Class: Aws::GameLift::Client

Inherits:
Seahorse::Client::Base show all
Includes:
ClientStubs
Defined in:
gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb

Overview

An API client for GameLift. To construct a client, you need to configure a :region and :credentials.

client = Aws::GameLift::Client.new(
  region: region_name,
  credentials: credentials,
  # ...
)

For details on configuring region and credentials see the developer guide.

See #initialize for a full list of supported configuration options.

Instance Attribute Summary

Attributes inherited from Seahorse::Client::Base

#config, #handlers

API Operations collapse

Instance Method Summary collapse

Methods included from ClientStubs

#api_requests, #stub_data, #stub_responses

Methods inherited from Seahorse::Client::Base

add_plugin, api, clear_plugins, define, new, #operation_names, plugins, remove_plugin, set_api, set_plugins

Methods included from Seahorse::Client::HandlerBuilder

#handle, #handle_request, #handle_response

Constructor Details

#initialize(options) ⇒ Client

Returns a new instance of Client.

Parameters:

  • options (Hash)

Options Hash (options):

  • :credentials (required, Aws::CredentialProvider)

    Your AWS credentials. This can be an instance of any one of the following classes:

    • Aws::Credentials - Used for configuring static, non-refreshing credentials.

    • Aws::SharedCredentials - Used for loading static credentials from a shared file, such as ~/.aws/config.

    • Aws::AssumeRoleCredentials - Used when you need to assume a role.

    • Aws::AssumeRoleWebIdentityCredentials - Used when you need to assume a role after providing credentials via the web.

    • Aws::SSOCredentials - Used for loading credentials from AWS SSO using an access token generated from aws login.

    • Aws::ProcessCredentials - Used for loading credentials from a process that outputs to stdout.

    • Aws::InstanceProfileCredentials - Used for loading credentials from an EC2 IMDS on an EC2 instance.

    • Aws::ECSCredentials - Used for loading credentials from instances running in ECS.

    • Aws::CognitoIdentityCredentials - Used for loading credentials from the Cognito Identity service.

    When :credentials are not configured directly, the following locations will be searched for credentials:

    • Aws.config[:credentials]
    • The :access_key_id, :secret_access_key, and :session_token options.
    • ENV['AWS_ACCESS_KEY_ID'], ENV['AWS_SECRET_ACCESS_KEY']
    • ~/.aws/credentials
    • ~/.aws/config
    • EC2/ECS IMDS instance profile - When used by default, the timeouts are very aggressive. Construct and pass an instance of Aws::InstanceProfileCredentails or Aws::ECSCredentials to enable retries and extended timeouts.
  • :region (required, String)

    The AWS region to connect to. The configured :region is used to determine the service :endpoint. When not passed, a default :region is searched for in the following locations:

    • Aws.config[:region]
    • ENV['AWS_REGION']
    • ENV['AMAZON_REGION']
    • ENV['AWS_DEFAULT_REGION']
    • ~/.aws/credentials
    • ~/.aws/config
  • :access_key_id (String)
  • :active_endpoint_cache (Boolean) — default: false

    When set to true, a thread polling for endpoints will be running in the background every 60 secs (default). Defaults to false.

  • :adaptive_retry_wait_to_fill (Boolean) — default: true

    Used only in adaptive retry mode. When true, the request will sleep until there is sufficent client side capacity to retry the request. When false, the request will raise a RetryCapacityNotAvailableError and will not retry instead of sleeping.

  • :client_side_monitoring (Boolean) — default: false

    When true, client-side metrics will be collected for all API requests from this client.

  • :client_side_monitoring_client_id (String) — default: ""

    Allows you to provide an identifier for this client which will be attached to all generated client side metrics. Defaults to an empty string.

  • :client_side_monitoring_host (String) — default: "127.0.0.1"

    Allows you to specify the DNS hostname or IPv4 or IPv6 address that the client side monitoring agent is running on, where client metrics will be published via UDP.

  • :client_side_monitoring_port (Integer) — default: 31000

    Required for publishing client metrics. The port that the client side monitoring agent is running on, where client metrics will be published via UDP.

  • :client_side_monitoring_publisher (Aws::ClientSideMonitoring::Publisher) — default: Aws::ClientSideMonitoring::Publisher

    Allows you to provide a custom client-side monitoring publisher class. By default, will use the Client Side Monitoring Agent Publisher.

  • :convert_params (Boolean) — default: true

    When true, an attempt is made to coerce request parameters into the required types.

  • :correct_clock_skew (Boolean) — default: true

    Used only in standard and adaptive retry modes. Specifies whether to apply a clock skew correction and retry requests with skewed client clocks.

  • :disable_host_prefix_injection (Boolean) — default: false

    Set to true to disable SDK automatically adding host prefix to default service endpoint when available.

  • :endpoint (String)

    The client endpoint is normally constructed from the :region option. You should only configure an :endpoint when connecting to test or custom endpoints. This should be a valid HTTP(S) URI.

  • :endpoint_cache_max_entries (Integer) — default: 1000

    Used for the maximum size limit of the LRU cache storing endpoints data for endpoint discovery enabled operations. Defaults to 1000.

  • :endpoint_cache_max_threads (Integer) — default: 10

    Used for the maximum threads in use for polling endpoints to be cached, defaults to 10.

  • :endpoint_cache_poll_interval (Integer) — default: 60

    When :endpoint_discovery and :active_endpoint_cache is enabled, Use this option to config the time interval in seconds for making requests fetching endpoints information. Defaults to 60 sec.

  • :endpoint_discovery (Boolean) — default: false

    When set to true, endpoint discovery will be enabled for operations when available.

  • :log_formatter (Aws::Log::Formatter) — default: Aws::Log::Formatter.default

    The log formatter.

  • :log_level (Symbol) — default: :info

    The log level to send messages to the :logger at.

  • :logger (Logger)

    The Logger instance to send log messages to. If this option is not set, logging will be disabled.

  • :max_attempts (Integer) — default: 3

    An integer representing the maximum number attempts that will be made for a single request, including the initial attempt. For example, setting this value to 5 will result in a request being retried up to 4 times. Used in standard and adaptive retry modes.

  • :profile (String) — default: "default"

    Used when loading credentials from the shared credentials file at HOME/.aws/credentials. When not specified, 'default' is used.

  • :retry_backoff (Proc)

    A proc or lambda used for backoff. Defaults to 2**retries * retry_base_delay. This option is only used in the legacy retry mode.

  • :retry_base_delay (Float) — default: 0.3

    The base delay in seconds used by the default backoff function. This option is only used in the legacy retry mode.

  • :retry_jitter (Symbol) — default: :none

    A delay randomiser function used by the default backoff function. Some predefined functions can be referenced by name - :none, :equal, :full, otherwise a Proc that takes and returns a number. This option is only used in the legacy retry mode.

    @see https://www.awsarchitectureblog.com/2015/03/backoff.html

  • :retry_limit (Integer) — default: 3

    The maximum number of times to retry failed requests. Only ~ 500 level server errors and certain ~ 400 level client errors are retried. Generally, these are throttling errors, data checksum errors, networking errors, timeout errors, auth errors, endpoint discovery, and errors from expired credentials. This option is only used in the legacy retry mode.

  • :retry_max_delay (Integer) — default: 0

    The maximum number of seconds to delay between retries (0 for no limit) used by the default backoff function. This option is only used in the legacy retry mode.

  • :retry_mode (String) — default: "legacy"

    Specifies which retry algorithm to use. Values are:

    • legacy - The pre-existing retry behavior. This is default value if no retry mode is provided.

    • standard - A standardized set of retry rules across the AWS SDKs. This includes support for retry quotas, which limit the number of unsuccessful retries a client can make.

    • adaptive - An experimental retry mode that includes all the functionality of standard mode along with automatic client side throttling. This is a provisional mode that may change behavior in the future.

  • :secret_access_key (String)
  • :session_token (String)
  • :simple_json (Boolean) — default: false

    Disables request parameter conversion, validation, and formatting. Also disable response data type conversions. This option is useful when you want to ensure the highest level of performance by avoiding overhead of walking request parameters and response data structures.

    When :simple_json is enabled, the request parameters hash must be formatted exactly as the DynamoDB API expects.

  • :stub_responses (Boolean) — default: false

    Causes the client to return stubbed responses. By default fake responses are generated and returned. You can specify the response data to return or errors to raise by calling ClientStubs#stub_responses. See ClientStubs for more information.

    Please note When response stubbing is enabled, no HTTP requests are made, and retries are disabled.

  • :use_dualstack_endpoint (Boolean)

    When set to true, dualstack enabled endpoints (with .aws TLD) will be used if available.

  • :use_fips_endpoint (Boolean)

    When set to true, fips compatible endpoints will be used if available. When a fips region is used, the region is normalized and this config is set to true.

  • :validate_params (Boolean) — default: true

    When true, request parameters are validated before sending the request.

  • :http_proxy (URI::HTTP, String)

    A proxy to send requests through. Formatted like 'http://proxy.com:123'.

  • :http_open_timeout (Float) — default: 15

    The number of seconds to wait when opening a HTTP session before raising a Timeout::Error.

  • :http_read_timeout (Integer) — default: 60

    The default number of seconds to wait for response data. This value can safely be set per-request on the session.

  • :http_idle_timeout (Float) — default: 5

    The number of seconds a connection is allowed to sit idle before it is considered stale. Stale connections are closed and removed from the pool before making a request.

  • :http_continue_timeout (Float) — default: 1

    The number of seconds to wait for a 100-continue response before sending the request body. This option has no effect unless the request has "Expect" header set to "100-continue". Defaults to nil which disables this behaviour. This value can safely be set per request on the session.

  • :http_wire_trace (Boolean) — default: false

    When true, HTTP debug output will be sent to the :logger.

  • :ssl_verify_peer (Boolean) — default: true

    When true, SSL peer certificates are verified when establishing a connection.

  • :ssl_ca_bundle (String)

    Full path to the SSL certificate authority bundle file that should be used when verifying peer certificates. If you do not pass :ssl_ca_bundle or :ssl_ca_directory the the system default will be used if available.

  • :ssl_ca_directory (String)

    Full path of the directory that contains the unbundled SSL certificate authority files for verifying peer certificates. If you do not pass :ssl_ca_bundle or :ssl_ca_directory the the system default will be used if available.



343
344
345
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 343

def initialize(*args)
  super
end

Instance Method Details

#accept_match(params = {}) ⇒ Struct

Registers a player's acceptance or rejection of a proposed FlexMatch match. A matchmaking configuration may require player acceptance; if so, then matches built with that configuration cannot be completed unless all players accept the proposed match within a specified time limit.

When FlexMatch builds a match, all the matchmaking tickets involved in the proposed match are placed into status REQUIRES_ACCEPTANCE. This is a trigger for your game to get acceptance from all players in the ticket. Acceptances are only valid for tickets when they are in this status; all other acceptances result in an error.

To register acceptance, specify the ticket ID, a response, and one or more players. Once all players have registered acceptance, the matchmaking tickets advance to status PLACING, where a new game session is created for the match.

If any player rejects the match, or if acceptances are not received before a specified timeout, the proposed match is dropped. The matchmaking tickets are then handled in one of two ways: For tickets where one or more players rejected the match, the ticket status is returned to SEARCHING to find a new match. For tickets where one or more players failed to respond, the ticket status is set to CANCELLED, and processing is terminated. A new matchmaking request for these players can be submitted as needed.

Learn more

Add FlexMatch to a game client

FlexMatch events (reference)

Related actions

StartMatchmaking | DescribeMatchmaking | StopMatchmaking | AcceptMatch | StartMatchBackfill | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.accept_match({
  ticket_id: "MatchmakingIdStringModel", # required
  player_ids: ["NonZeroAndMaxString"], # required
  acceptance_type: "ACCEPT", # required, accepts ACCEPT, REJECT
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ticket_id (required, String)

    A unique identifier for a matchmaking ticket. The ticket must be in status REQUIRES_ACCEPTANCE; otherwise this request will fail.

  • :player_ids (required, Array<String>)

    A unique identifier for a player delivering the response. This parameter can include one or multiple player IDs.

  • :acceptance_type (required, String)

    Player response to the proposed match.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



417
418
419
420
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 417

def accept_match(params = {}, options = {})
  req = build_request(:accept_match, params)
  req.send_request(options)
end

#claim_game_server(params = {}) ⇒ Types::ClaimGameServerOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Locates an available game server and temporarily reserves it to host gameplay and players. This operation is called from a game client or client service (such as a matchmaker) to request hosting resources for a new game session. In response, GameLift FleetIQ locates an available game server, places it in CLAIMED status for 60 seconds, and returns connection information that players can use to connect to the game server.

To claim a game server, identify a game server group. You can also specify a game server ID, although this approach bypasses GameLift FleetIQ placement optimization. Optionally, include game data to pass to the game server at the start of a game session, such as a game map or player information.

When a game server is successfully claimed, connection information is returned. A claimed game server's utilization status remains AVAILABLE while the claim status is set to CLAIMED for up to 60 seconds. This time period gives the game server time to update its status to UTILIZED (using UpdateGameServer) once players join. If the game server's status is not updated within 60 seconds, the game server reverts to unclaimed status and is available to be claimed by another request. The claim time period is a fixed value and is not configurable.

If you try to claim a specific game server, this request will fail in the following cases:

  • If the game server utilization status is UTILIZED.

  • If the game server claim status is CLAIMED.

When claiming a specific game server, this request will succeed even if the game server is running on an instance in DRAINING status. To avoid this, first check the instance status by calling DescribeGameServerInstances.

Learn more

GameLift FleetIQ Guide

Related actions

RegisterGameServer | ListGameServers | ClaimGameServer | DescribeGameServer | UpdateGameServer | DeregisterGameServer | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.claim_game_server({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  game_server_id: "GameServerId",
  game_server_data: "GameServerData",
})

Response structure


resp.game_server.game_server_group_name #=> String
resp.game_server.game_server_group_arn #=> String
resp.game_server.game_server_id #=> String
resp.game_server.instance_id #=> String
resp.game_server.connection_info #=> String
resp.game_server.game_server_data #=> String
resp.game_server.claim_status #=> String, one of "CLAIMED"
resp.game_server.utilization_status #=> String, one of "AVAILABLE", "UTILIZED"
resp.game_server.registration_time #=> Time
resp.game_server.last_claim_time #=> Time
resp.game_server.last_health_check_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group where the game server is running. Use either the GameServerGroup name or ARN value. If you are not specifying a game server to claim, this value identifies where you want GameLift FleetIQ to look for an available game server to claim.

  • :game_server_id (String)

    A custom string that uniquely identifies the game server to claim. If this parameter is left empty, GameLift FleetIQ searches for an available game server in the specified game server group.

  • :game_server_data (String)

    A set of custom game server properties, formatted as a single string value. This data is passed to a game client or service when it requests information on game servers using ListGameServers or ClaimGameServer.

Returns:

See Also:



525
526
527
528
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 525

def claim_game_server(params = {}, options = {})
  req = build_request(:claim_game_server, params)
  req.send_request(options)
end

#create_alias(params = {}) ⇒ Types::CreateAliasOutput

Creates an alias for a fleet. In most situations, you can use an alias ID in place of a fleet ID. An alias provides a level of abstraction for a fleet that is useful when redirecting player traffic from one fleet to another, such as when updating your game build.

Amazon GameLift supports two types of routing strategies for aliases: simple and terminal. A simple alias points to an active fleet. A terminal alias is used to display messaging or link to a URL instead of routing players to an active fleet. For example, you might use a terminal alias when a game version is no longer supported and you want to direct players to an upgrade site.

To create a fleet alias, specify an alias name, routing strategy, and optional description. Each simple alias can point to only one fleet, but a fleet can have multiple aliases. If successful, a new alias record is returned, including an alias ID and an ARN. You can reassign an alias to another fleet by calling UpdateAlias.

Related actions

CreateAlias | ListAliases | DescribeAlias | UpdateAlias | DeleteAlias | ResolveAlias | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_alias({
  name: "NonBlankAndLengthConstraintString", # required
  description: "NonZeroAndMaxString",
  routing_strategy: { # required
    type: "SIMPLE", # accepts SIMPLE, TERMINAL
    fleet_id: "FleetId",
    message: "FreeText",
  },
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.alias.alias_id #=> String
resp.alias.name #=> String
resp.alias.alias_arn #=> String
resp.alias.description #=> String
resp.alias.routing_strategy.type #=> String, one of "SIMPLE", "TERMINAL"
resp.alias.routing_strategy.fleet_id #=> String
resp.alias.routing_strategy.message #=> String
resp.alias.creation_time #=> Time
resp.alias.last_updated_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A descriptive label that is associated with an alias. Alias names do not need to be unique.

  • :description (String)

    A human-readable description of the alias.

  • :routing_strategy (required, Types::RoutingStrategy)

    The routing configuration, including routing type and fleet target, for the alias.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new alias resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



620
621
622
623
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 620

def create_alias(params = {}, options = {})
  req = build_request(:create_alias, params)
  req.send_request(options)
end

#create_build(params = {}) ⇒ Types::CreateBuildOutput

Creates a new Amazon GameLift build resource for your game server binary files. Game server binaries must be combined into a zip file for use with Amazon GameLift.

When setting up a new game build for GameLift, we recommend using the AWS CLI command upload-build . This helper command combines two tasks: (1) it uploads your build files from a file directory to a GameLift Amazon S3 location, and (2) it creates a new build resource.

The CreateBuild operation can used in the following scenarios:

  • To create a new game build with build files that are in an Amazon S3 location under an AWS account that you control. To use this option, you must first give Amazon GameLift access to the Amazon S3 bucket. With permissions in place, call CreateBuild and specify a build name, operating system, and the Amazon S3 storage location of your game build.

  • To directly upload your build files to a GameLift Amazon S3 location. To use this option, first call CreateBuild and specify a build name and operating system. This operation creates a new build resource and also returns an Amazon S3 location with temporary access credentials. Use the credentials to manually upload your build files to the specified Amazon S3 location. For more information, see Uploading Objects in the Amazon S3 Developer Guide. Build files can be uploaded to the GameLift Amazon S3 location once only; that can't be updated.

If successful, this operation creates a new build resource with a unique build ID and places it in INITIALIZED status. A build must be in READY status before you can create fleets with it.

Learn more

Uploading Your Game

Create a Build with Files in Amazon S3

Related actions

CreateBuild | ListBuilds | DescribeBuild | UpdateBuild | DeleteBuild | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_build({
  name: "NonZeroAndMaxString",
  version: "NonZeroAndMaxString",
  storage_location: {
    bucket: "NonEmptyString",
    key: "NonEmptyString",
    role_arn: "NonEmptyString",
    object_version: "NonEmptyString",
  },
  operating_system: "WINDOWS_2012", # accepts WINDOWS_2012, AMAZON_LINUX, AMAZON_LINUX_2
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.build.build_id #=> String
resp.build.build_arn #=> String
resp.build.name #=> String
resp.build.version #=> String
resp.build.status #=> String, one of "INITIALIZED", "READY", "FAILED"
resp.build.size_on_disk #=> Integer
resp.build.operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.build.creation_time #=> Time
resp.upload_credentials.access_key_id #=> String
resp.upload_credentials.secret_access_key #=> String
resp.upload_credentials.session_token #=> String
resp.storage_location.bucket #=> String
resp.storage_location.key #=> String
resp.storage_location.role_arn #=> String
resp.storage_location.object_version #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (String)

    A descriptive label that is associated with a build. Build names do not need to be unique. You can use UpdateBuild to change this value later.

  • :version (String)

    Version information that is associated with a build or script. Version strings do not need to be unique. You can use UpdateBuild to change this value later.

  • :storage_location (Types::S3Location)

    Information indicating where your game build files are stored. Use this parameter only when creating a build with files stored in an Amazon S3 bucket that you own. The storage location must specify an Amazon S3 bucket name and key. The location must also specify a role ARN that you set up to allow Amazon GameLift to access your Amazon S3 bucket. The S3 bucket and your new build must be in the same Region.

  • :operating_system (String)

    The operating system that the game server binaries are built to run on. This value determines the type of fleet resources that you can use for this build. If your game build contains multiple executables, they all must run on the same operating system. If an operating system is not specified when creating a build, Amazon GameLift uses the default value (WINDOWS_2012). This value cannot be changed later.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new build resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



765
766
767
768
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 765

def create_build(params = {}, options = {})
  req = build_request(:create_build, params)
  req.send_request(options)
end

#create_fleet(params = {}) ⇒ Types::CreateFleetOutput

Creates a fleet of Amazon Elastic Compute Cloud (Amazon EC2) instances to host your custom game server or Realtime Servers. Use this operation to configure the computing resources for your fleet and provide instructions for running game servers on each instance.

Most GameLift fleets can deploy instances to multiple locations, including the home Region (where the fleet is created) and an optional set of remote locations. Fleets that are created in the following AWS Regions support multiple locations: us-east-1 (N. Virginia), us-west-2 (Oregon), eu-central-1 (Frankfurt), eu-west-1 (Ireland), ap-southeast-2 (Sydney), ap-northeast-1 (Tokyo), and ap-northeast-2 (Seoul). Fleets that are created in other GameLift Regions can deploy instances in the fleet's home Region only. All fleet instances use the same configuration regardless of location; however, you can adjust capacity settings and turn auto-scaling on/off for each location.

To create a fleet, choose the hardware for your instances, specify a game server build or Realtime script to deploy, and provide a runtime configuration to direct GameLift how to start and run game servers on each instance in the fleet. Set permissions for inbound traffic to your game servers, and enable optional features as needed. When creating a multi-location fleet, provide a list of additional remote locations.

If successful, this operation creates a new Fleet resource and places it in NEW status, which prompts GameLift to initiate the fleet creation workflow. You can track fleet creation by checking fleet status using DescribeFleetAttributes and DescribeFleetLocationAttributes/, or by monitoring fleet creation events using DescribeFleetEvents. As soon as the fleet status changes to ACTIVE, you can enable automatic scaling for the fleet with PutScalingPolicy and set capacity for the home Region with UpdateFleetCapacity. When the status of each remote location reaches ACTIVE, you can set capacity by location using UpdateFleetCapacity.

Learn more

Setting up fleets

Debug fleet creation issues

Multi-location fleets

Related actions

CreateFleet | UpdateFleetCapacity | PutScalingPolicy | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetLocationAttributes | UpdateFleetAttributes | StopFleetActions | DeleteFleet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_fleet({
  name: "NonZeroAndMaxString", # required
  description: "NonZeroAndMaxString",
  build_id: "BuildIdOrArn",
  script_id: "ScriptIdOrArn",
  server_launch_path: "LaunchPathStringModel",
  server_launch_parameters: "LaunchParametersStringModel",
  log_paths: ["NonZeroAndMaxString"],
  ec2_instance_type: "t2.micro", # required, accepts t2.micro, t2.small, t2.medium, t2.large, c3.large, c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge, c4.large, c4.xlarge, c4.2xlarge, c4.4xlarge, c4.8xlarge, c5.large, c5.xlarge, c5.2xlarge, c5.4xlarge, c5.9xlarge, c5.12xlarge, c5.18xlarge, c5.24xlarge, c5a.large, c5a.xlarge, c5a.2xlarge, c5a.4xlarge, c5a.8xlarge, c5a.12xlarge, c5a.16xlarge, c5a.24xlarge, r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, r4.large, r4.xlarge, r4.2xlarge, r4.4xlarge, r4.8xlarge, r4.16xlarge, r5.large, r5.xlarge, r5.2xlarge, r5.4xlarge, r5.8xlarge, r5.12xlarge, r5.16xlarge, r5.24xlarge, r5a.large, r5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.12xlarge, r5a.16xlarge, r5a.24xlarge, m3.medium, m3.large, m3.xlarge, m3.2xlarge, m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m4.10xlarge, m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, m5.8xlarge, m5.12xlarge, m5.16xlarge, m5.24xlarge, m5a.large, m5a.xlarge, m5a.2xlarge, m5a.4xlarge, m5a.8xlarge, m5a.12xlarge, m5a.16xlarge, m5a.24xlarge
  ec2_inbound_permissions: [
    {
      from_port: 1, # required
      to_port: 1, # required
      ip_range: "NonBlankString", # required
      protocol: "TCP", # required, accepts TCP, UDP
    },
  ],
  new_game_session_protection_policy: "NoProtection", # accepts NoProtection, FullProtection
  runtime_configuration: {
    server_processes: [
      {
        launch_path: "LaunchPathStringModel", # required
        parameters: "LaunchParametersStringModel",
        concurrent_executions: 1, # required
      },
    ],
    max_concurrent_game_session_activations: 1,
    game_session_activation_timeout_seconds: 1,
  },
  resource_creation_limit_policy: {
    new_game_sessions_per_creator: 1,
    policy_period_in_minutes: 1,
  },
  metric_groups: ["MetricGroup"],
  peer_vpc_aws_account_id: "NonZeroAndMaxString",
  peer_vpc_id: "NonZeroAndMaxString",
  fleet_type: "ON_DEMAND", # accepts ON_DEMAND, SPOT
  instance_role_arn: "NonEmptyString",
  certificate_configuration: {
    certificate_type: "DISABLED", # required, accepts DISABLED, GENERATED
  },
  locations: [
    {
      location: "LocationStringModel",
    },
  ],
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.fleet_attributes.fleet_id #=> String
resp.fleet_attributes.fleet_arn #=> String
resp.fleet_attributes.fleet_type #=> String, one of "ON_DEMAND", "SPOT"
resp.fleet_attributes.instance_type #=> String, one of "t2.micro", "t2.small", "t2.medium", "t2.large", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge"
resp.fleet_attributes.description #=> String
resp.fleet_attributes.name #=> String
resp.fleet_attributes.creation_time #=> Time
resp.fleet_attributes.termination_time #=> Time
resp.fleet_attributes.status #=> String, one of "NEW", "DOWNLOADING", "VALIDATING", "BUILDING", "ACTIVATING", "ACTIVE", "DELETING", "ERROR", "TERMINATED"
resp.fleet_attributes.build_id #=> String
resp.fleet_attributes.build_arn #=> String
resp.fleet_attributes.script_id #=> String
resp.fleet_attributes.script_arn #=> String
resp.fleet_attributes.server_launch_path #=> String
resp.fleet_attributes.server_launch_parameters #=> String
resp.fleet_attributes.log_paths #=> Array
resp.fleet_attributes.log_paths[0] #=> String
resp.fleet_attributes.new_game_session_protection_policy #=> String, one of "NoProtection", "FullProtection"
resp.fleet_attributes.operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.fleet_attributes.resource_creation_limit_policy.new_game_sessions_per_creator #=> Integer
resp.fleet_attributes.resource_creation_limit_policy.policy_period_in_minutes #=> Integer
resp.fleet_attributes.metric_groups #=> Array
resp.fleet_attributes.metric_groups[0] #=> String
resp.fleet_attributes.stopped_actions #=> Array
resp.fleet_attributes.stopped_actions[0] #=> String, one of "AUTO_SCALING"
resp.fleet_attributes.instance_role_arn #=> String
resp.fleet_attributes.certificate_configuration.certificate_type #=> String, one of "DISABLED", "GENERATED"
resp.location_states #=> Array
resp.location_states[0].location #=> String
resp.location_states[0].status #=> String, one of "NEW", "DOWNLOADING", "VALIDATING", "BUILDING", "ACTIVATING", "ACTIVE", "DELETING", "ERROR", "TERMINATED"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A descriptive label that is associated with a fleet. Fleet names do not need to be unique.

  • :description (String)

    A human-readable description of the fleet.

  • :build_id (String)

    The unique identifier for a custom game server build to be deployed on fleet instances. You can use either the build ID or ARN. The build must be uploaded to GameLift and in READY status. This fleet property cannot be changed later.

  • :script_id (String)

    The unique identifier for a Realtime configuration script to be deployed on fleet instances. You can use either the script ID or ARN. Scripts must be uploaded to GameLift prior to creating the fleet. This fleet property cannot be changed later.

  • :server_launch_path (String)

    This parameter is no longer used. Specify a server launch path using the RuntimeConfiguration parameter. Requests that use this parameter instead continue to be valid.

  • :server_launch_parameters (String)

    This parameter is no longer used. Specify server launch parameters using the RuntimeConfiguration parameter. Requests that use this parameter instead continue to be valid.

  • :log_paths (Array<String>)

    This parameter is no longer used. To specify where GameLift should store log files once a server process shuts down, use the GameLift server API ProcessReady() and specify one or more directory paths in logParameters. See more information in the Server API Reference.

  • :ec2_instance_type (required, String)

    The GameLift-supported EC2 instance type to use for all fleet instances. Instance type determines the computing resources that will be used to host your game servers, including CPU, memory, storage, and networking capacity. See Amazon EC2 Instance Types for detailed descriptions of EC2 instance types.

  • :ec2_inbound_permissions (Array<Types::IpPermission>)

    The allowed IP address ranges and port settings that allow inbound traffic to access game sessions on this fleet. If the fleet is hosting a custom game build, this property must be set before players can connect to game sessions. For Realtime Servers fleets, GameLift automatically sets TCP and UDP ranges.

  • :new_game_session_protection_policy (String)

    The status of termination protection for active game sessions on the fleet. By default, this property is set to NoProtection. You can also set game session protection for an individual game session by calling UpdateGameSession.

    • NoProtection - Game sessions can be terminated during active gameplay as a result of a scale-down event.

    • FullProtection - Game sessions in ACTIVE status cannot be terminated during a scale-down event.

  • :runtime_configuration (Types::RuntimeConfiguration)

    Instructions for how to launch and maintain server processes on instances in the fleet. The runtime configuration defines one or more server process configurations, each identifying a build executable or Realtime script file and the number of processes of that type to run concurrently.

    The RuntimeConfiguration parameter is required unless the fleet is being configured using the older parameters ServerLaunchPath and ServerLaunchParameters, which are still supported for backward compatibility.

  • :resource_creation_limit_policy (Types::ResourceCreationLimitPolicy)

    A policy that limits the number of game sessions that an individual player can create on instances in this fleet within a specified span of time.

  • :metric_groups (Array<String>)

    The name of an AWS CloudWatch metric group to add this fleet to. A metric group is used to aggregate the metrics for multiple fleets. You can specify an existing metric group name or set a new name to create a new metric group. A fleet can be included in only one metric group at a time.

  • :peer_vpc_aws_account_id (String)

    Used when peering your GameLift fleet with a VPC, the unique identifier for the AWS account that owns the VPC. You can find your account ID in the AWS Management Console under account settings.

  • :peer_vpc_id (String)

    A unique identifier for a VPC with resources to be accessed by your GameLift fleet. The VPC must be in the same Region as your fleet. To look up a VPC ID, use the VPC Dashboard in the AWS Management Console. Learn more about VPC peering in VPC Peering with GameLift Fleets.

  • :fleet_type (String)

    Indicates whether to use On-Demand or Spot instances for this fleet. By default, this property is set to ON_DEMAND. Learn more about when to use On-Demand versus Spot Instances. This property cannot be changed after the fleet is created.

  • :instance_role_arn (String)

    A unique identifier for an AWS IAM role that manages access to your AWS services. With an instance role ARN set, any application that runs on an instance in this fleet can assume the role, including install scripts, server processes, and daemons (background processes). Create a role or look up a role's ARN by using the IAM dashboard in the AWS Management Console. Learn more about using on-box credentials for your game servers at Access external resources from a game server. This property cannot be changed after the fleet is created.

  • :certificate_configuration (Types::CertificateConfiguration)

    Prompts GameLift to generate a TLS/SSL certificate for the fleet. TLS certificates are used for encrypting traffic between game clients and the game servers that are running on GameLift. By default, the CertificateConfiguration is set to DISABLED. Learn more at Securing Client/Server Communication. This property cannot be changed after the fleet is created.

    Note: This feature requires the AWS Certificate Manager (ACM) service, which is not available in all AWS regions. When working in a region that does not support this feature, a fleet creation request with certificate generation fails with a 4xx error.

  • :locations (Array<Types::LocationConfiguration>)

    A set of remote locations to deploy additional instances to and manage as part of the fleet. This parameter can only be used when creating fleets in AWS Regions that support multiple locations. You can add any GameLift-supported AWS Region as a remote location, in the form of an AWS Region code such as us-west-2. To create a fleet with instances in the home Region only, omit this parameter.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new fleet resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the fleet is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



1103
1104
1105
1106
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 1103

def create_fleet(params = {}, options = {})
  req = build_request(:create_fleet, params)
  req.send_request(options)
end

#create_fleet_locations(params = {}) ⇒ Types::CreateFleetLocationsOutput

Adds remote locations to a fleet and begins populating the new locations with EC2 instances. The new instances conform to the fleet's instance type, auto-scaling, and other configuration settings.

This operation cannot be used with fleets that don't support remote locations. Fleets can have multiple locations only if they reside in AWS Regions that support this feature (see CreateFleet for the complete list) and were created after the feature was released in March 2021.

To add fleet locations, specify the fleet to be updated and provide a list of one or more locations.

If successful, this operation returns the list of added locations with their status set to NEW. GameLift initiates the process of starting an instance in each added location. You can track the status of each new location by monitoring location creation events using DescribeFleetEvents. Alternatively, you can poll location status by calling DescribeFleetLocationAttributes. After a location status becomes ACTIVE, you can adjust the location's capacity as needed with UpdateFleetCapacity.

Learn more

Setting up fleets

Multi-location fleets

Related actions

CreateFleetLocations | DescribeFleetLocationAttributes | DescribeFleetLocationCapacity | DescribeFleetLocationUtilization | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetUtilization | UpdateFleetCapacity | StopFleetActions | DeleteFleetLocations | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_fleet_locations({
  fleet_id: "FleetIdOrArn", # required
  locations: [ # required
    {
      location: "LocationStringModel",
    },
  ],
})

Response structure


resp.fleet_id #=> String
resp.fleet_arn #=> String
resp.location_states #=> Array
resp.location_states[0].location #=> String
resp.location_states[0].status #=> String, one of "NEW", "DOWNLOADING", "VALIDATING", "BUILDING", "ACTIVATING", "ACTIVE", "DELETING", "ERROR", "TERMINATED"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to add locations to. You can use either the fleet ID or ARN value.

  • :locations (required, Array<Types::LocationConfiguration>)

    A list of locations to deploy additional instances to and manage as part of the fleet. You can add any GameLift-supported AWS Region as a remote location, in the form of an AWS Region code such as us-west-2.

Returns:

See Also:



1191
1192
1193
1194
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 1191

def create_fleet_locations(params = {}, options = {})
  req = build_request(:create_fleet_locations, params)
  req.send_request(options)
end

#create_game_server_group(params = {}) ⇒ Types::CreateGameServerGroupOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Creates a GameLift FleetIQ game server group for managing game hosting on a collection of Amazon EC2 instances for game hosting. This operation creates the game server group, creates an Auto Scaling group in your AWS account, and establishes a link between the two groups. You can view the status of your game server groups in the GameLift console. Game server group metrics and events are emitted to Amazon CloudWatch.

Before creating a new game server group, you must have the following:

  • An Amazon EC2 launch template that specifies how to launch Amazon EC2 instances with your game server build. For more information, see Launching an Instance from a Launch Template in the Amazon EC2 User Guide.

  • An IAM role that extends limited access to your AWS account to allow GameLift FleetIQ to create and interact with the Auto Scaling group. For more information, see Create IAM roles for cross-service interaction in the GameLift FleetIQ Developer Guide.

To create a new game server group, specify a unique group name, IAM role and Amazon EC2 launch template, and provide a list of instance types that can be used in the group. You must also set initial maximum and minimum limits on the group's instance count. You can optionally set an Auto Scaling policy with target tracking based on a GameLift FleetIQ metric.

Once the game server group and corresponding Auto Scaling group are created, you have full access to change the Auto Scaling group's configuration as needed. Several properties that are set when creating a game server group, including maximum/minimum size and auto-scaling policy settings, must be updated directly in the Auto Scaling group. Keep in mind that some Auto Scaling group properties are periodically updated by GameLift FleetIQ as part of its balancing activities to optimize for availability and cost.

Learn more

GameLift FleetIQ Guide

Related actions

CreateGameServerGroup | ListGameServerGroups | DescribeGameServerGroup | UpdateGameServerGroup | DeleteGameServerGroup | ResumeGameServerGroup | SuspendGameServerGroup | DescribeGameServerInstances | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_game_server_group({
  game_server_group_name: "GameServerGroupName", # required
  role_arn: "IamRoleArn", # required
  min_size: 1, # required
  max_size: 1, # required
  launch_template: { # required
    launch_template_id: "LaunchTemplateId",
    launch_template_name: "LaunchTemplateName",
    version: "LaunchTemplateVersion",
  },
  instance_definitions: [ # required
    {
      instance_type: "c4.large", # required, accepts c4.large, c4.xlarge, c4.2xlarge, c4.4xlarge, c4.8xlarge, c5.large, c5.xlarge, c5.2xlarge, c5.4xlarge, c5.9xlarge, c5.12xlarge, c5.18xlarge, c5.24xlarge, c5a.large, c5a.xlarge, c5a.2xlarge, c5a.4xlarge, c5a.8xlarge, c5a.12xlarge, c5a.16xlarge, c5a.24xlarge, c6g.medium, c6g.large, c6g.xlarge, c6g.2xlarge, c6g.4xlarge, c6g.8xlarge, c6g.12xlarge, c6g.16xlarge, r4.large, r4.xlarge, r4.2xlarge, r4.4xlarge, r4.8xlarge, r4.16xlarge, r5.large, r5.xlarge, r5.2xlarge, r5.4xlarge, r5.8xlarge, r5.12xlarge, r5.16xlarge, r5.24xlarge, r5a.large, r5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.12xlarge, r5a.16xlarge, r5a.24xlarge, r6g.medium, r6g.large, r6g.xlarge, r6g.2xlarge, r6g.4xlarge, r6g.8xlarge, r6g.12xlarge, r6g.16xlarge, m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m4.10xlarge, m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, m5.8xlarge, m5.12xlarge, m5.16xlarge, m5.24xlarge, m5a.large, m5a.xlarge, m5a.2xlarge, m5a.4xlarge, m5a.8xlarge, m5a.12xlarge, m5a.16xlarge, m5a.24xlarge, m6g.medium, m6g.large, m6g.xlarge, m6g.2xlarge, m6g.4xlarge, m6g.8xlarge, m6g.12xlarge, m6g.16xlarge
      weighted_capacity: "WeightedCapacity",
    },
  ],
  auto_scaling_policy: {
    estimated_instance_warmup: 1,
    target_tracking_configuration: { # required
      target_value: 1.0, # required
    },
  },
  balancing_strategy: "SPOT_ONLY", # accepts SPOT_ONLY, SPOT_PREFERRED, ON_DEMAND_ONLY
  game_server_protection_policy: "NO_PROTECTION", # accepts NO_PROTECTION, FULL_PROTECTION
  vpc_subnets: ["VpcSubnet"],
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.game_server_group.game_server_group_name #=> String
resp.game_server_group.game_server_group_arn #=> String
resp.game_server_group.role_arn #=> String
resp.game_server_group.instance_definitions #=> Array
resp.game_server_group.instance_definitions[0].instance_type #=> String, one of "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "c6g.medium", "c6g.large", "c6g.xlarge", "c6g.2xlarge", "c6g.4xlarge", "c6g.8xlarge", "c6g.12xlarge", "c6g.16xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "r6g.medium", "r6g.large", "r6g.xlarge", "r6g.2xlarge", "r6g.4xlarge", "r6g.8xlarge", "r6g.12xlarge", "r6g.16xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge", "m6g.medium", "m6g.large", "m6g.xlarge", "m6g.2xlarge", "m6g.4xlarge", "m6g.8xlarge", "m6g.12xlarge", "m6g.16xlarge"
resp.game_server_group.instance_definitions[0].weighted_capacity #=> String
resp.game_server_group.balancing_strategy #=> String, one of "SPOT_ONLY", "SPOT_PREFERRED", "ON_DEMAND_ONLY"
resp.game_server_group.game_server_protection_policy #=> String, one of "NO_PROTECTION", "FULL_PROTECTION"
resp.game_server_group.auto_scaling_group_arn #=> String
resp.game_server_group.status #=> String, one of "NEW", "ACTIVATING", "ACTIVE", "DELETE_SCHEDULED", "DELETING", "DELETED", "ERROR"
resp.game_server_group.status_reason #=> String
resp.game_server_group.suspended_actions #=> Array
resp.game_server_group.suspended_actions[0] #=> String, one of "REPLACE_INSTANCE_TYPES"
resp.game_server_group.creation_time #=> Time
resp.game_server_group.last_updated_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    An identifier for the new game server group. This value is used to generate unique ARN identifiers for the EC2 Auto Scaling group and the GameLift FleetIQ game server group. The name must be unique per Region per AWS account.

  • :role_arn (required, String)

    The Amazon Resource Name (ARN) for an IAM role that allows Amazon GameLift to access your EC2 Auto Scaling groups.

  • :min_size (required, Integer)

    The minimum number of instances allowed in the EC2 Auto Scaling group. During automatic scaling events, GameLift FleetIQ and EC2 do not scale down the group below this minimum. In production, this value should be set to at least 1. After the Auto Scaling group is created, update this value directly in the Auto Scaling group using the AWS console or APIs.

  • :max_size (required, Integer)

    The maximum number of instances allowed in the EC2 Auto Scaling group. During automatic scaling events, GameLift FleetIQ and EC2 do not scale up the group above this maximum. After the Auto Scaling group is created, update this value directly in the Auto Scaling group using the AWS console or APIs.

  • :launch_template (required, Types::LaunchTemplateSpecification)

    The EC2 launch template that contains configuration settings and game server code to be deployed to all instances in the game server group. You can specify the template using either the template name or ID. For help with creating a launch template, see Creating a Launch Template for an Auto Scaling Group in the Amazon EC2 Auto Scaling User Guide. After the Auto Scaling group is created, update this value directly in the Auto Scaling group using the AWS console or APIs.

    If you specify network interfaces in your launch template, you must explicitly set the property AssociatePublicIpAddress to "true". If no network interface is specified in the launch template, GameLift FleetIQ uses your account's default VPC.

  • :instance_definitions (required, Array<Types::InstanceDefinition>)

    The EC2 instance types and sizes to use in the Auto Scaling group. The instance definitions must specify at least two different instance types that are supported by GameLift FleetIQ. For more information on instance types, see EC2 Instance Types in the Amazon EC2 User Guide. You can optionally specify capacity weighting for each instance type. If no weight value is specified for an instance type, it is set to the default value "1". For more information about capacity weighting, see Instance Weighting for Amazon EC2 Auto Scaling in the Amazon EC2 Auto Scaling User Guide.

  • :auto_scaling_policy (Types::GameServerGroupAutoScalingPolicy)

    Configuration settings to define a scaling policy for the Auto Scaling group that is optimized for game hosting. The scaling policy uses the metric "PercentUtilizedGameServers" to maintain a buffer of idle game servers that can immediately accommodate new games and players. After the Auto Scaling group is created, update this value directly in the Auto Scaling group using the AWS console or APIs.

  • :balancing_strategy (String)

    Indicates how GameLift FleetIQ balances the use of Spot Instances and On-Demand Instances in the game server group. Method options include the following:

    • SPOT_ONLY - Only Spot Instances are used in the game server group. If Spot Instances are unavailable or not viable for game hosting, the game server group provides no hosting capacity until Spot Instances can again be used. Until then, no new instances are started, and the existing nonviable Spot Instances are terminated (after current gameplay ends) and are not replaced.

    • SPOT_PREFERRED - (default value) Spot Instances are used whenever available in the game server group. If Spot Instances are unavailable, the game server group continues to provide hosting capacity by falling back to On-Demand Instances. Existing nonviable Spot Instances are terminated (after current gameplay ends) and are replaced with new On-Demand Instances.

    • ON_DEMAND_ONLY - Only On-Demand Instances are used in the game server group. No Spot Instances are used, even when available, while this balancing strategy is in force.

  • :game_server_protection_policy (String)

    A flag that indicates whether instances in the game server group are protected from early termination. Unprotected instances that have active game servers running might be terminated during a scale-down event, causing players to be dropped from the game. Protected instances cannot be terminated while there are active game servers running except in the event of a forced game server group deletion (see ). An exception to this is with Spot Instances, which can be terminated by AWS regardless of protection status. This property is set to NO_PROTECTION by default.

  • :vpc_subnets (Array<String>)

    A list of virtual private cloud (VPC) subnets to use with instances in the game server group. By default, all GameLift FleetIQ-supported Availability Zones are used. You can use this parameter to specify VPCs that you've set up. This property cannot be updated after the game server group is created, and the corresponding Auto Scaling group will always use the property value that is set with this request, even if the Auto Scaling group is updated directly.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new game server group resource. Tags are developer-defined key-value pairs. Tagging AWS resources is useful for resource management, access management, and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags, respectively. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



1445
1446
1447
1448
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 1445

def create_game_server_group(params = {}, options = {})
  req = build_request(:create_game_server_group, params)
  req.send_request(options)
end

#create_game_session(params = {}) ⇒ Types::CreateGameSessionOutput

Creates a multiplayer game session for players in a specific fleet location. This operation prompts an available server process to start a game session and retrieves connection information for the new game session. As an alternative, consider using the GameLift game session placement feature with

with StartGameSessionPlacement, which uses FleetIQ algorithms and queues to optimize the placement process.

When creating a game session, you specify exactly where you want to place it and provide a set of game session configuration settings. The fleet must be in ACTIVE status before a game session can be created in it.

This operation can be used in the following ways:

  • To create a game session on an instance in a fleet's home Region, provide a fleet or alias ID along with your game session configuration.

  • To create a game session on an instance in a fleet's remote location, provide a fleet or alias ID and a location name, along with your game session configuration.

If successful, a workflow is initiated to start a new game session. A GameSession object is returned containing the game session configuration and status. When the status is ACTIVE, game session connection information is provided and player sessions can be created for the game session. By default, newly created game sessions are open to new players. You can restrict new player access by using UpdateGameSession to change the game session's player session creation policy.

Game session logs are retained for all active game sessions for 14 days. To access the logs, call GetGameSessionLogUrl to download the log files.

Available in GameLift Local.

Learn more

Start a game session

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_game_session({
  fleet_id: "FleetIdOrArn",
  alias_id: "AliasIdOrArn",
  maximum_player_session_count: 1, # required
  name: "NonZeroAndMaxString",
  game_properties: [
    {
      key: "GamePropertyKey", # required
      value: "GamePropertyValue", # required
    },
  ],
  creator_id: "NonZeroAndMaxString",
  game_session_id: "IdStringModel",
  idempotency_token: "IdStringModel",
  game_session_data: "LargeGameSessionData",
  location: "LocationStringModel",
})

Response structure


resp.game_session.game_session_id #=> String
resp.game_session.name #=> String
resp.game_session.fleet_id #=> String
resp.game_session.fleet_arn #=> String
resp.game_session.creation_time #=> Time
resp.game_session.termination_time #=> Time
resp.game_session.current_player_session_count #=> Integer
resp.game_session.maximum_player_session_count #=> Integer
resp.game_session.status #=> String, one of "ACTIVE", "ACTIVATING", "TERMINATED", "TERMINATING", "ERROR"
resp.game_session.status_reason #=> String, one of "INTERRUPTED"
resp.game_session.game_properties #=> Array
resp.game_session.game_properties[0].key #=> String
resp.game_session.game_properties[0].value #=> String
resp.game_session.ip_address #=> String
resp.game_session.dns_name #=> String
resp.game_session.port #=> Integer
resp.game_session.player_session_creation_policy #=> String, one of "ACCEPT_ALL", "DENY_ALL"
resp.game_session.creator_id #=> String
resp.game_session.game_session_data #=> String
resp.game_session.matchmaker_data #=> String
resp.game_session.location #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (String)

    A unique identifier for the fleet to create a game session in. You can use either the fleet ID or ARN value. Each request must reference either a fleet ID or alias ID, but not both.

  • :alias_id (String)

    A unique identifier for the alias associated with the fleet to create a game session in. You can use either the alias ID or ARN value. Each request must reference either a fleet ID or alias ID, but not both.

  • :maximum_player_session_count (required, Integer)

    The maximum number of players that can be connected simultaneously to the game session.

  • :name (String)

    A descriptive label that is associated with a game session. Session names do not need to be unique.

  • :game_properties (Array<Types::GameProperty>)

    A set of custom properties for a game session, formatted as key:value pairs. These properties are passed to a game server process in the GameSession object with a request to start a new game session.

  • :creator_id (String)

    A unique identifier for a player or entity creating the game session. This parameter is required when requesting a new game session on a fleet with a resource creation limit policy. This type of policy limits the number of concurrent active game sessions that one player can create within a certain time span. GameLift uses the CreatorId to evaluate the new request against the policy.

  • :game_session_id (String)

    This parameter is no longer preferred. Please use IdempotencyToken instead. Custom string that uniquely identifies a request for a new game session. Maximum token length is 48 characters. If provided, this string is included in the new game session's ID.

  • :idempotency_token (String)

    Custom string that uniquely identifies the new game session request. This is useful for ensuring that game session requests with the same idempotency token are processed only once. Subsequent requests with the same string return the original GameSession object, with an updated status. Maximum token length is 48 characters. If provided, this string is included in the new game session's ID. A game session ARN has the following format: arn:aws:gamelift:<region>::gamesession/<fleet ID>/<custom ID string or idempotency token>. Idempotency tokens remain in use for 30 days after a game session has ended; game session objects are retained for this time period and then deleted.

  • :game_session_data (String)

    A set of custom game session properties, formatted as a single string value. This data is passed to a game server process in the GameSession object with a request to start a new game session.

  • :location (String)

    A fleet's remote location to place the new game session in. If this parameter is not set, the new game session is placed in the fleet's home Region. Specify a remote location with an AWS Region code such as us-west-2.

Returns:

See Also:



1619
1620
1621
1622
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 1619

def create_game_session(params = {}, options = {})
  req = build_request(:create_game_session, params)
  req.send_request(options)
end

#create_game_session_queue(params = {}) ⇒ Types::CreateGameSessionQueueOutput

Creates a placement queue that processes requests for new game sessions. A queue uses FleetIQ algorithms to determine the best placement locations and find an available game server there, then prompts the game server process to start a new game session.

A game session queue is configured with a set of destinations (GameLift fleets or aliases), which determine the locations where the queue can place new game sessions. These destinations can span multiple fleet types (Spot and On-Demand), instance types, and AWS Regions. If the queue includes multi-location fleets, the queue is able to place game sessions in all of a fleet's remote locations. You can opt to filter out individual locations if needed.

The queue configuration also determines how FleetIQ selects the best available placement for a new game session. Before searching for an available game server, FleetIQ first prioritizes the queue's destinations and locations, with the best placement locations on top. You can set up the queue to use the FleetIQ default prioritization or provide an alternate set of priorities.

To create a new queue, provide a name, timeout value, and a list of destinations. Optionally, specify a sort configuration and/or a filter, and define a set of latency cap policies. You can also include the ARN for an Amazon Simple Notification Service (SNS) topic to receive notifications of game session placement activity. Notifications using SNS or CloudWatch events is the preferred way to track placement activity.

If successful, a new GameSessionQueue object is returned with an assigned queue ARN. New game session requests, which are submitted to the queue with StartGameSessionPlacement or StartMatchmaking, reference a queue's name or ARN.

Learn more

Design a game session queue

Create a game session queue

Related actions

CreateGameSessionQueue | DescribeGameSessionQueues | UpdateGameSessionQueue | DeleteGameSessionQueue | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_game_session_queue({
  name: "GameSessionQueueName", # required
  timeout_in_seconds: 1,
  player_latency_policies: [
    {
      maximum_individual_player_latency_milliseconds: 1,
      policy_duration_seconds: 1,
    },
  ],
  destinations: [
    {
      destination_arn: "ArnStringModel",
    },
  ],
  filter_configuration: {
    allowed_locations: ["LocationStringModel"],
  },
  priority_configuration: {
    priority_order: ["LATENCY"], # accepts LATENCY, COST, DESTINATION, LOCATION
    location_order: ["LocationStringModel"],
  },
  custom_event_data: "QueueCustomEventData",
  notification_target: "QueueSnsArnStringModel",
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.game_session_queue.name #=> String
resp.game_session_queue.game_session_queue_arn #=> String
resp.game_session_queue.timeout_in_seconds #=> Integer
resp.game_session_queue.player_latency_policies #=> Array
resp.game_session_queue.player_latency_policies[0].maximum_individual_player_latency_milliseconds #=> Integer
resp.game_session_queue.player_latency_policies[0].policy_duration_seconds #=> Integer
resp.game_session_queue.destinations #=> Array
resp.game_session_queue.destinations[0].destination_arn #=> String
resp.game_session_queue.filter_configuration.allowed_locations #=> Array
resp.game_session_queue.filter_configuration.allowed_locations[0] #=> String
resp.game_session_queue.priority_configuration.priority_order #=> Array
resp.game_session_queue.priority_configuration.priority_order[0] #=> String, one of "LATENCY", "COST", "DESTINATION", "LOCATION"
resp.game_session_queue.priority_configuration.location_order #=> Array
resp.game_session_queue.priority_configuration.location_order[0] #=> String
resp.game_session_queue.custom_event_data #=> String
resp.game_session_queue.notification_target #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A descriptive label that is associated with game session queue. Queue names must be unique within each Region.

  • :timeout_in_seconds (Integer)

    The maximum time, in seconds, that a new game session placement request remains in the queue. When a request exceeds this time, the game session placement changes to a TIMED_OUT status.

  • :player_latency_policies (Array<Types::PlayerLatencyPolicy>)

    A set of policies that act as a sliding cap on player latency. FleetIQ works to deliver low latency for most players in a game session. These policies ensure that no individual player can be placed into a game with unreasonably high latency. Use multiple policies to gradually relax latency requirements a step at a time. Multiple policies are applied based on their maximum allowed latency, starting with the lowest value.

  • :destinations (Array<Types::GameSessionQueueDestination>)

    A list of fleets and/or fleet aliases that can be used to fulfill game session placement requests in the queue. Destinations are identified by either a fleet ARN or a fleet alias ARN, and are listed in order of placement preference.

  • :filter_configuration (Types::FilterConfiguration)

    A list of locations where a queue is allowed to place new game sessions. Locations are specified in the form of AWS Region codes, such as us-west-2. If this parameter is not set, game sessions can be placed in any queue location.

  • :priority_configuration (Types::PriorityConfiguration)

    Custom settings to use when prioritizing destinations and locations for game session placements. This configuration replaces the FleetIQ default prioritization process. Priority types that are not explicitly named will be automatically applied at the end of the prioritization process.

  • :custom_event_data (String)

    Information to be added to all events that are related to this game session queue.

  • :notification_target (String)

    An SNS topic ARN that is set up to receive game session placement notifications. See Setting up notifications for game session placement.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new game session queue resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



1799
1800
1801
1802
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 1799

def create_game_session_queue(params = {}, options = {})
  req = build_request(:create_game_session_queue, params)
  req.send_request(options)
end

#create_matchmaking_configuration(params = {}) ⇒ Types::CreateMatchmakingConfigurationOutput

Defines a new matchmaking configuration for use with FlexMatch. Whether your are using FlexMatch with GameLift hosting or as a standalone matchmaking service, the matchmaking configuration sets out rules for matching players and forming teams. If you're also using GameLift hosting, it defines how to start game sessions for each match. Your matchmaking system can use multiple configurations to handle different game scenarios. All matchmaking requests (StartMatchmaking or StartMatchBackfill) identify the matchmaking configuration to use and provide player attributes consistent with that configuration.

To create a matchmaking configuration, you must provide the following: configuration name and FlexMatch mode (with or without GameLift hosting); a rule set that specifies how to evaluate players and find acceptable matches; whether player acceptance is required; and the maximum time allowed for a matchmaking attempt. When using FlexMatch with GameLift hosting, you also need to identify the game session queue to use when starting a game session for the match.

In addition, you must set up an Amazon Simple Notification Service (SNS) topic to receive matchmaking notifications. Provide the topic ARN in the matchmaking configuration. An alternative method, continuously polling ticket status with DescribeMatchmaking, is only suitable for games in development with low matchmaking usage.

Learn more

Design a FlexMatch matchmaker

Set up FlexMatch event notification

Related actions

CreateMatchmakingConfiguration | DescribeMatchmakingConfigurations | UpdateMatchmakingConfiguration | DeleteMatchmakingConfiguration | CreateMatchmakingRuleSet | DescribeMatchmakingRuleSets | ValidateMatchmakingRuleSet | DeleteMatchmakingRuleSet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_matchmaking_configuration({
  name: "MatchmakingIdStringModel", # required
  description: "NonZeroAndMaxString",
  game_session_queue_arns: ["ArnStringModel"],
  request_timeout_seconds: 1, # required
  acceptance_timeout_seconds: 1,
  acceptance_required: false, # required
  rule_set_name: "MatchmakingRuleSetName", # required
  notification_target: "SnsArnStringModel",
  additional_player_count: 1,
  custom_event_data: "CustomEventData",
  game_properties: [
    {
      key: "GamePropertyKey", # required
      value: "GamePropertyValue", # required
    },
  ],
  game_session_data: "GameSessionData",
  backfill_mode: "AUTOMATIC", # accepts AUTOMATIC, MANUAL
  flex_match_mode: "STANDALONE", # accepts STANDALONE, WITH_QUEUE
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.configuration.name #=> String
resp.configuration.configuration_arn #=> String
resp.configuration.description #=> String
resp.configuration.game_session_queue_arns #=> Array
resp.configuration.game_session_queue_arns[0] #=> String
resp.configuration.request_timeout_seconds #=> Integer
resp.configuration.acceptance_timeout_seconds #=> Integer
resp.configuration.acceptance_required #=> Boolean
resp.configuration.rule_set_name #=> String
resp.configuration.rule_set_arn #=> String
resp.configuration.notification_target #=> String
resp.configuration.additional_player_count #=> Integer
resp.configuration.custom_event_data #=> String
resp.configuration.creation_time #=> Time
resp.configuration.game_properties #=> Array
resp.configuration.game_properties[0].key #=> String
resp.configuration.game_properties[0].value #=> String
resp.configuration.game_session_data #=> String
resp.configuration.backfill_mode #=> String, one of "AUTOMATIC", "MANUAL"
resp.configuration.flex_match_mode #=> String, one of "STANDALONE", "WITH_QUEUE"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A unique identifier for the matchmaking configuration. This name is used to identify the configuration associated with a matchmaking request or ticket.

  • :description (String)

    A human-readable description of the matchmaking configuration.

  • :game_session_queue_arns (Array<String>)

    The Amazon Resource Name (ARN) that is assigned to a GameLift game session queue resource and uniquely identifies it. ARNs are unique across all Regions. Format is arn:aws:gamelift:<region>::gamesessionqueue/<queue name>. Queues can be located in any Region. Queues are used to start new GameLift-hosted game sessions for matches that are created with this matchmaking configuration. If FlexMatchMode is set to STANDALONE, do not set this parameter.

  • :request_timeout_seconds (required, Integer)

    The maximum duration, in seconds, that a matchmaking ticket can remain in process before timing out. Requests that fail due to timing out can be resubmitted as needed.

  • :acceptance_timeout_seconds (Integer)

    The length of time (in seconds) to wait for players to accept a proposed match, if acceptance is required.

  • :acceptance_required (required, Boolean)

    A flag that determines whether a match that was created with this configuration must be accepted by the matched players. To require acceptance, set to TRUE. With this option enabled, matchmaking tickets use the status REQUIRES_ACCEPTANCE to indicate when a completed potential match is waiting for player acceptance.

  • :rule_set_name (required, String)

    A unique identifier for the matchmaking rule set to use with this configuration. You can use either the rule set name or ARN value. A matchmaking configuration can only use rule sets that are defined in the same Region.

  • :notification_target (String)

    An SNS topic ARN that is set up to receive matchmaking notifications. See Setting up notifications for matchmaking for more information.

  • :additional_player_count (Integer)

    The number of player slots in a match to keep open for future players. For example, if the configuration's rule set specifies a match for a single 12-person team, and the additional player count is set to 2, only 10 players are selected for the match. This parameter is not used if FlexMatchMode is set to STANDALONE.

  • :custom_event_data (String)

    Information to be added to all events related to this matchmaking configuration.

  • :game_properties (Array<Types::GameProperty>)

    A set of custom properties for a game session, formatted as key:value pairs. These properties are passed to a game server process in the GameSession object with a request to start a new game session (see Start a Game Session). This information is added to the new GameSession object that is created for a successful match. This parameter is not used if FlexMatchMode is set to STANDALONE.

  • :game_session_data (String)

    A set of custom game session properties, formatted as a single string value. This data is passed to a game server process in the GameSession object with a request to start a new game session (see Start a Game Session). This information is added to the new GameSession object that is created for a successful match. This parameter is not used if FlexMatchMode is set to STANDALONE.

  • :backfill_mode (String)

    The method used to backfill game sessions that are created with this matchmaking configuration. Specify MANUAL when your game manages backfill requests manually or does not use the match backfill feature. Specify AUTOMATIC to have GameLift create a StartMatchBackfill request whenever a game session has one or more open slots. Learn more about manual and automatic backfill in Backfill Existing Games with FlexMatch. Automatic backfill is not available when FlexMatchMode is set to STANDALONE.

  • :flex_match_mode (String)

    Indicates whether this matchmaking configuration is being used with GameLift hosting or as a standalone matchmaking solution.

    • STANDALONE - FlexMatch forms matches and returns match information, including players and team assignments, in a MatchmakingSucceeded event.

    • WITH_QUEUE - FlexMatch forms matches and uses the specified GameLift queue to start a game session for the match.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new matchmaking configuration resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



2041
2042
2043
2044
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2041

def create_matchmaking_configuration(params = {}, options = {})
  req = build_request(:create_matchmaking_configuration, params)
  req.send_request(options)
end

#create_matchmaking_rule_set(params = {}) ⇒ Types::CreateMatchmakingRuleSetOutput

Creates a new rule set for FlexMatch matchmaking. A rule set describes the type of match to create, such as the number and size of teams. It also sets the parameters for acceptable player matches, such as minimum skill level or character type. A rule set is used by a MatchmakingConfiguration.

To create a matchmaking rule set, provide unique rule set name and the rule set body in JSON format. Rule sets must be defined in the same Region as the matchmaking configuration they are used with.

Since matchmaking rule sets cannot be edited, it is a good idea to check the rule set syntax using ValidateMatchmakingRuleSet before creating a new rule set.

Learn more

Related actions

CreateMatchmakingConfiguration | DescribeMatchmakingConfigurations | UpdateMatchmakingConfiguration | DeleteMatchmakingConfiguration | CreateMatchmakingRuleSet | DescribeMatchmakingRuleSets | ValidateMatchmakingRuleSet | DeleteMatchmakingRuleSet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_matchmaking_rule_set({
  name: "MatchmakingIdStringModel", # required
  rule_set_body: "RuleSetBody", # required
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.rule_set.rule_set_name #=> String
resp.rule_set.rule_set_arn #=> String
resp.rule_set.rule_set_body #=> String
resp.rule_set.creation_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A unique identifier for the matchmaking rule set. A matchmaking configuration identifies the rule set it uses by this name value. Note that the rule set name is different from the optional name field in the rule set body.

  • :rule_set_body (required, String)

    A collection of matchmaking rules, formatted as a JSON string. Comments are not allowed in JSON, but most elements support a description field.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new matchmaking rule set resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



2136
2137
2138
2139
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2136

def create_matchmaking_rule_set(params = {}, options = {})
  req = build_request(:create_matchmaking_rule_set, params)
  req.send_request(options)
end

#create_player_session(params = {}) ⇒ Types::CreatePlayerSessionOutput

Reserves an open player slot in a game session for a player. New player sessions can be created in any game session with an open slot that is in ACTIVE status and has a player creation policy of ACCEPT_ALL. You can add a group of players to a game session with CreatePlayerSessions.

To create a player session, specify a game session ID, player ID, and optionally a set of player data.

If successful, a slot is reserved in the game session for the player and a new PlayerSession object is returned with a player session ID. The player references the player session ID when sending a connection request to the game session, and the game server can use it to validate the player reservation with the GameLift service. Player sessions cannot be updated.

Available in Amazon GameLift Local.

Related actions

CreatePlayerSession | CreatePlayerSessions | DescribePlayerSessions | StartGameSessionPlacement | DescribeGameSessionPlacement | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_player_session({
  game_session_id: "ArnStringModel", # required
  player_id: "NonZeroAndMaxString", # required
  player_data: "PlayerData",
})

Response structure


resp.player_session.player_session_id #=> String
resp.player_session.player_id #=> String
resp.player_session.game_session_id #=> String
resp.player_session.fleet_id #=> String
resp.player_session.fleet_arn #=> String
resp.player_session.creation_time #=> Time
resp.player_session.termination_time #=> Time
resp.player_session.status #=> String, one of "RESERVED", "ACTIVE", "COMPLETED", "TIMEDOUT"
resp.player_session.ip_address #=> String
resp.player_session.dns_name #=> String
resp.player_session.port #=> Integer
resp.player_session.player_data #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_session_id (required, String)

    A unique identifier for the game session to add a player to.

  • :player_id (required, String)

    A unique identifier for a player. Player IDs are developer-defined.

  • :player_data (String)

    Developer-defined information related to a player. GameLift does not use this data, so it can be formatted as needed for use in the game.

Returns:

See Also:



2210
2211
2212
2213
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2210

def create_player_session(params = {}, options = {})
  req = build_request(:create_player_session, params)
  req.send_request(options)
end

#create_player_sessions(params = {}) ⇒ Types::CreatePlayerSessionsOutput

Reserves open slots in a game session for a group of players. New player sessions can be created in any game session with an open slot that is in ACTIVE status and has a player creation policy of ACCEPT_ALL. To add a single player to a game session, use CreatePlayerSession.

To create player sessions, specify a game session ID and a list of player IDs. Optionally, provide a set of player data for each player ID.

If successful, a slot is reserved in the game session for each player, and new PlayerSession objects are returned with player session IDs. Each player references their player session ID when sending a connection request to the game session, and the game server can use it to validate the player reservation with the GameLift service. Player sessions cannot be updated.

Available in Amazon GameLift Local.

Related actions

CreatePlayerSession | CreatePlayerSessions | DescribePlayerSessions | StartGameSessionPlacement | DescribeGameSessionPlacement | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_player_sessions({
  game_session_id: "ArnStringModel", # required
  player_ids: ["NonZeroAndMaxString"], # required
  player_data_map: {
    "NonZeroAndMaxString" => "PlayerData",
  },
})

Response structure


resp.player_sessions #=> Array
resp.player_sessions[0].player_session_id #=> String
resp.player_sessions[0].player_id #=> String
resp.player_sessions[0].game_session_id #=> String
resp.player_sessions[0].fleet_id #=> String
resp.player_sessions[0].fleet_arn #=> String
resp.player_sessions[0].creation_time #=> Time
resp.player_sessions[0].termination_time #=> Time
resp.player_sessions[0].status #=> String, one of "RESERVED", "ACTIVE", "COMPLETED", "TIMEDOUT"
resp.player_sessions[0].ip_address #=> String
resp.player_sessions[0].dns_name #=> String
resp.player_sessions[0].port #=> Integer
resp.player_sessions[0].player_data #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_session_id (required, String)

    A unique identifier for the game session to add players to.

  • :player_ids (required, Array<String>)

    List of unique identifiers for the players to be added.

  • :player_data_map (Hash<String,String>)

    Map of string pairs, each specifying a player ID and a set of developer-defined information related to the player. Amazon GameLift does not use this data, so it can be formatted as needed for use in the game. Any player data strings for player IDs that are not included in the PlayerIds parameter are ignored.

Returns:

See Also:



2291
2292
2293
2294
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2291

def create_player_sessions(params = {}, options = {})
  req = build_request(:create_player_sessions, params)
  req.send_request(options)
end

#create_script(params = {}) ⇒ Types::CreateScriptOutput

Creates a new script record for your Realtime Servers script. Realtime scripts are JavaScript that provide configuration settings and optional custom game logic for your game. The script is deployed when you create a Realtime Servers fleet to host your game sessions. Script logic is executed during an active game session.

To create a new script record, specify a script name and provide the script file(s). The script files and all dependencies must be zipped into a single file. You can pull the zip file from either of these locations:

  • A locally available directory. Use the ZipFile parameter for this option.

  • An Amazon Simple Storage Service (Amazon S3) bucket under your AWS account. Use the StorageLocation parameter for this option. You'll need to have an Identity Access Management (IAM) role that allows the Amazon GameLift service to access your S3 bucket.

If the call is successful, a new script record is created with a unique script ID. If the script file is provided as a local file, the file is uploaded to an Amazon GameLift-owned S3 bucket and the script record's storage location reflects this location. If the script file is provided as an S3 bucket, Amazon GameLift accesses the file at this storage location as needed for deployment.

Learn more

Amazon GameLift Realtime Servers

Set Up a Role for Amazon GameLift Access

Related actions

CreateScript | ListScripts | DescribeScript | UpdateScript | DeleteScript | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_script({
  name: "NonZeroAndMaxString",
  version: "NonZeroAndMaxString",
  storage_location: {
    bucket: "NonEmptyString",
    key: "NonEmptyString",
    role_arn: "NonEmptyString",
    object_version: "NonEmptyString",
  },
  zip_file: "data",
  tags: [
    {
      key: "TagKey", # required
      value: "TagValue", # required
    },
  ],
})

Response structure


resp.script.script_id #=> String
resp.script.script_arn #=> String
resp.script.name #=> String
resp.script.version #=> String
resp.script.size_on_disk #=> Integer
resp.script.creation_time #=> Time
resp.script.storage_location.bucket #=> String
resp.script.storage_location.key #=> String
resp.script.storage_location.role_arn #=> String
resp.script.storage_location.object_version #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (String)

    A descriptive label that is associated with a script. Script names do not need to be unique. You can use UpdateScript to change this value later.

  • :version (String)

    Version information that is associated with a build or script. Version strings do not need to be unique. You can use UpdateScript to change this value later.

  • :storage_location (Types::S3Location)

    The location of the Amazon S3 bucket where a zipped file containing your Realtime scripts is stored. The storage location must specify the Amazon S3 bucket name, the zip file name (the "key"), and a role ARN that allows Amazon GameLift to access the Amazon S3 storage location. The S3 bucket must be in the same Region where you want to create a new script. By default, Amazon GameLift uploads the latest version of the zip file; if you have S3 object versioning turned on, you can use the ObjectVersion parameter to specify an earlier version.

  • :zip_file (String, StringIO, File)

    A data object containing your Realtime scripts and dependencies as a zip file. The zip file can have one or multiple files. Maximum size of a zip file is 5 MB.

    When using the AWS CLI tool to create a script, this parameter is set to the zip file name. It must be prepended with the string "fileb://" to indicate that the file data is a binary object. For example: --zip-file fileb://myRealtimeScript.zip.

  • :tags (Array<Types::Tag>)

    A list of labels to assign to the new script resource. Tags are developer-defined key-value pairs. Tagging AWS resources are useful for resource management, access management and cost allocation. For more information, see Tagging AWS Resources in the AWS General Reference. Once the resource is created, you can use TagResource, UntagResource, and ListTagsForResource to add, remove, and view tags. The maximum tag limit may be lower than stated. See the AWS General Reference for actual tagging limits.

Returns:

See Also:



2424
2425
2426
2427
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2424

def create_script(params = {}, options = {})
  req = build_request(:create_script, params)
  req.send_request(options)
end

#create_vpc_peering_authorization(params = {}) ⇒ Types::CreateVpcPeeringAuthorizationOutput

Requests authorization to create or delete a peer connection between the VPC for your Amazon GameLift fleet and a virtual private cloud (VPC) in your AWS account. VPC peering enables the game servers on your fleet to communicate directly with other AWS resources. Once you've received authorization, call CreateVpcPeeringConnection to establish the peering connection. For more information, see VPC Peering with Amazon GameLift Fleets.

You can peer with VPCs that are owned by any AWS account you have access to, including the account that you use to manage your Amazon GameLift fleets. You cannot peer with VPCs that are in different Regions.

To request authorization to create a connection, call this operation from the AWS account with the VPC that you want to peer to your Amazon GameLift fleet. For example, to enable your game servers to retrieve data from a DynamoDB table, use the account that manages that DynamoDB resource. Identify the following values: (1) The ID of the VPC that you want to peer with, and (2) the ID of the AWS account that you use to manage Amazon GameLift. If successful, VPC peering is authorized for the specified VPC.

To request authorization to delete a connection, call this operation from the AWS account with the VPC that is peered with your Amazon GameLift fleet. Identify the following values: (1) VPC ID that you want to delete the peering connection for, and (2) ID of the AWS account that you use to manage Amazon GameLift.

The authorization remains valid for 24 hours unless it is canceled by a call to DeleteVpcPeeringAuthorization. You must create or delete the peering connection while the authorization is valid.

Related actions

CreateVpcPeeringAuthorization | DescribeVpcPeeringAuthorizations | DeleteVpcPeeringAuthorization | CreateVpcPeeringConnection | DescribeVpcPeeringConnections | DeleteVpcPeeringConnection | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_vpc_peering_authorization({
  game_lift_aws_account_id: "NonZeroAndMaxString", # required
  peer_vpc_id: "NonZeroAndMaxString", # required
})

Response structure


resp.vpc_peering_authorization. #=> String
resp.vpc_peering_authorization. #=> String
resp.vpc_peering_authorization.peer_vpc_id #=> String
resp.vpc_peering_authorization.creation_time #=> Time
resp.vpc_peering_authorization.expiration_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_lift_aws_account_id (required, String)

    A unique identifier for the AWS account that you use to manage your GameLift fleet. You can find your Account ID in the AWS Management Console under account settings.

  • :peer_vpc_id (required, String)

    A unique identifier for a VPC with resources to be accessed by your GameLift fleet. The VPC must be in the same Region as your fleet. To look up a VPC ID, use the VPC Dashboard in the AWS Management Console. Learn more about VPC peering in VPC Peering with GameLift Fleets.

Returns:

See Also:



2513
2514
2515
2516
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2513

def create_vpc_peering_authorization(params = {}, options = {})
  req = build_request(:create_vpc_peering_authorization, params)
  req.send_request(options)
end

#create_vpc_peering_connection(params = {}) ⇒ Struct

Establishes a VPC peering connection between a virtual private cloud (VPC) in an AWS account with the VPC for your Amazon GameLift fleet. VPC peering enables the game servers on your fleet to communicate directly with other AWS resources. You can peer with VPCs in any AWS account that you have access to, including the account that you use to manage your Amazon GameLift fleets. You cannot peer with VPCs that are in different Regions. For more information, see VPC Peering with Amazon GameLift Fleets.

Before calling this operation to establish the peering connection, you first need to call CreateVpcPeeringAuthorization and identify the VPC you want to peer with. Once the authorization for the specified VPC is issued, you have 24 hours to establish the connection. These two operations handle all tasks necessary to peer the two VPCs, including acceptance, updating routing tables, etc.

To establish the connection, call this operation from the AWS account that is used to manage the Amazon GameLift fleets. Identify the following values: (1) The ID of the fleet you want to be enable a VPC peering connection for; (2) The AWS account with the VPC that you want to peer with; and (3) The ID of the VPC you want to peer with. This operation is asynchronous. If successful, a VpcPeeringConnection request is created. You can use continuous polling to track the request's status using DescribeVpcPeeringConnections, or by monitoring fleet events for success or failure using DescribeFleetEvents.

Related actions

CreateVpcPeeringAuthorization | DescribeVpcPeeringAuthorizations | DeleteVpcPeeringAuthorization | CreateVpcPeeringConnection | DescribeVpcPeeringConnections | DeleteVpcPeeringConnection | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.create_vpc_peering_connection({
  fleet_id: "FleetId", # required
  peer_vpc_aws_account_id: "NonZeroAndMaxString", # required
  peer_vpc_id: "NonZeroAndMaxString", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet. You can use either the fleet ID or ARN value. This tells Amazon GameLift which GameLift VPC to peer with.

  • :peer_vpc_aws_account_id (required, String)

    A unique identifier for the AWS account with the VPC that you want to peer your Amazon GameLift fleet with. You can find your Account ID in the AWS Management Console under account settings.

  • :peer_vpc_id (required, String)

    A unique identifier for a VPC with resources to be accessed by your GameLift fleet. The VPC must be in the same Region as your fleet. To look up a VPC ID, use the VPC Dashboard in the AWS Management Console. Learn more about VPC peering in VPC Peering with GameLift Fleets.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



2592
2593
2594
2595
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2592

def create_vpc_peering_connection(params = {}, options = {})
  req = build_request(:create_vpc_peering_connection, params)
  req.send_request(options)
end

#delete_alias(params = {}) ⇒ Struct

Deletes an alias. This operation removes all record of the alias. Game clients attempting to access a server process using the deleted alias receive an error. To delete an alias, specify the alias ID to be deleted.

Related actions

CreateAlias | ListAliases | DescribeAlias | UpdateAlias | DeleteAlias | ResolveAlias | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_alias({
  alias_id: "AliasIdOrArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :alias_id (required, String)

    A unique identifier of the alias that you want to delete. You can use either the alias ID or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



2627
2628
2629
2630
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2627

def delete_alias(params = {}, options = {})
  req = build_request(:delete_alias, params)
  req.send_request(options)
end

#delete_build(params = {}) ⇒ Struct

Deletes a build. This operation permanently deletes the build resource and any uploaded build files. Deleting a build does not affect the status of any active fleets using the build, but you can no longer create new fleets with the deleted build.

To delete a build, specify the build ID.

Learn more

Upload a Custom Server Build

Related actions

CreateBuild | ListBuilds | DescribeBuild | UpdateBuild | DeleteBuild | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_build({
  build_id: "BuildIdOrArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :build_id (required, String)

    A unique identifier for the build to delete. You can use either the build ID or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



2669
2670
2671
2672
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2669

def delete_build(params = {}, options = {})
  req = build_request(:delete_build, params)
  req.send_request(options)
end

#delete_fleet(params = {}) ⇒ Struct

Deletes all resources and information related a fleet. Any current fleet instances, including those in remote locations, are shut down. You don't need to call DeleteFleetLocations separately.

If the fleet being deleted has a VPC peering connection, you first need to get a valid authorization (good for 24 hours) by calling CreateVpcPeeringAuthorization. You do not need to explicitly delete the VPC peering connection--this is done as part of the delete fleet process.

To delete a fleet, specify the fleet ID to be terminated. During the deletion process the fleet status is changed to DELETING. When completed, the status switches to TERMINATED and the fleet event FLEET_DELETED is sent.

Learn more

Setting up GameLift Fleets

Related actions

CreateFleetLocations | UpdateFleetAttributes | UpdateFleetCapacity | UpdateFleetPortSettings | UpdateRuntimeConfiguration | StopFleetActions | StartFleetActions | PutScalingPolicy | DeleteFleet | DeleteFleetLocations | DeleteScalingPolicy | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_fleet({
  fleet_id: "FleetIdOrArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to be deleted. You can use either the fleet ID or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



2724
2725
2726
2727
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2724

def delete_fleet(params = {}, options = {})
  req = build_request(:delete_fleet, params)
  req.send_request(options)
end

#delete_fleet_locations(params = {}) ⇒ Types::DeleteFleetLocationsOutput

Removes locations from a multi-location fleet. When deleting a location, all game server process and all instances that are still active in the location are shut down.

To delete fleet locations, identify the fleet ID and provide a list of the locations to be deleted.

If successful, GameLift sets the location status to DELETING, and begins to shut down existing server processes and terminate instances in each location being deleted. When completed, the location status changes to TERMINATED.

Learn more

Setting up GameLift fleets

Related actions

CreateFleetLocations | DescribeFleetLocationAttributes | DescribeFleetLocationCapacity | DescribeFleetLocationUtilization | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetUtilization | UpdateFleetCapacity | StopFleetActions | DeleteFleetLocations | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_fleet_locations({
  fleet_id: "FleetIdOrArn", # required
  locations: ["LocationStringModel"], # required
})

Response structure


resp.fleet_id #=> String
resp.fleet_arn #=> String
resp.location_states #=> Array
resp.location_states[0].location #=> String
resp.location_states[0].status #=> String, one of "NEW", "DOWNLOADING", "VALIDATING", "BUILDING", "ACTIVATING", "ACTIVE", "DELETING", "ERROR", "TERMINATED"

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to delete locations for. You can use either the fleet ID or ARN value.

  • :locations (required, Array<String>)

    The list of fleet locations to delete. Specify locations in the form of an AWS Region code, such as us-west-2.

Returns:

See Also:



2791
2792
2793
2794
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2791

def delete_fleet_locations(params = {}, options = {})
  req = build_request(:delete_fleet_locations, params)
  req.send_request(options)
end

#delete_game_server_group(params = {}) ⇒ Types::DeleteGameServerGroupOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Terminates a game server group and permanently deletes the game server group record. You have several options for how these resources are impacted when deleting the game server group. Depending on the type of delete operation selected, this operation might affect these resources:

  • The game server group

  • The corresponding Auto Scaling group

  • All game servers that are currently running in the group

To delete a game server group, identify the game server group to delete and specify the type of delete operation to initiate. Game server groups can only be deleted if they are in ACTIVE or ERROR status.

If the delete request is successful, a series of operations are kicked off. The game server group status is changed to DELETE_SCHEDULED, which prevents new game servers from being registered and stops automatic scaling activity. Once all game servers in the game server group are deregistered, GameLift FleetIQ can begin deleting resources. If any of the delete operations fail, the game server group is placed in ERROR status.

GameLift FleetIQ emits delete events to Amazon CloudWatch.

Learn more

GameLift FleetIQ Guide

Related actions

CreateGameServerGroup | ListGameServerGroups | DescribeGameServerGroup | UpdateGameServerGroup | DeleteGameServerGroup | ResumeGameServerGroup | SuspendGameServerGroup | DescribeGameServerInstances | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_game_server_group({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  delete_option: "SAFE_DELETE", # accepts SAFE_DELETE, FORCE_DELETE, RETAIN
})

Response structure


resp.game_server_group.game_server_group_name #=> String
resp.game_server_group.game_server_group_arn #=> String
resp.game_server_group.role_arn #=> String
resp.game_server_group.instance_definitions #=> Array
resp.game_server_group.instance_definitions[0].instance_type #=> String, one of "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "c6g.medium", "c6g.large", "c6g.xlarge", "c6g.2xlarge", "c6g.4xlarge", "c6g.8xlarge", "c6g.12xlarge", "c6g.16xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "r6g.medium", "r6g.large", "r6g.xlarge", "r6g.2xlarge", "r6g.4xlarge", "r6g.8xlarge", "r6g.12xlarge", "r6g.16xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge", "m6g.medium", "m6g.large", "m6g.xlarge", "m6g.2xlarge", "m6g.4xlarge", "m6g.8xlarge", "m6g.12xlarge", "m6g.16xlarge"
resp.game_server_group.instance_definitions[0].weighted_capacity #=> String
resp.game_server_group.balancing_strategy #=> String, one of "SPOT_ONLY", "SPOT_PREFERRED", "ON_DEMAND_ONLY"
resp.game_server_group.game_server_protection_policy #=> String, one of "NO_PROTECTION", "FULL_PROTECTION"
resp.game_server_group.auto_scaling_group_arn #=> String
resp.game_server_group.status #=> String, one of "NEW", "ACTIVATING", "ACTIVE", "DELETE_SCHEDULED", "DELETING", "DELETED", "ERROR"
resp.game_server_group.status_reason #=> String
resp.game_server_group.suspended_actions #=> Array
resp.game_server_group.suspended_actions[0] #=> String, one of "REPLACE_INSTANCE_TYPES"
resp.game_server_group.creation_time #=> Time
resp.game_server_group.last_updated_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group. Use either the GameServerGroup name or ARN value.

  • :delete_option (String)

    The type of delete to perform. Options include the following:

    • SAFE_DELETE – (default) Terminates the game server group and EC2 Auto Scaling group only when it has no game servers that are in UTILIZED status.

    • FORCE_DELETE – Terminates the game server group, including all active game servers regardless of their utilization status, and the EC2 Auto Scaling group.

    • RETAIN – Does a safe delete of the game server group but retains the EC2 Auto Scaling group as is.

Returns:

See Also:



2894
2895
2896
2897
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2894

def delete_game_server_group(params = {}, options = {})
  req = build_request(:delete_game_server_group, params)
  req.send_request(options)
end

#delete_game_session_queue(params = {}) ⇒ Struct

Deletes a game session queue. Once a queue is successfully deleted, unfulfilled StartGameSessionPlacement requests that reference the queue will fail. To delete a queue, specify the queue name.

Learn more

Using Multi-Region Queues

Related actions

CreateGameSessionQueue | DescribeGameSessionQueues | UpdateGameSessionQueue | DeleteGameSessionQueue | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_game_session_queue({
  name: "GameSessionQueueNameOrArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A descriptive label that is associated with game session queue. Queue names must be unique within each Region. You can use either the queue ID or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



2935
2936
2937
2938
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2935

def delete_game_session_queue(params = {}, options = {})
  req = build_request(:delete_game_session_queue, params)
  req.send_request(options)
end

#delete_matchmaking_configuration(params = {}) ⇒ Struct

Permanently removes a FlexMatch matchmaking configuration. To delete, specify the configuration name. A matchmaking configuration cannot be deleted if it is being used in any active matchmaking tickets.

Related actions

CreateMatchmakingConfiguration | DescribeMatchmakingConfigurations | UpdateMatchmakingConfiguration | DeleteMatchmakingConfiguration | CreateMatchmakingRuleSet | DescribeMatchmakingRuleSets | ValidateMatchmakingRuleSet | DeleteMatchmakingRuleSet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_matchmaking_configuration({
  name: "MatchmakingConfigurationName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A unique identifier for the matchmaking configuration. You can use either the configuration name or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



2972
2973
2974
2975
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 2972

def delete_matchmaking_configuration(params = {}, options = {})
  req = build_request(:delete_matchmaking_configuration, params)
  req.send_request(options)
end

#delete_matchmaking_rule_set(params = {}) ⇒ Struct

Deletes an existing matchmaking rule set. To delete the rule set, provide the rule set name. Rule sets cannot be deleted if they are currently being used by a matchmaking configuration.

Learn more

^

Related actions

CreateMatchmakingConfiguration | DescribeMatchmakingConfigurations | UpdateMatchmakingConfiguration | DeleteMatchmakingConfiguration | CreateMatchmakingRuleSet | DescribeMatchmakingRuleSets | ValidateMatchmakingRuleSet | DeleteMatchmakingRuleSet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_matchmaking_rule_set({
  name: "MatchmakingRuleSetName", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A unique identifier for the matchmaking rule set to be deleted. (Note: The rule set name is different from the optional "name" field in the rule set body.) You can use either the rule set name or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3017
3018
3019
3020
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3017

def delete_matchmaking_rule_set(params = {}, options = {})
  req = build_request(:delete_matchmaking_rule_set, params)
  req.send_request(options)
end

#delete_scaling_policy(params = {}) ⇒ Struct

Deletes a fleet scaling policy. Once deleted, the policy is no longer in force and GameLift removes all record of it. To delete a scaling policy, specify both the scaling policy name and the fleet ID it is associated with.

To temporarily suspend scaling policies, call StopFleetActions. This operation suspends all policies for the fleet.

Related actions

DescribeFleetCapacity | UpdateFleetCapacity | DescribeEC2InstanceLimits | PutScalingPolicy | DescribeScalingPolicies | DeleteScalingPolicy | StopFleetActions | StartFleetActions | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_scaling_policy({
  name: "NonZeroAndMaxString", # required
  fleet_id: "FleetIdOrArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A descriptive label that is associated with a fleet's scaling policy. Policy names do not need to be unique.

  • :fleet_id (required, String)

    A unique identifier for the fleet to be deleted. You can use either the fleet ID or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3062
3063
3064
3065
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3062

def delete_scaling_policy(params = {}, options = {})
  req = build_request(:delete_scaling_policy, params)
  req.send_request(options)
end

#delete_script(params = {}) ⇒ Struct

Deletes a Realtime script. This operation permanently deletes the script record. If script files were uploaded, they are also deleted (files stored in an S3 bucket are not deleted).

To delete a script, specify the script ID. Before deleting a script, be sure to terminate all fleets that are deployed with the script being deleted. Fleet instances periodically check for script updates, and if the script record no longer exists, the instance will go into an error state and be unable to host game sessions.

Learn more

Amazon GameLift Realtime Servers

Related actions

CreateScript | ListScripts | DescribeScript | UpdateScript | DeleteScript | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_script({
  script_id: "ScriptIdOrArn", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :script_id (required, String)

    A unique identifier for the Realtime script to delete. You can use either the script ID or ARN value.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3107
3108
3109
3110
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3107

def delete_script(params = {}, options = {})
  req = build_request(:delete_script, params)
  req.send_request(options)
end

#delete_vpc_peering_authorization(params = {}) ⇒ Struct

Cancels a pending VPC peering authorization for the specified VPC. If you need to delete an existing VPC peering connection, call DeleteVpcPeeringConnection.

Related actions

CreateVpcPeeringAuthorization | DescribeVpcPeeringAuthorizations | DeleteVpcPeeringAuthorization | CreateVpcPeeringConnection | DescribeVpcPeeringConnections | DeleteVpcPeeringConnection | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_vpc_peering_authorization({
  game_lift_aws_account_id: "NonZeroAndMaxString", # required
  peer_vpc_id: "NonZeroAndMaxString", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_lift_aws_account_id (required, String)

    A unique identifier for the AWS account that you use to manage your GameLift fleet. You can find your Account ID in the AWS Management Console under account settings.

  • :peer_vpc_id (required, String)

    A unique identifier for a VPC with resources to be accessed by your GameLift fleet. The VPC must be in the same Region as your fleet. To look up a VPC ID, use the VPC Dashboard in the AWS Management Console. Learn more about VPC peering in VPC Peering with GameLift Fleets.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3157
3158
3159
3160
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3157

def delete_vpc_peering_authorization(params = {}, options = {})
  req = build_request(:delete_vpc_peering_authorization, params)
  req.send_request(options)
end

#delete_vpc_peering_connection(params = {}) ⇒ Struct

Removes a VPC peering connection. To delete the connection, you must have a valid authorization for the VPC peering connection that you want to delete. You can check for an authorization by calling DescribeVpcPeeringAuthorizations or request a new one using CreateVpcPeeringAuthorization.

Once a valid authorization exists, call this operation from the AWS account that is used to manage the Amazon GameLift fleets. Identify the connection to delete by the connection ID and fleet ID. If successful, the connection is removed.

Related actions

CreateVpcPeeringAuthorization | DescribeVpcPeeringAuthorizations | DeleteVpcPeeringAuthorization | CreateVpcPeeringConnection | DescribeVpcPeeringConnections | DeleteVpcPeeringConnection | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.delete_vpc_peering_connection({
  fleet_id: "FleetId", # required
  vpc_peering_connection_id: "NonZeroAndMaxString", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet. This fleet specified must match the fleet referenced in the VPC peering connection record. You can use either the fleet ID or ARN value.

  • :vpc_peering_connection_id (required, String)

    A unique identifier for a VPC peering connection. This value is included in the VpcPeeringConnection object, which can be retrieved by calling DescribeVpcPeeringConnections.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3207
3208
3209
3210
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3207

def delete_vpc_peering_connection(params = {}, options = {})
  req = build_request(:delete_vpc_peering_connection, params)
  req.send_request(options)
end

#deregister_game_server(params = {}) ⇒ Struct

This operation is used with the GameLift FleetIQ solution and game server groups.

Removes the game server from a game server group. As a result of this operation, the deregistered game server can no longer be claimed and will not be returned in a list of active game servers.

To deregister a game server, specify the game server group and game server ID. If successful, this operation emits a CloudWatch event with termination timestamp and reason.

Learn more

GameLift FleetIQ Guide

Related actions

RegisterGameServer | ListGameServers | ClaimGameServer | DescribeGameServer | UpdateGameServer | DeregisterGameServer | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.deregister_game_server({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  game_server_id: "GameServerId", # required
})

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group where the game server is running. Use either the GameServerGroup name or ARN value.

  • :game_server_id (required, String)

    A custom string that uniquely identifies the game server to deregister.

Returns:

  • (Struct)

    Returns an empty response.

See Also:



3259
3260
3261
3262
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3259

def deregister_game_server(params = {}, options = {})
  req = build_request(:deregister_game_server, params)
  req.send_request(options)
end

#describe_alias(params = {}) ⇒ Types::DescribeAliasOutput

Retrieves properties for an alias. This operation returns all alias metadata and settings. To get an alias's target fleet ID only, use ResolveAlias.

To get alias properties, specify the alias ID. If successful, the requested alias record is returned.

Related actions

CreateAlias | ListAliases | DescribeAlias | UpdateAlias | DeleteAlias | ResolveAlias | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_alias({
  alias_id: "AliasIdOrArn", # required
})

Response structure


resp.alias.alias_id #=> String
resp.alias.name #=> String
resp.alias.alias_arn #=> String
resp.alias.description #=> String
resp.alias.routing_strategy.type #=> String, one of "SIMPLE", "TERMINAL"
resp.alias.routing_strategy.fleet_id #=> String
resp.alias.routing_strategy.message #=> String
resp.alias.creation_time #=> Time
resp.alias.last_updated_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :alias_id (required, String)

    The unique identifier for the fleet alias that you want to retrieve. You can use either the alias ID or ARN value.

Returns:

See Also:



3310
3311
3312
3313
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3310

def describe_alias(params = {}, options = {})
  req = build_request(:describe_alias, params)
  req.send_request(options)
end

#describe_build(params = {}) ⇒ Types::DescribeBuildOutput

Retrieves properties for a custom game build. To request a build resource, specify a build ID. If successful, an object containing the build properties is returned.

Learn more

Upload a Custom Server Build

Related actions

CreateBuild | ListBuilds | DescribeBuild | UpdateBuild | DeleteBuild | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_build({
  build_id: "BuildIdOrArn", # required
})

Response structure


resp.build.build_id #=> String
resp.build.build_arn #=> String
resp.build.name #=> String
resp.build.version #=> String
resp.build.status #=> String, one of "INITIALIZED", "READY", "FAILED"
resp.build.size_on_disk #=> Integer
resp.build.operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.build.creation_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :build_id (required, String)

    A unique identifier for the build to retrieve properties for. You can use either the build ID or ARN value.

Returns:

See Also:



3362
3363
3364
3365
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3362

def describe_build(params = {}, options = {})
  req = build_request(:describe_build, params)
  req.send_request(options)
end

#describe_ec2_instance_limits(params = {}) ⇒ Types::DescribeEC2InstanceLimitsOutput

The GameLift service limits and current utilization for an AWS Region or location. Instance limits control the number of instances, per instance type, per location, that your AWS account can use. Learn more at Amazon EC2 Instance Types. The information returned includes the maximum number of instances allowed and your account's current usage across all fleets. This information can affect your ability to scale your GameLift fleets. You can request a limit increase for your account by using the Service limits page in the GameLift console.

Instance limits differ based on whether the instances are deployed in a fleet's home Region or in a remote location. For remote locations, limits also differ based on the combination of home Region and remote location. All requests must specify an AWS Region (either explicitly or as your default settings). To get the limit for a remote location, you must also specify the location. For example, the following requests all return different results:

  • Request specifies the Region ap-northeast-1 with no location. The result is limits and usage data on all instance types that are deployed in us-east-2, by all of the fleets that reside in ap-northeast-1.

  • Request specifies the Region us-east-1 with location ca-central-1. The result is limits and usage data on all instance types that are deployed in ca-central-1, by all of the fleets that reside in us-east-2. These limits do not affect fleets in any other Regions that deploy instances to ca-central-1.

  • Request specifies the Region eu-west-1 with location ca-central-1. The result is limits and usage data on all instance types that are deployed in ca-central-1, by all of the fleets that reside in eu-west-1.

This operation can be used in the following ways:

  • To get limit and usage data for all instance types that are deployed in an AWS Region by fleets that reside in the same Region: Specify the Region only. Optionally, specify a single instance type to retrieve information for.

  • To get limit and usage data for all instance types that are deployed to a remote location by fleets that reside in different AWS Region: Provide both the AWS Region and the remote location. Optionally, specify a single instance type to retrieve information for.

If successful, an EC2InstanceLimits object is returned with limits and usage data for each requested instance type.

Learn more

Setting up GameLift fleets

Related actions

CreateFleet | UpdateFleetCapacity | PutScalingPolicy | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetLocationAttributes | UpdateFleetAttributes | StopFleetActions | DeleteFleet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_ec2_instance_limits({
  ec2_instance_type: "t2.micro", # accepts t2.micro, t2.small, t2.medium, t2.large, c3.large, c3.xlarge, c3.2xlarge, c3.4xlarge, c3.8xlarge, c4.large, c4.xlarge, c4.2xlarge, c4.4xlarge, c4.8xlarge, c5.large, c5.xlarge, c5.2xlarge, c5.4xlarge, c5.9xlarge, c5.12xlarge, c5.18xlarge, c5.24xlarge, c5a.large, c5a.xlarge, c5a.2xlarge, c5a.4xlarge, c5a.8xlarge, c5a.12xlarge, c5a.16xlarge, c5a.24xlarge, r3.large, r3.xlarge, r3.2xlarge, r3.4xlarge, r3.8xlarge, r4.large, r4.xlarge, r4.2xlarge, r4.4xlarge, r4.8xlarge, r4.16xlarge, r5.large, r5.xlarge, r5.2xlarge, r5.4xlarge, r5.8xlarge, r5.12xlarge, r5.16xlarge, r5.24xlarge, r5a.large, r5a.xlarge, r5a.2xlarge, r5a.4xlarge, r5a.8xlarge, r5a.12xlarge, r5a.16xlarge, r5a.24xlarge, m3.medium, m3.large, m3.xlarge, m3.2xlarge, m4.large, m4.xlarge, m4.2xlarge, m4.4xlarge, m4.10xlarge, m5.large, m5.xlarge, m5.2xlarge, m5.4xlarge, m5.8xlarge, m5.12xlarge, m5.16xlarge, m5.24xlarge, m5a.large, m5a.xlarge, m5a.2xlarge, m5a.4xlarge, m5a.8xlarge, m5a.12xlarge, m5a.16xlarge, m5a.24xlarge
  location: "LocationStringModel",
})

Response structure


resp.ec2_instance_limits #=> Array
resp.ec2_instance_limits[0].ec2_instance_type #=> String, one of "t2.micro", "t2.small", "t2.medium", "t2.large", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge"
resp.ec2_instance_limits[0].current_instances #=> Integer
resp.ec2_instance_limits[0].instance_limit #=> Integer
resp.ec2_instance_limits[0].location #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ec2_instance_type (String)

    Name of an EC2 instance type that is supported in GameLift. A fleet instance type determines the computing resources of each instance in the fleet, including CPU, memory, storage, and networking capacity. Do not specify a value for this parameter to retrieve limits for all instance types.

  • :location (String)

    The name of a remote location to request instance limits for, in the form of an AWS Region code such as us-west-2.

Returns:

See Also:



3466
3467
3468
3469
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3466

def describe_ec2_instance_limits(params = {}, options = {})
  req = build_request(:describe_ec2_instance_limits, params)
  req.send_request(options)
end

#describe_fleet_attributes(params = {}) ⇒ Types::DescribeFleetAttributesOutput

Retrieves core fleet-wide properties, including the computing hardware and deployment configuration for all instances in the fleet.

This operation can be used in the following ways:

  • To get attributes for one or more specific fleets, provide a list of fleet IDs or fleet ARNs.

  • To get attributes for all fleets, do not provide a fleet identifier.

When requesting attributes for multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a FleetAttributes object is returned for each fleet requested, unless the fleet identifier is not found.

Some API operations limit the number of fleet IDs that allowed in one request. If a request exceeds this limit, the request fails and the error message contains the maximum allowed number.

Learn more

Setting up GameLift fleets

Related actions

ListFleets | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetEvents | DescribeFleetLocationAttributes | DescribeFleetPortSettings | DescribeFleetUtilization | DescribeRuntimeConfiguration | DescribeScalingPolicies | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_attributes({
  fleet_ids: ["FleetIdOrArn"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.fleet_attributes #=> Array
resp.fleet_attributes[0].fleet_id #=> String
resp.fleet_attributes[0].fleet_arn #=> String
resp.fleet_attributes[0].fleet_type #=> String, one of "ON_DEMAND", "SPOT"
resp.fleet_attributes[0].instance_type #=> String, one of "t2.micro", "t2.small", "t2.medium", "t2.large", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge"
resp.fleet_attributes[0].description #=> String
resp.fleet_attributes[0].name #=> String
resp.fleet_attributes[0].creation_time #=> Time
resp.fleet_attributes[0].termination_time #=> Time
resp.fleet_attributes[0].status #=> String, one of "NEW", "DOWNLOADING", "VALIDATING", "BUILDING", "ACTIVATING", "ACTIVE", "DELETING", "ERROR", "TERMINATED"
resp.fleet_attributes[0].build_id #=> String
resp.fleet_attributes[0].build_arn #=> String
resp.fleet_attributes[0].script_id #=> String
resp.fleet_attributes[0].script_arn #=> String
resp.fleet_attributes[0].server_launch_path #=> String
resp.fleet_attributes[0].server_launch_parameters #=> String
resp.fleet_attributes[0].log_paths #=> Array
resp.fleet_attributes[0].log_paths[0] #=> String
resp.fleet_attributes[0].new_game_session_protection_policy #=> String, one of "NoProtection", "FullProtection"
resp.fleet_attributes[0].operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.fleet_attributes[0].resource_creation_limit_policy.new_game_sessions_per_creator #=> Integer
resp.fleet_attributes[0].resource_creation_limit_policy.policy_period_in_minutes #=> Integer
resp.fleet_attributes[0].metric_groups #=> Array
resp.fleet_attributes[0].metric_groups[0] #=> String
resp.fleet_attributes[0].stopped_actions #=> Array
resp.fleet_attributes[0].stopped_actions[0] #=> String, one of "AUTO_SCALING"
resp.fleet_attributes[0].instance_role_arn #=> String
resp.fleet_attributes[0].certificate_configuration.certificate_type #=> String, one of "DISABLED", "GENERATED"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_ids (Array<String>)

    A list of unique fleet identifiers to retrieve attributes for. You can use either the fleet ID or ARN value. To retrieve attributes for all current fleets, do not include this parameter.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. This parameter is ignored when the request specifies one or a list of fleet IDs.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value. This parameter is ignored when the request specifies one or a list of fleet IDs.

Returns:

See Also:



3579
3580
3581
3582
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3579

def describe_fleet_attributes(params = {}, options = {})
  req = build_request(:describe_fleet_attributes, params)
  req.send_request(options)
end

#describe_fleet_capacity(params = {}) ⇒ Types::DescribeFleetCapacityOutput

Retrieves the resource capacity settings for one or more fleets. The data returned includes the current fleet capacity (number of EC2 instances), and settings that can control how capacity scaling. For fleets with remote locations, this operation retrieves data for the fleet's home Region only. See DescribeFleetLocationCapacity to get capacity settings for a fleet's remote locations.

This operation can be used in the following ways:

  • To get capacity data for one or more specific fleets, provide a list of fleet IDs or fleet ARNs.

  • To get capacity data for all fleets, do not provide a fleet identifier.

When requesting multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a FleetCapacity object is returned for each requested fleet ID. Each FleetCapacity object includes a Location property, which is set to the fleet's home Region. When a list of fleet IDs is provided, attribute objects are returned only for fleets that currently exist.

Some API operations may limit the number of fleet IDs that are allowed in one request. If a request exceeds this limit, the request fails and the error message includes the maximum allowed.

Learn more

Setting up GameLift fleets

GameLift metrics for fleets

Related actions

ListFleets | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetEvents | DescribeFleetLocationAttributes | DescribeFleetPortSettings | DescribeFleetUtilization | DescribeRuntimeConfiguration | DescribeScalingPolicies | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_capacity({
  fleet_ids: ["FleetIdOrArn"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.fleet_capacity #=> Array
resp.fleet_capacity[0].fleet_id #=> String
resp.fleet_capacity[0].fleet_arn #=> String
resp.fleet_capacity[0].instance_type #=> String, one of "t2.micro", "t2.small", "t2.medium", "t2.large", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge"
resp.fleet_capacity[0].instance_counts.desired #=> Integer
resp.fleet_capacity[0].instance_counts.minimum #=> Integer
resp.fleet_capacity[0].instance_counts.maximum #=> Integer
resp.fleet_capacity[0].instance_counts.pending #=> Integer
resp.fleet_capacity[0].instance_counts.active #=> Integer
resp.fleet_capacity[0].instance_counts.idle #=> Integer
resp.fleet_capacity[0].instance_counts.terminating #=> Integer
resp.fleet_capacity[0].location #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_ids (Array<String>)

    A unique identifier for the fleet(s) to retrieve capacity information for. You can use either the fleet ID or ARN value. Leave this parameter empty to retrieve capacity information for all fleets.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. This parameter is ignored when the request specifies one or a list of fleet IDs.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value. This parameter is ignored when the request specifies one or a list of fleet IDs.

Returns:

See Also:



3687
3688
3689
3690
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3687

def describe_fleet_capacity(params = {}, options = {})
  req = build_request(:describe_fleet_capacity, params)
  req.send_request(options)
end

#describe_fleet_events(params = {}) ⇒ Types::DescribeFleetEventsOutput

Retrieves entries from a fleet's event log. Fleet events are initiated by changes in status, such as during fleet creation and termination, changes in capacity, etc. If a fleet has multiple locations, events are also initiated by changes to status and capacity in remote locations.

You can specify a time range to limit the result set. Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a collection of event log entries matching the request are returned.

Learn more

Setting up GameLift fleets

Related actions

ListFleets | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetEvents | DescribeFleetLocationAttributes | DescribeFleetPortSettings | DescribeFleetUtilization | DescribeRuntimeConfiguration | DescribeScalingPolicies | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_events({
  fleet_id: "FleetIdOrArn", # required
  start_time: Time.now,
  end_time: Time.now,
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.events #=> Array
resp.events[0].event_id #=> String
resp.events[0].resource_id #=> String
resp.events[0].event_code #=> String, one of "GENERIC_EVENT", "FLEET_CREATED", "FLEET_DELETED", "FLEET_SCALING_EVENT", "FLEET_STATE_DOWNLOADING", "FLEET_STATE_VALIDATING", "FLEET_STATE_BUILDING", "FLEET_STATE_ACTIVATING", "FLEET_STATE_ACTIVE", "FLEET_STATE_ERROR", "FLEET_INITIALIZATION_FAILED", "FLEET_BINARY_DOWNLOAD_FAILED", "FLEET_VALIDATION_LAUNCH_PATH_NOT_FOUND", "FLEET_VALIDATION_EXECUTABLE_RUNTIME_FAILURE", "FLEET_VALIDATION_TIMED_OUT", "FLEET_ACTIVATION_FAILED", "FLEET_ACTIVATION_FAILED_NO_INSTANCES", "FLEET_NEW_GAME_SESSION_PROTECTION_POLICY_UPDATED", "SERVER_PROCESS_INVALID_PATH", "SERVER_PROCESS_SDK_INITIALIZATION_TIMEOUT", "SERVER_PROCESS_PROCESS_READY_TIMEOUT", "SERVER_PROCESS_CRASHED", "SERVER_PROCESS_TERMINATED_UNHEALTHY", "SERVER_PROCESS_FORCE_TERMINATED", "SERVER_PROCESS_PROCESS_EXIT_TIMEOUT", "GAME_SESSION_ACTIVATION_TIMEOUT", "FLEET_CREATION_EXTRACTING_BUILD", "FLEET_CREATION_RUNNING_INSTALLER", "FLEET_CREATION_VALIDATING_RUNTIME_CONFIG", "FLEET_VPC_PEERING_SUCCEEDED", "FLEET_VPC_PEERING_FAILED", "FLEET_VPC_PEERING_DELETED", "INSTANCE_INTERRUPTED"
resp.events[0].message #=> String
resp.events[0].event_time #=> Time
resp.events[0].pre_signed_log_url #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to get event logs for. You can use either the fleet ID or ARN value.

  • :start_time (Time, DateTime, Date, Integer, String)

    The earliest date to retrieve event logs for. If no start time is specified, this call returns entries starting from when the fleet was created to the specified end time. Format is a number expressed in Unix time as milliseconds (ex: "1469498468.057").

  • :end_time (Time, DateTime, Date, Integer, String)

    The most recent date to retrieve event logs for. If no end time is specified, this call returns entries from the specified start time up to the present. Format is a number expressed in Unix time as milliseconds (ex: "1469498468.057").

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



3780
3781
3782
3783
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3780

def describe_fleet_events(params = {}, options = {})
  req = build_request(:describe_fleet_events, params)
  req.send_request(options)
end

#describe_fleet_location_attributes(params = {}) ⇒ Types::DescribeFleetLocationAttributesOutput

Retrieves information on a fleet's remote locations, including life-cycle status and any suspended fleet activity.

This operation can be used in the following ways:

  • To get data for specific locations, provide a fleet identifier and a list of locations. Location data is returned in the order that it is requested.

  • To get data for all locations, provide a fleet identifier only. Location data is returned in no particular order.

When requesting attributes for multiple locations, use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a LocationAttributes object is returned for each requested location. If the fleet does not have a requested location, no information is returned. This operation does not return the home Region. To get information on a fleet's home Region, call DescribeFleetAttributes.

Learn more

Setting up GameLift fleets

Related actions

CreateFleetLocations | DescribeFleetLocationAttributes | DescribeFleetLocationCapacity | DescribeFleetLocationUtilization | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetUtilization | UpdateFleetCapacity | StopFleetActions | DeleteFleetLocations | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_location_attributes({
  fleet_id: "FleetIdOrArn", # required
  locations: ["LocationStringModel"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.fleet_id #=> String
resp.fleet_arn #=> String
resp.location_attributes #=> Array
resp.location_attributes[0].location_state.location #=> String
resp.location_attributes[0].location_state.status #=> String, one of "NEW", "DOWNLOADING", "VALIDATING", "BUILDING", "ACTIVATING", "ACTIVE", "DELETING", "ERROR", "TERMINATED"
resp.location_attributes[0].stopped_actions #=> Array
resp.location_attributes[0].stopped_actions[0] #=> String, one of "AUTO_SCALING"
resp.location_attributes[0].update_status #=> String, one of "PENDING_UPDATE"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to retrieve remote locations for. You can use either the fleet ID or ARN value.

  • :locations (Array<String>)

    A list of fleet locations to retrieve information for. Specify locations in the form of an AWS Region code, such as us-west-2.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. This limit is not currently enforced.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



3876
3877
3878
3879
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3876

def describe_fleet_location_attributes(params = {}, options = {})
  req = build_request(:describe_fleet_location_attributes, params)
  req.send_request(options)
end

#describe_fleet_location_capacity(params = {}) ⇒ Types::DescribeFleetLocationCapacityOutput

Retrieves the resource capacity settings for a fleet location. The data returned includes the current capacity (number of EC2 instances) and some scaling settings for the requested fleet location. Use this operation to retrieve capacity information for a fleet's remote location or home Region (you can also retrieve home Region capacity by calling DescribeFleetCapacity).

To retrieve capacity data, identify a fleet and location.

If successful, a FleetCapacity object is returned for the requested fleet location.

Learn more

Setting up GameLift fleets

GameLift metrics for fleets

Related actions

CreateFleetLocations | DescribeFleetLocationAttributes | DescribeFleetLocationCapacity | DescribeFleetLocationUtilization | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetUtilization | UpdateFleetCapacity | StopFleetActions | DeleteFleetLocations | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_location_capacity({
  fleet_id: "FleetIdOrArn", # required
  location: "LocationStringModel", # required
})

Response structure


resp.fleet_capacity.fleet_id #=> String
resp.fleet_capacity.fleet_arn #=> String
resp.fleet_capacity.instance_type #=> String, one of "t2.micro", "t2.small", "t2.medium", "t2.large", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge"
resp.fleet_capacity.instance_counts.desired #=> Integer
resp.fleet_capacity.instance_counts.minimum #=> Integer
resp.fleet_capacity.instance_counts.maximum #=> Integer
resp.fleet_capacity.instance_counts.pending #=> Integer
resp.fleet_capacity.instance_counts.active #=> Integer
resp.fleet_capacity.instance_counts.idle #=> Integer
resp.fleet_capacity.instance_counts.terminating #=> Integer
resp.fleet_capacity.location #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to request location capacity for. You can use either the fleet ID or ARN value.

  • :location (required, String)

    The fleet location to retrieve capacity information for. Specify a location in the form of an AWS Region code, such as us-west-2.

Returns:

See Also:



3950
3951
3952
3953
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 3950

def describe_fleet_location_capacity(params = {}, options = {})
  req = build_request(:describe_fleet_location_capacity, params)
  req.send_request(options)
end

#describe_fleet_location_utilization(params = {}) ⇒ Types::DescribeFleetLocationUtilizationOutput

Retrieves current usage data for a fleet location. Utilization data provides a snapshot of current game hosting activity at the requested location. Use this operation to retrieve utilization information for a fleet's remote location or home Region (you can also retrieve home Region utilization by calling DescribeFleetUtilization).

To retrieve utilization data, identify a fleet and location.

If successful, a FleetUtilization object is returned for the requested fleet location.

Learn more

Setting up GameLift fleets

GameLift metrics for fleets

Related actions

CreateFleetLocations | DescribeFleetLocationAttributes | DescribeFleetLocationCapacity | DescribeFleetLocationUtilization | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetUtilization | UpdateFleetCapacity | StopFleetActions | DeleteFleetLocations | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_location_utilization({
  fleet_id: "FleetIdOrArn", # required
  location: "LocationStringModel", # required
})

Response structure


resp.fleet_utilization.fleet_id #=> String
resp.fleet_utilization.fleet_arn #=> String
resp.fleet_utilization.active_server_process_count #=> Integer
resp.fleet_utilization.active_game_session_count #=> Integer
resp.fleet_utilization.current_player_session_count #=> Integer
resp.fleet_utilization.maximum_player_session_count #=> Integer
resp.fleet_utilization.location #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to request location utilization for. You can use either the fleet ID or ARN value.

  • :location (required, String)

    The fleet location to retrieve utilization information for. Specify a location in the form of an AWS Region code, such as us-west-2.

Returns:

See Also:



4019
4020
4021
4022
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4019

def describe_fleet_location_utilization(params = {}, options = {})
  req = build_request(:describe_fleet_location_utilization, params)
  req.send_request(options)
end

#describe_fleet_port_settings(params = {}) ⇒ Types::DescribeFleetPortSettingsOutput

Retrieves a fleet's inbound connection permissions. Connection permissions specify the range of IP addresses and port settings that incoming traffic can use to access server processes in the fleet. Game sessions that are running on instances in the fleet must use connections that fall in this range.

This operation can be used in the following ways:

  • To retrieve the inbound connection permissions for a fleet, identify the fleet's unique identifier.

  • To check the status of recent updates to a fleet remote location, specify the fleet ID and a location. Port setting updates can take time to propagate across all locations.

If successful, a set of IpPermission objects is returned for the requested fleet ID. When a location is specified, a pending status is included. If the requested fleet has been deleted, the result set is empty.

Learn more

Setting up GameLift fleets

Related actions

ListFleets | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetEvents | DescribeFleetLocationAttributes | DescribeFleetPortSettings | DescribeFleetUtilization | DescribeRuntimeConfiguration | DescribeScalingPolicies | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_port_settings({
  fleet_id: "FleetIdOrArn", # required
  location: "LocationStringModel",
})

Response structure


resp.fleet_id #=> String
resp.fleet_arn #=> String
resp.inbound_permissions #=> Array
resp.inbound_permissions[0].from_port #=> Integer
resp.inbound_permissions[0].to_port #=> Integer
resp.inbound_permissions[0].ip_range #=> String
resp.inbound_permissions[0].protocol #=> String, one of "TCP", "UDP"
resp.update_status #=> String, one of "PENDING_UPDATE"
resp.location #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to retrieve port settings for. You can use either the fleet ID or ARN value.

  • :location (String)

    A remote location to check for status of port setting updates. Use the AWS Region code format, such as us-west-2.

Returns:

See Also:



4100
4101
4102
4103
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4100

def describe_fleet_port_settings(params = {}, options = {})
  req = build_request(:describe_fleet_port_settings, params)
  req.send_request(options)
end

#describe_fleet_utilization(params = {}) ⇒ Types::DescribeFleetUtilizationOutput

Retrieves utilization statistics for one or more fleets. Utilization data provides a snapshot of how the fleet's hosting resources are currently being used. For fleets with remote locations, this operation retrieves data for the fleet's home Region only. See DescribeFleetLocationUtilization to get utilization statistics for a fleet's remote locations.

This operation can be used in the following ways:

  • To get utilization data for one or more specific fleets, provide a list of fleet IDs or fleet ARNs.

  • To get utilization data for all fleets, do not provide a fleet identifier.

When requesting multiple fleets, use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a FleetUtilization object is returned for each requested fleet ID, unless the fleet identifier is not found. Each fleet utilization object includes a Location property, which is set to the fleet's home Region.

Some API operations may limit the number of fleet IDs allowed in one request. If a request exceeds this limit, the request fails and the error message includes the maximum allowed.

Learn more

Setting up GameLift Fleets

GameLift Metrics for Fleets

Related actions

ListFleets | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetEvents | DescribeFleetLocationAttributes | DescribeFleetPortSettings | DescribeFleetUtilization | DescribeRuntimeConfiguration | DescribeScalingPolicies | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_fleet_utilization({
  fleet_ids: ["FleetIdOrArn"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.fleet_utilization #=> Array
resp.fleet_utilization[0].fleet_id #=> String
resp.fleet_utilization[0].fleet_arn #=> String
resp.fleet_utilization[0].active_server_process_count #=> Integer
resp.fleet_utilization[0].active_game_session_count #=> Integer
resp.fleet_utilization[0].current_player_session_count #=> Integer
resp.fleet_utilization[0].maximum_player_session_count #=> Integer
resp.fleet_utilization[0].location #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_ids (Array<String>)

    A unique identifier for the fleet(s) to retrieve utilization data for. You can use either the fleet ID or ARN value. To retrieve attributes for all current fleets, do not include this parameter.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. This parameter is ignored when the request specifies one or a list of fleet IDs.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value. This parameter is ignored when the request specifies one or a list of fleet IDs.

Returns:

See Also:



4203
4204
4205
4206
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4203

def describe_fleet_utilization(params = {}, options = {})
  req = build_request(:describe_fleet_utilization, params)
  req.send_request(options)
end

#describe_game_server(params = {}) ⇒ Types::DescribeGameServerOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Retrieves information for a registered game server. Information includes game server status, health check info, and the instance that the game server is running on.

To retrieve game server information, specify the game server ID. If successful, the requested game server object is returned.

Learn more

GameLift FleetIQ Guide

Related actions

RegisterGameServer | ListGameServers | ClaimGameServer | DescribeGameServer | UpdateGameServer | DeregisterGameServer | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_game_server({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  game_server_id: "GameServerId", # required
})

Response structure


resp.game_server.game_server_group_name #=> String
resp.game_server.game_server_group_arn #=> String
resp.game_server.game_server_id #=> String
resp.game_server.instance_id #=> String
resp.game_server.connection_info #=> String
resp.game_server.game_server_data #=> String
resp.game_server.claim_status #=> String, one of "CLAIMED"
resp.game_server.utilization_status #=> String, one of "AVAILABLE", "UTILIZED"
resp.game_server.registration_time #=> Time
resp.game_server.last_claim_time #=> Time
resp.game_server.last_health_check_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group where the game server is running. Use either the GameServerGroup name or ARN value.

  • :game_server_id (required, String)

    A custom string that uniquely identifies the game server information to be retrieved.

Returns:

See Also:



4270
4271
4272
4273
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4270

def describe_game_server(params = {}, options = {})
  req = build_request(:describe_game_server, params)
  req.send_request(options)
end

#describe_game_server_group(params = {}) ⇒ Types::DescribeGameServerGroupOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Retrieves information on a game server group. This operation returns only properties related to GameLift FleetIQ. To view or update properties for the corresponding Auto Scaling group, such as launch template, auto scaling policies, and maximum/minimum group size, access the Auto Scaling group directly.

To get attributes for a game server group, provide a group name or ARN value. If successful, a GameServerGroup object is returned.

Learn more

GameLift FleetIQ Guide

Related actions

CreateGameServerGroup | ListGameServerGroups | DescribeGameServerGroup | UpdateGameServerGroup | DeleteGameServerGroup | ResumeGameServerGroup | SuspendGameServerGroup | DescribeGameServerInstances | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_game_server_group({
  game_server_group_name: "GameServerGroupNameOrArn", # required
})

Response structure


resp.game_server_group.game_server_group_name #=> String
resp.game_server_group.game_server_group_arn #=> String
resp.game_server_group.role_arn #=> String
resp.game_server_group.instance_definitions #=> Array
resp.game_server_group.instance_definitions[0].instance_type #=> String, one of "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "c6g.medium", "c6g.large", "c6g.xlarge", "c6g.2xlarge", "c6g.4xlarge", "c6g.8xlarge", "c6g.12xlarge", "c6g.16xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "r6g.medium", "r6g.large", "r6g.xlarge", "r6g.2xlarge", "r6g.4xlarge", "r6g.8xlarge", "r6g.12xlarge", "r6g.16xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge", "m6g.medium", "m6g.large", "m6g.xlarge", "m6g.2xlarge", "m6g.4xlarge", "m6g.8xlarge", "m6g.12xlarge", "m6g.16xlarge"
resp.game_server_group.instance_definitions[0].weighted_capacity #=> String
resp.game_server_group.balancing_strategy #=> String, one of "SPOT_ONLY", "SPOT_PREFERRED", "ON_DEMAND_ONLY"
resp.game_server_group.game_server_protection_policy #=> String, one of "NO_PROTECTION", "FULL_PROTECTION"
resp.game_server_group.auto_scaling_group_arn #=> String
resp.game_server_group.status #=> String, one of "NEW", "ACTIVATING", "ACTIVE", "DELETE_SCHEDULED", "DELETING", "DELETED", "ERROR"
resp.game_server_group.status_reason #=> String
resp.game_server_group.suspended_actions #=> Array
resp.game_server_group.suspended_actions[0] #=> String, one of "REPLACE_INSTANCE_TYPES"
resp.game_server_group.creation_time #=> Time
resp.game_server_group.last_updated_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group. Use either the GameServerGroup name or ARN value.

Returns:

See Also:



4340
4341
4342
4343
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4340

def describe_game_server_group(params = {}, options = {})
  req = build_request(:describe_game_server_group, params)
  req.send_request(options)
end

#describe_game_server_instances(params = {}) ⇒ Types::DescribeGameServerInstancesOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Retrieves status information about the Amazon EC2 instances associated with a GameLift FleetIQ game server group. Use this operation to detect when instances are active or not available to host new game servers. If you are looking for instance configuration information, call DescribeGameServerGroup or access the corresponding Auto Scaling group properties.

To request status for all instances in the game server group, provide a game server group ID only. To request status for specific instances, provide the game server group ID and one or more instance IDs. Use the pagination parameters to retrieve results in sequential segments. If successful, a collection of GameServerInstance objects is returned.

This operation is not designed to be called with every game server claim request; this practice can cause you to exceed your API limit, which results in errors. Instead, as a best practice, cache the results and refresh your cache no more than once every 10 seconds.

Learn more

GameLift FleetIQ Guide

Related actions

CreateGameServerGroup | ListGameServerGroups | DescribeGameServerGroup | UpdateGameServerGroup | DeleteGameServerGroup | ResumeGameServerGroup | SuspendGameServerGroup | DescribeGameServerInstances | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_game_server_instances({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  instance_ids: ["GameServerInstanceId"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_server_instances #=> Array
resp.game_server_instances[0].game_server_group_name #=> String
resp.game_server_instances[0].game_server_group_arn #=> String
resp.game_server_instances[0].instance_id #=> String
resp.game_server_instances[0].instance_status #=> String, one of "ACTIVE", "DRAINING", "SPOT_TERMINATING"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group. Use either the GameServerGroup name or ARN value.

  • :instance_ids (Array<String>)

    The EC2 instance IDs that you want to retrieve status on. EC2 instance IDs use a 17-character format, for example: i-1234567890abcdef0. To retrieve all instances in the game server group, leave this parameter empty.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



4432
4433
4434
4435
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4432

def describe_game_server_instances(params = {}, options = {})
  req = build_request(:describe_game_server_instances, params)
  req.send_request(options)
end

#describe_game_session_details(params = {}) ⇒ Types::DescribeGameSessionDetailsOutput

Retrieves additional game session properties, including the game session protection policy in force, a set of one or more game sessions in a specific fleet location. You can optionally filter the results by current game session status. Alternatively, use SearchGameSessions to request a set of active game sessions that are filtered by certain criteria. To retrieve all game session properties, use DescribeGameSessions.

This operation can be used in the following ways:

  • To retrieve details for all game sessions that are currently running on all locations in a fleet, provide a fleet or alias ID, with an optional status filter. This approach returns details from the fleet's home Region and all remote locations.

  • To retrieve details for all game sessions that are currently running on a specific fleet location, provide a fleet or alias ID and a location name, with optional status filter. The location can be the fleet's home Region or any remote location.

  • To retrieve details for a specific game session, provide the game session ID. This approach looks for the game session ID in all fleets that reside in the AWS Region defined in the request.

Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a GameSessionDetail object is returned for each game session that matches the request.

Learn more

Find a game session

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_game_session_details({
  fleet_id: "FleetIdOrArn",
  game_session_id: "ArnStringModel",
  alias_id: "AliasIdOrArn",
  location: "LocationStringModel",
  status_filter: "NonZeroAndMaxString",
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_session_details #=> Array
resp.game_session_details[0].game_session.game_session_id #=> String
resp.game_session_details[0].game_session.name #=> String
resp.game_session_details[0].game_session.fleet_id #=> String
resp.game_session_details[0].game_session.fleet_arn #=> String
resp.game_session_details[0].game_session.creation_time #=> Time
resp.game_session_details[0].game_session.termination_time #=> Time
resp.game_session_details[0].game_session.current_player_session_count #=> Integer
resp.game_session_details[0].game_session.maximum_player_session_count #=> Integer
resp.game_session_details[0].game_session.status #=> String, one of "ACTIVE", "ACTIVATING", "TERMINATED", "TERMINATING", "ERROR"
resp.game_session_details[0].game_session.status_reason #=> String, one of "INTERRUPTED"
resp.game_session_details[0].game_session.game_properties #=> Array
resp.game_session_details[0].game_session.game_properties[0].key #=> String
resp.game_session_details[0].game_session.game_properties[0].value #=> String
resp.game_session_details[0].game_session.ip_address #=> String
resp.game_session_details[0].game_session.dns_name #=> String
resp.game_session_details[0].game_session.port #=> Integer
resp.game_session_details[0].game_session.player_session_creation_policy #=> String, one of "ACCEPT_ALL", "DENY_ALL"
resp.game_session_details[0].game_session.creator_id #=> String
resp.game_session_details[0].game_session.game_session_data #=> String
resp.game_session_details[0].game_session.matchmaker_data #=> String
resp.game_session_details[0].game_session.location #=> String
resp.game_session_details[0].protection_policy #=> String, one of "NoProtection", "FullProtection"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (String)

    A unique identifier for the fleet to retrieve all game sessions active on the fleet. You can use either the fleet ID or ARN value.

  • :game_session_id (String)

    A unique identifier for the game session to retrieve.

  • :alias_id (String)

    A unique identifier for the alias associated with the fleet to retrieve all game sessions for. You can use either the alias ID or ARN value.

  • :location (String)

    A fleet location to get game sessions for. You can specify a fleet's home Region or a remote location. Use the AWS Region code format, such as us-west-2.

  • :status_filter (String)

    Game session status to filter results on. Possible game session statuses include ACTIVE, TERMINATED, ACTIVATING and TERMINATING (the last two are transitory).

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



4566
4567
4568
4569
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4566

def describe_game_session_details(params = {}, options = {})
  req = build_request(:describe_game_session_details, params)
  req.send_request(options)
end

#describe_game_session_placement(params = {}) ⇒ Types::DescribeGameSessionPlacementOutput

Retrieves information, including current status, about a game session placement request.

To get game session placement details, specify the placement ID.

If successful, a GameSessionPlacement object is returned.

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_game_session_placement({
  placement_id: "IdStringModel", # required
})

Response structure


resp.game_session_placement.placement_id #=> String
resp.game_session_placement.game_session_queue_name #=> String
resp.game_session_placement.status #=> String, one of "PENDING", "FULFILLED", "CANCELLED", "TIMED_OUT", "FAILED"
resp.game_session_placement.game_properties #=> Array
resp.game_session_placement.game_properties[0].key #=> String
resp.game_session_placement.game_properties[0].value #=> String
resp.game_session_placement.maximum_player_session_count #=> Integer
resp.game_session_placement.game_session_name #=> String
resp.game_session_placement.game_session_id #=> String
resp.game_session_placement.game_session_arn #=> String
resp.game_session_placement.game_session_region #=> String
resp.game_session_placement.player_latencies #=> Array
resp.game_session_placement.player_latencies[0].player_id #=> String
resp.game_session_placement.player_latencies[0].region_identifier #=> String
resp.game_session_placement.player_latencies[0].latency_in_milliseconds #=> Float
resp.game_session_placement.start_time #=> Time
resp.game_session_placement.end_time #=> Time
resp.game_session_placement.ip_address #=> String
resp.game_session_placement.dns_name #=> String
resp.game_session_placement.port #=> Integer
resp.game_session_placement.placed_player_sessions #=> Array
resp.game_session_placement.placed_player_sessions[0].player_id #=> String
resp.game_session_placement.placed_player_sessions[0].player_session_id #=> String
resp.game_session_placement.game_session_data #=> String
resp.game_session_placement.matchmaker_data #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :placement_id (required, String)

    A unique identifier for a game session placement to retrieve.

Returns:

See Also:



4635
4636
4637
4638
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4635

def describe_game_session_placement(params = {}, options = {})
  req = build_request(:describe_game_session_placement, params)
  req.send_request(options)
end

#describe_game_session_queues(params = {}) ⇒ Types::DescribeGameSessionQueuesOutput

Retrieves the properties for one or more game session queues. When requesting multiple queues, use the pagination parameters to retrieve results as a set of sequential pages. If successful, a GameSessionQueue object is returned for each requested queue. When specifying a list of queues, objects are returned only for queues that currently exist in the Region.

Learn more

View Your Queues

Related actions

CreateGameSessionQueue | DescribeGameSessionQueues | UpdateGameSessionQueue | DeleteGameSessionQueue | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_game_session_queues({
  names: ["GameSessionQueueNameOrArn"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_session_queues #=> Array
resp.game_session_queues[0].name #=> String
resp.game_session_queues[0].game_session_queue_arn #=> String
resp.game_session_queues[0].timeout_in_seconds #=> Integer
resp.game_session_queues[0].player_latency_policies #=> Array
resp.game_session_queues[0].player_latency_policies[0].maximum_individual_player_latency_milliseconds #=> Integer
resp.game_session_queues[0].player_latency_policies[0].policy_duration_seconds #=> Integer
resp.game_session_queues[0].destinations #=> Array
resp.game_session_queues[0].destinations[0].destination_arn #=> String
resp.game_session_queues[0].filter_configuration.allowed_locations #=> Array
resp.game_session_queues[0].filter_configuration.allowed_locations[0] #=> String
resp.game_session_queues[0].priority_configuration.priority_order #=> Array
resp.game_session_queues[0].priority_configuration.priority_order[0] #=> String, one of "LATENCY", "COST", "DESTINATION", "LOCATION"
resp.game_session_queues[0].priority_configuration.location_order #=> Array
resp.game_session_queues[0].priority_configuration.location_order[0] #=> String
resp.game_session_queues[0].custom_event_data #=> String
resp.game_session_queues[0].notification_target #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :names (Array<String>)

    A list of queue names to retrieve information for. You can use either the queue ID or ARN value. To request settings for all queues, leave this parameter empty.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. You can request up to 50 results.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



4718
4719
4720
4721
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4718

def describe_game_session_queues(params = {}, options = {})
  req = build_request(:describe_game_session_queues, params)
  req.send_request(options)
end

#describe_game_sessions(params = {}) ⇒ Types::DescribeGameSessionsOutput

Retrieves a set of one or more game sessions in a specific fleet location. You can optionally filter the results by current game session status. Alternatively, use SearchGameSessions to request a set of active game sessions that are filtered by certain criteria. To retrieve the protection policy for game sessions, use DescribeGameSessionDetails.

This operation can be used in the following ways:

  • To retrieve all game sessions that are currently running on all locations in a fleet, provide a fleet or alias ID, with an optional status filter. This approach returns all game sessions in the fleet's home Region and all remote locations.

  • To retrieve all game sessions that are currently running on a specific fleet location, provide a fleet or alias ID and a location name, with optional status filter. The location can be the fleet's home Region or any remote location.

  • To retrieve a specific game session, provide the game session ID. This approach looks for the game session ID in all fleets that reside in the AWS Region defined in the request.

Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a GameSession object is returned for each game session that matches the request.

Available in GameLift Local.

Learn more

Find a game session

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_game_sessions({
  fleet_id: "FleetIdOrArn",
  game_session_id: "ArnStringModel",
  alias_id: "AliasIdOrArn",
  location: "LocationStringModel",
  status_filter: "NonZeroAndMaxString",
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_sessions #=> Array
resp.game_sessions[0].game_session_id #=> String
resp.game_sessions[0].name #=> String
resp.game_sessions[0].fleet_id #=> String
resp.game_sessions[0].fleet_arn #=> String
resp.game_sessions[0].creation_time #=> Time
resp.game_sessions[0].termination_time #=> Time
resp.game_sessions[0].current_player_session_count #=> Integer
resp.game_sessions[0].maximum_player_session_count #=> Integer
resp.game_sessions[0].status #=> String, one of "ACTIVE", "ACTIVATING", "TERMINATED", "TERMINATING", "ERROR"
resp.game_sessions[0].status_reason #=> String, one of "INTERRUPTED"
resp.game_sessions[0].game_properties #=> Array
resp.game_sessions[0].game_properties[0].key #=> String
resp.game_sessions[0].game_properties[0].value #=> String
resp.game_sessions[0].ip_address #=> String
resp.game_sessions[0].dns_name #=> String
resp.game_sessions[0].port #=> Integer
resp.game_sessions[0].player_session_creation_policy #=> String, one of "ACCEPT_ALL", "DENY_ALL"
resp.game_sessions[0].creator_id #=> String
resp.game_sessions[0].game_session_data #=> String
resp.game_sessions[0].matchmaker_data #=> String
resp.game_sessions[0].location #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (String)

    A unique identifier for the fleet to retrieve game sessions for. You can use either the fleet ID or ARN value.

  • :game_session_id (String)

    A unique identifier for the game session to retrieve.

  • :alias_id (String)

    A unique identifier for the alias associated with the fleet to retrieve game sessions for. You can use either the alias ID or ARN value.

  • :location (String)

    A fleet location to get game session details for. You can specify a fleet's home Region or a remote location. Use the AWS Region code format, such as us-west-2.

  • :status_filter (String)

    Game session status to filter results on. You can filter on the following states: ACTIVE, TERMINATED, ACTIVATING, and TERMINATING. The last two are transitory and used for only very brief periods of time.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



4853
4854
4855
4856
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4853

def describe_game_sessions(params = {}, options = {})
  req = build_request(:describe_game_sessions, params)
  req.send_request(options)
end

#describe_instances(params = {}) ⇒ Types::DescribeInstancesOutput

Retrieves information about a fleet's instances, including instance IDs, connection data, and status.

This operation can be used in the following ways:

  • To get information on all instances that are deployed to a fleet's home Region, provide the fleet ID.

  • To get information on all instances that are deployed to a fleet's remote location, provide the fleet ID and location name.

  • To get information on a specific instance in a fleet, provide the fleet ID and instance ID.

Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, an Instance object is returned for each requested instance. Instances are not returned in any particular order.

Learn more

Remotely Access Fleet Instances

Debug Fleet Issues

Related actions

DescribeInstances | GetInstanceAccess | DescribeEC2InstanceLimits | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_instances({
  fleet_id: "FleetIdOrArn", # required
  instance_id: "InstanceId",
  limit: 1,
  next_token: "NonZeroAndMaxString",
  location: "LocationStringModel",
})

Response structure


resp.instances #=> Array
resp.instances[0].fleet_id #=> String
resp.instances[0].fleet_arn #=> String
resp.instances[0].instance_id #=> String
resp.instances[0].ip_address #=> String
resp.instances[0].dns_name #=> String
resp.instances[0].operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.instances[0].type #=> String, one of "t2.micro", "t2.small", "t2.medium", "t2.large", "c3.large", "c3.xlarge", "c3.2xlarge", "c3.4xlarge", "c3.8xlarge", "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "r3.large", "r3.xlarge", "r3.2xlarge", "r3.4xlarge", "r3.8xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "m3.medium", "m3.large", "m3.xlarge", "m3.2xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge"
resp.instances[0].status #=> String, one of "PENDING", "ACTIVE", "TERMINATING"
resp.instances[0].creation_time #=> Time
resp.instances[0].location #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to retrieve instance information for. You can use either the fleet ID or ARN value.

  • :instance_id (String)

    A unique identifier for an instance to retrieve. Specify an instance ID or leave blank to retrieve all instances in the fleet.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

  • :location (String)

    The name of a location to retrieve instance information for, in the form of an AWS Region code such as us-west-2.

Returns:

See Also:



4953
4954
4955
4956
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 4953

def describe_instances(params = {}, options = {})
  req = build_request(:describe_instances, params)
  req.send_request(options)
end

#describe_matchmaking(params = {}) ⇒ Types::DescribeMatchmakingOutput

Retrieves one or more matchmaking tickets. Use this operation to retrieve ticket information, including--after a successful match is made--connection information for the resulting new game session.

To request matchmaking tickets, provide a list of up to 10 ticket IDs. If the request is successful, a ticket object is returned for each requested ID that currently exists.

This operation is not designed to be continually called to track matchmaking ticket status. This practice can cause you to exceed your API limit, which results in errors. Instead, as a best practice, set up an Amazon Simple Notification Service (SNS) to receive notifications, and provide the topic ARN in the matchmaking configuration. Continuously poling ticket status with DescribeMatchmaking should only be used for games in development with low matchmaking usage.

Learn more

Add FlexMatch to a game client

Set Up FlexMatch event notification

Related actions

StartMatchmaking | DescribeMatchmaking | StopMatchmaking | AcceptMatch | StartMatchBackfill | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_matchmaking({
  ticket_ids: ["MatchmakingIdStringModel"], # required
})

Response structure


resp.ticket_list #=> Array
resp.ticket_list[0].ticket_id #=> String
resp.ticket_list[0].configuration_name #=> String
resp.ticket_list[0].configuration_arn #=> String
resp.ticket_list[0].status #=> String, one of "CANCELLED", "COMPLETED", "FAILED", "PLACING", "QUEUED", "REQUIRES_ACCEPTANCE", "SEARCHING", "TIMED_OUT"
resp.ticket_list[0].status_reason #=> String
resp.ticket_list[0].status_message #=> String
resp.ticket_list[0].start_time #=> Time
resp.ticket_list[0].end_time #=> Time
resp.ticket_list[0].players #=> Array
resp.ticket_list[0].players[0].player_id #=> String
resp.ticket_list[0].players[0].player_attributes #=> Hash
resp.ticket_list[0].players[0].player_attributes["NonZeroAndMaxString"] #=> <Hash,Array,String,Numeric,Boolean,IO,Set,nil>
resp.ticket_list[0].players[0].team #=> String
resp.ticket_list[0].players[0].latency_in_ms #=> Hash
resp.ticket_list[0].players[0].latency_in_ms["NonEmptyString"] #=> Integer
resp.ticket_list[0].game_session_connection_info.game_session_arn #=> String
resp.ticket_list[0].game_session_connection_info.ip_address #=> String
resp.ticket_list[0].game_session_connection_info.dns_name #=> String
resp.ticket_list[0].game_session_connection_info.port #=> Integer
resp.ticket_list[0].game_session_connection_info.matched_player_sessions #=> Array
resp.ticket_list[0].game_session_connection_info.matched_player_sessions[0].player_id #=> String
resp.ticket_list[0].game_session_connection_info.matched_player_sessions[0].player_session_id #=> String
resp.ticket_list[0].estimated_wait_time #=> Integer

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ticket_ids (required, Array<String>)

    A unique identifier for a matchmaking ticket. You can include up to 10 ID values.

Returns:

See Also:



5039
5040
5041
5042
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5039

def describe_matchmaking(params = {}, options = {})
  req = build_request(:describe_matchmaking, params)
  req.send_request(options)
end

#describe_matchmaking_configurations(params = {}) ⇒ Types::DescribeMatchmakingConfigurationsOutput

Retrieves the details of FlexMatch matchmaking configurations.

This operation offers the following options: (1) retrieve all matchmaking configurations, (2) retrieve configurations for a specified list, or (3) retrieve all configurations that use a specified rule set name. When requesting multiple items, use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a configuration is returned for each requested name. When specifying a list of names, only configurations that currently exist are returned.

Learn more

Setting up FlexMatch matchmakers

Related actions

CreateMatchmakingConfiguration | DescribeMatchmakingConfigurations | UpdateMatchmakingConfiguration | DeleteMatchmakingConfiguration | CreateMatchmakingRuleSet | DescribeMatchmakingRuleSets | ValidateMatchmakingRuleSet | DeleteMatchmakingRuleSet | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_matchmaking_configurations({
  names: ["MatchmakingConfigurationName"],
  rule_set_name: "MatchmakingRuleSetName",
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.configurations #=> Array
resp.configurations[0].name #=> String
resp.configurations[0].configuration_arn #=> String
resp.configurations[0].description #=> String
resp.configurations[0].game_session_queue_arns #=> Array
resp.configurations[0].game_session_queue_arns[0] #=> String
resp.configurations[0].request_timeout_seconds #=> Integer
resp.configurations[0].acceptance_timeout_seconds #=> Integer
resp.configurations[0].acceptance_required #=> Boolean
resp.configurations[0].rule_set_name #=> String
resp.configurations[0].rule_set_arn #=> String
resp.configurations[0].notification_target #=> String
resp.configurations[0].additional_player_count #=> Integer
resp.configurations[0].custom_event_data #=> String
resp.configurations[0].creation_time #=> Time
resp.configurations[0].game_properties #=> Array
resp.configurations[0].game_properties[0].key #=> String
resp.configurations[0].game_properties[0].value #=> String
resp.configurations[0].game_session_data #=> String
resp.configurations[0].backfill_mode #=> String, one of "AUTOMATIC", "MANUAL"
resp.configurations[0].flex_match_mode #=> String, one of "STANDALONE", "WITH_QUEUE"
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :names (Array<String>)

    A unique identifier for the matchmaking configuration(s) to retrieve. You can use either the configuration name or ARN value. To request all existing configurations, leave this parameter empty.

  • :rule_set_name (String)

    A unique identifier for the matchmaking rule set. You can use either the rule set name or ARN value. Use this parameter to retrieve all matchmaking configurations that use this rule set.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. This parameter is limited to 10.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



5140
5141
5142
5143
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5140

def describe_matchmaking_configurations(params = {}, options = {})
  req = build_request(:describe_matchmaking_configurations, params)
  req.send_request(options)
end

#describe_matchmaking_rule_sets(params = {}) ⇒ Types::DescribeMatchmakingRuleSetsOutput

Retrieves the details for FlexMatch matchmaking rule sets. You can request all existing rule sets for the Region, or provide a list of one or more rule set names. When requesting multiple items, use the pagination parameters to retrieve results as a set of sequential pages. If successful, a rule set is returned for each requested name.

Learn more

^

Related actions

CreateMatchmakingConfiguration | DescribeMatchmakingConfigurations | UpdateMatchmakingConfiguration | DeleteMatchmakingConfiguration | CreateMatchmakingRuleSet | DescribeMatchmakingRuleSets | ValidateMatchmakingRuleSet | DeleteMatchmakingRuleSet | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_matchmaking_rule_sets({
  names: ["MatchmakingRuleSetName"],
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.rule_sets #=> Array
resp.rule_sets[0].rule_set_name #=> String
resp.rule_sets[0].rule_set_arn #=> String
resp.rule_sets[0].rule_set_body #=> String
resp.rule_sets[0].creation_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :names (Array<String>)

    A list of one or more matchmaking rule set names to retrieve details for. (Note: The rule set name is different from the optional "name" field in the rule set body.) You can use either the rule set name or ARN value.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



5214
5215
5216
5217
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5214

def describe_matchmaking_rule_sets(params = {}, options = {})
  req = build_request(:describe_matchmaking_rule_sets, params)
  req.send_request(options)
end

#describe_player_sessions(params = {}) ⇒ Types::DescribePlayerSessionsOutput

Retrieves properties for one or more player sessions.

This action can be used in the following ways:

  • To retrieve a specific player session, provide the player session ID only.

  • To retrieve all player sessions in a game session, provide the game session ID only.

  • To retrieve all player sessions for a specific player, provide a player ID only.

To request player sessions, specify either a player session ID, game session ID, or player ID. You can filter this request by player session status. Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a PlayerSession object is returned for each session that matches the request.

Available in Amazon GameLift Local.

Related actions

CreatePlayerSession | CreatePlayerSessions | DescribePlayerSessions | StartGameSessionPlacement | DescribeGameSessionPlacement | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_player_sessions({
  game_session_id: "ArnStringModel",
  player_id: "NonZeroAndMaxString",
  player_session_id: "PlayerSessionId",
  player_session_status_filter: "NonZeroAndMaxString",
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.player_sessions #=> Array
resp.player_sessions[0].player_session_id #=> String
resp.player_sessions[0].player_id #=> String
resp.player_sessions[0].game_session_id #=> String
resp.player_sessions[0].fleet_id #=> String
resp.player_sessions[0].fleet_arn #=> String
resp.player_sessions[0].creation_time #=> Time
resp.player_sessions[0].termination_time #=> Time
resp.player_sessions[0].status #=> String, one of "RESERVED", "ACTIVE", "COMPLETED", "TIMEDOUT"
resp.player_sessions[0].ip_address #=> String
resp.player_sessions[0].dns_name #=> String
resp.player_sessions[0].port #=> Integer
resp.player_sessions[0].player_data #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_session_id (String)

    A unique identifier for the game session to retrieve player sessions for.

  • :player_id (String)

    A unique identifier for a player to retrieve player sessions for.

  • :player_session_id (String)

    A unique identifier for a player session to retrieve.

  • :player_session_status_filter (String)

    Player session status to filter results on.

    Possible player session statuses include the following:

    • RESERVED -- The player session request has been received, but the player has not yet connected to the server process and/or been validated.

    • ACTIVE -- The player has been validated by the server process and is currently connected.

    • COMPLETED -- The player connection has been dropped.

    • TIMEDOUT -- A player session request was received, but the player did not connect and/or was not validated within the timeout limit (60 seconds).

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. If a player session ID is specified, this parameter is ignored.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value. If a player session ID is specified, this parameter is ignored.

Returns:

See Also:



5331
5332
5333
5334
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5331

def describe_player_sessions(params = {}, options = {})
  req = build_request(:describe_player_sessions, params)
  req.send_request(options)
end

#describe_runtime_configuration(params = {}) ⇒ Types::DescribeRuntimeConfigurationOutput

Retrieves a fleet's runtime configuration settings. The runtime configuration tells GameLift which server processes to run (and how) on each instance in the fleet.

To get the runtime configuration that is currently in forces for a fleet, provide the fleet ID.

If successful, a RuntimeConfiguration object is returned for the requested fleet. If the requested fleet has been deleted, the result set is empty.

Learn more

Setting up GameLift fleets

Running multiple processes on a fleet

Related actions

ListFleets | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetCapacity | DescribeFleetEvents | DescribeFleetLocationAttributes | DescribeFleetPortSettings | DescribeFleetUtilization | DescribeRuntimeConfiguration | DescribeScalingPolicies | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_runtime_configuration({
  fleet_id: "FleetIdOrArn", # required
})

Response structure


resp.runtime_configuration.server_processes #=> Array
resp.runtime_configuration.server_processes[0].launch_path #=> String
resp.runtime_configuration.server_processes[0].parameters #=> String
resp.runtime_configuration.server_processes[0].concurrent_executions #=> Integer
resp.runtime_configuration.max_concurrent_game_session_activations #=> Integer
resp.runtime_configuration.game_session_activation_timeout_seconds #=> Integer

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to get the runtime configuration for. You can use either the fleet ID or ARN value.

Returns:

See Also:



5394
5395
5396
5397
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5394

def describe_runtime_configuration(params = {}, options = {})
  req = build_request(:describe_runtime_configuration, params)
  req.send_request(options)
end

#describe_scaling_policies(params = {}) ⇒ Types::DescribeScalingPoliciesOutput

Retrieves all scaling policies applied to a fleet.

To get a fleet's scaling policies, specify the fleet ID. You can filter this request by policy status, such as to retrieve only active scaling policies. Use the pagination parameters to retrieve results as a set of sequential pages. If successful, set of ScalingPolicy objects is returned for the fleet.

A fleet may have all of its scaling policies suspended (StopFleetActions). This operation does not affect the status of the scaling policies, which remains ACTIVE. To see whether a fleet's scaling policies are in force or suspended, call DescribeFleetAttributes and check the stopped actions.

Related actions

DescribeFleetCapacity | UpdateFleetCapacity | DescribeEC2InstanceLimits | PutScalingPolicy | DescribeScalingPolicies | DeleteScalingPolicy | StopFleetActions | StartFleetActions | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.describe_scaling_policies({
  fleet_id: "FleetIdOrArn", # required
  status_filter: "ACTIVE", # accepts ACTIVE, UPDATE_REQUESTED, UPDATING, DELETE_REQUESTED, DELETING, DELETED, ERROR
  limit: 1,
  next_token: "NonZeroAndMaxString",
  location: "LocationStringModel",
})

Response structure


resp.scaling_policies #=> Array
resp.scaling_policies[0].fleet_id #=> String
resp.scaling_policies[0].fleet_arn #=> String
resp.scaling_policies[0].name #=> String
resp.scaling_policies[0].status #=> String, one of "ACTIVE", "UPDATE_REQUESTED", "UPDATING", "DELETE_REQUESTED", "DELETING", "DELETED", "ERROR"
resp.scaling_policies[0].scaling_adjustment #=> Integer
resp.scaling_policies[0].scaling_adjustment_type #=> String, one of "ChangeInCapacity", "ExactCapacity", "PercentChangeInCapacity"
resp.scaling_policies[0].comparison_operator #=> String, one of "GreaterThanOrEqualToThreshold", "GreaterThanThreshold", "LessThanThreshold", "LessThanOrEqualToThreshold"
resp.scaling_policies[0].threshold #=> Float
resp.scaling_policies[0].evaluation_periods #=> Integer
resp.scaling_policies[0].metric_name #=> String, one of "ActivatingGameSessions", "ActiveGameSessions", "ActiveInstances", "AvailableGameSessions", "AvailablePlayerSessions", "CurrentPlayerSessions", "IdleInstances", "PercentAvailableGameSessions", "PercentIdleInstances", "QueueDepth", "WaitTime"
resp.scaling_policies[0].policy_type #=> String, one of "RuleBased", "TargetBased"
resp.scaling_policies[0].target_configuration.target_value #=> Float
resp.scaling_policies[0].update_status #=> String, one of "PENDING_UPDATE"
resp.scaling_policies[0].location #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to retrieve scaling policies for. You can use either the fleet ID or ARN value.

  • :status_filter (String)

    Scaling policy status to filter results on. A scaling policy is only in force when in an ACTIVE status.

    • ACTIVE -- The scaling policy is currently in force.

    • UPDATEREQUESTED -- A request to update the scaling policy has been received.

    • UPDATING -- A change is being made to the scaling policy.

    • DELETEREQUESTED -- A request to delete the scaling policy has been received.

    • DELETING -- The scaling policy is being deleted.

    • DELETED -- The scaling policy has been deleted.

    • ERROR -- An error occurred in creating the policy. It should be removed and recreated.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

  • :location (String)

    CONTENT TODO

Returns:

See Also:



5502
5503
5504
5505
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5502

def describe_scaling_policies(params = {}, options = {})
  req = build_request(:describe_scaling_policies, params)
  req.send_request(options)
end

#describe_script(params = {}) ⇒ Types::DescribeScriptOutput

Retrieves properties for a Realtime script.

To request a script record, specify the script ID. If successful, an object containing the script properties is returned.

Learn more

Amazon GameLift Realtime Servers

Related actions

CreateScript | ListScripts | DescribeScript | UpdateScript | DeleteScript | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_script({
  script_id: "ScriptIdOrArn", # required
})

Response structure


resp.script.script_id #=> String
resp.script.script_arn #=> String
resp.script.name #=> String
resp.script.version #=> String
resp.script.size_on_disk #=> Integer
resp.script.creation_time #=> Time
resp.script.storage_location.bucket #=> String
resp.script.storage_location.key #=> String
resp.script.storage_location.role_arn #=> String
resp.script.storage_location.object_version #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :script_id (required, String)

    A unique identifier for the Realtime script to retrieve properties for. You can use either the script ID or ARN value.

Returns:

See Also:



5557
5558
5559
5560
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5557

def describe_script(params = {}, options = {})
  req = build_request(:describe_script, params)
  req.send_request(options)
end

#describe_vpc_peering_authorizations(params = {}) ⇒ Types::DescribeVpcPeeringAuthorizationsOutput

Retrieves valid VPC peering authorizations that are pending for the AWS account. This operation returns all VPC peering authorizations and requests for peering. This includes those initiated and received by this account.

Related actions

CreateVpcPeeringAuthorization | DescribeVpcPeeringAuthorizations | DeleteVpcPeeringAuthorization | CreateVpcPeeringConnection | DescribeVpcPeeringConnections | DeleteVpcPeeringConnection | All APIs by task

Examples:

Response structure


resp.vpc_peering_authorizations #=> Array
resp.vpc_peering_authorizations[0]. #=> String
resp.vpc_peering_authorizations[0]. #=> String
resp.vpc_peering_authorizations[0].peer_vpc_id #=> String
resp.vpc_peering_authorizations[0].creation_time #=> Time
resp.vpc_peering_authorizations[0].expiration_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Returns:

See Also:



5595
5596
5597
5598
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5595

def describe_vpc_peering_authorizations(params = {}, options = {})
  req = build_request(:describe_vpc_peering_authorizations, params)
  req.send_request(options)
end

#describe_vpc_peering_connections(params = {}) ⇒ Types::DescribeVpcPeeringConnectionsOutput

Retrieves information on VPC peering connections. Use this operation to get peering information for all fleets or for one specific fleet ID.

To retrieve connection information, call this operation from the AWS account that is used to manage the Amazon GameLift fleets. Specify a fleet ID or leave the parameter empty to retrieve all connection records. If successful, the retrieved information includes both active and pending connections. Active connections identify the IpV4 CIDR block that the VPC uses to connect.

Related actions

CreateVpcPeeringAuthorization | DescribeVpcPeeringAuthorizations | DeleteVpcPeeringAuthorization | CreateVpcPeeringConnection | DescribeVpcPeeringConnections | DeleteVpcPeeringConnection | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.describe_vpc_peering_connections({
  fleet_id: "FleetId",
})

Response structure


resp.vpc_peering_connections #=> Array
resp.vpc_peering_connections[0].fleet_id #=> String
resp.vpc_peering_connections[0].fleet_arn #=> String
resp.vpc_peering_connections[0].ip_v4_cidr_block #=> String
resp.vpc_peering_connections[0].vpc_peering_connection_id #=> String
resp.vpc_peering_connections[0].status.code #=> String
resp.vpc_peering_connections[0].status.message #=> String
resp.vpc_peering_connections[0].peer_vpc_id #=> String
resp.vpc_peering_connections[0].game_lift_vpc_id #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (String)

    A unique identifier for the fleet. You can use either the fleet ID or ARN value.

Returns:

See Also:



5652
5653
5654
5655
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5652

def describe_vpc_peering_connections(params = {}, options = {})
  req = build_request(:describe_vpc_peering_connections, params)
  req.send_request(options)
end

#get_game_session_log_url(params = {}) ⇒ Types::GetGameSessionLogUrlOutput

Retrieves the location of stored game session logs for a specified game session. When a game session is terminated, GameLift automatically stores the logs in Amazon S3 and retains them for 14 days. Use this URL to download the logs.

See the AWS Service Limits page for maximum log file sizes. Log files that exceed this limit are not saved.

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.get_game_session_log_url({
  game_session_id: "ArnStringModel", # required
})

Response structure


resp.pre_signed_url #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_session_id (required, String)

    A unique identifier for the game session to get logs for.

Returns:

See Also:



5701
5702
5703
5704
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5701

def get_game_session_log_url(params = {}, options = {})
  req = build_request(:get_game_session_log_url, params)
  req.send_request(options)
end

#get_instance_access(params = {}) ⇒ Types::GetInstanceAccessOutput

Requests remote access to a fleet instance. Remote access is useful for debugging, gathering benchmarking data, or observing activity in real time.

To remotely access an instance, you need credentials that match the operating system of the instance. For a Windows instance, GameLift returns a user name and password as strings for use with a Windows Remote Desktop client. For a Linux instance, GameLift returns a user name and RSA private key, also as strings, for use with an SSH client. The private key must be saved in the proper format to a .pem file before using. If you're making this request using the AWS CLI, saving the secret can be handled as part of the GetInstanceAccess request, as shown in one of the examples for this operation.

To request access to a specific instance, specify the IDs of both the instance and the fleet it belongs to. You can retrieve a fleet's instance IDs by calling DescribeInstances. If successful, an InstanceAccess object is returned that contains the instance's IP address and a set of credentials.

Learn more

Remotely Access Fleet Instances

Debug Fleet Issues

Related actions

DescribeInstances | GetInstanceAccess | DescribeEC2InstanceLimits | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.get_instance_access({
  fleet_id: "FleetIdOrArn", # required
  instance_id: "InstanceId", # required
})

Response structure


resp.instance_access.fleet_id #=> String
resp.instance_access.instance_id #=> String
resp.instance_access.ip_address #=> String
resp.instance_access.operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.instance_access.credentials.user_name #=> String
resp.instance_access.credentials.secret #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet that contains the instance you want access to. You can use either the fleet ID or ARN value. The fleet can be in any of the following statuses: ACTIVATING, ACTIVE, or ERROR. Fleets with an ERROR status may be accessible for a short time before they are deleted.

  • :instance_id (required, String)

    A unique identifier for the instance you want to get access to. You can access an instance in any status.

Returns:

See Also:



5778
5779
5780
5781
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5778

def get_instance_access(params = {}, options = {})
  req = build_request(:get_instance_access, params)
  req.send_request(options)
end

#list_aliases(params = {}) ⇒ Types::ListAliasesOutput

Retrieves all aliases for this AWS account. You can filter the result set by alias name and/or routing strategy type. Use the pagination parameters to retrieve results in sequential pages.

Returned aliases are not listed in any particular order.

Related actions

CreateAlias | ListAliases | DescribeAlias | UpdateAlias | DeleteAlias | ResolveAlias | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_aliases({
  routing_strategy_type: "SIMPLE", # accepts SIMPLE, TERMINAL
  name: "NonEmptyString",
  limit: 1,
  next_token: "NonEmptyString",
})

Response structure


resp.aliases #=> Array
resp.aliases[0].alias_id #=> String
resp.aliases[0].name #=> String
resp.aliases[0].alias_arn #=> String
resp.aliases[0].description #=> String
resp.aliases[0].routing_strategy.type #=> String, one of "SIMPLE", "TERMINAL"
resp.aliases[0].routing_strategy.fleet_id #=> String
resp.aliases[0].routing_strategy.message #=> String
resp.aliases[0].creation_time #=> Time
resp.aliases[0].last_updated_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :routing_strategy_type (String)

    The routing type to filter results on. Use this parameter to retrieve only aliases with a certain routing type. To retrieve all aliases, leave this parameter empty.

    Possible routing types include the following:

    • SIMPLE -- The alias resolves to one specific fleet. Use this type when routing to active fleets.

    • TERMINAL -- The alias does not resolve to a fleet but instead can be used to display a message to the user. A terminal alias throws a TerminalRoutingStrategyException with the RoutingStrategy message embedded.

  • :name (String)

    A descriptive label that is associated with an alias. Alias names do not need to be unique.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



5863
5864
5865
5866
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5863

def list_aliases(params = {}, options = {})
  req = build_request(:list_aliases, params)
  req.send_request(options)
end

#list_builds(params = {}) ⇒ Types::ListBuildsOutput

Retrieves build resources for all builds associated with the AWS account in use. You can limit results to builds that are in a specific status by using the Status parameter. Use the pagination parameters to retrieve results in a set of sequential pages.

Build resources are not listed in any particular order.

Learn more

Upload a Custom Server Build

Related actions

CreateBuild | ListBuilds | DescribeBuild | UpdateBuild | DeleteBuild | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_builds({
  status: "INITIALIZED", # accepts INITIALIZED, READY, FAILED
  limit: 1,
  next_token: "NonEmptyString",
})

Response structure


resp.builds #=> Array
resp.builds[0].build_id #=> String
resp.builds[0].build_arn #=> String
resp.builds[0].name #=> String
resp.builds[0].version #=> String
resp.builds[0].status #=> String, one of "INITIALIZED", "READY", "FAILED"
resp.builds[0].size_on_disk #=> Integer
resp.builds[0].operating_system #=> String, one of "WINDOWS_2012", "AMAZON_LINUX", "AMAZON_LINUX_2"
resp.builds[0].creation_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :status (String)

    Build status to filter results by. To retrieve all builds, leave this parameter empty.

    Possible build statuses include the following:

    • INITIALIZED -- A new build has been defined, but no files have been uploaded. You cannot create fleets for builds that are in this status. When a build is successfully created, the build status is set to this value.

    • READY -- The game build has been successfully uploaded. You can now create new fleets for this build.

    • FAILED -- The game build upload failed. You cannot create new fleets for this build.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



5950
5951
5952
5953
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 5950

def list_builds(params = {}, options = {})
  req = build_request(:list_builds, params)
  req.send_request(options)
end

#list_fleets(params = {}) ⇒ Types::ListFleetsOutput

Retrieves a collection of fleet resources in an AWS Region. You can call this operation to get fleets in a previously selected default Region (see https://docs.aws.amazon.com/credref/latest/refdocs/setting-global-region.htmlor specify a Region in your request. You can filter the result set to find only those fleets that are deployed with a specific build or script. For fleets that have multiple locations, this operation retrieves fleets based on their home Region only.

This operation can be used in the following ways:

  • To get a list of all fleets in a Region, don't provide a build or script identifier.

  • To get a list of all fleets where a specific custom game build is deployed, provide the build ID.

  • To get a list of all Realtime Servers fleets with a specific configuration script, provide the script ID.

Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a list of fleet IDs that match the request parameters is returned. A NextToken value is also returned if there are more result pages to retrieve.

Fleet resources are not listed in a particular order.

Learn more

Setting up GameLift fleets

Related actions

CreateFleet | UpdateFleetCapacity | PutScalingPolicy | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetLocationAttributes | UpdateFleetAttributes | StopFleetActions | DeleteFleet | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_fleets({
  build_id: "BuildIdOrArn",
  script_id: "ScriptIdOrArn",
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.fleet_ids #=> Array
resp.fleet_ids[0] #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :build_id (String)

    A unique identifier for the build to request fleets for. Use this parameter to return only fleets using a specified build. Use either the build ID or ARN value.

  • :script_id (String)

    A unique identifier for the Realtime script to request fleets for. Use this parameter to return only fleets using a specified script. Use either the script ID or ARN value.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



6049
6050
6051
6052
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6049

def list_fleets(params = {}, options = {})
  req = build_request(:list_fleets, params)
  req.send_request(options)
end

#list_game_server_groups(params = {}) ⇒ Types::ListGameServerGroupsOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Retrieves information on all game servers groups that exist in the current AWS account for the selected Region. Use the pagination parameters to retrieve results in a set of sequential segments.

Learn more

GameLift FleetIQ Guide

Related actions

CreateGameServerGroup | ListGameServerGroups | DescribeGameServerGroup | UpdateGameServerGroup | DeleteGameServerGroup | ResumeGameServerGroup | SuspendGameServerGroup | DescribeGameServerInstances | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_game_server_groups({
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_server_groups #=> Array
resp.game_server_groups[0].game_server_group_name #=> String
resp.game_server_groups[0].game_server_group_arn #=> String
resp.game_server_groups[0].role_arn #=> String
resp.game_server_groups[0].instance_definitions #=> Array
resp.game_server_groups[0].instance_definitions[0].instance_type #=> String, one of "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "c6g.medium", "c6g.large", "c6g.xlarge", "c6g.2xlarge", "c6g.4xlarge", "c6g.8xlarge", "c6g.12xlarge", "c6g.16xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "r6g.medium", "r6g.large", "r6g.xlarge", "r6g.2xlarge", "r6g.4xlarge", "r6g.8xlarge", "r6g.12xlarge", "r6g.16xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge", "m6g.medium", "m6g.large", "m6g.xlarge", "m6g.2xlarge", "m6g.4xlarge", "m6g.8xlarge", "m6g.12xlarge", "m6g.16xlarge"
resp.game_server_groups[0].instance_definitions[0].weighted_capacity #=> String
resp.game_server_groups[0].balancing_strategy #=> String, one of "SPOT_ONLY", "SPOT_PREFERRED", "ON_DEMAND_ONLY"
resp.game_server_groups[0].game_server_protection_policy #=> String, one of "NO_PROTECTION", "FULL_PROTECTION"
resp.game_server_groups[0].auto_scaling_group_arn #=> String
resp.game_server_groups[0].status #=> String, one of "NEW", "ACTIVATING", "ACTIVE", "DELETE_SCHEDULED", "DELETING", "DELETED", "ERROR"
resp.game_server_groups[0].status_reason #=> String
resp.game_server_groups[0].suspended_actions #=> Array
resp.game_server_groups[0].suspended_actions[0] #=> String, one of "REPLACE_INSTANCE_TYPES"
resp.game_server_groups[0].creation_time #=> Time
resp.game_server_groups[0].last_updated_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



6126
6127
6128
6129
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6126

def list_game_server_groups(params = {}, options = {})
  req = build_request(:list_game_server_groups, params)
  req.send_request(options)
end

#list_game_servers(params = {}) ⇒ Types::ListGameServersOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Retrieves information on all game servers that are currently active in a specified game server group. You can opt to sort the list by game server age. Use the pagination parameters to retrieve results in a set of sequential segments.

Learn more

GameLift FleetIQ Guide

Related actions

RegisterGameServer | ListGameServers | ClaimGameServer | DescribeGameServer | UpdateGameServer | DeregisterGameServer | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_game_servers({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  sort_order: "ASCENDING", # accepts ASCENDING, DESCENDING
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_servers #=> Array
resp.game_servers[0].game_server_group_name #=> String
resp.game_servers[0].game_server_group_arn #=> String
resp.game_servers[0].game_server_id #=> String
resp.game_servers[0].instance_id #=> String
resp.game_servers[0].connection_info #=> String
resp.game_servers[0].game_server_data #=> String
resp.game_servers[0].claim_status #=> String, one of "CLAIMED"
resp.game_servers[0].utilization_status #=> String, one of "AVAILABLE", "UTILIZED"
resp.game_servers[0].registration_time #=> Time
resp.game_servers[0].last_claim_time #=> Time
resp.game_servers[0].last_health_check_time #=> Time
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    An identifier for the game server group to retrieve a list of game servers from. Use either the GameServerGroup name or ARN value.

  • :sort_order (String)

    Indicates how to sort the returned data based on game server registration timestamp. Use ASCENDING to retrieve oldest game servers first, or use DESCENDING to retrieve newest game servers first. If this parameter is left empty, game servers are returned in no particular order.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



6211
6212
6213
6214
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6211

def list_game_servers(params = {}, options = {})
  req = build_request(:list_game_servers, params)
  req.send_request(options)
end

#list_scripts(params = {}) ⇒ Types::ListScriptsOutput

Retrieves script records for all Realtime scripts that are associated with the AWS account in use.

Learn more

Amazon GameLift Realtime Servers

Related actions

CreateScript | ListScripts | DescribeScript | UpdateScript | DeleteScript | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.list_scripts({
  limit: 1,
  next_token: "NonEmptyString",
})

Response structure


resp.scripts #=> Array
resp.scripts[0].script_id #=> String
resp.scripts[0].script_arn #=> String
resp.scripts[0].name #=> String
resp.scripts[0].version #=> String
resp.scripts[0].size_on_disk #=> Integer
resp.scripts[0].creation_time #=> Time
resp.scripts[0].storage_location.bucket #=> String
resp.scripts[0].storage_location.key #=> String
resp.scripts[0].storage_location.role_arn #=> String
resp.scripts[0].storage_location.object_version #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



6276
6277
6278
6279
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6276

def list_scripts(params = {}, options = {})
  req = build_request(:list_scripts, params)
  req.send_request(options)
end

#list_tags_for_resource(params = {}) ⇒ Types::ListTagsForResourceResponse

Retrieves all tags that are assigned to a GameLift resource. Resource tags are used to organize AWS resources for a range of purposes. This operation handles the permissions necessary to manage tags for the following GameLift resource types:

  • Build

  • Script

  • Fleet

  • Alias

  • GameSessionQueue

  • MatchmakingConfiguration

  • MatchmakingRuleSet

To list tags for a resource, specify the unique ARN value for the resource.

Learn more

Tagging AWS Resources in the AWS General Reference

AWS Tagging Strategies

Related actions

TagResource | UntagResource | ListTagsForResource | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.list_tags_for_resource({
  resource_arn: "AmazonResourceName", # required
})

Response structure


resp.tags #=> Array
resp.tags[0].key #=> String
resp.tags[0].value #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :resource_arn (required, String)

    The Amazon Resource Name (ARN) that is assigned to and uniquely identifies the GameLift resource that you want to retrieve tags for. GameLift resource ARNs are included in the data object for the resource, which can be retrieved by calling a List or Describe operation for the resource type.

Returns:

See Also:



6351
6352
6353
6354
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6351

def list_tags_for_resource(params = {}, options = {})
  req = build_request(:list_tags_for_resource, params)
  req.send_request(options)
end

#put_scaling_policy(params = {}) ⇒ Types::PutScalingPolicyOutput

Creates or updates a scaling policy for a fleet. Scaling policies are used to automatically scale a fleet's hosting capacity to meet player demand. An active scaling policy instructs Amazon GameLift to track a fleet metric and automatically change the fleet's capacity when a certain threshold is reached. There are two types of scaling policies: target-based and rule-based. Use a target-based policy to quickly and efficiently manage fleet scaling; this option is the most commonly used. Use rule-based policies when you need to exert fine-grained control over auto-scaling.

Fleets can have multiple scaling policies of each type in force at the same time; you can have one target-based policy, one or multiple rule-based scaling policies, or both. We recommend caution, however, because multiple auto-scaling policies can have unintended consequences.

You can temporarily suspend all scaling policies for a fleet by calling StopFleetActions with the fleet action AUTO_SCALING. To resume scaling policies, call StartFleetActions with the same fleet action. To stop just one scaling policy--or to permanently remove it, you must delete the policy with DeleteScalingPolicy.

Learn more about how to work with auto-scaling in Set Up Fleet Automatic Scaling.

Target-based policy

A target-based policy tracks a single metric: PercentAvailableGameSessions. This metric tells us how much of a fleet's hosting capacity is ready to host game sessions but is not currently in use. This is the fleet's buffer; it measures the additional player demand that the fleet could handle at current capacity. With a target-based policy, you set your ideal buffer size and leave it to Amazon GameLift to take whatever action is needed to maintain that target.

For example, you might choose to maintain a 10% buffer for a fleet that has the capacity to host 100 simultaneous game sessions. This policy tells Amazon GameLift to take action whenever the fleet's available capacity falls below or rises above 10 game sessions. Amazon GameLift will start new instances or stop unused instances in order to return to the 10% buffer.

To create or update a target-based policy, specify a fleet ID and name, and set the policy type to "TargetBased". Specify the metric to track (PercentAvailableGameSessions) and reference a TargetConfiguration object with your desired buffer value. Exclude all other parameters. On a successful request, the policy name is returned. The scaling policy is automatically in force as soon as it's successfully created. If the fleet's auto-scaling actions are temporarily suspended, the new policy will be in force once the fleet actions are restarted.

Rule-based policy

A rule-based policy tracks specified fleet metric, sets a threshold value, and specifies the type of action to initiate when triggered. With a rule-based policy, you can select from several available fleet metrics. Each policy specifies whether to scale up or scale down (and by how much), so you need one policy for each type of action.

For example, a policy may make the following statement: "If the percentage of idle instances is greater than 20% for more than 15 minutes, then reduce the fleet capacity by 10%."

A policy's rule statement has the following structure:

If [MetricName] is [ComparisonOperator] [Threshold] for [EvaluationPeriods] minutes, then [ScalingAdjustmentType] to/by [ScalingAdjustment].

To implement the example, the rule statement would look like this:

If [PercentIdleInstances] is [GreaterThanThreshold] [20] for [15] minutes, then [PercentChangeInCapacity] to/by [10].

To create or update a scaling policy, specify a unique combination of name and fleet ID, and set the policy type to "RuleBased". Specify the parameter values for a policy rule statement. On a successful request, the policy name is returned. Scaling policies are automatically in force as soon as they're successfully created. If the fleet's auto-scaling actions are temporarily suspended, the new policy will be in force once the fleet actions are restarted.

Related actions

DescribeFleetCapacity | UpdateFleetCapacity | DescribeEC2InstanceLimits | PutScalingPolicy | DescribeScalingPolicies | DeleteScalingPolicy | StopFleetActions | StartFleetActions | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.put_scaling_policy({
  name: "NonZeroAndMaxString", # required
  fleet_id: "FleetIdOrArn", # required
  scaling_adjustment: 1,
  scaling_adjustment_type: "ChangeInCapacity", # accepts ChangeInCapacity, ExactCapacity, PercentChangeInCapacity
  threshold: 1.0,
  comparison_operator: "GreaterThanOrEqualToThreshold", # accepts GreaterThanOrEqualToThreshold, GreaterThanThreshold, LessThanThreshold, LessThanOrEqualToThreshold
  evaluation_periods: 1,
  metric_name: "ActivatingGameSessions", # required, accepts ActivatingGameSessions, ActiveGameSessions, ActiveInstances, AvailableGameSessions, AvailablePlayerSessions, CurrentPlayerSessions, IdleInstances, PercentAvailableGameSessions, PercentIdleInstances, QueueDepth, WaitTime
  policy_type: "RuleBased", # accepts RuleBased, TargetBased
  target_configuration: {
    target_value: 1.0, # required
  },
})

Response structure


resp.name #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :name (required, String)

    A descriptive label that is associated with a fleet's scaling policy. Policy names do not need to be unique. A fleet can have only one scaling policy with the same name.

  • :fleet_id (required, String)

    A unique identifier for the fleet to apply this policy to. You can use either the fleet ID or ARN value. The fleet cannot be in any of the following statuses: ERROR or DELETING.

  • :scaling_adjustment (Integer)

    Amount of adjustment to make, based on the scaling adjustment type.

  • :scaling_adjustment_type (String)

    The type of adjustment to make to a fleet's instance count (see FleetCapacity):

    • ChangeInCapacity -- add (or subtract) the scaling adjustment value from the current instance count. Positive values scale up while negative values scale down.

    • ExactCapacity -- set the instance count to the scaling adjustment value.

    • PercentChangeInCapacity -- increase or reduce the current instance count by the scaling adjustment, read as a percentage. Positive values scale up while negative values scale down; for example, a value of "-10" scales the fleet down by 10%.

  • :threshold (Float)

    Metric value used to trigger a scaling event.

  • :comparison_operator (String)

    Comparison operator to use when measuring the metric against the threshold value.

  • :evaluation_periods (Integer)

    Length of time (in minutes) the metric must be at or beyond the threshold before a scaling event is triggered.

  • :metric_name (required, String)

    Name of the Amazon GameLift-defined metric that is used to trigger a scaling adjustment. For detailed descriptions of fleet metrics, see Monitor Amazon GameLift with Amazon CloudWatch.

    • ActivatingGameSessions -- Game sessions in the process of being created.

    • ActiveGameSessions -- Game sessions that are currently running.

    • ActiveInstances -- Fleet instances that are currently running at least one game session.

    • AvailableGameSessions -- Additional game sessions that fleet could host simultaneously, given current capacity.

    • AvailablePlayerSessions -- Empty player slots in currently active game sessions. This includes game sessions that are not currently accepting players. Reserved player slots are not included.

    • CurrentPlayerSessions -- Player slots in active game sessions that are being used by a player or are reserved for a player.

    • IdleInstances -- Active instances that are currently hosting zero game sessions.

    • PercentAvailableGameSessions -- Unused percentage of the total number of game sessions that a fleet could host simultaneously, given current capacity. Use this metric for a target-based scaling policy.

    • PercentIdleInstances -- Percentage of the total number of active instances that are hosting zero game sessions.

    • QueueDepth -- Pending game session placement requests, in any queue, where the current fleet is the top-priority destination.

    • WaitTime -- Current wait time for pending game session placement requests, in any queue, where the current fleet is the top-priority destination.

  • :policy_type (String)

    The type of scaling policy to create. For a target-based policy, set the parameter MetricName to 'PercentAvailableGameSessions' and specify a TargetConfiguration. For a rule-based policy set the following parameters: MetricName, ComparisonOperator, Threshold, EvaluationPeriods, ScalingAdjustmentType, and ScalingAdjustment.

  • :target_configuration (Types::TargetConfiguration)

    An object that contains settings for a target-based scaling policy.

Returns:

See Also:



6576
6577
6578
6579
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6576

def put_scaling_policy(params = {}, options = {})
  req = build_request(:put_scaling_policy, params)
  req.send_request(options)
end

#register_game_server(params = {}) ⇒ Types::RegisterGameServerOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Creates a new game server resource and notifies GameLift FleetIQ that the game server is ready to host gameplay and players. This operation is called by a game server process that is running on an instance in a game server group. Registering game servers enables GameLift FleetIQ to track available game servers and enables game clients and services to claim a game server for a new game session.

To register a game server, identify the game server group and instance where the game server is running, and provide a unique identifier for the game server. You can also include connection and game server data. When a game client or service requests a game server by calling ClaimGameServer, this information is returned in the response.

Once a game server is successfully registered, it is put in status AVAILABLE. A request to register a game server may fail if the instance it is running on is in the process of shutting down as part of instance balancing or scale-down activity.

Learn more

GameLift FleetIQ Guide

Related actions

RegisterGameServer | ListGameServers | ClaimGameServer | DescribeGameServer | UpdateGameServer | DeregisterGameServer | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.register_game_server({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  game_server_id: "GameServerId", # required
  instance_id: "GameServerInstanceId", # required
  connection_info: "GameServerConnectionInfo",
  game_server_data: "GameServerData",
})

Response structure


resp.game_server.game_server_group_name #=> String
resp.game_server.game_server_group_arn #=> String
resp.game_server.game_server_id #=> String
resp.game_server.instance_id #=> String
resp.game_server.connection_info #=> String
resp.game_server.game_server_data #=> String
resp.game_server.claim_status #=> String, one of "CLAIMED"
resp.game_server.utilization_status #=> String, one of "AVAILABLE", "UTILIZED"
resp.game_server.registration_time #=> Time
resp.game_server.last_claim_time #=> Time
resp.game_server.last_health_check_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group where the game server is running. Use either the GameServerGroup name or ARN value.

  • :game_server_id (required, String)

    A custom string that uniquely identifies the game server to register. Game server IDs are developer-defined and must be unique across all game server groups in your AWS account.

  • :instance_id (required, String)

    The unique identifier for the instance where the game server is running. This ID is available in the instance metadata. EC2 instance IDs use a 17-character format, for example: i-1234567890abcdef0.

  • :connection_info (String)

    Information that is needed to make inbound client connections to the game server. This might include the IP address and port, DNS name, and other information.

  • :game_server_data (String)

    A set of custom game server properties, formatted as a single string value. This data is passed to a game client or service when it requests information on game servers using ListGameServers or ClaimGameServer.

Returns:

See Also:



6674
6675
6676
6677
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6674

def register_game_server(params = {}, options = {})
  req = build_request(:register_game_server, params)
  req.send_request(options)
end

#request_upload_credentials(params = {}) ⇒ Types::RequestUploadCredentialsOutput

Retrieves a fresh set of credentials for use when uploading a new set of game build files to Amazon GameLift's Amazon S3. This is done as part of the build creation process; see CreateBuild.

To request new credentials, specify the build ID as returned with an initial CreateBuild request. If successful, a new set of credentials are returned, along with the S3 storage location associated with the build ID.

Learn more

Create a Build with Files in S3

Related actions

CreateBuild | ListBuilds | DescribeBuild | UpdateBuild | DeleteBuild | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.request_upload_credentials({
  build_id: "BuildIdOrArn", # required
})

Response structure


resp.upload_credentials.access_key_id #=> String
resp.upload_credentials.secret_access_key #=> String
resp.upload_credentials.session_token #=> String
resp.storage_location.bucket #=> String
resp.storage_location.key #=> String
resp.storage_location.role_arn #=> String
resp.storage_location.object_version #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :build_id (required, String)

    A unique identifier for the build to get credentials for. You can use either the build ID or ARN value.

Returns:

See Also:



6731
6732
6733
6734
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6731

def request_upload_credentials(params = {}, options = {})
  req = build_request(:request_upload_credentials, params)
  req.send_request(options)
end

#resolve_alias(params = {}) ⇒ Types::ResolveAliasOutput

Retrieves the fleet ID that an alias is currently pointing to.

Related actions

CreateAlias | ListAliases | DescribeAlias | UpdateAlias | DeleteAlias | ResolveAlias | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.resolve_alias({
  alias_id: "AliasIdOrArn", # required
})

Response structure


resp.fleet_id #=> String
resp.fleet_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :alias_id (required, String)

    The unique identifier of the alias that you want to retrieve a fleet ID for. You can use either the alias ID or ARN value.

Returns:

See Also:



6771
6772
6773
6774
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6771

def resolve_alias(params = {}, options = {})
  req = build_request(:resolve_alias, params)
  req.send_request(options)
end

#resume_game_server_group(params = {}) ⇒ Types::ResumeGameServerGroupOutput

This operation is used with the GameLift FleetIQ solution and game server groups.

Reinstates activity on a game server group after it has been suspended. A game server group might be suspended by theSuspendGameServerGroup operation, or it might be suspended involuntarily due to a configuration problem. In the second case, you can manually resume activity on the group once the configuration problem has been resolved. Refer to the game server group status and status reason for more information on why group activity is suspended.

To resume activity, specify a game server group ARN and the type of activity to be resumed. If successful, a GameServerGroup object is returned showing that the resumed activity is no longer listed in SuspendedActions.

Learn more

GameLift FleetIQ Guide

Related actions

CreateGameServerGroup | ListGameServerGroups | DescribeGameServerGroup | UpdateGameServerGroup | DeleteGameServerGroup | ResumeGameServerGroup | SuspendGameServerGroup | DescribeGameServerInstances | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.resume_game_server_group({
  game_server_group_name: "GameServerGroupNameOrArn", # required
  resume_actions: ["REPLACE_INSTANCE_TYPES"], # required, accepts REPLACE_INSTANCE_TYPES
})

Response structure


resp.game_server_group.game_server_group_name #=> String
resp.game_server_group.game_server_group_arn #=> String
resp.game_server_group.role_arn #=> String
resp.game_server_group.instance_definitions #=> Array
resp.game_server_group.instance_definitions[0].instance_type #=> String, one of "c4.large", "c4.xlarge", "c4.2xlarge", "c4.4xlarge", "c4.8xlarge", "c5.large", "c5.xlarge", "c5.2xlarge", "c5.4xlarge", "c5.9xlarge", "c5.12xlarge", "c5.18xlarge", "c5.24xlarge", "c5a.large", "c5a.xlarge", "c5a.2xlarge", "c5a.4xlarge", "c5a.8xlarge", "c5a.12xlarge", "c5a.16xlarge", "c5a.24xlarge", "c6g.medium", "c6g.large", "c6g.xlarge", "c6g.2xlarge", "c6g.4xlarge", "c6g.8xlarge", "c6g.12xlarge", "c6g.16xlarge", "r4.large", "r4.xlarge", "r4.2xlarge", "r4.4xlarge", "r4.8xlarge", "r4.16xlarge", "r5.large", "r5.xlarge", "r5.2xlarge", "r5.4xlarge", "r5.8xlarge", "r5.12xlarge", "r5.16xlarge", "r5.24xlarge", "r5a.large", "r5a.xlarge", "r5a.2xlarge", "r5a.4xlarge", "r5a.8xlarge", "r5a.12xlarge", "r5a.16xlarge", "r5a.24xlarge", "r6g.medium", "r6g.large", "r6g.xlarge", "r6g.2xlarge", "r6g.4xlarge", "r6g.8xlarge", "r6g.12xlarge", "r6g.16xlarge", "m4.large", "m4.xlarge", "m4.2xlarge", "m4.4xlarge", "m4.10xlarge", "m5.large", "m5.xlarge", "m5.2xlarge", "m5.4xlarge", "m5.8xlarge", "m5.12xlarge", "m5.16xlarge", "m5.24xlarge", "m5a.large", "m5a.xlarge", "m5a.2xlarge", "m5a.4xlarge", "m5a.8xlarge", "m5a.12xlarge", "m5a.16xlarge", "m5a.24xlarge", "m6g.medium", "m6g.large", "m6g.xlarge", "m6g.2xlarge", "m6g.4xlarge", "m6g.8xlarge", "m6g.12xlarge", "m6g.16xlarge"
resp.game_server_group.instance_definitions[0].weighted_capacity #=> String
resp.game_server_group.balancing_strategy #=> String, one of "SPOT_ONLY", "SPOT_PREFERRED", "ON_DEMAND_ONLY"
resp.game_server_group.game_server_protection_policy #=> String, one of "NO_PROTECTION", "FULL_PROTECTION"
resp.game_server_group.auto_scaling_group_arn #=> String
resp.game_server_group.status #=> String, one of "NEW", "ACTIVATING", "ACTIVE", "DELETE_SCHEDULED", "DELETING", "DELETED", "ERROR"
resp.game_server_group.status_reason #=> String
resp.game_server_group.suspended_actions #=> Array
resp.game_server_group.suspended_actions[0] #=> String, one of "REPLACE_INSTANCE_TYPES"
resp.game_server_group.creation_time #=> Time
resp.game_server_group.last_updated_time #=> Time

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :game_server_group_name (required, String)

    A unique identifier for the game server group. Use either the GameServerGroup name or ARN value.

  • :resume_actions (required, Array<String>)

    The activity to resume for this game server group.

Returns:

See Also:



6849
6850
6851
6852
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 6849

def resume_game_server_group(params = {}, options = {})
  req = build_request(:resume_game_server_group, params)
  req.send_request(options)
end

#search_game_sessions(params = {}) ⇒ Types::SearchGameSessionsOutput

Retrieves all active game sessions that match a set of search criteria and sorts them into a specified order.

When searching for game sessions, you specify exactly where you want to search and provide a search filter expression, a sort expression, or both. A search request can search only one fleet, but it can search all of a fleet's locations.

This operation can be used in the following ways:

  • To search all game sessions that are currently running on all locations in a fleet, provide a fleet or alias ID. This approach returns game sessions in the fleet's home Region and all remote locations that fit the search criteria.

  • To search all game sessions that are currently running on a specific fleet location, provide a fleet or alias ID and a location name. For location, you can specify a fleet's home Region or any remote location.

Use the pagination parameters to retrieve results as a set of sequential pages.

If successful, a GameSession object is returned for each game session that matches the request. Search finds game sessions that are in ACTIVE status only. To retrieve information on game sessions in other statuses, use DescribeGameSessions.

You can search or sort by the following game session attributes:

  • gameSessionId -- A unique identifier for the game session. You can use either a GameSessionId or GameSessionArn value.

  • gameSessionName -- Name assigned to a game session. This value is set when requesting a new game session with CreateGameSession or updating with UpdateGameSession. Game session names do not need to be unique to a game session.

  • gameSessionProperties -- Custom data defined in a game session's GameProperty parameter. GameProperty values are stored as key:value pairs; the filter expression must indicate the key and a string to search the data values for. For example, to search for game sessions with custom data containing the key:value pair "gameMode:brawl", specify the following: gameSessionProperties.gameMode = "brawl". All custom data values are searched as strings.

  • maximumSessions -- Maximum number of player sessions allowed for a game session. This value is set when requesting a new game session with CreateGameSession or updating with UpdateGameSession.

  • creationTimeMillis -- Value indicating when a game session was created. It is expressed in Unix time as milliseconds.

  • playerSessionCount -- Number of players currently connected to a game session. This value changes rapidly as players join the session or drop out.

  • hasAvailablePlayerSessions -- Boolean value indicating whether a game session has reached its maximum number of players. It is highly recommended that all search requests include this filter attribute to optimize search performance and return only sessions that players can join.

Returned values for playerSessionCount and hasAvailablePlayerSessions change quickly as players join sessions and others drop out. Results should be considered a snapshot in time. Be sure to refresh search results often, and handle sessions that fill up before a player can join.

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

The returned response is a pageable response and is Enumerable. For details on usage see PageableResponse.

Examples:

Request syntax with placeholder values


resp = client.search_game_sessions({
  fleet_id: "FleetIdOrArn",
  alias_id: "AliasIdOrArn",
  location: "LocationStringModel",
  filter_expression: "NonZeroAndMaxString",
  sort_expression: "NonZeroAndMaxString",
  limit: 1,
  next_token: "NonZeroAndMaxString",
})

Response structure


resp.game_sessions #=> Array
resp.game_sessions[0].game_session_id #=> String
resp.game_sessions[0].name #=> String
resp.game_sessions[0].fleet_id #=> String
resp.game_sessions[0].fleet_arn #=> String
resp.game_sessions[0].creation_time #=> Time
resp.game_sessions[0].termination_time #=> Time
resp.game_sessions[0].current_player_session_count #=> Integer
resp.game_sessions[0].maximum_player_session_count #=> Integer
resp.game_sessions[0].status #=> String, one of "ACTIVE", "ACTIVATING", "TERMINATED", "TERMINATING", "ERROR"
resp.game_sessions[0].status_reason #=> String, one of "INTERRUPTED"
resp.game_sessions[0].game_properties #=> Array
resp.game_sessions[0].game_properties[0].key #=> String
resp.game_sessions[0].game_properties[0].value #=> String
resp.game_sessions[0].ip_address #=> String
resp.game_sessions[0].dns_name #=> String
resp.game_sessions[0].port #=> Integer
resp.game_sessions[0].player_session_creation_policy #=> String, one of "ACCEPT_ALL", "DENY_ALL"
resp.game_sessions[0].creator_id #=> String
resp.game_sessions[0].game_session_data #=> String
resp.game_sessions[0].matchmaker_data #=> String
resp.game_sessions[0].location #=> String
resp.next_token #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (String)

    A unique identifier for the fleet to search for active game sessions. You can use either the fleet ID or ARN value. Each request must reference either a fleet ID or alias ID, but not both.

  • :alias_id (String)

    A unique identifier for the alias associated with the fleet to search for active game sessions. You can use either the alias ID or ARN value. Each request must reference either a fleet ID or alias ID, but not both.

  • :location (String)

    A fleet location to search for game sessions. You can specify a fleet's home Region or a remote location. Use the AWS Region code format, such as us-west-2.

  • :filter_expression (String)

    String containing the search criteria for the session search. If no filter expression is included, the request returns results for all game sessions in the fleet that are in ACTIVE status.

    A filter expression can contain one or multiple conditions. Each condition consists of the following:

    • Operand -- Name of a game session attribute. Valid values are gameSessionName, gameSessionId, gameSessionProperties, maximumSessions, creationTimeMillis, playerSessionCount, hasAvailablePlayerSessions.

    • Comparator -- Valid comparators are: =, <>, <, >, <=, >=.

    • Value -- Value to be searched for. Values may be numbers, boolean values (true/false) or strings depending on the operand. String values are case sensitive and must be enclosed in single quotes. Special characters must be escaped. Boolean and string values can only be used with the comparators = and <>. For example, the following filter expression searches on gameSessionName: "FilterExpression": "gameSessionName = 'Matt\'s Awesome Game 1'".

    To chain multiple conditions in a single expression, use the logical keywords AND, OR, and NOT and parentheses as needed. For example: x AND y AND NOT z, NOT (x OR y).

    Session search evaluates conditions from left to right using the following precedence rules:

    1. =, <>, <, >, <=, >=

    2. Parentheses

    3. NOT

    4. AND

    5. OR

    For example, this filter expression retrieves game sessions hosting at least ten players that have an open player slot: "maximumSessions>=10 AND hasAvailablePlayerSessions=true".

  • :sort_expression (String)

    Instructions on how to sort the search results. If no sort expression is included, the request returns results in random order. A sort expression consists of the following elements:

    • Operand -- Name of a game session attribute. Valid values are gameSessionName, gameSessionId, gameSessionProperties, maximumSessions, creationTimeMillis, playerSessionCount, hasAvailablePlayerSessions.

    • Order -- Valid sort orders are ASC (ascending) and DESC (descending).

    For example, this sort expression returns the oldest active sessions first: "SortExpression": "creationTimeMillis ASC". Results with a null value for the sort operand are returned at the end of the list.

  • :limit (Integer)

    The maximum number of results to return. Use this parameter with NextToken to get results as a set of sequential pages. The maximum number of results returned is 20, even if this value is not set or is set higher than 20.

  • :next_token (String)

    A token that indicates the start of the next sequential page of results. Use the token that is returned with a previous call to this operation. To start at the beginning of the result set, do not specify a value.

Returns:

See Also:



7078
7079
7080
7081
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 7078

def search_game_sessions(params = {}, options = {})
  req = build_request(:search_game_sessions, params)
  req.send_request(options)
end

#start_fleet_actions(params = {}) ⇒ Types::StartFleetActionsOutput

Resumes certain types of activity on fleet instances that were suspended with StopFleetActions. For multi-location fleets, fleet actions are managed separately for each location. Currently, this operation is used to restart a fleet's auto-scaling activity.

This operation can be used in the following ways:

  • To restart actions on instances in the fleet's home Region, provide a fleet ID and the type of actions to resume.

  • To restart actions on instances in one of the fleet's remote locations, provide a fleet ID, a location name, and the type of actions to resume.

If successful, GameLift once again initiates scaling events as triggered by the fleet's scaling policies. If actions on the fleet location were never stopped, this operation will have no effect. You can view a fleet's stopped actions using DescribeFleetAttributes or DescribeFleetLocationAttributes.

Learn more

Setting up GameLift fleets

Related actions

CreateFleet | UpdateFleetCapacity | PutScalingPolicy | DescribeEC2InstanceLimits | DescribeFleetAttributes | DescribeFleetLocationAttributes | UpdateFleetAttributes | StopFleetActions | DeleteFleet | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.start_fleet_actions({
  fleet_id: "FleetIdOrArn", # required
  actions: ["AUTO_SCALING"], # required, accepts AUTO_SCALING
  location: "LocationStringModel",
})

Response structure


resp.fleet_id #=> String
resp.fleet_arn #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :fleet_id (required, String)

    A unique identifier for the fleet to restart actions on. You can use either the fleet ID or ARN value.

  • :actions (required, Array<String>)

    List of actions to restart on the fleet.

  • :location (String)

    The fleet location to restart fleet actions for. Specify a location in the form of an AWS Region code, such as us-west-2.

Returns:

See Also:



7152
7153
7154
7155
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 7152

def start_fleet_actions(params = {}, options = {})
  req = build_request(:start_fleet_actions, params)
  req.send_request(options)
end

#start_game_session_placement(params = {}) ⇒ Types::StartGameSessionPlacementOutput

Places a request for a new game session in a queue (see CreateGameSessionQueue). When processing a placement request, Amazon GameLift searches for available resources on the queue's destinations, scanning each until it finds resources or the placement request times out.

A game session placement request can also request player sessions. When a new game session is successfully created, Amazon GameLift creates a player session for each player included in the request.

When placing a game session, by default Amazon GameLift tries each fleet in the order they are listed in the queue configuration. Ideally, a queue's destinations are listed in preference order.

Alternatively, when requesting a game session with players, you can also provide latency data for each player in relevant Regions. Latency data indicates the performance lag a player experiences when connected to a fleet in the Region. Amazon GameLift uses latency data to reorder the list of destinations to place the game session in a Region with minimal lag. If latency data is provided for multiple players, Amazon GameLift calculates each Region's average lag for all players and reorders to get the best game play across all players.

To place a new game session request, specify the following:

  • The queue name and a set of game session properties and settings

  • A unique ID (such as a UUID) for the placement. You use this ID to track the status of the placement request

  • (Optional) A set of player data and a unique player ID for each player that you are joining to the new game session (player data is optional, but if you include it, you must also provide a unique ID for each player)

  • Latency data for all players (if you want to optimize game play for the players)

If successful, a new game session placement is created.

To track the status of a placement request, call DescribeGameSessionPlacement and check the request's status. If the status is FULFILLED, a new game session has been created and a game session ARN and Region are referenced. If the placement request times out, you can resubmit the request or retry it with a different queue.

Related actions

CreateGameSession | DescribeGameSessions | DescribeGameSessionDetails | SearchGameSessions | UpdateGameSession | GetGameSessionLogUrl | StartGameSessionPlacement | DescribeGameSessionPlacement | StopGameSessionPlacement | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.start_game_session_placement({
  placement_id: "IdStringModel", # required
  game_session_queue_name: "GameSessionQueueNameOrArn", # required
  game_properties: [
    {
      key: "GamePropertyKey", # required
      value: "GamePropertyValue", # required
    },
  ],
  maximum_player_session_count: 1, # required
  game_session_name: "NonZeroAndMaxString",
  player_latencies: [
    {
      player_id: "NonZeroAndMaxString",
      region_identifier: "NonZeroAndMaxString",
      latency_in_milliseconds: 1.0,
    },
  ],
  desired_player_sessions: [
    {
      player_id: "NonZeroAndMaxString",
      player_data: "PlayerData",
    },
  ],
  game_session_data: "LargeGameSessionData",
})

Response structure


resp.game_session_placement.placement_id #=> String
resp.game_session_placement.game_session_queue_name #=> String
resp.game_session_placement.status #=> String, one of "PENDING", "FULFILLED", "CANCELLED", "TIMED_OUT", "FAILED"
resp.game_session_placement.game_properties #=> Array
resp.game_session_placement.game_properties[0].key #=> String
resp.game_session_placement.game_properties[0].value #=> String
resp.game_session_placement.maximum_player_session_count #=> Integer
resp.game_session_placement.game_session_name #=> String
resp.game_session_placement.game_session_id #=> String
resp.game_session_placement.game_session_arn #=> String
resp.game_session_placement.game_session_region #=> String
resp.game_session_placement.player_latencies #=> Array
resp.game_session_placement.player_latencies[0].player_id #=> String
resp.game_session_placement.player_latencies[0].region_identifier #=> String
resp.game_session_placement.player_latencies[0].latency_in_milliseconds #=> Float
resp.game_session_placement.start_time #=> Time
resp.game_session_placement.end_time #=> Time
resp.game_session_placement.ip_address #=> String
resp.game_session_placement.dns_name #=> String
resp.game_session_placement.port #=> Integer
resp.game_session_placement.placed_player_sessions #=> Array
resp.game_session_placement.placed_player_sessions[0].player_id #=> String
resp.game_session_placement.placed_player_sessions[0].player_session_id #=> String
resp.game_session_placement.game_session_data #=> String
resp.game_session_placement.matchmaker_data #=> String

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :placement_id (required, String)

    A unique identifier to assign to the new game session placement. This value is developer-defined. The value must be unique across all Regions and cannot be reused unless you are resubmitting a canceled or timed-out placement request.

  • :game_session_queue_name (required, String)

    Name of the queue to use to place the new game session. You can use either the queue name or ARN value.

  • :game_properties (Array<Types::GameProperty>)

    A set of custom properties for a game session, formatted as key:value pairs. These properties are passed to a game server process in the GameSession object with a request to start a new game session (see Start a Game Session).

  • :maximum_player_session_count (required, Integer)

    The maximum number of players that can be connected simultaneously to the game session.

  • :game_session_name (String)

    A descriptive label that is associated with a game session. Session names do not need to be unique.

  • :player_latencies (Array<Types::PlayerLatency>)

    A set of values, expressed in milliseconds, that indicates the amount of latency that a player experiences when connected to AWS Regions. This information is used to try to place the new game session where it can offer the best possible gameplay experience for the players.

  • :desired_player_sessions (Array<Types::DesiredPlayerSession>)

    Set of information on each player to create a player session for.

  • :game_session_data (String)

    A set of custom game session properties, formatted as a single string value. This data is passed to a game server process in the GameSession object with a request to start a new game session (see Start a Game Session).

Returns:

See Also:



7327
7328
7329
7330
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 7327

def start_game_session_placement(params = {}, options = {})
  req = build_request(:start_game_session_placement, params)
  req.send_request(options)
end

#start_match_backfill(params = {}) ⇒ Types::StartMatchBackfillOutput

Finds new players to fill open slots in currently running game sessions. The backfill match process is essentially identical to the process of forming new matches. Backfill requests use the same matchmaker that was used to make the original match, and they provide matchmaking data for all players currently in the game session. FlexMatch uses this information to select new players so that backfilled match continues to meet the original match requirements.

When using FlexMatch with GameLift managed hosting, you can request a backfill match from a client service by calling this operation with a GameSession identifier. You also have the option of making backfill requests directly from your game server. In response to a request, FlexMatch creates player sessions for the new players, updates the GameSession resource, and sends updated matchmaking data to the game server. You can request a backfill match at any point after a game session is started. Each game session can have only one active backfill request at a time; a subsequent request automatically replaces the earlier request.

When using FlexMatch as a standalone component, request a backfill match by calling this operation without a game session identifier. As with newly formed matches, matchmaking results are returned in a matchmaking event so that your game can update the game session that is being backfilled.

To request a backfill match, specify a unique ticket ID, the original matchmaking configuration, and matchmaking data for all current players in the game session being backfilled. Optionally, specify the GameSession ARN. If successful, a match backfill ticket is created and returned with status set to QUEUED. Track the status of backfill tickets using the same method for tracking tickets for new matches.

Learn more

Backfill existing games with FlexMatch

Matchmaking events (reference)

How GameLift FlexMatch works

Related actions

StartMatchmaking | DescribeMatchmaking | StopMatchmaking | AcceptMatch | StartMatchBackfill | All APIs by task

Examples:

Request syntax with placeholder values


resp = client.start_match_backfill({
  ticket_id: "MatchmakingIdStringModel",
  configuration_name: "MatchmakingConfigurationName", # required
  game_session_arn: "ArnStringModel",
  players: [ # required
    {
      player_id: "NonZeroAndMaxString",
      player_attributes: {
        "NonZeroAndMaxString" => "value", # value <Hash,Array,String,Numeric,Boolean,IO,Set,nil>
      },
      team: "NonZeroAndMaxString",
      latency_in_ms: {
        "NonEmptyString" => 1,
      },
    },
  ],
})

Response structure


resp.matchmaking_ticket.ticket_id #=> String
resp.matchmaking_ticket.configuration_name #=> String
resp.matchmaking_ticket.configuration_arn #=> String
resp.matchmaking_ticket.status #=> String, one of "CANCELLED", "COMPLETED", "FAILED", "PLACING", "QUEUED", "REQUIRES_ACCEPTANCE", "SEARCHING", "TIMED_OUT"
resp.matchmaking_ticket.status_reason #=> String
resp.matchmaking_ticket.status_message #=> String
resp.matchmaking_ticket.start_time #=> Time
resp.matchmaking_ticket.end_time #=> Time
resp.matchmaking_ticket.players #=> Array
resp.matchmaking_ticket.players[0].player_id #=> String
resp.matchmaking_ticket.players[0].player_attributes #=> Hash
resp.matchmaking_ticket.players[0].player_attributes["NonZeroAndMaxString"] #=> <Hash,Array,String,Numeric,Boolean,IO,Set,nil>
resp.matchmaking_ticket.players[0].team #=> String
resp.matchmaking_ticket.players[0].latency_in_ms #=> Hash
resp.matchmaking_ticket.players[0].latency_in_ms["NonEmptyString"] #=> Integer
resp.matchmaking_ticket.game_session_connection_info.game_session_arn #=> String
resp.matchmaking_ticket.game_session_connection_info.ip_address #=> String
resp.matchmaking_ticket.game_session_connection_info.dns_name #=> String
resp.matchmaking_ticket.game_session_connection_info.port #=> Integer
resp.matchmaking_ticket.game_session_connection_info.matched_player_sessions #=> Array
resp.matchmaking_ticket.game_session_connection_info.matched_player_sessions[0].player_id #=> String
resp.matchmaking_ticket.game_session_connection_info.matched_player_sessions[0].player_session_id #=> String
resp.matchmaking_ticket.estimated_wait_time #=> Integer

Parameters:

  • params (Hash) (defaults to: {})

    ({})

Options Hash (params):

  • :ticket_id (String)

    A unique identifier for a matchmaking ticket. If no ticket ID is specified here, Amazon GameLift will generate one in the form of a UUID. Use this identifier to track the match backfill ticket status and retrieve match results.

  • :configuration_name (required, String)

    Name of the matchmaker to use for this request. You can use either the configuration name or ARN value. The ARN of the matchmaker that was used with the original game session is listed in the GameSession object, MatchmakerData property.

  • :game_session_arn (String)

    A unique identifier for the game session. Use the game session ID. When using FlexMatch as a standalone matchmaking solution, this parameter is not needed.

  • :players (required, Array<Types::Player>)

    Match information on all players that are currently assigned to the game session. This information is used by the matchmaker to find new players and add them to the existing game.

    • PlayerID, PlayerAttributes, Team -- This information is maintained in the GameSession object, MatchmakerData property, for all players who are currently assigned to the game session. The matchmaker data is in JSON syntax, formatted as a string. For more details, see Match Data.

    • LatencyInMs -- If the matchmaker uses player latency, include a latency value, in milliseconds, for the Region that the game session is currently in. Do not include latency values for any other Region.

Returns:

See Also:



7474
7475
7476
7477
# File 'gems/aws-sdk-gamelift/lib/aws-sdk-gamelift/client.rb', line 7474

def start_match_backfill(params = {}, options = {})
  req = build_request(:start_match_backfill, params)
  req.