Select your cookie preferences

We use essential cookies and similar tools that are necessary to provide our site and services. We use performance cookies to collect anonymous statistics, so we can understand how customers use our site and make improvements. Essential cookies cannot be deactivated, but you can choose “Customize” or “Decline” to decline performance cookies.

If you agree, AWS and approved third parties will also use cookies to provide useful site features, remember your preferences, and display relevant content, including relevant advertising. To accept or decline all non-essential cookies, choose “Accept” or “Decline.” To make more detailed choices, choose “Customize.”

Batch forecasting

Focus mode
Batch forecasting - Amazon SageMaker AI

Batch forecasting, also known as offline inferencing, generates model predictions on a batch of observations. Batch inference is a good option for large datasets or if you don't need an immediate response to a model prediction request.

By contrast, online inference (real-time inferencing) generates predictions in real time.

You can use SageMaker APIs to retrieve the best candidate of an AutoML job and then submit a batch of input data for inference using that candidate.

  1. Retrieve the details of the AutoML job.

    The following AWS CLI command example uses the DescribeAutoMLJobV2 API to obtain details of the AutoML job, including the information about the best model candidate.

    aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name job-name --region region
  2. Extract the container definition from InferenceContainers for the best model candidate.

    A container definition is the containerized environment used to host the trained SageMaker AI model for making predictions.

    BEST_CANDIDATE=$(aws sagemaker describe-auto-ml-job-v2 \ --auto-ml-job-name job-name --region region \ --query 'BestCandidate.InferenceContainers[0]' \ --output json

    This command extracts the container definition for the best model candidate and stores it in the BEST_CANDIDATE variable.

  3. Create a SageMaker AI model using the best candidate container definition.

    Use the container definitions from the previous steps to create a SageMaker AI model by using the CreateModel API.

    aws sagemaker create-model \ --model-name 'model-name' \ --primary-container "$BEST_CANDIDATE" --execution-role-arn 'execution-role-arn>' \ --region 'region>

    The --execution-role-arn parameter specifies the IAM role that SageMaker AI assumes when using the model for inference. For details on the permissions required for this role, see CreateModel API: Execution Role Permissions.

  4. Create a batch transform job.

    The following example creates a transform job using the CreateTransformJob API.

    aws sagemaker create-transform-job \ --transform-job-name 'transform-job-name' \ --model-name 'model-name'\ --transform-input file://transform-input.json \ --transform-output file://transform-output.json \ --transform-resources file://transform-resources.json \ --region 'region'

    The input, output, and resource details are defined in separate JSON files:

    • transform-input.json:

      { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://my-input-data-bucket/path/to/input/data" } }, "ContentType": "text/csv", "SplitType": "None" }
    • transform-output.json:

      { "S3OutputPath": "s3://my-output-bucket/path/to/output", "AssembleWith": "Line" }
    • transform-resources.json:

      Note

      We recommend using m5.12xlarge instances for general-purpose workloads and m5.24xlarge instances for big data forecasting tasks.

      { "InstanceType": "instance-type", "InstanceCount": 1 }
  5. Monitor the progress of your transform job using the DescribeTransformJob API.

    See the following AWS CLI command as an example.

    aws sagemaker describe-transform-job \ --transform-job-name 'transform-job-name' \ --region region
  6. Retrieve the batch transform output.

    After the job is finished, the predicted result is available in the S3OutputPath.

    The output file name has the following format: input_data_file_name.out. As an example, if your input file is text_x.csv, the output name will be text_x.csv.out.

    aws s3 ls s3://my-output-bucket/path/to/output/

The following code examples illustrate the use of the AWS SDK for Python (boto3) and the AWS CLI for batch forecasting.

AWS SDK for Python (boto3)

The following example uses AWS SDK for Python (boto3) to make predictions in batches.

import sagemaker import boto3 session = sagemaker.session.Session() sm_client = boto3.client('sagemaker', region_name='us-west-2') role = 'arn:aws:iam::1234567890:role/sagemaker-execution-role' output_path = 's3://test-auto-ml-job/output' input_data = 's3://test-auto-ml-job/test_X.csv' best_candidate = sm_client.describe_auto_ml_job_v2(AutoMLJobName=job_name)['BestCandidate'] best_candidate_containers = best_candidate['InferenceContainers'] best_candidate_name = best_candidate['CandidateName'] # create model reponse = sm_client.create_model( ModelName = best_candidate_name, ExecutionRoleArn = role, Containers = best_candidate_containers ) # Lauch Transform Job response = sm_client.create_transform_job( TransformJobName=f'{best_candidate_name}-transform-job', ModelName=model_name, TransformInput={ 'DataSource': { 'S3DataSource': { 'S3DataType': 'S3Prefix', 'S3Uri': input_data } }, 'ContentType': "text/csv", 'SplitType': 'None' }, TransformOutput={ 'S3OutputPath': output_path, 'AssembleWith': 'Line', }, TransformResources={ 'InstanceType': 'ml.m5.2xlarge', 'InstanceCount': 1, }, )

The batch inference job returns a response in the following format.

{'TransformJobArn': 'arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-transform-job', 'ResponseMetadata': {'RequestId': '659f97fc-28c4-440b-b957-a49733f7c2f2', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amzn-requestid': '659f97fc-28c4-440b-b957-a49733f7c2f2', 'content-type': 'application/x-amz-json-1.1', 'content-length': '96', 'date': 'Thu, 11 Aug 2022 22:23:49 GMT'}, 'RetryAttempts': 0}}
AWS Command Line Interface (AWS CLI)
  1. Obtain the best candidate container definitions.

    aws sagemaker describe-auto-ml-job-v2 --auto-ml-job-name 'test-automl-job' --region us-west-2
  2. Create the model.

    aws sagemaker create-model --model-name 'test-sagemaker-model' --containers '[{ "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-automl:2.5-1-cpu-py3", "ModelDataUrl": "s3://amzn-s3-demo-bucket/out/test-job1/data-processor-models/test-job1-dpp0-1-e569ff7ad77f4e55a7e549a/output/model.tar.gz", "Environment": { "AUTOML_SPARSE_ENCODE_RECORDIO_PROTOBUF": "1", "AUTOML_TRANSFORM_MODE": "feature-transform", "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "application/x-recordio-protobuf", "SAGEMAKER_PROGRAM": "sagemaker_serve", "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code" } }, { "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-xgboost:1.3-1-cpu-py3", "ModelDataUrl": "s3://amzn-s3-demo-bucket/out/test-job1/tuning/flicdf10v2-dpp0-xgb/test-job1E9-244-7490a1c0/output/model.tar.gz", "Environment": { "MAX_CONTENT_LENGTH": "20971520", "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv", "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label", "SAGEMAKER_INFERENCE_SUPPORTED": "predicted_label,probability,probabilities" } }, { "Image": "348316444620.dkr.ecr.us-west-2.amazonaws.com/sagemaker-sklearn-automl:2.5-1-cpu-py3", "ModelDataUrl": "s3://amzn-s3-demo-bucket/out/test-job1/data-processor-models/test-job1-dpp0-1-e569ff7ad77f4e55a7e549a/output/model.tar.gz", "Environment": { "AUTOML_TRANSFORM_MODE": "inverse-label-transform", "SAGEMAKER_DEFAULT_INVOCATIONS_ACCEPT": "text/csv", "SAGEMAKER_INFERENCE_INPUT": "predicted_label", "SAGEMAKER_INFERENCE_OUTPUT": "predicted_label", "SAGEMAKER_INFERENCE_SUPPORTED": "predicted_label,probability,labels,probabilities", "SAGEMAKER_PROGRAM": "sagemaker_serve", "SAGEMAKER_SUBMIT_DIRECTORY": "/opt/ml/model/code" } }]' \ --execution-role-arn 'arn:aws:iam::1234567890:role/sagemaker-execution-role' \ --region 'us-west-2'
  3. Create a transform job.

    aws sagemaker create-transform-job --transform-job-name 'test-tranform-job'\ --model-name 'test-sagemaker-model'\ --transform-input '{ "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://amzn-s3-demo-bucket/data.csv" } }, "ContentType": "text/csv", "SplitType": "None" }'\ --transform-output '{ "S3OutputPath": "s3://amzn-s3-demo-bucket/output/", "AssembleWith": "Line" }'\ --transform-resources '{ "InstanceType": "ml.m5.2xlarge", "InstanceCount": 1 }'\ --region 'us-west-2'
  4. Check the progress of the transform job.

    aws sagemaker describe-transform-job --transform-job-name 'test-tranform-job' --region us-west-2

    The following is the response from the transform job.

    { "TransformJobName": "test-tranform-job", "TransformJobArn": "arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-tranform-job", "TransformJobStatus": "InProgress", "ModelName": "test-model", "TransformInput": { "DataSource": { "S3DataSource": { "S3DataType": "S3Prefix", "S3Uri": "s3://amzn-s3-demo-bucket/data.csv" } }, "ContentType": "text/csv", "CompressionType": "None", "SplitType": "None" }, "TransformOutput": { "S3OutputPath": "s3://amzn-s3-demo-bucket/output/", "AssembleWith": "Line", "KmsKeyId": "" }, "TransformResources": { "InstanceType": "ml.m5.2xlarge", "InstanceCount": 1 }, "CreationTime": 1662495635.679, "TransformStartTime": 1662495847.496, "DataProcessing": { "InputFilter": "$", "OutputFilter": "$", "JoinSource": "None" } }

    After the TransformJobStatus changes to Completed, you can check the inference result in the S3OutputPath.

The following example uses AWS SDK for Python (boto3) to make predictions in batches.

import sagemaker import boto3 session = sagemaker.session.Session() sm_client = boto3.client('sagemaker', region_name='us-west-2') role = 'arn:aws:iam::1234567890:role/sagemaker-execution-role' output_path = 's3://test-auto-ml-job/output' input_data = 's3://test-auto-ml-job/test_X.csv' best_candidate = sm_client.describe_auto_ml_job_v2(AutoMLJobName=job_name)['BestCandidate'] best_candidate_containers = best_candidate['InferenceContainers'] best_candidate_name = best_candidate['CandidateName'] # create model reponse = sm_client.create_model( ModelName = best_candidate_name, ExecutionRoleArn = role, Containers = best_candidate_containers ) # Lauch Transform Job response = sm_client.create_transform_job( TransformJobName=f'{best_candidate_name}-transform-job', ModelName=model_name, TransformInput={ 'DataSource': { 'S3DataSource': { 'S3DataType': 'S3Prefix', 'S3Uri': input_data } }, 'ContentType': "text/csv", 'SplitType': 'None' }, TransformOutput={ 'S3OutputPath': output_path, 'AssembleWith': 'Line', }, TransformResources={ 'InstanceType': 'ml.m5.2xlarge', 'InstanceCount': 1, }, )

The batch inference job returns a response in the following format.

{'TransformJobArn': 'arn:aws:sagemaker:us-west-2:1234567890:transform-job/test-transform-job', 'ResponseMetadata': {'RequestId': '659f97fc-28c4-440b-b957-a49733f7c2f2', 'HTTPStatusCode': 200, 'HTTPHeaders': {'x-amzn-requestid': '659f97fc-28c4-440b-b957-a49733f7c2f2', 'content-type': 'application/x-amz-json-1.1', 'content-length': '96', 'date': 'Thu, 11 Aug 2022 22:23:49 GMT'}, 'RetryAttempts': 0}}
PrivacySite termsCookie preferences
© 2025, Amazon Web Services, Inc. or its affiliates. All rights reserved.