PyTorch Framework Processor - Amazon SageMaker

PyTorch Framework Processor

PyTorch is an open-source machine learning framework. The PyTorchProcessor in the Amazon SageMaker Python SDK provides you with the ability to run processing jobs with PyTorch scripts. When you use the PyTorchProcessor, you can leverage an Amazon-built Docker container with a managed PyTorch environment so that you don’t need to bring your own container.

The following code example shows how you can use the PyTorchProcessor to run your Processing job using a Docker image provided and maintained by SageMaker. Note that when you run the job, you can specify a directory containing your scripts and dependencies in the source_dir argument, and you can have a requirements.txt file located inside your source_dir directory that specifies the dependencies for your processing script(s). SageMaker Processing installs the dependencies in requirements.txt in the container for you.

For the PyTorch versions supported by SageMaker, see the available Deep Learning Container images.

from sagemaker.pytorch.processing import PyTorchProcessor from sagemaker.processing import ProcessingInput, ProcessingOutput from sagemaker import get_execution_role #Initialize the PyTorchProcessor pytorch_processor = PyTorchProcessor( framework_version='1.8', role=get_execution_role(), instance_type='ml.m5.xlarge', instance_count=1, base_job_name='frameworkprocessor-PT' ) #Run the processing job pytorch_processor.run( code='processing-script.py', source_dir='scripts', inputs=[ ProcessingInput( input_name='data', source=f's3://{BUCKET}/{S3_INPUT_PATH}', destination='/opt/ml/processing/input' ) ], outputs=[ ProcessingOutput(output_name='data_structured', source='/opt/ml/processing/tmp/data_structured', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'), ProcessingOutput(output_name='train', source='/opt/ml/processing/output/train', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'), ProcessingOutput(output_name='validation', source='/opt/ml/processing/output/val', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'), ProcessingOutput(output_name='test', source='/opt/ml/processing/output/test', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}'), ProcessingOutput(output_name='logs', source='/opt/ml/processing/logs', destination=f's3://{BUCKET}/{S3_OUTPUT_PATH}') ] )

If you have a requirements.txt file, it should be a list of libraries you want to install in the container. The path for source_dir can be a relative, absolute, or Amazon S3 URI path. However, if you use an Amazon S3 URI, then it must point to a tar.gz file. You can have multiple scripts in the directory you specify for source_dir. To learn more about the PyTorchProcessor class, see PyTorch Estimator in the Amazon SageMaker Python SDK.