
AWS SDK for .NET (version 3)
Developer Guide

AWS SDK for .NET (version 3): Developer Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS SDK for .NET (version 3) Developer Guide

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

AWS SDK for .NET (version 3) Developer Guide

Table of Contents
. vi

What Is the AWS SDK for .NET 1
Maintenance and support for SDK major versions 1
AWS Tools Related to the SDK 1

Tools for Windows PowerShell and Tools for PowerShell Core 1
Toolkit for VS Code 1
Toolkit for Visual Studio 2
Toolkit for Azure DevOps 2

Version 3.5 of the AWS SDK for .NET 2
How to Use This Guide 2
Supported Services and Revision History 3
Additional resources 3

Quick start ... 5
Simple cross-platform app 5

Steps 5
Setup for this tutorial ... 5
Create the project ... 7
Create the code 7
Run the application 9
Clean up 9
Where to go next ... 9

Simple Windows-based app 10
Steps 10
Setup for this tutorial ... 10
Create the project ... 11
Create the code 12
Run the application 13
Clean up 14
Where to go next ... 14

Next steps 14
Setting up 15

Create an AWS Account and Credentials ... 15
Install and configure your toolchain 15

Cross-platform development 15
Windows with Visual Studio and .NET Core 16

Install AWSSDK Assemblies ... 16
Installing AWSSDK packages with NuGet 16
Download and extract ZIP files 18
Installing the AWS SDK for .NET on Windows 18

Start a new project ... 18
Supported platforms 19

.NET Core 19

.NET Framework 4.5 19

.NET Framework 3.5 19
Portable Class Library 20
Unity support ... 20
More info 20

Programming with the SDK 21
Configuring your app 21

Configuring the AWS SDK for .NET with .NET Core 22
Configuring AWS Credentials ... 25
AWS Region Selection 33
Configuring Other Application Parameters ... 35
Configuration Files Reference for AWS SDK for .NET 40

iii

AWS SDK for .NET (version 3) Developer Guide

Enabling SDK Metrics ... 48
Asynchronous APIs ... 52

Asynchronous API for .NET Framework 4.5, Windows Store, and Windows Phone 8 52
Asynchronous API for .NET Framework 3.5 53

Retries and timeouts 60
Retries ... 60
Timeouts 62
Example 62

Paginators ... 62
Migrating to Version 3 63

About the AWS SDK for .NET Versions 63
Architecture Redesign for the SDK 63
Breaking Changes 63

Migrating to Version 3.5 64
Migrating from .NET Standard 1.3 64

Code examples 66
Listing AWS Resources using AWS CloudFormation 66
Authenticating Users with Amazon Cognito 67

Amazon Cognito Credentials Provider ... 67
Amazon CognitoAuthentication Extension Library Examples 69

Using Amazon DynamoDB NoSQL Databases 72
Low-Level Model ... 73
Document Model ... 75
Object Persistence Model ... 76
More Info 77
Using Expressions with Amazon DynamoDB and the AWS SDK for .NET 78
JSON Support in Amazon DynamoDB with the AWS SDK for .NET 88
Managing ASP.NET Session State with Amazon DynamoDB 89

Deploying Applications Using Amazon EC2 92
Amazon EC2 Instances Examples 93
Amazon EC2 Spot Instance Examples 110

Storing Archival Data Using Amazon S3 Glacier ... 118
Programming Models ... 118

Managing users with IAM 121
Managing IAM Aliases 121
Managing IAM Users ... 123
Managing IAM Access Keys 126
Working with IAM Policies ... 129
Working with IAM Server Certificates 133
List IAM Account Information 135
Granting Access Using an IAM Role 136

Using KMS keys for S3 encryption 140
Managing Domain Name System (DNS) Resources Using Amazon Route 53 142
Using Amazon Simple Storage Service Internet Storage 146
Sending Notifications From the Cloud Using Amazon Simple Notification Service 147

Listing Your Amazon SNS Topics ... 147
Sending a Message to an Amazon SNS Topic ... 148
Sending an SMS Message to a Phone Number 149

Messaging Using Amazon SQS 150
Creating an Amazon SQS Client 150
Creating an Amazon SQS Queue 151
Constructing Amazon SQS Queue URLs 152
Sending an Amazon SQS Message 152
Sending an Amazon SQS Message Batch 153
Receiving a Message from an Amazon SQS Queue 154
Deleting a Message from an Amazon SQS Queue 155
Enabling Long Polling in Amazon SQS 155

iv

AWS SDK for .NET (version 3) Developer Guide

Using Amazon SQS Queues 157
Using Amazon SQS Dead Letter Queues 158

Monitoring Your AWS Resources Using Amazon CloudWatch 159
Describing, Creating, and Deleting Alarms in Amazon CloudWatch 159
Using Alarms in Amazon CloudWatch 161
Getting Metrics from Amazon CloudWatch 163
Sending Events to Amazon CloudWatch Events 164
Using Subscription Filters in Amazon CloudWatch Logs 168

Programming AWS OpsWorks to Work with Stacks and Applications 170
Programming Support for Additional AWS Services 170

Security ... 171
Data Protection 171
Identity and Access Management 172
Compliance Validation 172
Resilience 173
Infrastructure Security ... 173
Enforcing TLS 1.2 173

.NET Core 174

.NET Framework 174
AWS Tools for PowerShell ... 175
Xamarin 175
Unity 176
Browser (for Blazor WebAssembly) ... 176

S3 Encryption Client Migration 176
Migration Overview 176
Update Existing Clients to V1-transitional Clients to Read New Formats 177
Migrate V1-transitional Clients to V2 Clients to Write New Formats 177
Update V2 Clients to No Longer Read V1 Formats 179

Document History 180

v

AWS SDK for .NET (version 3) Developer Guide

This content focuses on .NET Framework and ASP.NET 4.x. It covers Windows and Visual Studio.

Working with .NET Core or ASP.NET Core? Go to the content for version 3.5 or later of the AWS SDK
for .NET. It covers cross-platform development in addition to Windows and Visual Studio.

vi

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/welcome.html

AWS SDK for .NET (version 3) Developer Guide
Maintenance and support for SDK major versions

What Is the AWS SDK for .NET
The AWS SDK for .NET makes it easier to build .NET applications that tap into cost-effective, scalable,
and reliable AWS services such as Amazon Simple Storage Service (Amazon S3) and Amazon Elastic
Compute Cloud (Amazon EC2). The AWS SDK for .NET supports .NET Framework 3.5, .NET Framework
4.5, .NET Standard 2.0, Portable Class Library, Xamarin, and Unity.

Unless stated otherwise, the information in this guide applies to all of the supported targets.

(Got it! I'm ready for a tutorial (p. 5) or to start setting up (p. 15).)

Maintenance and support for SDK major versions
For information about maintenance and support for SDK major versions and their underlying
dependencies, see the following in the AWS SDKs and Tools Shared Configuration and Credentials
Reference Guide:

• AWS SDKs and Tools Maintenance Policy

• AWS SDKs and Tools Version Support Matrix

AWS Tools Related to the SDK
Tools for Windows PowerShell and Tools for
PowerShell Core
The AWS Tools for Windows PowerShell and AWS Tools for PowerShell Core are PowerShell modules
that are built on the functionality exposed by the AWS SDK for .NET. The AWS PowerShell tools enable
you to script operations on your AWS resources from the PowerShell prompt. Although the cmdlets are
implemented using the service clients and methods from the SDK, the cmdlets provide an idiomatic
PowerShell experience for specifying parameters and handling results.

To get started, see AWS Tools for Windows PowerShell.

Toolkit for VS Code
The AWS Toolkit for Visual Studio Code is a plugin for the Visual Studio Code (VS Code) editor. The
toolkit makes it easier for you to develop, debug, and deploy applications that use AWS.

With the toolkit, you can do such things as the following:

• Create serverless applications that contain AWS Lambda functions, and then deploy the applications to
an AWS CloudFormation stack.

• Work with Amazon EventBridge schemas.

• Use IntelliSense when working with Amazon ECS task-definition files.

• Visualize an AWS Cloud Development Kit (AWS CDK) application.

1

https://docs.aws.amazon.com/credref/latest/refdocs/overview.html
https://docs.aws.amazon.com/credref/latest/refdocs/overview.html
https://docs.aws.amazon.com/credref/latest/refdocs/maint-policy.html
https://docs.aws.amazon.com/credref/latest/refdocs/version-support-matrix.html
https://aws.amazon.com/powershell
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/

AWS SDK for .NET (version 3) Developer Guide
Toolkit for Visual Studio

Toolkit for Visual Studio
The AWS Toolkit for Visual Studio is a plugin for the Visual Studio IDE that makes it easier for you to
develop, debug, and deploy .NET applications that use Amazon Web Services. The Toolkit for Visual
Studio provides Visual Studio templates for services such as Lambda and deployment wizards for
web applications and serverless applications. You can use the AWS Explorer to manage Amazon EC2
instances, work with Amazon DynamoDB tables, publish messages to Amazon Simple Notification
Service (Amazon SNS) queues, and more, all within Visual Studio.

To get started, see Setting up the AWS Toolkit for Visual Studio.

Toolkit for Azure DevOps
The AWS Toolkit for Microsoft Azure DevOps adds tasks to easily enable build and release pipelines
in Azure DevOps and Azure DevOps Server to work with AWS services. You can work with Amazon S3,
AWS Elastic Beanstalk, AWS CodeDeploy, Lambda, AWS CloudFormation, Amazon Simple Queue Service
(Amazon SQS), and Amazon SNS. You can also run commands using the Windows PowerShell module
and the AWS Command Line Interface (AWS CLI).

To get started with the AWS Toolkit for Azure DevOps, see the AWS Toolkit for Microsoft Azure DevOps
User Guide.

Version 3.5 of the AWS SDK for .NET
Version 3.5 of the AWS SDK for .NET further standardizes the .NET experience by transitioning support
for all non-Framework variations of the SDK to .NET Standard 2.0.

Depending on your environment and code base, to take advantage of version 3.5 features, you might
need to perform certain migration work. For details about version 3.5 and possible migration work, see
Migrating to Version 3.5 of the AWS SDK for .NET (p. 64).

How to Use This Guide
The AWS SDK for .NET Developer Guide describes how to implement applications for AWS using the AWS
SDK for .NET, and includes the following tasks and resources.

Get started quickly with the AWS SDK for .NET (p. 5)

For someone who is new to .NET development on AWS, basic tutorials that show you a few common
scenarios, as well as a minimal setup to support them.

Setting up the AWS SDK for .NET (p. 15)

How to install and configure the AWS SDK for .NET. If you have not used the AWS SDK for .NET
before or are having trouble with its configuration, start here.

Programming with the AWS SDK for .NET (p. 21)

The basics of how to implement applications with the AWS SDK for .NET that apply to all AWS
services. This section also includes information about how to migrate code to the latest version of
the AWS SDK for .NET, and describes the differences between the earlier version and this one.

Code Examples (p. 66)

A set of tutorials, walkthroughs, and examples showing how to use the AWS SDK for .NET to create
applications for particular AWS services. You can browse the AWS SDK for .NET examples in the AWS
Code Sample Catalog.

2

https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/setup.html
https://docs.aws.amazon.com/vsts/latest/userguide/
https://docs.aws.amazon.com/vsts/latest/userguide/
https://docs.microsoft.com/en-us/dotnet/standard/net-standard
https://docs.aws.amazon.com/code-samples/latest/catalog/code-catalog-dotnet.html
https://docs.aws.amazon.com/code-samples/latest/catalog/code-catalog-dotnet.html

AWS SDK for .NET (version 3) Developer Guide
Supported Services and Revision History

The AWS SDK for .NET API Reference provides a detailed description of each namespace and class.
Additional Resources (p. 3)

More resources outside of this guide that provide valuable information about AWS and the AWS SDK
for .NET. If you are unfamiliar with AWS services, see the Overview of Amazon Web Services.

Supported Services and Revision History
The AWS SDK for .NET supports most AWS infrastructure products, and more services are added
frequently. For a list of the AWS services supported by the SDK, see the SDK README file.

To see what changed in a given release, see the SDK change log.

Additional resources
Supported services and revision history

The AWS SDK for .NET supports most AWS infrastructure products, and more services are added
frequently. For a list of the AWS services supported by the SDK, see the SDK README file.

To see what changed in a given release, see the SDK change log.

Home page for the AWS SDK for .NET

For more information about the AWS SDK for .NET, see the home page for the SDK at https://
aws.amazon.com/sdk-for-net/.

SDK reference documentation

The SDK reference documentation gives you the ability to browse and search across all code included
with the SDK. It provides thorough documentation and usage examples. For more information, see the
AWS SDK for .NET API Reference.

AWS forums

Visit the AWS forums to ask questions or provide feedback about AWS. Each documentation page has a
Go to the forums button at the top of the page that takes you to the associated forum. AWS engineers
monitor the forums and respond to questions, feedback, and issues. You can also subscribe to RSS feeds
for any of the forums.

AWS Toolkit for Visual Studio

If you use the Microsoft Visual Studio IDE, you should check out the AWS Toolkit for Visual Studio User
Guide.

Helpful libraries, extensions and tools

Visit the aws/dotnet and aws/aws-sdk-net repositories on the GitHub website for links to libraries, tools,
and resources you can use to help build .NET applications and services on AWS.

Here are some highlights from the repo:

• AWS .NET Configuration Extension for Systems Manager
• AWS Extensions .NET Core Setup
• AWS Logging .NET

3

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/whitepapers/latest/aws-overview/introduction.html
https://github.com/aws/aws-sdk-net/blob/master/README.md
https://github.com/aws/aws-sdk-net/blob/master/SDK.CHANGELOG.md
https://github.com/aws/aws-sdk-net/blob/master/README.md
https://github.com/aws/aws-sdk-net/blob/master/SDK.CHANGELOG.md
https://aws.amazon.com/sdk-for-net/
https://aws.amazon.com/sdk-for-net/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://github.com/aws/dotnet
https://github.com/aws/aws-sdk-net
https://github.com/aws/aws-dotnet-extensions-configuration
https://github.com/aws/aws-sdk-net/tree/master/extensions/src/AWSSDK.Extensions.NETCore.Setup
https://github.com/aws/aws-logging-dotnet

AWS SDK for .NET (version 3) Developer Guide
Additional resources

• Amazon Cognito Authentication Extension Library
• AWS X-Ray SDK for .NET

4

https://github.com/aws/aws-sdk-net-extensions-cognito
https://github.com/aws/aws-xray-sdk-dotnet

AWS SDK for .NET (version 3) Developer Guide
Simple cross-platform app

Get started quickly with the AWS
SDK for .NET

(Go to the latest developer guide.)

This section includes basic setup steps and tutorials for developers who are new to the AWS SDK
for .NET.

For more advanced information, see Setting up (p. 15) and Code examples for the AWS SDK
for .NET (p. 66) instead.

Topics

• Simple cross-platform application using the AWS SDK for .NET (p. 5)

• Simple Windows-based application using the AWS SDK for .NET (p. 10)

• Next steps (p. 14)

Simple cross-platform application using the AWS
SDK for .NET

(Go to the latest developer guide.)

This tutorial uses the AWS SDK for .NET and .NET Core for cross-platform development. The tutorial
shows you how to use the SDK to list the Amazon S3 buckets that you own and, optionally, create a
bucket.

Steps
• Setup for this tutorial (p. 5)

• Create the project (p. 7)

• Create the code (p. 7)

• Run the application (p. 9)

• Clean up (p. 9)

Setup for this tutorial
This section provides the minimal setup needed to complete this tutorial. You shouldn't consider this to
be a full setup. For that, see Setting up the AWS SDK for .NET (p. 15).

Note
If you've already completed any of the following steps through other tutorials or existing
configuration, skip those steps.

5

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/quick-start.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/quick-start-s3-1-cross.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/

AWS SDK for .NET (version 3) Developer Guide
Setup for this tutorial

Create an AWS account

To create an AWS account, see How do I create and activate a new Amazon Web Services account?

Create AWS credentials and a profile

To perform these tutorials, you need to create an AWS Identity and Access Management (IAM) user and
obtain credentials for that user. After you have those credentials, you make them available to the SDK in
your development environment. Here's how.

To create and use credentials

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users, and then choose Add user.

3. Provide a user name. For this tutorial, we'll use Dotnet-Tutorial-User.

4. Under Select AWS access type, select Programmatic access, and then choose Next: Permissions.

5. Choose Attach existing policies directly.

6. In Search, enter s3, and then select AmazonS3FullAccess.

7. Choose Next: Tags, Next: Review, and Create user.

8. Record the credentials for Dotnet-Tutorial-User. You can do so by downloading the .csv file or by
copying and pasting the Access key ID and Secret access key.

Warning
Use appropriate security measures to keep these credentials safe and rotated.

9. Create or open the shared AWS credentials file. This file is ~/.aws/credentials on Linux and
macOS systems, and %USERPROFILE%\.aws\credentials on Windows.

10. Add the following text to the shared AWS credentials file, but replace the example ID and example
key with the ones you obtained earlier. Remember to save the file.

[dotnet-tutorials]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

The preceding procedure is the simplest of several possibilities for authentication and authorization. For
complete information, see Configuring AWS Credentials (p. 25).

Install other tools

You'll perform this tutorial using cross-platform tools such as the .NET command line interface
(CLI). For other ways to configure your development environment, see Install and configure your
toolchain (p. 15).

Required for cross-platform .NET development on Windows, Linux, or macOS:

• Microsoft .NET Core SDK, version 2.1, 3.1, or later, which includes the .NET command line interface
(CLI) (dotnet) and the .NET Core runtime.

• A code editor or integrated development environment (IDE) that is appropriate for your operating
system and requirements. This is typically one that provides some support for .NET Core.

Examples include Microsoft Visual Studio Code (VS Code), JetBrains Rider, and Microsoft Visual Studio.

6

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/
https://docs.microsoft.com/en-us/dotnet/core/
https://code.visualstudio.com/
https://www.jetbrains.com/rider/
https://visualstudio.microsoft.com/vs/

AWS SDK for .NET (version 3) Developer Guide
Create the project

Create the project
1. Open the command prompt or terminal. Find or create an operating system folder under which you

can create a .NET project.

2. In that folder, run the following command to create the .NET project.

dotnet new console --name S3CreateAndList

3. Go to the newly created S3CreateAndList folder and run the following command.

dotnet add package AWSSDK.S3

The preceding command installs the AWSSDK.S3 NuGet package from the NuGet package manager.
Because we know exactly what NuGet packages we need for this tutorial, we can perform this step
now. It's also common that the required packages become known during development. When this
happens, a similar command can be run at that time.

4. Add the following temporary environment variables to the environment.

Linux or macOS

AWS_PROFILE='dotnet-tutorials'
AWS_REGION='us-west-2'

Windows

set AWS_PROFILE=dotnet-tutorials
set AWS_REGION=us-west-2

Create the code
1. In the S3CreateAndList folder, find and open Program.cs in your code editor.

2. Replace the contents with the following code and save the file.

using System;
using System.Threading.Tasks;

// To interact with Amazon S3.
using Amazon.S3;
using Amazon.S3.Model;

namespace S3CreateAndList
{
 class Program
 {
 // Main method
 static async Task Main(string[] args)
 {
 // Before running this app:
 // - Credentials must be specified in an AWS profile. If you use a profile other
 than
 // the [default] profile, also set the AWS_PROFILE environment variable.
 // - An AWS Region must be specified either in the [default] profile
 // or by setting the AWS_REGION environment variable.

 // Create an S3 client object.

7

https://www.nuget.org/profiles/awsdotnet

AWS SDK for .NET (version 3) Developer Guide
Create the code

 var s3Client = new AmazonS3Client();

 // Parse the command line arguments for the bucket name.
 if(GetBucketName(args, out String bucketName))
 {
 // If a bucket name was supplied, create the bucket.
 // Call the API method directly
 try
 {
 Console.WriteLine($"\nCreating bucket {bucketName}...");
 var createResponse = await s3Client.PutBucketAsync(bucketName);
 Console.WriteLine($"Result: {createResponse.HttpStatusCode.ToString()}");
 }
 catch (Exception e)
 {
 Console.WriteLine("Caught exception when creating a bucket:");
 Console.WriteLine(e.Message);
 }
 }

 // List the buckets owned by the user.
 // Call a class method that calls the API method.
 Console.WriteLine("\nGetting a list of your buckets...");
 var listResponse = await MyListBucketsAsync(s3Client);
 Console.WriteLine($"Number of buckets: {listResponse.Buckets.Count}");
 foreach(S3Bucket b in listResponse.Buckets)
 {
 Console.WriteLine(b.BucketName);
 }
 }

 //
 // Method to parse the command line.
 private static Boolean GetBucketName(string[] args, out String bucketName)
 {
 Boolean retval = false;
 bucketName = String.Empty;
 if (args.Length == 0)
 {
 Console.WriteLine("\nNo arguments specified. Will simply list your Amazon S3
 buckets." +
 "\nIf you wish to create a bucket, supply a valid, globally unique bucket
 name.");
 bucketName = String.Empty;
 retval = false;
 }
 else if (args.Length == 1)
 {
 bucketName = args[0];
 retval = true;
 }
 else
 {
 Console.WriteLine("\nToo many arguments specified." +
 "\n\ndotnet_tutorials - A utility to list your Amazon S3 buckets and
 optionally create a new one." +
 "\n\nUsage: S3CreateAndList [bucket_name]" +
 "\n - bucket_name: A valid, globally unique bucket name." +
 "\n - If bucket_name isn't supplied, this utility simply lists your
 buckets.");
 Environment.Exit(1);
 }
 return retval;
 }

8

AWS SDK for .NET (version 3) Developer Guide
Run the application

 //
 // Async method to get a list of Amazon S3 buckets.
 private static async Task<ListBucketsResponse> MyListBucketsAsync(IAmazonS3
 s3Client)
 {
 return await s3Client.ListBucketsAsync();
 }

 }
}

Run the application
1. Run the following command.

dotnet run

2. Examine the output to see the number of Amazon S3 buckets that you own, if any, and their names.

3. Choose a name for a new Amazon S3 bucket. Use "dotnet-quickstart-s3-1-cross-" as a base and add
something unique to it, such as a GUID or your name. Be sure to follow the rules for bucket names,
as described in Rules for bucket naming in the Amazon Simple Storage Service Developer Guide.

4. Run the following command, replacing BUCKET-NAME with the name of the bucket that you chose.

dotnet run BUCKET-NAME

5. Examine the output to see the new bucket that was created.

Clean up
While performing this tutorial, you created a few resources that you can choose to clean up at this time.

• If you don't want to keep the bucket that the application created in an earlier step, delete it by using
the Amazon S3 console at https://console.aws.amazon.com/s3/.

• If you don't want to keep the user you created during tutorial setup earlier in this topic, delete it by
using the IAM console at https://console.aws.amazon.com/iam/home#/users.

If you do choose to delete the user, you should also remove the dotnet-tutorials profile that you
created in the shared AWS credentials file. You created this profile during tutorial setup earlier in this
topic.

• If you don't want to keep your .NET project, remove the S3CreateAndList folder from your
development environment.

Where to go next
Go back to the quick-start menu (p. 5) or go straight to the end of this quick start (p. 14).

9

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://docs.aws.amazon.com/AmazonS3/latest/dev/
https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home#/users

AWS SDK for .NET (version 3) Developer Guide
Simple Windows-based app

Simple Windows-based application using the AWS
SDK for .NET

(Go to the latest developer guide.)

This tutorial uses the AWS SDK for .NET on Windows with Visual Studio and .NET Core. The tutorial
shows you how to use the SDK to list the Amazon S3 buckets that you own and optionally create a
bucket.

Steps
• Setup for this tutorial (p. 10)

• Create the project (p. 11)

• Create the code (p. 12)

• Run the application (p. 13)

• Clean up (p. 14)

Setup for this tutorial
This section provides the minimal setup needed to complete this tutorial. You shouldn't consider this to
be a full setup. For that, see Setting up the AWS SDK for .NET (p. 15).

Note
If you've already completed any of the following steps through other tutorials or existing
configuration, skip those steps.

Create an AWS account

To create an AWS account, see How do I create and activate a new Amazon Web Services account?

Create AWS credentials and a profile

To perform these tutorials, you need to create an AWS Identity and Access Management (IAM) user and
obtain credentials for that user. After you have those credentials, you make them available to the SDK in
your development environment. Here's how.

To create and use credentials

1. Sign in to the AWS Management Console and open the IAM console at https://
console.aws.amazon.com/iam/.

2. Choose Users, and then choose Add user.

3. Provide a user name. For this tutorial, we'll use Dotnet-Tutorial-User.

4. Under Select AWS access type, select Programmatic access, and then choose Next: Permissions.

5. Choose Attach existing policies directly.

6. In Search, enter s3, and then select AmazonS3FullAccess.

7. Choose Next: Tags, Next: Review, and Create user.

8. Record the credentials for Dotnet-Tutorial-User. You can do so by downloading the .csv file or by
copying and pasting the Access key ID and Secret access key.

10

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/quick-start-s3-1-winvs.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/
https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account
https://console.aws.amazon.com/iam/
https://console.aws.amazon.com/iam/

AWS SDK for .NET (version 3) Developer Guide
Create the project

Warning
Use appropriate security measures to keep these credentials safe and rotated.

9. Create or open the shared AWS credentials file. This file is ~/.aws/credentials on Linux and
macOS systems, and %USERPROFILE%\.aws\credentials on Windows.

10. Add the following text to the shared AWS credentials file, but replace the example ID and example
key with the ones you obtained earlier. Remember to save the file.

[dotnet-tutorials]
aws_access_key_id = AKIAIOSFODNN7EXAMPLE
aws_secret_access_key = wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY

The preceding procedure is the simplest of several possibilities for authentication and authorization. For
complete information, see Configuring AWS Credentials (p. 25).

Install other tools

You'll perform this tutorial on Windows using Visual Studio and .NET Core. For other ways to configure
your development environment, see Install and configure your toolchain (p. 15).

Required for development on Windows with Visual Studio and .NET Core:

• Microsoft Visual Studio

• Microsoft .NET Core 2.1, 3.1 or later

This is typically included by default when installing a recent version of Visual Studio.

Create the project
1. Open Visual Studio and create a new project that uses the C# version of the Console Application

template ("...for creating a command-line application that can run on .NET Core..."). Name the
project S3CreateAndList.

2. With the newly created project loaded, choose Tools, NuGet Package Manager, Manage NuGet
Packages for Solution.

3. Browse for the AWSSDK.S3 NuGet package and install it into the project.

This process installs the AWSSDK.S3 NuGet package from the NuGet package manager. Because we
know exactly what NuGet packages we need for this tutorial, we can perform this step now. It's also
common that the required packages become known during development. When this happens, follow
a similar process to install them at that time.

4. If you intend to run the application from the command prompt, open a command prompt now
and navigate to the folder that will contain the build output. This is typically something like
S3CreateAndList\S3CreateAndList\bin\Debug\netcoreapp3.1, but will depend on our
environment.

5. Add the following temporary environment variables to the environment.

In the command prompt, use the following.

set AWS_PROFILE=dotnet-tutorials
set AWS_REGION=us-west-2

11

https://visualstudio.microsoft.com/vs/
https://www.nuget.org/profiles/awsdotnet

AWS SDK for .NET (version 3) Developer Guide
Create the code

Or, if you intend to run the application in the IDE, choose Project, S3CreateAndList Properties,
Debug and set them there.

Create the code
1. In the S3CreateAndList project, find and open Program.cs in the IDE.

2. Replace the contents with the following code and save the file.

using System;
using System.Threading.Tasks;

// To interact with Amazon S3.
using Amazon.S3;
using Amazon.S3.Model;

namespace S3CreateAndList
{
 class Program
 {
 // Main method
 static async Task Main(string[] args)
 {
 // Before running this app:
 // - Credentials must be specified in an AWS profile. If you use a profile other
 than
 // the [default] profile, also set the AWS_PROFILE environment variable.
 // - An AWS Region must be specified either in the [default] profile
 // or by setting the AWS_REGION environment variable.

 // Create an S3 client object.
 var s3Client = new AmazonS3Client();

 // Parse the command line arguments for the bucket name.
 if(GetBucketName(args, out String bucketName))
 {
 // If a bucket name was supplied, create the bucket.
 // Call the API method directly
 try
 {
 Console.WriteLine($"\nCreating bucket {bucketName}...");
 var createResponse = await s3Client.PutBucketAsync(bucketName);
 Console.WriteLine($"Result: {createResponse.HttpStatusCode.ToString()}");
 }
 catch (Exception e)
 {
 Console.WriteLine("Caught exception when creating a bucket:");
 Console.WriteLine(e.Message);
 }
 }

 // List the buckets owned by the user.
 // Call a class method that calls the API method.
 Console.WriteLine("\nGetting a list of your buckets...");
 var listResponse = await MyListBucketsAsync(s3Client);
 Console.WriteLine($"Number of buckets: {listResponse.Buckets.Count}");
 foreach(S3Bucket b in listResponse.Buckets)
 {
 Console.WriteLine(b.BucketName);
 }
 }

12

AWS SDK for .NET (version 3) Developer Guide
Run the application

 //
 // Method to parse the command line.
 private static Boolean GetBucketName(string[] args, out String bucketName)
 {
 Boolean retval = false;
 bucketName = String.Empty;
 if (args.Length == 0)
 {
 Console.WriteLine("\nNo arguments specified. Will simply list your Amazon S3
 buckets." +
 "\nIf you wish to create a bucket, supply a valid, globally unique bucket
 name.");
 bucketName = String.Empty;
 retval = false;
 }
 else if (args.Length == 1)
 {
 bucketName = args[0];
 retval = true;
 }
 else
 {
 Console.WriteLine("\nToo many arguments specified." +
 "\n\ndotnet_tutorials - A utility to list your Amazon S3 buckets and
 optionally create a new one." +
 "\n\nUsage: S3CreateAndList [bucket_name]" +
 "\n - bucket_name: A valid, globally unique bucket name." +
 "\n - If bucket_name isn't supplied, this utility simply lists your
 buckets.");
 Environment.Exit(1);
 }
 return retval;
 }

 //
 // Async method to get a list of Amazon S3 buckets.
 private static async Task<ListBucketsResponse> MyListBucketsAsync(IAmazonS3
 s3Client)
 {
 return await s3Client.ListBucketsAsync();
 }

 }
}

3. Build the application.

Run the application
1. Run the application with no command line arguments. Do this either in the command prompt (if you

opened one earlier) or from the IDE.

2. Examine the output to see the number of Amazon S3 buckets that you own, if any, and their names.

3. Choose a name for a new Amazon S3 bucket. Use "dotnet-quickstart-s3-1-winvs-" as a base and add
something unique to it, such as a GUID or your name. Be sure to follow the rules for bucket names,
as described in Rules for Bucket Naming in the Amazon Simple Storage Service Developer Guide.

4. Run the application again, this time supplying the bucket name.

In the command line, replace BUCKET-NAME in the following command with the name of the bucket
that you chose.

13

https://docs.aws.amazon.com/AmazonS3/latest/dev/BucketRestrictions.html#bucketnamingrules
https://docs.aws.amazon.com/AmazonS3/latest/dev/

AWS SDK for .NET (version 3) Developer Guide
Clean up

S3CreateAndList BUCKET-NAME

Or, if you are running the application in the IDE, choose Project, S3CreateAndList Properties,
Debug and enter the bucket name there.

5. Examine the output to see the new bucket that was created.

Clean up
While performing this tutorial, you created a few resources that you can choose to clean up at this time.

• If you don't want to keep the bucket that the application created in an earlier step, delete it by using
the Amazon S3 console at https://console.aws.amazon.com/s3/.

• If you don't want to keep the user you created during tutorial setup earlier in this topic, delete it by
using the IAM console at https://console.aws.amazon.com/iam/home#/users.

If you do choose to delete the user, you should also remove the dotnet-tutorials profile that you
created in the shared AWS credentials file. You created this profile during tutorial setup earlier in this
topic.

• If you don't want to keep your .NET project, remove the S3CreateAndList folder from your
development environment.

Where to go next
Go back to the quick-start menu (p. 5) or go straight to the end of this quick start (p. 14).

Next steps
(Go to the latest developer guide.)

Be sure to clean up any leftover resources that you created while performing these tutorials. These might
be AWS resources or resources in your development environment such as files and folders.

Now that you've toured the AWS SDK for .NET, you might want to look at more advanced
setup (p. 15).

14

https://console.aws.amazon.com/s3/
https://console.aws.amazon.com/iam/home#/users
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/quick-start-next-steps.html

AWS SDK for .NET (version 3) Developer Guide
Create an AWS Account and Credentials

Setting up the AWS SDK for .NET
This topic shows you how to fully set up the AWS SDK for .NET.

If you're new to .NET development on AWS or at least new to the AWS SDK for .NET, check out the Quick
start (p. 5) topic first. It gives you an introduction to the SDK.

Topics
• Create an AWS Account and Credentials (p. 15)
• Install and configure your toolchain (p. 15)
• Install AWSSDK Assemblies (p. 16)
• Start a new project (p. 18)
• Platforms supported by the AWS SDK for .NET (p. 19)

Create an AWS Account and Credentials
To use the AWS SDK for .NET to access AWS services, you need an AWS account and AWS credentials. To
increase the security of your AWS account, we recommend that you use an IAM user to provide access
credentials instead of using your root account credentials.

• To create an AWS account, see How do I create and activate a new Amazon Web Services account?.
• Avoid using your root user account (the initial account you create) to access services. Instead, create an

administrative user account, as explained in Creating Your First IAM Admin User and Group. After you
create the administrative user account and record the login details, sign out of your root user account
and sign back in using the administrative account.

• To perform many of the tasks and examples in this guide, you will need access keys for a user account
so that you can access AWS services programmatically. To create access keys for an existing user, see
Managing Access Keys (Console). Alternatively, you can create access keys when you create a user.
When creating the user, choose an Access type of Programmatic access instead of (or in addition to)
AWS Management Console access.

• To close your AWS account, see Closing an Account.

For additional information about how to handle certificates and security, see IAM Best Practices and Use
Cases in the IAM User Guide

Install and configure your toolchain
To use the AWS SDK for .NET, you must have certain development tools installed.

Note
If you performed the quick start for the SDK (p. 5), you might already have some of these tools
installed. If you didn't do the quick start and are new to .NET development on AWS, consider
doing that first for an introduction to the AWS SDK for .NET.

Cross-platform development
The following are required for cross-platform .NET development on Windows, Linux, or macOS:

• Microsoft .NET Core SDK, version 2.1, 3.1, or later, which includes the .NET command line interface
(CLI) (dotnet) and the .NET Core runtime.

15

https://aws.amazon.com/premiumsupport/knowledge-center/create-and-activate-aws-account
https://docs.aws.amazon.com/IAM/latest/UserGuide/getting-started_create-admin-group.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html#Using_CreateAccessKey
https://docs.aws.amazon.com/awsaccountbilling/latest/aboutv2/close-account.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/IAMBestPracticesAndUseCases.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.microsoft.com/en-us/dotnet/core/

AWS SDK for .NET (version 3) Developer Guide
Windows with Visual Studio and .NET Core

• A code editor or integrated development environment (IDE) that is appropriate for your operating
system and requirements. This is typically one that provides some support for .NET Core.

Examples include Microsoft Visual Studio Code (VS Code), JetBrains Rider, and Microsoft Visual Studio.

• (Optional) An AWS toolkit if one is available for the editor you chose and your operating system.

Examples include the AWS Toolkit for Visual Studio Code, AWS Toolkit for JetBrains, and AWS Toolkit
for Visual Studio.

Windows with Visual Studio and .NET Core
The following are required for development on Windows with Visual Studio and .NET Core:

• Microsoft Visual Studio

• Microsoft .NET Core 2.1, 3.1 or later

This is typically included by default when installing a recent version of Visual Studio.

• (Optional) The AWS Toolkit for Visual Studio, which is a plugin that provides a user interface for
managing your AWS resources and local profiles from Visual Studio. To install the toolkit, see Setting
up the AWS Toolkit for Visual Studio.

For more information, see the AWS Toolkit for Visual Studio User Guide.

Install AWSSDK Assemblies
The AWSSDK assemblies are available from NuGet or through a Windows installation package. The AWS
SDK for .NET is also available from the aws/aws-sdk-net repository on GitHub. Finally, you can find
information about many AWS things related to .NET in the aws/dotnet repository on GitHub.

Installing AWSSDK packages with NuGet
NuGet is a package management system for the .NET platform. With NuGet, you can install the AWSSDK
packages, as well as several other extensions, to your project. For additional information, see the aws/
dotnet repository on the GitHub website.

NuGet always has the most recent versions of the AWSSDK packages, as well as previous versions. NuGet
is aware of dependencies between packages and installs all required packages automatically.

Warning
The list of NuGet packages might include one named simply "AWSSDK" (with no appended
identifier). Do NOT install this NuGet package; it is legacy and should not be used for new
projects.

Packages installed with NuGet are stored with your project instead of in a central location. This enables
you to install assembly versions specific to a given application without creating compatibility issues for
other applications. For more information about NuGet, see the NuGet documentation.

NuGet is installed automatically with Visual Studio 2010 or later. If you are using an earlier version of
Visual Studio, you can install NuGet from the Visual Studio Marketplace.

16

https://code.visualstudio.com/
https://www.jetbrains.com/rider/
https://visualstudio.microsoft.com/vs/
https://docs.aws.amazon.com/toolkit-for-vscode/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-jetbrains/latest/userguide/welcome.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/welcome.html
https://visualstudio.microsoft.com/vs/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/getting-set-up.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://www.nuget.org/profiles/awsdotnet
https://github.com/aws/aws-sdk-net
https://github.com/aws/dotnet
https://www.nuget.org/
https://www.nuget.org/profiles/awsdotnet
https://www.nuget.org/profiles/awsdotnet
https://github.com/aws/dotnet
https://github.com/aws/dotnet
https://docs.microsoft.com/en-us/nuget/
https://marketplace.visualstudio.com/items?itemName=NuGetTeam.NuGetPackageManager

AWS SDK for .NET (version 3) Developer Guide
Installing AWSSDK packages with NuGet

Using NuGet from the Command prompt or terminal
1. Go to the AWSSDK packages on NuGet and determine which packages you need in your project; for

example, AWSSDK.S3.

2. Copy the .NET CLI command from that package's webpage, as shown in the following example.

dotnet add package AWSSDK.S3 --version 3.3.110.19

3. In your project's directory, run that .NET CLI command. NuGet also installs any dependencies, such as
AWSSDK.Core.

Note
If you want only the latest version of a NuGet package, you can exclude version information
from the command, as shown in the following example.
dotnet add package AWSSDK.S3

Using NuGet from Visual Studio Solution Explorer
1. In Solution Explorer, right-click your project, and then choose Manage NuGet Packages from the

context menu.

2. In the left pane of the NuGet Package Manager, choose Browse. You can then use the search box to
search for the package you want to install.

The following figure shows installation of the AWSSDK.S3 package. NuGet also installs any
dependencies, such as AWSSDK.Core.

Using NuGet from the Package Manager Console

In Visual Studio, choose Tools, NuGet Package Manager, Package Manager Console.

You can install the AWSSDK packages you want from the Package Manager Console by using the
Install-Package command. For example, to install AWSSDK.S3, use the following command.

17

https://www.nuget.org/profiles/awsdotnet
https://www.nuget.org/packages/AWSSDK.S3/
http://www.nuget.org/packages/AWSSDK.Core
http://www.nuget.org/packages/AWSSDK.Core
https://www.nuget.org/packages/AWSSDK.S3

AWS SDK for .NET (version 3) Developer Guide
Download and extract ZIP files

PM> Install-Package AWSSDK.S3

NuGet also installs any dependencies, such as AWSSDK.Core.

If you need to install an earlier version of a package, use the -Version option and specify the package
version you want, as shown in the following example.

PM> Install-Package AWSSDK.S3 -Version 3.3.106.6

For more information about Package Manager Console commands, see the PowerShell reference in
Microsoft's NuGet documentation.

Download and extract ZIP files
The preferred method of installing the AWS SDK for .NET is to install AWSSDK NuGet packages as
needed. This is described in the previous sections of this topic (p. 16).

If you can't or aren't allowed to download and install NuGet packages on a per-project basis, you can
download a ZIP file that contains the AWSSDK assemblies. If this is the case for you, do the following.

1. Download one of the following ZIP files:

• aws-sdk-netstandard2.0.zip
• aws-sdk-net45.zip
• aws-sdk-net35.zip

2. Extract the assemblies to a folder on your file system. Make note of this folder.
3. When you configure your project, copy the required assemblies from this folder into your project

area. Then add references in your project to the assemblies that you copied.

Installing the AWS SDK for .NET on Windows
The preferred method of installing the AWS SDK for .NET on Windows is to install AWSSDK NuGet
packages as needed. This is described in the previous sections of this topic (p. 16).

You use NuGet to install individual AWSSDK service assemblies and extensions for the SDK.

Note
If you are required to install an MSI instead of using NuGet, you can find the legacy MSI
at https://sdk-for-net.amazonwebservices.com/latest/AWSToolsAndSDKForNet.msi. By
default, the AWS SDK for .NET is installed in the Program Files directory, which requires
administrator privileges. To install the SDK as a non-administrator, choose a different
installation directory.

Start a new project
There are several techniques you can use to start a new project to access AWS services. The following are
some of those techniques:

• If you're new to .NET development on AWS or at least new to the AWS SDK for .NET, you can see
complete examples in Quick start (p. 5). It gives you an introduction to the SDK.

• You can start a basic project by using the .NET CLI. To see an example of this, open a command prompt
or terminal, create a folder or directory and navigate to it, and then enter the following.

18

https://www.nuget.org/packages/AWSSDK.Core
https://docs.microsoft.com/en-us/nuget/reference/powershell-reference
https://docs.microsoft.com/en-us/nuget/
https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-netstandard2.0.zip
https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-net45.zip
https://sdk-for-net.amazonwebservices.com/latest/v3/aws-sdk-net35.zip
https://sdk-for-net.amazonwebservices.com/latest/AWSToolsAndSDKForNet.msi

AWS SDK for .NET (version 3) Developer Guide
Supported platforms

dotnet new console --name [SOME-NAME]

An empty project is created to which you can add code and NuGet packages. For more information, see
the .NET Core guide.

To see a list of project templates, use the following: dotnet new --list

• The AWS Toolkit for Visual Studio includes C# project templates for a variety of AWS services. After
you install the toolkit in Visual Studio, you can access the templates while creating a new project.

To see this, go to Working with AWS services in the AWS Toolkit for Visual Studio User Guide. Several
of the examples in that section create new projects.

• If you develop with Visual Studio on Windows but without the AWS Toolkit for Visual Studio, use your
typical techniques for creating a new project.

To see an example, open Visual Studio and choose File, New, Project. Search for ".net core" and choose
the C# version of the Console App (.NET Core) or WPF App (.NET Core) template. An empty project is
created to which you can add code and NuGet packages.

After you create your project, perform additional appropriate tasks for setting up your project (p. 21).

You can find some examples of how to work with AWS services in Code examples (p. 66).

Platforms supported by the AWS SDK for .NET
The AWS SDK for .NET provides distinct groups of assemblies for developers to target different
platforms. However, not all SDK functionality is the same on each of these platforms. This topic
describes the differences in support for each platform.

.NET Core
The AWS SDK for .NET supports applications written for .NET Core. AWS service clients only support
asynchronous calling patterns in .NET core. This also affects many of the high level abstractions built on
top of service clients like Amazon S3’s TransferUtility which will only support asynchronous calls in
the .NET Core environment. For details, see Configuring the AWS SDK for .NET with .NET Core (p. 22).

.NET Framework 4.5
This version of the AWS SDK for .NET is compiled against .NET Framework 4.5 and runs in the .NET 4.0
runtime. AWS service clients support synchronous and asynchronous calling patterns and use the async
and await keywords introduced in C# 5.0.

.NET Framework 3.5
This version of the AWS SDK for .NET is compiled against .NET Framework 3.5, and runs in either
the .NET 2.0 or .NET 4.0 runtime. AWS service clients support synchronous and asynchronous calling
patterns and use the older Begin and End pattern.

Note
The AWS SDK for .NET is not Federal Information Processing Standard (FIPS) compliant
when used by applications built against version 2.0 of the CLR. For details on how you can

19

https://docs.microsoft.com/en-us/dotnet/core/
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/setup.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/working-with-services.html
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://docs.microsoft.com/en-us/previous-versions/hh191443(v=vs.140)
https://docs.microsoft.com/en-us/previous-versions/hh191443(v=vs.140)
https://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29#Versions

AWS SDK for .NET (version 3) Developer Guide
Portable Class Library

substitute a FIPS compliant implementation in that environment, refer to CryptoConfig on
the Microsoft blog and the CLR Security team's HMACSHA256 class (HMACSHA256Cng) in
Security.Cryptography.dll.

Portable Class Library
The AWS SDK for .NET also contains a Portable Class Library implementation. The Portable Class Library
implementation can target multiple platforms, including Universal Windows Platform (UWP), and
Xamarin on iOS and Android. See the Mobile SDK for .NET and Xamarin for more details. AWS service
clients only support asynchronous calling patterns.

Unity support
The AWS SDK for .NET supports generating Assemblies for Unity. More information can be found in the
Unity README.

Note
The reference given above is for legacy Unity support. Starting with version 3.5 of the AWS SDK
for .NET, projects using Unity 2018.1 or later should target the .NET Standard 2.0 release of
the SDK. You can find additional information in the latest developer guide: Unity support and
Migrating your Unity application.

More info
• Migrating to Version 3 of the AWS SDK for .NET (p. 63)
• Migrating to Version 3.5 of the AWS SDK for .NET (p. 64)

20

https://docs.microsoft.com/en-us/archive/blogs/shawnfa/cryptoconfig
https://github.com/MicrosoftArchive/clrsecurity/
https://github.com/aws/aws-sdk-unity-net
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/unity-special.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-v35.html#net-dg-v35-changes-unity

AWS SDK for .NET (version 3) Developer Guide
Configuring your app

Programming with the AWS SDK
for .NET

This section provides general information about developing software with the AWS SDK for .NET.

For information about developing software for specific AWS services, see Code Examples (p. 66).

Topics

• Configuring Your AWS SDK for .NET Application (p. 21)

• AWS asynchronous APIs for .NET (p. 52)

• Retries and timeouts (p. 60)

• Paginators (p. 62)

• Migrating to Version 3 of the AWS SDK for .NET (p. 63)

• Migrating to Version 3.5 of the AWS SDK for .NET (p. 64)

• Migrating from .NET Standard 1.3 (p. 64)

Configuring Your AWS SDK for .NET Application
You can configure your AWS SDK for .NET application to specify logging options, endpoints, or signature
version 4 support with Amazon S3.

The recommended way to configure an application is to use the <aws> element in the project’s
App.config or Web.config file. The following example specifies the AWSRegion (p. 36) and
AWSLogging (p. 35) parameters.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws region="us-west-2">
 <logging logTo="Log4Net"/>
 </aws>
</configuration>

Another way to configure an application is to edit the <appSettings> element in the project’s
App.config or Web.config file. The following example specifies the AWSRegion (p. 36) and
AWSLogging (p. 35) parameters.

<configuration>
 <appSettings>
 <add key="AWSRegion" value="us-west-2"/>
 <add key="AWSLogging" value="log4net"/>
 </appSettings>
</configuration>

21

AWS SDK for .NET (version 3) Developer Guide
Configuring the AWS SDK for .NET with .NET Core

These settings take effect only after the application has been rebuilt.

Although you can configure an AWS SDK for .NET application programmatically by setting property
values in the AWSConfigs class, we recommend you use the aws element instead. The following example
specifies the AWSRegion (p. 36) and AWSLogging (p. 35) parameters:

AWSConfigs.AWSRegion = "us-west-2";
AWSConfigs.Logging = LoggingOptions.Log4Net;

Programmatically defined parameters override any values that were specified in an App.config or
Web.config file. Some programmatically defined parameter values take effect immediately; others take
effect only after you create a new client object.

Topics

• Configuring the AWS SDK for .NET with .NET Core (p. 22)

• Configuring AWS Credentials (p. 25)

• AWS Region Selection (p. 33)

• Configuring Other Application Parameters (p. 35)

• Configuration Files Reference for AWS SDK for .NET (p. 40)

• Enabling SDK Metrics (p. 48)

Configuring the AWS SDK for .NET with .NET Core
One of the biggest changes in .NET Core is the removal of ConfigurationManager and the standard
app.config and web.config files that were used with .NET Framework and ASP.NET applications.

Configuration in .NET Core is based on key-value pairs established by configuration providers.
Configuration providers read configuration data into key-value pairs from a variety of configuration
sources, including command-line arguments, directory files, environment variables, and settings files.

Note
For further information, see Configuration in ASP.NET Core.

To make it easy to use the AWS SDK for .NET with .NET Core, you can use the
AWSSDK.Extensions.NETCore.Setup NuGet package. Like many .NET Core libraries, it adds extension
methods to the IConfiguration interface to make getting the AWS configuration seamless.

Using AWSSDK.Extensions.NETCore.Setup
Suppose that you create an ASP.NET Core Model-View-Controller (MVC) application, which can be
accomplished with the ASP.NET Core Web Application template in Visual Studio or by running
dotnet new mvc ... in the .NET Core CLI. When you create such an application, the constructor for
Startup.cs handles configuration by reading in various input sources from configuration providers
such as appsettings.json.

public Startup(IConfiguration configuration)
{
 Configuration = configuration;
}

To use the Configuration object to get the AWS options, first add the
AWSSDK.Extensions.NETCore.Setup NuGet package. Then, add your options to the configuration
file as described next.

22

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration
https://www.nuget.org/packages/AWSSDK.Extensions.NETCore.Setup/

AWS SDK for .NET (version 3) Developer Guide
Configuring the AWS SDK for .NET with .NET Core

Notice one of the files added to the ConfigurationBuilder is called $"appsettings.
{env.EnvironmentName}.json". If you look at the Debug tab in your project's properties, you
can see this file is set to Development. This works great for local testing because you can put your
configuration in the appsettings.Development.json file, which is read-only during local testing.
When you deploy an Amazon EC2 instance that has EnvironmentName set to Production, this file
is ignored and the AWS SDK for .NET falls back to the IAM credentials and Region configured for the
Amazon EC2 instance.

The following configuration settings show examples of the values you can add in the
appsettings.Development.json file in your project to supply AWS settings.

{
 "AWS": {
 "Profile": "local-test-profile",
 "Region": "us-west-2"
 },
 "SupportEmail": "TechSupport@example.com"
}

To access a setting in a CSHTML file, use the Configuration directive.

@using Microsoft.Extensions.Configuration
@inject IConfiguration Configuration

<h1>Contact</h1>

<p>
 Support: @Configuration["SupportEmail"]

</p>

To access the AWS options set in the file from code, call the GetAWSOptions extension method added
to IConfiguration.

To construct a service client from these options, call CreateServiceClient. The following example
shows how to create an Amazon S3 service client. (Be sure to add the AWSSDK.S3 NuGet package to your
project.)

var options = Configuration.GetAWSOptions();
IAmazonS3 client = options.CreateServiceClient<IAmazonS3>();

You can also create multiple service clients with incompatible settings by using multiple entries in the
appsettings.Development.json file, as shown in the following examples where the configuration
for service1 includes the us-west-2 Region and the configuration for service2 includes the special
endpoint URL.

{
 "service1": {
 "Profile": "default",
 "Region": "us-west-2"
 },
 "service2": {
 "Profile": "default",
 "ServiceURL": "URL"
 }
}

You can then get the options for a specific service by using the entry in the JSON file. For example, to get
the settings for service1 use the following.

23

https://www.nuget.org/packages/AWSSDK.S3

AWS SDK for .NET (version 3) Developer Guide
Configuring the AWS SDK for .NET with .NET Core

var options = Configuration.GetAWSOptions("service1");

Allowed values in appsettings file

The following app configuration values can be set in the appsettings.Development.json file. The
field names must use the casing shown. For details on these settings, see the AWS.Runtime.ClientConfig
class.

• Region

• Profile

• ProfilesLocation

• SignatureVersion

• RegionEndpoint

• UseHttp

• ServiceURL

• AuthenticationRegion

• AuthenticationServiceName

• MaxErrorRetry

• LogResponse

• BufferSize

• ProgressUpdateInterval

• ResignRetries

• AllowAutoRedirect

• LogMetrics

• DisableLogging

• UseDualstackEndpoint

ASP.NET Core dependency injection
The AWSSDK.Extensions.NETCore.Setup NuGet package also integrates with a new dependency injection
system in ASP.NET Core. The ConfigureServices method in your application's Startup class is
where the MVC services are added. If the application is using Entity Framework, this is also where that is
initialized.

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();
}

Note
Background on dependency injection in .NET Core is available on the .NET Core documentation
site.

The AWSSDK.Extensions.NETCore.Setup NuGet package adds new extension methods to
IServiceCollection that you can use to add AWS services to the dependency injection. The following
code shows you how to add the AWS options that are read from IConfiguration to add Amazon S3
and DynamoDB to the list of services. (Be sure to add the AWSSDK.S3 and AWSSDK.DynamoDBv2 NuGet
packages to your project.)

24

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/dependency-injection
https://www.nuget.org/packages/AWSSDK.S3
https://www.nuget.org/packages/AWSSDK.DynamoDBv2

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

public void ConfigureServices(IServiceCollection services)
{
 // Add framework services.
 services.AddMvc();

 services.AddDefaultAWSOptions(Configuration.GetAWSOptions());
 services.AddAWSService<IAmazonS3>();
 services.AddAWSService<IAmazonDynamoDB>();
}

Now, if your MVC controllers use either IAmazonS3 or IAmazonDynamoDB as parameters in their
constructors, the dependency injection system passes in those services.

public class HomeController : Controller
{
 IAmazonS3 S3Client { get; set; }

 public HomeController(IAmazonS3 s3Client)
 {
 this.S3Client = s3Client;
 }

 ...

}

Configuring AWS Credentials
You must manage your AWS credentials securely and avoid practices that can unintentionally expose
your credentials to the public. In this topic, we describe how you configure your application's AWS
credentials so that they remain secure.

• Don’t use your account’s root credentials to access your AWS resources. These credentials provide
unrestricted account access and are difficult to revoke.

• Don’t put literal access keys in your application, including the project’s App.config or Web.config
file. If you do, you create a risk of accidentally exposing your credentials if, for example, you upload the
project to a public repository.

Note
We assume you have created an AWS account and have access to your credentials. If you haven’t
yet, see Create an AWS Account and Credentials (p. 15).

The following are general guidelines for securely managing credentials:

• Create IAM users and use their IAM user credentials instead of using your AWS root user. IAM user
credentials are easier to revoke if they’re compromised. You can apply a policy to each IAM user that
restricts the user to a specific set of resources and actions.

• During application development, the preferred approach for managing credentials is to put a profile
for each set of IAM user credentials in the SDK Store. You can also use a plaintext credentials file to
store profiles that contain credentials. Then you can reference a specific profile programmatically
instead of storing the credentials in your project files. To limit the risk of unintentionally exposing
credentials, you should store the SDK Store or credentials file separately from your project files.

• Use IAM Roles for Tasks for Amazon Elastic Container Service (Amazon ECS) tasks.
• Use IAM roles for applications that are running on Amazon EC2 instances.
• Use temporary credentials or environment variables for applications that are available to users outside

your organization.

25

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

The following topics describe how to manage credentials for an AWS SDK for .NET application. For a
discussion of how to securely manage AWS credentials, see Best Practices for Managing AWS Access Keys.

Using the SDK Store
During development of your AWS SDK for .NET application, add a profile to the SDK Store for each set
of credentials you want to use in your application. This prevents the accidental exposure of your AWS
credentials. The SDK Store is located in the C:\Users\<username>\AppData\Local\AWSToolkit
folder in the RegisteredAccounts.json file. The SDK Store provides the following benefits:

• The SDK Store can contain multiple profiles from any number of accounts.
• The credentials in the SDK Store are encrypted, and the SDK Store resides in the user’s home directory.

This limits the risk of accidentally exposing your credentials.
• You reference the profile by name in your application and the associated credentials are referenced at

run time. Your source files never contain the credentials.
• If you include a profile named default, the AWS SDK for .NET uses that profile. This is also true if you

don’t provide another profile name, or if the specified name isn’t found.
• The SDK Store also provides credentials to AWS Tools for Windows PowerShell and the AWS Toolkit for

Visual Studio.

Note
SDK Store profiles are specific to a particular user on a particular host. They cannot be copied
to other hosts or other users. For this reason, you cannot use SDK Store profiles in production
applications. For more information, see Credential and Profile Resolution (p. 31).

You can manage the profiles in the SDK Store in several ways.

• Use the graphical user interface (GUI) in the AWS Toolkit for Visual Studio to manage profiles. For
more information about adding credentials to the SDK Store by using the GUI, see Providing AWS
Credentials in the AWS Toolkit for Visual Studio.

• You can manage your profiles from the command line by using the Set-AWSCredentials cmdlet in
AWS Tools for Windows PowerShell. For more information, see Using AWS Credentials.

• You can create and manage your profiles programmatically by using the
Amazon.Runtime.CredentialManagement.CredentialProfile class.

The following examples show how to create a basic profile and SAML profile and add them to the SDK
Store by using the RegisterProfile method.

Create a Profile and Save it to the .NET Credentials File

Create an Amazon.Runtime.CredentialManagement.CredentialProfileOptions
object and set its AccessKey and SecretKey properties. Create an
Amazon.Runtime.CredentialManagement.CredentialProfile object. Provide the name of the profile and
the CredentialProfileOptions object you created. Optionally, set the Region property for the
profile. Instantiate a NetSDKCredentialsFile object and call the RegisterProfile method to register the
profile.

var options = new CredentialProfileOptions
{
 AccessKey = "access_key",
 SecretKey = "secret_key"
};
var profile = new Amazon.Runtime.CredentialManagement.CredentialProfile("basic_profile",
 options);
profile.Region = RegionEndpoint.USWest1;
var netSDKFile = new NetSDKCredentialsFile();

26

https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/credentials.html
https://docs.aws.amazon.com/powershell/latest/userguide/specifying-your-aws-credentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MNetSDKCredentialsFileRegisterProfileCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MNetSDKCredentialsFileRegisterProfileCredentialProfile.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

netSDKFile.RegisterProfile(profile);

The RegisterProfile method is used to register a new profile. Your application typically calls this
method only once for each profile.

Create a SAMLEndpoint and an Associated Profile and Save it to the .NET
Credentials File

Create an Amazon.Runtime.CredentialManagement.SAMLEndpoint object. Provide the name and
endpoint URI parameters. Create an Amazon.Runtime.CredentialManagement.SAMLEndpointManager
object. Call the RegisterEndpoint method to register the endpoint. Create an
Amazon.Runtime.CredentialManagement.CredentialProfileOptions object and set its EndpointName
and RoleArn properties. Create an Amazon.Runtime.CredentialManagement.CredentialProfile object
and provide the name of the profile and the CredentialProfileOptions object you created.
Optionally, set the Region property for the profile. Instantiate a NetSDKCredentialsFile object and call
the RegisterProfile method to register the profile.

var endpoint = new SAMLEndpoint("endpoint1", new Uri("https://some_saml_endpoint"),
 SAMLAuthenticationType.Kerberos);
var endpointManager = new SAMLEndpointManager();
endpointManager.RegisterEndpoint(endpoint);
options = new CredentialProfileOptions
{
 EndpointName = "endpoint1",
 RoleArn = "arn:aws:iam::999999999999:role/some-role"
};
profile = new CredentialProfile("federated_profile", options);
netSDKFile = new NetSDKCredentialsFile();
netSDKFile.RegisterProfile(profile);

Using a Credentials File
You can also store profiles in your shared AWS credentials file. This file can be used by the other AWS
SDKs, the AWS CLI and AWS Tools for Windows PowerShell. To reduce the risk of accidentally exposing
credentials, store the credentials file separately from any project files, usually in the user’s home folder.
Be aware that the profiles in credentials files are stored in plaintext.

By default, this file is located in the .aws directory within your home directory and is named
credentials. For more information, see Where Are Configuration Settings Stored? in the AWS
Command Line Interface User Guide.

You can manage the profiles in the shared credentials file in two ways:

• You can use a text editor. The file is named credentials, and the default location is under your user’s
home folder. For example, if your user name is awsuser, the credentials file would be C:\users
\awsuser\.aws\credentials.

The following is an example of a profile in the credentials file.

[{profile_name}]
aws_access_key_id = {accessKey}
aws_secret_access_key = {secretKey}

For more information, see Best Practices for Managing AWS Access Keys.

Note
If you include a profile named default, the AWS SDK for .NET uses that profile by default if
it can’t find the specified profile.

27

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSAMLEndpoint.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSAMLEndpointManager.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MSAMLEndpointManagerRegisterEndpointSAMLEndpoint.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MNetSDKCredentialsFileRegisterProfileCredentialProfile.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-files.html#cli-configure-files-where
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/cli/latest/userguide/
https://docs.aws.amazon.com/general/latest/gr/aws-access-keys-best-practices.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

You can store the credentials file that contains the profiles in a location you choose, such as C:
\aws_service_credentials\credentials. You then explicitly specify the file path in the
AWSProfilesLocation attribute in your project’s App.config or Web.config file. For more
information, see Specifying a Profile (p. 32).

• You can programmatically manage the credentials file by using the classes in the
Amazon.Runtime.CredentialManagement namespace.

Setting an Alternative Credentials Profile

The AWS SDK for .NET uses the default profile by default, but you can change which profile is used from
the credentials file by using the AWS_Profile environment variable.

For example, on Linux, macOS, or Unix run the following command to change the profile to myProfile.

export AWS_PROFILE="myProfile"

On Windows use the following command.

set AWS_PROFILE=myProfile

Setting the AWS_PROFILE environment variable affects credential loading for all officially supported
AWS SDKs and Tools, including the AWS CLI and the AWS CLI for PowerShell.

Note
The environment variable takes precedence over the system property.

Create a Profile and Save it to the Shared Credentials File

Create an Amazon.Runtime.CredentialManagement.CredentialProfileOptions
object and set its AccessKey and SecretKey properties. Create an
Amazon.Runtime.CredentialManagement.CredentialProfile object. Provide the name of the profile and
the CredentialProfileOptions you created. Optionally, set the Region property for the profile.
Instantiate an Amazon.Runtime.CredentialManagement.SharedCredentialsFile object and call the
RegisterProfile method to register the profile.

options = new CredentialProfileOptions
{
 AccessKey = "access_key",
 SecretKey = "secret_key"
};
profile = new CredentialProfile("shared_profile", options);
profile.Region = RegionEndpoint.USWest1;
var sharedFile = new SharedCredentialsFile();
sharedFile.RegisterProfile(profile);

The RegisterProfile method is used to register a new profile. Your application will normally call this
method only once for each profile.

Create a Source Profile and an Associated Assume Role Profile and Save It to the
Credentials File

Create an Amazon.Runtime.CredentialManagement.CredentialProfileOptions object
for the source profile and set its AccessKey and SecretKey properties. Create

28

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/NRuntimeCredentialManagement.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MSharedCredentialsFileRegisterProfileCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

an Amazon.Runtime.CredentialManagement.CredentialProfile object. Provide
the name of the profile and the CredentialProfileOptions you created.
Instantiate an Amazon.Runtime.CredentialManagement.SharedCredentialsFile
object and call the RegisterProfile method to register the profile. Create another
Amazon.Runtime.CredentialManagement.CredentialProfileOptions object for the assumed
role profile and set the SourceProfile and RoleArn properties for the profile. Create an
Amazon.Runtime.CredentialManagement.CredentialProfile object for the assumed role. Provide the
name of the profile and the CredentialProfileOptions you created.

// Create the source profile and save it to the shared credentials file
var sourceProfileOptions = new CredentialProfileOptions
{
 AccessKey = "access_key",
 SecretKey = "secret_key"
};
var sourceProfile = new CredentialProfile("source_profile", sourceProfileOptions);
sharedFile = new SharedCredentialsFile();
sharedFile.RegisterProfile(sourceProfile);

// Create the assume role profile and save it to the shared credentials file
var assumeRoleProfileOptions = new CredentialProfileOptions
{
 SourceProfile = "source_profile",
 RoleArn = "arn:aws:iam::999999999999:role/some-role"
};
var assumeRoleProfile = new CredentialProfile("assume_role_profile",
 assumeRoleProfileOptions);
sharedFile.RegisterProfile(assumeRoleProfile);

Update an Existing Profile in the Shared Credentials File

Create an Amazon.Runtime.CredentialManagement.SharedCredentialsFile object. Set the Region,
AccessKey and SecretKey properties for the profile. Call the TryGetProfile method. If the profile
exists, use an Amazon.Runtime.CredentialManagement.SharedCredentialsFile instance to call the
RegisterProfile method to register the updated profile.

sharedFile = new SharedCredentialsFile();
CredentialProfile basicProfile;
if (sharedFile.TryGetProfile("basicProfile", out basicProfile))
{
 basicProfile.Region = RegionEndpoint.USEast1;
 basicProfile.Options.AccessKey = "different_access_key";
 basicProfile.Options.SecretKey = "different_secret_key";

 sharedFile.RegisterProfile(basicProfile);
}

Accessing Credentials and Profiles in an Application
You can easily locate credentials and profiles in the .NET credentials file or in the shared credentials
file by using the Amazon.Runtime.CredentialManagement.CredentialProfileStoreChain class. This is
the way the .NET SDK looks for credentials and profiles. The CredentialProfileStoreChain class
automatically checks in both credentials files.

You can get credentials or profiles by using the TryGetAWSCredentials or TryGetProfile methods. The
ProfilesLocation property determines the behavior of the CredentialsProfileChain, as follows:

1. If ProfilesLocation is non-null and non-empty, search the shared credentials file at the disk path in the
ProfilesLocation property.

29

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MNetSDKCredentialsFileRegisterProfileCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MSharedCredentialsFileTryGetProfileStringCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MNetSDKCredentialsFileRegisterProfileCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfileStoreChain.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MCredentialProfileStoreChainTryGetAWSCredentialsStringAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/MCredentialProfileStoreChainTryGetProfileStringCredentialProfile.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

2. If ProfilesLocation is null or empty and the platform supports the .NET credentials file, search
the .NET credentials file. If the profile is not found, search the shared credentials file in the default
location.

3. If ProfilesLocation is null or empty and the platform doesn’t support the .NET credentials file,
search the shared credentials file in the default location.

Get Credentials from the SDK Credentials File or the Shared Credentials File in
the Default Location.

Create a CredentialProfileStoreChain object and an Amazon.Runtime.AWSCredentials object. Call
the TryGetAWSCredentials method. Provide the profile name and the AWSCredentials object in
which to return the credentials.

var chain = new CredentialProfileStoreChain();
AWSCredentials awsCredentials;
if (chain.TryGetAWSCredentials("basic_profile", out awsCredentials))
{
 // use awsCredentials
}

Get a Profile from the SDK Credentials File or the Shared Credentials File in the
Default Location

Create a CredentialProfileStoreChain object and an
Amazon.Runtime.CredentialManagement.CredentialProfile object. Call the TryGetProfile method and
provide the profile name and CredentialProfile object in which to return the credentials.

var chain = new CredentialProfileStoreChain();
CredentialProfile basicProfile;
if (chain.TryGetProfile("basic_profile", out basicProfile))
{
 // Use basicProfile
}

Get AWSCredentials from a File in the Shared Credentials File Format at a File
Location

Create a CredentialProfileStoreChain object and provide the path to the credentials file. Create
an AWSCredentials object. Call the TryGetAWSCredentials method. Provide the profile name and
the AWSCredentials object in which to return the credentials.

var chain = new
 CredentialProfileStoreChain("c:\\Users\\sdkuser\\customCredentialsFile.ini");
AWSCredentials awsCredentials;
if (chain.TryGetAWSCredentials("basic_profile", out awsCredentials))
{
 // Use awsCredentials
}

How to Create an AmazonS3Client Using the SharedCredentialsFile Class

You can create an AmazonS3Client object that uses the credentials for a specific profile by using the
Amazon.Runtime.CredentialManagement.SharedCredentialsFile class. The AWS SDK for .NET loads the
credentials contained in the profile automatically. You might do this if you want to use a specific profile
for a given client that is different from the profile you specify in App.Config.

30

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAWSCredentials.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TCredentialProfile.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TSharedCredentialsFile.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

CredentialProfile basicProfile;
AWSCredentials awsCredentials;
var sharedFile = new SharedCredentialsFile();
if (sharedFile.TryGetProfile("basic_profile", out basicProfile) &&
 AWSCredentialsFactory.TryGetAWSCredentials(basicProfile, sharedFile, out
 awsCredentials))
{
 using (var client = new AmazonS3Client(awsCredentials, basicProfile.Region))
 {
 var response = client.ListBuckets();
 }
}

If you want to use the default profile, and have the AWS SDK for .NET automatically use your default
credentials to create the client object use the following code.

using (var client = new AmazonS3Client(RegionEndpoint.US-West2))
{
 var response = client.ListBuckets();
}

Credential and Profile Resolution
The AWS SDK for .NET searches for credentials in the following order and uses the first available set for
the current application.

1. The client configuration, or what is explicitly set on the AWS service client.

2. BasicAWSCredentials that are created from the AWSAccessKey and AWSSecretKey AppConfig
values, if they’re available.

3. A credentials profile with the name specified by a value in AWSConfigs.AWSProfileName (set
explicitly or in AppConfig).

4. The default credentials profile.

5. SessionAWSCredentials that are created from the AWS_ACCESS_KEY_ID,
AWS_SECRET_ACCESS_KEY, and AWS_SESSION_TOKEN environment variables, if they’re all non-
empty.

6. BasicAWSCredentials that are created from the AWS_ACCESS_KEY_ID and
AWS_SECRET_ACCESS_KEY environment variables, if they’re both non-empty.

7. IAM Roles for Tasks for Amazon ECS tasks.

8. EC2 instance metadata.

SDK Store profiles are specific to a particular user on a particular host. You can’t copy them to other
hosts or other users. For this reason, you can’t reuse SDK Store profiles that are on your development
machine on other hosts or developer machines. If your application is running on an Amazon EC2
instance, such as in a production environment, use an IAM role as described in Using IAM Roles for EC2
Instances with the AWS SDK for .NET (p. 136). Otherwise, such as in pre-release testing, store your
credentials in a credentials file that your web application has access to on the server.

Profile Resolution

With two different credentials file types, it’s important to understand how to configure
the AWS SDK for .NET and AWS Tools for Windows PowerShell to use them. The
AWSConfigs.AWSProfilesLocation (set explicitly or in AppConfig) controls how the AWS SDK
for .NET finds credential profiles. The -ProfileLocation command line argument controls how AWS
Tools for Windows PowerShell finds a profile. Here’s how the configuration works in both cases.

31

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-iam-roles.html

AWS SDK for .NET (version 3) Developer Guide
Configuring AWS Credentials

Profile Location Value Profile Resolution Behavior

null (not set) or empty First search the .NET credentials file for a profile
with the specified name. If the profile isn’t there,
search %HOME%\.aws\credentials. If the
profile isn’t there, search %HOME%\.aws\config.

The path to a file in the shared credentials file
format

Search only the specified file for a profile with the
specified name.

Specifying a Profile

Profiles are the preferred way to use credentials in an AWS SDK for .NET application. You don’t have
to specify where the profile is stored. You only reference the profile by name. The AWS SDK for .NET
retrieves the corresponding credentials, as described in the previous section.

The preferred way to specify a profile is to define an AWSProfileName value in the appSettings
section of your application’s App.config or Web.config file. The associated credentials are
incorporated into the application during the build process.

The following example specifies a profile named development.

<configuration>
 <appSettings>
 <add key="AWSProfileName" value="development"/>
 </appSettings>
</configuration>

This example assumes the profile exists in the SDK Store or in a credentials file in the default location.

If your profiles are stored in a credentials file in another location, specify the location by adding a
AWSProfilesLocation attribute value in the <appSettings> element. The following example
specifies C:\aws_service_credentials\credentials as the credentials file.

<configuration>
 <appSettings>
 <add key="AWSProfileName" value="development"/>
 <add key="AWSProfilesLocation" value="C:\aws_service_credentials\credentials"/>
 </appSettings>
</configuration>

The deprecated alternative way to specify a profile is shown below for completeness, but we do not
recommend it.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws profileName="development" profilesLocation="C:\aws_service_credentials\credentials"/
>
</configuration>

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection,AWSSDK.Core"/>
 </configSections>
 <aws profileName="development" profilesLocation="C:\aws_service_credentials\credentials"/
>

32

AWS SDK for .NET (version 3) Developer Guide
AWS Region Selection

</configuration>

Using Federated User Account Credentials

Applications that use the AWS SDK for .NET (AWSSDK.Core version 3.1.6.0 and later) can use federated
user accounts through Active Directory Federation Services (AD FS) to access AWS web services by using
Security Assertion Markup Language (SAML).

Federated access support means users can authenticate using your Active Directory. Temporary
credentials are granted to the user automatically. These temporary credentials, which are valid for
one hour, are used when your application invokes AWS web services. The SDK handles management of
the temporary credentials. For domain-joined user accounts, if your application makes a call but the
credentials have expired, the user is reauthenticated automatically and fresh credentials are granted. (For
non-domain-joined accounts, the user is prompted to enter credentials before reauthentication.)

To use this support in your .NET application, you must first set up the role profile by using a PowerShell
cmdlet. To learn how, see the AWS Tools for Windows PowerShell documentation.

After you setup the role profile, reference the profile in your application’s app.config/web.config file with
the AWSProfileName key in the same way you would with other credential profiles.

The SDK Security Token Service assembly (AWSSDK.SecurityToken.dll), which is loaded at runtime,
provides the SAML support to obtain AWS credentials. Be sure this assembly is available to your
application at run time.

Specifying Roles or Temporary Credentials

For applications that run on Amazon EC2 instances, the most secure way to manage credentials is to use
IAM roles, as described in Using IAM Roles for EC2 Instances with the AWS SDK for .NET (p. 136).

For application scenarios in which the software executable is available to users outside your organization,
we recommend you design the software to use temporary security credentials. In addition to providing
restricted access to AWS resources, these credentials have the benefit of expiring after a specified period
of time. For more information about temporary security credentials, see the following:

• Using Security Tokens to Grant Temporary Access to Your AWS Resources
• Authenticating Users of AWS Mobile Applications with a Token Vending Machine.

Although the title of the second article refers specifically to mobile applications, the article contains
information that is useful for any AWS application deployed outside of your organization.

Using Proxy Credentials

If your software communicates with AWS through a proxy, you can specify credentials for the proxy by
using the ProxyCredentials property on the AmazonS3Config class for the service. For example, for
Amazon S3 you could use code similar to the following, where {my-username} and {my-password} are
the proxy user name and password specified in a NetworkCredential object.

AmazonS3Config config = new AmazonS3Config();
config.ProxyCredentials = new NetworkCredential("my-username", "my-password");

Earlier versions of the SDK used ProxyUsername and ProxyPassword, but these properties are
deprecated.

AWS Region Selection
AWS Regions allow you to access AWS services that physically reside in a specific geographic region. This
can be useful for redundancy and to keep your data and applications running close to where you and

33

https://docs.aws.amazon.com/powershell/latest/userguide/saml-pst.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/TokenBasedAuth.html
https://aws.amazon.com/articles/4611615499399490
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Config.html
https://docs.microsoft.com/en-us/dotnet/api/system.net.networkcredential

AWS SDK for .NET (version 3) Developer Guide
AWS Region Selection

your users will access them. You can specify a region when creating the AWS service client by using the
RegionEndpoint class.

Here is an example that instantiates an Amazon EC2 client in a specific region.

AmazonEC2Client ec2Client = new AmazonEC2Client(RegionEndpoint.USEast1);

Regions are isolated from each other. For example, you can’t access US East (N. Virginia) resources when
using the Europe (Ireland) region. If your code needs access to multiple AWS Regions, we recommend you
create a separate client for each region.

To use services in the China (Beijing) Region, you must have an account and credentials that are specific
to the China (Beijing) Region. Accounts and credentials for other AWS Regions won’t work for the China
(Beijing) Region. Likewise, accounts and credentials for the China (Beijing) Region won’t work for other
AWS Regions. For information about endpoints and protocols that are available in the China (Beijing)
Region, see China (Beijing) Region.

New AWS services can be launched initially in a few regions and then supported in other regions. In these
cases you don’t need to install the latest SDK to access the new regions. You can specify newly added
regions on a per-client basis or globally.

Per-Client
Setting the Region in a client takes precedence over any global setting.

Construct the new region endpoint by using GetBySystemName:

var newRegion = RegionEndpoint.GetBySystemName("us-west-new");
using (var ec2Client = new AmazonEC2Client(newRegion))
{
 // Make a request to EC2 using ec2Client
}

You can also use the ServiceURL property of the service client configuration class to specify the region.
This technique works even if the region endpoint does not follow the regular region endpoint pattern.

var ec2ClientConfig = new AmazonEC2Config
{
 // Specify the endpoint explicitly
 ServiceURL = "https://ec2.us-west-new.amazonaws.com"
};

using (var ec2Client = new AmazonEC2Client(ec2ClientConfig))
{
 // Make a request to EC2 using ec2Client
}

Globally
There are a number of ways you can specify a Region for all clients. The AWS SDK for .NET looks for a
Region value in the following order:

Set as a AWSConfigs.AWSRegion property,

AWSConfigs.AWSRegion = "us-west-new";
using (var ec2Client = new AmazonEC2Client())
{
 // Make request to Amazon EC2 using ec2Client
}

34

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TRegionEndpoint.html
http://docs.amazonaws.cn/en_us/general/latest/gr/rande.html#cnnorth_region
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/MRegionEndpointGetBySystemNameString.html

AWS SDK for .NET (version 3) Developer Guide
Configuring Other Application Parameters

Set as a AWSRegion key in the appSettings section of the app.config file.

<configuration>
 <appSettings>
 <add key="AWSRegion" value="us-west-2"/>
 </appSettings>
</configuration>

Set as a region attribute in the aws section as described in AWSRegion (p. 36).

<aws region="us-west-2"/>

To view the current list of all supported regions and endpoints for each AWS service, see Regions and
Endpoints in the Amazon Web Services General Reference.

Configuring Other Application Parameters
In addition to configuring credentials (p. 25), you can configure a number of other application
parameters:

• AWSLogging (p. 35)
• AWSLogMetrics (p. 36)
• AWSRegion (p. 36)
• AWSResponseLogging (p. 37)
• AWS.DynamoDBContext.TableNamePrefix (p. 37)
• AWS.S3.UseSignatureVersion4 (p. 38)
• AWSEndpointDefinition (p. 38)
• AWS Service-Generated Endpoints (p. 39)

These parameters can be configured in the application’s App.config or Web.config file. Although
you can also configure these with the AWS SDK for .NET API, we recommend you use the application’s
.config file. Both approaches are described here.

For more information about use of the <aws> element as described later in this topic, see Configuration
Files Reference for AWS SDK for .NET (p. 40).

AWSLogging
Configures how the SDK should log events, if at all. For example, the recommended approach is to use
the <logging> element, which is a child element of the <aws> element:

<aws>
 <logging logTo="Log4Net"/>
</aws>

Alternatively:

<add key="AWSLogging" value="log4net"/>

The possible values are:

None

Turn off event logging. This is the default.

35

https://docs.aws.amazon.com/general/latest/gr/rande.html
https://docs.aws.amazon.com/general/latest/gr/rande.html

AWS SDK for .NET (version 3) Developer Guide
Configuring Other Application Parameters

log4net

Log using log4net.
SystemDiagnostics

Log using the System.Diagnostics class.

You can set multiple values for the logTo attribute, separated by commas. The following example sets
both log4net and System.Diagnostics logging in the .config file:

<logging logTo="Log4Net, SystemDiagnostics"/>

Alternatively:

<add key="AWSLogging" value="log4net, SystemDiagnostics"/>

Alternatively, using the AWS SDK for .NET API, combine the values of the LoggingOptions enumeration
and set the AWSConfigs.Logging property:

AWSConfigs.Logging = LoggingOptions.Log4Net | LoggingOptions.SystemDiagnostics;

Changes to this setting take effect only for new AWS client instances.

AWSLogMetrics
Specifies whether or not the SDK should log performance metrics. To set the metrics logging
configuration in the .config file, set the logMetrics attribute value in the <logging> element,
which is a child element of the <aws> element:

<aws>
 <logging logMetrics="true"/>
</aws>

Alternatively, set the AWSLogMetrics key in the <appSettings> section:

<add key="AWSLogMetrics" value="true">

Alternatively, to set metrics logging with the AWS SDK for .NET API, set the AWSConfigs.LogMetrics
property:

AWSConfigs.LogMetrics = true;

This setting configures the default LogMetrics property for all clients/configs. Changes to this setting
take effect only for new AWS client instances.

AWSRegion
Configures the default AWS region for clients that have not explicitly specified a region. To set the region
in the .config file, the recommended approach is to set the region attribute value in the aws element:

<aws region="us-west-2"/>

Alternatively, set the AWSRegion key in the <appSettings> section:

36

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TLoggingOptions.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET (version 3) Developer Guide
Configuring Other Application Parameters

<add key="AWSRegion" value="us-west-2"/>

Alternatively, to set the region with the AWS SDK for .NET API, set the AWSConfigs.AWSRegion property:

AWSConfigs.AWSRegion = "us-west-2";

For more information about creating an AWS client for a specific region, see AWS Region
Selection (p. 33). Changes to this setting take effect only for new AWS client instances.

AWSResponseLogging
Configures when the SDK should log service responses. The possible values are:

Never

Never log service responses. This is the default.
Always

Always log service responses.
OnError

Only log service responses when an error occurs.

To set the service logging configuration in the .config file, the recommended approach is to set the
logResponses attribute value in the <logging> element, which is a child element of the <aws>
element:

<aws>
 <logging logResponses="OnError"/>
</aws>

Alternatively, set the AWSResponseLogging key in the <appSettings> section:

<add key="AWSResponseLogging" value="OnError"/>

Alternatively, to set service logging with the AWS SDK for .NET API, set the
AWSConfigs.ResponseLogging property to one of the values of the ResponseLoggingOption
enumeration:

AWSConfigs.ResponseLogging = ResponseLoggingOption.OnError;

Changes to this setting take effect immediately.

AWS.DynamoDBContext.TableNamePrefix
Configures the default TableNamePrefix the DynamoDBContext will use if not manually configured.

To set the table name prefix in the .config file, the recommended approach is to set the
tableNamePrefix attribute value in the <dynamoDBContext> element, which is a child element of the
<dynamoDB> element, which itself is a child element of the <aws> element:

<dynamoDBContext tableNamePrefix="Test-"/>

Alternatively, set the AWS.DynamoDBContext.TableNamePrefix key in the <appSettings> section:

37

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TResponseLoggingOption.html

AWS SDK for .NET (version 3) Developer Guide
Configuring Other Application Parameters

<add key="AWS.DynamoDBContext.TableNamePrefix" value="Test-"/>

Alternatively, to set the table name prefix with the AWS SDK for .NET API, set the
AWSConfigs.DynamoDBContextTableNamePrefix property:

AWSConfigs.DynamoDBContextTableNamePrefix = "Test-";

Changes to this setting will take effect only in newly constructed instances of
DynamoDBContextConfig and DynamoDBContext.

AWS.S3.UseSignatureVersion4
Configures whether or not the Amazon S3 client should use signature version 4 signing with requests.

To set signature version 4 signing for Amazon S3 in the .config file, the recommended approach is to
set the useSignatureVersion4 attribute of the <s3> element, which is a child element of the <aws>
element:

<aws>
 <s3 useSignatureVersion4="true"/>
</aws>

Alternatively, set the AWS.S3.UseSignatureVersion4 key to true in the <appSettings> section:

<add key="AWS.S3.UseSignatureVersion4" value="true"/>

Alternatively, to set signature version 4 signing with the AWS SDK for .NET API, set the
AWSConfigs.S3UseSignatureVersion4 property to true:

AWSConfigs.S3UseSignatureVersion4 = true;

By default, this setting is false, but signature version 4 may be used by default in some cases or with
some regions. When the setting is true, signature version 4 will be used for all requests. Changes to this
setting take effect only for new Amazon S3 client instances.

AWSEndpointDefinition
Configures whether the SDK should use a custom configuration file that defines the regions and
endpoints.

To set the endpoint definition file in the .config file, we recommend setting the
endpointDefinition attribute value in the <aws> element.

<aws endpointDefinition="c:\config\endpoints.json"/>

Alternatively, you can set the AWSEndpointDefinition key in the <appSettings> section:

<add key="AWSEndpointDefinition" value="c:\config\endpoints.json"/>

Alternatively, to set the endpoint definition file with the AWS SDK for .NET API, set the
AWSConfigs.EndpointDefinition property:

AWSConfigs.EndpointDefinition = @"c:\config\endpoints.json";

38

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET (version 3) Developer Guide
Configuring Other Application Parameters

If no file name is provided, then a custom configuration file will not be used. Changes to this setting take
effect only for new AWS client instances. The endpoint.json file is available from https://github.com/
aws/aws-sdk-net/blob/master/sdk/src/Core/endpoints.json.

AWS Service-Generated Endpoints
Some AWS services generate their own endpoints instead of consuming a region endpoint. Clients for
these services consume a service Url that is specific to that service and your resources. Two examples of
these services are Amazon CloudSearch and AWS IoT. The following examples show how you can obtain
the endpoints for those services.

Amazon CloudSearch Endpoints Example

The Amazon CloudSearch client is used for accessing the Amazon CloudSearch configuration
service. You use the Amazon CloudSearch configuration service to create, configure, and manage
search domains. To create a search domain, create a CreateDomainRequest object and provide the
DomainName property. Create an AmazonCloudSearchClient object by using the request object. Call
the CreateDomain method. The CreateDomainResponse object returned from the call contains a
DomainStatus property that has both the DocService and SearchService endpoints. Create an
AmazonCloudSearchDomainConfig object and use it to initialize DocService and SearchService
instances of the AmazonCloudSearchDomainClient class.

// Create domain and retrieve DocService and SearchService endpoints
DomainStatus domainStatus;
using (var searchClient = new AmazonCloudSearchClient())
{
 var request = new CreateDomainRequest
 {
 DomainName = "testdomain"
 };
 domainStatus = searchClient.CreateDomain(request).DomainStatus;
 Console.WriteLine(domainStatus.DomainName + " created");
}

// Test the DocService endpoint
var docServiceConfig = new AmazonCloudSearchDomainConfig
{
 ServiceURL = "https://" + domainStatus.DocService.Endpoint
};
using (var domainDocService = new AmazonCloudSearchDomainClient(docServiceConfig))
{
 Console.WriteLine("Amazon CloudSearchDomain DocService client instantiated using the
 DocService endpoint");
 Console.WriteLine("DocService endpoint = " + domainStatus.DocService.Endpoint);

 using (var docStream = new FileStream(@"C:\doc_source\XMLFile4.xml", FileMode.Open))
 {
 var upload = new UploadDocumentsRequest
 {
 ContentType = ContentType.ApplicationXml,
 Documents = docStream
 };
 domainDocService.UploadDocuments(upload);
 }
}

// Test the SearchService endpoint
var searchServiceConfig = new AmazonCloudSearchDomainConfig
{
 ServiceURL = "https://" + domainStatus.SearchService.Endpoint
};
using (var domainSearchService = new AmazonCloudSearchDomainClient(searchServiceConfig))

39

https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/endpoints.json
https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/endpoints.json
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/TCreateDomainRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/TCloudSearchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/MCloudSearchCreateDomainCreateDomainRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearch/TCreateDomainResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearchDomain/TCloudSearchDomainConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudSearchDomain/TCloudSearchDomainClient.html

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

{
 Console.WriteLine("Amazon CloudSearchDomain SearchService client instantiated using the
 SearchService endpoint");
 Console.WriteLine("SearchService endpoint = " + domainStatus.SearchService.Endpoint);

 var searchReq = new SearchRequest
 {
 Query = "Gambardella",
 Sort = "_score desc",
 QueryParser = QueryParser.Simple
 };
 var searchResp = domainSearchService.Search(searchReq);
}

AWS IoT Endpoints Example

To obtain the endpoint for AWS IoT, create an AmazonIoTClient object and call the DescribeEndPoint
method. The returned DescribeEndPointResponse object contains the EndpointAddress. Create an
AmazonIotDataConfig object, set the ServiceURL property, and use the object to instantiate the
AmazonIotDataClient class.

string iotEndpointAddress;
using (var iotClient = new AmazonIoTClient())
{
 var endPointResponse = iotClient.DescribeEndpoint();
 iotEndpointAddress = endPointResponse.EndpointAddress;
}

var ioTdocServiceConfig = new AmazonIotDataConfig
{
 ServiceURL = "https://" + iotEndpointAddress
};
using (var dataClient = new AmazonIotDataClient(ioTdocServiceConfig))
{
 Console.WriteLine("AWS IoTData client instantiated using the endpoint from the
 IotClient");
}nstantiated using the endpoint from the IoT client");

Configuration Files Reference for AWS SDK for .NET
You can use a .NET project’s App.config or Web.config file to specify AWS settings, such as AWS
credentials, logging options, AWS service endpoints, and AWS regions, as well as some settings for AWS
services, such as Amazon DynamoDB, Amazon EC2, and Amazon S3. The following information describes
how to properly format an App.config or Web.config file to specify these types of settings.

Note
Although you can continue to use the <appSettings> element in an App.config or
Web.config file to specify AWS settings, we recommend you use the <configSections>
and <aws> elements as described later in this topic. For more information about the
<appSettings> element, see the <appSettings> element examples in Configuring Your AWS
SDK for .NET Application (p. 21).

Note
Although you can continue to use the following AWSConfigs class properties in a code file to
specify AWS settings, the following properties are deprecated and may not be supported in
future releases:

• DynamoDBContextTableNamePrefix

• EC2UseSignatureVersion4

• LoggingOptions

40

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/TIoTClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/MIoTDescribeEndpointDescribeEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IoT/TDescribeEndpointResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IotData/TIotDataConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IotData/TIotDataClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TAWSConfigs.html

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

• LogMetrics

• ResponseLoggingOption

• S3UseSignatureVersion4

In general, we recommend that instead of using AWSConfigs class properties in a code file
to specify AWS settings, you should use the <configSections> and <aws> elements in an
App.config or Web.config file to specify AWS settings, as described later in this topic. For
more information about the preceding properties, see the AWSConfigs code examples in
Configuring Your AWS SDK for .NET Application (p. 21).

Topics
• Declaring an AWS Settings Section (p. 41)
• Allowed Elements (p. 41)
• Elements Reference (p. 42)

Declaring an AWS Settings Section
You specify AWS settings in an App.config or Web.config file from within the <aws> element.
Before you can begin using the <aws> element, you must create a <section> element (which is a child
element of the <configSections> element) and set its name attribute to aws and its type attribute to
Amazon.AWSSection, AWSSDK.Core, as shown in the following example:

<?xml version="1.0"?>
<configuration>
 ...
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws>
 <!-- Add your desired AWS settings declarations here. -->
 </aws>
 ...
</configuration>

The Visual Studio Editor does not provide automatic code completion (IntelliSense) for the <aws>
element or its child elements.

To assist you in creating a correctly formatted version of the <aws> element, call the
Amazon.AWSConfigs.GenerateConfigTemplate method. This outputs a canonical version of the
<aws> element as a pretty-printed string, which you can adapt to your needs. The following sections
describe the <aws> element’s attributes and child elements.

Allowed Elements
The following is a list of the logical relationships among the allowed elements in an
AWS settings section. You can generate the latest version of this list by calling the
Amazon.AWSConfigs.GenerateConfigTemplate method, which outputs a canonical version of the
<aws> element as a string you can adapt to your needs.

<aws
 endpointDefinition="string value"
 region="string value"
 profileName="string value"
 profilesLocation="string value">
 <logging
 logTo="None, Log4Net, SystemDiagnostics"

41

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

 logResponses="Never | OnError | Always"
 logMetrics="true | false"
 logMetricsFormat="Standard | JSON"
 logMetricsCustomFormatter="NameSpace.Class, Assembly" />
 <dynamoDB
 conversionSchema="V1 | V2">
 <dynamoDBContext
 tableNamePrefix="string value">
 <tableAliases>
 <alias
 fromTable="string value"
 toTable="string value" />
 </tableAliases>
 <map
 type="NameSpace.Class, Assembly"
 targetTable="string value">
 <property
 name="string value"
 attribute="string value"
 ignore="true | false"
 version="true | false"
 converter="NameSpace.Class, Assembly" />
 </map>
 </dynamoDBContext>
 </dynamoDB>
 <s3
 useSignatureVersion4="true | false" />
 <ec2
 useSignatureVersion4="true | false" />
 <proxy
 host="string value"
 port="1234"
 username="string value"
 password="string value" />
</aws>

Elements Reference
The following is a list of the elements that are allowed in an AWS settings section. For each element, its
allowed attributes and parent-child elements are listed.

Topics
• alias (p. 42)
• aws (p. 43)
• dynamoDB (p. 44)
• dynamoDBContext (p. 44)
• ec2 (p. 44)
• logging (p. 45)
• map (p. 46)
• property (p. 46)
• proxy (p. 47)
• s3 (p. 48)

alias

The <alias> element represents a single item in a collection of one or more from-table
to to-table mappings that specifies a different table than one configured for a type.
This element maps to an instance of the Amazon.Util.TableAlias class from the

42

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

Amazon.AWSConfigs.DynamoDBConfig.Context.TableAliases property in the AWS SDK for .NET.
Remapping is done before applying a table name prefix.

This element can include the following attributes:

fromTable

The from-table portion of the from-table to to-table mapping. This attribute maps to the
Amazon.Util.TableAlias.FromTable property in the AWS SDK for .NET.

toTable

The to-table portion of the from-table to to-table mapping. This attribute maps to the
Amazon.Util.TableAlias.ToTable property in the AWS SDK for .NET.

The parent of the <alias> element is the <tableAliases> element.

The <alias> element contains no child elements.

The following is an example of the <alias> element in use:

<alias
 fromTable="Studio"
 toTable="Studios" />

aws

The <aws> element represents the top-most element in an AWS settings section. This element can
include the following attributes:

endpointDefinition

The absolute path to a custom configuration file that defines the AWS regions and endpoints to use.
This attribute maps to the Amazon.AWSConfigs.EndpointDefinition property in the AWS SDK
for .NET.

profileName

The profile name for stored AWS credentials that will be used to make service calls. This attribute
maps to the Amazon.AWSConfigs.AWSProfileName property in the AWS SDK for .NET.

profilesLocation

The absolute path to the location of the credentials file shared with other AWS SDKs. By default, the
credentials file is stored in the .aws directory in the current user’s home directory. This attribute
maps to the Amazon.AWSConfigs.AWSProfilesLocation property in the AWS SDK for .NET.

region

The default AWS region ID for clients that have not explicitly specified a region. This attribute maps
to the Amazon.AWSConfigs.AWSRegion property in the AWS SDK for .NET.

The <aws> element has no parent element.

The <aws> element can include the following child elements:

• <dynamoDB>

• <ec2>

• <logging>

• <proxy>

• <s3>

43

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

The following is an example of the <aws> element in use:

<aws
 endpointDefinition="C:\Configs\endpoints.xml"
 region="us-west-2"
 profileName="development"
 profilesLocation="C:\Configs">
 <!-- ... -->
</aws>

dynamoDB

The <dynamoDB> element represents a collection of settings for Amazon DynamoDB. This element
can include the conversionSchema attribute, which represents the version to use for converting
between .NET and DynamoDB objects. Allowed values include V1 and V2. This attribute maps to
the Amazon.DynamoDBv2.DynamoDBEntryConversion class in the AWS SDK for .NET. For more
information, see DynamoDB Series - Conversion Schemas.

The parent of the <dynamoDB> element is the <aws> element.

The <dynamoDB> element can include the <dynamoDBContext> child element.

The following is an example of the <dynamoDB> element in use:

<dynamoDB
 conversionSchema="V2">
 <!-- ... -->
</dynamoDB>

dynamoDBContext

The <dynamoDBContext> element represents a collection of Amazon DynamoDB context-specific
settings. This element can include the tableNamePrefix attribute, which represents the default
table name prefix the DynamoDB context will use if it is not manually configured. This attribute
maps to the Amazon.Util.DynamoDBContextConfig.TableNamePrefix property from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TableNamePrefix property in the AWS SDK
for .NET. For more information, see Enhancements to the DynamoDB SDK.

The parent of the <dynamoDBContext> element is the <dynamoDB> element.

The <dynamoDBContext> element can include the following child elements:

• <alias> (one or more instances)
• <map> (one or more instances)

The following is an example of the <dynamoDBContext> element in use:

<dynamoDBContext
 tableNamePrefix="Test-">
 <!-- ... -->
</dynamoDBContext>

ec2

The <ec2> element represents a collection of Amazon EC2 settings. This element can include the
useSignatureVersion4 attribute, which specifies whether signature version 4 signing will be used for all
requests (true) or whether signature version 4 signing will not be used for all requests (false, the default).
This attribute maps to the Amazon.Util.EC2Config.UseSignatureVersion4 property from the
Amazon.AWSConfigs.EC2Config.UseSignatureVersion4 property in the AWS SDK for .NET.

44

http://blogs.aws.amazon.com/net/post/Tx2TCOGWG7ARUH5/DynamoDB-Series-Conversion-Schemas
http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

The parent of the <ec2> element is the element.

The <ec2> element contains no child elements.

The following is an example of the <ec2> element in use:

<ec2
 useSignatureVersion4="true" />

logging

The <logging> element represents a collection of settings for response logging and performance
metrics logging. This element can include the following attributes:

logMetrics

Whether performance metrics will be logged for all clients and configurations (true); otherwise,
false. This attribute maps to the Amazon.Util.LoggingConfig.LogMetrics property from the
Amazon.AWSConfigs.LoggingConfig.LogMetrics property in the AWS SDK for .NET.

logMetricsCustomFormatter

The data type and assembly name of a custom formatter for logging metrics. This attribute maps
to the Amazon.Util.LoggingConfig.LogMetricsCustomFormatter property from the
Amazon.AWSConfigs.LoggingConfig.LogMetricsCustomFormatter property in the AWS
SDK for .NET.

logMetricsFormat

The format in which the logging metrics are presented (maps to the
Amazon.Util.LoggingConfig.LogMetricsFormat property from the
Amazon.AWSConfigs.LoggingConfig.LogMetricsFormat property in the AWS SDK for .NET).

Allowed values include:
JSON

Use JSON format.
Standard

Use the default format.
logResponses

When to log service responses (maps to the Amazon.Util.LoggingConfig.LogResponses
property from the Amazon.AWSConfigs.LoggingConfig.LogResponses property in the AWS
SDK for .NET).

Allowed values include:
Always

Always log service responses.
Never

Never log service responses.
OnError

Only log service responses when there are errors.
logTo

Where to log to (maps to the LogTo property from the
Amazon.AWSConfigs.LoggingConfig.LogTo property in the AWS SDK for .NET).

45

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

Allowed values include one or more of:
Log4Net

Log to log4net.
None

Disable logging.
SystemDiagnostics

Log to System.Diagnostics.

The parent of the <logging> element is the <aws> element.

The <logging> element contains no child elements.

The following is an example of the <logging> element in use:

<logging
 logTo="SystemDiagnostics"
 logResponses="OnError"
 logMetrics="true"
 logMetricsFormat="JSON"
 logMetricsCustomFormatter="MyLib.Util.MyMetricsFormatter, MyLib" />

map

The <map> element represents a single item in a collection of type-to-table mappings
from .NET types to DynamoDB tables (maps to an instance of the TypeMapping class from the
Amazon.AWSConfigs.DynamoDBConfig.Context.TypeMappings property in the AWS SDK
for .NET). For more information, see Enhancements to the DynamoDB SDK.

This element can include the following attributes:

targetTable

The DynamoDB table to which the mapping applies. This attribute maps to the
Amazon.Util.TypeMapping.TargetTable property in the AWS SDK for .NET.

type

The type and assembly name to which the mapping applies. This attribute maps to the
Amazon.Util.TypeMapping.Type property in the AWS SDK for .NET.

The parent of the <map> element is the <dynamoDBContext> element.

The <map> element can include one or more instances of the <property> child element.

The following is an example of the <map> element in use:

<map
 type="SampleApp.Models.Movie, SampleDLL"
 targetTable="Movies">
 <!-- ... -->
</map>

property

The <property> element represents a DynamoDB property. (This element maps to an instance of the
Amazon.Util.PropertyConfig class from the AddProperty method in the AWS SDK for .NET) For more
information, see Enhancements to the DynamoDB SDK and DynamoDB Attributes.

46

http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK
http://blogs.aws.amazon.com/net/post/Tx2C4MHH2H0SA5W/Enhancements-to-the-DynamoDB-SDK
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DeclarativeTagsList.html

AWS SDK for .NET (version 3) Developer Guide
Configuration Files Reference for AWS SDK for .NET

This element can include the following attributes:

attribute

The name of an attribute for the property, such as the name of a range key. This attribute maps to
the Amazon.Util.PropertyConfig.Attribute property in the AWS SDK for .NET.

converter

The type of converter that should be used for this property. This attribute maps to the
Amazon.Util.PropertyConfig.Converter property in the AWS SDK for .NET.

ignore

Whether the associated property should be ignored (true); otherwise, false. This attribute maps to
the Amazon.Util.PropertyConfig.Ignore property in the AWS SDK for .NET.

name

The name of the property. This attribute maps to the Amazon.Util.PropertyConfig.Name
property in the AWS SDK for .NET.

version

Whether this property should store the item version number (true); otherwise, false. This attribute
maps to the Amazon.Util.PropertyConfig.Version property in the AWS SDK for .NET.

The parent of the <property> element is the <map> element.

The <property> element contains no child elements.

The following is an example of the <property> element in use:

<property
 name="Rating"
 converter="SampleApp.Models.RatingConverter, SampleDLL" />

proxy

The <proxy> element represents settings for configuring a proxy for the AWS SDK for .NET to use. This
element can include the following attributes:

host

The host name or IP address of the proxy server. This attributes
maps to the Amazon.Util.ProxyConfig.Host property from the
Amazon.AWSConfigs.ProxyConfig.Host property in the AWS SDK for .NET.

password

The password to authenticate with the proxy server. This attributes maps
to the Amazon.Util.ProxyConfig.Password property from the
Amazon.AWSConfigs.ProxyConfig.Password property in the AWS SDK for .NET.

port

The port number of the proxy. This attributes maps to the Amazon.Util.ProxyConfig.Port
property from the Amazon.AWSConfigs.ProxyConfig.Port property in the AWS SDK for .NET.

username

The user name to authenticate with the proxy server. This attributes
maps to the Amazon.Util.ProxyConfig.Username property from the
Amazon.AWSConfigs.ProxyConfig.Username property in the AWS SDK for .NET.

47

AWS SDK for .NET (version 3) Developer Guide
Enabling SDK Metrics

The parent of the <proxy> element is the <aws> element.

The <proxy> element contains no child elements.

The following is an example of the <proxy> element in use:

<proxy
 host="192.0.2.0"
 port="1234"
 username="My-Username-Here"
 password="My-Password-Here" />

s3

The <s3> element represents a collection of Amazon S3 settings. This element can include the
useSignatureVersion4 attribute, which specifies whether signature version 4 signing will be used for all
requests (true) or whether signature version 4 signing will not be used for all requests (false, the default).
This attribute maps to the Amazon.AWSConfigs.S3Config.UseSignatureVersion4 property in the
AWS SDK for .NET.

The parent of the <s3> element is the <aws> element.

The <s3> element contains no child elements.

The following is an example of the <s3> element in use:

<s3 useSignatureVersion4="true" />

Enabling SDK Metrics
AWS SDK Metrics for Enterprise Support (SDK Metrics) enables Enterprise customers to collect metrics
from AWS SDKs on their hosts and clients shared with AWS Enterprise Support. SDK Metrics provides
information that helps speed up detection and diagnosis of issues occurring in connections to AWS
services for AWS Enterprise Support customers.

As telemetry is collected on each host, it is relayed via UDP to 127.0.0.1 (aka localhost), where the
Amazon CloudWatch agent aggregates the data and sends it to the SDK Metrics service. Therefore, to
receive metrics, the CloudWatch agent is required to be added to your instance.

The following steps to set up SDK Metrics pertain to an Amazon EC2 instance running Amazon Linux for
a client application that is using the AWS SDK for .NET. SDK Metrics is also available for your production
environments if you enable it while configuring the AWS SDK for .NET.

To utilize SDK Metrics, run the latest version of the CloudWatch agent. Learn how to Configure the
CloudWatch Agent for SDK Metrics in the Amazon CloudWatch User Guide.

To set up SDK Metrics with the AWS SDK for .NET, follow these instructions:

1. Create an application with an AWS SDK for .NET client to use an AWS service.

2. Host your project on an Amazon EC2 instance or in your local environment.

3. Install and use the latest version of the AWS SDK for .NET.

4. Install and configure a CloudWatch agent on an EC2 instance or in your local environment.

5. Authorize SDK Metrics to collect and send metrics.

6. Enable SDK Metrics for the AWS SDK for .NET (p. 49).

48

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Configure-CloudWatch-Agent-SDK-Metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Configure-CloudWatch-Agent-SDK-Metrics.html

AWS SDK for .NET (version 3) Developer Guide
Enabling SDK Metrics

For more information, see the following:

• Update a CloudWatch Agent (p. 49)
• Disable SDK Metrics (p. 50)

Enable SDK Metrics for the AWS SDK for .NET
By default, SDK Metrics is turned off, and the port is set to 31000. The following are the default
parameters.

//default values
 [
 'enabled' => false,
 'port' => 31000,
]

Enabling SDK Metrics is independent of configuring your credentials to use an AWS service.

You can enable SDK Metrics by setting environment variables or by using the AWS shared config file.

Option 1: Set environment variables

If AWS_CSM_ENABLED is not set, the SDK first checks the profile specified in the environment variable
under AWS_PROFILE to determine if SDK Metrics is enabled. By default this is set to false.

To turn on SDK Metrics, add the following to your environmental variables.

export AWS_CSM_ENABLED=true

Other configuration settings (p. 49) are available.

Note
Enabling SDK Metrics does not configure your credentials to use an AWS service.

Option 2: AWS shared config file

If no SDK Metrics configuration is found in the environment variables, the SDK looks for your default
AWS profile field. If AWS_DEFAULT_PROFILE is set to something other than default, update that profile.
To enable SDK Metrics, add csm_enabled to the shared config file located at ~/.aws/config.

[default]
csm_enabled = true

[profile aws_csm]
csm_enabled = true

Other configuration settings (p. 49) are available.

Note
Enabling SDK Metrics is independent from configuring your credentials to use an AWS service.
You can use a different profile to authenticate.

Update a CloudWatch agent
To make changes to the port, you need to set the values and then restart any AWS jobs that are currently
active.

49

AWS SDK for .NET (version 3) Developer Guide
Enabling SDK Metrics

Option 1: Set environment variables

Most services use the default port. But if your service requires a unique port ID, add
AWS_CSM_PORT=[port_number], to the host’s environment variables.

export AWS_CSM_ENABLED=true
export AWS_CSM_PORT=1234

Option 2: AWS shared config file

Most services use the default port. But if your service requires a unique port ID, add csm_port =
[port_number] to ~/.aws/config.

[default]
csm_enabled = false
csm_port = 1234

[profile aws_csm]
csm_enabled = false
csm_port = 1234

Restart SDK Metrics

To restart a job, run the following commands.

amazon-cloudwatch-agent-ctl –a stop;
amazon-cloudwatch-agent-ctl –a start;

Disable SDK Metrics
To turn off SDK Metrics, set csm_enabled to false in your environment variables, or in your AWS shared
config file located at ~/.aws/config. Then restart your CloudWatch agent so that the changes can take
effect.

Environment variables

export AWS_CSM_ENABLED=false

AWS shared config file

Remove csm_enabled from the profiles in your AWS shared config file located at ~/.aws/config.

Note
Environment variables override the AWS shared config file. If SDK Metrics is enabled in the
environment variables, the SDK Metrics remain enabled.

[default]
csm_enabled = false

[profile aws_csm]
csm_enabled = false

To disable SDK Metrics, use the following command to stop your CloudWatch agent.

sudo /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a stop &&
echo "Done"

50

AWS SDK for .NET (version 3) Developer Guide
Enabling SDK Metrics

If you are using other CloudWatch features, restart CloudWatch with the following command.

amazon-cloudwatch-agent-ctl –a start;

Restart SDK Metrics

To restart a job, run the following commands.

amazon-cloudwatch-agent-ctl –a stop;
amazon-cloudwatch-agent-ctl –a start;

Definitions for SDK Metrics
You can use the following descriptions of SDK Metrics to interpret your results. In general, these metrics
are available for review with your Technical Account Manager during regular business reviews. AWS
Support resources and your Technical Account Manager should have access to SDK Metrics data to help
you resolve cases, but if you discover data that is confusing or unexpected, but doesn’t seem to be
negatively impacting your applications’ performance, it is best to review that data during scheduled
business reviews.

Metric CallCount

Definition Total number of successful or failed API calls from
your code to AWS services

How to use it Use it as a baseline to correlate with other metrics
like errors or throttling.

Metric ClientErrorCount

Definition Number of API calls that fail with client errors
(4xx HTTP response codes). Examples: Throttling,
Access denied, S3 bucket does not exist, and Invalid
parameter value.

How to use it Except in certain cases related to throttling
(for example, when throttling occurs due to a
limit that needs to be increased) this metric can
indicate something in your application that needs
to be fixed.

Metric ConnectionErrorCount

Definition Number of API calls that fail because of errors
connecting to the service. These can be caused by
network issues between the customer application
and AWS services including load balancers, DNS
failures, transit providers. In some cases, AWS
issues may result in this error.

How to use it Use this metric to determine whether issues
are specific to your application or are caused

51

AWS SDK for .NET (version 3) Developer Guide
Asynchronous APIs

Metric ConnectionErrorCount

by your infrastructure and/or network. High
ConnectionErrorCount could also indicate short
timeout values for API calls.

Metric ThrottleCount

Definition Number of API calls that fail due to throttling by
AWS services.

How to use it Use this metric to assess if your application has
reached throttle limits, as well as to determine
the cause of retries and application latency.
Consider distributing calls over a window instead
of batching your calls.

Metric ServerErrorCount

Definition Number of API calls that fail due to server errors
(5xx HTTP response codes) from AWS Services.
These are typically caused by AWS services.

How to use it Determine cause of SDK retries or latency. This
metric will not always indicate that AWS services
are at fault, as some AWS teams classify latency
as an HTTP 503 response.

Metric EndToEndLatency

Definition Total time for your application to make a call
using the AWS SDK, inclusive of retries. In other
words, regardless of whether it is successful after
several attempts, or as soon as a call fails due to
an unretriable error.

How to use it Determine how AWS API calls contribute to your
application’s overall latency. Higher than expected
latency may be caused by issues with network,
firewall, or other configuration settings, or by
latency that occurs as a result of SDK retries.

AWS asynchronous APIs for .NET
Asynchronous API for .NET Framework 4.5, Windows
Store, and Windows Phone 8
The AWS SDK for .NET uses the new task-based asynchronous pattern for .NET Framework version 4.5,
Windows Store, and Windows Phone 8. You can use the async and await keywords to perform and
manage asynchronous operations for all AWS products without blocking.

52

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

To learn more about the task-based asynchronous pattern, see Task-based Asynchronous Pattern (TAP)
on docs.microsoft.com. To see how TAP is used in the AWS SDK for .NET, for both .NET Framework 4.5
projects and .NET Core projects, see the latest version of the documentation.

Asynchronous API for .NET Framework 3.5
The AWS SDK for .NET supports asynchronous (async) versions of most of the method calls exposed by
the .NET client classes. The async methods enable you to call AWS services without having your code
block on the response from the service. For example, you can make a request to write data to Amazon S3
or DynamoDB and then have your code continue to do other work while AWS processes the requests.

Syntax of Async Request Methods
There are two phases to making an asynchronous request to an AWS service. The first is to call the
Begin method for the request. This method initiates the asynchronous operation. The corresponding
End method retrieves the response from the service and also provides an opportunity to handle
exceptions that might have occurred during the operation.

Note
Calling the End method is not required. Assuming no errors are encountered, the asynchronous
operation will complete whether or not you call End.

Begin Method Syntax

In addition to taking a request object parameter, such as PutItemRequest, the async Begin methods take
two additional parameters: a callback function and a state object. Instead of returning a service response
object, the Begin methods return a result of type IAsyncResult. For the definition of this type, go to
the Microsoft documentation.

Synchronous Method

PutItemResponse PutItem(
 PutItemRequest putItemRequest
)

Asynchronous Method

IAsyncResult BeginPutItem(
 GetSessionTokenRequest getSessionTokenRequest, {AsyncCallback callback}, {Object state}
)

AsyncCallback Callback

The callback function is called when the asynchronous operation is complete. When the function is
called, it receives a single parameter of type IAsyncResult. The callback function has the following
signature.

void Callback(IAsyncResult asyncResult)

Object State

The third parameter, state, is a user-defined object that is made available to the callback function as
the AsyncState property of the asyncResult parameter, that is, asyncResult.AsyncState.

Calling Patterns

53

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap
../../latest/developer-guide/sdk-net-async-api.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/TPutItemRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TWebServiceResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TWebServiceResponse.html
https://docs.microsoft.com/en-us/dotnet/api/system.iasyncresult
https://docs.microsoft.com/en-us/dotnet/api/system.iasyncresult

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

• Passing a callback function and a state object.
• Passing a callback function, but passing null for the state object.
• Passing null for both the callback function and the state object.

This topic provides an example of each of these patterns.

Using IAsyncResult.AsyncWaitHandle

In some circumstances, the code that calls the Begin method might need to enable another method
that it calls to wait on the completion of the asynchronous operation. In these situations, it can pass
the method the WaitHandle returned by the IAsyncResult.AsyncWaitHandle property of the
IAsyncResult return value. The method can then wait for the asynchronous operation to complete by
calling WaitOne on this WaitHandle.

Examples
For the complete code example, see Complete Example (p. 56) below or view it on GitHub.

All of the following snippets assume the following initialization code.

 public static void TestPutObjectAsync(string bucket)
 {
 // Create a client
 AmazonS3Client client = new AmazonS3Client();

 PutObjectResponse response;
 IAsyncResult asyncResult;

 //
 // Create a PutObject request object using the supplied bucket name.
 //
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucket,
 Key = "Item0-Synchronous",
 ContentBody = "Put S3 object synchronously."
 };

No Callback Specified

The following example code calls BeginPutObject, performs some work, and then calls
EndPutObject to retrieve the service response. The call to EndPutObject is enclosed in a try block to
catch any exceptions that might have been thrown during the operation.

 asyncResult = client.BeginPutObject(request, null, null);
 while (!asyncResult.IsCompleted)
 {
 //
 // Do some work here
 //
 }
 try
 {
 response = client.EndPutObject(asyncResult);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("Caught exception calling EndPutObject:");
 Console.WriteLine(s3Exception);

54

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/dotnet/example_code_legacy/S3/S3Async.cs

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

 }

Simple Callback

This example assumes the following callback function has been defined.

 public static void SimpleCallback(IAsyncResult asyncResult)
 {
 Console.WriteLine("Finished PutObject operation with simple callback.");
 Console.WriteLine("--");
 Console.WriteLine("asyncResult.IsCompleted: {0}\n\n",
 asyncResult.IsCompleted.ToString());
 }

The following line of code calls BeginPutObject and specifies the above callback function. When
the PutObject operation is complete, the callback function is called. The call to BeginPutObject
specifies null for the state parameter because the simple callback function does not access the
AsyncState property of the asyncResult parameter. Neither the calling code or the callback function
call EndPutObject. Therefore, the service response is effectively discarded and any exceptions that
occur during the operation are ignored.

 asyncResult = client.BeginPutObject(request, SimpleCallback, null);

Callback with Client

This example assumes the following callback function has been defined.

 public static void CallbackWithClient(IAsyncResult asyncResult)
 {
 try
 {
 AmazonS3Client s3Client = (AmazonS3Client)asyncResult.AsyncState;
 PutObjectResponse response = s3Client.EndPutObject(asyncResult);
 Console.WriteLine("Finished PutObject operation with client callback.
 Service Version: {0}", s3Client.Config.ServiceVersion);
 Console.WriteLine("--");
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("Request ID: {0}\n\n",
 response.ResponseMetadata.RequestId);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("Caught exception calling EndPutObject:");
 Console.WriteLine(s3Exception);
 }
 }

The following line of code calls BeginPutObject and specifies the preceding callback function.
When the PutObject operation is complete, the callback function is called. In this example, the call
to BeginPutObject specifies the Amazon S3 client object for the state parameter. The callback
function uses the client to call the EndPutObject method to retrieve the server response. Because any
exceptions that occurred during the operation will be received when the callback calls EndPutObject,
this call is placed within a try block.

 asyncResult = client.BeginPutObject(request_client, CallbackWithClient,
 client);

55

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

Callback with State Object

This example assumes the following class and callback function have been defined.

 class ClientState
 {
 public AmazonS3Client Client { get; set; }
 public DateTime Start { get; set; }
 }

 public static void CallbackWithState(IAsyncResult asyncResult)
 {
 try
 {
 ClientState state = asyncResult.AsyncState as ClientState;
 AmazonS3Client s3Client = (AmazonS3Client)state.Client;
 PutObjectResponse response = state.Client.EndPutObject(asyncResult);
 Console.WriteLine("Finished PutObject operation with state callback that
 started at {0}",
 state.Start.ToString());
 Console.WriteLine("--");
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("Request ID: {0}\n\n",
 response.ResponseMetadata.RequestId);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("Caught exception calling EndPutObject:");
 Console.WriteLine(s3Exception);
 }
 }

The following line of code calls BeginPutObject and specifies the above callback function. When
the PutObject operation is complete, the callback function is called. In this example, the call to
BeginPutObject specifies, for the state parameter, an instance of the ClientState class defined
previously. This class embeds the Amazon S3 client as well as the time at which BeginPutObject is
called. The callback function uses the Amazon S3 client object to call the EndPutObject method to
retrieve the server response. The callback also extracts the start time for the operation and uses it to
print the time it took for the asynchronous operation to complete.

As in the previous examples, because exceptions that occur during the operation are received when
EndPutObject is called, this call is placed within a try block.

 asyncResult = client.BeginPutObject(request_state, CallbackWithState,
 new ClientState { Client = client, Start = DateTime.Now });

Complete Example
The following code example demonstrates the patterns you can use when calling the asynchronous
request methods.

using System;
using System.Threading;

using Amazon.S3;
using Amazon.S3.Model;

namespace async_aws_net

56

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

{
 class ClientState
 {
 public AmazonS3Client Client { get; set; }
 public DateTime Start { get; set; }
 }

 class Program
 {
 //
 // Function Main().
 // Parse the command line and call the worker function.
 //
 public static void Main(string[] args)
 {
 if (args.Length != 1)
 {
 Console.WriteLine("You must supply the name of an existing Amazon S3
 bucket.");
 return;
 }

 TestPutObjectAsync(args[0]);
 }

 //
 // Function SimpleCallback().
 // A very simple callback function.
 //
 public static void SimpleCallback(IAsyncResult asyncResult)
 {
 Console.WriteLine("Finished PutObject operation with simple callback.");
 Console.WriteLine("--");
 Console.WriteLine("asyncResult.IsCompleted: {0}\n\n",
 asyncResult.IsCompleted.ToString());
 }

 //
 // Function CallbackWithClient().
 // A callback function that provides access to a given S3 client.
 //
 public static void CallbackWithClient(IAsyncResult asyncResult)
 {
 try
 {
 AmazonS3Client s3Client = (AmazonS3Client)asyncResult.AsyncState;
 PutObjectResponse response = s3Client.EndPutObject(asyncResult);
 Console.WriteLine("Finished PutObject operation with client callback.
 Service Version: {0}", s3Client.Config.ServiceVersion);
 Console.WriteLine("--");
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("Request ID: {0}\n\n",
 response.ResponseMetadata.RequestId);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("Caught exception calling EndPutObject:");
 Console.WriteLine(s3Exception);
 }
 }

 //
 // Function CallbackWithState().
 // A callback function that provides access to a given S3 client as well as state
 information.

57

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

 //
 public static void CallbackWithState(IAsyncResult asyncResult)
 {
 try
 {
 ClientState state = asyncResult.AsyncState as ClientState;
 AmazonS3Client s3Client = (AmazonS3Client)state.Client;
 PutObjectResponse response = state.Client.EndPutObject(asyncResult);
 Console.WriteLine("Finished PutObject operation with state callback that
 started at {0}",
 state.Start.ToString());
 Console.WriteLine("--");
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("Request ID: {0}\n\n",
 response.ResponseMetadata.RequestId);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("Caught exception calling EndPutObject:");
 Console.WriteLine(s3Exception);
 }
 }

 //
 // Function TestPutObjectAsync().
 // Test synchronous and asynchronous variations of PutObject().
 //
 public static void TestPutObjectAsync(string bucket)
 {
 // Create a client
 AmazonS3Client client = new AmazonS3Client();

 PutObjectResponse response;
 IAsyncResult asyncResult;

 //
 // Create a PutObject request object using the supplied bucket name.
 //
 PutObjectRequest request = new PutObjectRequest
 {
 BucketName = bucket,
 Key = "Item0-Synchronous",
 ContentBody = "Put S3 object synchronously."
 };

 //
 // Perform a synchronous PutObject operation.
 //

 Console.WriteLine("---");
 Console.WriteLine("Performing synchronous PutObject operation for {0}.",
 request.Key);
 response = client.PutObject(request);
 Console.WriteLine("Finished PutObject operation for {0}.", request.Key);
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("Request ID: {0}", response.ResponseMetadata.RequestId);
 Console.Write("\n");

 //
 // Perform an async PutObject operation and wait for the response.
 //
 // (Re-use the existing PutObject request object since it isn't being used for
 another async request.)
 //

58

AWS SDK for .NET (version 3) Developer Guide
Asynchronous API for .NET Framework 3.5

 request.Key = "Item1-Async-wait";
 request.ContentBody = "Put S3 object asynchronously; wait for response.";

 Console.WriteLine("---");
 Console.WriteLine("Performing async PutObject operation and waiting for
 response (Key: {0}).", request.Key);

 asyncResult = client.BeginPutObject(request, null, null);
 while (!asyncResult.IsCompleted)
 {
 //
 // Do some work here
 //
 }
 try
 {
 response = client.EndPutObject(asyncResult);
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine("Caught exception calling EndPutObject:");
 Console.WriteLine(s3Exception);
 }

 Console.WriteLine("Finished Async PutObject operation for {0}.", request.Key);
 Console.WriteLine("Service Response:");
 Console.WriteLine("-----------------");
 Console.WriteLine("Request ID: {0}\n", response.ResponseMetadata.RequestId);

 Console.WriteLine("---");
 Console.WriteLine("Performing the following async PutObject operations:");
 Console.WriteLine("\"simple callback\", \"callback with client\", and
 \"callback with state\"...\n");

 //
 // Perform an async PutObject operation with a simple callback.
 //
 // (Re-use the existing PutObject request object since it isn't being used for
 another async request.)
 //
 request.Key = "Item2-Async-simple";
 request.ContentBody = "Put S3 object asynchronously; use simple callback.";

 Console.WriteLine("PutObject with simple callback (Key: {0}).", request.Key);
 asyncResult = client.BeginPutObject(request, SimpleCallback, null);

 //
 // Perform an async PutObject operation with a client callback.
 //
 // Create a PutObject request object for this call using the supplied bucket
 name.
 //
 PutObjectRequest request_client = new PutObjectRequest
 {
 BucketName = bucket,
 Key = "Item3-Async-client",
 ContentBody = "Put S3 object asynchronously; use callback with client."
 };

 Console.WriteLine("PutObject with client callback (Key: {0}).",
 request_client.Key);
 asyncResult = client.BeginPutObject(request_client, CallbackWithClient,
 client);

 //

59

AWS SDK for .NET (version 3) Developer Guide
Retries and timeouts

 // Perform an async PutObject operation with a state callback.
 //
 // Create a PutObject request object for this call using the supplied bucket
 name.
 //
 PutObjectRequest request_state = new PutObjectRequest
 {
 BucketName = bucket,
 Key = "Item3-Async-state",
 ContentBody = "Put S3 object asynchronously; use callback with state."
 };

 Console.WriteLine("PutObject with state callback (Key: {0}).\n",
 request_state.Key);
 asyncResult = client.BeginPutObject(request_state, CallbackWithState,
 new ClientState { Client = client, Start = DateTime.Now });

 //
 // Finished with async calls. Wait a bit for them to finish.
 //
 Thread.Sleep(TimeSpan.FromSeconds(5));
 }
 }
}

You can also view it on GitHub.

See Also
• Setting up the AWS SDK for .NET (p. 15)
• Programming with the AWS SDK for .NET (p. 21)

Retries and timeouts
The AWS SDK for .NET enables you to configure the number of retries and the timeout values for HTTP
requests to AWS services. If the default values for retries and timeouts are not appropriate for your
application, you can adjust them for your specific requirements, but it is important to understand how
doing so will affect the behavior of your application.

To determine which values to use for retries and timeouts, consider the following:

• How should the AWS SDK for .NET and your application respond when network connectivity degrades
or an AWS service is unreachable? Do you want the call to fail fast, or is it appropriate for the call to
keep retrying on your behalf?

• Is your application a user-facing application or website that must be responsive, or is it a background
processing job that has more tolerance for increased latencies?

• Is the application deployed on a reliable network with low latency, or is it deployed at a remote
location with unreliable connectivity?

Retries

Overview
The AWS SDK for .NET can retry requests that fail due to server-side throttling or dropped connections.
There are two properties of service configuration classes that you can use to specify the retry

60

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/dotnet/example_code_legacy/S3/S3Async.cs

AWS SDK for .NET (version 3) Developer Guide
Retries

behavior of a service client. Service configuration classes inherit these properties from the abstract
Amazon.Runtime.ClientConfig class of the AWS SDK for .NET API Reference:

• RetryMode specifies one of three retry modes, which are defined in the
Amazon.Runtime.RequestRetryMode enumeration.

The default value for your application can be controlled by using the AWS_RETRY_MODE environment
variable or the retry_mode setting in the shared AWS config file.

• MaxErrorRetry specifies the number of retries allowed at the service client level; the SDK retries the
operation the specified number of times before failing and throwing an exception.

The default value for your application can be controlled by using the AWS_MAX_ATTEMPTS
environment variable or the max_attempts setting in the shared AWS config file.

Detailed descriptions for these properties can be found in the abstract Amazon.Runtime.ClientConfig
class of the AWS SDK for .NET API Reference. Each value of RetryMode corresponds by default to a
particular value of MaxErrorRetry, as shown in the following table.

RetryMode Corresponding MaxErrorRetry
(Amazon DynamoDB)

Corresponding MaxErrorRetry
(all others)

Legacy 10 4

Standard 10 2

Adaptive (experimental) 10 2

Behavior
When your application starts

When your application starts, default values for RetryMode and MaxErrorRetry are configured by the
SDK. These default values are used when you create a service client unless you specify other values.

• If the properties aren't set in your environment, the default for RetryMode is configured as Legacy and
the default for MaxErrorRetry is configured with the corresponding value from the preceding table.

• If the retry mode has been set in your environment, that value is used as the default for RetryMode.
The default for MaxErrorRetry is configured with the corresponding value from the preceding table
unless the value for maximum errors has also been set in your environment (described next).

• If the value for maximum errors has been set in your environment, that value is used as the default for
MaxErrorRetry. Amazon DynamoDB is the exception to this rule; the default DynamoDB value for
MaxErrorRetry is always the value from the preceding table.

As your application runs

When you create a service client, you can use the default values for RetryMode and MaxErrorRetry,
as described earlier, or you can specify other values. To specify other values, create and include a service
configuration object such as AmazonDynamoDBConfig or AmazonSQSConfig when you create the service
client.

These values can't be changed for a service client after it has been created.

Considerations

61

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TRequestRetryMode.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/TDynamoDBConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSConfig.html

AWS SDK for .NET (version 3) Developer Guide
Timeouts

When a retry occurs, the latency of your request is increased. You should configure your retries based on
your application limits for total request latency and error rates.

Timeouts
The AWS SDK for .NET enables you to configure the request timeout and socket read/write timeout
values at the service client level. These values are specified in the Timeout and the ReadWriteTimeout
properties of the abstract Amazon.Runtime.ClientConfig class. These values are passed on as the
Timeout and ReadWriteTimeout properties of the HttpWebRequest objects created by the AWS
service client object. By default, the Timeout value is 100 seconds and the ReadWriteTimeout value is
300 seconds.

When your network has high latency, or conditions exist that cause an operation to be retried, using long
timeout values and a high number of retries can cause some SDK operations to seem unresponsive.

Note
The version of the AWS SDK for .NET that targets the portable class library (PCL) uses the
HttpClient class instead of the HttpWebRequest class, and supports the Timeout property only.

The following are the exceptions to the default timeout values. These values are overridden when you
explicitly set the timeout values.

• Timeout and ReadWriteTimeout are set to the maximum values if the method being called
uploads a stream, such as AmazonS3Client.PutObjectAsync(), AmazonS3Client.UploadPartAsync(),
AmazonGlacierClient.UploadArchiveAsync(), and so on.

• The versions of the AWS SDK for .NET that target .NET Framework set Timeout and
ReadWriteTimeout to the maximum values for all AmazonS3Client and AmazonGlacierClient
objects.

• The versions of the AWS SDK for .NET that target the portable class library (PCL) and .NET Core set
Timeout to the maximum value for all AmazonS3Client and AmazonGlacierClient objects.

Example
The following example shows you how to specify Standard retry mode, a maximum of 3 retries, a
timeout of 10 seconds, and a read/write timeout of 10 seconds (if applicable). The AmazonS3Client
constructor is given an AmazonS3Config object.

var s3Client = new AmazonS3Client(
 new AmazonS3Config
 {
 Timeout = TimeSpan.FromSeconds(10),
 // NOTE: The following property is obsolete for
 // versions of the AWS SDK for .NET that target .NET Core.
 ReadWriteTimeout = TimeSpan.FromSeconds(10),
 RetryMode = RequestRetryMode.Standard,
 MaxErrorRetry = 3
 });

Paginators
Paginators provide both synchronous and asynchronous mechanisms for pagination, enabling you to
avoid the overhead of continuation tokens. Synchronous pagination is available in .NET Framework 4.5
(or later) projects. Asynchronous pagination is available in .NET Core projects.

62

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TClientConfig.html
https://docs.microsoft.com/en-us/dotnet/api/system.net.httpwebrequest
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient
https://docs.microsoft.com/en-us/dotnet/api/system.net.http.httpclient.timeout
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/MS3PutObjectAsyncPutObjectRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/MS3UploadPartAsyncUploadPartRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/MGlacierUploadArchiveAsyncUploadArchiveRequestCancellationToken.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/TGlacierClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/TGlacierClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/S3/TS3Config.html

AWS SDK for .NET (version 3) Developer Guide
Migrating to Version 3

Paginators were added in Version 3.5 of the AWS SDK for .NET. To see how to use use paginators, see
Paginators in the latest version of the documentation.

Migrating to Version 3 of the AWS SDK for .NET
This topic describes changes in version 3 of the AWS SDK for .NET and how to migrate your code to this
version of the SDK.

About the AWS SDK for .NET Versions
The AWS SDK for .NET, originally released in November 2009, was designed for .NET Framework 2.0.
Since that release, .NET has improved with .NET Framework 4.0 and .NET Framework 4.5, and added new
target platforms: WinRT and Windows Phone.

AWS SDK for .NET version 2 was updated to take advantage of the new features of the .NET platform
and to target WinRT and Windows Phone.

AWS SDK for .NET version 3 has been updated to make the assemblies modular.

Architecture Redesign for the SDK
The entire version 3 of the AWS SDK for .NET is redesigned to be modular. Each service is now
implemented in its own assembly, instead of in one global assembly. You no longer have to add the
entire AWS SDK for .NET to your application. You can now add assemblies only for the AWS services your
application uses.

Breaking Changes
The following sections describe changes to version 3 of the AWS SDK for .NET.

AWSClientFactory Removed
The Amazon.AWSClientFactory class was removed. Now, to create a service client, use the constructor
of the service client. For example, to create an AmazonEC2Client:

var ec2Client = new Amazon.EC2.AmazonEC2Client();

Amazon.Runtime.AssumeRoleAWSCredentials Removed
The Amazon.Runtime.AssumeRoleAWSCredentials class was removed because it was in a core
namespace but had a dependency on the AWS Security Token Service, and because it has been obsolete
in the SDK for some time. Use the Amazon.SecurityToken.AssumeRoleAWSCredentials class
instead.

SetACL Method Removed from S3Link
The S3Link class is part of the Amazon.DynamoDBv2 package and is used for storing objects in
Amazon S3 that are references in a DynamoDB item. This is a useful feature, but we didn’t want to
create a compile dependency on the Amazon.S3 package for DynamoDB. Consequently, we simplified
the exposed Amazon.S3 methods from the S3Link class, replacing the SetACL method with the
MakeS3ObjectPublic method. For more control over the access control list (ACL) on the object, use the
Amazon.S3 package directly.

63

../../latest/developer-guide/paginators.html
../../latest/developer-guide/welcome.html

AWS SDK for .NET (version 3) Developer Guide
Migrating to Version 3.5

Removal of Obsolete Result Classes
For most services in the AWS SDK for .NET, operations return a response object that contains metadata
for the operation, such as the request ID and a result object. Having a separate response and result class
was redundant and created extra typing for developers. In version 2 of the AWS SDK for .NET, we put all
the information in the result class into the response class. We also marked the result classes obsolete to
discourage their use. In version 3 of the AWS SDK for .NET, we removed these obsolete result classes to
help reduce the SDK’s size.

AWS Config Section Changes
It is possible to do advanced configuration of the AWS SDK for .NET through the App.config or
Web.config file. You do this through an <aws> config section like the following, which references the
SDK assembly name.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK"/>
 </configSections>
 <aws region="us-west-2">
 <logging logTo="Log4Net"/>
 </aws>
</configuration>

In version 3 of the AWS SDK for .NET, the AWSSDK assembly no longer exists. We put the common code
into the AWSSDK.Core assembly. As a result, you will need to change the references to the AWSSDK
assembly in your App.config or Web.config file to the AWSSDK.Core assembly, as follows.

<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws region="us-west-2">
 <logging logTo="Log4Net"/>
 </aws>
</configuration>

You can also manipulate the config settings with the Amazon.AWSConfigs class. In version 3 of the
AWS SDK for .NET, we moved the config settings for DynamoDB from the Amazon.AWSConfigs class to
the Amazon.AWSConfigsDynamoDB class.

Migrating to Version 3.5 of the AWS SDK for .NET
Version 3.5 of the AWS SDK for .NET further standardizes the .NET experience by transitioning support
for all non-Framework variations of the SDK to .NET Standard 2.0.

To see what has changed in version 3.5 and possible work that you might need to do to migrate your
environment or code from version 3, see the latest version of the documentation.

Migrating from .NET Standard 1.3
On June 27 2019 Microsoft ended support for .NET Core 1.0 and .NET Core 1.1 versions. Following this
announcement, AWS ended support for .NET Standard 1.3 on the AWS SDK for .NET on December 31,
2020.

64

https://docs.microsoft.com/en-us/dotnet/standard/net-standard
../../latest/developer-guide/net-dg-v35.html
https://devblogs.microsoft.com/dotnet/net-core-1-0-and-1-1-will-reach-end-of-life-on-june-27-2019/

AWS SDK for .NET (version 3) Developer Guide
Migrating from .NET Standard 1.3

AWS continued to provide service updates and security fixes on the AWS SDK for .NET targeting .NET
Standard 1.3 until October 1, 2020. After that date, the .NET Standard 1.3 target went into Maintenance
mode, which meant that no new updates were released; AWS applied critical bug fixes and security
patches only.

On December 31, 2020, support for .NET Standard 1.3 on the AWS SDK for .NET came to its end of life.
After that date no bug fixes or security patches were applied. Artifacts built with that target remain
available for download on NuGet.

What you need to do

• If you're running applications using .NET Framework, you're not affected.

• If you're running applications using .NET Core 2.0 or higher, you're not affected.

• If you're running applications using .NET Core 1.0 or .NET Core 1.1, migrate your applications to a
newer version of .NET Core by following Microsoft migration instructions. We recommend a minimum
of .NET Core 3.1.

• If you're running business critical applications that cannot be upgraded at this time, you can continue
using your current version of AWS SDK for .NET.

If you have questions or concerns, contact AWS Support.

65

https://docs.microsoft.com/en-us/dotnet/core/migration/
https://console.aws.amazon.com/support

AWS SDK for .NET (version 3) Developer Guide
Listing AWS Resources using AWS CloudFormation

Code examples for the AWS SDK
for .NET

The following examples demonstrate how to use the AWS SDK for .NET to work with individual AWS
services.

Find the source code for these examples and others in the AWS documentation code examples repository
on GitHub. To propose a new code example for the AWS documentation team to consider producing,
create a new request. The team is looking to produce code examples that cover broader scenarios and
use cases, versus simple code snippets that cover only individual API calls. For instructions, see the
Proposing new code examples section in the Readme on GitHub.

Additional samples are available on GitHub.

Before you begin, be sure you have set up the AWS SDK for .NET (p. 15) and review Programming with
the AWS SDK for .NET (p. 21).

Topics
• Listing AWS Resources using AWS CloudFormation (p. 66)
• Authenticating Users with Amazon Cognito (p. 67)
• Using Amazon DynamoDB NoSQL Databases (p. 72)
• Deploying Applications Using Amazon EC2 (p. 92)
• Storing Archival Data Using Amazon S3 Glacier (p. 118)
• Managing Users With AWS Identity and Access Management (IAM) (p. 121)
• Using AWS Key Management Service keys for Amazon S3 encryption in the AWS SDK

for .NET (p. 140)
• Managing Domain Name System (DNS) Resources Using Amazon Route 53 (p. 142)
• Using Amazon Simple Storage Service Internet Storage (p. 146)
• Sending Notifications From the Cloud Using Amazon Simple Notification Service (p. 147)
• Messaging Using Amazon SQS (p. 150)
• Monitoring Your AWS Resources Using Amazon CloudWatch (p. 159)
• Programming AWS OpsWorks to Work with Stacks and Applications (p. 170)
• Programming Support for Additional AWS Services (p. 170)

Listing AWS Resources using AWS CloudFormation
The AWS SDK for .NET supports AWS CloudFormation, which creates and provisions AWS infrastructure
deployments predictably and repeatedly. For more information, see AWS CloudFormation Getting
Started Guide.

The following example shows how to use the low-level APIs to list accessible resources in AWS
CloudFormation.

// using Amazon.CloudFormation;
// using Amazon.CloudFormation.Model;

var client = new AmazonCloudFormationClient();
var request = new DescribeStacksRequest();

66

https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples
https://github.com/awsdocs/aws-doc-sdk-examples/blob/master/README.rst
https://github.com/awslabs/aws-sdk-net-samples
https://docs.aws.amazon.com/AWSCloudFormation/latest/GettingStartedGuide/
https://docs.aws.amazon.com/AWSCloudFormation/latest/GettingStartedGuide/

AWS SDK for .NET (version 3) Developer Guide
Authenticating Users with Amazon Cognito

var response = client.DescribeStacks(request);

foreach (var stack in response.Stacks)
{
 Console.WriteLine("Stack: {0}", stack.StackName);
 Console.WriteLine(" Status: {0}", stack.StackStatus);
 Console.WriteLine(" Created: {0}", stack.CreationTime);

 var ps = stack.Parameters;

 if (ps.Any())
 {
 Console.WriteLine(" Parameters:");

 foreach (var p in ps)
 {
 Console.WriteLine(" {0} = {1}",
 p.ParameterKey, p.ParameterValue);
 }

 }

}

For related API reference information, see Amazon.CloudFormation and Amazon.CloudFormation.Model
in the AWS SDK for .NET API Reference.

Authenticating Users with Amazon Cognito
Using Amazon Cognito Identity, you can create unique identities for your users and authenticate them
for secure access to your AWS resources such as Amazon S3 or Amazon DynamoDB. Amazon Cognito
Identity supports public identity providers such as Amazon, Facebook, Twitter/Digits, Google, or any
OpenID Connect-compatible provider as well as unauthenticated identities. Amazon Cognito also
supports developer authenticated identities, which let you register and authenticate users using your
own backend authentication process, while still using Amazon Cognito Sync to synchronize user data and
access AWS resources.

For more information on Amazon Cognito, see the Amazon Cognito Developer Guide

The following code examples show how to easily use Amazon Cognito Identity. The Amazon Cognito
Credentials Provider example shows how to create and authenticate user identities. The Amazon
CognitoAuthentication Extension Library example shows how to use the CognitoAuthentication extension
library to authenticate Amazon Cognito user pools.

Topics
• Amazon Cognito Credentials Provider (p. 67)
• Amazon CognitoAuthentication Extension Library Examples (p. 69)

Amazon Cognito Credentials Provider
Amazon.CognitoIdentity.CognitoAWSCredentials is a credentials object that uses Amazon
Cognito and the AWS Security Token Service (AWS STS) to retrieve credentials to make AWS calls.

The first step in setting up CognitoAWSCredentials is to create an “identity pool”. (An identity pool is
a store of user identity information that is specific to your account. The information is retrievable across
client platforms, devices, and operating systems, so that if a user starts using the app on a phone and
later switches to a tablet, the persisted app information is still available for that user. You can create a

67

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/NCloudFormation.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudFormation/NCloudFormation.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
http://aws.amazon.com/blogs/mobile/amazon-cognito-announcing-developer-authenticated-identities/
https://aws.amazon.com/cognito/
https://docs.aws.amazon.com/cognito/latest/developerguide/what-is-amazon-cognito.html

AWS SDK for .NET (version 3) Developer Guide
Amazon Cognito Credentials Provider

new identity pool from the Amazon Cognito console. If you are using the console, it will also provide you
the other pieces of information you need:

• Your account number- A 12-digit number, such as 123456789012, that is unique to your account.
• The unauthenticated role ARN- A role that unauthenticated users will assume. For example, this role

can provide read-only permissions to your data.
• The authenticated role ARN- A role that authenticated users will assume. This role can provide more

extensive permissions to your data.

Set up CognitoAWSCredentials
The following code example shows how to set up CognitoAWSCredentials, which you can then use
to make a call to Amazon S3 as an unauthenticated user. This enables you to make calls with just a
minimum amount of data required to authenticate the user. User permissions are controlled by the role,
so you can configure access as you need.

CognitoAWSCredentials credentials = new CognitoAWSCredentials(
 accountId, // Account number
 identityPoolId, // Identity pool ID
 unAuthRoleArn, // Role for unauthenticated users
 null, // Role for authenticated users, not set
 region);
using (var s3Client = new AmazonS3Client(credentials))
{
 s3Client.ListBuckets();
}

Use AWS as an Unauthenticated User
The following code example shows how you can start using AWS as an unauthenticated user, then
authenticate through Facebook and update the credentials to use Facebook credentials. Using this
approach, you can grant different capabilities to authenticated users via the authenticated role. For
instance, you might have a phone application that permits users to view content anonymously, but
allows them to post if they are logged on with one or more of the configured providers.

CognitoAWSCredentials credentials = new CognitoAWSCredentials(
 accountId, identityPoolId,
 unAuthRoleArn, // Role for unauthenticated users
 authRoleArn, // Role for authenticated users
 region);
using (var s3Client = new AmazonS3Client(credentials))
{
 // Initial use will be unauthenticated
 s3Client.ListBuckets();

 // Authenticate user through Facebook
 string facebookToken = GetFacebookAuthToken();

 // Add Facebook login to credentials. This clears the current AWS credentials
 // and retrieves new AWS credentials using the authenticated role.
 credentials.AddLogin("graph.facebook.com", facebookAccessToken);

 // This call is performed with the authenticated role and credentials
 s3Client.ListBuckets();
}

The CognitoAWSCredentials object provides even more functionality if you use it
with the AmazonCognitoSyncClient that is part of the AWS SDK for .NET. If you’re

68

AWS SDK for .NET (version 3) Developer Guide
Amazon CognitoAuthentication Extension Library Examples

using both AmazonCognitoSyncClient and CognitoAWSCredentials, you don’t
have to specify the IdentityPoolId and IdentityId properties when making calls
with the AmazonCognitoSyncClient. These properties are automatically filled in from
CognitoAWSCredentials. The next code example illustrates this, as well as an event that notifies you
whenever the IdentityId for CognitoAWSCredentials changes. The IdentityId can change in
some cases, such as when changing from an unauthenticated user to an authenticated one.

CognitoAWSCredentials credentials = GetCognitoAWSCredentials();

// Log identity changes
credentials.IdentityChangedEvent += (sender, args) =>
{
 Console.WriteLine("Identity changed: [{0}] => [{1}]", args.OldIdentityId,
 args.NewIdentityId);
};

using (var syncClient = new AmazonCognitoSyncClient(credentials))
{
 var result = syncClient.ListRecords(new ListRecordsRequest
 {
 DatasetName = datasetName
 // No need to specify these properties
 //IdentityId = "...",
 //IdentityPoolId = "..."
 });
}

Amazon CognitoAuthentication Extension Library
Examples
The CognitoAuthentication extension library simplifies the authentication process of Amazon
Cognito user pools for .NET Core and Xamarin developers. The library is built on top of the
Amazon Cognito Identity Provider API to create and send user authentication API calls. You can get
Amazon.Extensions.CognitoAuthentication from the NuGet gallery.

Using the CognitoAuthentication Extension Library
Amazon Cognito has some built-in AuthFlow and ChallengeName values for a standard authentication
flow to validate username and password through the Secure Remote Password (SRP). For more
information about authentication flow, see Amazon Cognito User Pool Authentication Flow.

The following examples require these using statements:

// Required for all examples
using System;
using Amazon;
using Amazon.CognitoIdentity;
using Amazon.CognitoIdentityProvider;
using Amazon.Extensions.CognitoAuthentication;
using Amazon.Runtime;
// Required for the GetS3BucketsAsync example
using Amazon.S3;
using Amazon.S3.Model;

Use Basic Authentication

Create an AmazonCognitoIdentityProviderClient using AnonymousAWSCredentials, which do
not require signed requests. You do not need to supply a region, the underlying code calls

69

https://docs.aws.amazon.com/cognito/latest/developerguide/amazon-cognito-user-pools-authentication-flow.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CognitoIdentityProvider/TCognitoIdentityProviderClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Runtime/TAnonymousAWSCredentials.html

AWS SDK for .NET (version 3) Developer Guide
Amazon CognitoAuthentication Extension Library Examples

FallbackRegionFactory.GetRegionEndpoint() if a region is not provided. Create
CognitoUserPool and CognitoUser objects. Call the StartWithSrpAuthAsync method with an
InitiateSrpAuthRequest that contains the user password.

public static async void GetCredsAsync()
{
 AmazonCognitoIdentityProviderClient provider =
 new AmazonCognitoIdentityProviderClient(new
 Amazon.Runtime.AnonymousAWSCredentials());
 CognitoUserPool userPool = new CognitoUserPool("poolID", "clientID", provider);
 CognitoUser user = new CognitoUser("username", "clientID", userPool, provider);
 InitiateSrpAuthRequest authRequest = new InitiateSrpAuthRequest()
 {
 Password = "userPassword"
 };

 AuthFlowResponse authResponse = await
 user.StartWithSrpAuthAsync(authRequest).ConfigureAwait(false);
 accessToken = authResponse.AuthenticationResult.AccessToken;

}

Authenticate with Challenges

Continuing the authentication flow with challenges, such as with NewPasswordRequired and Multi-
Factor Authentication (MFA), is also simpler. The only requirements are the CognitoAuthentication
objects, user’s password for SRP, and the necessary information for the next challenge, which is acquired
after prompting the user to enter it. The following code shows one way to check the challenge type and
get the appropriate responses for MFA and NewPasswordRequired challenges during the authentication
flow.

Do a basic authentication request as before, and await an AuthFlowResponse. When the response
is received loop through the returned AuthenticationResult object. If the ChallengeName type is
NEW_PASSWORD_REQUIRED, call the RespondToNewPasswordRequiredAsync method.

public static async void GetCredsChallengesAsync()
{
 AmazonCognitoIdentityProviderClient provider =
 new AmazonCognitoIdentityProviderClient(new
 Amazon.Runtime.AnonymousAWSCredentials());
 CognitoUserPool userPool = new CognitoUserPool("poolID", "clientID", provider);
 CognitoUser user = new CognitoUser("username", "clientID", userPool, provider);
 InitiateSrpAuthRequest authRequest = new InitiateSrpAuthRequest(){
 Password = "userPassword"
 };

 AuthFlowResponse authResponse = await
 user.StartWithSrpAuthAsync(authRequest).ConfigureAwait(false);

 while (authResponse.AuthenticationResult == null)
 {
 if (authResponse.ChallengeName == ChallengeNameType.NEW_PASSWORD_REQUIRED)
 {
 Console.WriteLine("Enter your desired new password:");
 string newPassword = Console.ReadLine();

 authResponse = await user.RespondToNewPasswordRequiredAsync(new
 RespondToNewPasswordRequiredRequest()
 {
 SessionID = authResponse.SessionID,
 NewPassword = newPassword
 });

70

AWS SDK for .NET (version 3) Developer Guide
Amazon CognitoAuthentication Extension Library Examples

 accessToken = authResponse.AuthenticationResult.AccessToken;
 }
 else if (authResponse.ChallengeName == ChallengeNameType.SMS_MFA)
 {
 Console.WriteLine("Enter the MFA Code sent to your device:");
 string mfaCode = Console.ReadLine();

 AuthFlowResponse mfaResponse = await user.RespondToSmsMfaAuthAsync(new
 RespondToSmsMfaRequest()
 {
 SessionID = authResponse.SessionID,
 MfaCode = mfaCode

 }).ConfigureAwait(false);
 accessToken = authResponse.AuthenticationResult.AccessToken;
 }
 else
 {
 Console.WriteLine("Unrecognized authentication challenge.");
 accessToken = "";
 break;
 }
 }

 if (authResponse.AuthenticationResult != null)
 {
 Console.WriteLine("User successfully authenticated.");
 }
 else
 {
 Console.WriteLine("Error in authentication process.");
 }

}

Use AWS Resources after Authentication

Once a user is authenticated using the CognitoAuthentication library, the next step is to allow the user to
access the appropriate AWS resources. To do this you must create an identity pool through the Amazon
Cognito Federated Identities console. By specifying the Amazon Cognito user pool you created as a
provider, using its poolID and clientID, you can allow your Amazon Cognito user pool users to access AWS
resources connected to your account. You can also specify different roles to enable both unauthenticated
and authenticated users to access different resources. You can change these rules in the IAM console,
where you can add or remove permissions in the Action field of the role’s attached policy. Then, using
the appropriate identity pool, user pool, and Amazon Cognito user information, you can make calls to
different AWS resources. The following example shows a user authenticated with SRP accessing the
different Amazon S3 buckets permitted by the associated identity pool’s role

public async void GetS3BucketsAsync()
{
 var provider = new AmazonCognitoIdentityProviderClient(new AnonymousAWSCredentials());
 CognitoUserPool userPool = new CognitoUserPool("poolID", "clientID", provider);
 CognitoUser user = new CognitoUser("username", "clientID", userPool, provider);

 string password = "userPassword";

 AuthFlowResponse context = await user.StartWithSrpAuthAsync(new
 InitiateSrpAuthRequest()
 {
 Password = password
 }).ConfigureAwait(false);

 CognitoAWSCredentials credentials =

71

AWS SDK for .NET (version 3) Developer Guide
Using Amazon DynamoDB NoSQL Databases

 user.GetCognitoAWSCredentials("identityPoolID", RegionEndpoint.<
 YourIdentityPoolRegion >);

 using (var client = new AmazonS3Client(credentials))
 {
 ListBucketsResponse response =
 await client.ListBucketsAsync(new ListBucketsRequest()).ConfigureAwait(false);

 foreach (S3Bucket bucket in response.Buckets)
 {
 Console.WriteLine(bucket.BucketName);
 }
 }
}

More Authentication Options
In addition to SRP, NewPasswordRequired, and MFA, the CognitoAuthentication extension library offers
an easier authentication flow for:

• Custom - Initiate with a call to StartWithCustomAuthAsync(InitiateCustomAuthRequest
customRequest)

• RefreshToken - Initiate with a call to
StartWithRefreshTokenAuthAsync(InitiateRefreshTokenAuthRequest
refreshTokenRequest)

• RefreshTokenSRP - Initiate with a call to
StartWithRefreshTokenAuthAsync(InitiateRefreshTokenAuthRequest
refreshTokenRequest)

• AdminNoSRP - Initiate with a call to
StartWithAdminNoSrpAuthAsync(InitiateAdminNoSrpAuthRequest adminAuthRequest)

Call the appropriate method depending on the flow you want. Then continue prompting the user with
challenges as they are presented in the AuthFlowResponse objects of each method call. Also call
the appropriate response method, such as RespondToSmsMfaAuthAsync for MFA challenges and
RespondToCustomAuthAsync for custom challenges.

Using Amazon DynamoDB NoSQL Databases
The AWS SDK for .NET supports Amazon DynamoDB, which is a fast NoSQL database service offered by
AWS. The SDK provides three programming models for communicating with DynamoDB: the low-level
model, the document model, and the object persistence model.

The following information introduces these models and their APIs, provides examples for how and
when to use them, and gives you links to additional DynamoDB programming resources in the AWS SDK
for .NET.

Topics
• Low-Level Model (p. 73)
• Document Model (p. 75)
• Object Persistence Model (p. 76)
• More Info (p. 77)
• Using Expressions with Amazon DynamoDB and the AWS SDK for .NET (p. 78)
• JSON Support in Amazon DynamoDB with the AWS SDK for .NET (p. 88)
• Managing ASP.NET Session State with Amazon DynamoDB (p. 89)

72

AWS SDK for .NET (version 3) Developer Guide
Low-Level Model

Low-Level Model
The low-level programming model wraps direct calls to the DynamoDB service. You access this model
through the Amazon.DynamoDBv2 namespace.

Of the three models, the low-level model requires you to write the most code. For example, you must
convert .NET data types to their equivalents in DynamoDB. However, this model gives you access to the
most features.

The following examples show you how to use the low-level model to create a table, modify a table, and
insert items into a table in DynamoDB.

Creating a Table
In the following example, you create a table by using the CreateTable method of the
AmazonDynamoDBClient class. The CreateTable method uses an instance of the
CreateTableRequest class that contains characteristics such as required item attribute names,
primary key definition, and throughput capacity. The CreateTable method returns an instance of the
CreateTableResponse class.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();

Console.WriteLine("Getting list of tables");
List<string> currentTables = client.ListTables().TableNames;
Console.WriteLine("Number of tables: " + currentTables.Count);
if (!currentTables.Contains("AnimalsInventory"))
{
 var request = new CreateTableRequest
 {
 TableName = "AnimalsInventory",
 AttributeDefinitions = new List<AttributeDefinition>
 {
 new AttributeDefinition
 {
 AttributeName = "Id",
 // "S" = string, "N" = number, and so on.
 AttributeType = "N"
 },
 new AttributeDefinition
 {
 AttributeName = "Type",
 AttributeType = "S"
 }
 },
 KeySchema = new List<KeySchemaElement>
 {
 new KeySchemaElement
 {
 AttributeName = "Id",
 // "HASH" = hash key, "RANGE" = range key.
 KeyType = "HASH"
 },
 new KeySchemaElement
 {
 AttributeName = "Type",
 KeyType = "RANGE"
 },
 },
 ProvisionedThroughput = new ProvisionedThroughput

73

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/NDynamoDBv2.html

AWS SDK for .NET (version 3) Developer Guide
Low-Level Model

 {
 ReadCapacityUnits = 10,
 WriteCapacityUnits = 5
 },
 };

 var response = client.CreateTable(request);

 Console.WriteLine("Table created with request ID: " +
 response.ResponseMetadata.RequestId);
}

Verifying That a Table is Ready to Modify
Before you can change or modify a table, the table has to be ready for modification. The following
example shows how to use the low-level model to verify that a table in DynamoDB is ready. In
this example, the target table to check is referenced through the DescribeTable method of
the AmazonDynamoDBClient class. Every five seconds, the code checks the value of the table’s
TableStatus property. When the status is set to ACTIVE, the table is ready to be modified.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var status = "";

do
{
 // Wait 5 seconds before checking (again).
 System.Threading.Thread.Sleep(TimeSpan.FromSeconds(5));

 try
 {
 var response = client.DescribeTable(new DescribeTableRequest
 {
 TableName = "AnimalsInventory"
 });

 Console.WriteLine("Table = {0}, Status = {1}",
 response.Table.TableName,
 response.Table.TableStatus);

 status = response.Table.TableStatus;
 }
 catch (ResourceNotFoundException)
 {
 // DescribeTable is eventually consistent. So you might
 // get resource not found.
 }

} while (status != TableStatus.ACTIVE);

Inserting an Item into a Table
In the following example, you use the low-level model to insert two items into a table in DynamoDB.
Each item is inserted through the PutItem method of the AmazonDynamoDBClient class, using an
instance of the PutItemRequest class. Each of the two instances of the PutItemRequest class takes
the name of the table that the items will be inserted in, with a series of item attribute values.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

74

AWS SDK for .NET (version 3) Developer Guide
Document Model

var client = new AmazonDynamoDBClient();

var request1 = new PutItemRequest
{
 TableName = "AnimalsInventory",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "1" }},
 { "Type", new AttributeValue { S = "Dog" }},
 { "Name", new AttributeValue { S = "Fido" }}
 }
};

var request2 = new PutItemRequest
{
 TableName = "AnimalsInventory",
 Item = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "2" }},
 { "Type", new AttributeValue { S = "Cat" }},
 { "Name", new AttributeValue { S = "Patches" }}
 }
};

client.PutItem(request1);
client.PutItem(request2);

Document Model
The document programming model provides an easier way to work with data in DynamoDB. This model
is specifically intended for accessing tables and items in tables. You access this model through the
Amazon.DynamoDBv2.DocumentModel namespace.

Compared to the low-level programming model, the document model is easier to code against
DynamoDB data. For example, you don’t have to convert as many .NET data types to their equivalents
in DynamoDB. However, this model doesn’t provide access to as many features as the low-level
programming model. For example, you can use this model to create, retrieve, update, and delete items
in tables. However, to create the tables, you must use the low-level model. Compared to the object
persistence model, this model requires you to write more code to store, load, and query .NET objects.

The following examples show you how to use the document model to insert items and get items in
tables in DynamoDB.

Inserting an Item into a Table
In the following example, an item is inserted into the table through the PutItem method of the Table
class. The PutItem method takes an instance of the Document class; the Document class is simply a
collection of initialized attributes. To determine the table to insert the item into, call the LoadTable
method of the Table class, specifying an instance of the AmazonDynamoDBClient class and the name
of the target table in DynamoDB.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = new Document();

item["Id"] = 3;

75

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/NDynamoDBv2DocumentModel.html

AWS SDK for .NET (version 3) Developer Guide
Object Persistence Model

item["Type"] = "Horse";
item["Name"] = "Shadow";

table.PutItem(item);

Getting an Item from a Table
In the following example, the item is retrieved through the GetItem method of the Table class. To
determine the item to get, the GetItem method uses the hash-and-range primary key of the target
item. To determine the table to get the item from, the LoadTable method of the Table class uses an
instance of the AmazonDynamoDBClient class and the name of the target table in DynamoDB.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = table.GetItem(3, "Horse");

Console.WriteLine("Id = " + item["Id"]);
Console.WriteLine("Type = " + item["Type"]);
Console.WriteLine("Name = " + item["Name"]);

The preceding example implicitly converts the attribute values for Id, Type, and Name to strings for
the WriteLine method. You can do explicit conversions by using the various AsType methods of
the DynamoDBEntry class. For example, you could explicitly convert the attribute value for Id from a
Primitive data type to an integer through the AsInt method:

int id = item["Id"].AsInt();

Or, you could simply perform an explicit cast here by using (int):

int id = (int)item["Id"];

Object Persistence Model
The object persistence programming model is specifically designed for storing,
loading, and querying .NET objects in DynamoDB. You access this model through the
Amazon.DynamoDBv2.DataModel namespace.

Of the three models, the object persistence model is the easiest to code against whenever you are
storing, loading, or querying DynamoDB data. For example, you work with DynamoDB data types
directly. However, this model provides access only to operations that store, load, and query .NET objects
in DynamoDB. For example, you can use this model to create, retrieve, update, and delete items in tables.
However, you must first create your tables using the low-level model, and then use this model to map
your .NET classes to the tables.

The following examples show you how to define a .NET class that represents an item, use an instance
of the .NET class to insert an item, and use an instance of a .NET object to get an item from a table in
DynamoDB.

Defining a .NET Class that Represents an Item in a Table
In the following example, the DynamoDBTable attribute specifies the table name, while the
DynamoDBHashKey and DynamoDBRangeKey attributes model the table’s hash-and-range primary key.

76

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/DynamoDBv2/NDynamoDBv2DataModel.html

AWS SDK for .NET (version 3) Developer Guide
More Info

// using Amazon.DynamoDBv2.DataModel;

[DynamoDBTable("AnimalsInventory")]
class Item
{
 [DynamoDBHashKey]
 public int Id { get; set; }
 [DynamoDBRangeKey]
 public string Type { get; set; }
 public string Name { get; set; }
}

Using an Instance of the .NET Class to Insert an Item into a
Table
In this example, the item is inserted through the Save method of the DynamoDBContext class,
which takes an initialized instance of the .NET class that represents the item. (The instance of the
DynamoDBContext class is initialized with an instance of the AmazonDynamoDBClient class.)

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DataModel;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client);
var item = new Item
{
 Id = 4,
 Type = "Fish",
 Name = "Goldie"
};

context.Save(item);

Using an Instance of a .NET Object to Get an Item from a Table
In this example, the item is retrieved through the Load method of the DynamoDBContext class, which
takes a partially initialized instance of the .NET class that represents the hash-and-range primary key of
the item to be retrieved. (As shown previously, the instance of the DynamoDBContext class is initialized
with an instance of the AmazonDynamoDBClient class.)

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DataModel;

var client = new AmazonDynamoDBClient();
var context = new DynamoDBContext(client);
var item = context.Load<Item>(4, "Fish");

Console.WriteLine("Id = {0}", item.Id);
Console.WriteLine("Type = {0}", item.Type);
Console.WriteLine("Name = {0}", item.Name);

More Info
Using the AWS SDK for .NET to program DynamoDB information and examples**

• DynamoDB APIs
• DynamoDB Series Kickoff

77

http://blogs.aws.amazon.com/net/post/Tx17SQHVEMW8MXC/DynamoDB-APIs
http://blogs.aws.amazon.com/net/post/Tx2XQOCY08QMTKO/DynamoDB-Series-Kickoff

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

• DynamoDB Series - Document Model

• DynamoDB Series - Conversion Schemas

• DynamoDB Series - Object Persistence Model

• DynamoDB Series - Expressions

• Using Expressions with Amazon DynamoDB and the AWS SDK for .NET (p. 78)

• JSON Support in Amazon DynamoDB with the AWS SDK for .NET (p. 88)

• Managing ASP.NET Session State with Amazon DynamoDB (p. 89)

Low-Level model information and examples

• Working with Tables Using the AWS SDK for .NET Low-Level API

• Working with Items Using the AWS SDK for .NET Low-Level API

• Querying Tables Using the AWS SDK for .NET Low-Level API

• Scanning Tables Using the AWS SDK for .NET Low-Level API

• Working with Local Secondary Indexes Using the AWS SDK for .NET Low-Level API

• Working with Global Secondary Indexes Using the AWS SDK for .NET Low-Level API

Document model information and examples

• DynamoDB Data Types

• DynamoDBEntry

• .NET: Document Model

Object persistence model information and examples

• .NET: Object Persistence Model

Using Expressions with Amazon DynamoDB and the
AWS SDK for .NET
The following code examples demonstrate how to use the AWS SDK for .NET to program DynamoDB
with expressions. Expressions denote the attributes you want to read from an item in a DynamoDB table.
You also use expressions when writing an item, to indicate any conditions that must be met (also known
as a conditional update) and how the attributes are to be updated. Some update examples are replacing
the attribute with a new value, or adding new data to a list or a map. For more information, see Reading
and Writing Items Using Expressions.

Topics

• Sample Data (p. 79)

• Get a Single Item by Using Expressions and the Item’s Primary Key (p. 81)

• Get Multiple Items by Using Expressions and the Table’s Primary Key (p. 82)

• Get Multiple Items by Using Expressions and Other Item Attributes (p. 83)

• Print an Item (p. 84)

• Create or Replace an Item by Using Expressions (p. 85)

• Update an Item by Using Expressions (p. 86)

• Delete an Item by Using Expressions (p. 87)

78

http://blogs.aws.amazon.com/net/post/Tx2R0WG46GQI1JI/DynamoDB-Series-Document-Model
http://blogs.aws.amazon.com/net/post/Tx2TCOGWG7ARUH5/DynamoDB-Series-Conversion-Schemas
http://blogs.aws.amazon.com/net/post/Tx20L86FLMBW51P/DynamoDB-Series-Object-Persistence-Model
http://blogs.aws.amazon.com/net/post/TxZQM7VA9AUZ9L/DynamoDB-Series-Expressions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetWorkingWithTables.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetQuerying.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetScanning.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSILowLevelDotNet.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSILowLevelDotNet.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html#DataModel.DataTypes
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/TDynamoDBv2DocumentModelDynamoDBEntry.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKMidLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DotNetSDKHighLevel.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.html

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

• More Info (p. 87)

Sample Data
The code examples in this topic rely on the following two example items in a DynamoDB table named
ProductCatalog. These items describe information about product entries in a fictitious bicycle store
catalog. These items are based on the example provided in Case Study: A ProductCatalog Item. The data
type descriptors such as BOOL, L, M, N, NS, S, and SS correspond to those in the JSON Data Format.

{
 "Id": {
 "N": "205"
 },
 "Title": {
 "S": "20-Bicycle 205"
 },
 "Description": {
 "S": "205 description"
 },
 "BicycleType": {
 "S": "Hybrid"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "500"
 },
 "Gender": {
 "S": "B"
 },
 "Color": {
 "SS": [
 "Red",
 "Black"
]
 },
 "ProductCategory": {
 "S": "Bike"
 },
 "InStock": {
 "BOOL": true
 },
 "QuantityOnHand": {
 "N": "1"
 },
 "RelatedItems": {
 "NS": [
 "341",
 "472",
 "649"
]
 },
 "Pictures": {
 "L": [
 {
 "M": {
 "FrontView": {
 "S": "http://example/products/205_front.jpg"
 }
 }
 },
 {

79

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.CaseStudy.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

 "M": {
 "RearView": {
 "S": "http://example/products/205_rear.jpg"
 }
 }
 },
 {
 "M": {
 "SideView": {
 "S": "http://example/products/205_left_side.jpg"
 }
 }
 }
]
 },
 "ProductReviews": {
 "M": {
 "FiveStar": {
 "SS": [
 "Excellent! Can't recommend it highly enough! Buy it!",
 "Do yourself a favor and buy this."
]
 },
 "OneStar": {
 "SS": [
 "Terrible product! Do not buy this."
]
 }
 }
 }
},
{
 "Id": {
 "N": "301"
 },
 "Title": {
 "S": "18-Bicycle 301"
 },
 "Description": {
 "S": "301 description"
 },
 "BicycleType": {
 "S": "Road"
 },
 "Brand": {
 "S": "Brand-Company C"
 },
 "Price": {
 "N": "185"
 },
 "Gender": {
 "S": "F"
 },
 "Color": {
 "SS": [
 "Blue",
 "Silver"
]
 },
 "ProductCategory": {
 "S": "Bike"
 },
 "InStock": {
 "BOOL": true
 },
 "QuantityOnHand": {

80

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

 "N": "3"
 },
 "RelatedItems": {
 "NS": [
 "801",
 "822",
 "979"
]
 },
 "Pictures": {
 "L": [
 {
 "M": {
 "FrontView": {
 "S": "http://example/products/301_front.jpg"
 }
 }
 },
 {
 "M": {
 "RearView": {
 "S": "http://example/products/301_rear.jpg"
 }
 }
 },
 {
 "M": {
 "SideView": {
 "S": "http://example/products/301_left_side.jpg"
 }
 }
 }
]
 },
 "ProductReviews": {
 "M": {
 "FiveStar": {
 "SS": [
 "My daughter really enjoyed this bike!"
]
 },
 "ThreeStar": {
 "SS": [
 "This bike was okay, but I would have preferred it in my color.",
 "Fun to ride."
]
 }
 }
 }
}

Get a Single Item by Using Expressions and the Item’s Primary
Key

The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.GetItem
method and a set of expressions to get and then print the item that has an Id of 205. Only the following
attributes of the item are returned: Id, Title, Description, Color, RelatedItems, Pictures, and
ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

81

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

var client = new AmazonDynamoDBClient();
var request = new GetItemRequest
{
 TableName = "ProductCatalog",
 ProjectionExpression = "Id, Title, Description, Color, #ri, Pictures, #pr",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#ri", "RelatedItems" }
 },
 Key = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "205" } }
 },
};
var response = client.GetItem(request);

// PrintItem() is a custom function.
PrintItem(response.Item);

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent the
ProductReviews attribute and the placeholder #ri to represent the RelatedItems attribute. The call
to PrintItem refers to a custom function as described in Print an Item (p. 84).

Get Multiple Items by Using Expressions and the Table’s Primary
Key
The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.Query method
and a set of expressions to get and then print the item that has an Id of 301, but only if the value of
Price is greater than 150. Only the following attributes of the item are returned: Id, Title, and all of
the ThreeStar attributes in ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new QueryRequest
{
 TableName = "ProductCatalog",
 KeyConditions = new Dictionary<string,Condition>
 {
 { "Id", new Condition()
 {
 ComparisonOperator = ComparisonOperator.EQ,
 AttributeValueList = new List<AttributeValue>
 {
 new AttributeValue { N = "301" }
 }
 }
 }
 },
 ProjectionExpression = "Id, Title, #pr.ThreeStar",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#p", "Price" }
 },
 ExpressionAttributeValues = new Dictionary<string,AttributeValue>
 {
 { ":val", new AttributeValue { N = "150" } }
 },

82

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

 FilterExpression = "#p > :val"
};
var response = client.Query(request);

foreach (var item in response.Items)
{
 // Write out the first page of an item's attribute keys and values.
 // PrintItem() is a custom function.
 PrintItem(item);
 Console.WriteLine("=====");
}

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent the
ProductReviews attribute and the placeholder #p to represent the Price attribute. #pr.ThreeStar
specifies to return only the ThreeStar attribute. The ExpressionAttributeValues property
specifies the placeholder :val to represent the value 150. The FilterExpression property specifies
that #p (Price) must be greater than :val (150). The call to PrintItem refers to a custom function as
described in Print an Item (p. 84).

Get Multiple Items by Using Expressions and Other Item
Attributes
The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.Scan method
and a set of expressions to get and then print all items that have a ProductCategory of Bike. Only the
following attributes of the item are returned: Id, Title, and all of the attributes in ProductReviews.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new ScanRequest
{
 TableName = "ProductCatalog",
 ProjectionExpression = "Id, Title, #pr",
 ExpressionAttributeValues = new Dictionary<string,AttributeValue>
 {
 { ":catg", new AttributeValue { S = "Bike" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#pr", "ProductReviews" },
 { "#pc", "ProductCategory" }
 },
 FilterExpression = "#pc = :catg",
};
var response = client.Scan(request);

foreach (var item in response.Items)
{
 // Write out the first page/scan of an item's attribute keys and values.
 // PrintItem() is a custom function.
 PrintItem(item);
 Console.WriteLine("=====");
}

In the preceding example, the ProjectionExpression property specifies the attributes to be
returned. The ExpressionAttributeNames property specifies the placeholder #pr to represent the
ProductReviews attribute and the placeholder #pc to represent the ProductCategory attribute. The
ExpressionAttributeValues property specifies the placeholder :catg to represent the value Bike.

83

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

The FilterExpression property specifies that #pc (ProductCategory) must be equal to :catg
(Bike). The call to PrintItem refers to a custom function as described in Print an Item (p. 84).

Print an Item
The following example shows how to print an item’s attributes and values. This example is used in the
preceding examples that show how to Get a Single Item by Using Expressions and the Item’s Primary
Key (p. 81), Get Multiple Items by Using Expressions and the Table’s Primary Key (p. 82), and Get
Multiple Items by Using Expressions and Other Item Attributes (p. 83).

// using Amazon.DynamoDBv2.Model;

// Writes out an item's attribute keys and values.
public static void PrintItem(Dictionary<string, AttributeValue> attrs)
{
 foreach (KeyValuePair<string, AttributeValue> kvp in attrs)
 {
 Console.Write(kvp.Key + " = ");
 PrintValue(kvp.Value);
 }
}

// Writes out just an attribute's value.
public static void PrintValue(AttributeValue value)
{
 // Binary attribute value.
 if (value.B != null)
 {
 Console.Write("Binary data");
 }
 // Binary set attribute value.
 else if (value.BS.Count > 0)
 {
 foreach (var bValue in value.BS)
 {
 Console.Write("\n Binary data");
 }
 }
 // List attribute value.
 else if (value.L.Count > 0)
 {
 foreach (AttributeValue attr in value.L)
 {
 PrintValue(attr);
 }
 }
 // Map attribute value.
 else if (value.M.Count > 0)
 {
 Console.Write("\n");
 PrintItem(value.M);
 }
 // Number attribute value.
 else if (value.N != null)
 {
 Console.Write(value.N);
 }
 // Number set attribute value.
 else if (value.NS.Count > 0)
 {
 Console.Write("{0}", string.Join("\n", value.NS.ToArray()));
 }
 // Null attribute value.
 else if (value.NULL)

84

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

 {
 Console.Write("Null");
 }
 // String attribute value.
 else if (value.S != null)
 {
 Console.Write(value.S);
 }
 // String set attribute value.
 else if (value.SS.Count > 0)
 {
 Console.Write("{0}", string.Join("\n", value.SS.ToArray()));
 }
 // Otherwise, boolean value.
 else
 {
 Console.Write(value.BOOL);
 }

 Console.Write("\n");
}

In the preceding example, each attribute value has several data-type-specific properties that can be
evaluated to determine the correct format to print the attribute. These properties include B, BOOL, BS,
L, M, N, NS, NULL, S, and SS, which correspond to those in the JSON Data Format. For properties such as
B, N, NULL, and S, if the corresponding property is not null, then the attribute is of the corresponding
non-null data type. For properties such as BS, L, M, NS, and SS, if Count is greater than zero, then the
attribute is of the corresponding non-zero-value data type. If all of the attribute’s data-type-specific
properties are either null or the Count equals zero, then the attribute corresponds to the BOOL data
type.

Create or Replace an Item by Using Expressions
The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.PutItem
method and a set of expressions to update the item that has a Title of 18-Bicycle 301. If the item
doesn’t already exist, a new item is added.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new PutItemRequest
{
 TableName = "ProductCatalog",
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":product", new AttributeValue { S = "18-Bicycle 301" } }
 },
 ConditionExpression = "#title = :product",
 // CreateItemData() is a custom function.
 Item = CreateItemData()
};
client.PutItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies
the placeholder :product to represent the value 18-Bicycle 301. The ConditionExpression

85

DataFormat.html

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

property specifies that #title (Title) must be equal to :product (18-Bicycle 301). The call to
CreateItemData refers to the following custom function:

// using Amazon.DynamoDBv2.Model;

// Provides a sample item that can be added to a table.
public static Dictionary<string, AttributeValue> CreateItemData()
{
 var itemData = new Dictionary<string, AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } },
 { "Title", new AttributeValue { S = "18\" Girl's Bike" } },
 { "BicycleType", new AttributeValue { S = "Road" } },
 { "Brand" , new AttributeValue { S = "Brand-Company C" } },
 { "Color", new AttributeValue { SS = new List<string>{ "Blue", "Silver" } } },
 { "Description", new AttributeValue { S = "301 description" } },
 { "Gender", new AttributeValue { S = "F" } },
 { "InStock", new AttributeValue { BOOL = true } },
 { "Pictures", new AttributeValue { L = new List<AttributeValue>{
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "FrontView", new AttributeValue { S = "http://example/
products/301_front.jpg" } } } } },
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "RearView", new AttributeValue {S = "http://example/
products/301_rear.jpg" } } } } },
 { new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "SideView", new AttributeValue { S = "http://example/
products/301_left_side.jpg" } } } } }
 } } },
 { "Price", new AttributeValue { N = "185" } },
 { "ProductCategory", new AttributeValue { S = "Bike" } },
 { "ProductReviews", new AttributeValue { M = new Dictionary<string,AttributeValue>{
 { "FiveStar", new AttributeValue { SS = new List<string>{
 "My daughter really enjoyed this bike!" } } },
 { "OneStar", new AttributeValue { SS = new List<string>{
 "Fun to ride.",
 "This bike was okay, but I would have preferred it in my color." } } }
 } } },
 { "QuantityOnHand", new AttributeValue { N = "3" } },
 { "RelatedItems", new AttributeValue { NS = new List<string>{ "979", "822", "801" } } }
 };

 return itemData;
}

In the preceding example, an example item with sample data is returned to the caller. A series of
attributes and corresponding values are constructed, using data types such as BOOL, L, M, N, NS, S, and
SS, which correspond to those in the JSON Data Format.

Update an Item by Using Expressions
The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.UpdateItem
method and a set of expressions to change the Title to 18" Girl's Bike for the item with Id of
301.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new UpdateItemRequest
{
 TableName = "ProductCatalog",
 Key = new Dictionary<string,AttributeValue>

86

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataFormat.html

AWS SDK for .NET (version 3) Developer Guide
Using Expressions with Amazon

DynamoDB and the AWS SDK for .NET

 {
 { "Id", new AttributeValue { N = "301" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":newproduct", new AttributeValue { S = "18\" Girl's Bike" } }
 },
 UpdateExpression = "SET #title = :newproduct"
};
client.UpdateItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies
the placeholder :newproduct to represent the value 18" Girl's Bike. The UpdateExpression
property specifies to change #title (Title) to :newproduct (18" Girl's Bike).

Delete an Item by Using Expressions
The following example features the Amazon.DynamoDBv2.AmazonDynamoDBClient.DeleteItem
method and a set of expressions to delete the item with Id of 301, but only if the item’s Title is 18-
Bicycle 301.

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.Model;

var client = new AmazonDynamoDBClient();
var request = new DeleteItemRequest
{
 TableName = "ProductCatalog",
 Key = new Dictionary<string,AttributeValue>
 {
 { "Id", new AttributeValue { N = "301" } }
 },
 ExpressionAttributeNames = new Dictionary<string, string>
 {
 { "#title", "Title" }
 },
 ExpressionAttributeValues = new Dictionary<string, AttributeValue>
 {
 { ":product", new AttributeValue { S = "18-Bicycle 301" } }
 },
 ConditionExpression = "#title = :product"
};
client.DeleteItem(request);

In the preceding example, the ExpressionAttributeNames property specifies the placeholder
#title to represent the Title attribute. The ExpressionAttributeValues property specifies the
placeholder :product to represent the value 18-Bicycle 301. The ConditionExpression property
specifies that #title (Title) must equal :product (18-Bicycle 301).

More Info
For more information and code examples, see:

• DynamoDB Series - Expressions
• Accessing Item Attributes with Projection Expressions
• Using Placeholders for Attribute Names and Values

87

http://blogs.aws.amazon.com/net/post/TxZQM7VA9AUZ9L/DynamoDB-Series-Expressions
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.AccessingItemAttributes.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/ExpressionPlaceholders.html

AWS SDK for .NET (version 3) Developer Guide
JSON Support in Amazon DynamoDB

with the AWS SDK for .NET

• Specifying Conditions with Condition Expressions
• Modifying Items and Attributes with Update Expressions
• Working with Items Using the AWS SDK for .NET Low-Level API
• Querying Tables Using the AWS SDK for .NET Low-Level API
• Scanning Tables Using the AWS SDK for .NET Low-Level API
• Working with Local Secondary Indexes Using the AWS SDK for .NET Low-Level API
• Working with Global Secondary Indexes Using the AWS SDK for .NET Low-Level API

JSON Support in Amazon DynamoDB with the AWS
SDK for .NET
The AWS SDK for .NET supports JSON data when working with Amazon DynamoDB. This enables you to
more easily get JSON-formatted data from, and insert JSON documents into, DynamoDB tables.

Topics
• Get Data from a DynamoDB Table in JSON Format (p. 88)
• Insert JSON Format Data into a DynamoDB Table (p. 89)
• DynamoDB Data Type Conversions to JSON (p. 89)
• More Info (p. 89)

Get Data from a DynamoDB Table in JSON Format
The following example shows how to get data from a DynamoDB table in JSON format:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var item = table.GetItem(3, "Horse");

var jsonText = item.ToJson();
Console.Write(jsonText);

// Output:
// {"Name":"Shadow","Type":"Horse","Id":3}

var jsonPrettyText = item.ToJsonPretty();
Console.WriteLine(jsonPrettyText);

// Output:
// {
// "Name" : "Shadow",
// "Type" : "Horse",
// "Id" : 3
// }

In the preceding example, the ToJson method of the Document class converts an item from the table
into a JSON-formatted string. The item is retrieved through the GetItem method of the Table class.
To determine the item to get, in this example, the GetItem method uses the hash-and-range primary
key of the target item. To determine the table to get the item from, the LoadTable method of the
Table class uses an instance of the AmazonDynamoDBClient class and the name of the target table in
DynamoDB.

88

https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.SpecifyingConditions.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Expressions.Modifying.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetItemCRUD.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetQuerying.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LowLevelDotNetScanning.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/LSILowLevelDotNet.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GSILowLevelDotNet.html

AWS SDK for .NET (version 3) Developer Guide
Managing ASP.NET Session State with Amazon DynamoDB

Insert JSON Format Data into a DynamoDB Table
The following example shows how to use JSON format to insert an item into a DynamoDB table:

// using Amazon.DynamoDBv2;
// using Amazon.DynamoDBv2.DocumentModel;

var client = new AmazonDynamoDBClient();
var table = Table.LoadTable(client, "AnimalsInventory");
var jsonText = "{\"Id\":6,\"Type\":\"Bird\",\"Name\":\"Tweety\"}";
var item = Document.FromJson(jsonText);

table.PutItem(item);

In the preceding example, the FromJson method of the Document class converts a JSON-formatted
string into an item. The item is inserted into the table through the PutItem method of the Table
class, which uses the instance of the Document class that contains the item. To determine the table to
insert the item into, the LoadTable method of the Table class is called, specifying an instance of the
AmazonDynamoDBClient class and the name of the target table in DynamoDB.

DynamoDB Data Type Conversions to JSON
Whenever you call the ToJson method of the Document class, and then on the resulting JSON data you
call the FromJson method to convert the JSON data back into an instance of a Document class, some
DynamoDB data types will not be converted as expected. Specifically:

• DynamoDB sets (the SS, NS, and BS types) will be converted to JSON arrays.

• DynamoDB binary scalars and sets (the B and BS types) will be converted to base64-encoded JSON
strings or lists of strings.

In this scenario, you must call the DecodeBase64Attributes method of the Document class
to replace the base64-encoded JSON data with the correct binary representation. The following
example replaces a base64-encoded binary scalar item attribute in an instance of a Document
class, named Picture, with the correct binary representation. This example also does the same
for a base64-encoded binary set item attribute in the same instance of the Document class, named
RelatedPictures:

item.DecodeBase64Attributes("Picture", "RelatedPictures");

More Info
For more information and examples of programming JSON with DynamoDB with the AWS SDK for .NET,
see:

• DynamoDB JSON Support

• Amazon DynamoDB Update - JSON, Expanded Free Tier, Flexible Scaling, Larger Items

Managing ASP.NET Session State with Amazon
DynamoDB
ASP.NET applications often store session state data in memory. However, this approach doesn’t scale
well. After the application grows beyond a single web server, the session state must be shared between

89

http://blogs.aws.amazon.com/net/post/Tx14U0PAQWWHGXM/DynamoDB-JSON-Support
http://aws.amazon.com/blogs/aws/dynamodb-update-json-and-more

AWS SDK for .NET (version 3) Developer Guide
Managing ASP.NET Session State with Amazon DynamoDB

servers. A common solution is to set up a dedicated session-state server with Microsoft SQL Server, but
this approach also has drawbacks: you must administer another machine; the session-state server is a
single point of failure; and the session-state server itself can become a performance bottleneck.

DynamoDB, a NoSQL database store from AWS, provides an effective solution for sharing session state
across web servers without incurring any of these drawbacks.

Note
Regardless of the solution you choose, be aware that Amazon DynamoDB enforces limits on
the size of an item. None of the records you store in DynamoDB can exceed this limit. For more
information, see Limits in DynamoDB in the Amazon DynamoDB Developer Guide.

The AWS SDK for .NET includes AWS.SessionProvider.dll, which contains an ASP.NET session state
provider. It also includes the AmazonDynamoDBSessionProviderSample sample, which demonstrates how
to use Amazon DynamoDB as a session state provider.

For more information about using session state with ASP.NET applications, go to the Microsoft
documentation.

Create the ASP.NET_SessionState Table
When your application starts, it looks for an Amazon DynamoDB table named, by default,
ASP.NET_SessionState. We recommend you create this table before you run your application for the
first time.

To create the ASP.NET_SessionState table

1. Choose Create Table. The Create Table wizard opens.

2. In the Table name text box, enter ASP.NET_SessionState.

3. In the Primary key field, enter SessionId and set the type to String.

4. When all your options are entered as you want them, choose Create.

The ASP.NET_SessionState table is ready for use when its status changes from CREATING to ACTIVE.

Note
If you decide not to create the table beforehand, the session state provider will create the table
during its initialization. See the web.config options below for a list of attributes that act as
configuration parameters for the session state table. If the provider creates the table, it will use
these parameters.

Configure the Session State Provider
To configure an ASP.NET application to use DynamoDB as the session-state server

1. Add references to both AWSSDK.dll and AWS.SessionProvider.dll to your Visual Studio
ASP.NET project. These assemblies are available by installing the AWS SDK for .NET (p. 18). You can
also install them by using NuGet (p. 16).

In earlier versions of the SDK, the functionality for the session state provider was
contained in AWS.Extension.dll. To improve usability, the functionality was moved to
AWS.SessionProvider.dll. For more information, see the blog post AWS.Extension Renaming.

2. Edit your application’s Web.config file. In the system.web element, replace the existing
sessionState element with the following XML fragment:

<sessionState timeout="20" mode="Custom" customProvider="DynamoDBSessionStoreProvider">
 <providers>

90

https://aws.amazon.com/dynamodb/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/Limits.html
https://docs.microsoft.com/en-us/previous-versions/ms178581(v=vs.140)
https://docs.microsoft.com/en-us/previous-versions/ms178581(v=vs.140)
http://blogs.aws.amazon.com/net/post/Tx27RWMCNAVWZN9/AWS-Extensions-renaming

AWS SDK for .NET (version 3) Developer Guide
Managing ASP.NET Session State with Amazon DynamoDB

 <add name="DynamoDBSessionStoreProvider"
 type="Amazon.SessionProvider.DynamoDBSessionStateStore"
 AWSProfileName="{profile_name}"
 Region="us-west-2" />
 </providers>
</sessionState>

The profile represents the AWS credentials that are used to communicate with DynamoDB to store
and retrieve the session state. If you are using the AWS SDK for .NET and are specifying a profile in the
appSettings section of your application’s Web.config file, you do not need to specify a profile in
the providers section; the AWS .NET client code will discover it at run time. For more information,
see Configuring Your AWS SDK for .NET Application (p. 21).

If the web server is running on an Amazon EC2 instance configured to use IAM roles for EC2 instances,
then you do not need to specify any credentials in the Web.config file. In this case, the AWS .NET
client will use the IAM role credentials. For more information, see Granting Access Using an IAM
Role (p. 136) and Security Considerations (p. 92).

Web.config Options

You can use the following configuration attributes in the providers section of your Web.config file:

AWSAccessKey

Access key ID to use. This can be set either in the providers or appSettings section. We
recommend not using this setting. Instead, specify credentials by using AWSProfileName to specify
a profile.

AWSSecretKey

Secret key to use. This can be set either in the providers or appSettings section. We recommend
not using this setting. Instead, specify credentials by using AWSProfileName to specify a profile.

AWSProfileName

The profile name associated with the credentials you want to use. For more information, see
Configuring Your AWS SDK for .NET Application (p. 21).

Region

Required string attribute. The AWS region in which to use Amazon DynamoDB. For a list of AWS
regions, see Regions and Endpoints: DynamoDB.

Application

Optional string attribute. The value of the Application attribute is used to partition the session
data in the table so that the table can be used for more than one application.

Table

Optional string attribute. The name of the table used to store session data. The default is
ASP.NET_SessionState.

ReadCapacityUnits

Optional int attribute. The read capacity units to use if the provider creates the table. The default is
10.

WriteCapacityUnits

Optional int attribute. The write capacity units to use if the provider creates the table. The default
is 5.

91

https://docs.aws.amazon.com/general/latest/gr/rande.html#ddb_region

AWS SDK for .NET (version 3) Developer Guide
Deploying Applications Using Amazon EC2

CreateIfNotExist

Optional boolean attribute. The CreateIfNotExist attribute controls whether the provider will
auto-create the table if it doesn’t exist. The default is true. If this flag is set to false and the table
doesn’t exist, an exception will be thrown.

Security Considerations

After the DynamoDB table is created and the application is configured, sessions can be used as with any
other session provider.

As a security best practice, we recommend you run your applications with the credentials of an IAM User
Guide user. You can use either the IAM Management Console or the AWS Toolkit for Visual Studio to
create IAM users and define access policies.

The session state provider needs to be able to call the DeleteItem, DescribeTable, GetItem, PutItem, and
UpdateItem operations for the table that stores the session data. The sample policy below can be used
to restrict the IAM user to only the operations needed by the provider for an instance of DynamoDB
running in us-west-2:

{ "Version" : "2012-10-17",
"Statement" : [
 {
 "Sid" : "1",
 "Effect" : "Allow",
 "Action" : [
 "dynamodb:DeleteItem",
 "dynamodb:DescribeTable",
 "dynamodb:GetItem",
 "dynamodb:PutItem",
 "dynamodb:UpdateItem"
],
 "Resource" : "arn:aws:dynamodb:us-west-2:{<YOUR-AWS-ACCOUNT-ID>}:table/
ASP.NET_SessionState"
 }
]
}

Deploying Applications Using Amazon EC2
The AWS SDK for .NET supports Amazon EC2, which is a web service that provides resizable computing
capacity—literally, servers in Amazon’s data centers—that you use to build and host your software
systems. The Amazon EC2 APIs are provided by the AWSSDK.EC2 assembly.

The Amazon EC2 Instances Examples (p. 93) are intended to help you get started with Amazon EC2.

The Amazon EC2 Spot Instance Examples (p. 110) show you how to use Spot Instances, which enable
you to access unused EC2 capacity at up to a 90% discount compared to the On-Demand Instance price.
Amazon EC2 sets Spot Instance prices and adjusts them gradually based on long-term trends in supply
and demand for Spot Instance capacity. You can specify the amount you are willing to pay for a Spot
Instance as a percentage of the On-Demand Instance price; customers whose requests meet or exceed it
gain access to the available Spot Instances.

For more information, see Spot Instances in the Amazon EC2 User Guide for Linux Instances and Spot
Instances in the Amazon EC2 User Guide for Windows Instances.

92

https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AWSToolkitVS/latest/UserGuide/
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DeleteItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DescribeTable.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/GetItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/PutItem.html
https://docs.aws.amazon.com/amazondynamodb/latest/developerguide/UpdateItem.html
http://www.nuget.org/packages/AWSSDK.EC2
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-spot-instances.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

Topics

• Amazon EC2 Instances Examples (p. 93)

• Amazon EC2 Spot Instance Examples (p. 110)

Amazon EC2 Instances Examples
You can access the features of Amazon EC2 using the AWS SDK for .NET. For example, you can create,
start, and terminate Amazon EC2 instances.

The sample code is written in C#, but you can use the AWS SDK for .NET with any compatible language.
When you install the AWS Toolkit for Visual Studio a set of C# project templates are installed. So the
easiest way to start this project is to open Visual Studio, and then choose File, New Project, AWS
Sample Projects, Compute and Networking, AWS EC2 Sample.

Prerequisites

Before you begin, be sure that you have created an AWS account and set up your AWS credentials. For
more information, see Getting Started with the AWS SDK for .NET (p. 15).

Examples

Topics

• Creating an Amazon EC2 Client (p. 93)

• Creating a Security Group in Amazon EC2 (p. 93)

• Working with Amazon EC2 Key Pairs (p. 97)

• Launching an Amazon EC2 Instance (p. 99)

• Terminating an Amazon EC2 Instance (p. 105)

• Using Regions and Availability Zones with Amazon EC2 (p. 105)

• Using VPC Endpoints with Amazon EC2 (p. 106)

• Using Elastic IP Addresses in Amazon EC2 (p. 108)

Creating an Amazon EC2 Client

Create an Amazon EC2 client to manage your EC2 resources, such as instances and security groups. This
client is represented by an AmazonEC2Client object, which you can create as follows.

var ec2Client = new AmazonEC2Client();

The permissions for the client object are determined by the policy attached to the profile you specified in
the App.config file. By default, we use the region specified in App.config. To use a different region,
pass the appropriate RegionEndpoint value to the constructor. For more information, see Regions and
Endpoints: EC2 in the Amazon Web Services General Reference.

Creating a Security Group in Amazon EC2

In Amazon EC2, a security group acts as a virtual firewall that controls the network traffic for one or
more EC2 instances. By default, Amazon EC2 associates your instances with a security group that allows
no inbound traffic. You can create a security group that allows your EC2 instances to accept certain
traffic. For example, if you need to connect to an EC2 Windows instance, you must configure the security

93

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/TRegionEndpoint.html
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region
https://docs.aws.amazon.com/general/latest/gr/rande.html#ec2_region

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

group to allow RDP traffic. You can create a security group by using the Amazon EC2 console or the AWS
SDK for .NET.

You create a security group for use in either EC2-Classic or EC2-VPC. For more information about EC2-
Classic and EC2-VPC, see Supported Platforms in the Amazon EC2 User Guide for Windows Instances.

Alternatively, you can create a security group using the Amazon EC2 console. For more information, see
Amazon EC2 Security Groups in the Amazon EC2 User Guide for Windows Instances.

For information on creating an Amazon EC2 client, see Creating an Amazon EC2 Client (p. 93).

Enumerate Your Security Groups

You can enumerate your security groups and check whether a security group exists.

To enumerate your security groups

Get the complete list of your security groups using DescribeSecurityGroups with no parameters.

The following example enumerates all of the security groups in the region.

static void EnumerateSecurityGroups(AmazonEC2Client ec2Client)
{
 var request = new DescribeSecurityGroupsRequest();
 var response = ec2Client.DescribeSecurityGroups(request);
 List<SecurityGroup> mySGs = response.SecurityGroups;
 foreach (SecurityGroup item in mySGs)
 {
 Console.WriteLine("Security group: " + item.GroupId);
 Console.WriteLine("\tGroupId: " + item.GroupId);
 Console.WriteLine("\tGroupName: " + item.GroupName);
 Console.WriteLine("\tVpcId: " + item.VpcId);

 Console.WriteLine();
 }
}

To enumerate your security groups for a particular VPC

Use DescribeSecurityGroups with a filter.

The following example retrieves only the security groups that belong to the specified VPC.

static void EnumerateVpcSecurityGroups(AmazonEC2Client ec2Client, string vpcID)
{
 Filter vpcFilter = new Filter
 {
 Name = "vpc-id",
 Values = new List<string>() { vpcID }
 };

 var request = new DescribeSecurityGroupsRequest();
 request.Filters.Add(vpcFilter);
 var response = ec2Client.DescribeSecurityGroups(request);
 List<SecurityGroup> mySGs = response.SecurityGroups;
 foreach (SecurityGroup item in mySGs)
 {
 Console.WriteLine("Security group: " + item.GroupId);
 Console.WriteLine("\tGroupId: " + item.GroupId);
 Console.WriteLine("\tGroupName: " + item.GroupName);

94

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-network-security.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSecurityGroupsDescribeSecurityGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSecurityGroupsDescribeSecurityGroupsRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

 Console.WriteLine("\tVpcId: " + item.VpcId);

 Console.WriteLine();
 }
}

Create a Security Group

If you attempt to create a security group with a name of an existing security group, CreateSecurityGroup
will throw an exception. To avoid this, the following examples search for a security group with the
specified name, and return the appropriate SecurityGroup object if one is found.

To create a security group for EC2-Classic

Create and initialize a CreateSecurityGroupRequest object. Assign a name and description to the
GroupName and Description properties, respectively.

The CreateSecurityGroup method returns a CreateSecurityGroupResponse object. You can get the
identifier of the new security group from the response and then use DescribeSecurityGroups with the
security group identifier to get the SecurityGroup object for the security group.

static SecurityGroup CreateEc2SecurityGroup(
 AmazonEC2Client ec2Client,
 string secGroupName)
{
 // See if a security group with the specified name already exists
 Filter nameFilter = new Filter();
 nameFilter.Name = "group-name";
 nameFilter.Values= new List<string>() { secGroupName };

 var describeRequest = new DescribeSecurityGroupsRequest();
 describeRequest.Filters.Add(nameFilter);
 var describeResponse = ec2Client.DescribeSecurityGroups(describeRequest);

 // If a match was found, return the SecurityGroup object for the security group
 if(describeResponse.SecurityGroups.Count > 0)
 {
 return describeResponse.SecurityGroups[0];
 }

 // Create the security group
 var createRequest = new CreateSecurityGroupRequest();
 createRequest.GroupName = secGroupName;
 createRequest.Description = "My sample security group for EC2-Classic";

 var createResponse = ec2Client.CreateSecurityGroup(createRequest);

 var Groups = new List<string>() { createResponse.GroupId };
 describeRequest = new DescribeSecurityGroupsRequest() { GroupIds = Groups };
 describeResponse = ec2Client.DescribeSecurityGroups(describeRequest);
 return describeResponse.SecurityGroups[0];
}

To create a security group for EC2-VPC

Create and initialize a CreateSecurityGroupRequest object. Assign values to the GroupName,
Description, and VpcId properties.

The CreateSecurityGroup method returns a CreateSecurityGroupResponse object. You can get the
identifier of the new security group from the response and then use DescribeSecurityGroups with the
security group identifier to get the SecurityGroup object for the security group.

95

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateSecurityGroupCreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSecurityGroup.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateSecurityGroupCreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateSecurityGroupResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSecurityGroupsDescribeSecurityGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSecurityGroup.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateSecurityGroupCreateSecurityGroupRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateSecurityGroupResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeSecurityGroupsDescribeSecurityGroupsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSecurityGroup.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

static SecurityGroup CreateVpcSecurityGroup(
 AmazonEC2Client ec2Client,
 string vpcId,
 string secGroupName)
{
 // See if a security group with the specified name already exists
 Filter nameFilter = new Filter();
 nameFilter.Name = "group-name";
 nameFilter.Values = new List<string>() { secGroupName };

 var describeRequest = new DescribeSecurityGroupsRequest();
 describeRequest.Filters.Add(nameFilter);
 var describeResponse = ec2Client.DescribeSecurityGroups(describeRequest);

 // If a match was found, return the SecurityGroup object for the security group
 if (describeResponse.SecurityGroups.Count > 0)
 {
 return describeResponse.SecurityGroups[0];
 }

 // Create the security group
 var createRequest = new CreateSecurityGroupRequest();
 createRequest.GroupName = secGroupName;
 createRequest.Description = "My sample security group for EC2-VPC";
 createRequest.VpcId = vpcId;

 var createResponse = ec2Client.CreateSecurityGroup(createRequest);

 var Groups = new List<string>() { createResponse.GroupId };
 describeRequest = new DescribeSecurityGroupsRequest() { GroupIds = Groups };
 describeResponse = ec2Client.DescribeSecurityGroups(describeRequest);
 return describeResponse.SecurityGroups[0];
}

Add Rules to Your Security Group

Use the following procedure to add a rule to allow inbound traffic on TCP port 3389 (RDP). This enables
you to connect to a Windows instance. If you’re launching a Linux instance, use TCP port 22 (SSH)
instead.

Note
You can use a service to get the public IP address of your local computer. For example, we
provide the following service: http://checkip.amazonaws.com/. To locate another service that
provides your IP address, use the search phrase “what is my IP address”. If you are connecting
through an ISP or from behind your firewall without a static IP address, you need to find out the
range of IP addresses used by client computers.

The examples in this section follow from the examples in the previous sections. They assume secGroup
is an existing security group.

To add a rule to a security group

1. Create and initialize an IpPermission object.

string ipRange = "1.1.1.1/1";
List<string> ranges = new List<string>() { ipRange };

var ipPermission = new IpPermission();
ipPermission.IpProtocol = "tcp";
ipPermission.FromPort = 3389;
ipPermission.ToPort = 3389;
ipPermission.IpRanges = ranges;

96

http://checkip.amazonaws.com/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIpPermission.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

IpProtocol

The IP protocol.
FromPort and ToPort

The beginning and end of the port range. This example specifies a single port, 3389, which is
used to communicate with Windows over RDP.

IpRanges

The IP addresses or address ranges, in CIDR notation. For convenience, this example uses
72.21.198.64/24, which authorizes network traffic for a single IP address. You can use http://
checkip.amazonaws.com/ to determine your own IP addcress.

2. Create and initialize an AuthorizeSecurityGroupIngressRequest object.

var ingressRequest = new AuthorizeSecurityGroupIngressRequest();
ingressRequest.GroupId = secGroup.GroupId;
ingressRequest.IpPermissions.Add(ipPermission);

GroupId

The identifier of the security group.
IpPermissions

The IpPermission object from step 1.
3. (Optional) You can add additional rules to the IpPermissions collection before going to the next

step.
4. Pass the AuthorizeSecurityGroupIngressRequest object to the AuthorizeSecurityGroupIngress

method, which returns an AuthorizeSecurityGroupIngressResponse object. If a matching rule already
exists, an AmazonEC2Exception is thrown.

try
{
 var ingressResponse = ec2Client.AuthorizeSecurityGroupIngress(ingressRequest);
 Console.WriteLine("New RDP rule for: " + ipRange);
}
catch (AmazonEC2Exception ex)
{
 // Check the ErrorCode to see if the rule already exists
 if ("InvalidPermission.Duplicate" == ex.ErrorCode)
 {
 Console.WriteLine("An RDP rule for: {0} already exists.", ipRange);
 }
 else
 {
 // The exception was thrown for another reason, so re-throw the exception
 throw;
 }
}

Working with Amazon EC2 Key Pairs
Amazon EC2 uses public–key cryptography to encrypt and decrypt login information. Public–key
cryptography uses a public key to encrypt data, then the recipient uses the private key to decrypt the
data. The public and private keys are known as a key pair. You must specify a key pair when you launch
an EC2 instance and specify the private key of the keypair when you connect to the instance. You can
create a key pair or use one you’ve used when launching other instances. For more information, see

97

http://checkip.amazonaws.com/
http://checkip.amazonaws.com/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAuthorizeSecurityGroupIngressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAuthorizeSecurityGroupIngressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2AuthorizeSecurityGroupIngressAuthorizeSecurityGroupIngressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAuthorizeSecurityGroupIngressResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Exception.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

Amazon EC2 Key Pairs in the Amazon EC2 User Guide for Windows Instances. This example shows how to
create a key pair, describe key pairs and delete a key pair using these AmazonEC2Client methods:

• CreateKeyPair
• DeleteKeyPair
• DescribeKeyPairs

For information on creating an Amazon EC2 client, see Creating an Amazon EC2 Client (p. 93).

Create a Key Pair and Save the Private Key

When you create a new key pair, you must save the private key that is returned. You cannot retrieve the
private key later.

Create and initialize a CreateKeyPairRequest object. Set the KeyName property to the name of the key
pair.

Pass the request object to the CreateKeyPair method, which returns a CreateKeyPairResponse object. If a
key pair with the specified name already exists, an AmazonEC2Exception is thrown.

The response object includes a CreateKeyPairResponse object that contains the new key’s KeyPair object.
The KeyPair object’s KeyMaterial property contains the unencrypted private key for the key pair. Save
the private key as a .pem file in a safe location. You’ll need this file when you connect to your instance.
This example saves the private key in the specified file name.

public static void CreateKeyPair(
 AmazonEC2Client ec2Client,
 string keyPairName,
 string privateKeyFile)
{
 var request = new CreateKeyPairRequest();
 request.KeyName = keyPairName;

 try
 {
 var response = ec2Client.CreateKeyPair(request);
 Console.WriteLine();
 Console.WriteLine("New key: " + keyPairName);

 // Save the private key in a .pem file
 using (FileStream s = new FileStream(privateKeyFile, FileMode.Create))
 using (StreamWriter writer = new StreamWriter(s))
 {
 writer.WriteLine(response.KeyPair.KeyMaterial);
 }
 }
 catch (AmazonEC2Exception ex)
 {
 // Check the ErrorCode to see if the key already exists
 if("InvalidKeyPair.Duplicate" == ex.ErrorCode)
 {
 Console.WriteLine("The key pair \"{0}\" already exists.", keyPairName);
 }
 else
 {
 // The exception was thrown for another reason, so re-throw the exception.
 throw;
 }
 }
}

98

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-key-pairs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateKeyPairCreateKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DeleteKeyPairDeleteKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeKeyPairsDescribeKeyPairsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateKeyPairCreateKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateKeyPairResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Exception.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateKeyPairResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TKeyPair.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TKeyPair.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

.. _enumerate-key-pairs:

Enumerate Your Key Pairs

You can enumerate your key pairs and check whether a key pair exists.

Get the complete list of your key pairs using the DescribeKeyPairs method with no parameters.

public static void EnumerateKeyPairs(AmazonEC2Client ec2Client)
{
 var request = new DescribeKeyPairsRequest();
 var response = ec2Client.DescribeKeyPairs(request);

 foreach (KeyPairInfo item in response.KeyPairs)
 {
 Console.WriteLine("Existing key pair: " + item.KeyName);
 }
}

.. _delete-key-pairs:

Delete Key Pairs

You can delete a key pair by calling the DeleteKeyPair from your AmazonEC2Client instance.

Pass a DeleteKeyPairRequest containing the name of the key pair to the DeleteKeyPair method of the
AmazonEC2Client object.

public static void DeleteKeyPair(
 AmazonEC2Client ec2Client,
 KeyPair keyPair)
{
 try
 {
 // Delete key pair created for sample
 ec2Client.DeleteKeyPair(new DeleteKeyPairRequest { KeyName = keyPair.KeyName });
 }
 catch (AmazonEC2Exception ex)
 {
 // Check the ErrorCode to see if the key already exists
 if ("InvalidKeyPair.NotFound" == ex.ErrorCode)
 {
 Console.WriteLine("The key pair \"{0}\" was not found.", keyPair.KeyName);
 }
 else
 {
 // The exception was thrown for another reason, so re-throw the exception
 throw;
 }
 }
}

Launching an Amazon EC2 Instance
Use the following procedure to launch one or more identically configured Amazon EC2 instances from
the same Amazon Machine Image (AMI). After you create your EC2 instances, you can check their status.
When your EC2 instances are running, you can connect to them.

For information on creating an Amazon EC2 client, see Creating an Amazon EC2 Client (p. 93).

99

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeKeyPairs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DeleteKeyPairDeleteKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDeleteKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DeleteKeyPairDeleteKeyPairRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

Launch an EC2 Instance in EC2-Classic or in a VPC

You can launch an instance in either EC2-Classic or in a VPC. For more information about EC2-Classic and
EC2-VPC, see Supported Platforms in the Amazon EC2 User Guide for Windows Instances.

To get a list of your security groups and their GroupId properties, see Enumerate Your Security
Groups (p. 94).

To launch an EC2 instance in EC2-Classic

1. Create and initialize a RunInstancesRequest object. Be sure the AMI, key pair, and security group you
specify exist in the region you specified when you created the client object.

string amiID = "ami-e189c8d1";
string keyPairName = "my-sample-key";

List<string> groups = new List<string>() { mySG.GroupId };
var launchRequest = new RunInstancesRequest()
{
 ImageId = amiID,
 InstanceType = InstanceType.T1Micro,
 MinCount = 1,
 MaxCount = 1,
 KeyName = keyPairName,
 SecurityGroupIds = groups
};

ImageId

The ID of the AMI. For a list of public AMIs, see Amazon Machine Images.
InstanceType

An instance type that is compatible with the specified AMI. For more information, see Instance
Types in the Amazon EC2 User Guide for Windows Instances.

MinCount

The minimum number of EC2 instances to launch. If this is more instances than Amazon EC2 can
launch in the target Availability Zone, Amazon EC2 launches no instances.

MaxCount

The maximum number of EC2 instances to launch. If this is more instances than Amazon EC2
can launch in the target Availability Zone, Amazon EC2 launches the largest possible number of
instances above MinCount. You can launch between 1 and the maximum number of instances
you’re allowed for the instance type. For more information, see How many instances can I run in
Amazon EC2 in the Amazon EC2 General FAQ.

KeyName

The name of the EC2 key pair. If you launch an instance without specifying a key pair, you can’t
connect to it. For more information, see Working with Amazon EC2 Key Pairs (p. 97).

SecurityGroupIds

The identifiers of one or more security groups. For more information, see Creating a Security
Group in Amazon EC2 (p. 93).

2. (Optional) To launch the instance with an IAM role (p. 136), specify an IAM instance profile in the
RunInstancesRequest object.

An IAM user can’t launch an instance with an IAM role without the permissions granted by the
following policy.

100

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/ec2-supported-platforms.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://aws.amazon.com/marketplace/search/results/&searchTerms=AMISAWS?browse=1
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html.html
https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"
],
 "Resource": "*"
 }]
 }

For example, the following snippet instantiates and configures an IamInstanceProfileSpecification
object for an IAM role named winapp-instance-role-1.

var instanceProfile = new IamInstanceProfile();
instanceProfile.Id = "winapp-instance-role-1";

To specify this instance profile in the RunInstancesRequest object, add the following line.

launchRequest.IamInstanceProfile = instanceProfile;

3. Launch the instance by passing the request object to the RunInstances method. Save the ID of the
instance because you need it to manage the instance.

Use the returned RunInstancesResponse object to get the instance IDs for the new instances. The
Reservation.Instances property contains a list of Instance objects, one for each EC2 instance
you successfully launched. You can retrieve the ID for each instance from the InstanceId property
of the Instance object.

var launchResponse = ec2Client.RunInstances(launchRequest);
var instances = launchResponse.Reservation.Instances;
var instanceIds = new List<string>();
foreach (Instance item in instances)
{
 instanceIds.Add(item.InstanceId);
 Console.WriteLine();
 Console.WriteLine("New instance: " + item.InstanceId);
 Console.WriteLine("Instance state: " + item.State.Name);
}

To launch an EC2 instance in a VPC

1. Create and initialize an elastic network interface in a subnet of the VPC.

string subnetID = "subnet-cb663da2";

List<string> groups = new List<string>() { mySG.GroupId };
var eni = new InstanceNetworkInterfaceSpecification()
{
 DeviceIndex = 0,
 SubnetId = subnetID,
 Groups = groups,
 AssociatePublicIpAddress = true
};

101

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIamInstanceProfileSpecification.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2RunInstancesRunInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstance.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstance.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

List<InstanceNetworkInterfaceSpecification> enis = new
 List<InstanceNetworkInterfaceSpecification>() {eni};

DeviceIndex

The index of the device on the instance for the network interface attachment.

SubnetId

The ID of the subnet where the instance will be launched.

Groups

One or more security groups. For more information, see Creating a Security Group in Amazon
EC2 (p. 93).

AssociatePublicIpAddress

Indicates whether to auto-assign a public IP address to an instance in a VPC.

2. Create and initialize a RunInstancesRequest object. Be sure the AMI, key pair, and security group you
specify exist in the region you specified when you created the client object.

string amiID = "ami-e189c8d1";
string keyPairName = "my-sample-key";

var launchRequest = new RunInstancesRequest()
{
 ImageId = amiID,
 InstanceType = InstanceType.T1Micro,
 MinCount = 1,
 MaxCount = 1,
 KeyName = keyPairName,
 NetworkInterfaces = enis
};

ImageId

The ID of the AMI. For a list of public AMIs provided by Amazon, see Amazon Machine Images.

InstanceType

An instance type that is compatible with the specified AMI. For more information, see Instance
Types in the Amazon EC2 User Guide for Windows Instances.

MinCount

The minimum number of EC2 instances to launch. If this is more instances than Amazon EC2 can
launch in the target Availability Zone, Amazon EC2 launches no instances.

MaxCount

The maximum number of EC2 instances to launch. If this is more instances than Amazon EC2
can launch in the target Availability Zone, Amazon EC2 launches the largest possible number of
instances above MinCount. You can launch between 1 and the maximum number of instances
you’re allowed for the instance type. For more information, see How many instances can I run in
Amazon EC2 in the Amazon EC2 General FAQ.

KeyName

The name of the EC2 key pair. If you launch an instance without specifying a key pair, you can’t
connect to it. For more information, see Working with Amazon EC2 Key Pairs (p. 97).

NetworkInterfaces

One or more network interfaces. 102

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://aws.amazon.com/marketplace/search/results/&searchTerms=AMISAWS?browse=1
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/instance-types.html
https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2
https://aws.amazon.com/ec2/faqs/#How_many_instances_can_I_run_in_Amazon_EC2

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

3. (Optional) To launch the instance with an IAM role (p. 136), specify an IAM instance profile in the
RunInstancesRequest object.

An IAM user can’t launch an instance with an IAM role without the permissions granted by the
following policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"
],
 "Resource": "*"
 }]
}

For example, the following snippet instantiates and configures an IamInstanceProfileSpecification
object for an IAM role named winapp-instance-role-1.

var instanceProfile = new IamInstanceProfileSpecification();
instanceProfile.Name = "winapp-instance-role-1";

To specify this instance profile in the RunInstancesRequest object, add the following line.

launchRequest.IamInstanceProfile = instanceProfile;

4. Launch the instances by passing the request object to the RunInstances method. Save the IDs of the
instances because you need them to manage the instances.

Use the returned RunInstancesResponse object to get a list of instance IDs for the new instances.
The Reservation.Instances property contains a list of Instance objects, one for each EC2
instance you successfully launched. You can retrieve the ID for each instance from the InstanceId
property of the Instance object.

RunInstancesResponse launchResponse = ec2Client.RunInstances(launchRequest);

List<String> instanceIds = new List<string>();
foreach (Instance instance in launchResponse.Reservation.Instances)
{
 Console.WriteLine(instance.InstanceId);
 instanceIds.Add(instance.InstanceId);
}

Check the State of Your Instance

Use the following procedure to get the current state of your instance. Initially, your instance is in the
pending state. You can connect to your instance after it enters the running state.

1. Create and configure a DescribeInstancesRequest object and assign your instance’s instance ID to
the InstanceIds property. You can also use the Filter property to limit the request to certain
instances, such as instances with a particular user-specified tag.

var instanceRequest = new DescribeInstancesRequest();
instanceRequest.InstanceIds = new List<string>();

103

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TIamInstanceProfileSpecification.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2RunInstancesRunInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRunInstancesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstance.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TInstance.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeInstancesRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

instanceRequest.InstanceIds.Add(instanceId);

2. Call the DescribeInstances method, and pass it the request object from step 1. The method returns a
DescribeInstancesResponse object that contains information about the instance.

var response = ec2Client.DescribeInstances(instanceRequest);

3. The DescribeInstancesResponse.Reservations property contains a list of reservations. In this
case, there is only one reservation. Each reservation contains a list of Instance objects. Again, in this
case, there is only one instance. You can get the instance’s status from the State property.

Console.WriteLine(response.Reservations[0].Instances[0].State.Name);

Connect to Your Running Instance

After an instance is running, you can remotely connect to it by using the appropriate remote client.

For Linux instances, use an SSH client. You must ensure that the instance’s SSH port (22) is open to
traffic. You will need the instance’s public IP address or public DNS name and the private portion of the
key pair used to launch the instance. For more information, see Connecting to Your Linux Instance in the
Amazon EC2 User Guide for Linux Instances.

For Windows instances, use an RDP client. You must ensure the instance’s RDP port (3389)
is open to traffic. You will need the instance’s public IP address or public DNS name and the
administrator password. The administrator password is obtained with the GetPasswordData and
GetPasswordDataResult.GetDecryptedPassword methods, which require the private portion of the key
pair used to launch the instance. For more information, see Connecting to Your Windows Instance Using
RDP in the Amazon EC2 User Guide for Windows Instances. The following example demonstrates how to
get the password for a Windows instance.

public static string GetWindowsPassword(
 AmazonEC2Client ec2Client,
 string instanceId,
 FileInfo privateKeyFile)
{
 string password = "";

 var request = new GetPasswordDataRequest();
 request.InstanceId = instanceId;

 var response = ec2Client.GetPasswordData(request);
 if (null != response.PasswordData)
 {
 using (StreamReader sr = new StreamReader(privateKeyFile.FullName))
 {
 string privateKeyData = sr.ReadToEnd();
 password = response.GetDecryptedPassword(privateKeyData);
 }
 }
 else
 {
 Console.WriteLine("The password is not available. The password for " +
 "instance {0} is either not ready, or it is not a Windows instance.",
 instanceId);
 }

 return password;
}

When you no longer need your EC2 instance, see Terminating an Amazon EC2 Instance (p. 105).

104

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeInstancesDescribeInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeInstancesResponse.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AccessingInstances.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2GetPasswordDataGetPasswordDataRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MGetPasswordDataResponseGetDecryptedPasswordString.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

Terminating an Amazon EC2 Instance
When you no longer need one or more of your Amazon EC2 instances, you can terminate them.

For information on creating an Amazon EC2 client, see Creating an Amazon EC2 Client (p. 93).

To terminate an EC2 instance

1. Create and initialize a TerminateInstancesRequest object.
2. Set the TerminateInstancesRequest.InstanceIds property to a list of one or more instance

IDs for the instances to terminate.
3. Pass the request object to the TerminateInstances method. If the specified instance doesn’t exist, an

AmazonEC2Exception is thrown.
4. You can use the TerminateInstancesResponse object to list the terminated instances, as follows.

public static void TerminateInstance(
 AmazonEC2Client ec2Client,
 string instanceId)
{
 var request = new TerminateInstancesRequest();
 request.InstanceIds = new List<string>() { instanceId };

 try
 {
 var response = ec2Client.TerminateInstances(request);
 foreach (InstanceStateChange item in response.TerminatingInstances)
 {
 Console.WriteLine("Terminated instance: " + item.InstanceId);
 Console.WriteLine("Instance state: " + item.CurrentState.Name);
 }
 }
 catch(AmazonEC2Exception ex)
 {
 // Check the ErrorCode to see if the instance does not exist.
 if ("InvalidInstanceID.NotFound" == ex.ErrorCode)
 {
 Console.WriteLine("Instance {0} does not exist.", instanceId);
 }
 else
 {
 // The exception was thrown for another reason, so re-throw the exception.
 throw;
 }
 }
}

Using Regions and Availability Zones with Amazon EC2
This .NET example shows you how to:

• Get details about Availability Zones
• Get details about regions

The Scenario

Amazon EC2 is hosted in multiple locations worldwide. These locations are composed of regions and
Availability Zones. Each region is a separate geographic area that has multiple, isolated locations known
as Availability Zones. Amazon EC2 provides the ability to place instances and data in multiple locations.

105

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TTerminateInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2TerminateInstancesTerminateInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Exception.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TTerminateInstancesResponse.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

You can use the AWS SDK for .NET to retrieve details about regions and Availability Zones by using the
following methods of the AmazonEC2Client class:

• DescribeAvailabilityZones
• DescribeRegions

For more information about regions and Availability Zones, see Regions and Availability Zones in the
Amazon EC2 User Guide for Windows Instances.

Describe Availability Zones

Create an AmazonEC2Client instance and call the DescribeAvailabilityZones method. The
DescribeAvailabilityZonesResponse object that is returned contains a list of Availability Zones.

public static void DescribeAvailabilityZones()
{
 Console.WriteLine("Describe Availability Zones");
 AmazonEC2Client client = new AmazonEC2Client();
 DescribeAvailabilityZonesResponse response = client.DescribeAvailabilityZones();
 var availZones = new List<AvailabilityZone>();
 availZones = response.AvailabilityZones;
 foreach (AvailabilityZone az in availZones)
 {
 Console.WriteLine(az.ZoneName);
 }
}

Describe Regions

Create an AmazonEC2Client instance and call the DescribeRegions method. The
DescribeRegionsResponse object that is returned contains a list of regions.

public static void DescribeRegions()
{
 Console.WriteLine("Describe Regions");
 AmazonEC2Client client = new AmazonEC2Client();
 DescribeRegionsResponse response = client.DescribeRegions();
 var regions = new List<Region>();
 regions = response.Regions;
 foreach (Region region in regions)
 {
 Console.WriteLine(region.RegionName);
 }
}

Using VPC Endpoints with Amazon EC2
This .NET example shows you how to create, describe, modify, and delete VPC endpoints.

The Scenario

An endpoint enables you to create a private connection between your VPC and another AWS service in
your account. You can specify a policy to attach to the endpoint that will control access to the service
from your VPC. You can also specify the VPC route tables that use the endpoint.

This example uses the following AmazonEC2Client methods:

• CreateVpcEndpoint

106

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeAvailabilityZonesDescribeAvailabilityZonesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeRegionsDescribeRegionsRequest.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-regions-availability-zones.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeAvailabilityZonesDescribeAvailabilityZonesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeAvailabilityZonesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeRegionsDescribeRegionsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeRegionsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateVpcEndpointCreateVpcEndpointRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

• DescribeVpcEndpoints
• ModifyVpcEndpoint
• DeleteVpcEndpoints

Create a VPC Endpoint

The following example creates a VPC endpoint for an Amazon Simple Storage Service (S3).

Create an AmazonEC2Client instance. You’ll create a new VPC so that you can create a VPC endpoint.

Create a CreateVpcRequest object specifying an IPv4 CIDR block as its constructor’s parameter. Using
that CreateVpcRequest object, use the CreateVpc method to create a VPC. Use that VPC to instantiate a
CreateVpcEndpointRequest object, specifying the service name for the endpoint. Then, use that request
object to call the CreateVpcEndpoint method and create the VpcEndpoint.

public static void CreateVPCEndpoint()
{
 AmazonEC2Client client = new AmazonEC2Client();
 CreateVpcRequest vpcRequest = new CreateVpcRequest("10.32.0.0/16");
 CreateVpcResponse vpcResponse = client.CreateVpc(vpcRequest);
 Vpc vpc = vpcResponse.Vpc;
 CreateVpcEndpointRequest endpointRequest = new CreateVpcEndpointRequest();
 endpointRequest.VpcId = vpc.VpcId;
 endpointRequest.ServiceName = "com.amazonaws.us-west-2.s3";
 CreateVpcEndpointResponse cVpcErsp = client.CreateVpcEndpoint(endpointRequest);
 VpcEndpoint vpcEndPoint = cVpcErsp.VpcEndpoint;
}

Describe a VPC Endpoint

Create an AmazonEC2Client instance. Next, create a DescribeVpcEndpointsRequest object and limit the
maximum number of results to return to 5. Use that DescribeVpcEndpointsRequest object to call
the DescribeVpcEndpoints method. The DescribeVpcEndpointsResponse that is returned contains the list
of VPC Endpoints.

public static void DescribeVPCEndPoints()
{
 AmazonEC2Client client = new AmazonEC2Client();
 DescribeVpcEndpointsRequest endpointRequest = new DescribeVpcEndpointsRequest();
 endpointRequest.MaxResults = 5;
 DescribeVpcEndpointsResponse endpointResponse =
 client.DescribeVpcEndpoints(endpointRequest);
 List<VpcEndpoint> endpointList = endpointResponse.VpcEndpoints;
 foreach (VpcEndpoint vpc in endpointList)
 {
 Console.WriteLine("VpcEndpoint ID = " + vpc.VpcEndpointId);
 List<string> routeTableIds = vpc.RouteTableIds;
 foreach (string id in routeTableIds)
 {
 Console.WriteLine("\tRoute Table ID = " + id);
 }

 }
}

Modify a VPC Endpoint

The following example modifies attributes of a specified VPC endpoint. You can modify the policy
associated with the endpoint, and you can add and remove route tables associated with the endpoint.

107

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeVpcEndpointsDescribeVpcEndpointsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2ModifyVpcEndpointModifyVpcEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DeleteVpcEndpointsDeleteVpcEndpointsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateVpcRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateVpcRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateVpcCreateVpcRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TCreateVpcEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CreateVpcEndpointCreateVpcEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TVpcEndpoint.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeVpcEndpointsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeVpcEndpointsDescribeVpcEndpointsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeVpcEndpointsResponse.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

Create an AmazonEC2Client instance. Create a ModifyVpcEndpointRequest object using the ID of the
VPC endpoint and the ID of the route table to add to it. Call the ModifyVpcEndpoint method using the
ModifyVpcEndpointRequest object. The ModifyVpcEndpointResponse object that is returned contains
an HTTP status code indicating whether the modify request succeeded.

public static void ModifyVPCEndPoint()
{
 AmazonEC2Client client = new AmazonEC2Client();
 ModifyVpcEndpointRequest modifyRequest = new ModifyVpcEndpointRequest();
 modifyRequest.VpcEndpointId = "vpce-17b05a7e";
 modifyRequest.AddRouteTableIds = new List<string> { "rtb-c46f15a3" };
 ModifyVpcEndpointResponse modifyResponse = client.ModifyVpcEndpoint(modifyRequest);
 HttpStatusCode status = modifyResponse.HttpStatusCode;
 if (status.ToString() == "OK")
 Console.WriteLine("ModifyHostsRequest succeeded");
 else
 Console.WriteLine("ModifyHostsRequest failed");

Delete a VPC Endpoint

You can delete one or more specified VPC endpoints. Deleting the endpoint also deletes the endpoint
routes in the route tables that were associated with the endpoint.

Create an AmazonEC2Client instance. Use the DescribeVpcEndpoints method to list the VPC endpoints
associated with the EC2 client. Use the list of VPC endpoints to create a list of VPC endpoint IDs. Use that
list to create a DeleteVpcEndpointsRequest object to be used by the DeleteVpcEndpoints method.

private static void DeleteVPCEndPoint()
{
 AmazonEC2Client client = new AmazonEC2Client();
 DescribeVpcEndpointsRequest endpointRequest = new DescribeVpcEndpointsRequest();
 endpointRequest.MaxResults = 5;
 DescribeVpcEndpointsResponse endpointResponse =
 client.DescribeVpcEndpoints(endpointRequest);
 List<VpcEndpoint> endpointList = endpointResponse.VpcEndpoints;
 var vpcEndPointListIds = new List<string>();
 foreach (VpcEndpoint vpc in endpointList)
 {
 Console.WriteLine("VpcEndpoint ID = " + vpc.VpcEndpointId);
 vpcEndPointListIds.Add(vpc.VpcEndpointId);
 }
 DeleteVpcEndpointsRequest deleteRequest = new DeleteVpcEndpointsRequest();
 deleteRequest.VpcEndpointIds = vpcEndPointListIds;
 client.DeleteVpcEndpoints(deleteRequest);
}

Using Elastic IP Addresses in Amazon EC2
This .NET example shows you how to:

• Retrieve descriptions of your Elastic IP addresses
• Allocate and associate an Elastic IP address with an Amazon EC2 instance
• Release an Elastic IP address

The Scenario

An Elastic IP address is a static IP address designed for dynamic cloud computing. An Elastic IP address is
associated with your AWS account, and is a public IP address reachable from the Internet.

108

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TModifyVpcEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2ModifyVpcEndpointModifyVpcEndpointRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TModifyVpcEndpointResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeVpcEndpointsDescribeVpcEndpointsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDeleteVpcEndpointsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DeleteVpcEndpointsDeleteVpcEndpointsRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Instances Examples

If your Amazon EC2 instance doesn’t have a public IP address, you can associate an Elastic IP address
with your instance to enable communication with the Internet.

In this example, you use the AWS SDK for .NET to manage Elastic IP addresses by using these methods of
the Amazon EC2 client class:

• DescribeAddresses

• AllocateAddress

• AssociateAddress

• ReleaseAddress

For more information about Elastic IP addresses in Amazon EC2, see Elastic IP Addresses in the Amazon
EC2 User Guide for Windows Instances.

Describe Elastic IP Addresses

Create an AmazonEC2Client object. Next, create a DescribeAddressesRequest object to pass as a
parameter, filtering the addresses returned by those in your VPC. To retrieve descriptions of all your
Elastic IP addresses, omit the filter from the parameters. Then call the DescribeAddresses method of the
AmazonEC2Client object.

public void DescribeElasticIps()
{
 using (var client = new AmazonEC2Client(RegionEndpoint.USWest2))
 {
 var addresses = client.DescribeAddresses(new DescribeAddressesRequest
 {
 Filters = new List<Filter>
 {
 new Filter
 {
 Name = "domain",
 Values = new List<string> { "vpc" }
 }
 }
 }).Addresses;

 foreach(var address in addresses)
 {
 Console.WriteLine(address.PublicIp);
 Console.WriteLine("\tAllocation Id: " + address.AllocationId);
 Console.WriteLine("\tPrivate IP Address: " + address.PrivateIpAddress);
 Console.WriteLine("\tAssociation Id: " + address.AssociationId);
 Console.WriteLine("\tInstance Id: " + address.InstanceId);
 Console.WriteLine("\tNetwork Interface Owner Id: " +
 address.NetworkInterfaceOwnerId);
 }
 }
}

Allocate and Associate an Elastic IP Address

Create an AmazonEC2Client object. Next, create an AllocateAddressRequest object for the parameter
used to allocate an Elastic IP address, which in this case specifies that the domain is a VPC. Call the
AllocateAddress method of the AmazonEC2Client object.

Upon success, the returned AllocateAddressResponse object has an AllocationId property that
identifies the allocated Elastic IP address.

109

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeAddressesDescribeAddressesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2AllocateAddressAllocateAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2AssociateAddressAssociateAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2ReleaseAddressReleaseAddressRequest.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/elastic-ip-addresses-eip.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeAddressesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2DescribeAddressesDescribeAddressesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAllocateAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2AllocateAddressAllocateAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAllocateAddressResponse.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

Create an AssociateAddressRequest object for the parameters used to associate an Elastic IP address
to an Amazon EC2 instance. Include the AllocationId from the newly allocated address and
the InstanceId of the Amazon EC2 instance. Then call the AssociateAddress method of the
AmazonEC2Client object.

public void AllocateAndAssociate(string instanceId)
{
 using (var client = new AmazonEC2Client(RegionEndpoint.USWest2))
 {
 var allocationId = client.AllocateAddress(new AllocateAddressRequest
 {
 Domain = DomainType.Vpc
 }).AllocationId;

 Console.WriteLine("Allocation Id: " + allocationId);

 var associationId = client.AssociateAddress(new AssociateAddressRequest
 {
 AllocationId = allocationId,
 InstanceId = instanceId
 }).AssociationId;

 Console.WriteLine("Association Id: " + associationId);
 }
}

Release an Elastic IP Address

Create an AmazonEC2Client object. Next, create a ReleaseAddressRequest object for the parameters
used to release an Elastic IP address, which in this case specifies the AllocationId for the Elastic IP
address. Releasing an Elastic IP address also disassociates it from any Amazon EC2 instance. Call the
ReleaseAddress method of the Amazon EC2 service object.

public void Release(string allocationId)
{
 using (var client = new AmazonEC2Client(RegionEndpoint.USWest2))
 {
 client.ReleaseAddress(new ReleaseAddressRequest
 {
 AllocationId = allocationId
 });
 }
}

Amazon EC2 Spot Instance Examples
This topic describes how to use the AWS SDK for .NET to create, cancel, and terminate an Amazon EC2
Spot Instance.

Topics
• Overview (p. 111)
• Prerequisites (p. 111)
• Setting Up Your Credentials (p. 111)
• Submitting Your Spot Request (p. 111)
• Determining the State of Your Spot Request (p. 113)
• Cleaning Up Your Spot Requests and Instances (p. 114)
• Putting it all Together (p. 115)

110

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TAssociateAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2AssociateAddressAssociateAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TEC2Client.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TReleaseAddressRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2ReleaseAddressReleaseAddressRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

Overview
Spot Instances enable you to request unused Amazon EC2 capacity for less than the On-Demand price.
This can significantly lower your EC2 costs for applications that can be interrupted.

The following is a high-level summary of how Spot Instances are requested and used.

1. Create a Spot Instance request, specifying the maximum price you are willing to pay.
2. When the request is fulfilled, run the instance as you would any other Amazon EC2 instance.
3. Run the instance as long as you want and then terminate it, unless the Spot Price changes such that

the instance is terminated for you.
4. Clean up the Spot Instance request when you no longer need it so that Spot Instances are no longer

created.

This has been a very high level overview of Spot Instances. You can gain a better understanding of Spot
Instances by reading about them in the EC2 user guide for Linux or the EC2 user guide for Windows.

This tutorial provides an overview of how to use the .NET programming environment to do the following.

• Submit a Spot request
• Determine when the Spot request becomes fulfilled
• Cancel the Spot request
• Terminate associated instances

Prerequisites
This tutorial assumes you have signed up for AWS, set up your .NET development environment, and
installed the AWS SDK for .NET. If you use the Microsoft Visual Studio development environment,
we recommend you also install the AWS Toolkit for Visual Studio. For instructions on setting up your
environment, see Getting Started with the AWS SDK for .NET (p. 15).

Setting Up Your Credentials
For information about how to use your AWS credentials with the SDK, see Configuring AWS
Credentials (p. 25).

Submitting Your Spot Request
To submit a Spot request, you first need to determine the instance type, the Amazon Machine Image
(AMI), and the maximum request you want to offer. You must also include a security group, so that
you can log into the instance if you want to. For more information about creating security groups, see
Creating a Security Group in Amazon EC2 (p. 93).

There are several instance types to choose from; go to Amazon EC2 Instance Types for a complete list.
For this tutorial, we will use t1.micro. You’ll also want to get the ID of a current Windows AMI. For
more information, see Finding an AMI in the Amazon EC2 User Guide for Windows Instances.

There are many ways to approach requesting Spot Instances. To get started, we’ll describe three common
strategies:

• Request to ensure that the cost is less than on-demand pricing.
• Request based on the value of the resulting computation.
• Request so as to acquire computing capacity as quickly as possible.

111

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/using-spot-instances.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/instance-types.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/finding-an-ami.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

Reduce Cost Below On-Demand

You have a batch processing job that will take a number of hours or days to run. However, you are
flexible with respect to when it starts and ends. You want to see if you can complete it for less
than the cost of On-Demand Instances. You examine the Spot Price history for instance types using
either the AWS Management Console or the Amazon EC2 API. For more information, go to Viewing
Spot Price History. After you’ve analyzed the price history for your desired instance type in a given
Availability Zone, you have two alternative approaches for your request:
• Specify a request at the upper end of the range of Spot Prices, which are still below the On-

Demand price, anticipating that your one-time Spot request would most likely be fulfilled and run
for enough consecutive compute time to complete the job.

• Specify a request at the lower end of the price range, and plan to combine many instances
launched over time through a persistent request. The instances would run long enough, in
aggregate, to complete the job at an even lower total cost. (We will explain how to automate this
task later in this tutorial.)

Pay No More than the Value of the Result

You have a data processing job to run. You understand the value of the job’s results well enough
to know how much they are worth in terms of computing costs. After you’ve analyzed the Spot
Price history for your instance type, you choose a request at which the cost of the computing time
is no more than the value of the job’s results. You create a persistent request and allow it to run
intermittently as the Spot Price fluctuates at or below your request.

Acquire Computing Capacity Quickly

You have an unanticipated, short-term need for additional capacity that is not available through On-
Demand Instances. After you’ve analyzed the Spot Price history for your instance type, you request
above the highest historical price to greatly improve the likelihood your request will be fulfilled
quickly and continue computing until it is complete.

After you have performed your analysis, you are ready to request a Spot Instance. For this tutorial the
default maximum spot-instance price is set to be the same as the On-Demand price (which is $0.003
for this tutorial). Setting the price in this way maximizes the chances that the request will be fulfilled.
You can determine the types of available instances and the On-Demand prices for instances by going to
Amazon EC2 Pricing page.

First specify the .NET namespaces used in the application.

using System;
using System.Collections.Generic;
using System.Threading;
using Amazon;
using Amazon.EC2;
using Amazon.EC2.Model;

For information on creating an Amazon EC2 client, see Creating an Amazon EC2 Client (p. 93).

Next, to request a Spot Instance, you need to build your request with the parameters we have
specified so far. Start by creating a RequestSpotInstanceRequest object. The request object requires
the request amount and the number of instances you want to start. Additionally, you need to set
the LaunchSpecification for the request, which includes the instance type, AMI ID, and the name of
the security group you want to use for the Spot Instances. After the request is populated, call the
RequestSpotInstances method to create the Spot Instance request. The following example demonstrates
how to request a Spot Instance.

 /* Creates a spot instance
 *
 * Takes six args:

112

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-spot-instances-history.html
https://aws.amazon.com/ec2/pricing/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TRequestSpotInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TLaunchSpecification.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2RequestSpotInstancesRequestSpotInstancesRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

 * AmazonEC2Client ec2Client is the EC2 client through which the spot instance
 request is made
 * string amiId is the AMI of the instance to request
 * string securityGroupName is the name of the security group of the instance to
 request
 * InstanceType instanceType is the type of the instance to request
 * string spotPrice is the price of the instance to request
 * int instanceCount is the number of instances to request
 *
 * See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/
MEC2RequestSpotInstancesRequestSpotInstancesRequest.html
 */
 private static SpotInstanceRequest RequestSpotInstance(
 AmazonEC2Client ec2Client,
 string amiId,
 string securityGroupName,
 InstanceType instanceType,
 string spotPrice,
 int instanceCount)
 {
 RequestSpotInstancesRequest request = new RequestSpotInstancesRequest
 {
 SpotPrice = spotPrice,
 InstanceCount = instanceCount
 };

 LaunchSpecification launchSpecification = new LaunchSpecification
 {
 ImageId = amiId,
 InstanceType = instanceType
 };

 launchSpecification.SecurityGroups.Add(securityGroupName);

 request.LaunchSpecification = launchSpecification;

 var result = ec2Client.RequestSpotInstancesAsync(request);

 return result.Result.SpotInstanceRequests[0];
 }

The Spot request ID is contained in the SpotInstanceRequestId member of the SpotInstanceRequest
object.

Running this code will launch a new Spot Instance request.

Note
You will be charged for any Spot Instances that are launched, so make sure you cancel any
requests and terminate any instances you launch to reduce any associated fees.

There are other options you can use to configure your Spot requests. To learn more, see
RequestSpotInstances in the AWS SDK for .NET.

Determining the State of Your Spot Request
Next, we need to wait until the Spot request reaches the Active state before proceeding to the last
step. To determine the state of your Spot request, we use the DescribeSpotInstanceRequests method to
obtain the state of the Spot request ID we want to monitor.

 /* Gets the state of a spot instance request.
 * Takes two args:
 * AmazonEC2Client ec2Client is the EC2 client through which information about
 the state of the spot instance is made

113

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TSpotInstanceRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2RequestSpotInstancesRequestSpotInstancesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/TDescribeSpotInstanceRequestsRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

 * string spotRequestId is the ID of the spot instance
 *
 * See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/
MEC2DescribeSpotInstanceRequests.html
 */
 private static SpotInstanceState GetSpotRequestState(
 AmazonEC2Client ec2Client,
 string spotRequestId)
 {
 // Create the describeRequest object with all of the request ids
 // to monitor (e.g. that we started).
 var request = new DescribeSpotInstanceRequestsRequest();
 request.SpotInstanceRequestIds.Add(spotRequestId);

 // Retrieve the request we want to monitor.
 var describeResponse = ec2Client.DescribeSpotInstanceRequestsAsync(request);

 SpotInstanceRequest req = describeResponse.Result.SpotInstanceRequests[0];

 return req.State;
 }

Cleaning Up Your Spot Requests and Instances
The final step is to clean up your requests and instances. It is important to both cancel any outstanding
requests and terminate any instances. Just canceling your requests will not terminate your instances,
which means that you will continue to be charged for them. If you terminate your instances, your Spot
requests may be canceled, but there are some scenarios, such as if you use persistent requests, where
terminating your instances is not sufficient to stop your request from being re-fulfilled. Therefore, it is a
best practice to both cancel any active requests and terminate any running instances.

You use the CancelSpotInstanceRequests method to cancel a Spot request. The following example
demonstrates how to cancel a Spot request.

 /* Cancels a spot instance request
 * Takes two args:
 * AmazonEC2Client ec2Client is the EC2 client through which the spot instance is
 cancelled
 * string spotRequestId is the ID of the spot instance
 *
 * See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/
MEC2CancelSpotInstanceRequestsCancelSpotInstanceRequestsRequest.html
 */
 private static void CancelSpotRequest(
 AmazonEC2Client ec2Client,
 string spotRequestId)
 {
 var cancelRequest = new CancelSpotInstanceRequestsRequest();

 cancelRequest.SpotInstanceRequestIds.Add(spotRequestId);

 ec2Client.CancelSpotInstanceRequestsAsync(cancelRequest);
 }

You use the TerminateInstances method to terminate an instance. The following example demonstrates
how to obtain the instance identifier for an active Spot Instance and terminate the instance.

 /* Terminates a spot instance request
 * Takes two args:
 * AmazonEC2Client ec2Client is the EC2 client through which the spot instance is
 terminated
 * string spotRequestId is the ID of the spot instance

114

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2CancelSpotInstanceRequestsCancelSpotInstanceRequestsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/MEC2TerminateInstancesTerminateInstancesRequest.html

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

 *
 * See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/
MEC2TerminateInstancesTerminateInstancesRequest.html
 */
 private static void TerminateSpotInstance(
 AmazonEC2Client ec2Client,
 string spotRequestId)
 {
 var describeRequest = new DescribeSpotInstanceRequestsRequest();
 describeRequest.SpotInstanceRequestIds.Add(spotRequestId);

 // Retrieve the request we want to monitor.
 var describeResponse =
 ec2Client.DescribeSpotInstanceRequestsAsync(describeRequest);

 if (SpotInstanceState.Active ==
 describeResponse.Result.SpotInstanceRequests[0].State)
 {
 string instanceId =
 describeResponse.Result.SpotInstanceRequests[0].InstanceId;

 var terminateRequest = new TerminateInstancesRequest();
 terminateRequest.InstanceIds = new List<string>() { instanceId };

 try
 {
 ec2Client.TerminateInstancesAsync(terminateRequest);
 }
 catch (AmazonEC2Exception ex)
 {
 // Check the ErrorCode to see if the instance does not exist.
 if ("InvalidInstanceID.NotFound" == ex.ErrorCode)
 {
 Console.WriteLine("Instance {0} does not exist.", instanceId);
 }
 else
 {
 // The exception was thrown for another reason, so re-throw the
 exception.
 throw;
 }
 }
 }
 }

For more information about terminating active instances, see Terminating an Amazon EC2
Instance (p. 105).

Putting it all Together
The following main routine calls these methods in the shown order to create, cancel, and terminate a
spot instance request. As the comment states, it takes one argument, the AMI.

 /* Creates, cancels, and terminates a spot instance request
 *
 * AmazonEC2Client ec2Client is the EC2 client through which the spot instance is
 manipulated
 * string spotRequestId is the ID of the spot instance
 *
 * See https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/EC2/
MEC2TerminateInstancesTerminateInstancesRequest.html
 */

115

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

 // Displays information about the command-line args
 private static void Usage()
 {
 Console.WriteLine("");
 Console.WriteLine("Usage:");
 Console.WriteLine("");
 Console.WriteLine("Ec2SpotCrud.exe AMI [-s SECURITY_GROUP] [-p SPOT_PRICE] [-c
 INSTANCE_COUNT] [-h]");
 Console.WriteLine(" where:");
 Console.WriteLine(" AMI is the AMI to use. No default value. Cannot be an
 empty string.");
 Console.WriteLine(" SECURITY_GROUP is the name of a security group. Default is
 default. Cannot be an empty string.");
 Console.WriteLine(" SPOT_PRICE is the spot price. Default is 0.003. Must be >
 0.001.");
 Console.WriteLine(" INSTANCE_COUNT is the number of instances. Default is 1.
 Must be > 0.");
 Console.WriteLine(" -h displays this message and quits");
 Console.WriteLine();
 }

 /* Creates, cancels, and terminates a spot instance request
 * See Usage() for information about the command-line args
 */
 static void Main(string[] args)
 {
 // Values that aren't easy to pass on the command line
 RegionEndpoint region = RegionEndpoint.USWest2;
 InstanceType instanceType = InstanceType.T1Micro;

 // Default values for optional command-line args
 string securityGroupName = "default";
 string spotPrice = "0.003";
 int instanceCount = 1;

 // Placeholder for the only required command-line arg
 string amiId = "";

 // Parse command-line args
 int i = 0;
 while (i < args.Length)
 {
 switch (args[i])
 {
 case "-s":
 i++;
 securityGroupName = args[i];
 if (securityGroupName == "")
 {
 Console.WriteLine("The security group name cannot be blank");
 Usage();
 return;
 }
 break;
 case "-p":
 i++;
 spotPrice = args[i];
 double price;
 double.TryParse(spotPrice, out price);
 if (price < 0.001)
 {
 Console.WriteLine("The spot price must be > 0.001");
 Usage();
 return;
 }
 break;

116

AWS SDK for .NET (version 3) Developer Guide
Amazon EC2 Spot Instance Examples

 case "-c":
 i++;
 int.TryParse(args[i], out instanceCount);
 if (instanceCount < 1)
 {
 Console.WriteLine("The instance count must be > 0");
 Usage();
 return;
 }
 break;
 case "-h":
 Usage();
 return;
 default:
 amiId = args[i];
 break;
 }

 i++;
 }

 // Make sure we have an AMI
 if (amiId == "")
 {
 Console.WriteLine("You must supply an AMI");
 Usage();
 return;
 }

 AmazonEC2Client ec2Client = new AmazonEC2Client(region: region);

 Console.WriteLine("Creating spot instance request");

 SpotInstanceRequest req = RequestSpotInstance(ec2Client, amiId,
 securityGroupName, instanceType, spotPrice, instanceCount);

 string id = req.SpotInstanceRequestId;

 // Wait for it to become active
 Console.WriteLine("Waiting for spot instance request with ID " + id + " to
 become active");

 int wait = 1;
 int totalTime = 0;

 while (true)
 {
 totalTime += wait;
 Console.Write(".");

 SpotInstanceState state = GetSpotRequestState(ec2Client, id);

 if (state == SpotInstanceState.Active)
 {
 Console.WriteLine("");
 break;
 }

 // wait a bit and try again
 Thread.Sleep(wait);

 // wait longer next time
 // 1, 2, 4, ...
 wait = wait * 2;
 }

117

AWS SDK for .NET (version 3) Developer Guide
Storing Archival Data Using Amazon S3 Glacier

 // Should be around 1000 (one second)
 Console.WriteLine("That took " + totalTime + " milliseconds");

 // Cancel the request
 Console.WriteLine("Canceling spot instance request");

 CancelSpotRequest(ec2Client, id);

 // Clean everything up
 Console.WriteLine("Terminating spot instance request");

 TerminateSpotInstance(ec2Client, id);

 Console.WriteLine("Done. Press enter to quit");

 Console.ReadLine();
 }

See the complete example, including information on how to build and run the example from the
command line, on GitHub.

Storing Archival Data Using Amazon S3 Glacier
The AWS SDK for .NET supports Amazon S3 Glacier, which is a storage service optimized for infrequently
used data, or cold data. The service provides durable and extremely low-cost storage with security
features for data archiving and backup. For more information, see Amazon S3 Glacier Developer Guide.

The following information introduces you to the S3 Glacier programming models in the AWS SDK
for .NET.

Programming Models
The AWS SDK for .NET provides two programming models for working with S3 Glacier. The following
information describes these models and why and how to use them.

Topics
• Low-Level APIs (p. 118)
• High-Level APIs (p. 120)

Low-Level APIs
The AWS SDK for .NET provides low-level APIs for programming with S3 Glacier. These low-level APIs
map closely to the underlying REST API supported by S3 Glacier. For each S3 Glacier REST operation, the
low-level APIs provide a corresponding method, a request object for you to provide request information,
and a response object for you to process the S3 Glacier response. The low-level APIs are the most
complete implementation of the underlying S3 Glacier operations.

The following example shows how to use the low-level APIs to list accessible vaults in S3 Glacier:

// using Amazon.Glacier;
// using Amazon.Glacier.Model;

var client = new AmazonGlacierClient();
var request = new ListVaultsRequest();
var response = client.ListVaults(request);

foreach (var vault in response.VaultList)

118

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/dotnet/example_code_legacy/ec2/Ec2SpotCRUD.cs
https://docs.aws.amazon.com/amazonglacier/latest/dev/

AWS SDK for .NET (version 3) Developer Guide
Programming Models

{
 Console.WriteLine("Vault: {0}", vault.VaultName);
 Console.WriteLine(" Creation date: {0}", vault.CreationDate);
 Console.WriteLine(" Size in bytes: {0}", vault.SizeInBytes);
 Console.WriteLine(" Number of archives: {0}", vault.NumberOfArchives);

 try
 {
 var requestNotifications = new GetVaultNotificationsRequest
 {
 VaultName = vault.VaultName
 };
 var responseNotifications =
 client.GetVaultNotifications(requestNotifications);

 Console.WriteLine(" Notifications:");
 Console.WriteLine(" Topic: {0}",
 responseNotifications.VaultNotificationConfig.SNSTopic);

 var events = responseNotifications.VaultNotificationConfig.Events;

 if (events.Any())
 {
 Console.WriteLine(" Events:");

 foreach (var e in events)
 {
 Console.WriteLine("{0}", e);
 }
 }
 else
 {
 Console.WriteLine(" No events set.");
 }

 }
 catch (ResourceNotFoundException)
 {
 Console.WriteLine(" No notifications set.");
 }

 var requestJobs = new ListJobsRequest{
 VaultName = vault.VaultName
 };
 var responseJobs = client.ListJobs(requestJobs);
 var jobs = responseJobs.JobList;

 if (jobs.Any())
 {
 Console.WriteLine(" Jobs:");

 foreach (var job in jobs)
 {
 Console.WriteLine(" For job ID: {0}",
 job.JobId);
 Console.WriteLine("Archive ID: {0}",
 job.ArchiveId);
 Console.WriteLine("Archive size in bytes: {0}",
 job.ArchiveSizeInBytes.ToString());
 Console.WriteLine("Completed: {0}",
 job.Completed);
 Console.WriteLine("Completion date: {0}",
 job.CompletionDate);
 Console.WriteLine("Creation date: {0}",
 job.CreationDate);
 Console.WriteLine("Inventory size in bytes: {0}",

119

AWS SDK for .NET (version 3) Developer Guide
Programming Models

 job.InventorySizeInBytes);
 Console.WriteLine("Job description: {0}",
 job.JobDescription);
 Console.WriteLine("Status code: {0}",
 job.StatusCode.Value);
 Console.WriteLine("Status message: {0}",
 job.StatusMessage);
 }

 }
 else
 {
 Console.WriteLine(" No jobs.");
 }

}

For more examples, see:

• Using the AWS SDK for .NET
• Creating a Vault
• Retrieving Vault Metadata
• Downloading a Vault Inventory
• Configuring Vault Notifications
• Deleting a Vault
• Uploading an Archive in a Single Operation
• Uploading Large Archives in Parts
• Downloading an Archive
• Deleting an Archive

For related API reference information, see Amazon.Glacier and Amazon.Glacier.

High-Level APIs
The AWS SDK for .NET provides high-level APIs for programming with S3 Glacier. To further simplify
application development, these high-level APIs offer a higher-level abstraction for some of the
operations, including uploading an archive and downloading an archive or vault inventory.

For examples, see the following topics in the Amazon S3 Glacier Developer Guide:

• Using the AWS SDK for .NET
• Creating a Vault
• Deleting a Vault
• Upload an Archive to a Vault
• Uploading an Archive
• Uploading Large Archives in Parts
• Download an Archive from a Vault
• Downloading an Archive
• Delete an Archive from a Vault
• Deleting an Archive

For related API reference information, see Amazon.Glacier.Transfer in the AWS SDK for .NET API
Reference.

120

https://docs.aws.amazon.com/amazonglacier/latest/dev/using-aws-sdk-for-dot-net.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/creating-vaults-dotnet-sdk.html#create-vault-dotnet-lowlevel.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/retrieving-vault-info-sdk-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/retrieving-vault-inventory-sdk-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/configuring-notifications-sdk-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/deleting-vaults-sdk-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-an-archive-single-op-using-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-an-archive-mpu-using-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/downloading-an-archive-using-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/deleting-an-archive-using-dot-net.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/NGlacier.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/NGlacierModel.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/
https://docs.aws.amazon.com/amazonglacier/latest/dev/using-aws-sdk-for-dot-net.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/creating-vaults-dotnet-sdk.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/deleting-vaults-sdk-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/getting-started-upload-archive-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-an-archive-single-op-using-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/uploading-an-archive-mpu-using-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/getting-started-download-archive-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/downloading-an-archive-using-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/getting-started-delete-archive-dotnet.html
https://docs.aws.amazon.com/amazonglacier/latest/dev/deleting-an-archive-using-dot-net.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Glacier/NGlacierTransfer.html

AWS SDK for .NET (version 3) Developer Guide
Managing users with IAM

Managing Users With AWS Identity and Access
Management (IAM)

The AWS SDK for .NET supports IAM, which is a web service that enables AWS customers to manage
users and user permissions in AWS.

The sample code is written in C#, but you can use the AWS SDK for .NET with any compatible language.
When you install the AWS Toolkit for Visual Studio a set of C# project templates are installed. So the
simplest way to start this project is to open Visual Studio, and then choose File, New Project, AWS
Sample Projects, Deployment and Management, AWS Identity and Access Management User.

For related API reference information, see Amazon.IdentityManagement and
Amazon.IdentityManagement.Model.

Prerequisites

Before you begin, be sure that you have created an AWS account and set up your AWS credentials. For
more information, see Setting up the AWS SDK for .NET (p. 15).

Topics
• Managing IAM Aliases for your AWS account ID (p. 121)
• Managing IAM Users (p. 123)
• Managing IAM Access Keys (p. 126)
• Working with IAM Policies (p. 129)
• Working with IAM Server Certificates (p. 133)
• List IAM Account Information (p. 135)
• Granting Access Using an IAM Role (p. 136)

Managing IAM Aliases for your AWS account ID
These .NET examples show you how to:

• Create an account alias for your AWS account ID
• List an account alias for your AWS account ID
• Delete an account alias for your AWS account ID

The Scenario
If you want the URL for your sign-in page to contain your company name or other friendly identifier
instead of your AWS account ID, you can create an alias for your AWS account ID. If you create an AWS
account alias, your sign-in page URL changes to incorporate the alias.

The following examples demonstrate how to manage your AWS account alias by using these methods of
the AmazonIdentityManagementServiceClient class:

• CreateAccountAlias
• ListAccountAliases
• DeleteAccountAlias

For more information about IAM account aliases, see Your AWS Account ID and Its Alias in the IAM User
Guide.

121

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAM.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAMModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreateAccountAliasCreateAccountAliasRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccountAliasesListAccountAliasesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteAccountAliasDeleteAccountAliasRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/console_account-alias.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Aliases

Create an Account Alias
Create an AmazonIdentityManagementServiceClient object. Next, create a CreateAccountAliasRequest
object containing the new account alias you want to use. Call the CreateAccountAlias method of the
AmazonIAMClient object. If the account alias is created, display the new alias on the console. If the
name already exists, write the exception message to the console.

public static void CreateAccountAlias()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new CreateAccountAliasRequest();
 request.AccountAlias = "my-aws-account-alias-2017";
 var response = iamClient.CreateAccountAlias(request);
 if (response.HttpStatusCode.ToString() == "OK")
 Console.WriteLine(request.AccountAlias + " created.");
 else
 Console.WriteLine("HttpStatusCode returned = " +
 response.HttpStatusCode.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

List Account Aliases
Create an AmazonIdentityManagementServiceClient object. Next, create a ListAccountAliasesRequest
object. Call the ListAccountAliases method of the AmazonIAMClient object. If there is an account alias,
display it on the console.

If there is no account alias, write the exception message to the console.

Note
There can be only one account alias.

public static void ListAccountAliases()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new ListAccountAliasesRequest();
 var response = iamClient.ListAccountAliases(request);
 List<string> aliases = response.AccountAliases;
 foreach (string account in aliases)
 {
 Console.WriteLine("The account alias is: " + account);
 }
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

Delete an Account Alias
Create an AmazonIdentityManagementServiceClient object. Next, create a DeleteAccountAliasRequest
object containing the account alias you want to delete. Call the DeleteAccountAlias method of the

122

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreateAccountAliasRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreateAccountAliasCreateAccountAliasRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreateAccountAliasRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccountAliasesListAccountAliasesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TDeleteAccountAliasRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteAccountAliasDeleteAccountAliasRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Users

AmazonIAMClient object. If the account alias is deleted, display the delete information on the console.
If the name doesn’t exist, write the exception message to the console.

public static void DeleteAccountAlias()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new DeleteAccountAliasRequest();
 request.AccountAlias = "my-aws-account-alias-2017";
 var response = iamClient.DeleteAccountAlias(request);
 if (response.HttpStatusCode.ToString() == "OK")
 Console.WriteLine(request.AccountAlias + " deleted.");
 else
 Console.WriteLine("HttpStatusCode returned = " +
 response.HttpStatusCode.ToString());
 }
 catch (NoSuchEntityException e)
 {
 Console.WriteLine(e.Message);
 }
}

Managing IAM Users
This .NET example shows you how to retrieve a list of IAM users, create and delete IAM users, and update
an IAM user name.

You can create and manage users in IAM using these methods of the
AmazonIdentityManagementServiceClient class:

• CreateUser
• ListUsers
• UpdateUser
• GetUser
• DeleteUser

For more information about IAM users, see IAM Users in the IAM User Guide.

For information about limitations on the number of IAM users you can create, see Limitations on IAM
Entities in the IAM User Guide.

Create a User for Your AWS Account
Create an AmazonIdentityManagementServiceClient object. Next, create a CreateUserRequest object
containing the user name you want to use for the new user. Call the CreateUser method of the
AmazonIAMClient object. If the user name doesn’t currently exist, display the name and the ARN for
the user on the console. If the name already exists, write a message to that effect to the console.

var client = new AmazonIdentityManagementServiceClient();
var request = new CreateUserRequest
{
 UserName = "DemoUser"
};

try
{
 var response = client.CreateUser(request);

123

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreateUserCreateUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListUsersListUsersRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceUpdateUserUpdateUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetUserGetUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteUserDeleteUserRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/iam-limits.html.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/iam-limits.html.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreateUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreateUserCreateUserRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Users

 Console.WriteLine("User Name = '{0}', ARN = '{1}'",
 response.User.UserName, response.User.Arn);
}
catch (EntityAlreadyExistsException)
{
 Console.WriteLine("User 'DemoUser' already exists.");
}

List Users in Your AWS Account
This example lists the IAM users that have the specified path prefix. If no path prefix is specified, the
action returns all users in the AWS account. If there are no users, the action returns an empty list.

Create an AmazonIdentityManagementServiceClient object. Next, create a ListUsersRequest object
containing the parameters needed to list your users. Limit the number returned by setting the MaxItems
parameter to 10. Call the ListUsers method of the AmazonIdentityManagementServiceClient
object. Write each user’s name and creation date to the console.

public static void ListUsers()
{
 var iamClient = new AmazonIdentityManagementServiceClient();
 var requestUsers = new ListUsersRequest() { MaxItems = 10 };
 var responseUsers = iamClient.ListUsers(requestUsers);

 foreach (var user in responseUsers.Users)
 {
 Console.WriteLine("User " + user.UserName + " Created: " +
 user.CreateDate.ToShortDateString());
 }

}

Update a User’s Name
This example shows how to update the name or the path of the specified IAM user. Be sure you
understand the implications of changing an IAM user’s path or name. For more information, see
Renaming an IAM User in the IAM User Guide.

Create an AmazonIdentityManagementServiceClient object. Next, create an UpdateUserRequest object,
specifying both the current and new user names as parameters. Call the UpdateUser method of the
AmazonIdentityManagementServiceClient object.

 public static void UpdateUser()
{
 var client = new AmazonIdentityManagementServiceClient();
 var request = new UpdateUserRequest
 {
 UserName = "DemoUser",
 NewUserName = "NewUser"
 };

 try
 {
 var response = client.UpdateUser(request);

 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine("User 'NewUser' already exists.");
 }

124

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListUsersRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListUsersListUsersRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_renaming.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TUpdateUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceUpdateUserUpdateUserRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Users

}

Get Information about a User
This example shows how to retrieve information about the specified IAM user, including the user’s
creation date, path, unique ID, and ARN. If you don’t specify a user name, IAM determines the user name
implicitly based on the AWS access key ID used to sign the request to this API.

Create an AmazonIdentityManagementServiceClient object. Next, create a GetUserRequest object
containing the user name you want to get information about. Call the GetUser method of the
AmazonIdentityManagementServiceClient object to get the information. If the user doesn’t exist,
an exception is thrown.

public static void GetUser()
{
 var client = new AmazonIdentityManagementServiceClient();
 var request = new GetUserRequest()
 {
 UserName = "DemoUser"
 };

 try
 {
 var response = client.GetUser(request);
 Console.WriteLine("Creation date: " +
 response.User.CreateDate.ToShortDateString());
 Console.WriteLine("Password last used: " +
 response.User.PasswordLastUsed.ToShortDateString());
 Console.WriteLine("UserId = " + response.User.UserId);

 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine("User 'DemoUser' does not exist.");
 }
}

Delete a User
This example shows how to delete the specified IAM user. The user must not belong to any groups or
have any access keys, signing certificates, or attached policies.

Create an AmazonIdentityManagementServiceClient object. Next, create a DeleteUserRequest object
containing the parameters needed, which consists of the user name you want to delete. Call the
DeleteUser method of the AmazonIdentityManagementServiceClient object to delete it. If the user
doesn’t exist, an exception is thrown.

public static void DeleteUser()
{
 var client = new AmazonIdentityManagementServiceClient();
 var request = new DeleteUserRequest()
 {
 UserName = "DemoUser"
 };

 try
 {
 var response = client.DeleteUser(request);

 }

125

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TGetUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetUserGetUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TDeleteUserRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteUserDeleteUserRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Access Keys

 catch (NoSuchEntityException)
 {
 Console.WriteLine("User DemoUser' does not exist.");
 }
}

Managing IAM Access Keys
These .NET examples shows you how to:

• Create an access key for a user
• Get the date that an access key was last used
• Update the status for an access key
• Delete an access key

The Scenario
Users need their own access keys to make programmatic calls to AWS from the AWS SDK for .NET. To
meet this need, you can create, modify, view, or rotate access keys (access key IDs and secret access keys)
for IAM users. When you create an access key, its status is Active by default, which means the user can
use the access key for API calls.

The C# code uses the AWS SDK for .NET to manage IAM access keys using these methods of the
AmazonIdentityManagementServiceClient class:

• CreateAccessKey
• ListAccessKeys
• GetAccessKeyLastUsed
• UpdateAccessKey
• DeleteAccessKey

For more information about IAM access keys, see Managing Access Keys for IAM Users in the IAM User
Guide.

Create Access Keys for a User
Call the CreateAccessKey method to create an access key named S3UserReadOnlyAccess
for the IAM access keys examples. The CreateAccessKey method first creates a
user named :code:`S3UserReadOnlyAccess with read only access rights by calling the
CreateUser method. It then creates an AmazonIdentityManagementServiceClient object and a
CreateAccessKeyRequest object containing the UserName parameter needed to create new access keys. It
then calls the CreateAccessKey method of the AmazonIdentityManagementServiceClient object.

public static void CreateAccessKey()
{
 try
 {
 CreateUser();
 var iamClient = new AmazonIdentityManagementServiceClient();
 // Create an access key for the IAM user that can be used by the SDK
 var accessKey = iamClient.CreateAccessKey(new CreateAccessKeyRequest
 {
 // Use the user created in the CreateUser example
 UserName = "S3UserReadOnlyAccess"
 }).AccessKey;

126

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreateAccessKeyCreateAccessKeyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccessKeysListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetAccessKeyLastUsedGetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceUpdateAccessKeyUpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteAccessKeyDeleteAccessKeyRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreateAccessKeyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreateAccessKeyCreateAccessKeyRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Access Keys

 }
 catch (LimitExceededException e)
 {
 Console.WriteLine(e.Message);
 }
}

public static User CreateUser()
{
 var iamClient = new AmazonIdentityManagementServiceClient();
 try
 {
 // Create the IAM user
 var readOnlyUser = iamClient.CreateUser(new CreateUserRequest
 {
 UserName = "S3UserReadOnlyAccess"
 }).User;

 // Assign the read-only policy to the new user
 iamClient.PutUserPolicy(new PutUserPolicyRequest
 {
 UserName = readOnlyUser.UserName,
 PolicyName = "S3ReadOnlyAccess",
 PolicyDocument = S3_READONLY_POLICY
 });
 return readOnlyUser;
 }
 catch (EntityAlreadyExistsException e)
 {
 Console.WriteLine(e.Message);
 var request = new GetUserRequest()
 {
 UserName = "S3UserReadOnlyAccess"
 };

 return iamClient.GetUser(request).User;

 }
}

List a User’s Access Keys

Create an AmazonIdentityManagementServiceClient object and a ListAccessKeysRequest object
containing the parameters needed to retrieve the user’s access keys. This includes the IAM user’s name
and, optionally, the maximum number of access key pairs you want to list. Call the ListAccessKeys
method of the AmazonIdentityManagementServiceClient object.

public static void ListAccessKeys()
{

 var iamClient = new AmazonIdentityManagementServiceClient();
 var requestAccessKeys = new ListAccessKeysRequest
 {
 // Use the user created in the CreateAccessKey example
 UserName = "S3UserReadOnlyAccess",
 MaxItems = 10
 };
 var responseAccessKeys = iamClient.ListAccessKeys(requestAccessKeys);
 Console.WriteLine(" Access keys:");

 foreach (var accessKey in responseAccessKeys.AccessKeyMetadata)
 {

127

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccessKeysListAccessKeysRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing IAM Access Keys

 Console.WriteLine(" {0}", accessKey.AccessKeyId);
 }
}

Get the Last Used Date for Access Keys
Create an AmazonIdentityManagementServiceClient object and a ListAccessKeysRequest object
containing the UserName parameter needed to list the access keys. Call the ListAccessKeys method of
the AmazonIdentityManagementServiceClient object. Loop through the access keys returned,
displaying the AccessKeyId of each key and using it to create a GetAccessKeyLastUsedRequest object.
Call the GetAccessKeyLastUsed method and display the time that the key was last used on the console.

public static void GetAccessKeysLastUsed()
{

 var iamClient = new AmazonIdentityManagementServiceClient();
 var requestAccessKeys = new ListAccessKeysRequest
 {
 // Use the user we created in the CreateUser example
 UserName = "S3UserReadOnlyAccess"
 };
 var responseAccessKeys = iamClient.ListAccessKeys(requestAccessKeys);
 Console.WriteLine(" Access keys:");

 foreach (var accessKey in responseAccessKeys.AccessKeyMetadata)
 {
 Console.WriteLine(" {0}", accessKey.AccessKeyId);
 GetAccessKeyLastUsedRequest request = new GetAccessKeyLastUsedRequest()
 { AccessKeyId = accessKey.AccessKeyId };
 var response = iamClient.GetAccessKeyLastUsed(request);
 Console.WriteLine("Key last used " +
 response.AccessKeyLastUsed.LastUsedDate.ToLongDateString());
 }
}

Update the Status of an Access Key
Create an AmazonIdentityManagementServiceClient object and a ListAccessKeysRequest object
containing the user name to list the keys for. The user name in this example is the user created for the
other examples. Call the ListAccessKeys method of the AmazonIdentityManagementServiceClient.
The ListAccessKeysResponse that is returned contains a list of the access keys for that user.
Use the first access key in the list. Create an UpdateAccessKeyRequest object, providing the
UserName, AccessKeyId, and Status parameters. Call the UpdateAccessKey method of the
AmazonIdentityManagementServiceClient object.

public static void UpdateKeyStatus()
{
 // This example changes the status of the key specified by its index in the list of
 access keys
 // Optionally, you could change the keynumber parameter to be an AccessKey ID
 var iamClient = new AmazonIdentityManagementServiceClient();
 var requestAccessKeys = new ListAccessKeysRequest
 {
 UserName = "S3UserReadOnlyAccess"
 };
 var responseAccessKeys = iamClient.ListAccessKeys(requestAccessKeys);
 UpdateAccessKeyRequest updateRequest = new UpdateAccessKeyRequest
 {
 UserName = "S3UserReadOnlyAccess",
 AccessKeyId = responseAccessKeys.AccessKeyMetadata[0].AccessKeyId,

128

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccessKeysListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TGetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetAccessKeyLastUsedGetAccessKeyLastUsedRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccessKeysListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListAccessKeysResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TUpdateAccessKeyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceUpdateAccessKeyUpdateAccessKeyRequest.html

AWS SDK for .NET (version 3) Developer Guide
Working with IAM Policies

 Status = StatusType.Active
 };
 iamClient.UpdateAccessKey(updateRequest);
 Console.WriteLine(" Access key " + updateRequest.AccessKeyId + " updated");
}

Delete Access Keys
Create an AmazonIdentityManagementServiceClient object and a ListAccessKeysRequest
object containing the name of the user as a parameter. Call the ListAccessKeys method of the
AmazonIdentityManagementServiceClient. The ListAccessKeysResponse that is returned contains
a list of the access keys for that user. Delete each access key in the list by calling the DeleteAccessKey
method of the AmazonIdentityManagementServiceClient.

public static void DeleteAccessKeys()
{
// Delete all the access keys created for the examples
 var iamClient = new AmazonIdentityManagementServiceClient();
 var requestAccessKeys = new ListAccessKeysRequest
 {
 // Use the user created in the CreateUser example
 UserName = "S3UserReadOnlyAccess"
 };
 var responseAccessKeys = iamClient.ListAccessKeys(requestAccessKeys);
 Console.WriteLine(" Access keys:");

 foreach (var accessKey in responseAccessKeys.AccessKeyMetadata)
 {
 Console.WriteLine(" {0}", accessKey.AccessKeyId);
 iamClient.DeleteAccessKey(new DeleteAccessKeyRequest
 {
 UserName = "S3UserReadOnlyAccess",
 AccessKeyId = accessKey.AccessKeyId
 });
 Console.WriteLine("Access Key " + accessKey.AccessKeyId + " deleted");
 }

}

Working with IAM Policies
The following examples show you how to:

• Create and delete IAM policies
• Attach and detach IAM policies from roles

The Scenario
You grant permissions to a user by creating a policy, which is a document that lists the actions that a user
can perform and the resources those actions can affect. Any actions or resources that are not explicitly
allowed are denied by default. You can create policies and attach them to users, groups of users, roles
assumed by users, and resources.

Use the AWS SDK for .NET to create and delete policies and attach and detach role policies by using
these methods of the AmazonIdentityManagementServiceClient class:

• CreatePolicy
• GetPolicy

129

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListAccessKeysListAccessKeysRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListAccessKeysResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteAccessKeyDeleteAccessKeyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceCreatePolicyCreatePolicyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetPolicyGetPolicyRequest.html

AWS SDK for .NET (version 3) Developer Guide
Working with IAM Policies

• AttachRolePolicy
• DetachRolePolicy

For more information about IAM users, see Overview of Access Management: Permissions and Policies in
the IAM User Guide.

Create an IAM Policy
Create an AmazonIdentityManagementServiceClient object. Next, create a CreatePolicyRequest object
containing the parameters needed to create a new policy, which consists of the name you want to use
for the new policy and a policy document. You create the policy document by calling the provided
GenerateRolePolicyDocument method. Upon returning from the CreatePolicy method call, the
CreatePolicyResponse contains the policy ARN, which is displayed on the console. Please make a note of
it so you can use it in the following examples.

public static void CreatePolicyExample()
{
 var client = new AmazonIdentityManagementServiceClient();
 // GenerateRolePolicyDocument is a custom method
 string policyDoc = GenerateRolePolicyDocument();

 var request = new CreatePolicyRequest
 {
 PolicyName = "DemoEC2Permissions",
 PolicyDocument = policyDoc
 };

 try
 {
 var createPolicyResponse = client.CreatePolicy(request);
 Console.WriteLine("Make a note, Policy named " +
 createPolicyResponse.Policy.PolicyName +
 " has Arn: : " + createPolicyResponse.Policy.Arn);
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine
 ("Policy 'DemoEC2Permissions' already exits.");
 }

}

public static string GenerateRolePolicyDocument()
{
 // using Amazon.Auth.AccessControlPolicy;

 // Create a policy that looks like this:
 /*
 {
 "Version" : "2012-10-17",
 "Id" : "DemoEC2Permissions",
 "Statement" : [
 {
 "Sid" : "DemoEC2PermissionsStatement",
 "Effect" : "Allow",
 "Action" : [
 "s3:Get*",
 "s3:List*"
],
 "Resource" : "*"
 }
]

130

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceAttachRolePolicyAttachRolePolicyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDetachRolePolicyDetachRolePolicyRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreatePolicyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TCreatePolicyResponse.html

AWS SDK for .NET (version 3) Developer Guide
Working with IAM Policies

 }
 */

 var actionGet = new ActionIdentifier("s3:Get*");
 var actionList = new ActionIdentifier("s3:List*");
 var actions = new List<ActionIdentifier>();

 actions.Add(actionGet);
 actions.Add(actionList);

 var resource = new Resource("*");
 var resources = new List<Resource>();

 resources.Add(resource);

 var statement = new
 Amazon.Auth.AccessControlPolicy.Statement(Amazon.Auth.AccessControlPolicy.Statement.StatementEffect.Allow)
 {
 Actions = actions,
 Id = "DemoEC2PermissionsStatement",
 Resources = resources
 };
 var statements = new List<Amazon.Auth.AccessControlPolicy.Statement>();

 statements.Add(statement);

 var policy = new Policy
 {
 Id = "DemoEC2Permissions",
 Version = "2012-10-17",
 Statements = statements
 };

 return policy.ToJson();
}

Get an IAM Policy
Create an AmazonIdentityManagementServiceClient object. Next, create a GetPolicyRequest object
containing the parameter needed to get the policy, the policy ARN, which was returned by the
CreatePolicy method in the previous example.

Call the GetPolicy method.

public static void GetPolicy()
{
 var client = new AmazonIdentityManagementServiceClient();
 var request = new GetPolicyRequest
 {
 PolicyArn = "arn:aws:iam::123456789:policy/DemoEC2Permissions"
 };

 try
 {
 var response = client.GetPolicy(request);
 Console.WriteLine("Policy " + response.Policy.PolicyName + "successfully
 retrieved");

 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine
 ("Policy 'DemoEC2Permissions' does not exist.");

131

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TGetPolicyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetPolicyGetPolicyRequest.html

AWS SDK for .NET (version 3) Developer Guide
Working with IAM Policies

 }

}

Attach a Managed Role Policy
Create an AmazonIdentityManagementServiceClient object. Next, create an AttachRolePolicyRequest
object containing the parameters needed to attach the policy to the role, the role name, and the JSON
policy returned by the GenerateRolePolicyDocument method. Be sure to use a valid role from the
roles associated with your AWS account.

public static void AttachRolePolicy()
{
 var client = new AmazonIdentityManagementServiceClient();
 string policy = GenerateRolePolicyDocument();
 CreateRoleRequest roleRequest = new CreateRoleRequest()
 {
 RoleName = "tester",
 AssumeRolePolicyDocument = policy
 };

 var request = new AttachRolePolicyRequest()
 {
 PolicyArn = "arn:aws:iam::123456789:policy/DemoEC2Permissions",
 RoleName = "tester"
 };
 try
 {
 var response = client.AttachRolePolicy(request);
 Console.WriteLine("Policy DemoEC2Permissions attached to Role TestUser");
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine
 ("Policy 'DemoEC2Permissions' does not exist");
 }
 catch (InvalidInputException)
 {
 Console.WriteLine
 ("One of the parameters is incorrect");
 }
}

Detach a Managed Role Policy
Create an AmazonIdentityManagementServiceClient object. Next, create a DetachRolePolicyRequest
object containing the parameters needed to attach the policy to the role, the role name, and the JSON
policy returned by the GenerateRolePolicyDocument method. Be sure to use the role you used to
attach the policy in the previous example.

public static void DetachRolePolicy()
{
 var client = new AmazonIdentityManagementServiceClient();
 string policy = GenerateRolePolicyDocument();
 CreateRoleRequest roleRequest = new CreateRoleRequest()
 {
 RoleName = "tester",
 AssumeRolePolicyDocument = policy
 };

 var request = new DetachRolePolicyRequest()

132

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TAttachRolePolicyRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TDetachRolePolicyRequest.html

AWS SDK for .NET (version 3) Developer Guide
Working with IAM Server Certificates

 {
 PolicyArn = "arn:aws:iam::123456789:policy/DemoEC2Permissions",
 RoleName = "tester"
 };
 try
 {
 var response = client.DetachRolePolicy(request);
 Console.WriteLine("Policy DemoEC2Permissions detached from Role 'tester'");
 }
 catch (NoSuchEntityException e)
 {
 Console.WriteLine
 (e.Message);
 }
 catch (InvalidInputException i)
 {
 Console.WriteLine
 (i.Message);
 }
}

Working with IAM Server Certificates
These .NET examples show you how to:

• List server certificates

• Get server certificates

• Update server certificates

• Delete server certificates

The Scenario
In these, examples, you’ll basic tasks for managing server certificates for HTTPS connections. To enable
HTTPS connections to your website or application on AWS, you need an SSL/TLS server certificate. To
use a certificate that you obtained from an external provider with your website or application on AWS,
you must upload the certificate to IAM or import it into AWS Certificate Manager.

These examples use the AWS SDK for .NET to send and receive messages by using these methods of the
AmazonIdentityManagementServiceClient class:

• ListServerCertificates

• GetServerCertificate

• UpdateServerCertificate

• DeleteServerCertificate

For more information about server certificates, see Working with Server Certificates in the IAM User
Guide.

List Your Server Certificates
Create an AmazonIdentityManagementServiceClient object. Next, create a ListServerCertificatesRequest
object.

There are no required parameters. Call the ListServerCertificates method of the
AmazonIdentityManagementServiceClient object.

133

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListServerCertificatesListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetServerCertificateGetServerCertificateRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceUpdateServerCertificateUpdateServerCertificateRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteServerCertificateDeleteServerCertificateRequest.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_server-certs.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TListServerCertificatesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceListServerCertificatesListServerCertificatesRequest.html

AWS SDK for .NET (version 3) Developer Guide
Working with IAM Server Certificates

public static void ListCertificates()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new ListServerCertificatesRequest();
 var response = iamClient.ListServerCertificates(request);
 foreach (KeyValuePair<string, string> kvp in response.ResponseMetadata.Metadata)
 {
 Console.WriteLine("Key = {0}, Value = {1}",
 kvp.Key, kvp.Value);
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

Get a Server Certificate
Create an AmazonIdentityManagementServiceClient object. Next, create a GetServerCertificateRequest
object, specifying the ServerCertificateName. Call the GetServerCertificate method of the
AmazonIdentityManagementServiceClient object.

public static void GetCertificate()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new GetServerCertificateRequest();
 request.ServerCertificateName = "CERTIFICATE_NAME";
 var response = iamClient.GetServerCertificate(request);
 Console.WriteLine("CertificateName = " +
 response.ServerCertificate.ServerCertificateMetadata.ServerCertificateName);
 Console.WriteLine("Certificate Arn = " +
 response.ServerCertificate.ServerCertificateMetadata.Arn);
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

Update a Server Certificate
Create an AmazonIdentityManagementServiceClient object. Next, create an
UpdateServerCertificateRequest object, specifying the ServerCertificateName and
the NewServerCertificateName. Call the UpdateServerCertificate method of the
AmazonIdentityManagementServiceClient object.

public static void UpdateCertificate()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new UpdateServerCertificateRequest();
 request.ServerCertificateName = "CERTIFICATE_NAME";
 request.NewServerCertificateName = "NEW_Certificate_NAME";
 var response = iamClient.UpdateServerCertificate(request);

134

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TGetServerCertificateRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceGetServerCertificateGetServerCertificateRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TUpdateServerCertificateRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceUpdateServerCertificateUpdateServerCertificateRequest.html

AWS SDK for .NET (version 3) Developer Guide
List IAM Account Information

 if (response.HttpStatusCode.ToString() == "OK")
 Console.WriteLine("Update succesful");
 else
 Console.WriteLine("HTTpStatusCode returned = " +
 response.HttpStatusCode.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }

}

Delete a Server Certificate
Create an AmazonIdentityManagementServiceClient object. Next, create a
DeleteServerCertificateRequest object, specifying the ServerCertificateName. Call the
DeleteServerCertificate method of the AmazonIdentityManagementServiceClient object.

public static void DeleteCertificate()
{
 try
 {
 var iamClient = new AmazonIdentityManagementServiceClient();
 var request = new DeleteServerCertificateRequest();
 request.ServerCertificateName = "CERTIFICATE_NAME";
 var response = iamClient.DeleteServerCertificate(request);
 if (response.HttpStatusCode.ToString() == "OK")
 Console.WriteLine(request.ServerCertificateName + " deleted");
 else
 Console.WriteLine("HTTpStatusCode returned = " +
 response.HttpStatusCode.ToString());
 }
 catch (Exception e)
 {
 Console.WriteLine(e.Message);
 }
}

List IAM Account Information
The AWS SDK for .NET supports IAM, which is a web service that enables AWS customers to manage
users and user permissions in AWS.

The following example shows how to list accessible user accounts in IAM. For each user account, its
associated groups, policies, and access key IDs are also listed.

public static void ListUsersAndGroups()
{
 var iamClient = new AmazonIdentityManagementServiceClient();
 var requestUsers = new ListUsersRequest();
 var responseUsers = iamClient.ListUsers(requestUsers);

 foreach (var user in responseUsers.Users)
 {
 Console.WriteLine("For user {0}:", user.UserName);
 Console.WriteLine(" In groups:");

 var requestGroups = new ListGroupsForUserRequest
 {

135

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TIAMServiceClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/TDeleteServerCertificateRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/MIAMServiceDeleteServerCertificateDeleteServerCertificateRequest.html

AWS SDK for .NET (version 3) Developer Guide
Granting Access Using an IAM Role

 UserName = user.UserName
 };
 var responseGroups = iamClient.ListGroupsForUser(requestGroups);

 foreach (var group in responseGroups.Groups)
 {
 Console.WriteLine(" {0}", group.GroupName);
 }

 Console.WriteLine(" Policies:");

 var requestPolicies = new ListUserPoliciesRequest
 {
 UserName = user.UserName
 };
 var responsePolicies = iamClient.ListUserPolicies(requestPolicies);

 foreach (var policy in responsePolicies.PolicyNames)
 {
 Console.WriteLine(" {0}", policy);
 }

 var requestAccessKeys = new ListAccessKeysRequest
 {
 UserName = user.UserName
 };
 var responseAccessKeys = iamClient.ListAccessKeys(requestAccessKeys);

 Console.WriteLine(" Access keys:");

 foreach (var accessKey in responseAccessKeys.AccessKeyMetadata)
 {
 Console.WriteLine(" {0}", accessKey.AccessKeyId);
 }
 }
}

For related API reference information, see Amazon.IdentityManagement and
Amazon.IdentityManagement.Model.

Granting Access Using an IAM Role
This .NET example shows you how to:

• Create a sample program that retrieves an object from Amazon S3

• Create an IAM role

• Launch an Amazon EC2 instance and specify the IAM role

• Run the sample on the Amazon EC2 instance

The Scenario
All requests to AWS must be cryptographically signed by using credentials issued by AWS. Therefore,
you need a strategy to manage credentials for software that runs on Amazon EC2 instances. You have to
distribute, store, and rotate these credentials securely, but also keep them accessible to the software.

IAM roles enable you to effectively manage AWS credentials for software running on EC2 instances. You
create an IAM role and configure it with the permissions the software requires. For more information
about the benefits of using IAM roles, see IAM Roles for Amazon EC2 in the Amazon EC2 User Guide for
Windows Instances and Roles (Delegation and Federation) in the IAM User Guide.

136

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAM.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/IAM/NIAMModel.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/WorkingWithRoles.html

AWS SDK for .NET (version 3) Developer Guide
Granting Access Using an IAM Role

To use the permissions, the software constructs a client object for the AWS service. The constructor
searches the credentials provider chain for credentials. For .NET, the credentials provider chain is as
follows:

• The App.config file
• The instance metadata associated with the IAM role for the EC2 instance

If the client doesn’t find credentials in App.config, it retrieves temporary credentials that have the
same permissions as those associated with the IAM role from instance metadata. The credentials are
stored by the constructor on behalf of the application software, and are used to make calls to AWS
from that client object. Although the credentials are temporary and eventually expire, the SDK client
periodically refreshes them so that they continue to enable access. This periodic refresh is completely
transparent to the application software.

The following examples show a sample program that retrieves an object from Amazon S3 using the AWS
credentials you configure. You create an IAM role to provide the AWS credentials. Finally, you launch
an instance with an IAM role that provides the AWS credentials to the sample program running on the
instance.

Create a Sample that Retrieves an Object from Amazon S3
The following sample code requires a text file in an Amazon S3 bucket that you have access to, and AWS
credentials that provide you with access to the Amazon S3 bucket.

For more information about creating an Amazon S3 bucket and uploading an object, see the Amazon
S3 Getting Started Guide. For more information about AWS credentials, see Configuring AWS
Credentials (p. 25).

using System;
using System.IO;
using System.Threading;
using System.Threading.Tasks;

using Amazon;
using Amazon.S3;
using Amazon.S3.Model;

namespace S3ShowTextItem
{
 class S3Sample
 {
 static async Task<GetObjectResponse> MyGetObjectAsync(string region, string bucket,
 string item)
 {
 RegionEndpoint reg = RegionEndpoint.GetBySystemName(region);
 AmazonS3Client s3Client = new AmazonS3Client(reg);

 Console.WriteLine("Retrieving (GET) an object");

 GetObjectResponse response = await s3Client.GetObjectAsync(bucket, item, new
 CancellationToken());

 return response;
 }

 public static void Main(string[] args)
 {
 if (args.Length < 4)
 {
 Console.WriteLine("You must supply a region, bucket name, text file name,
 and output file name");

137

https://docs.aws.amazon.com/AmazonS3/latest/gsg/
https://docs.aws.amazon.com/AmazonS3/latest/gsg/

AWS SDK for .NET (version 3) Developer Guide
Granting Access Using an IAM Role

 return;
 }

 try
 {
 Task<GetObjectResponse> response = MyGetObjectAsync(args[0], args[1],
 args[2]);

 Stream responseStream = response.Result.ResponseStream;
 StreamReader reader = new StreamReader(responseStream);

 string responseBody = reader.ReadToEnd();

 using(FileStream s = new FileStream(args[3], FileMode.Create))
 using(StreamWriter writer = new StreamWriter(s))
 {
 writer.WriteLine(responseBody);
 }
 }
 catch (AmazonS3Exception s3Exception)
 {
 Console.WriteLine(s3Exception.Message, s3Exception.InnerException);
 }

 Console.WriteLine("Press enter to continue");
 Console.ReadLine();
 }
 }
}

To test the sample code

1. Open Visual Studio and create a Console App (.NET Framework) project using .NET Framework 4.5
or later.

2. Add the AWSSDK.S3 NuGet package to your project.
3. Replace the code in the Program.cs file with the sample code shown above.
4. Compile and run the sample program. If the program succeeds, it displays the following output and

creates a file on your local drive that contains the text it retrieved from the text file in Amazon S3.

Retrieving (GET) an object

If the program fails, be sure you’re using credentials that provide you with access to the bucket.
5. (Optional) Transfer the sample program to a running Windows instance on which you haven’t set up

credentials. Run the program and verify that it fails because it can’t locate credentials.

Create an IAM Role
Create an IAM role that has the appropriate permissions to access Amazon S3.

To create the IAM role

1. Open the IAM console.
2. In the navigation pane, choose Roles, and then choose Create New Role.
3. Type a name for the role, and then choose Next Step. Remember this name because you’ll need it

when you launch your EC2 instance.
4. Under Service Roles, choose Amazon EC2. Under Select Policy Template, choose Amazon S3 Read

Only Access. Review the policy, and then choose Next Step.

138

http://www.nuget.org/packages/AWSSDK.S3

AWS SDK for .NET (version 3) Developer Guide
Granting Access Using an IAM Role

5. Review the role information, and then choose Create Role.

Launch an EC2 Instance and Specify the IAM Role
You can use the Amazon EC2 console or the AWS SDK for .NET to launch an EC2 instance with an IAM
role.

• Using the console: Follow the directions in Launching a Windows Instance in the Amazon EC2 User
Guide for Windows Instances. When you reach the Review Instance Launch page, choose Edit instance
details. In IAM role, specify the IAM role you created previously. Complete the procedure as directed.
You’ll need to create or use an existing security group and key pair to connect to the instance.

• Using the AWS SDK for .NET: See Launching an Amazon EC2 Instance (p. 99).

An IAM user can’t launch an instance with an IAM role without the permissions granted by the following
policy.

{
 "Version": "2012-10-17",
 "Statement": [{
 "Effect": "Allow",
 "Action": [
 "iam:PassRole",
 "iam:ListInstanceProfiles",
 "ec2:*"
],
 "Resource": "*"
 }]
}

Run the Sample Program on the EC2 Instance
To transfer the sample program to your EC2 instance, connect to the instance using the AWS
Management Console as described in the following procedure.

Note
Alternatively, connect using the Toolkit for Visual Studio (see Connecting to an Amazon EC2
Instance in the AWS Toolkit for Visual Studio) and then copy the files from your local drive to
the instance. The Remote Desktop session is automatically configured so that your local drives
are available to the instance.

To run the sample program on the EC2 instance

1. Open the Amazon EC2 console.
2. Get the password for your EC2 instance:

a. In the navigation pane, choose Instances. Choose the instance, and then choose Connect.
b. In the Connect To Your Instance dialog box, choose Get Password. (It will take a few minutes

after the instance is launched before the password is available.)
c. Choose Browse and navigate to the private key file you created when you launched the

instance. Choose the file, and then choose Open to copy the file’s contents into the contents
box.

d. Choose Decrypt Password. The console displays the default administrator password for the
instance in the Connect To Your Instance dialog box, replacing the link to Get Password shown
earlier with the password.

e. Record the default administrator password or copy it to the clipboard. You need this password
to connect to the instance.

139

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/EC2Win_GetStarted.html#EC2Win_LaunchInstance.html
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-ec2-ami.html#connect-ec2
https://docs.aws.amazon.com/toolkit-for-visual-studio/latest/user-guide/tkv-ec2-ami.html#connect-ec2

AWS SDK for .NET (version 3) Developer Guide
Using KMS keys for S3 encryption

3. Connect to your EC2 instance:

a. Choose Download Remote Desktop File. When your browser prompts you, save the .rdp file.
When you finish, choose Close to close the Connect To Your Instance dialog box.

b. Navigate to your downloads directory, right-click the .rdp file, and then choose Edit. On the
Local Resources tab, under Local devices and resources, choose More. Choose Drives to make
your local drives available to your instance. Then choose OK.

c. Choose Connect to connect to your instance. You may get a warning that the publisher of the
remote connection is unknown.

d. Sign in to the instance when prompted, using the default Administrator account and the
default administrator password you recorded or copied previously.

Sometimes copying and pasting content can corrupt data. If you encounter a “Password
Failed” error when you sign in, try typing in the password manually. For more information, see
Connecting to Your Windows Instance Using RDP and Troubleshooting Windows Instances in the
Amazon EC2 User Guide for Windows Instances.

4. Copy the program and the AWS assemblies (AWSSDK.Core.dll and AWSSDK.S3.dll) from your
local drive to the instance.

5. Run the program and verify that it succeeds using the credentials provided by the IAM role.

Retrieving (GET) an object

Using AWS Key Management Service keys for
Amazon S3 encryption in the AWS SDK for .NET

The AmazonS3EncryptionClientV2 class implements the same interface as the standard
AmazonS3Client. This means it's easy to switch to the AmazonS3EncryptionClientV2 class. In fact,
your application code won’t be aware of the encryption and decryption happening automatically in the
client.

You can use an AWS KMS key as your master key when you use the AmazonS3EncryptionClientV2
class for client-side encryption. All you have to do is create an EncryptionMaterials object that
contains a KMS key ID. Then you pass the EncryptionMaterials object to the constructor of the
AmazonS3EncryptionClientV2.

One advantage of using an AWS KMS key as your master key is that you don't need to store
and manage your own master keys; this is done by AWS. A second advantage is that the
AmazonS3EncryptionClientV2 class of the AWS SDK for .NET is interoperable with the
AmazonS3EncryptionClientV2 class of the AWS SDK for Java. This means you can encrypt with the
AWS SDK for Java and decrypt with the AWS SDK for .NET, and vice versa.

Note
The AmazonS3EncryptionClientV2 class of the AWS SDK for .NET supports
KMS master keys only when run in metadata mode. The instruction file mode of the
AmazonS3EncryptionClientV2 class of the AWS SDK for .NET is incompatible with the
AmazonS3EncryptionClientV2 class of the AWS SDK for Java.

Warning
The AmazonS3EncryptionClient class of the AWS SDK for .NET is deprecated and is less
secure than the AmazonS3EncryptionClientV2 class. To migrate existing code that uses
AmazonS3EncryptionClient, see S3 Encryption Client Migration (p. 176).

For more information about client-side encryption with the AmazonS3EncryptionClientV2 class, and
how envelope encryption works, see Client Side Data Encryption with AWS SDK for .NET and Amazon S3.

140

https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/connecting_to_windows_instance.html
https://docs.aws.amazon.com/AWSEC2/latest/WindowsGuide/troubleshooting-windows-instances.html
https://aws.github.io/amazon-s3-encryption-client-dotnet/api/Amazon.Extensions.S3.Encryption.AmazonS3EncryptionClientV2.html
http://aws.amazon.com/blogs/developer/client-side-data-encryption-with-aws-sdk-for-net-and-amazon-s3/

AWS SDK for .NET (version 3) Developer Guide
Using KMS keys for S3 encryption

The following example demonstrates how to use AWS KMS keys with the
AmazonS3EncryptionClientV2 class.

Create a new console project. Reference the appropriate versions of the following NuGet packages:
AWSSDK.S3, AWSSDK.KeyManagementService, and Amazon.Extensions.S3.Encryption. When you run
the application, include the Region code, the name of an existing Amazon S3 bucket, and a name for the
new Amazon S3 object.

The application creates an encrypted object in the given bucket, then decrypts and displays the contents
of the object.

using System;
using System.IO;
using System.Threading.Tasks;
using System.Collections.Generic;

using Amazon;
using Amazon.KeyManagementService;
using Amazon.KeyManagementService.Model;
using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;
using Amazon.S3.Model;

namespace KmsS3Encryption
{
 class S3Sample
 {
 public static async Task Main(string[] args)
 {
 if (args.Length != 3)
 {
 Console.WriteLine("\nUsage: KmsS3Encryption REGION BUCKET ITEM");
 Console.WriteLine(" REGION: The AWS Region (for example, \"us-west-1\").");
 Console.WriteLine(" BUCKET: The name of an existing S3 bucket.");
 Console.WriteLine(" ITEM: The name you want to use for the item.");
 return;
 }
 string regionName = args[0];
 string bucketName = args[1];
 string itemName = args[2];

 // Create a customer master key (CMK) and store the result
 var createKeyResponse = await MyCreateKeyAsync(regionName);
 var kmsEncryptionContext = new Dictionary<string, string>();
 var kmsEncryptionMaterials = new EncryptionMaterialsV2(
 createKeyResponse.KeyMetadata.KeyId, KmsType.KmsContext, kmsEncryptionContext);

 // Create the object in the bucket, then display the content of the object
 var putObjectResponse =
 await CreateAndRetrieveObjectAsync(kmsEncryptionMaterials, bucketName, itemName);
 Stream stream = putObjectResponse.ResponseStream;
 StreamReader reader = new StreamReader(stream);
 Console.WriteLine(reader.ReadToEnd());
 Console.WriteLine("Press any key to continue...");
 Console.ReadKey();
 }

 //
 // Method to create a customer master key
 static async Task<CreateKeyResponse> MyCreateKeyAsync(string regionName)
 {
 var kmsClient = new AmazonKeyManagementServiceClient(
 RegionEndpoint.GetBySystemName(regionName));

141

https://www.nuget.org/profiles/awsdotnet

AWS SDK for .NET (version 3) Developer Guide
Managing Domain Name System (DNS)

Resources Using Amazon Route 53

 return await kmsClient.CreateKeyAsync(new CreateKeyRequest());
 }

 //
 // Method to create and encrypt an object in an S3 bucket
 static async Task<GetObjectResponse> CreateAndRetrieveObjectAsync(
 EncryptionMaterialsV2 materials, string bucketName, string keyName)
 {
 // CryptoStorageMode.ObjectMetadata is required for KMS EncryptionMaterials
 var config = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
 {
 StorageMode = CryptoStorageMode.ObjectMetadata
 };
 var s3Client = new AmazonS3EncryptionClientV2(config, materials);

 // Create, encrypt, and put the object
 await s3Client.PutObjectAsync(new PutObjectRequest
 {
 BucketName = bucketName,
 Key = keyName,
 ContentBody = "Object content for KmsS3Encryption example."
 });

 // Get, decrypt, and return the object
 return await s3Client.GetObjectAsync(new GetObjectRequest
 {
 BucketName = bucketName,
 Key = keyName
 });
 }
 }
}

Managing Domain Name System (DNS) Resources
Using Amazon Route 53

The AWS SDK for .NET supports Amazon Route 53, which is a Domain Name System (DNS) web
service that provides secure and reliable routing to your infrastructure that uses AWS products, such
as Amazon Elastic Compute Cloud (Amazon EC2), Elastic Load Balancing, or Amazon Simple Storage
Service (Amazon S3). You can also use Route 53 to route users to your infrastructure outside of AWS.
This topic describes how to use the AWS SDK for .NET to create a Route 53 :r53-dg:` hosted zone
<AboutHZWorkingWith>` and add a new resource record set to that zone.

Note
This topic assumes you are already familiar with how to use Route 53 and have already installed
the AWS SDK for .NET. For more information about Route 53, see the Amazon Route 53
Developer Guide. For information about how to install the AWS SDK for .NET, see Setting up the
AWS SDK for .NET (p. 15).

The basic procedure is as follows.

To create a hosted zone and update its record sets

1. Create a hosted zone.
2. Create a change batch that contains one or more record sets, and instructions on which action to take

for each set.
3. Submit a change request to the hosted zone that contains the change batch.

142

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html

AWS SDK for .NET (version 3) Developer Guide
Managing Domain Name System (DNS)

Resources Using Amazon Route 53

4. Monitor the change to verify it is complete.

The example is a simple console application that shows how to use the AWS SDK for .NET to implement
this procedure for a basic record set.

To run this example

1. In the Visual Studio File menu, choose New, and then choose Project.

2. Choose the AWS Empty Project template and specify the project’s name and location.

3. Specify the application’s default credentials profile and AWS region, which are added to the project’s
App.config file. This example assumes the region is set to US East (N. Virginia) and the profile is set
to default. For more information on profiles, see Configuring AWS Credentials (p. 25).

4. Open program.cs and replace the using declarations and the code in Main with the corresponding
code from the following example. If you are using your default credentials profile and region, you can
compile and run the application as-is. Otherwise, you must provide an appropriate profile and region,
as discussed in the notes that follow the example.

using System;
using System.Collections.Generic;
using System.Threading;

using Amazon;
using Amazon.Route53;
using Amazon.Route53.Model;

namespace Route53_RecordSet
{
 //Create a hosted zone and add a basic record set to it
 class recordset
 {
 public static void Main(string[] args)
 {
 string domainName = "www.example.org";

 //[1] Create an Amazon Route 53 client object
 var route53Client = new AmazonRoute53Client();

 //[2] Create a hosted zone
 var zoneRequest = new CreateHostedZoneRequest()
 {
 Name = domainName,
 CallerReference = "my_change_request"
 };

 var zoneResponse = route53Client.CreateHostedZone(zoneRequest);

 //[3] Create a resource record set change batch
 var recordSet = new ResourceRecordSet()
 {
 Name = domainName,
 TTL = 60,
 Type = RRType.A,
 ResourceRecords = new List<ResourceRecord>
 {
 new ResourceRecord { Value = "192.0.2.235" }
 }
 };

 var change1 = new Change()
 {

143

AWS SDK for .NET (version 3) Developer Guide
Managing Domain Name System (DNS)

Resources Using Amazon Route 53

 ResourceRecordSet = recordSet,
 Action = ChangeAction.CREATE
 };

 var changeBatch = new ChangeBatch()
 {
 Changes = new List<Change> { change1 }
 };

 //[4] Update the zone's resource record sets
 var recordsetRequest = new ChangeResourceRecordSetsRequest()
 {
 HostedZoneId = zoneResponse.HostedZone.Id,
 ChangeBatch = changeBatch
 };

 var recordsetResponse = route53Client.ChangeResourceRecordSets(recordsetRequest);

 //[5] Monitor the change status
 var changeRequest = new GetChangeRequest()
 {
 Id = recordsetResponse.ChangeInfo.Id
 };

 while (ChangeStatus.PENDING ==
 route53Client.GetChange(changeRequest).ChangeInfo.Status)
 {
 Console.WriteLine("Change is pending.");
 Thread.Sleep(15000);
 }

 Console.WriteLine("Change is complete.");
 Console.ReadKey();
 }
 }
}

The numbers in the following sections are keyed to the comments in the preceding example.

[1] Create a Client Object

The object must have the following information:
An AWS region

When you call a client method, the underlying HTTP request is sent to this endpoint.
A credentials profile

The profile must grant permissions for the actions you intend to use—the Route 53 actions
in this case. Attempts to call actions that lack permissions will fail. For more information, see
Configuring AWS Credentials (p. 25).

The AmazonRoute53Client class supports a set of public methods that you use to invoke
Amazon Route 53 actions. You create the client object by instantiating a new instance of the
AmazonRoute53Client class. There are multiple constructors.

[2] Create a hosted zone

A hosted zone serves the same purpose as a traditional DNS zone file. It represents a collection of
resource record sets that are managed together under a single domain name.

To create a hosted zone
1. Create a CreateHostedZoneRequest object and specify the following request parameters. There

are also two optional parameters that aren’t used by this example.

144

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TRoute53Client.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/Welcome.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TCreateHostedZoneRequest.html

AWS SDK for .NET (version 3) Developer Guide
Managing Domain Name System (DNS)

Resources Using Amazon Route 53

Name

(Required) The domain name you want to register, www.example.com for this example. This
domain name is intended only for examples. It can’t be registered with a domain name registrar,
but you can use it to create a hosted zone for learning purposes.

CallerReference

(Required) An arbitrary user-defined string that serves as a request ID and can be used
to retry failed requests. If you run this application multiple times, you must change the
CallerReference value.

1. Pass the CreateHostedZoneRequest object to the client object’s CreateHostedZone method.
The method returns a CreateHostedZoneResponse object that contains information about the
request, including the HostedZone.Id property that identifies zone.

[3] Create a resource record set change batch

A hosted zone can have multiple resource record sets. Each set specifies how a subset of the
domain’s traffic, such as email requests, should be routed. You can update a zone’s resource record
sets with a single request. The first step is to package all the updates in a ChangeBatch object.
This example specifies only one update, adding a basic resource record set to the zone, but a
ChangeBatch object can contain updates for multiple resource record sets.

To create a ChangeBatch object

1. Create a ResourceRecordSet object for each resource record set you want to update. The group of
properties you specify depends on the type of resource record set. For a complete description of
the properties used by the different resource record sets, see Values that You Specify When You
Create or Edit Amazon Route 53 Resource Record Sets. The example ResourceRecordSet object
represents a basic resource record set , and specifies the following required properties.

Name

The domain or subdomain name, www.example.com for this example.

TTL

The amount of time, in seconds, the DNS recursive resolvers should cache information about
this resource record set, 60 seconds for this example.

Type

The DNS record type, A for this example. For a complete list, see Supported DNS Resource
Record Types.

ResourceRecords

A list of one or more ResourceRecord objects, each of which contains a DNS record value that
depends on the DNS record type. For an A record type, the record value is an IPv4 address,
which for this example is set to a standard example address, 192.0.2.235.

2. Create a Change object for each resource record set, and set the following properties.

ResourceRecordSet

The ResourceRecordSet object you created in the previous step.

Action

The action to be taken for this resource record set: CREATE, DELETE, or UPSERT. For more
information about these actions, see Elements. This example creates a new resource record
set in the hosted zone, so Action is set to CREATE.

3. Create a ChangeBatch object and set its Changes property to a list of the Change objects that
you created in the previous step.

145

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/MRoute53CreateHostedZoneCreateHostedZoneRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TCreateHostedZoneResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TChangeBatch.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TResourceRecordSet.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-values.html#resource-record-sets-values-basic
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ResourceRecordTypes.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TResourceRecord.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TChange.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/ChangeResourceRecordSets_Requests.html#API_ChangeResourceRecordSets_RequestParameters
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TChangeBatch.html

AWS SDK for .NET (version 3) Developer Guide
Using Amazon Simple Storage Service Internet Storage

[4] Update the zone’s resource record sets

To update the resource record sets, pass the ChangeBatch object to the hosted zone, as follows.

To update a hosted zone’s resource record sets

1. Create a ChangeResourceRecordSetsRequest object with the following property settings.

HostedZoneId

The hosted zone’s ID, which the example sets to the ID that was returned in the
CreateHostedZoneResponse object. To get the ID of an existing hosted zone, call
ListHostedZones.

ChangeBatch

A ChangeBatch object that contains the updates.

2. Pass the ChangeResourceRecordSetsRequest object to the ChangeResourceRecordSets
method of the client object. It returns a ChangeResourceRecordSetsResponse object, which
contains a request ID you can use to monitor the request’s progress.

[5] Monitor the update status

Resource record set updates typically take a minute or so to propagate through the system. You can
monitor the update’s progress and verify that it is complete as follows.

To monitor update status

1. Create a GetChangeRequest object and set its Id property to the request ID that was returned by
ChangeResourceRecordSets.

2. Use a wait loop to periodically call the GetChange method of the client object. GetChange
returns PENDING while the update is in progress and INSYNC after the update is complete. You
can use the same GetChangeRequest object for all of the method calls.

Using Amazon Simple Storage Service Internet
Storage

The AWS SDK for .NET supports Amazon Simple Storage Service (Amazon S3), which is storage for the
Internet. It is designed to make web-scale computing easier for developers. For more information, see
Amazon S3.

The following links provide examples of programming Amazon S3 with the AWS SDK for .NET:

• Using the AWS SDK for .NET for Amazon S3 Programming

• Making Requests Using AWS Account or IAM User Credentials

• Making Requests Using IAM User Temporary Credentials

• Making Requests Using Federated User Temporary Credentials

• Managing ACLs

• Creating a Bucket

• Upload an Object

• Multipart Upload with the High-Level API

• Multipart Upload with the Low-Level API

• Listing Objects

• Listing Keys

146

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TChangeResourceRecordSetsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/MRoute53ListHostedZonesListHostedZonesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/MRoute53ChangeResourceRecordSetsChangeResourceRecordSetsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TChangeResourceRecordSetsResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/TGetChangeRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Route53/MRoute53GetChangeGetChangeRequest.html
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/AmazonS3/latest/dev/UsingTheMPDotNetAPI.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingAcctOrUserCredDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempSessionTokenDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/AuthUsingTempFederationTokenDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/acl-using-dot-net-sdk.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/create-bucket-get-location-example.html#create-bucket-get-location-dotnet
https://docs.aws.amazon.com/AmazonS3/latest/dev/UploadObjSingleOpNET.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/usingHLmpuDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/usingLLmpuDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/list-obj-version-enabled-bucket.html#list-obj-version-enabled-bucket-sdk-examples
https://docs.aws.amazon.com/AmazonS3/latest/dev/ListingObjectKeysUsingNetSDK.html

AWS SDK for .NET (version 3) Developer Guide
Sending Notifications From the Cloud

Using Amazon Simple Notification Service

• Get an Object

• Copy an Object

• Copy an Object with the Multipart Upload API

• Deleting an Object

• Deleting Multiple Objects

• Restore an Object

• Configure a Bucket for Notifications

• Manage an Object’s Lifecycle

• Generate a Pre-signed Object URL

• Managing Websites

• Enabling Cross-Origin Resource Sharing (CORS)

• Specifying Server-Side Encryption

• Specifying Server-Side Encryption with Customer-Provided Encryption Keys

Sending Notifications From the Cloud Using
Amazon Simple Notification Service

The AWS SDK for .NET supports Amazon Simple Notification Service (Amazon SNS), which is a web
service that enables applications, end users, and devices to instantly send notifications from the cloud.
For more information, see Amazon SNS.

Listing Your Amazon SNS Topics
The following example shows how to list your Amazon SNS topics, the subscriptions to each topic, and
the attributes for each topic. This example uses the default AmazonSimpleNotificationServiceClient,
which loads credentials from your default configuration.

// using Amazon.SimpleNotificationService;
// using Amazon.SimpleNotificationService.Model;

var client = new AmazonSimpleNotificationServiceClient();
var request = new ListTopicsRequest();
var response = new ListTopicsResponse();

do
{
 response = client.ListTopics(request);

 foreach (var topic in response.Topics)
 {
 Console.WriteLine("Topic: {0}", topic.TopicArn);

 var subs = client.ListSubscriptionsByTopic(
 new ListSubscriptionsByTopicRequest
 {
 TopicArn = topic.TopicArn
 });

 var ss = subs.Subscriptions;

 if (ss.Any())
 {

147

https://docs.aws.amazon.com/AmazonS3/latest/dev/RetrievingObjectUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/CopyingObjectUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/CopyingObjctsUsingLLNetMPUapi.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/DeletingOneObjectUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/DeletingMultipleObjectsUsingNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/restore-object-dotnet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ways-to-add-notification-config-to-bucket.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/manage-lifecycle-using-dot-net.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ShareObjectPreSignedURLDotNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ConfigWebSiteDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/ManageCorsUsingDotNet.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/SSEUsingDotNetSDK.html
https://docs.aws.amazon.com/AmazonS3/latest/dev/sse-c-using-dot-net-sdk.html
https://aws.amazon.com/sns/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SNS/MSNSctor.html

AWS SDK for .NET (version 3) Developer Guide
Sending a Message to an Amazon SNS Topic

 Console.WriteLine(" Subscriptions:");

 foreach (var sub in ss)
 {
 Console.WriteLine(" {0}", sub.SubscriptionArn);
 }
 }

 var attrs = client.GetTopicAttributes(
 new GetTopicAttributesRequest
 {
 TopicArn = topic.TopicArn
 }).Attributes;

 if (attrs.Any())
 {
 Console.WriteLine(" Attributes:");

 foreach (var attr in attrs)
 {
 Console.WriteLine(" {0} = {1}", attr.Key, attr.Value);
 }
 }

 Console.WriteLine();
 }

 request.NextToken = response.NextToken;

} while (!string.IsNullOrEmpty(response.NextToken));

Sending a Message to an Amazon SNS Topic
The following example shows how to send a message to an Amazon SNS topic. The example takes one
argument, the ARN of the Amazon SNS topic.

using System;
using System.Linq;
using System.Threading.Tasks;

using Amazon;
using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SnsSendMessage
{
 class Program
 {
 static void Main(string[] args)
 {
 /* Topic ARNs must be in the correct format:
 * arn:aws:sns:REGION:ACCOUNT_ID:NAME
 *
 * where:
 * REGION is the region in which the topic is created, such as us-west-2
 * ACCOUNT_ID is your (typically) 12-character account ID
 * NAME is the name of the topic
 */
 string topicArn = args[0];
 string message = "Hello at " + DateTime.Now.ToShortTimeString();

 var client = new AmazonSimpleNotificationServiceClient(region:
 Amazon.RegionEndpoint.USWest2);

148

AWS SDK for .NET (version 3) Developer Guide
Sending an SMS Message to a Phone Number

 var request = new PublishRequest
 {
 Message = message,
 TopicArn = topicArn
 };

 try
 {
 var response = client.Publish(request);

 Console.WriteLine("Message sent to topic:");
 Console.WriteLine(message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Caught exception publishing request:");
 Console.WriteLine(ex.Message);
 }
 }
 }
}

See the complete example, including information on how to build and run the example from the
command line, on GitHub.

Sending an SMS Message to a Phone Number
The following example shows how to send an SMS message to a telephone number. The example takes
one argument, the telephone number, which must be in either of the two formats described in the
comments.

using System;
using System.Linq;
using System.Threading.Tasks;
using Amazon;
using Amazon.SimpleNotificationService;
using Amazon.SimpleNotificationService.Model;

namespace SnsPublish
{
 class Program
 {
 static void Main(string[] args)
 {
 // US phone numbers must be in the correct format:
 // +1 (nnn) nnn-nnnn OR +1nnnnnnnnnn
 string number = args[0];
 string message = "Hello at " + DateTime.Now.ToShortTimeString();

 var client = new AmazonSimpleNotificationServiceClient(region:
 Amazon.RegionEndpoint.USWest2);
 var request = new PublishRequest
 {
 Message = message,
 PhoneNumber = number
 };

 try
 {
 var response = client.Publish(request);

 Console.WriteLine("Message sent to " + number + ":");

149

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/dotnet/example_code_legacy/SNS/SnsSendMessage.cs

AWS SDK for .NET (version 3) Developer Guide
Messaging Using Amazon SQS

 Console.WriteLine(message);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Caught exception publishing request:");
 Console.WriteLine(ex.Message);
 }
 }
 }
}

See the complete example, including information on how to build and run the example from the
command line, on GitHub.

Messaging Using Amazon SQS
The AWS SDK for .NET supports Amazon SQS, which is a message queuing service that handles messages
or workflows between components in a system. For more information, see Amazon SQS.

The following examples demonstrate how to use the AWS SDK for .NET to create and use Amazon SQS
queues.

The sample code is written in C#, but you can use the AWS SDK for .NET with any compatible language.
The AWS SDK for .NET installs a set of C# project templates.

Prerequisite Tasks

Before you begin, be sure that you have created an AWS account and set up your AWS credentials. For
more information, see Setting up the AWS SDK for .NET (p. 15).

For related API reference information, see Amazon.SQS, Amazon.SQS.Model, and Amazon.SQS.Util in the
AWS SDK for .NET API Reference.

Topics
• Creating an Amazon SQS Client (p. 150)

• Creating an Amazon SQS Queue (p. 151)

• Constructing Amazon SQS Queue URLs (p. 152)

• Sending an Amazon SQS Message (p. 152)

• Sending an Amazon SQS Message Batch (p. 153)

• Receiving a Message from an Amazon SQS Queue (p. 154)

• Deleting a Message from an Amazon SQS Queue (p. 155)

• Enabling Long Polling in Amazon SQS (p. 155)

• Using Amazon SQS Queues (p. 157)

• Using Amazon SQS Dead Letter Queues (p. 158)

Creating an Amazon SQS Client
You need an Amazon SQS client in order to create and use an Amazon SQS queue. Before configuring
your client, you should create an App.Config file to specify your AWS credentials.

You specify your credentials by referencing the appropriate profile in the appSettings section of the
file.

150

https://github.com/awsdocs/aws-doc-sdk-examples/tree/master/dotnet/example_code_legacy/SNS/SnsPublish.cs
https://aws.amazon.com/sqs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQS.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/NSQSUtil.html

AWS SDK for .NET (version 3) Developer Guide
Creating an Amazon SQS Queue

The following example specifies a profile named my_profile. For more information about credentials
and profiles, see Configuring Your AWS SDK for .NET Application (p. 21).

<?xml version="1.0"?>
<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws profileName="my_profile"/>
 <startup>
 <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/>
 </startup>
</configuration>

After you create this file, you’re ready to create and initialize your Amazon SQS client.

To create and initialize an Amazon SQS client

1. Create and initialize an AmazonSQSConfig instance, and then set the ServiceURL property with the
protocol and service endpoint, as follows.

var sqsConfig = new AmazonSQSConfig();

sqsConfig.ServiceURL = "http://sqs.us-west-2.amazonaws.com";

2. Use the AmazonSQSConfig instance to create and initialize an AmazonSQSClient instance, as
follows.

var sqsClient = new AmazonSQSClient(sqsConfig);

You can now use the client to create an Amazon SQS queue. For information about creating a queue, see
Creating an Amazon SQS Queue (p. 151).

Creating an Amazon SQS Queue
Creating an Amazon SQS queue is an administrative task that you can do by using the SQS Management
Console. However, you can also use the AWS SDK for .NET to programmatically create an Amazon SQS
queue.

To create an Amazon SQS queue

1. Create and initialize a CreateQueueRequest instance. Provide the name of your queue and specify a
visibility timeout for your queue messages, as follows.

var createQueueRequest = new CreateQueueRequest();

createQueueRequest.QueueName = "MySQSQueue";
var attrs = new Dictionary<string, string>();
attrs.Add(QueueAttributeName.VisibilityTimeout, "10");
createQueueRequest.Attributes = attrs;

Your queue name must be composed of only alphanumeric characters, hyphens, and underscores.

Any message in the queue remains in the queue unless the specified visibility timeout is exceeded.
The default visibility timeout for a queue is 30 seconds. For more information about visibility
timeouts, see Visibility Timeout. For more information about different queue attributes you can set,
see SetQueueAttributes.

151

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSConfig.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://console.aws.amazon.com/sqs/home
https://console.aws.amazon.com/sqs/home
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TCreateQueueRequest.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SetQueueAttributes.html

AWS SDK for .NET (version 3) Developer Guide
Constructing Amazon SQS Queue URLs

2. After you create the request, pass it as a parameter to the CreateQueue method. The method
returns a CreateQueueResponse object, as follows.

var createQueueResponse = sqsClient.CreateQueue(createQueueRequest);

For information about how queues work in Amazon SQS, see How SQS Queues Work.

For information about your queue URL, see Constructing Amazon SQS Queue URLs (p. 152).

Constructing Amazon SQS Queue URLs
You need a queue URL to send, receive, and delete queue messages. You can get your queue URL using
the GetQueueUrl method.

Note
For .NET Core, PCL and Unity this operation is only available in asynchronous form using
GetQueueUrlAsync.

var client = new AmazonSQSClient();
var request = new GetQueueUrlRequest
{
 QueueName = "MyTestQueue",
 QueueOwnerAWSAccountId = "80398EXAMPLE"
};
var response = client.GetQueueUrl(request);
Console.WriteLine("Queue URL: " + response.QueueUrl);

To find your AWS account number, go to Security Credentials. Your account number is located under
Account Number at the top-right of the page.

For information about sending a message to a queue, see Sending an Amazon SQS Message (p. 152).

For information about receiving messages from a queue, see Receiving a Message from an Amazon SQS
Queue (p. 154).

For information about deleting messages from a queue, see Deleting a Message from an Amazon SQS
Queue (p. 155).

Sending an Amazon SQS Message
You can use the AWS SDK for .NET to send a message to an Amazon SQS queue.

Important
Due to the distributed nature of the queue, Amazon SQS can’t guarantee you will receive
messages in the precise order they are sent. If you need to preserve the message order, use an
Amazon SQS FIFO queue. For information about FIFO queues, see Amazon SQS FIFO (First-In-
First-Out) Queues.

To send a message to an Amazon SQS queue

1. Create and initialize a SendMessageRequest instance. Specify the queue name and the message you
want to send, as follows.

sendMessageRequest.QueueUrl = myQueueURL; sendMessageRequest.MessageBody =
 "{YOUR_QUEUE_MESSAGE}";

152

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSCreateQueueCreateQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TCreateQueueResponse.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/SQSConcepts.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSGetQueueUrlGetQueueUrlRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSGetQueueUrlAsyncGetQueueUrlRequestCancellationToken.html
https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/FIFO-queues.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageRequest.html

AWS SDK for .NET (version 3) Developer Guide
Sending an Amazon SQS Message Batch

For more information about your queue URL, see Constructing Amazon SQS Queue URLs (p. 152).

Each queue message must be composed of Unicode characters only, and can be up to 64 KB in
size. For more information about queue messages, see SendMessage in the Amazon Simple Queue
Service API Reference.

2. After you create the request, pass it as a parameter to the SendMessage method. The method
returns a SendMessageResponse object, as follows.

var sendMessageResponse = sqsClient.SendMessage(sendMessageRequest);

The sent message will stay in your queue until the visibility timeout is exceeded, or until it is deleted
from the queue. For more information about visibility timeouts, go to Visibility Timeout.

For information about deleting messages from your queue, see Deleting a Message from an Amazon SQS
Queue (p. 155).

For information about receiving messages from your queue, see Receiving a Message from an Amazon
SQS Queue (p. 154).

Sending an Amazon SQS Message Batch
You can use the AWS SDK for .NET to send batch messages to an Amazon SQS queue. The
SendMessageBatch method delivers up to 10 messages to the specified queue. This is a batch version of
SendMessage.

For a FIFO queue, multiple messages within a single batch are enqueued in the order they are sent.

For more information about sending batch messages, see SendMessageBatch in the Amazon Simple
Queue Service API Reference.

To send batch messages to an Amazon SQS queue

1. Create an AmazonSQSClient instance and initialize a SendMessageBatchRequest object. Specify the
queue name and the message you want to send, as follows.

AmazonSQSClient client = new AmazonSQSClient();
var sendMessageBatchRequest = new SendMessageBatchRequest
{
 Entries = new List<SendMessageBatchRequestEntry>
 {
 new SendMessageBatchRequestEntry("message1", "FirstMessageContent"),
 new SendMessageBatchRequestEntry("message2", "SecondMessageContent"),
 new SendMessageBatchRequestEntry("message3", "ThirdMessageContent")
 },
 QueueUrl = "SQS_QUEUE_URL"
};

For more information about your queue URL, see Constructing Amazon SQS Queue URLs (p. 152).

Each queue message must be composed of Unicode characters only, and can be up to 64 KB in
size. For more information about queue messages, see SendMessage in the Amazon Simple Queue
Service API Reference.

2. After you create the request, pass it as a parameter to the SendMessageBatch method. The method
returns a SendMessageBatchResponse object, which contains the unique ID of each message and
the message content for each successfully sent message. It also returns the message ID, message
content, and a sender’s fault flag if the message failed to send.

153

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSendMessageSendMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageResponse.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSendMessageBatchSendMessageBatchRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSendMessageSendMessageRequest.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageBatchRequest.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSendMessageBatchSendMessageBatchRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSendMessageBatchResponse.html

AWS SDK for .NET (version 3) Developer Guide
Receiving a Message from an Amazon SQS Queue

SendMessageBatchResponse response = client.SendMessageBatch(sendMessageBatchRequest);
Console.WriteLine("Messages successfully sent:");
foreach (var success in response.Successful)
{
 Console.WriteLine(" Message id : {0}", success.MessageId);
 Console.WriteLine(" Message content MD5 : {0}", success.MD5OfMessageBody);
}

Console.WriteLine("Messages failed to send:");
foreach (var failed in response.Failed)
{
 Console.WriteLine(" Message id : {0}", failed.Id);
 Console.WriteLine(" Message content : {0}", failed.Message);
 Console.WriteLine(" Sender's fault? : {0}", failed.SenderFault);
}

Receiving a Message from an Amazon SQS Queue
The content in this topic is for version 3.0 of the AWS SDK for .NET.

For content related to version 3.5 or later (and .NET Core), see the latest developer guide instead.

Latest content - .NET Core and ASP.NET Core

Latest developer guide.

V3 content - .NET Framework and ASP.NET 4.x

You can use the AWS SDK for .NET to receive messages from an Amazon SQS queue.

To receive a message from an Amazon SQS queue

1. Create and initialize a ReceiveMessageRequest instance. Specify the queue URL to receive a message
from, as follows.

var receiveMessageRequest = new ReceiveMessageRequest();

receiveMessageRequest.QueueUrl = myQueueURL;

For more information about your queue URL, see Your Amazon SQS Queue URL (p. 152).

2. Pass the request object as a parameter to the ReceiveMessage method, as follows.

var receiveMessageResponse = sqsClient.ReceiveMessage(receiveMessageRequest);

The method returns a ReceiveMessageResponse instance, containing the list of messages the queue
contains.

3. The ReceiveMessageResponse.ReceiveMessageResult property contains a
ReceiveMessageResponse object, which contains a list of the messages that were received. Iterate
through this list and call the ProcessMessage method to process each message.

foreach (var message in receiveMessageResponse.Messages)
{
 ProcessMessage(message); // Go to a method to process messages.
}

154

https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/ReceiveMessage.html
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/ReceiveMessage.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TReceiveMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSReceiveMessageReceiveMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TReceiveMessageResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TReceiveMessageResponse.html

AWS SDK for .NET (version 3) Developer Guide
Deleting a Message from an Amazon SQS Queue

The ProcessMessage method can use the ReceiptHandle property to obtain a receipt handle for
the message. You can use this receipt handle to change the message visibility timeout or to delete
the message from the queue. For more information about how to change the visibility timeout for a
message, see ChangeMessageVisibility.

For information about sending a message to your queue, see Sending an Amazon SQS
Message (p. 152).

For more information about deleting a message from the queue, see Deleting a Message from an
Amazon SQS Queue (p. 155).

Deleting a Message from an Amazon SQS Queue
You can use the AWS SDK for .NET to delete messages from an Amazon SQS queue.

To delete a message from an Amazon SQS queue

1. Create and initialize a DeleteMessageRequest object. Specify the Amazon SQS queue to delete a
message from and the receipt handle of the message to delete, as follows.

var deleteMessageRequest = new DeleteMessageRequest();

deleteMessageRequest.QueueUrl = queueUrl;
deleteMessageRequest.ReceiptHandle = receiptHandle;

2. Pass the request object as a parameter to the DeleteMessage method. The method returns a
DeleteMessageResponse object, as follows.

var response = sqsClient.DeleteMessage(deleteMessageRequest);

Calling DeleteMessage unconditionally removes the message from the queue, regardless of the
visibility timeout setting. For more information about visibility timeouts, see Visibility Timeout.

For information about sending a message to a queue, see Sending an Amazon SQS Message (p. 152).

For information about receiving messages from a queue, see Receiving a Message from an Amazon SQS
Queue (p. 154).

Enabling Long Polling in Amazon SQS
Long polling reduces the number of empty responses by allowing Amazon SQS to wait a specified
time for a message to become available in the queue before sending a response. Also, long polling
eliminates false empty responses by querying all the servers instead of a sampling of servers. To enable
long polling, you must specify a non-zero wait time for received messages. You can do this by setting
the ReceiveMessageWaitTimeSeconds parameter of a queue or by setting the WaitTimeSeconds
parameter on a message when it’s received. This .NET example shows you how to enable long polling in
Amazon SQS for a newly created or existing queue, or upon receipt of a message.

These examples use the following methods of the AmazonSQSClient class to enable long polling:

• CreateQueue

• SetQueueAttributes

• ReceiveMessage

155

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSChangeMessageVisibilityChangeMessageVisibilityRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TDeleteMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSDeleteMessageDeleteMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TDeleteMessageResponse.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/AboutVT.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSCreateQueueCreateQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSetQueueAttributesSetQueueAttributesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSReceiveMessageReceiveMessageRequest.html

AWS SDK for .NET (version 3) Developer Guide
Enabling Long Polling in Amazon SQS

For more information about long polling, see Amazon SQS Long Polling in the Amazon Simple Queue
Service Developer Guide.

Enable Long Polling When Creating a Queue
Create an AmazonSQSClient service object. Create a CreateQueueRequest object
containing the properties needed to create a queue, including a non-zero value for the
ReceiveMessageWaitTimeSeconds property.

Call the CreateQueue method. Long polling is then enabled for the queue.

AmazonSQSClient client = new AmazonSQSClient();
var request = new CreateQueueRequest
{
 QueueName = "SQS_QUEUE_NAME",
 Attributes = new Dictionary<string, string>
 {
 { "ReceiveMessageWaitTimeSeconds", "20"}
 }
};
var response = client.CreateQueue(request);
Console.WriteLine("Created a queue with URL : {0}", response.QueueUrl);

Enable Long Polling on an Existing Queue
Create an AmazonSQSClient service object. Create a SetQueueAttributesRequest object containing
the properties needed to set the attributes of the queue, including a non-zero value for the
ReceiveMessageWaitTimeSeconds property and the URL of the queue. Call the SetQueueAttributes
method. Long polling is then enabled for the queue.

AmazonSQSClient client = new AmazonSQSClient();

var request = new SetQueueAttributesRequest
{
 Attributes = new Dictionary<string, string>
 {
 { "ReceiveMessageWaitTimeSeconds", "20"}
 },
 QueueUrl = "SQS_QUEUE_URL"
};

var response = client.SetQueueAttributes(request);

Receive a Message
Create an AmazonSQSClient service object. Create a ReceiveMessageRequest object containing the
properties needed to receive a message, including a non-zero value for the WaitTimeSeconds
parameter and the URL of the queue. Call the ReceiveMessage method.

public void OnMessageReceipt()
{
 AmazonSQSClient client = new AmazonSQSClient();

 var request = new ReceiveMessageRequest
 {
 AttributeNames = { "SentTimestamp" },
 MaxNumberOfMessages = 1,
 MessageAttributeNames = { "All" },

156

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-long-polling.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TCreateQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSCreateQueueCreateQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSetQueueAttributesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSetQueueAttributesSetQueueAttributesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TReceiveMessageRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSReceiveMessageReceiveMessageRequest.html

AWS SDK for .NET (version 3) Developer Guide
Using Amazon SQS Queues

 QueueUrl = "SQS_QUEUE_URL",
 WaitTimeSeconds = 20
 };

 var response = client.ReceiveMessage(request);
}

Using Amazon SQS Queues
Amazon SQS offers standard as the default queue type. A standard queue enables you to have a nearly-
unlimited number of transactions per second. Standard queues support at-least-once message delivery.
However, occasionally more than one copy of a message might be delivered out of order. Standard
queues provide best-effort ordering, which ensures that messages are generally delivered in the same
order as they’re sent.

You can use standard message queues in many scenarios, as long as your application can process
messages that arrive more than once and out of order.

This code example demonstrates how to use queues by using these methods of the AmazonSQSClient
class:

• ListQueues: Gets a list of your message queues

• GetQueueUrl: Obtains the URL for a particular queue

• DeleteQueue: Deletes a queue

For more information about Amazon SQS messages, see How Amazon SQS Queues Work in the Amazon
Simple Queue Service Developer Guide.

List Your Queues
Create a ListQueuesRequest object containing the properties needed to list your queues, which by
default is an empty object. Call the ListQueues method with the ListQueuesRequest as a parameter to
retrieve the list of queues. The ListQueuesResponse returned by the call contains the URLs of all queues.

AmazonSQSClient client = new AmazonSQSClient();

ListQueuesResponse response = client.ListQueues(new ListQueuesRequest());
foreach (var queueUrl in response.QueueUrls)
{
 Console.WriteLine(queueUrl);
}

Get the URL for a Queue
Create a GetQueueUrlRequest object containing the properties needed to identify your queue, which
must include the name of the queue whose URL you want. Call the GetQueueUrl method using
the GetQueueUrlRequest object as a parameter. The call returns a GetQueueUrlResponse object
containing the URL of the specified queue.

AmazonSQSClient client = new AmazonSQSClient();

var request = new GetQueueUrlRequest
{
 QueueName = "SQS_QUEUE_NAME"
};

157

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSListQueuesListQueuesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSGetQueueUrlGetQueueUrlRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSDeleteQueueDeleteQueueRequest.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-how-it-works.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TListQueuesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSListQueuesListQueuesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TListQueuesResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TGetQueueUrlRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSGetQueueUrlGetQueueUrlRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TGetQueueUrlResponse.html

AWS SDK for .NET (version 3) Developer Guide
Using Amazon SQS Dead Letter Queues

GetQueueUrlResponse response = client.GetQueueUrl(request);
Console.WriteLine("The SQS queue's URL is {1}", response.QueueUrl);

Delete a Queue
Create a DeleteQueueRequest object containing the URL of the queue you want to delete. Call the
DeleteQueue method with the DeleteQueueRequest object as the parameter.

AmazonSQSClient client = new AmazonSQSClient();

var request = new DeleteQueueRequest
{
 QueueUrl = "SQS_QUEUE_URL"
};

client.DeleteQueue(request);

Using Amazon SQS Dead Letter Queues
This example shows you how to use a queue to receive and hold messages from other queues that the
queues can’t process.

A dead letter queue is one that other (source) queues can target for messages that can’t be processed
successfully. You can set aside and isolate these messages in the dead letter queue to determine why
their processing did not succeed. You must individually configure each source queue that sends messages
to a dead letter queue. Multiple queues can target a single dead letter queue.

In this example, an AmazonSQSClient object uses the SetQueueAttributesRequest method to configure a
source queue to use a dead letter queue.

For more information about Amazon SQS dead letter queues, see Using Amazon SQS Dead Letter
Queues in the Amazon Simple Queue Service Developer Guide.

Configure a Source Queue
This code example assumes you have created a queue to act as a dead letter queue. See Creating an
Amazon SQS Queue (p. 151) for information about creating a queue. After creating the dead letter
queue, you must configure the other queues to route unprocessed messages to the dead letter queue. To
do this, specify a redrive policy that identifies the queue to use as a dead letter queue and the maximum
number of receives by individual messages before they are routed to the dead letter queue.

Create an AmazonSQSClient object to set the queue attributes. Create a SetQueueAttributesRequest
object containing the properties needed to update queue attributes, including the RedrivePolicy
property that specifies both the Amazon Resource Name (ARN) of the dead letter queue, and the
value of maxReceiveCount. Also specify the URL source queue you want to configure. Call the
SetQueueAttributes method.

AmazonSQSClient client = new AmazonSQSClient();

var setQueueAttributeRequest = new SetQueueAttributesRequest
{
 Attributes = new Dictionary<string, string>
 {
 {"RedrivePolicy", @"{ ""deadLetterTargetArn"" : ""DEAD_LETTER_QUEUE_ARN"",
 ""maxReceiveCount"" : ""10""}" }
 },

158

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TDeleteQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSDeleteQueueDeleteQueueRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSetQueueAttributesSetQueueAttributesRequest.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-dead-letter-queues.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/TSQSClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSetQueueAttributesSetQueueAttributesRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/SQS/MSQSSetQueueAttributesSetQueueAttributesRequest.html

AWS SDK for .NET (version 3) Developer Guide
Monitoring Your AWS Resources

Using Amazon CloudWatch

 QueueUrl = "SOURCE_QUEUE_URL"
};

client.SetQueueAttributes(setQueueAttributeRequest)

Monitoring Your AWS Resources Using Amazon
CloudWatch

Amazon CloudWatch is a web service that monitors your AWS resources and the applications you run
on AWS in real time. You can use CloudWatch to collect and track metrics, which are variables you can
measure for your resources and applications. CloudWatch alarms send notifications or automatically
make changes to the resources you’re monitoring based on rules that you define.

The code for these examples is written in C#, but you can use the AWS SDK for .NET with any compatible
language. When you install the AWS Toolkit for Visual Studio, a set of C# project templates are installed.
The simplest way to start this project is to open Visual Studio, and then choose File, New Project, AWS
Sample Projects, Deployment and Management, AWS CloudWatch Example.

Prerequisite Tasks

Before you begin, be sure that you have created an AWS account and set up your AWS credentials. For
more information, see Setting up the AWS SDK for .NET (p. 15).

Topics

• Describing, Creating, and Deleting Alarms in Amazon CloudWatch (p. 159)

• Using Alarms in Amazon CloudWatch (p. 161)

• Getting Metrics from Amazon CloudWatch (p. 163)

• Sending Events to Amazon CloudWatch Events (p. 164)

• Using Subscription Filters in Amazon CloudWatch Logs (p. 168)

Describing, Creating, and Deleting Alarms in Amazon
CloudWatch
This .NET example show you how to:

• Describe a CloudWatch alarm

• Create a CloudWatch alarm based on a metric

• Delete a CloudWatch alarm

The Scenario
An alarm watches a single metric over a time period you specify. It performs one or more actions based
on the value of the metric, relative to a given threshold over a number of time periods. The following
examples show how to describe, create, and delete alarms in CloudWatch using these methods of the
AmazonCloudWatchClient class:

• DescribeAlarms

• PutMetricAlarm

159

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchDescribeAlarmsDescribeAlarmsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricAlarmPutMetricAlarmRequest.html

AWS SDK for .NET (version 3) Developer Guide
Describing, Creating, and Deleting

Alarms in Amazon CloudWatch

• DeleteAlarms

For more information about CloudWatch alarms, see Creating Amazon CloudWatch Alarms in the
Amazon CloudWatch User Guide.

Prerequisite Tasks
To set up and run this example, you must first:

• Get set up to use Amazon CloudWatch.
• Set up and configure the AWS SDK for .NET. (p. 15)

Describing an Alarm
Create an AmazonCloudWatchClient instance and a DescribeAlarmsRequest object, limiting the alarms
that are returned to those with a state of INSUFFICIENT_DATA. Then call the DescribeAlarms method of
the AmazonCloudWatchClient object.

using (var cloudWatch = new AmazonCloudWatchClient(RegionEndpoint.USWest2))
{
 var request = new DescribeAlarmsRequest();
 request.StateValue = "INSUFFICIENT_DATA";
 request.AlarmNames = new List<string> { "Alarm1", "Alarm2" };
 do
 {
 var response = cloudWatch.DescribeAlarms(request);
 foreach(var alarm in response.MetricAlarms)
 {
 Console.WriteLine(alarm.AlarmName);
 }
 request.NextToken = response.NextToken;
 } while (request.NextToken != null);
}

Creating an Alarm Based on a Metric
Create an AmazonCloudWatchClient instance and a PutMetricAlarmRequest object for the parameters
needed to create an alarm that is based on a metric, in this case, the CPU utilization of an Amazon EC2
instance.

The remaining parameters are set to trigger the alarm when the metric exceeds a threshold of 70
percent.

Then call the PutMetricAlarm method of the AmazonCloudWatchClient object.

var client = new AmazonCloudWatchClient(RegionEndpoint.USWest2);
client.PutMetricAlarm(
 new PutMetricAlarmRequest
 {
 AlarmName = "Web_Server_CPU_Utilization",
 ComparisonOperator = ComparisonOperator.GreaterThanThreshold,
 EvaluationPeriods = 1,
 MetricName = "CPUUtilization",
 Namespace = "AWS/EC2",
 Period = 60,
 Statistic = Statistic.Average,
 Threshold = 70.0,

160

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchDeleteAlarmsDeleteAlarmsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AlarmThatSendsEmail.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingSetup.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TDescribeAlarmsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchDescribeAlarmsDescribeAlarmsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TPutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricAlarmPutMetricAlarmRequest.html

AWS SDK for .NET (version 3) Developer Guide
Using Alarms in Amazon CloudWatch

 ActionsEnabled = true,
 AlarmActions = new List<string> { "arn:aws:swf:us-west-2:" + "customerAccount" +
 ":action/actions/AWS_EC2.InstanceId.Reboot/1.0" },
 AlarmDescription = "Alarm when server CPU exceeds 70%",
 Dimensions = new List<Dimension>
 {
 new Dimension { Name = "InstanceId", Value = "INSTANCE_ID" }
 },
 Unit = StandardUnit.Seconds
 }
);

Deleting an Alarm
Create an AmazonCloudWatchClient instance and a DeleteAlarmsRequest object to hold the names of
the alarms you want to delete. Then call the DeleteAlarms method of the AmazonCloudWatchClient
object.

using (var cloudWatch = new AmazonCloudWatchClient(RegionEndpoint.USWest2))
{
 var response = cloudWatch.DeleteAlarms(
 new DeleteAlarmsRequest
 {
 AlarmNames = new List<string> { "Alarm1", "Alarm2" };
 });
}

Using Alarms in Amazon CloudWatch
This .NET example shows you how to change the state of your Amazon EC2 instances automatically
based on a CloudWatch alarm.

The Scenario
Using alarm actions, you can create alarms that automatically stop, terminate, reboot, or recover your
Amazon EC2 instances. You can use the stop or terminate actions when you no longer need an instance
to be running. You can use the reboot and recover actions to automatically reboot those instances.

In this example, .NET is used to define an alarm action in CloudWatch that triggers the reboot of an
Amazon EC2 instance. The methods use the AWS SDK for .NET to manage Amazon EC2 instances using
these methods of the AmazonCloudWatchClient class:

• PutMetricAlarm

• EnableAlarmActions

• DisableAlarmActions

For more information about CloudWatch alarm actions, see Create Alarms to Stop, Terminate, Reboot, or
Recover an Instance in the Amazon CloudWatch User Guide.

Prerequisite Tasks
To set up and run this example, you must first:

• Get set up to use Amazon CloudWatch.

• Set up and configure the AWS SDK for .NET. (p. 15)

161

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TDeleteAlarmsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchDeleteAlarmsDeleteAlarmsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricAlarmPutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchEnableAlarmActionsEnableAlarmActionsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchDisableAlarmActionsDisableAlarmActionsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/UsingAlarmActions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingSetup.html

AWS SDK for .NET (version 3) Developer Guide
Using Alarms in Amazon CloudWatch

Create and Enable Actions on an Alarm
1. Create an AmazonCloudWatchClient instance and a PutMetricAlarmRequest object to hold the

parameters for creating an alarm, specifying ActionsEnabled as true and an array of ARNs for the
actions the alarm will trigger. Call the PutMetricAlarm method of the AmazonCloudWatchClient
object, which creates the alarm if it doesn’t exist or updates it if the alarm does exist.

using (var client = new AmazonCloudWatchClient(RegionEndpoint.USWest2))
{
 client.PutMetricAlarm(new PutMetricAlarmRequest
 {
 AlarmName = "Web_Server_CPU_Utilization",
 ComparisonOperator = ComparisonOperator.GreaterThanThreshold,
 EvaluationPeriods = 1,
 MetricName = "CPUUtilization",
 Namespace = "AWS/EC2",
 Period = 60,
 Statistic = Statistic.Average,
 Threshold = 70.0,
 ActionsEnabled = true,
 AlarmActions = new List<string> { "arn:aws:swf:us-west-2:" + "customerAccount" +
 ":action/actions/AWS_EC2.InstanceId.Reboot/1.0" },
 AlarmDescription = "Alarm when server CPU exceeds 70%",
 Dimensions = new List<Dimension>
 {
 new Dimension { Name = "InstanceId", Value = "instanceId" }
 }
 });
}

2. When PutMetricAlarm completes successfully, create an EnableAlarmActionsRequest object
containing the name of the CloudWatch alarm. Call the EnableAlarmActions method to enable the
alarm action.

client.EnableAlarmActions(new EnableAlarmActionsRequest
{
 AlarmNames = new List<string> { "Web_Server_CPU_Utilization" }
});

3. Create a MetricDatum object containing the CPUUtilization custom metric. Create a
PutMetricDataRequest object containing the MetricData parameter needed to submit a data point
for the CPUUtilization metric. Call the PutMetricData method.

MetricDatum metricDatum = new MetricDatum
{ MetricName = "CPUUtilization" };
PutMetricDataRequest putMetricDatarequest = new PutMetricDataRequest
{
 MetricData = new List<MetricDatum> { metricDatum }
};
client.PutMetricData(putMetricDatarequest);

Disable Actions on an Alarm
Create an AmazonCloudWatchClient instance and a DisableAlarmActionsRequest object containing the
name of the CloudWatch alarm. Call the DisableAlarmActions method to disable the actions for this
alarm.

using (var client = new AmazonCloudWatchClient(RegionEndpoint.USWest2))
{

162

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TPutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricAlarmPutMetricAlarmRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TEnableAlarmActionsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchEnableAlarmActionsEnableAlarmActionsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TMetricDatum.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TPutMetricDataRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricDataPutMetricDataRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TDisableAlarmActionsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchDisableAlarmActionsDisableAlarmActionsRequest.html

AWS SDK for .NET (version 3) Developer Guide
Getting Metrics from Amazon CloudWatch

 client.DisableAlarmActions(new DisableAlarmActionsRequest
 {
 AlarmNames = new List<string> { "Web_Server_CPU_Utilization" }
 });
}

Getting Metrics from Amazon CloudWatch
This example shows you how to:

• Retrieve a list of CloudWatch metrics
• Publish CloudWatch custom metrics

The Scenario
Metrics are data about the performance of your systems. You can enable detailed monitoring of some
resources such as your Amazon EC2 instances or your own application metrics. In this example, you
use .NET to retrieve a list of published CloudWatch metrics and publish data points to CloudWatch
metrics using these methods of the AmazonCloudWatchClient class:

• ListMetrics
• PutMetricData

For more information about CloudWatch metrics, see Using Amazon CloudWatch Metrics in the Amazon
CloudWatch User Guide.

Prerequisite Tasks
To set up and run this example, you must first:

• Get set up to use Amazon CloudWatch.
• Set up and configure the AWS SDK for .NET. (p. 15)

List Metrics
Create a ListMetricsRequest object containing the parameters needed to list metrics within the AWS/
Logs namespace. Call the ListMetrics method from a AmazonCloudWatchClient instance to list the
IncomingLogEvents metric.

var logGroupName = "LogGroupName";
DimensionFilter dimensionFilter = new DimensionFilter()
{
 Name = logGroupName
};
var dimensionFilterList = new List<DimensionFilter>();
dimensionFilterList.Add(dimensionFilter);

var dimension = new Dimension
{
 Name = "UniquePages",
 Value = "URLs"
};
using (var cw = new AmazonCloudWatchClient(RegionEndpoint.USWest2))
{
 var listMetricsResponse = cw.ListMetrics(new ListMetricsRequest
 {

163

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchListMetricsListMetricsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricDataPutMetricDataRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingSetup.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TListMetricsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchListMetricsListMetricsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html

AWS SDK for .NET (version 3) Developer Guide
Sending Events to Amazon CloudWatch Events

 Dimensions = dimensionFilterList,
 MetricName = "IncomingLogEvents",
 Namespace = "AWS/Logs"
 });
 Console.WriteLine(listMetricsResponse.Metrics);
}

Submit Custom Metrics
Create a PutMetricDataRequest object containing the parameters needed to submit a data point for the
PAGES_VISITED custom metric. Call the PutMetricData method from the AmazonCloudWatchClient
instance.

using (var cw = new AmazonCloudWatchClient(RegionEndpoint.USWest2))
{
 cw.PutMetricData(new PutMetricDataRequest
 {
 MetricData = new List<MetricDatum>{new MetricDatum
 {
 MetricName = "PagesVisited",
 Dimensions = new List<Dimension>{dimension},
 Unit = "None",
 Value = 1.0
 }},
 Namespace = "SITE/TRAFFIC"
 });
}

Sending Events to Amazon CloudWatch Events
This .NET code example shows you how to:

• Create and update a scheduled rule to trigger an event
• Add a AWS Lambda function target to respond to an event
• Send events that are matched to targets

The Scenario
Amazon CloudWatch Events delivers a near real-time stream of system events that describe changes in
AWS resources to various targets. Using simple rules, you can match events and route them to one or
more target functions or streams. This .NET example shows you how to create and update a rule used to
trigger an event, define one or more targets to respond to an event, and send events that are matched to
targets for handling.

The code manages instances using these methods of the AmazonCloudWatchEventsClient class:

• PutRule
• PutTargets
• PutEvents

For more information about Amazon CloudWatch Events, see Adding Events with PutEvents in the
Amazon CloudWatch Events User Guide.

Prerequisite Tasks
To set up and run this example, you must first:

164

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TPutMetricDataRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/MCloudWatchPutMetricDataPutMetricDataRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TCloudWatchEventsClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/MCloudWatchEventsPutRulePutRuleRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/MCloudWatchEventsPutTargetsPutTargetsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/MCloudWatchEventsPutEventsPutEventsRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/AddEventsPutEvents.html

AWS SDK for .NET (version 3) Developer Guide
Sending Events to Amazon CloudWatch Events

• Get set up to use Amazon CloudWatch.
• Set up and configure the AWS SDK for .NET. (p. 15)
• Create a Lambda function using the hello-world blueprint to serve as the target for events. To learn

how, see Step 1: Create an AWS Lambda function in the Amazon CloudWatch Events User Guide.

Create an IAM Role to Run the Examples
The following examples require an IAM role whose policy grants permission to CloudWatch Events
and that includes events.amazonaws.com as a trusted entity. This example creates a role named
CWEvents, setting it’s trust relationship and role policy.

static void Main()
{
 var client = new AmazonIdentityManagementServiceClient();
 // Create a role and it's trust relationship policy
 var role = client.CreateRole(new CreateRoleRequest
 {
 RoleName = "CWEvents",
 AssumeRolePolicyDocument =
 @"{""Statement"":[{""Principal"":{""Service"":[""events.amazonaws.com""]}," +
 @"""Effect"":""Allow"",""Action"":[""sts:AssumeRole""]}]}"
 }).Role;
 // Create a role policy and add it to the role
 string policy = GenerateRolePolicyDocument();
 var request = new CreatePolicyRequest
 {
 PolicyName = "DemoCWPermissions",
 PolicyDocument = policy
 };
 try
 {
 var createPolicyResponse = client.CreatePolicy(request);
 }
 catch (EntityAlreadyExistsException)
 {
 Console.WriteLine
 ("Policy 'DemoCWPermissions' already exits.");
 }
 var request2 = new AttachRolePolicyRequest()
 {
 PolicyArn = "arn:aws:iam::192484417122:policy/DemoCWPermissions",
 RoleName = "CWEvents"
 };
 try
 {
 var response = client.AttachRolePolicy(request2); //managedpolicy
 Console.WriteLine("Policy DemoCWPermissions attached to Role TestUser");
 }
 catch (NoSuchEntityException)
 {
 Console.WriteLine
 ("Policy 'DemoCWPermissions' does not exist");
 }
 catch (InvalidInputException)
 {
 Console.WriteLine
 ("One of the parameters is incorrect");
 }

}
public static string GenerateRolePolicyDocument()
{

165

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingSetup.html
https://docs.aws.amazon.com/lambda/latest/dg/tutorial-scheduled-events-create-function.html

AWS SDK for .NET (version 3) Developer Guide
Sending Events to Amazon CloudWatch Events

 /* This method produces the following managed policy:
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "CloudWatchEventsFullAccess",
 "Effect": "Allow",
 "Action": "events:*",
 "Resource": "*"
 },
 {
 "Sid": "IAMPassRoleForCloudWatchEvents",
 "Effect": "Allow",
 "Action": "iam:PassRole",
 "Resource": "arn:aws:iam::*:role/AWS_Events_Invoke_Targets"
 }
]
 }
 */
 var actionList = new ActionIdentifier("events:*");
 var actions = new List<ActionIdentifier>();
 actions.Add(actionList);
 var resource = new Resource("*");
 var resources = new List<Resource>();
 resources.Add(resource);
 var statement = new Amazon.Auth.AccessControlPolicy.Statement
 (Amazon.Auth.AccessControlPolicy.Statement.StatementEffect.Allow)
 {
 Actions = actions,
 Id = "CloudWatchEventsFullAccess",
 Resources = resources
 };
 var statements = new List<Amazon.Auth.AccessControlPolicy.Statement>();
 statements.Add(statement);
 var actionList2 = new ActionIdentifier("iam:PassRole");
 var actions2 = new List<ActionIdentifier>();
 actions2.Add(actionList2);
 var resource2 = new Resource("arn:aws:iam::*:role/AWS_Events_Invoke_Targets");
 var resources2 = new List<Resource>();
 resources2.Add(resource2);
 var statement2 = new
 Amazon.Auth.AccessControlPolicy.Statement(Amazon.Auth.AccessControlPolicy.Statement.StatementEffect.Allow)
 {
 Actions = actions2,
 Id = "IAMPassRoleForCloudWatchEvents",
 Resources = resources2
 };

 statements.Add(statement2);
 var policy = new Policy
 {
 Id = "DemoEC2Permissions",
 Version = "2012-10-17",
 Statements = statements
 };
 return policy.ToJson();
}

Create a Scheduled Rule
Create an AmazonCloudWatchEventsClient instance and a PutRuleRequest object containing the
parameters needed to specify the new scheduled rule, which include the following:

• A name for the rule
• The ARN of the IAM role you created previously

166

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TCloudWatchEventsClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TPutRuleRequest.html

AWS SDK for .NET (version 3) Developer Guide
Sending Events to Amazon CloudWatch Events

• An expression to schedule triggering of the rule every five minutes

Call the PutRule method to create the rule. The PutRuleResponse object returns the ARN of the new or
updated rule.

AmazonCloudWatchEventsClient client = new AmazonCloudWatchEventsClient();

var putRuleRequest = new PutRuleRequest
{
 Name = "DEMO_EVENT",
 RoleArn = "IAM_ROLE_ARN",
 ScheduleExpression = "rate(5 minutes)",
 State = RuleState.ENABLED
};

var putRuleResponse = client.PutRule(putRuleRequest);
Console.WriteLine("Successfully set the rule {0}", putRuleResponse.RuleArn);

Add a Lambda Function Target
Create an AmazonCloudWatchEventsClient instance and a PutTargetsRequest object containing the
parameters needed to specify the rule to which you want to attach the target, including the ARN of the
Lambda function you created. Call the PutTargets method of the AmazonCloudWatchClient instance.

AmazonCloudWatchEventsClient client = new AmazonCloudWatchEventsClient();

var putTargetRequest = new PutTargetsRequest
{
 Rule = "DEMO_EVENT",
 Targets =
 {
 new Target { Arn = "LAMBDA_FUNCTION_ARN", Id = "myCloudWatchEventsTarget"}
 }
};
client.PutTargets(putTargetRequest);

Send Events
Create an AmazonCloudWatchEventsClient instance and a PutEventsRequest object containing the
parameters needed to send events. For each event, include the source of the event, the ARNs of
any resources affected by the event, and details for the event. Call the PutEvents method of the
AmazonCloudWatchClient instance.

AmazonCloudWatchEventsClient client = new AmazonCloudWatchEventsClient();

var putEventsRequest = new PutEventsRequest
{
 Entries = new List<PutEventsRequestEntry>
 {
 new PutEventsRequestEntry
 {
 Detail = @"{ ""key1"" : ""value1"", ""key2"" : ""value2"" }",
 DetailType = "appRequestSubmitted",
 Resources =
 {
 "RESOURCE_ARN"
 },
 Source = "com.compnay.myapp"
 }

167

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/MCloudWatchEventsPutRulePutRuleRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TPutRuleResponse.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TCloudWatchEventsClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TPutTargetsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/MCloudWatchEventsPutTargetsPutTargetsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TCloudWatchEventsClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/TPutEventsRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchEvents/MCloudWatchEventsPutEventsPutEventsRequest.html

AWS SDK for .NET (version 3) Developer Guide
Using Subscription Filters in Amazon CloudWatch Logs

 }
};
client.PutEvents(putEventsRequest);

Using Subscription Filters in Amazon CloudWatch
Logs
These .NET examples shows you how to:

• List existing subscription filters in CloudWatch Logs
• Create a subscription filter in CloudWatch Logs
• Delete a subscription filter in CloudWatch Logs

The Scenario
Subscriptions provide access to a real-time feed of log events from CloudWatch Logs and deliver that
feed to other services such as an Amazon Kinesis Data Streams or AWS Lambda for custom processing,
analysis, or loading to other systems. A subscription filter defines the pattern to use for filtering which
log events are delivered to your AWS resource. This example shows how to list, create, and delete a
subscription filter in CloudWatch Logs. The destination for the log events is a Lambda function.

This example uses the AWS SDK for .NET to manage subscription filters using these methods of the
AmazonCloudWatchLogsClient class:

• DescribeSubscriptionFilters
• PutSubscriptionFilter
• DeleteSubscriptionFilter

For more information about CloudWatch Logs subscriptions, see Real-time Processing of Log Data with
Subscriptions in the Amazon CloudWatch Logs User Guide.

Prerequisite Tasks
To set up and run this example, you must first:

• Get set up to use Amazon CloudWatch.
• Set up and configure the AWS SDK for .NET. (p. 15)

Describe Existing Subscription Filters
Create an AmazonCloudWatchLogsClient object. Create a DescribeSubscriptionFiltersRequest object
containing the parameters needed to describe your existing filters. Include the name of the log group
and the maximum number of filters you want described. Call the DescribeSubscriptionFilters method.

public static void DescribeSubscriptionFilters()
{
 var client = new AmazonCloudWatchLogsClient();
 var request = new Amazon.CloudWatchLogs.Model.DescribeSubscriptionFiltersRequest()
 {
 LogGroupName = "GROUP_NAME",
 Limit = 5
 };

168

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/MCloudWatchLogsDescribeSubscriptionFiltersDescribeSubscriptionFiltersRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/MCloudWatchLogsPutSubscriptionFilterPutSubscriptionFilterRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/MCloudWatchLogsDeleteSubscriptionFilterDeleteSubscriptionFilterRequest.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Subscriptions.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingSetup.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TDescribeSubscriptionFiltersRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/MCloudWatchLogsDescribeSubscriptionFiltersDescribeSubscriptionFiltersRequest.html

AWS SDK for .NET (version 3) Developer Guide
Using Subscription Filters in Amazon CloudWatch Logs

 try
 {
 var response = client.DescribeSubscriptionFilters(request);
 }
 catch (Amazon.CloudWatchLogs.Model.ResourceNotFoundException e)
 {
 Console.WriteLine(e.Message);
 }
 finally
 {
 client?.Dispose();
 }
}

Create a Subscription Filter
Create an AmazonCloudWatchLogsClient object. Create a PutSubscriptionFilterRequest object
containing the parameters needed to create a filter, including the ARN of the destination Lambda
function, the name of the filter, the string pattern for filtering, and the name of the log group. Call the
PutSubscriptionFilter method.

public static void PutSubscriptionFilters()
{
 var client = new AmazonCloudWatchLogsClient();
 var request = new Amazon.CloudWatchLogs.Model.PutSubscriptionFilterRequest()
 {
 DestinationArn = "LAMBDA_FUNCTION_ARN",
 FilterName = "FILTER_NAME",
 FilterPattern = "ERROR",
 LogGroupName = "Log_Group"
 };
 try
 {
 var response = client.PutSubscriptionFilter(request);
 }
 catch (InvalidParameterException e)
 {
 Console.WriteLine(e.Message);
 }
 finally
 {
 client?.Dispose();
 }
}

Delete a Subscription Filter
Create an AmazonCloudWatchLogsClient object. Create a DeleteSubscriptionFilterRequest object
containing the parameters needed to delete a filter, including the names of the filter and the log group.
Call the DeleteSubscriptionFilter method.

public static void DeleteSubscriptionFilter()
{
 var client = new AmazonCloudWatchLogsClient();
 var request = new Amazon.CloudWatchLogs.Model.DeleteSubscriptionFilterRequest()
 {
 LogGroupName = "GROUP_NAME",
 FilterName = "FILTER"
 };
 try
 {

169

https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TPutSubscriptionFilterRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/MCloudWatchLogsPutSubscriptionFilterPutSubscriptionFilterRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatch/TCloudWatchClient.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/TDeleteSubscriptionFilterRequest.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/CloudWatchLogs/MCloudWatchLogsDeleteSubscriptionFilterDeleteSubscriptionFilterRequest.html

AWS SDK for .NET (version 3) Developer Guide
Programming AWS OpsWorks to

Work with Stacks and Applications

 var response = client.DeleteSubscriptionFilter(request);
 }
 catch (Amazon.CloudWatchLogs.Model.ResourceNotFoundException e)
 {
 Console.WriteLine(e.Message);
 }
 finally
 {
 client?.Dispose();
 }
}

Programming AWS OpsWorks to Work with Stacks
and Applications

The AWS SDK for .NET supports AWS OpsWorks, which provides a simple and flexible way to create and
manage stacks and applications. With AWS OpsWorks, you can provision AWS resources, manage their
configuration, deploy applications to those resources, and monitor their health. For more information,
see OpsWorks.

The SDK provides APIs for programming with AWS OpsWorks. These APIs typically consist of sets of
matching request-and-response objects that correspond to HTTP-based API calls focusing on their
corresponding service-level constructs.

For related API reference information, see Amazon.OpsWorks and Amazon.OpsWorks.Model in the
AWS SDK for .NET API Reference.

Programming Support for Additional AWS Services
The AWS SDK for .NET supports programming AWS services in addition to those described in the code
examples. For information about programming specific services with the AWS SDK for .NET, see the AWS
SDK for .NET API Reference.

In addition to the namespaces for individual AWS services, the AWS SDK for .NET also provides the
following APIs:

Area Description Resources

AWS Support Programmatic access to AWS
Support cases and Trusted
Advisor features.

See Amazon.AWSSupport and
Amazon.AWSSupport.Model.

General Helper classes and
enumerations.

See Amazon and Amazon.Util.

Other general programming information for the AWS SDK for .NET includes the following:

• Overriding Endpoints in the AWS SDK for .NET
• .NET Object Lifecycles

170

https://aws.amazon.com/opsworks/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/Index.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/AWSSupport/NAWSSupport.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/AWSSupport/NAWSSupportModel.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Amazon/N.html
https://docs.aws.amazon.com/sdkfornet/v3/apidocs/items/Util/NUtil.html
http://blogs.aws.amazon.com/net/post/Tx1P7UD2UN3DHK6/Overriding-Endpoints-in-the-AWS-SDK-for-NET
http://blogs.aws.amazon.com/net/post/Tx2LIB7WI7JHH69/Object-Lifecycles

AWS SDK for .NET (version 3) Developer Guide
Data Protection

Security for this AWS Product or
Service

Cloud security at Amazon Web Services (AWS) is the highest priority. As an AWS customer, you benefit
from a data center and network architecture that is built to meet the requirements of the most
security-sensitive organizations. Security is a shared responsibility between AWS and you. The Shared
Responsibility Model describes this as Security of the Cloud and Security in the Cloud.

Security of the Cloud – AWS is responsible for protecting the infrastructure that runs all of the services
offered in the AWS Cloud and providing you with services that you can use securely. Our security
responsibility is the highest priority at AWS, and the effectiveness of our security is regularly tested and
verified by third-party auditors as part of the AWS Compliance Programs.

Security in the Cloud – Your responsibility is determined by the AWS service you are using, and other
factors including the sensitivity of your data, your organization’s requirements, and applicable laws and
regulations.

This AWS product or service follows the shared responsibility model through the specific Amazon Web
Services (AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Topics
• Data Protection in this AWS product or service (p. 171)
• Identity and Access Management for this AWS Product or Service (p. 172)
• Compliance Validation for this AWS Product or Service (p. 172)
• Resilience for this AWS Product or Service (p. 173)
• Infrastructure Security for this AWS Product or Service (p. 173)
• Enforcing TLS 1.2 in this AWS Product or Service (p. 173)
• Amazon S3 Encryption Client Migration (p. 176)

Data Protection in this AWS product or service
The AWS shared responsibility model applies to data protection in this AWS product or service. As
described in this model, AWS is responsible for protecting the global infrastructure that runs all
of the AWS Cloud. You are responsible for maintaining control over your content that is hosted on
this infrastructure. This content includes the security configuration and management tasks for the
AWS services that you use. For more information about data privacy, see the Data Privacy FAQ. For
information about data protection in Europe, see the AWS Shared Responsibility Model and GDPR blog
post on the AWS Security Blog.

For data protection purposes, we recommend that you protect AWS account credentials and set up
individual user accounts with AWS Identity and Access Management (IAM). That way each user is given
only the permissions necessary to fulfill their job duties. We also recommend that you secure your data
in the following ways:

• Use multi-factor authentication (MFA) with each account.
• Use SSL/TLS to communicate with AWS resources. We recommend TLS 1.2 or later.
• Set up API and user activity logging with AWS CloudTrail.

171

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
http://aws.amazon.com/compliance/shared-responsibility-model/
http://aws.amazon.com/compliance/data-privacy-faq
http://aws.amazon.com/blogs/security/the-aws-shared-responsibility-model-and-gdpr/

AWS SDK for .NET (version 3) Developer Guide
Identity and Access Management

• Use AWS encryption solutions, along with all default security controls within AWS services.
• Use advanced managed security services such as Amazon Macie, which assists in discovering and

securing personal data that is stored in Amazon S3.
• If you require FIPS 140-2 validated cryptographic modules when accessing AWS through a command

line interface or an API, use a FIPS endpoint. For more information about the available FIPS endpoints,
see Federal Information Processing Standard (FIPS) 140-2.

We strongly recommend that you never put sensitive identifying information, such as your customers'
account numbers, into free-form fields such as a Name field. This includes when you work with this
AWS product or service or other AWS services using the console, API, AWS CLI, or AWS SDKs. Any data
that you enter into this AWS product or service or other services might get picked up for inclusion in
diagnostic logs. When you provide a URL to an external server, don't include credentials information in
the URL to validate your request to that server.

Identity and Access Management for this AWS
Product or Service

AWS Identity and Access Management (IAM) is an Amazon Web Services (AWS) service that helps
an administrator securely control access to AWS resources. IAM administrators control who can be
authenticated (signed in) and authorized (have permissions) to use resources in AWS services. IAM is an
AWS service that you can use with no additional charge.

To use this AWS product or service to access AWS, you need an AWS account and AWS credentials. To
increase the security of your AWS account, we recommend that you use an IAM user to provide access
credentials instead of using your AWS account credentials.

For details about working with IAM, see AWS Identity and Access Management.

For an overview of IAM users and why they are important for the security of your account, see AWS
Security Credentials in the Amazon Web Services General Reference.

This AWS product or service follows the shared responsibility model through the specific Amazon Web
Services (AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Compliance Validation for this AWS Product or
Service

This AWS product or service follows the shared responsibility model through the specific Amazon Web
Services (AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

The security and compliance of AWS services is assessed by third-party auditors as part of multiple AWS
compliance programs. These include SOC, PCI, FedRAMP, HIPAA, and others. AWS provides a frequently
updated list of AWS services in scope of specific compliance programs at AWS Services in Scope by
Compliance Program.

Third-party audit reports are available for you to download using AWS Artifact. For more information,
see Downloading Reports in AWS Artifact.

172

http://aws.amazon.com/compliance/fips/
https://aws.amazon.com/iam/
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/general/latest/gr/aws-security-credentials.html
https://docs.aws.amazon.com/general/latest/gr/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html

AWS SDK for .NET (version 3) Developer Guide
Resilience

For more information about AWS compliance programs, see AWS Compliance Programs.

Your compliance responsibility when using this AWS product or service to access an AWS service is
determined by the sensitivity of your data, your organization’s compliance objectives, and applicable
laws and regulations. If your use of an AWS service is subject to compliance with standards such as
HIPAA, PCI, or FedRAMP, AWS provides resources to help:

• Security and Compliance Quick Start Guides – Deployment guides that discuss architectural
considerations and provide steps for deploying security-focused and compliance-focused baseline
environments on AWS.

• Architecting for HIPAA Security and Compliance Whitepaper – A whitepaper that describes how
companies can use AWS to create HIPAA-compliant applications.

• AWS Compliance Resources – A collection of workbooks and guides that might apply to your industry
and location.

• AWS Config – A service that assesses how well your resource configurations comply with internal
practices, industry guidelines, and regulations.

• AWS Security Hub – A comprehensive view of your security state within AWS that helps you check your
compliance with security industry standards and best practices.

Resilience for this AWS Product or Service
The Amazon Web Services (AWS) global infrastructure is built around AWS Regions and Availability
Zones.

AWS Regions provide multiple physically separated and isolated Availability Zones, which are connected
with low-latency, high-throughput, and highly redundant networking.

With Availability Zones, you can design and operate applications and databases that automatically fail
over between Availability Zones without interruption. Availability Zones are more highly available, fault
tolerant, and scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

This AWS product or service follows the shared responsibility model through the specific Amazon Web
Services (AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Infrastructure Security for this AWS Product or
Service

This AWS product or service follows the shared responsibility model through the specific Amazon Web
Services (AWS) services it supports. For AWS service security information, see the AWS service security
documentation page and AWS services that are in scope of AWS compliance efforts by compliance
program.

Enforcing TLS 1.2 in this AWS Product or Service
To increase security when communicating with AWS services, you should configure this AWS product or
service to use TLS 1.2 or later.

173

https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/quickstart/?quickstart-all.sort-by=item.additionalFields.updateDate&quickstart-all.sort-order=desc&awsf.quickstart-homepage-filter=categories%23security-identity-compliance
https://d0.awsstatic.com/whitepapers/compliance/AWS_HIPAA_Compliance_Whitepaper.pdf
https://aws.amazon.com/compliance/resources/
https://aws.amazon.com/config/
https://aws.amazon.com/security-hub/
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/shared-responsibility-model/
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://docs.aws.amazon.com/security/?id=docs_gateway#aws-security
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/

AWS SDK for .NET (version 3) Developer Guide
.NET Core

The AWS SDK for .NET uses the underlying .NET runtime to determine which security protocol to use. By
default, current versions of .NET use the latest configured protocol that the operating system supports.
Your application can override this SDK behavior, but it's not recommended to do so.

.NET Core
By default, .NET Core uses the latest configured protocol that the operating system supports. The AWS
SDK for .NET doesn't provide a mechanism to override this.

If you're using a .NET Core version earlier than 2.1, we strongly recommend you upgrade your .NET Core
version.

See the following for information specific to each operating system.

Windows

Modern distributions of Windows have TLS 1.2 support enabled by default. If you're running on Windows
7 SP1 or Windows Server 2008 R2 SP1, you need to ensure that TLS 1.2 support is enabled in the
registry, as described at https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-
settings#tls-12. If you're running an earlier distribution, you must upgrade your operating system.

macOS

If you're running .NET Core 2.1 or later, TLS 1.2 is enabled by default. TLS 1.2 is supported by OS X
Mavericks v10.9 or later. .NET Core version 2.1 and later require newer versions of macOS, as described
at https://docs.microsoft.com/en-us/dotnet/core/install/dependencies?tabs=netcore21&pivots=os-
macos.

If you're using .NET Core 1.0, .NET Core uses OpenSSL on macOS, a dependency that must be installed
separately. OpenSSL added support for TLS 1.2 in version 1.0.1 (03/14/2012).

Linux

.NET Core on Linux requires OpenSSL, which comes bundled with many Linux distributions. But it can
also be installed separately. OpenSSL added support for TLS 1.2 in version 1.0.1 (03/14/2012). If you're
using a modern version of .NET Core (2.1 or later) and have installed a package manager, it's likely that a
more modern version of OpenSSL was installed for you.

To be sure, you can run openssl version in a terminal and verify that the version is later than 1.0.1.

.NET Framework
If you're running a modern version of .NET Framework (4.7 or later) and a modern version of Windows
(at least Windows 8 for clients, Windows Server 2012 or later for servers), TLS 1.2 is enabled and used by
default.

If you're using a .NET Framework runtime that doesn't use the operating system settings (.NET
Framework 3.5 through 4.5.2), the AWS SDK for .NET will attempt to add support for TLS 1.1 and TLS
1.2 to the supported protocols. If you're using .NET Framework 3.5, this will be successful only if the
appropriate hot patch is installed, as follows:

• Windows 10 version 1511 and Windows Server 2016 – KB3156421
• Windows 8.1 and Windows Server 2012 R2 – KB3154520
• Windows Server 2012 – KB3154519
• Windows 7 SP1 and Server 2008 R2 SP1 – KB3154518

If your application is running on a newer .NET Framework on Windows 7 SP1 or Windows Server 2008
R2 SP1, you need to ensure that TLS 1.2 support is enabled in the registry, as described at https://

174

https://docs.microsoft.com/en-us/windows/win32/secauthn/protocols-in-tls-ssl--schannel-ssp-
https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12
https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12
https://support.apple.com/en-us/HT202854
https://support.apple.com/en-us/HT202854
https://docs.microsoft.com/en-us/dotnet/core/install/dependencies?tabs=netcore21&pivots=os-macos
https://docs.microsoft.com/en-us/dotnet/core/install/dependencies?tabs=netcore21&pivots=os-macos
https://github.com/dotnet/announcements/issues/21
https://www.openssl.org/news/changelog.html#x35
https://www.openssl.org/news/changelog.html#x35
https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/Amazon.Runtime/Pipeline/HttpHandler/_bcl/AmazonSecurityProtocolManager.cs
https://github.com/aws/aws-sdk-net/blob/master/sdk/src/Core/Amazon.Runtime/Pipeline/HttpHandler/_bcl/AmazonSecurityProtocolManager.cs
https://support.microsoft.com/kb/3156421
https://support.microsoft.com/kb/3154520
https://support.microsoft.com/kb/3154519
https://support.microsoft.com/kb/3154518
https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12

AWS SDK for .NET (version 3) Developer Guide
AWS Tools for PowerShell

docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12. Newer versions of
Windows have it enabled by default.

For detailed best practices for using TLS with .NET Framework, see the Microsoft article at https://
docs.microsoft.com/en-us/dotnet/framework/network-programming/tls.

AWS Tools for PowerShell
AWS Tools for PowerShell use the AWS SDK for .NET for all calls to AWS services. The behavior of your
environment depends on the version of Windows PowerShell you're running, as follows.

Windows PowerShell 2.0 through 5.x

Windows PowerShell 2.0 through 5.x run on .NET Framework. You can verify which .NET runtime (2.0 or
4.0) is being used by PowerShell by using the following command.

$PSVersionTable.CLRVersion

• When using .NET Runtime 2.0, follow the instructions provided earlier regarding the AWS SDK for .NET
and .NET Framework 3.5.

• When using .NET Runtime 4.0, follow the instructions provided earlier regarding the AWS SDK for .NET
and .NET Framework 4+.

Windows PowerShell 6.0

Windows PowerShell 6.0 and newer run on .NET Core. You can verify which version of .NET Core is being
used by running the following command.

[System.Reflection.Assembly]::GetEntryAssembly().GetCustomAttributes([System.Runtime.Versioning.TargetFrameworkAttribute],
 $true).FrameworkName

Follow the instructions provided earlier regarding the AWS SDK for .NET and the relevant version of .NET
Core.

Xamarin
For Xamarin, see the directions at https://docs.microsoft.com/en-us/xamarin/cross-platform/app-
fundamentals/transport-layer-security. In summary:

For Android

• Requires Android 5.0 or later.
• Project Properties, Android Options: HttpClient implementation must be set to Android and the SSL/

TLS implementation set to Native TLS 1.2+.

For iOS

• Requires iOS 7 or later.
• Project Properties, iOS Build: HttpClient implementation must be set to NSUrlSession.

For macOS

• Requires macOS 10.9 or later.

175

https://docs.microsoft.com/en-us/windows-server/security/tls/tls-registry-settings#tls-12
https://docs.microsoft.com/en-us/windows/win32/secauthn/protocols-in-tls-ssl--schannel-ssp-
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/tls
https://docs.aws.amazon.com/powershell/latest/userguide/
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/transport-layer-security
https://docs.microsoft.com/en-us/xamarin/cross-platform/app-fundamentals/transport-layer-security

AWS SDK for .NET (version 3) Developer Guide
Unity

• Project Options, Build, Mac Build: HttpClient implementation must be set to NSUrlSession.

Unity
You must use Unity 2018.2 or later, and use the .NET 4.x Equivalent scripting runtime. You can set
this in Project Settings, Configuration, Player, as described at https://docs.unity3d.com/2019.1/
Documentation/Manual/ScriptingRuntimeUpgrade.html. The .NET 4.x Equivalent scripting runtime
enables TLS 1.2 support to all Unity platforms running Mono or IL2CPP. For more information, see
https://blogs.unity3d.com/2018/07/11/scripting-runtime-improvements-in-unity-2018-2/.

Browser (for Blazor WebAssembly)
WebAssembly runs in the browser instead of on the server, and uses the browser for handling HTTP
traffic. Therefore, TLS support is determined by browser support.

Blazor WebAssembly, in preview for ASP.NET Core 3.1, is supported only in browsers that support
WebAssembly, as described at https://docs.microsoft.com/en-us/aspnet/core/blazor/supported-
platforms. All mainstream browsers supported TLS 1.2 before supporting WebAssembly. If this is the
case for your browser, then if your app runs, it can communicate over TLS 1.2.

See your browser's documentation for more information and verification.

Amazon S3 Encryption Client Migration
This topic shows how to migrate your applications from Version 1 (V1) of the Amazon Simple Storage
Service (Amazon S3) encryption client to Version 2 (V2), and ensure application availability throughout
the migration process.

Objects that are encrypted with the V2 client can't be decrypted with the V1 client. In order to ease
migration to the new client without having to re-encrypt all objects at once, a "V1-transitional" client has
been provided. This client can decrypt both V1- and V2-encrypted objects, but encrypts objects only in
V1-compatible format. The V2 client can decrypt both V1- and V2-encrypted objects (when enabled for
V1 objects), but encrypts objects only in V2-compatible format.

Migration Overview
This migration happens in three phases. These phases are introduced here and described in detail later.
Each phase must be completed for all clients that use shared objects before the next phase is started.

1. Update existing clients to V1-transitional clients to read new formats. First, update your
applications to take a dependency on the V1-transitional client instead of the V1 client. The V1-
transitional client enables your existing code to decrypt objects written by the new V2 clients and
objects written in V1-compatible format.

Note
The V1-transitional client is provided for migration purposes only. Proceed to upgrading to
the V2 client after moving to the V1-transitional client.

2. Migrate V1-transitional clients to V2 clients to write new formats. Next, replace all V1-transitional
clients in your applications with V2 clients, and set the security profile to V2AndLegacy. Setting
this security profile on V2 clients enables those clients to decrypt objects that were encrypted in V1-
compatible format.

3. Update V2 clients to no longer read V1 formats. Finally, after all clients have been migrated to V2
and all objects have been encrypted or re-encrypted in V2-compatible format, set the V2 security

176

https://docs.unity3d.com/2019.1/Documentation/Manual/ScriptingRuntimeUpgrade.html
https://docs.unity3d.com/2019.1/Documentation/Manual/ScriptingRuntimeUpgrade.html
https://blogs.unity3d.com/2018/07/11/scripting-runtime-improvements-in-unity-2018-2/
https://docs.microsoft.com/en-us/aspnet/core/blazor/supported-platforms
https://docs.microsoft.com/en-us/aspnet/core/blazor/supported-platforms

AWS SDK for .NET (version 3) Developer Guide
Update Existing Clients to V1-

transitional Clients to Read New Formats

profile to V2 instead of V2AndLegacy. This prevents the decryption of objects that are in V1-
compatible format.

Update Existing Clients to V1-transitional Clients to
Read New Formats
The V2 encryption client uses encryption algorithms that older versions of the client don't support. The
first step in the migration is to update your V1 decryption clients so that they can read the new format.

The V1-transitional client enables your applications to decrypt both V1- and V2-encrypted objects. This
client is a part of the Amazon.Extensions.S3.Encryption NuGet package. Perform the following steps on
each of your applications to use the V1-transitional client.

1. Take a new dependency on the Amazon.Extensions.S3.Encryption package. If your project depends
directly on the AWSSDK.S3 or AWSSDK.KeyManagementService packages, you must either update
those dependencies or remove them so that their updated versions will be pulled in with this new
package.

2. Change the appropriate using statement from Amazon.S3.Encryption to
Amazon.Extensions.S3.Encryption, as follows:

// using Amazon.S3.Encryption;
 using Amazon.Extensions.S3.Encryption;

3. Rebuild and redeploy your application.

The V1-transitional client is fully API-compatible with the V1 client, so no other code changes are
required.

Migrate V1-transitional Clients to V2 Clients to Write
New Formats
The V2 client is a part of the Amazon.Extensions.S3.Encryption NuGet package. It enables your
applications to decrypt both V1- and V2-encrypted objects (if configured to do so), but encrypts objects
only in V2-compatible format.

After updating your existing clients to read the new encryption format, you can proceed to safely update
your applications to the V2 encryption and decryption clients. Perform the following steps on each of
your applications to use the V2 client:

1. Change EncryptionMaterials to EncryptionMaterialsV2.

a. When using KMS:

i. Provide a KMS key ID.
ii. Declare the encryption method that you are using; that is, KmsType.KmsContext.
iii. Provide an encryption context to KMS to associate with this data key. You can send an

empty dictionary (Amazon encryption context will still be merged in), but providing
additional context is encouraged.

b. When using user-provided key wrap methods (symmetric or asymmetric encryption):

i. Provide an AES or an RSA instance that contains the encryption materials.
ii. Declare which encryption algorithm to use; that is, SymmetricAlgorithmType.AesGcm

or AsymmetricAlgorithmType.RsaOaepSha1.

177

https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption
https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption
https://www.nuget.org/packages/Amazon.Extensions.S3.Encryption

AWS SDK for .NET (version 3) Developer Guide
Migrate V1-transitional Clients to
V2 Clients to Write New Formats

2. Change AmazonS3CryptoConfiguration to AmazonS3CryptoConfigurationV2 with the
SecurityProfile property set to SecurityProfile.V2AndLegacy.

3. Change AmazonS3EncryptionClient to AmazonS3EncryptionClientV2. This client takes the
newly converted AmazonS3CryptoConfigurationV2 and EncryptionMaterialsV2 objects
from the previous steps.

Example: KMS to KMS+Context
Pre-migration

using System.Security.Cryptography;
using Amazon.S3.Encryption;

var encryptionMaterial = new EncryptionMaterials("1234abcd-12ab-34cd-56ef-1234567890ab");
var configuration = new AmazonS3CryptoConfiguration()
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClient(configuration, encryptionMaterial);

Post-migration

using System.Security.Cryptography;
using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;

var encryptionContext = new Dictionary<string, string>();
var encryptionMaterial = new EncryptionMaterialsV2("1234abcd-12ab-34cd-56ef-1234567890ab",
 KmsType.KmsContext, encryptionContext);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClientV2(configuration, encryptionMaterial);

Example: Symmetric Algorithm (AES-CBC to AES-GCM Key
Wrap)
StorageMode can be either ObjectMetadata or InstructionFile.

Pre-migration

using System.Security.Cryptography;
using Amazon.S3.Encryption;

var symmetricAlgorithm = Aes.Create();
var encryptionMaterial = new EncryptionMaterials(symmetricAlgorithm);
var configuration = new AmazonS3CryptoConfiguration()
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClient(configuration, encryptionMaterial);

Post-migration

using System.Security.Cryptography;
using Amazon.Extensions.S3.Encryption;

178

AWS SDK for .NET (version 3) Developer Guide
Update V2 Clients to No Longer Read V1 Formats

using Amazon.Extensions.S3.Encryption.Primitives;

var symmetricAlgorithm = Aes.Create();
var encryptionMaterial = new EncryptionMaterialsV2(symmetricAlgorithm,
 SymmetricAlgorithmType.AesGcm);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClientV2(configuration, encryptionMaterial);

Note
When decrypting with AES-GCM, read the entire object to the end before you start using the
decrypted data. This is to verify that the object hasn't been modified since it was encrypted.

Example: Asymmetric Algorithm (RSA to RSA-OAEP-SHA1 Key
Wrap)
StorageMode can be either ObjectMetadata or InstructionFile.

Pre-migration

using System.Security.Cryptography;
using Amazon.S3.Encryption;

var asymmetricAlgorithm = RSA.Create();
var encryptionMaterial = new EncryptionMaterials(asymmetricAlgorithm);
var configuration = new AmazonS3CryptoConfiguration()
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClient(configuration, encryptionMaterial);

Post-migration

using System.Security.Cryptography;
using Amazon.Extensions.S3.Encryption;
using Amazon.Extensions.S3.Encryption.Primitives;

var asymmetricAlgorithm = RSA.Create();
var encryptionMaterial = new EncryptionMaterialsV2(asymmetricAlgorithm,
 AsymmetricAlgorithmType.RsaOaepSha1);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy)
{
 StorageMode = CryptoStorageMode.ObjectMetadata
};
var encryptionClient = new AmazonS3EncryptionClientV2(configuration, encryptionMaterial);

Update V2 Clients to No Longer Read V1 Formats
Eventually, all objects will have been encrypted or re-encrypted using a V2 client. After this conversion is
complete, you can disable V1 compatibility in the V2 clients by setting the SecurityProfile property
to SecurityProfile.V2, as shown in the following snippet.

//var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2AndLegacy);
var configuration = new AmazonS3CryptoConfigurationV2(SecurityProfile.V2);

179

AWS SDK for .NET (version 3) Developer Guide

Document History
The following table describes the important changes since the last release of the AWS SDK for .NET
Developer Guide. For notification about updates to this documentation, you can subscribe to an RSS feed.

update-history-change update-history-description update-history-date

Migrating from .NET Standard
1.3 (p. 64)

Support for .NET Standard 1.3
on the AWS SDK for .NET has
come to its end of life.

March 25, 2021

Version 3.5 of the AWS SDK
for .NET (p. 64)

Version 3.5 of the AWS SDK
for .NET has been released.
See the developer guide
for that version at https://
docs.aws.amazon.com/sdk-for-
net/latest/developer-guide/

August 25, 2020

Paginators (p. 62) Added paginators to many
service clients, which make
pagination of API results more
convenient.

August 24, 2020

Retries and timeouts (p. 60) Added information about retry
modes.

August 20, 2020

S3 encryption client
migration (p. 176)

Added information about how
to migrate your Amazon S3
encryption clients from V1 to
V2.

August 7, 2020

Using KMS keys for S3
encryption (p. 140)

Updated example to use version
2 of the S3 encryption client.

August 6, 2020

Migrating from .NET Standard
1.3 (p. 64)

Added information about ending
support for .NET Standard 1.3 at
the end of 2020.

May 18, 2020

Quick start (p. 5) Added a quick-start section
with basic setup and tutorials to
introduce the reader to the AWS
SDK for .NET.

March 27, 2020

Enforcing TLS 1.2 (p. 173) Added information about how to
enforce TLS 1.2 in the SDK.

March 10, 2020

New SDK version (p. 180) Version 3 of the AWS SDK
for .NET released.

July 28, 2015

180

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/amazon-aws-sdk-for-net-dev-guide-v3-doc-history.rss
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/

	AWS SDK for .NET (version 3)
	Table of Contents
	
	What Is the AWS SDK for .NET
	Maintenance and support for SDK major versions
	AWS Tools Related to the SDK
	Tools for Windows PowerShell and Tools for PowerShell Core
	Toolkit for VS Code
	Toolkit for Visual Studio
	Toolkit for Azure DevOps

	Version 3.5 of the AWS SDK for .NET
	How to Use This Guide
	Supported Services and Revision History
	Additional resources

	Get started quickly with the AWS SDK for .NET
	Simple cross-platform application using the AWS SDK for .NET
	Steps
	Setup for this tutorial
	Create an AWS account
	Create AWS credentials and a profile
	Install other tools

	Create the project
	Create the code
	Run the application
	Clean up
	Where to go next

	Simple Windows-based application using the AWS SDK for .NET
	Steps
	Setup for this tutorial
	Create an AWS account
	Create AWS credentials and a profile
	Install other tools

	Create the project
	Create the code
	Run the application
	Clean up
	Where to go next

	Next steps

	Setting up the AWS SDK for .NET
	Create an AWS Account and Credentials
	Install and configure your toolchain
	Cross-platform development
	Windows with Visual Studio and .NET Core

	Install AWSSDK Assemblies
	Installing AWSSDK packages with NuGet
	Using NuGet from the Command prompt or terminal
	Using NuGet from Visual Studio Solution Explorer
	Using NuGet from the Package Manager Console

	Download and extract ZIP files
	Installing the AWS SDK for .NET on Windows

	Start a new project
	Platforms supported by the AWS SDK for .NET
	.NET Core
	.NET Framework 4.5
	.NET Framework 3.5
	Portable Class Library
	Unity support
	More info

	Programming with the AWS SDK for .NET
	Configuring Your AWS SDK for .NET Application
	Configuring the AWS SDK for .NET with .NET Core
	Using AWSSDK.Extensions.NETCore.Setup
	Allowed values in appsettings file

	ASP.NET Core dependency injection

	Configuring AWS Credentials
	Using the SDK Store
	Create a Profile and Save it to the .NET Credentials File
	Create a SAMLEndpoint and an Associated Profile and Save it to the .NET Credentials File

	Using a Credentials File
	Setting an Alternative Credentials Profile
	Create a Profile and Save it to the Shared Credentials File
	Create a Source Profile and an Associated Assume Role Profile and Save It to the Credentials File
	Update an Existing Profile in the Shared Credentials File

	Accessing Credentials and Profiles in an Application
	Get Credentials from the SDK Credentials File or the Shared Credentials File in the Default Location.
	Get a Profile from the SDK Credentials File or the Shared Credentials File in the Default Location
	Get AWSCredentials from a File in the Shared Credentials File Format at a File Location
	How to Create an AmazonS3Client Using the SharedCredentialsFile Class

	Credential and Profile Resolution
	Profile Resolution
	Specifying a Profile
	Using Federated User Account Credentials
	Specifying Roles or Temporary Credentials
	Using Proxy Credentials

	AWS Region Selection
	Per-Client
	Globally

	Configuring Other Application Parameters
	AWSLogging
	AWSLogMetrics
	AWSRegion
	AWSResponseLogging
	AWS.DynamoDBContext.TableNamePrefix
	AWS.S3.UseSignatureVersion4
	AWSEndpointDefinition
	AWS Service-Generated Endpoints
	Amazon CloudSearch Endpoints Example
	AWS IoT Endpoints Example

	Configuration Files Reference for AWS SDK for .NET
	Declaring an AWS Settings Section
	Allowed Elements
	Elements Reference
	alias
	aws
	dynamoDB
	dynamoDBContext
	ec2
	logging
	map
	property
	proxy
	s3

	Enabling SDK Metrics
	Enable SDK Metrics for the AWS SDK for .NET
	Option 1: Set environment variables
	Option 2: AWS shared config file

	Update a CloudWatch agent
	Option 1: Set environment variables
	Option 2: AWS shared config file
	Restart SDK Metrics

	Disable SDK Metrics
	Restart SDK Metrics

	Definitions for SDK Metrics

	AWS asynchronous APIs for .NET
	Asynchronous API for .NET Framework 4.5, Windows Store, and Windows Phone 8
	Asynchronous API for .NET Framework 3.5
	Syntax of Async Request Methods
	Begin Method Syntax
	Using IAsyncResult.AsyncWaitHandle

	Examples
	No Callback Specified
	Simple Callback
	Callback with Client
	Callback with State Object

	Complete Example
	See Also

	Retries and timeouts
	Retries
	Overview
	Behavior

	Timeouts
	Example

	Paginators
	Migrating to Version 3 of the AWS SDK for .NET
	About the AWS SDK for .NET Versions
	Architecture Redesign for the SDK
	Breaking Changes
	AWSClientFactory Removed
	Amazon.Runtime.AssumeRoleAWSCredentials Removed
	SetACL Method Removed from S3Link
	Removal of Obsolete Result Classes
	AWS Config Section Changes

	Migrating to Version 3.5 of the AWS SDK for .NET
	Migrating from .NET Standard 1.3

	Code examples for the AWS SDK for .NET
	Listing AWS Resources using AWS CloudFormation
	Authenticating Users with Amazon Cognito
	Amazon Cognito Credentials Provider
	Set up CognitoAWSCredentials
	Use AWS as an Unauthenticated User

	Amazon CognitoAuthentication Extension Library Examples
	Using the CognitoAuthentication Extension Library
	Use Basic Authentication
	Authenticate with Challenges
	Use AWS Resources after Authentication

	More Authentication Options

	Using Amazon DynamoDB NoSQL Databases
	Low-Level Model
	Creating a Table
	Verifying That a Table is Ready to Modify
	Inserting an Item into a Table

	Document Model
	Inserting an Item into a Table
	Getting an Item from a Table

	Object Persistence Model
	Defining a .NET Class that Represents an Item in a Table
	Using an Instance of the .NET Class to Insert an Item into a Table
	Using an Instance of a .NET Object to Get an Item from a Table

	More Info
	Using Expressions with Amazon DynamoDB and the AWS SDK for .NET
	Sample Data
	Get a Single Item by Using Expressions and the Item’s Primary Key
	Get Multiple Items by Using Expressions and the Table’s Primary Key
	Get Multiple Items by Using Expressions and Other Item Attributes
	Print an Item
	Create or Replace an Item by Using Expressions
	Update an Item by Using Expressions
	Delete an Item by Using Expressions
	More Info

	JSON Support in Amazon DynamoDB with the AWS SDK for .NET
	Get Data from a DynamoDB Table in JSON Format
	Insert JSON Format Data into a DynamoDB Table
	DynamoDB Data Type Conversions to JSON
	More Info

	Managing ASP.NET Session State with Amazon DynamoDB
	Create the ASP.NET_SessionState Table
	Configure the Session State Provider
	Web.config Options

	Security Considerations

	Deploying Applications Using Amazon EC2
	Amazon EC2 Instances Examples
	Creating an Amazon EC2 Client
	Creating a Security Group in Amazon EC2
	Enumerate Your Security Groups
	To enumerate your security groups
	To enumerate your security groups for a particular VPC

	Create a Security Group
	To create a security group for EC2-Classic
	To create a security group for EC2-VPC

	Add Rules to Your Security Group

	Working with Amazon EC2 Key Pairs
	Create a Key Pair and Save the Private Key
	Enumerate Your Key Pairs
	Delete Key Pairs

	Launching an Amazon EC2 Instance
	Launch an EC2 Instance in EC2-Classic or in a VPC
	Check the State of Your Instance
	Connect to Your Running Instance

	Terminating an Amazon EC2 Instance
	Using Regions and Availability Zones with Amazon EC2
	The Scenario
	Describe Availability Zones
	Describe Regions

	Using VPC Endpoints with Amazon EC2
	The Scenario
	Create a VPC Endpoint
	Describe a VPC Endpoint
	Modify a VPC Endpoint
	Delete a VPC Endpoint

	Using Elastic IP Addresses in Amazon EC2
	The Scenario
	Describe Elastic IP Addresses
	Allocate and Associate an Elastic IP Address
	Release an Elastic IP Address

	Amazon EC2 Spot Instance Examples
	Overview
	Prerequisites
	Setting Up Your Credentials
	Submitting Your Spot Request
	Determining the State of Your Spot Request
	Cleaning Up Your Spot Requests and Instances
	Putting it all Together

	Storing Archival Data Using Amazon S3 Glacier
	Programming Models
	Low-Level APIs
	High-Level APIs

	Managing Users With AWS Identity and Access Management (IAM)
	Managing IAM Aliases for your AWS account ID
	The Scenario
	Create an Account Alias
	List Account Aliases
	Delete an Account Alias

	Managing IAM Users
	Create a User for Your AWS Account
	List Users in Your AWS Account
	Update a User’s Name
	Get Information about a User
	Delete a User

	Managing IAM Access Keys
	The Scenario
	Create Access Keys for a User
	List a User’s Access Keys
	Get the Last Used Date for Access Keys
	Update the Status of an Access Key
	Delete Access Keys

	Working with IAM Policies
	The Scenario
	Create an IAM Policy
	Get an IAM Policy
	Attach a Managed Role Policy
	Detach a Managed Role Policy

	Working with IAM Server Certificates
	The Scenario
	List Your Server Certificates
	Get a Server Certificate
	Update a Server Certificate
	Delete a Server Certificate

	List IAM Account Information
	Granting Access Using an IAM Role
	The Scenario
	Create a Sample that Retrieves an Object from Amazon S3
	Create an IAM Role
	Launch an EC2 Instance and Specify the IAM Role
	Run the Sample Program on the EC2 Instance

	Using AWS Key Management Service keys for Amazon S3 encryption in the AWS SDK for .NET
	Managing Domain Name System (DNS) Resources Using Amazon Route 53
	Using Amazon Simple Storage Service Internet Storage
	Sending Notifications From the Cloud Using Amazon Simple Notification Service
	Listing Your Amazon SNS Topics
	Sending a Message to an Amazon SNS Topic
	Sending an SMS Message to a Phone Number

	Messaging Using Amazon SQS
	Creating an Amazon SQS Client
	Creating an Amazon SQS Queue
	Constructing Amazon SQS Queue URLs
	Sending an Amazon SQS Message
	Sending an Amazon SQS Message Batch
	Receiving a Message from an Amazon SQS Queue
	Latest content - .NET Core and ASP.NET Core
	V3 content - .NET Framework and ASP.NET 4.x

	Deleting a Message from an Amazon SQS Queue
	Enabling Long Polling in Amazon SQS
	Enable Long Polling When Creating a Queue
	Enable Long Polling on an Existing Queue
	Receive a Message

	Using Amazon SQS Queues
	List Your Queues
	Get the URL for a Queue
	Delete a Queue

	Using Amazon SQS Dead Letter Queues
	Configure a Source Queue

	Monitoring Your AWS Resources Using Amazon CloudWatch
	Describing, Creating, and Deleting Alarms in Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	Describing an Alarm
	Creating an Alarm Based on a Metric
	Deleting an Alarm

	Using Alarms in Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	Create and Enable Actions on an Alarm
	Disable Actions on an Alarm

	Getting Metrics from Amazon CloudWatch
	The Scenario
	Prerequisite Tasks
	List Metrics
	Submit Custom Metrics

	Sending Events to Amazon CloudWatch Events
	The Scenario
	Prerequisite Tasks
	Create an IAM Role to Run the Examples
	Create a Scheduled Rule
	Add a Lambda Function Target
	Send Events

	Using Subscription Filters in Amazon CloudWatch Logs
	The Scenario
	Prerequisite Tasks
	Describe Existing Subscription Filters
	Create a Subscription Filter
	Delete a Subscription Filter

	Programming AWS OpsWorks to Work with Stacks and Applications
	Programming Support for Additional AWS Services

	Security for this AWS Product or Service
	Data Protection in this AWS product or service
	Identity and Access Management for this AWS Product or Service
	Compliance Validation for this AWS Product or Service
	Resilience for this AWS Product or Service
	Infrastructure Security for this AWS Product or Service
	Enforcing TLS 1.2 in this AWS Product or Service
	.NET Core
	.NET Framework
	AWS Tools for PowerShell
	Xamarin
	Unity
	Browser (for Blazor WebAssembly)

	Amazon S3 Encryption Client Migration
	Migration Overview
	Update Existing Clients to V1-transitional Clients to Read New Formats
	Migrate V1-transitional Clients to V2 Clients to Write New Formats
	Example: KMS to KMS+Context
	Example: Symmetric Algorithm (AES-CBC to AES-GCM Key Wrap)
	Example: Asymmetric Algorithm (RSA to RSA-OAEP-SHA1 Key Wrap)

	Update V2 Clients to No Longer Read V1 Formats

	Document History

