Code Signing for AWS loT

Developer Guide

dWS

v-’

Code Signing for AWS loT Developer Guide

Code Signing for AWS loT: Developer Guide
Copyright © 2019 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not
Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or
discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may
or may not be affiliated with, connected to, or sponsored by Amazon.

Code Signing for AWS loT Developer Guide

Table of Contents

What Is Code Signing fOr AWS 10T ? ..uiuuiiiieiiiiieiie ittt et et e et e et et et etae et eatneatneaunetnetnsaansesnsarnsenneannees 1
INEEGIated SEIVICESeniiii ittt et et ettt et e et ea et ea et eneenennennennasennesnennas 1

Y0 o] oY o {=Ta [(=T o [o] 1 PP PPPPRPPPPPRR 2
LIMIES e e e e 2
Pricing for Code Signing FOr AWS 0Tcuuiiiniiiiireir ettt et et e et et e et e ae e e s et s et eenneaneannannnns 2
[CT=] A d g (o I] =T {1 O O T O T PR P TP PPTPPPTORN 3
GEt @ CartifICAtE cevuiie ittt et 3

Yo [I o T Yo 1W< I 1 L= PP PPN 4
Create @ Destination BUCKET ...t e e e e e eanes 5
DEfINE AN TAM POLICY .uuiiniiiiiiiiii ettt et et e et e et e et et et et eaa e et s et sean s et eanneanseaneesneesneannes 5
Signing Platforms in Code Signing fOr AWS 10T ...c.uiiiiiiiiiiiie ettt e e e e aeete et e et eainaaanes 6
Signing Profiles in Code Signing fOr AWS 10Tcuuiiiiiiiieeir et e e e e e e e s eaneeaneens 6
Using the Code Signing fOr AWS 10T AP ...ouu ittt et et e e et e et e et e et e et e et eaaseenseanseaneanns 8
CanCelSIGNINGPIOTILE ..ouniieii et e et e e et e e et et e et e et a e e e aaaeas 8
DescribeSIgNINGJOD ...ttt 9
GEtSIgNINGPLATTOIM L.ttt e e e e e e e et e et e et e et e et e e eanseaneaans 10
GEESIGNINGPIOTILE «.utiieii ittt et e e et e et e et e et e ate e e s et s etnsanneanneannaannas 11
LiStSIGNINGJIODS ettt ettt e et e et e e e et e et e et e et et et enarannas 11

I YT a1 e | o Y {1 s L PP USRS PN 13
ListSIgNINGPIOTILES «...ieniiiiii ettt et et e e et e et e et e e e e e e e e e e eans 14
PULSTGNINGPIOTILE .. ieeeiiiie it e e et e et et e et e e e et e e e s et s ean s et eanneaneanaesnnees 14
StArtSIgGNINGJIOD L.oeie i ettt e e e e e e e anes 15
Authentication and ACCESS CONTIOLcuuiuniniiiiiii ettt ettt eae et et ene et enerenenennanns 18
AUTNENTICATION L.oouiiiiii i ettt et et e e e e eaas 18
ACCESS CONEIOL couiiiiiiiiit ittt ettt e ettt e e et e e eaa e ean e eaaeeanes 19

L L= = PPN 19
Customer Managed POLICIESc.euiuiiiiit ettt ettt s e et s e e s e e e e 19
INLINE POLICIES eneeneiei ettt et et ettt ettt e et e et ea s et ea s eneaa s eneaaseneaaseneaneneees 20
Start @ SIGNING JOD oottt ea e 20

Describe @ SiIgNiNg JOD. ...ttt et e et e e e e enes 20

LISt SIGNING JODS ..cuniniiiii ettt ettt ettt e e ens 21

FULL ACCESS .ttt et ettt et e e et e b s ea e en e e eanaes 21

API PermissioNs REFEIEINCEcuuiuniiiiiitiit ittt ettt e et e et e et s et e et eatseaneeanseansarnsennsanennnns 21
DOCUMENT HISTOTY .nitiiiii ittt et ettt et et e et e e et e a et e e enea e eataeneaaennes 23
AWS GLOSSAIY . .neuiniiin ettt ettt et et et e e e e e et et et et et et et et et st et et st et st e e st e e s e e e e e e e eaneanns 24

Code Signing for AWS loT Developer Guide
Integrated Services

What Is Code Signing for AWS loT?

With code signing for AWS loT, you can sign code that you create for any loT device that is supported by
Amazon Web Services (AWS). Code signing is available through Amazon FreeRTOS and AWS loT Device
Management, and integrated with AWS Certificate Manager (ACM). In order to sign code, you import a
third-party code signing certificate with ACM that is used to sign updates in Amazon FreeRTOS and AWS
loT Device Management.

You can use code signing through the Amazon FreeRTOS console to sign your firmware images before
deploying them to a microcontroller. You can access the Amazon FreeRTOS console here.

You can use code signing through the AWS IoT Device Management console to sign your code images
before deploying them using an over-the-air (OTA) update job. You can access the AWS loT Device
Management console here.

You can also use one of the AWS SDKs or command line tools to interact with all code signing
operations.

For general information about code signing for AWS IoT, see the following topics. For information about
the code signing API, see the Code Signing for AWS loT API Reference.

Topics
« Integrated Services (p. 1)
« Supported Regions (p. 2)
o Limits (p. 2)
o Pricing for Code Signing for AWS loT (p. 2)

Integrated Services

Code signing is integrated with the following services.
Amazon FreeRTOS

Amazon FreeRTOS is a microcontroller operating system based on the FreeRTOS kernel. It includes
libraries for connectivity and security. You can build and deploy your embedded applications on top
of Amazon FreeRTOS. To ensure the security of deployments to these microcontrollers, Amazon
FreeRTOS uses code signing for the initial manufacture of these devices and subsequent over-the-air
updates. You can use code signing through the Amazon FreeRTOS console to sign your code images
before you deploy them to a microcontroller.

AWS loT Device Management

With AWS loT Device Management you can manage Internet-connected devices and establish secure,
bidirectional communication between them. To do so, AWS IoT Device Management uses code
signing to authenticate each device in your 1oT environment. You can use code signing through

the AWS IoT Device Management console to sign your code images before you deploy them to a
microcontroller.

AWS Certificate Manager (ACM)

ACM handles the complexity of creating and managing or importing SSL/TLS certificates. You use
ACM to create an ACM certificate or import a third-party certificate that you use for signing. You
must have a certificate to sign code. For more information about certificates, see AWS Certificate
Manager User Guide.

https://docs.aws.amazon.com/freertos/latest/userguide/what-is-amazon.freertos.html
https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/iot/latest/developerguide/
https://docs.aws.amazon.com/acm/latest/userguide/
https://console.aws.amazon.com/freertos/
https://console.aws.amazon.com/iotdm/
https://aws.amazon.com/tools/
https://docs.aws.amazon.com/signer/latest/api/Welcome.html
https://docs.aws.amazon.com/acm/latest/userguide/
https://docs.aws.amazon.com/acm/latest/userguide/

Code Signing for AWS loT Developer Guide
Supported Regions

CloudTrail

You can use AWS CloudTrail to record API calls that are made to code signing. CloudTrail is an AWS
service that simplifies governance, compliance, and risk auditing by providing visibility into actions
made in your AWS account. For more information, see the AWS CloudTrail User Guide.

CloudWatch Events

You can use CloudWatch Events to monitor code signing objects. CloudWatch Events is an AWS
service that monitors the statuses of AWS resources in real time, making it easy to automate service
work flows and notifications. For more information, see the Amazon CloudWatch Events User Guide.

Supported Regions

Code signing for AWS IoT is supported in the same regions as Amazon FreeRTOS and AWS loT Device
Management. Visit AWS Regions and Endpoints in the AWS General Reference or the AWS Region Table to
see the regional support for both services.

Limits
You can make 5 calls per second to the StartSigningJob APl operation. You can make 25 calls per second

to any other code signing for AWS loT API operations. These limits apply to each AWS region and each
AWS account.

Pricing for Code Signing for AWS loT

There is no additional charge for the code signing feature for Amazon FreeRTOS or AWS IoT Device
Management. You pay for the storage of signed and unsigned objects in Amazon S3 based on your usage
history. There are no minimum fees and no required upfront commitments.

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/events/WhatIsCloudWatchEvent.html
https://docs.aws.amazon.com/general/latest/gr/rande.html
https://aws.amazon.com/about-aws/global-infrastructure/regional-product-services/
https://docs.aws.amazon.com/signer/latest/api/API-StartSigningJob

Code Signing for AWS loT Developer Guide
Get a Certificate

Getting Started

You can use code signing through the Amazon FreeRTOS or AWS loT Device Management consoles when
you create an over-the-air (OTA) job, or by using the code signing API.

Topics
« Obtain and Import a Code Signing Certificate (p. 3)
« Add Your Source Files to an Amazon S3 Bucket (p. 4)
« Create a Destination Amazon S3 Bucket (p. 5)
» Define an IAM Policy (p. 5)
« Signing Platforms in Code Signing for AWS IoT (p. 6)
« Signing Profiles in Code Signing for AWS IoT (p. 6)

Obtain and Import a Code Signing Certificate

Before you can use code signing for AWS loT, you must have or obtain a code signing certificate. Code
signing certificates typically contain a Digital Signature value in the Key Usage extension and a
Code Signing valuein the Extended Key Usage extension.

Certificate:
Data:
Version: 3 (0x2)
Serial Number: 4111 (0x100f)
Signature Algorithm: sha256WithRSAEncryption
Issuer: C=US, ST=Washington, L=Seattle, O=Example Company, OU=Corp,
CN=www.example.com/emailAddress=corp@www.example.com
Validity
Not Before: Nov 14 17:32:30 2017 GMT
Not After : Nov 14 17:32:30 2018 GMT
Subject: C=US, ST=Washington, L=Seattle, O=Example Company, OU=corp,
CN=www.example.com
Subject Public Key Info:
Public Key Algorithm: rsaEncryption

Public-Key: (2048 bit)

Modulus:
00:ac:96:8f:64:1a:4d:5c:cc:e4:50:a9:19:£f3:cl:
03:8f:1a:db:£f5:15:18:65:fb:6e:3f:84:ae:02:9e:
a2:e1:62:40:05:10:b6:35:59:63:c7:b3:17:4a:el:
12:9f:29:42:e4:2b:bb:83:db:bl:cd:42:83:0a:9f:
70:ca:81:6a:9b:58:1d:4e:a0:69:04:bc:0b:f4:7e:
34:fc:af:79:f1:31:6c:7e:a5:eb:bl:85:9e:5e:ef:
df:34:7c:aa:13:01:f5:cc:ee:al:9c:d9:4d:17:e8:
c8:8b:d0:77:2e:80:3f:7e:41:ea:84:2f£:11:22:59:
bd:fa:90:eb:26:ec:e7:b2:0e:9d:ce:b5:8a:a0:b9:
17:4c:8b:3a:b5:28:61:eb:d3:a6:ed:db:5c:26:e6:
7d:af:33:b6:9f:£f0:9d:fb:fc:10:e0:52:cb:60:5¢:
08:c3:33:4a:b4:8a:4e:3a:54:4e:43:3d:b9:f2:5e:
4e:89:95:c2:a5:df:88:a2:24:71:d3:ee:b3:ef:0b:
18:1d:55:54:16:ff:9b:95:6e:ae:71:d3:f2:d1:7e:
£f2:8b:67:34:£f8:11:fe:ab:8f:6b:88:c3:b9:8e:1d:
07:bc:62:27:45:7e:0c:a0:7b:ef:bf:26:£8:50:df:
ac:d8:8f:a5:ed:fe:9f:ee:20:dc:a6:33:3e:94:25:

https://docs.aws.amazon.com/signer/latest/api/Welcome.html

Code Signing for AWS loT Developer Guide
Add Your Source files

ce:67
Exponent: 65537 (0x10001)
X509v3 extensions:
X509v3 Basic Constraints:
CA:FALSE
X509v3 Subject Key Identifier:
22:93:86:26:D3:1B:32:1C:79:1B:5C:E4:EB:2A:6A:DB:77:87:D7:FB
X509v3 Authority Key Identifier:
keyid:0D:CE:76:F2:E3:3B:93:2D:36:05:41:41:16:36:C8:82:BC:CB:F8:A0
X509v3 Key Usage:
Digital Signature
X509v3 Extended Key Usage:
Code Signing
Signature Algorithm: sha256WithRSAEncryption
38:41:ba:c3:£f0:88:97:3e:al:0f:e3:d4:55:d6:d0:a2:4e:ac:
da:83:67:27:49:23:88:9b:20:el:el:b7:55:78:3c:5a:9b:7a:
75:ee:3a:0f:ed:20:4e:23:31:29:ac:07:91:61:£1:86:75:08:
fa:f5:3c:4a:7b:79:3c:39:a5:45:97:10:5c:f4:a0:04:af:e8:
5b:ca:dl:ab5:ce:14:dc:14:c6:54:bl:ba:6a:2c:52:2¢c:2£:07:
52:8a:a7:00:97:c7:ee:65:bb:df:36:7£:53:d0:7d:a4:6e:ba:
bb:d2:d4:b5:25:bb:b1:0d:bd:91:10:28:e1:34:df:79:01:78:
45:4e

We recommend that you purchase a code signing certificate from a company with a good reputation for
security. Do not use a self-signed certificate for any purpose other than testing.

After you have obtained the certificate, you must import it into AWS Certificate Manager (ACM). ACM
returns an Amazon Resource Name (ARN) for the certificate. You must use the ARN when you call the
StartSigningJob action. For more information about importing, see Importing Certificates in the AWS
Certificate Manager User Guide.

Add Your Source Files to an Amazon S3 Bucket

The following procedure discusses how to add your source code to an Amazon S3 bucket. For more
information, see Create a Bucket in the Amazon S3 Getting Started Guide.

To add source code to an Amazon S3 bucket

Sign into the AWS Management Console at https://console.aws.amazon.com/console/home.
Choose the S3 service.
Choose Create Bucket.

For Bucket name, enter a unique DNS-compliant name.

AT

Choose the Region where you want your bucket to reside. The source bucket must be in the same
Region as the one where you start your signing job. Also, this must be one of the Supported
Regions (p. 2).

Choose Next.

Choose Versioning. Your S3 bucket must be version enabled.

Choose Enable versioning and then choose Save.

Choose Next and then choose Next again on the Set permissions page.

oS Y o N

0. Review your choices. Choose Create bucket if you are satisfied with your input. Choose Previous to
start over.

11. Choose the S3 bucket that you just created and then choose Upload to add your code image to
the bucket. For more information, see Add an Object to a Bucket in the Amazon S3 Getting Started
Guide.

url-signer-api;API_StartSigningJob.html
https://docs.aws.amazon.com/acm/latest/userguide/import-certificate.html
url-s3-gsg;CreatingABucket.html
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/AmazonS3/latest/gsg/PuttingAnObjectInABucket.html

Code Signing for AWS loT Developer Guide
Create a Destination Bucket

Create a Destination Amazon S3 Bucket

The following procedure explains how to create an Amazon S3 bucket to which code signing for AWS loT
can write your signed code. For more information, see Create a Bucket in the Amazon S3 Getting Started
Guide.

To create a destination Amazon S3 bucket for your code signing code

Sign into the AWS Management Console at https://console.aws.amazon.com/console/home.
Choose the S3 service.

Choose Create Bucket.

For Bucket name, enter a unique DNS-compliant name.

Choose the region where you want your bucket to reside. The destination bucket must be in the
same region as the one where you start your signing job. Also, this must be one of the Supported
Regions (p. 2).

Choose Next.
On the Set properties page, choose Next.
On the Set permissions page, choose Next.

Review your choices on the Review page. Choose Create bucket if you are satisfied with your input.
Choose Previous to start over.

A w2

© N

Define an IAM Policy

To allow user access to code signing commands, you can attach a policy to an IAM group that grants
permission to sign code. For example, you can manually create the following policy or edit it to create a
more restrictive policy. For more information, see Overview of IAM Policies.

To manually create an IAM policy:

Sign in to the IAM console at https://console.aws.amazon.com/iam/.
In the left navigation pane, choose Policies.

Choose Create Policy.

Choose the JSON tab.

Select the existing text and press Delete.

Copy and paste the following. This policy allows the user to which it is attached to access all
operations available in the code signing API. You can edit the policy to make it more restrictive.
When you're done, choose Review Policy.

o Uk WM~

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"signer:*"
1,
"Resource": [
wxn
]
}
]
}

https://docs.aws.amazon.com/AmazonS3/latest/gsg/CreatingABucket.html
https://console.aws.amazon.com/console/home
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://console.aws.amazon.com/iam/

Code Signing for AWS loT Developer Guide
Signing Platforms in Code Signing for AWS loT

In order to use the StartSigningJob (p. 15) API operation, you must specify an Amazon S3 bucket
to which to save the signing job. In order to do so, attach the following policy to the designated user.

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"signer:StartSigningJob",
"s3:GetObjectVersion",
"s3:PutObject"
1.
"Resource": [
W
]
}
]
}

7. Enter a policy name and description. Then choose Create Policy.
8. After you create the policy, choose Users in the navigation pane of the IAM console.

Choose the name of a user.

Make sure that the Permissions tab is active. Choose Add permissions.

Choose Attach existing policies directly.

Select the check box for the policy that you created in the preceding step. Choose Next: Review.
If everything looks correct, choose Add permissions.

P an oo

Signing Platforms in Code Signing for AWS loT

A signing platform in code signing for AWS IoT is a predefined set of instructions that specifies hash and
encryption algorithms. Code signing uses these instructions to sign a file in Amazon FreeRTOS or AWS
loT Device Management. Although users cannot edit a signing platform, they can modify the platform's
implementation by including hash or encryption algorithm overrides in a signing profile (p. 6).

To see all available signing platforms, use the ListSigningPlatforms operation. For information about a
particular signing platform, use the GetSigningPlatform operation.

For more information about the configurations and parameters that are contained in signing platforms,
see SigningPlatform in the Code Signing for AWS loT API Reference.

Signing Profiles in Code Signing for AWS loT

A signing profile is a code signing template that can be used to carry out a predefined signing

job. A signing profile designates the signing material (a file) to be signed with a particular signing
platform (p. 6), as well as any hash or encryption algorithm overrides to be applied to that signing
platform. Once created, administrators can use AWS Identity and Access Management (IAM) to delegate
control over signing profiles. Doing so ensures that only approved users have access to particular code
signing, Amazon FreeRTOS, AWS loT Device Management, and AWS Certificate Manager resources. For
more information about managing user permissions in code signing, see the section called “Customer
Managed Policies” (p. 19).

In order to start a signing job with the StartSigningJob operation, you must designate a signing profile.

https://docs.aws.amazon.com/signer/latest/api/API_SigningConfigurationOverrides.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningPlatforms.html
https://docs.aws.amazon.com/signer/latest/api/API_GetSigningPlatfor.html
https://docs.aws.amazon.com/signer/latest/api/API_SigningPlatform.html
https://docs.aws.amazon.com/signer/latest/api/API_SigningMaterial.html
https://docs.aws.amazon.com/signer/latest/api/API_SigningConfigurationOverrides.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob.html

Code Signing for AWS loT Developer Guide
Signing Profiles in Code Signing for AWS loT

Use the PutSigningProfile operation to create a signing profile, and the CancelSigningProfile operation
to cancel a signing profile. Canceled profiles remain in the CANCELED state for two years after the
CancelSigningProfile operation is issued, after which time they are deleted. To find the status of a
particular signing profile, use the GetSigningProfile operation.

For a list of all available signing profiles, including those in the CANCELED state, use the
ListSigningProfiles operation.

For more information about the configurations and parameters related to signing profiles, see
SigningPlatform in the Code Signing for AWS IoT API Reference Guide.

https://docs.aws.amazon.com/signer/latest/api//API_PutSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_CancelSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_GetSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_ListSigningProfiles.html
https://docs.aws.amazon.com/signer/latest/api/API_SigningProfile.html

Code Signing for AWS loT Developer Guide
CancelSigningProfile

Using the Code Signing for AWS loT
API

You can use the code signing API to interact with the service programmatically. For more information,
see the code signing Developer Guide. The following topics show you how to use Java to program the
SDK.
Topics

« CancelSigningProfile (p. 8)

» DescribeSigningJob (p. 9)

» GetSigningPlatform (p. 10)

+ GetSigningProfile (p. 11)

« ListSigningJobs (p. 11)

« ListSigningPlatforms (p. 13)

« ListSigningProfiles (p. 14)

« PutSigningProfile (p. 14)

« StartSigningJob (p. 15)

CancelSigningProfile

The following example shows how to use the CancelSigningProfile operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.services.signer.AWSSigner;

import com.amazonaws.services.signer.AWSSignerClient;

import com.amazonaws.services.signer.model.CancelSigningProfileRequest;

/**

* This examples demonstrates creating a code signing profile and using it to start a
signing job.

*/

public class CancelSigningProfile {

public static void main(String[] s) {

final String credentialsProfile = "default";
final String codeSigningProfileName = "MyProfile";

// Create a client.

final AWSSigner client = AWSSignerClient.builder()
.withRegion("us-west-2")
.withCredentials(new ProfileCredentialsProvider(credentialsProfile))
.build();

https://docs.aws.amazon.com/signer/latest/api/Welcome.html
url-signer-api;API_CancelSigningProfile.html

Code Signing for AWS loT Developer Guide
DescribeSigningJob

// cancel a signing profile
client.cancelSigningProfile(new
CancelSigningProfileRequest().withProfileName(codeSigningProfileName));

}

DescribeSigningJob

The following example shows you how to use the DescribeSigningJob operation. Call the
StartSigningJob operation before calling DescribeSigningJob. StartSigningJob returns a jobId
value that you use when you call DescribeSigningJob.

package com.amazonaws.samples;

import com.amazonaws.services.signer.AWSSigner;

import com.amazonaws.services.signer.AWSSignerClient;

import com.amazonaws.services.signer.model.DescribeSigningJobRequest;
import com.amazonaws.services.signer.model.DescribeSigningJobResult;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

import com.amazonaws.services.signer.model.ResourceNotFoundException;
import com.amazonaws.services.signer.model.AccessDeniedException;

import com.amazonaws.services.signer.model.InternalServiceErrorException;
import com.amazonaws.AmazonClientException;

/**
* This sample demonstrates how to use the DescribeSigningJob operation in the

* code signing service.
*

* Input Parameters:

*

* jobId - String that contains the ID of the job that was returned by the
* StartSigningJob operation.

*

*/

public class DescribeSigningJdob {
public static void main(String[] args) throws Exception {

// Retrieve your credentials from the C:\Users\name\.aws\credentials file
// in Windows or the ~/.aws/credentials in Linux.
AWSCredentials credentials = null;
try {
credentials = new ProfileCredentialsProvider().getCredentials();
}
catch (Exception ex) {
throw new AmazonClientException("Cannot load your credentials from file.", ex);

}

// Specify the endpoint and region.
EndpointConfiguration endpoint =
new EndpointConfiguration("https://endpoint","region");

// Create a client.
AWSSigner client = AWSSignerClient.builder()
.withEndpointConfiguration(endpoint)

url-signer-api;API_DescribeSigningJob.html
url-signer-api;API_StartSigningJob.html

Code Signing for AWS loT Developer Guide
GetSigningPlatform

.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

// Create a request object.
DescribeSigningJobRequest req = new DescribeSigningJobRequest()
.withJobId("cc9067a9-9258-489a-abae-1c3408191071");

// Create a result object.
DescribeSigningJobResult result = null;

try {
result = client.describeSigningJob(req);

}
catch (ResourceNotFoundException ex)
{
throw ex;
}
catch (AccessDeniedException ex)
{
throw ex;
}
catch (InternalServiceErrorException ex)
{
throw ex;
}

// Display the information for your signing job.
System.out.println(result.toString());

GetSign

ingPlatform

The following example shows how to use the GetSigningPlatform operation.

import
import
import
import
import

public

com.amazonaws.auth.profile.ProfileCredentialsProvider;
com.amazonaws.services.signer.AWSsigner;
com.amazonaws.services.signer.AWSsignerClient;
com.amazonaws.services.signer.model.GetSigningPlatformRequest;
com.amazonaws.services.signer.model.GetSigningPlatformResult;

class GetSigningPlatform {

public static void main(String[] s) {

final String credentialsProfile = "default";
final String codeSigningPlatformId = "AmazonFreeRTOS";

// Create a client.

final AWSsigner client = AWSsignerClient.builder()
.withRegion("us-west-2")
.withCredentials(new ProfileCredentialsProvider(credentialsProfile))
.build();

GetSigningPlatformResult result = client.getSigningPlatform(
new GetSigningPlatformRequest().withPlatformId(codeSigningPlatformId));

System.out.println("Display Name : " + result.getDisplayName());
System.out.println("Platform Id : " + result.getPlatformId());
System.out.println("Signing Configuration : " + result.getSigningConfiguration());

10

url-signer-api;API_GetSigningPlatform.html

Code Signing for AWS loT Developer Guide
GetSigningProfile

‘ }

GetSigningProfile

The following example shows how to use the GetSigningProfile operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.services.signer.AWSSigner;

import com.amazonaws.services.signer.AWSSignerClient;

import com.amazonaws.services.signer.model.GetSigningProfileRequest;
import com.amazonaws.services.signer.model.GetSigningProfileResult;

/**

* This examples demonstrates retreiving a signing profile's information.
*/

public class GetSigningProfile {

public static void main(String[] s) {

final String credentialsProfile = "default";
final String codeSigningProfileName = "MyProfile";

// Create a client.

final AWSSigner client = AWSSignerClient.builder()
.withRegion("us-west-2")
.withCredentials(new ProfileCredentialsProvider(credentialsProfile))
.build();

// Get a signing profile.
GetSigningProfileResult getSigningProfileResult = client.getSigningProfile(new
GetSigningProfileRequest().withProfileName(codeSigningProfileName));

System.out.println("Profile Name : " + getSigningProfileResult.getProfileName());

System.out.println("Certificate Arn : " +
getSigningProfileResult.getSigningMaterial().getCertificateArn());

System.out.println("Platform : " + getSigningProfileResult.getPlatform());

}

ListSigningJobs

The following example shows how to use the ListSigningJobs operations. This operation lists all of the
signing jobs that you have performed in your account. Call the StartSigningJob operation before you call
ListSigningJobs. You can also call DescribeSigningJob and specify a jobId to see information about
a specific signing job created by calling StartSigningJob.

package com.amazonaws.samples;

import com.amazonaws.services.signer.AWSSigner;

import com.amazonaws.services.signer.AWSSignerClient;

import com.amazonaws.services.signer.model.ListSigningJobsRequest;
import com.amazonaws.services.signer.model.ListSigningJobsResult;

import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.AWSStaticCredentialsProvider;

11

url-signer-api;API_SetSigningProfile.html
url-signer-api;API_ListSigningJobs.html
url-signer-api;API_StartSigningJob.html
url-signer-api;API_DescribeSigningJob.html

Code Signing for AWS loT Developer Guide
ListSigningJobs

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

import com.amazonaws.services.signer.model.ValidationException;

import com.amazonaws.services.signer.model.AccessDeniedException;

import com.amazonaws.services.signer.model.ThrottlingException;

import com.amazonaws.services.signer.model.InternalServiceErrorException;
import com.amazonaws.AmazonClientException;

/**

* This sample demonstrates how to use the ListSigningJobs operation in the

*

% ok kX 3k 3k ok ok kX X X 3k 3k ok X X X X 3%

code signing for AWS IoT service.
Input Parameters:

status - String that specifies the status that you want to use for filtering.

This can be:
- InProgress
- Failed
- Succeeded

platform - String that contains the name of the microcontroller platform that

you want to use for filtering.

requestedBy - IAM principal that requested the signing job.
maxResults - Use this parameter when paginating results to specify the maximum

number of items to return in the response. If additional items exist
beyond the number you specify, the nextToken element is sent in the
response. Use the nextToken value in a subsequent request to retrieve
additional items.

nextToken - Use this parameter only when paginating results and only in a

subsequent request after you receive a response with truncated results.
Set it to the value of nextToken from the response you
just received.

public class ListSigningJobs {

public static void main(String[] args) throws Exception{

// Retrieve your credentials from the C:\Users\name\.aws\credentials file in Windows
// or the ~/.aws/credentials in Linux.
AWSCredentials credentials = null;
try {
credentials = new ProfileCredentialsProvider().getCredentials();
}
catch (Exception ex) {
throw new AmazonClientException("Cannot load your credentials from file.", ex);

// Specify the endpoint and region.
EndpointConfiguration endpoint =
new EndpointConfiguration("https://endpoint","region");

// Create a client.

AWSSigner client = AWSSignerClient.builder()
.withEndpointConfiguration(endpoint)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

// Create a request object.

ListSigningJobsRequest req = new ListSigningJobsRequest()
.withStatus("Succeeded")
.withPlatform("Platform")
.withMaxResults(10);

// Create a result object.

12

Code Signing for AWS loT Developer Guide
ListSigningPlatforms

ListSigningJobsResult result = null;
try {
result = client.listSigningJobs(req);
}
catch (ValidationException ex)
{
throw ex;
}
catch (AccessDeniedException ex)
{
throw ex;
}
catch (ThrottlingException ex)
{
throw ex;
}
catch (InternalServiceErrorException ex)
{
throw ex;
}
// Display the information for your signing job.
System.out.println(result.toString());
}
}

ListSigningPlatforms

The following example shows how to use the ListSigningPlatforms operation.

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.services.signer.AWSsigner;

import com.amazonaws.services.signer.AWSsignerClient;

import com.amazonaws.services.signer.model.ListSigningPlatformsRequest;
import com.amazonaws.services.signer.model.ListSigningPlatformsResult;
import com.amazonaws.services.signer.model.SigningPlatform;

public class ListSigningPlatforms {
public static void main(String[] s) {
final String credentialsProfile = "default";

// Create a client.

final AWSsigner client = AWSsignerClient.builder()
.withRegion("us-west-2")
.withCredentials(new ProfileCredentialsProvider(credentialsProfile))
.build();

ListSigningPlatformsResult result;
String nextToken = null;
do {
result = client.listSigningPlatforms(new
ListSigningPlatformsRequest().withNextToken(null));

for (SigningPlatform platform : result.getPlatforms()) {

System.out.println("Display Name : " + platform.getDisplayName());

System.out.println("Platform Id : " + platform.getPlatformId());

System.out.println("Signing Configuration : " +
platform.getSigningConfiguration());

}

13

url-signer-api;API_ListSigningPlatforms.html

Code Signing for AWS loT Developer Guide
ListSigningProfiles

nextToken = result.getNextToken();
} while (nextToken != null);

ListSigningProfiles

The following example shows how to use the ListSigningProfiles operation.

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.services.signer.AWSsigner;

import com.amazonaws.services.signer.AWSsignerClient;

import com.amazonaws.services.signer.model.ListSigningProfilesRequest;
import com.amazonaws.services.signer.model.ListSigningProfilesResult;
import com.amazonaws.services.signer.model.SigningProfile;

public class ListSigningProfilesTest {
public static void main(String[] s) {
final String credentialsProfile = "default";
// Create a client.
final AWSsigner client = AWSsignerClient.builder()
.withRegion("us-west-2")
.build();
ListSigningProfilesResult result;
String nextToken = null;
do {
result = client.listSigningProfiles(new

ListSigningProfilesRequest().withNextToken(null));

for (SigningProfile profile : result.getProfiles()) {

System.out.println("Profile Name : " + profile.getProfileName());

System.out.println("Cert Arn : " +
profile.getSigningMaterial().getCertificateArn());

System.out.println("Profile Status : " + profile.getStatus());

System.out.println("Platform Id : " + profile.getPlatformId());

}

nextToken = result.getNextToken();
} while (nextToken != null);

.withCredentials(new ProfileCredentialsProvider(credentialsProfile))

PutSigningProfile

The following example shows how to use the PutSigningProfileProfile operation to create a new signing

profile. Code signing profiles can then be used in the StartSigningJob operation.

package com.examples;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;
import com.amazonaws.services.signer.AWSSigner;
import com.amazonaws.services.signer.AWSSignerClient;

14

url-signer-api;API_ListSigningProfiles.html
url-signer-api;API_PutSigningProfile.html
https://docs.aws.amazon.com/signer/latest/api/API_StartSigningJob

Code Signing for AWS loT Developer Guide
StartSigningJob

import com.amazonaws.services.signer.model.PutSigningProfileRequest;
import com.amazonaws.services.signer.model.SigningMaterial;

public class PutSigningProfile {
public static void main(String[] s) {

final String credentialsProfile = "default";

final String codeSigningProfileName = "MyProfile";

final String codeSigningCertificateArn = "arn:aws:acm:us-
west-2:123456789:certificate/6e7e9e0c-0d2a-

4835-b2cc-2326al16c86£f0";

// Create a client.

final AWSSigner client = AWSSignerClient.builder()
.withRegion("us-west-2")
.withCredentials(new ProfileCredentialsProvider(credentialsProfile))
.build();

// creating a code signing profile.
client.putSigningProfile(new PutSigningProfileRequest()
.withProfileName(codeSigningProfileName)
.withSigningMaterial(new SigningMaterial()
.withCertificateArn(codeSigningCertificateArn))
.withPlatform(platoformArn));

StartSigningJob

The following example shows how to use the StartSigningJob operation. You must call
StartSigningJob before you call any other code signing API operation. StartSigningJob returns a
jobId value that you can use when calling DescribeSigningJob operation.

In order to use the startSigningJdob operation, make sure that the designated user's IAM policy
includes Amazon S3 permissions. See Define an IAM Policy" (p. 5) for an example.

package com.amazonaws.samples;

import com.amazonaws.services.signer.AWSSigner;

import com.amazonaws.services.signer.AWSSignerClient;

import com.amazonaws.services.signer.model.SigningMaterial;

import com.amazonaws.services.signer.model.Source;

import com.amazonaws.services.signer.model.S3Source;

import com.amazonaws.services.signer.model.Destination;

import com.amazonaws.services.signer.model.S3Destination;

import com.amazonaws.services.signer.model.StartSigningJobRequest;
import com.amazonaws.services.signer.model.StartSigningJobResult;

import com.amazonaws.auth.AWSCredentials;

import com.amazonaws.auth.AWSStaticCredentialsProvider;

import com.amazonaws.auth.profile.ProfileCredentialsProvider;

import com.amazonaws.client.builder.AwsClientBuilder.EndpointConfiguration;

import com.amazonaws.services.signer.model.ValidationException;

import com.amazonaws.services.signer.model.ResourceNotFoundException;
import com.amazonaws.services.signer.model.AccessDeniedException;

import com.amazonaws.services.signer.model.ThrottlingException;

import com.amazonaws.services.signer.model.InternalServiceErrorException;
import com.amazonaws.AmazonClientException;

15

url-signer-api;API_StartSigningJob.html
url-signer-api;API_DescribeSigningJob.html

Code Signing for AWS loT Developer Guide
StartSigningJob

/**
This sample demonstrates how to use the StartSigningJob operation in the
code signing service.

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

Input Parameters:

source - Structure that contains the following:

- Name of the Amazon S3 bucket to which you copied your
code image

- Name of the file that contains your code image

- Amazon S3 version number of your file

destination - Structure that contains the following:

- Name of the Amazon S3 bucket that code signing can use for
your signed code
- Optional Amazon S3 bucket prefix

signingmaterial - Amazon Resource Name (ARN) of the certificate to use for signing
signingparameters - Map of custom key-value pairs that you want to use for signing
platform - The microcontroller platform

public class StartSigningJdob {

public static void main(String[] args) throws Exception{

// Define variables.
String certArn =
"arn:aws:acm:region:account:certificate/12345678-1234-1234-1234-123456789012";

String bucketSrc = "Source-Bucket-Name";
String key = "Code-Image-File";
String bucketDest = "Destination-Bucket-Name";

SigningMaterial material = new SigningMaterial().withCertificateArn(certArn);
S3Source s3src = new S3Source()

.withBucketName(bucketSrc)

.withKey(key)

.withVersion("W.OIrIFmjIFeuNXOaBJzPee66.wRg4GR");
Source src = new Source().withS3(s3src);
S3Destination s3Dest = new S3Destination().withBucketName(bucketDest);
Destination dest = new Destination().withS3(s3Dest);
String platform = "Platform";

// Retrieve your credentials from the C:\Users\name\.aws\credentials file in
// Windows or the ~/.aws/credentials in Linux.
AWSCredentials credentials = null;
try {
credentials = new ProfileCredentialsProvider().getCredentials();
}
catch (Exception ex) {
throw new AmazonClientException("Cannot load your credentials from file.", ex);

// Specify the endpoint and region.
EndpointConfiguration endpoint =
new EndpointConfiguration("https://endpoint","region");

// Create a client.

AWSSigner client = AWSSignerClient.builder()
.withEndpointConfiguration(endpoint)
.withCredentials(new AWSStaticCredentialsProvider(credentials))
.build();

// Create a request object.
StartSigningJobRequest req = new StartSigningJobRequest()
.withSource(src)

16

Code Signing for AWS loT Developer Guide
StartSigningJob

.withDestination(dest)
.withSigningMaterial(material)
.withPlatform(platform);

// Create a result object.
StartSigningJobResult result = null;

try {
result = client.startSigningJob(req);

}
catch (ValidationException ex)
{
throw ex;
}
catch (ResourceNotFoundException ex)
{
throw ex;
}
catch (AccessDeniedException ex)
{
throw ex;
}
catch (ThrottlingException ex)
{
throw ex;
}
catch (InternalServiceErrorException ex)
{
throw ex;
}

// Display the job ID.
System.out.println("Job ID: " + result.getJobId());

17

Code Signing for AWS loT Developer Guide
Authentication

Authentication and Access Control

Access to code signing for AWS loT requires credentials that AWS can use to authenticate your requests.
The credentials must have permissions to access AWS resources. The following sections provide details
on how you can use AWS Identity and Access Management (IAM) to help secure your resources by
controlling who can access them.

Authentication

You can access AWS as any of the following types of identities:

« AWS account root user — When you first create an AWS account, you begin with a single sign-in
identity that has complete access to all AWS services and resources in the account. This identity is
called the AWS account root user and is accessed by signing in with the email address and password
that you used to create the account. We strongly recommend that you do not use the root user for
your everyday tasks, even the administrative ones. Instead, adhere to the best practice of using the
root user only to create your first IAM user. Then securely lock away the root user credentials and use
them to perform only a few account and service management tasks.

« 1AM user — An IAM user is an identity within your AWS account that has specific custom permissions
(for example, permissions to create a directory in AWS Signer). You can use an IAM user name and
password to sign in to secure AWS webpages like the AWS Management Console, AWS Discussion
Forums, or the AWS Support Center.

In addition to a user name and password, you can also generate access keys for each user. You can

use these keys when you access AWS services programmatically, either through one of the several
SDKs or by using the AWS Command Line Interface (CLI). The SDK and CLI tools use the access keys

to cryptographically sign your request. If you don't use AWS tools, you must sign the request yourself.
AWS Signer supports Signature Version 4, a protocol for authenticating inbound API requests. For more
information about authenticating requests, see Signature Version 4 Signing Process in the AWS General
Reference.

« IAM role - An IAM role is an IAM identity that you can create in your account that has specific
permissions. It is similar to an IAM user, but it is not associated with a specific person. An IAM role
enables you to obtain temporary access keys that can be used to access AWS services and resources.
IAM roles with temporary credentials are useful in the following situations:

« Federated user access — Instead of creating an 1AM user, you can use existing user identities from
AWS Directory Service, your enterprise user directory, or a web identity provider. These are known as
federated users. AWS assigns a role to a federated user when access is requested through an identity
provider. For more information about federated users, see Federated Users and Roles in the IAM User
Guide.

« AWS service access — You can use an IAM role in your account to grant an AWS service permissions
to access your account'’s resources. For example, you can create a role that allows Amazon Redshift
to access an Amazon S3 bucket on your behalf and then load data from that bucket into an Amazon
Redshift cluster. For more information, see Creating a Role to Delegate Permissions to an AWS
Service in the IAM User Guide.

18

https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#create-iam-users
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://console.aws.amazon.com/
https://forums.aws.amazon.com/
https://forums.aws.amazon.com/
https://console.aws.amazon.com/support/home#/
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_access-keys.html
https://aws.amazon.com/tools/
https://aws.amazon.com/tools/
https://aws.amazon.com/cli/
https://docs.aws.amazon.com/general/latest/gr/signature-version-4.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_providers.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction_access-management.html#intro-access-roles
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html

Code Signing for AWS loT Developer Guide
Access Control

« Applications running on Amazon EC2 - You can use an IAM role to manage temporary credentials
for applications that are running on an EC2 instance and making AWS API requests. This is preferable
to storing access keys within the EC2 instance. To assign an AWS role to an EC2 instance and make
it available to all of its applications, you create an instance profile that is attached to the instance.
An instance profile contains the role and enables programs that are running on the EC2 instance
to get temporary credentials. For more information, see Using an IAM Role to Grant Permissions to
Applications Running on Amazon EC2 Instances in the IAM User Guide.

Access Control

You can have valid credentials to authenticate your requests. But unless you have permissions, you
cannot create or access code signing resources. For example, you must have permission to start a
signing job, describe a signing job, and list all signing jobs. The following topics discuss how to manage
permissions. We recommend that you read the overview first.

« Overview of Managing Access to Your ACM Resources (p. 19)

« Customer Managed Policies (p. 19)

« Inline Policies (p. 20)

« Code Signing for AWS loT API Permissions: Actions Reference (p. 21)

Overview of Managing Access to Your ACM
Resources

An AWS account owner or an authorized administrator can attach permissions policies to IAM identities
(users, groups, and roles) that were created in the account. When managing permissions, an account
owner or administrator decides who gets the permissions and what specific actions are allowed.

A permissions policy describes who has access to what. Administrators can use IAM to create policies that
apply permissions to IAM users, groups, and roles. The following types of identity-based policies can grant
permission for code signing actions:

« Customer-managed policies — Policies that an administrator creates and manages in an AWS account
and which can be attached to multiple users, groups, and roles.

« Inline policies — Policies that an administrator creates and manages and which can be embedded
directly into a single user, group, or role.

For complete IAM documentation, see the IAM User Guide. For information about IAM policy syntax and
descriptions, see AWS IAM Policy Reference.

Customer Managed Policies

Customer managed policies are standalone identity-based policies that an administrator creates and can
attach to multiple users, groups, or roles in your AWS account. Administrators can manage and create
policies using the AWS Management Console, the AWS Command Line Interface (AWS CLI), or the IAM
API. For more information about using the console to administer customer managed policies, see the
following topics in the IAM User Guide.

19

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/introduction.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/

Code Signing for AWS loT Developer Guide
Inline Policies

« Attaching Managed Policies

» Detaching Managed Policies

» Creating Customer Managed Policies

« Editing Customer Managed Policies

« Setting the Default Version of Customer Managed Policies
 Deleting Versions of Customer Managed Policies

» Deleting Customer Managed Policies

For more information about using the API, see Working with Managed Policies Using the AWS CLI or the
IAM API .

Inline Policies

Inline policies are policies that an administrator creates and manages and embeds directly into a single
principal (user, group, or role). The following policy examples show how to grant permissions to perform
ACM actions. For more information about attaching inline policies, see Working with Inline Policies in
the IAM User Guide. You can use the AWS Management Console, the AWS Command Line Interface (AWS
CLI), or the IAM API to create and embed inline policies.

Topics
« Start a Signing Job (p. 20)
» Describe a Signing Job. (p. 20)
« List Signing Jobs (p. 21)
 Full Access (p. 21)

Start a Signing Job

The following policy allows a principal to start a code signing job. For more information, see
StartSigningJob.

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": "signer:StartSigningJob",
"Resource": "*"
]
}

Describe a Signing Job.

The following policy allows a principal to describe a code signing job. For more information, see
DescribeSigningJob.

{
"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": "signer:DescribeSigningJob",
"Resource": "*"

20

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#attach-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#detach-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#create-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#edit-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#set-default-version-managed-policy-console
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#delete-version-managed-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#delete-managed-policy
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#policies_using-managed-cli-api
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-using.html#policies_using-managed-cli-api
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_inline-using.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/
https://docs.aws.amazon.com/acm/latest/APIReference/API_StartSigningJob.html
https://docs.aws.amazon.com/acm/latest/APIReference/API_DescribeSigningJob.html

Code Signing for AWS loT Developer Guide
List Signing Jobs

List Signing Jobs

The following policy allows a principal to list information about all code signing jobs. For more
information, see ListSigningJobs.

{
"Version": "2012-10-17",
"Statement": {
"Effect": "Allow",
"Action": "signer:ListSigningJobs",
"Resource": "*"
}
}

Full Access

The following policy allows a principal to perform any code signing action.

{
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Action": "signer:*",
"Resource": "*"
]
}

Code Signing for AWS loT API Permissions: Actions
Reference

Administrators who set up access control and write permissions policies that they attach to an IAM
identity (identity-based policies) can use the following table as a reference. The first column in the

table lists each AWS Certificate Manager (ACM) API operation. You specify actions in a policy's Action
element. You can use the IAM policy elements in your ACM policies to express conditions. For a complete
list, see Available Keys in the IAM User Guide.

Note

To specify an action, use the signer prefix followed by the API operation name (for example,
signer:StartSigningJob).

ACM API Operations and Permissions

API Operation Required Permissions (APl Actions)
CancelSigningProfile signer:CancelSigningProfile
DescribeSigningJob signer:DescribeSigningJob
GetSigningPlatform signer:GetSigningPlatform
GetSigningProfile signer:GetSigningProfile

21

https://docs.aws.amazon.com/acm/latest/APIReference/API_ListSigningJobs.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html#AvailableKeys
url-signer-api;API_CancelSigningProfile.html
url-signer-api;API_DescribeSigningJob.html
url-signer-api;API_GetSigningPlatform.html
url-signer-api;API_GetSigningProfile.html

Code Signing for AWS loT Developer Guide
API Permissions Reference

API Operation
ListSigningJob
ListSigningPlatforms
ListSigningProfiles
PutSigningProfile

StartSigningJob

Required Permissions (APl Actions)

signer:
signer:
signer:
signer:

signer:

ListSigningJdob
ListSigningPlatforms
ListSigningProfiles
PutSigningProfile

StartSigningJob

22

url-signer-api;API_ListSigningJobs.html
url-signer-api;API_ListSigningPlatforms.html
url-signer-api;API_ListSigningProfiles.html
url-signer-api;API_PutSigningProfile.html
url-signer-api;API_StartSigningJob.html

Code Signing for AWS loT Developer Guide

Document History for Developer
Guide

Latest documentation update: November 19, 2018

The following table describes the documentation release history of code signing for AWS loT.

update-history-change update-history-description update-history-date
Added new content (p. 23) Integrated code signing for November 8, 2018
AWS loT with AWS loT Device
Management.
Launched code signing for AWS This release introduces code December 20, 2017
10T (p. 23) signing for AWS loT.

23

Code Signing for AWS loT Developer Guide

AWS Glossary

For the latest AWS terminology, see the AWS Glossary in the AWS General Reference.

24

https://docs.aws.amazon.com/general/latest/gr/glos-chap.html

	Code Signing for AWS IoT
	Table of Contents
	What Is Code Signing for AWS IoT?
	Integrated Services
	Supported Regions
	Limits
	Pricing for Code Signing for AWS IoT

	Getting Started
	Obtain and Import a Code Signing Certificate
	Add Your Source Files to an Amazon S3 Bucket
	Create a Destination Amazon S3 Bucket
	Define an IAM Policy
	Signing Platforms in Code Signing for AWS IoT
	Signing Profiles in Code Signing for AWS IoT

	Using the Code Signing for AWS IoT API
	CancelSigningProfile
	DescribeSigningJob
	GetSigningPlatform
	GetSigningProfile
	ListSigningJobs
	ListSigningPlatforms
	ListSigningProfiles
	PutSigningProfile
	StartSigningJob

	Authentication and Access Control
	Authentication
	Access Control
	Overview of Managing Access to Your ACM Resources
	Customer Managed Policies
	Inline Policies
	Start a Signing Job
	Describe a Signing Job.
	List Signing Jobs
	Full Access

	Code Signing for AWS IoT API Permissions: Actions Reference

	Document History for Developer Guide
	AWS Glossary

