns.subscribe(snsTopicArn, "sqs", sqsQueueArn).getSubscriptionArn(); // Authorize queue Policy policy = new Policy().withStatements( new Statement(Effect.Allow) .withPrincipals(Principal.AllUsers) .withActions(SQSActions.SendMessage) .withResources(new Resource(sqsQueueArn)) .withConditions(new Condition().withType("ArnEquals").withConditionKey("aws:SourceArn").withValues(snsTopicArn)) ); Map queueAttributes = new HashMap(); queueAttributes.put(QueueAttributeName.Policy.toString(), policy.toJson()); sqs.setQueueAttributes(new SetQueueAttributesRequest(sqsQueueUrl, queueAttributes)); System.out.println("Topic arn: " + snsTopicArn); System.out.println("Queue arn: " + sqsQueueArn); System.out.println("Queue url: " + sqsQueueUrl); System.out.println("Queue sub arn: " + sqsSubscriptionArn ); } static void DeleteTopicandQueue() { if (sqs !=null) { sqs.deleteQueue(sqsQueueUrl); System.out.println("SQS queue deleted"); } if (sns!=null) { sns.deleteTopic(snsTopicArn); System.out.println("SNS topic deleted"); } } //Starts the processing of the input document. static void ProcessDocument(String inBucket, String inDocument, String inRoleArn, ProcessType type) throws Exception { bucket=inBucket; document=inDocument; roleArn=inRoleArn; switch(type) { case DETECTION: StartDocumentTextDetection(bucket, document); System.out.println("Processing type: Detection"); break; case ANALYSIS: StartDocumentAnalysis(bucket,document); System.out.println("Processing type: Analysis"); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } System.out.println("Waiting for job: " + startJobId); //Poll queue for messages List<Message> messages=null; int dotLine=0; boolean jobFound=false; //loop until the job status is published. Ignore other messages in queue. do{ messages = sqs.receiveMessage(sqsQueueUrl).getMessages(); if (dotLine++<40){ System.out.print("."); }else{ System.out.println(); dotLine=0; } if (!messages.isEmpty()) { //Loop through messages received. for (Message message: messages) { String notification = message.getBody(); // Get status and job id from notification. ObjectMapper mapper = new ObjectMapper(); JsonNode jsonMessageTree = mapper.readTree(notification); JsonNode messageBodyText = jsonMessageTree.get("Message"); ObjectMapper operationResultMapper = new ObjectMapper(); JsonNode jsonResultTree = operationResultMapper.readTree(messageBodyText.textValue()); JsonNode operationJobId = jsonResultTree.get("JobId"); JsonNode operationStatus = jsonResultTree.get("Status"); System.out.println("Job found was " + operationJobId); // Found job. Get the results and display. if(operationJobId.asText().equals(startJobId)){ jobFound=true; System.out.println("Job id: " + operationJobId ); System.out.println("Status : " + operationStatus.toString()); if (operationStatus.asText().equals("SUCCEEDED")){ switch(type) { case DETECTION: GetDocumentTextDetectionResults(); break; case ANALYSIS: GetDocumentAnalysisResults(); break; default: System.out.println("Invalid processing type. Choose Detection or Analysis"); throw new Exception("Invalid processing type"); } } else{ System.out.println("Document analysis failed"); } sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } else{ System.out.println("Job received was not job " + startJobId); //Delete unknown message. Consider moving message to dead letter queue sqs.deleteMessage(sqsQueueUrl,message.getReceiptHandle()); } } } else { Thread.sleep(5000); } } while (!jobFound); System.out.println("Finished processing document"); } private static void StartDocumentTextDetection(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentTextDetectionRequest req = new StartDocumentTextDetectionRequest() .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("DetectingText") .withNotificationChannel(channel); StartDocumentTextDetectionResult startDocumentTextDetectionResult = textract.startDocumentTextDetection(req); startJobId=startDocumentTextDetectionResult.getJobId(); } //Gets the results of processing started by StartDocumentTextDetection private static void GetDocumentTextDetectionResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentTextDetectionResult response=null; Boolean finished=false; while (finished==false) { GetDocumentTextDetectionRequest documentTextDetectionRequest= new GetDocumentTextDetectionRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentTextDetection(documentTextDetectionRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks information List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } private static void StartDocumentAnalysis(String bucket, String document) throws Exception{ //Create notification channel NotificationChannel channel= new NotificationChannel() .withSNSTopicArn(snsTopicArn) .withRoleArn(roleArn); StartDocumentAnalysisRequest req = new StartDocumentAnalysisRequest() .withFeatureTypes("TABLES","FORMS") .withDocumentLocation(new DocumentLocation() .withS3Object(new S3Object() .withBucket(bucket) .withName(document))) .withJobTag("AnalyzingText") .withNotificationChannel(channel); StartDocumentAnalysisResult startDocumentAnalysisResult = textract.startDocumentAnalysis(req); startJobId=startDocumentAnalysisResult.getJobId(); } //Gets the results of processing started by StartDocumentAnalysis private static void GetDocumentAnalysisResults() throws Exception{ int maxResults=1000; String paginationToken=null; GetDocumentAnalysisResult response=null; Boolean finished=false; //loops until pagination token is null while (finished==false) { GetDocumentAnalysisRequest documentAnalysisRequest= new GetDocumentAnalysisRequest() .withJobId(startJobId) .withMaxResults(maxResults) .withNextToken(paginationToken); response = textract.getDocumentAnalysis(documentAnalysisRequest); DocumentMetadata documentMetaData=response.getDocumentMetadata(); System.out.println("Pages: " + documentMetaData.getPages().toString()); //Show blocks, confidence and detection times List<Block> blocks= response.getBlocks(); for (Block block : blocks) { DisplayBlockInfo(block); } paginationToken=response.getNextToken(); if (paginationToken==null) finished=true; } } //Displays Block information for text detection and text analysis private static void DisplayBlockInfo(Block block) { System.out.println("Block Id : " + block.getId()); if (block.getText()!=null) System.out.println("\tDetected text: " + block.getText()); System.out.println("\tType: " + block.getBlockType()); if (block.getBlockType().equals("PAGE") !=true) { System.out.println("\tConfidence: " + block.getConfidence().toString()); } if(block.getBlockType().equals("CELL")) { System.out.println("\tCell information:"); System.out.println("\t\tColumn: " + block.getColumnIndex()); System.out.println("\t\tRow: " + block.getRowIndex()); System.out.println("\t\tColumn span: " + block.getColumnSpan()); System.out.println("\t\tRow span: " + block.getRowSpan()); } System.out.println("\tRelationships"); List<Relationship> relationships=block.getRelationships(); if(relationships!=null) { for (Relationship relationship : relationships) { System.out.println("\t\tType: " + relationship.getType()); System.out.println("\t\tIDs: " + relationship.getIds().toString()); } } else { System.out.println("\t\tNo related Blocks"); } System.out.println("\tGeometry"); System.out.println("\t\tBounding Box: " + block.getGeometry().getBoundingBox().toString()); System.out.println("\t\tPolygon: " + block.getGeometry().getPolygon().toString()); List<String> entityTypes = block.getEntityTypes(); System.out.println("\tEntity Types"); if(entityTypes!=null) { for (String entityType : entityTypes) { System.out.println("\t\tEntity Type: " + entityType); } } else { System.out.println("\t\tNo entity type"); } if(block.getBlockType().equals("SELECTION_ELEMENT")) { System.out.print(" Selection element detected: "); if (block.getSelectionStatus().equals("SELECTED")){ System.out.println("Selected"); }else { System.out.println(" Not selected"); } } if(block.getPage()!=null) System.out.println("\tPage: " + block.getPage()); System.out.println(); } }
- AWS CLI
-
EsseAWS CLIO comando inicia a detecção assíncrona de texto em um documento especificado. Ele retorna um
job-id
que pode ser usado para retreviver os resultados da detecção.aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"
bucket-name
\",\"Name\":\"file-name
\"}}" --regionregion-name
EsseAWS CLIcomando retorna os resultados de uma operação assíncrona do Amazon Textract quando fornecido com um
job-id
.aws textract get-document-text-detection --region
region-name
--job-idjob-id-number
Se você estiver acessando a CLI em um dispositivo Windows, use aspas duplas em vez de aspas simples e escape das aspas duplas internas por barra invertida (ou seja,\) para resolver quaisquer erros de analisador que você possa encontrar. Para obter um exemplo, veja abaixo
aws textract start-document-text-detection --document-location "{\"S3Object\":{\"Bucket\":\"
bucket
\",\"Name\":\"document
\"}}" --regionregion-name
- Python
-
import boto3 import json import sys import time class ProcessType: DETECTION = 1 ANALYSIS = 2 class DocumentProcessor: jobId = '' region_name = '' roleArn = '' bucket = '' document = '' sqsQueueUrl = '' snsTopicArn = '' processType = '' def __init__(self, role, bucket, document, region): self.roleArn = role self.bucket = bucket self.document = document self.region_name = region self.textract = boto3.client('textract', region_name=self.region_name) self.sqs = boto3.client('sqs') self.sns = boto3.client('sns') def ProcessDocument(self, type): jobFound = False self.processType = type validType = False # Determine which type of processing to perform if self.processType == ProcessType.DETECTION: response = self.textract.start_document_text_detection( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Detection') validType = True if self.processType == ProcessType.ANALYSIS: response = self.textract.start_document_analysis( DocumentLocation={'S3Object': {'Bucket': self.bucket, 'Name': self.document}}, FeatureTypes=["TABLES", "FORMS"], NotificationChannel={'RoleArn': self.roleArn, 'SNSTopicArn': self.snsTopicArn}) print('Processing type: Analysis') validType = True if validType == False: print("Invalid processing type. Choose Detection or Analysis.") return print('Start Job Id: ' + response['JobId']) dotLine = 0 while jobFound == False: sqsResponse = self.sqs.receive_message(QueueUrl=self.sqsQueueUrl, MessageAttributeNames=['ALL'], MaxNumberOfMessages=10) if sqsResponse: if 'Messages' not in sqsResponse: if dotLine < 40: print('.', end='') dotLine = dotLine + 1 else: print() dotLine = 0 sys.stdout.flush() time.sleep(5) continue for message in sqsResponse['Messages']: notification = json.loads(message['Body']) textMessage = json.loads(notification['Message']) print(textMessage['JobId']) print(textMessage['Status']) if str(textMessage['JobId']) == response['JobId']: print('Matching Job Found:' + textMessage['JobId']) jobFound = True self.GetResults(textMessage['JobId']) self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) else: print("Job didn't match:" + str(textMessage['JobId']) + ' : ' + str(response['JobId'])) # Delete the unknown message. Consider sending to dead letter queue self.sqs.delete_message(QueueUrl=self.sqsQueueUrl, ReceiptHandle=message['ReceiptHandle']) print('Done!') def CreateTopicandQueue(self): millis = str(int(round(time.time() * 1000))) # Create SNS topic snsTopicName = "AmazonTextractTopic" + millis topicResponse = self.sns.create_topic(Name=snsTopicName) self.snsTopicArn = topicResponse['TopicArn'] # create SQS queue sqsQueueName = "AmazonTextractQueue" + millis self.sqs.create_queue(QueueName=sqsQueueName) self.sqsQueueUrl = self.sqs.get_queue_url(QueueName=sqsQueueName)['QueueUrl'] attribs = self.sqs.get_queue_attributes(QueueUrl=self.sqsQueueUrl, AttributeNames=['QueueArn'])['Attributes'] sqsQueueArn = attribs['QueueArn'] # Subscribe SQS queue to SNS topic self.sns.subscribe( TopicArn=self.snsTopicArn, Protocol='sqs', Endpoint=sqsQueueArn) # Authorize SNS to write SQS queue policy = """{{ "Version":"2012-10-17", "Statement":[ {{ "Sid":"MyPolicy", "Effect":"Allow", "Principal" : {{"AWS" : "*"}}, "Action":"SQS:SendMessage", "Resource": "{}", "Condition":{{ "ArnEquals":{{ "aws:SourceArn": "{}" }} }} }} ] }}""".format(sqsQueueArn, self.snsTopicArn) response = self.sqs.set_queue_attributes( QueueUrl=self.sqsQueueUrl, Attributes={ 'Policy': policy }) def DeleteTopicandQueue(self): self.sqs.delete_queue(QueueUrl=self.sqsQueueUrl) self.sns.delete_topic(TopicArn=self.snsTopicArn) # Display information about a block def DisplayBlockInfo(self, block): print("Block Id: " + block['Id']) print("Type: " + block['BlockType']) if 'EntityTypes' in block: print('EntityTypes: {}'.format(block['EntityTypes'])) if 'Text' in block: print("Text: " + block['Text']) if block['BlockType'] != 'PAGE': print("Confidence: " + "{:.2f}".format(block['Confidence']) + "%") print('Page: {}'.format(block['Page'])) if block['BlockType'] == 'CELL': print('Cell Information') print('\tColumn: {} '.format(block['ColumnIndex'])) print('\tRow: {}'.format(block['RowIndex'])) print('\tColumn span: {} '.format(block['ColumnSpan'])) print('\tRow span: {}'.format(block['RowSpan'])) if 'Relationships' in block: print('\tRelationships: {}'.format(block['Relationships'])) print('Geometry') print('\tBounding Box: {}'.format(block['Geometry']['BoundingBox'])) print('\tPolygon: {}'.format(block['Geometry']['Polygon'])) if block['BlockType'] == 'SELECTION_ELEMENT': print(' Selection element detected: ', end='') if block['SelectionStatus'] == 'SELECTED': print('Selected') else: print('Not selected') def GetResults(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if self.processType == ProcessType.ANALYSIS: if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) if self.processType == ProcessType.DETECTION: if paginationToken == None: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_text_detection(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) blocks = response['Blocks'] print('Detected Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def GetResultsDocumentAnalysis(self, jobId): maxResults = 1000 paginationToken = None finished = False while finished == False: response = None if paginationToken == None: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults) else: response = self.textract.get_document_analysis(JobId=jobId, MaxResults=maxResults, NextToken=paginationToken) # Get the text blocks blocks = response['Blocks'] print('Analyzed Document Text') print('Pages: {}'.format(response['DocumentMetadata']['Pages'])) # Display block information for block in blocks: self.DisplayBlockInfo(block) print() print() if 'NextToken' in response: paginationToken = response['NextToken'] else: finished = True def main(): roleArn = '' bucket = '' document = '' region_name = '' analyzer = DocumentProcessor(roleArn, bucket, document, region_name) analyzer.CreateTopicandQueue() analyzer.ProcessDocument(ProcessType.DETECTION) analyzer.DeleteTopicandQueue() if __name__ == "__main__": main()
- Node.JS
-
Neste exemplo, substitua o valor de
roleArn
Com o ARN da função do IAM no qual você salvouDando acesso ao Amazon Textract ao seu tópico do Amazon SNS. Substitua os valores debucket
edocument
Com o bucket e o nome do arquivo do documento especificado na etapa 2 acima. Substitua o valor deprocessType
com o tipo de processamento que você gostaria de usar no documento de entrada. Finalmente, substitua o valor deREGION
com a região em que seu cliente está operando.// snippet-start:[sqs.JavaScript.queues.createQueueV3] // Import required AWS SDK clients and commands for Node.js import { CreateQueueCommand, GetQueueAttributesCommand, GetQueueUrlCommand, SetQueueAttributesCommand, DeleteQueueCommand, ReceiveMessageCommand, DeleteMessageCommand } from "@aws-sdk/client-sqs"; import {CreateTopicCommand, SubscribeCommand, DeleteTopicCommand } from "@aws-sdk/client-sns"; import { SQSClient } from "@aws-sdk/client-sqs"; import { SNSClient } from "@aws-sdk/client-sns"; import { TextractClient, StartDocumentTextDetectionCommand, StartDocumentAnalysisCommand, GetDocumentAnalysisCommand, GetDocumentTextDetectionCommand, DocumentMetadata } from "@aws-sdk/client-textract"; import { stdout } from "process"; // Set the AWS Region. const REGION = "us-east-1"; //e.g. "us-east-1" // Create SNS service object. const sqsClient = new SQSClient({ region: REGION }); const snsClient = new SNSClient({ region: REGION }); const textractClient = new TextractClient({ region: REGION }); // Set bucket and video variables const bucket = "bucket-name"; const documentName = "document-name"; const roleArn = "role-arn" const processType = "DETECTION" var startJobId = "" var ts = Date.now(); const snsTopicName = "AmazonTextractExample" + ts; const snsTopicParams = {Name: snsTopicName} const sqsQueueName = "AmazonTextractQueue-" + ts; // Set the parameters const sqsParams = { QueueName: sqsQueueName, //SQS_QUEUE_URL Attributes: { DelaySeconds: "60", // Number of seconds delay. MessageRetentionPeriod: "86400", // Number of seconds delay. }, }; // Process a document based on operation type const processDocumment = async (type, bucket, videoName, roleArn, sqsQueueUrl, snsTopicArn) => { try { // Set job found and success status to false initially var jobFound = false var succeeded = false var dotLine = 0 var processType = type var validType = false if (processType == "DETECTION"){ var response = await textractClient.send(new StartDocumentTextDetectionCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Detection") validType = true } if (processType == "ANALYSIS"){ var response = await textractClient.send(new StartDocumentAnalysisCommand({DocumentLocation:{S3Object:{Bucket:bucket, Name:videoName}}, NotificationChannel:{RoleArn: roleArn, SNSTopicArn: snsTopicArn}})) console.log("Processing type: Analysis") validType = true } if (validType == false){ console.log("Invalid processing type. Choose Detection or Analysis.") return } // while not found, continue to poll for response console.log(`Start Job ID: ${response.JobId}`) while (jobFound == false){ var sqsReceivedResponse = await sqsClient.send(new ReceiveMessageCommand({QueueUrl:sqsQueueUrl, MaxNumberOfMessages:'ALL', MaxNumberOfMessages:10})); if (sqsReceivedResponse){ var responseString = JSON.stringify(sqsReceivedResponse) if (!responseString.includes('Body')){ if (dotLine < 40) { console.log('.') dotLine = dotLine + 1 }else { console.log('') dotLine = 0 }; stdout.write('', () => { console.log(''); }); await new Promise(resolve => setTimeout(resolve, 5000)); continue } } // Once job found, log Job ID and return true if status is succeeded for (var message of sqsReceivedResponse.Messages){ console.log("Retrieved messages:") var notification = JSON.parse(message.Body) var rekMessage = JSON.parse(notification.Message) var messageJobId = rekMessage.JobId if (String(rekMessage.JobId).includes(String(startJobId))){ console.log('Matching job found:') console.log(rekMessage.JobId) jobFound = true // GET RESUlTS FUNCTION HERE var operationResults = await GetResults(processType, rekMessage.JobId) //GET RESULTS FUMCTION HERE console.log(rekMessage.Status) if (String(rekMessage.Status).includes(String("SUCCEEDED"))){ succeeded = true console.log("Job processing succeeded.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } }else{ console.log("Provided Job ID did not match returned ID.") var sqsDeleteMessage = await sqsClient.send(new DeleteMessageCommand({QueueUrl:sqsQueueUrl, ReceiptHandle:message.ReceiptHandle})); } } console.log("Done!") } }catch (err) { console.log("Error", err); } } // Create the SNS topic and SQS Queue const createTopicandQueue = async () => { try { // Create SNS topic const topicResponse = await snsClient.send(new CreateTopicCommand(snsTopicParams)); const topicArn = topicResponse.TopicArn console.log("Success", topicResponse); // Create SQS Queue const sqsResponse = await sqsClient.send(new CreateQueueCommand(sqsParams)); console.log("Success", sqsResponse); const sqsQueueCommand = await sqsClient.send(new GetQueueUrlCommand({QueueName: sqsQueueName})) const sqsQueueUrl = sqsQueueCommand.QueueUrl const attribsResponse = await sqsClient.send(new GetQueueAttributesCommand({QueueUrl: sqsQueueUrl, AttributeNames: ['QueueArn']})) const attribs = attribsResponse.Attributes console.log(attribs) const queueArn = attribs.QueueArn // subscribe SQS queue to SNS topic const subscribed = await snsClient.send(new SubscribeCommand({TopicArn: topicArn, Protocol:'sqs', Endpoint: queueArn})) const policy = { Version: "2012-10-17", Statement: [ { Sid: "MyPolicy", Effect: "Allow", Principal: {AWS: "*"}, Action: "SQS:SendMessage", Resource: queueArn, Condition: { ArnEquals: { 'aws:SourceArn': topicArn } } } ] }; const response = sqsClient.send(new SetQueueAttributesCommand({QueueUrl: sqsQueueUrl, Attributes: {Policy: JSON.stringify(policy)}})) console.log(response) console.log(sqsQueueUrl, topicArn) return [sqsQueueUrl, topicArn] } catch (err) { console.log("Error", err); } } const deleteTopicAndQueue = async (sqsQueueUrlArg, snsTopicArnArg) => { const deleteQueue = await sqsClient.send(new DeleteQueueCommand({QueueUrl: sqsQueueUrlArg})); const deleteTopic = await snsClient.send(new DeleteTopicCommand({TopicArn: snsTopicArnArg})); console.log("Successfully deleted.") } const displayBlockInfo = async (block) => { console.log(`Block ID: ${block.Id}`) console.log(`Block Type: ${block.BlockType}`) if (String(block).includes(String("EntityTypes"))){ console.log(`EntityTypes: ${block.EntityTypes}`) } if (String(block).includes(String("Text"))){ console.log(`EntityTypes: ${block.Text}`) } if (!String(block.BlockType).includes('PAGE')){ console.log(`Confidence: ${block.Confidence}`) } console.log(`Page: ${block.Page}`) if (String(block.BlockType).includes("CELL")){ console.log("Cell Information") console.log(`Column: ${block.ColumnIndex}`) console.log(`Row: ${block.RowIndex}`) console.log(`Column Span: ${block.ColumnSpan}`) console.log(`Row Span: ${block.RowSpan}`) if (String(block).includes("Relationships")){ console.log(`Relationships: ${block.Relationships}`) } } console.log("Geometry") console.log(`Bounding Box: ${JSON.stringify(block.Geometry.BoundingBox)}`) console.log(`Polygon: ${JSON.stringify(block.Geometry.Polygon)}`) if (String(block.BlockType).includes('SELECTION_ELEMENT')){ console.log('Selection Element detected:') if (String(block.SelectionStatus).includes('SELECTED')){ console.log('Selected') } else { console.log('Not Selected') } } } const GetResults = async (processType, JobID) => { var maxResults = 1000 var paginationToken = null var finished = false while (finished == false){ var response = null if (processType == 'ANALYSIS'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentAnalysisCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } if(processType == 'DETECTION'){ if (paginationToken == null){ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults})) }else{ response = textractClient.send(new GetDocumentTextDetectionCommand({JobId:JobID, MaxResults:maxResults, NextToken:paginationToken})) } } await new Promise(resolve => setTimeout(resolve, 5000)); console.log("Detected Documented Text") console.log(response) //console.log(Object.keys(response)) console.log(typeof(response)) var blocks = (await response).Blocks console.log(blocks) console.log(typeof(blocks)) var docMetadata = (await response).DocumentMetadata var blockString = JSON.stringify(blocks) var parsed = JSON.parse(JSON.stringify(blocks)) console.log(Object.keys(blocks)) console.log(`Pages: ${docMetadata.Pages}`) blocks.forEach((block)=> { displayBlockInfo(block) console.log() console.log() }) //console.log(blocks[0].BlockType) //console.log(blocks[1].BlockType) if(String(response).includes("NextToken")){ paginationToken = response.NextToken }else{ finished = true } } } // DELETE TOPIC AND QUEUE const main = async () => { var sqsAndTopic = await createTopicandQueue(); var process = await processDocumment(processType, bucket, documentName, roleArn, sqsAndTopic[0], sqsAndTopic[1]) var deleteResults = await deleteTopicAndQueue(sqsAndTopic[0], sqsAndTopic[1]) } main()
-
-
Execute o código. A operação pode demorar um pouco para ser concluída. Depois de ser concluída, uma lista de blocos para texto detectado ou analisado é exibida.