You are viewing documentation for version 2 of the AWS SDK for Ruby. Version 3 documentation can be found here.

Class: Aws::SageMaker::Types::CreateAlgorithmInput

Inherits:
Struct
  • Object
show all
Defined in:
(unknown)

Overview

Note:

When passing CreateAlgorithmInput as input to an Aws::Client method, you can use a vanilla Hash:

{
  algorithm_name: "EntityName", # required
  algorithm_description: "EntityDescription",
  training_specification: { # required
    training_image: "Image", # required
    training_image_digest: "ImageDigest",
    supported_hyper_parameters: [
      {
        name: "ParameterName", # required
        description: "EntityDescription",
        type: "Integer", # required, accepts Integer, Continuous, Categorical, FreeText
        range: {
          integer_parameter_range_specification: {
            min_value: "ParameterValue", # required
            max_value: "ParameterValue", # required
          },
          continuous_parameter_range_specification: {
            min_value: "ParameterValue", # required
            max_value: "ParameterValue", # required
          },
          categorical_parameter_range_specification: {
            values: ["ParameterValue"], # required
          },
        },
        is_tunable: false,
        is_required: false,
        default_value: "ParameterValue",
      },
    ],
    supported_training_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
    supports_distributed_training: false,
    metric_definitions: [
      {
        name: "MetricName", # required
        regex: "MetricRegex", # required
      },
    ],
    training_channels: [ # required
      {
        name: "ChannelName", # required
        description: "EntityDescription",
        is_required: false,
        supported_content_types: ["ContentType"], # required
        supported_compression_types: ["None"], # accepts None, Gzip
        supported_input_modes: ["Pipe"], # required, accepts Pipe, File
      },
    ],
    supported_tuning_job_objective_metrics: [
      {
        type: "Maximize", # required, accepts Maximize, Minimize
        metric_name: "MetricName", # required
      },
    ],
  },
  inference_specification: {
    containers: [ # required
      {
        container_hostname: "ContainerHostname",
        image: "Image", # required
        image_digest: "ImageDigest",
        model_data_url: "Url",
        product_id: "ProductId",
      },
    ],
    supported_transform_instance_types: ["ml.m4.xlarge"], # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
    supported_realtime_inference_instance_types: ["ml.t2.medium"], # required, accepts ml.t2.medium, ml.t2.large, ml.t2.xlarge, ml.t2.2xlarge, ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.large, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.large, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.g4dn.xlarge, ml.g4dn.2xlarge, ml.g4dn.4xlarge, ml.g4dn.8xlarge, ml.g4dn.12xlarge, ml.g4dn.16xlarge, ml.r5.large, ml.r5.xlarge, ml.r5.2xlarge, ml.r5.4xlarge, ml.r5.12xlarge, ml.r5.24xlarge
    supported_content_types: ["ContentType"], # required
    supported_response_mime_types: ["ResponseMIMEType"], # required
  },
  validation_specification: {
    validation_role: "RoleArn", # required
    validation_profiles: [ # required
      {
        profile_name: "EntityName", # required
        training_job_definition: { # required
          training_input_mode: "Pipe", # required, accepts Pipe, File
          hyper_parameters: {
            "ParameterKey" => "ParameterValue",
          },
          input_data_config: [ # required
            {
              channel_name: "ChannelName", # required
              data_source: { # required
                s3_data_source: {
                  s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
                  s3_uri: "S3Uri", # required
                  s3_data_distribution_type: "FullyReplicated", # accepts FullyReplicated, ShardedByS3Key
                  attribute_names: ["AttributeName"],
                },
                file_system_data_source: {
                  file_system_id: "FileSystemId", # required
                  file_system_access_mode: "rw", # required, accepts rw, ro
                  file_system_type: "EFS", # required, accepts EFS, FSxLustre
                  directory_path: "DirectoryPath", # required
                },
              },
              content_type: "ContentType",
              compression_type: "None", # accepts None, Gzip
              record_wrapper_type: "None", # accepts None, RecordIO
              input_mode: "Pipe", # accepts Pipe, File
              shuffle_config: {
                seed: 1, # required
              },
            },
          ],
          output_data_config: { # required
            kms_key_id: "KmsKeyId",
            s3_output_path: "S3Uri", # required
          },
          resource_config: { # required
            instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.p3dn.24xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge
            instance_count: 1, # required
            volume_size_in_gb: 1, # required
            volume_kms_key_id: "KmsKeyId",
          },
          stopping_condition: { # required
            max_runtime_in_seconds: 1,
            max_wait_time_in_seconds: 1,
          },
        },
        transform_job_definition: {
          max_concurrent_transforms: 1,
          max_payload_in_mb: 1,
          batch_strategy: "MultiRecord", # accepts MultiRecord, SingleRecord
          environment: {
            "TransformEnvironmentKey" => "TransformEnvironmentValue",
          },
          transform_input: { # required
            data_source: { # required
              s3_data_source: { # required
                s3_data_type: "ManifestFile", # required, accepts ManifestFile, S3Prefix, AugmentedManifestFile
                s3_uri: "S3Uri", # required
              },
            },
            content_type: "ContentType",
            compression_type: "None", # accepts None, Gzip
            split_type: "None", # accepts None, Line, RecordIO, TFRecord
          },
          transform_output: { # required
            s3_output_path: "S3Uri", # required
            accept: "Accept",
            assemble_with: "None", # accepts None, Line
            kms_key_id: "KmsKeyId",
          },
          transform_resources: { # required
            instance_type: "ml.m4.xlarge", # required, accepts ml.m4.xlarge, ml.m4.2xlarge, ml.m4.4xlarge, ml.m4.10xlarge, ml.m4.16xlarge, ml.c4.xlarge, ml.c4.2xlarge, ml.c4.4xlarge, ml.c4.8xlarge, ml.p2.xlarge, ml.p2.8xlarge, ml.p2.16xlarge, ml.p3.2xlarge, ml.p3.8xlarge, ml.p3.16xlarge, ml.c5.xlarge, ml.c5.2xlarge, ml.c5.4xlarge, ml.c5.9xlarge, ml.c5.18xlarge, ml.m5.large, ml.m5.xlarge, ml.m5.2xlarge, ml.m5.4xlarge, ml.m5.12xlarge, ml.m5.24xlarge
            instance_count: 1, # required
            volume_kms_key_id: "KmsKeyId",
          },
        },
      },
    ],
  },
  certify_for_marketplace: false,
}

Instance Attribute Summary collapse

Instance Attribute Details

#algorithm_descriptionString

A description of the algorithm.

Returns:

  • (String)

    A description of the algorithm.

#algorithm_nameString

The name of the algorithm.

Returns:

  • (String)

    The name of the algorithm.

#certify_for_marketplaceBoolean

Whether to certify the algorithm so that it can be listed in AWS Marketplace.

Returns:

  • (Boolean)

    Whether to certify the algorithm so that it can be listed in AWS Marketplace.

#inference_specificationTypes::InferenceSpecification

Specifies details about inference jobs that the algorithm runs, including the following:

  • The Amazon ECR paths of containers that contain the inference code and model artifacts.

  • The instance types that the algorithm supports for transform jobs and real-time endpoints used for inference.

  • The input and output content formats that the algorithm supports for inference.

Returns:

#training_specificationTypes::TrainingSpecification

Specifies details about training jobs run by this algorithm, including the following:

  • The Amazon ECR path of the container and the version digest of the algorithm.

  • The hyperparameters that the algorithm supports.

  • The instance types that the algorithm supports for training.

  • Whether the algorithm supports distributed training.

  • The metrics that the algorithm emits to Amazon CloudWatch.

  • Which metrics that the algorithm emits can be used as the objective metric for hyperparameter tuning jobs.

  • The input channels that the algorithm supports for training data. For example, an algorithm might support train, validation, and test channels.

Returns:

#validation_specificationTypes::AlgorithmValidationSpecification

Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm\'s training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm\'s inference code.

Returns:

  • (Types::AlgorithmValidationSpecification)

    Specifies configurations for one or more training jobs and that Amazon SageMaker runs to test the algorithm\'s training code and, optionally, one or more batch transform jobs that Amazon SageMaker runs to test the algorithm\'s inference code.