You are viewing documentation for version 2 of the AWS SDK for Ruby. Version 3 documentation can be found here.
Class: Aws::SageMaker::Types::AlgorithmValidationSpecification
- Inherits:
-
Struct
- Object
- Struct
- Aws::SageMaker::Types::AlgorithmValidationSpecification
- Defined in:
- (unknown)
Overview
When passing AlgorithmValidationSpecification as input to an Aws::Client method, you can use a vanilla Hash:
{
validation_role: "RoleArn", # required
validation_profiles: [ # required
{
profile_name: "EntityName", # required
training_job_definition: { # required
training_input_mode: "Pipe", # required, accepts Pipe, File
hyper_parameters: {
"HyperParameterKey" => "HyperParameterValue",
},
input_data_config: [ # required
{
channel_name: "ChannelName", # required
data_source: { # required
s3_data_source: {
s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
s3_uri: "S3Uri", # required
s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
attribute_names: ["AttributeName"],
},
file_system_data_source: {
file_system_id: "FileSystemId", # required
file_system_access_mode: "rw", # required, accepts rw, ro
file_system_type: "EFS", # required, accepts EFS, FSxLustre
directory_path: "DirectoryPath", # required
},
},
content_type: "ContentType",
compression_type: "None", # accepts None, Gzip
record_wrapper_type: "None", # accepts None, RecordIO
input_mode: "Pipe", # accepts Pipe, File
shuffle_config: {
seed: 1, # required
},
},
],
output_data_config: { # required
kms_key_id: "KmsKeyId",
s3_output_path: "S3Uri", # required
},
resource_config: { # required
instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.p4d.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.c5n.xlarge, ml.c5n.2xlarge, ml.c5n.4xlarge, ml.c5n.9xlarge, ml.c5n.18xlarge
instance_count: 1, # required
volume_size_in_gb: 1, # required
volume_kms_key_id: "KmsKeyId",
},
stopping_condition: { # required
max_runtime_in_seconds: 1,
max_wait_time_in_seconds: 1,
},
},
transform_job_definition: {
max_concurrent_transforms: 1,
max_payload_in_mb: 1,
batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
environment: {
"TransformEnvironmentKey" => "TransformEnvironmentValue",
},
transform_input: { # required
data_source: { # required
s3_data_source: { # required
s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
s3_uri: "S3Uri", # required
},
},
content_type: "ContentType",
compression_type: "None", # accepts None, Gzip
split_type: "None", # accepts None, Line, RecordIO, TFRecord
},
transform_output: { # required
s3_output_path: "S3Uri", # required
accept: "Accept",
assemble_with: "None", # accepts None, Line
kms_key_id: "KmsKeyId",
},
transform_resources: { # required
instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
instance_count: 1, # required
volume_kms_key_id: "KmsKeyId",
},
},
},
],
}
Specifies configurations for one or more training jobs that Amazon SageMaker runs to test the algorithm.
Returned by:
Instance Attribute Summary collapse
-
#validation_profiles ⇒ Array<Types::AlgorithmValidationProfile>
An array of
AlgorithmValidationProfile
objects, each of which specifies a training job and batch transform job that Amazon SageMaker runs to validate your algorithm. -
#validation_role ⇒ String
The IAM roles that Amazon SageMaker uses to run the training jobs.
Instance Attribute Details
#validation_profiles ⇒ Array<Types::AlgorithmValidationProfile>
An array of AlgorithmValidationProfile
objects, each of which
specifies a training job and batch transform job that Amazon SageMaker
runs to validate your algorithm.
#validation_role ⇒ String
The IAM roles that Amazon SageMaker uses to run the training jobs.