Deploy a JumpStart model
You can deploy a pre-trained JumpStart model for inference using either the CLI or the SDK.
Using the CLI
Run the following command to deploy a JumpStart model:
hyp create hyp-jumpstart-endpoint \ --version 1.0 \ --model-id deepseek-llm-r1-distill-qwen-1-5b \ --instance-type ml.g5.8xlarge \ --endpoint-name endpoint-test-jscli
Using the SDK
Create a Python script with the following content:
from sagemaker.hyperpod.inference.config.hp_jumpstart_endpoint_config import Model, Server, SageMakerEndpoint, TlsConfig from sagemaker.hyperpod.inference.hp_jumpstart_endpoint import HPJumpStartEndpoint model=Model( model_id='deepseek-llm-r1-distill-qwen-1-5b' ) server=Server( instance_type='ml.g5.8xlarge', ) endpoint_name=SageMakerEndpoint(name='
<endpoint-name>
') # create spec js_endpoint=HPJumpStartEndpoint( model=model, server=server, sage_maker_endpoint=endpoint_name )
Invoke the endpoint
Using the CLI
Test the endpoint with a sample input:
hyp invoke hyp-jumpstart-endpoint \ --endpoint-name endpoint-jumpstart \ --body '{"inputs":"What is the capital of USA?"}'
Using the SDK
Add the following code to your Python script:
data = '{"inputs":"What is the capital of USA?"}' response = js_endpoint.invoke(body=data).body.read() print(response)
Manage the endpoint
Using the CLI
List and inspect the endpoint:
hyp list hyp-jumpstart-endpoint hyp get hyp-jumpstart-endpoint --name endpoint-jumpstart
Using the SDK
Add the following code to your Python script:
endpoint_iterator = HPJumpStartEndpoint.list() for endpoint in endpoint_iterator: print(endpoint.name, endpoint.status) logs = js_endpoint.get_logs() print(logs)
Clean up resources
When you're done, delete the endpoint to avoid unnecessary costs.
Using the CLI
hyp delete hyp-jumpstart-endpoint --name endpoint-jumpstart
Using the SDK
js_endpoint.delete()
Next steps
Now that you've trained a PyTorch model, deployed it as a custom endpoint, and deployed a JumpStart model using HyperPod's CLI and SDK, explore advanced features:
-
Multi-node training: Scale training across multiple instances
-
Custom containers: Build specialized training environments
-
Integration with SageMaker Pipelines: Automate your ML workflows
-
Advanced monitoring: Set up custom metrics and alerts
For more examples and advanced configurations, visit the SageMaker HyperPod GitHub repository