Video on Demand on AWS Foundation
Implementation Guide
Video on Demand on AWS Foundation: Implementation Guide
Copyright © Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
Table of Contents

Welcome ... 1
Cost .. 2
 Cost table for a 60-minute source video ... 2
Architecture overview ... 4
Components .. 5
 Ingest ... 5
 Encoding ... 5
 Processing ... 5
Security .. 7
 Amazon S3 bucket policy .. 7
 IAM roles .. 7
Considerations ... 8
 Customization .. 8
 Regional deployments .. 8
Template ... 9
Automated deployment ... 10
 Launch the stack .. 10
Additional resources ... 12
Changing the job settings file .. 13
Working with multiple job settings files .. 14
Troubleshooting ... 15
Operational metrics .. 16
Source code ... 17
Revisions ... 18
Contributors .. 19
Notices .. 20
Deploy a customizable architecture to build a video-on-demand workflow

Publication date: November 2020 (last update (p. 18): July 2021)

Video on Demand on AWS Foundation is a reference implementation that automatically provisions the Amazon Web Services (AWS) services necessary to build a scalable, distributed video-on-demand workflow. To build highly available, resilient architectures that ingest, store, process, and deliver video content on demand, this solution uses the following AWS services:

- **AWS Elemental MediaConvert** to transcode media files from their source format into versions that play back on devices like smartphones, tablets, and PCs, and other devices.
- **Amazon CloudFront** for global distribution.
- **Amazon Simple Storage Service** (Amazon S3) for object storage.
- **AWS Lambda** to run code without provisioning or managing servers.
- **Amazon CloudWatch** to track encoding jobs in MediaConvert.
- **Amazon Simple Notification Service** (Amazon SNS) to send notifications for completed jobs.

This solution is designed to help you begin encoding video files with MediaConvert. Out of the box, this solution provides a sample MediaConvert job-settings.json file, which is used to transcode videos uploaded to an Amazon S3 bucket. You can customize the architecture to meet your specific needs. For more information, refer to Customization (p. 8).

If you are looking to build out more complex workflows with options around ingest processing and publishing video content, AWS also offers the Video on Demand on AWS solution.

This implementation guide discusses architectural considerations and configuration steps for deploying the Video on Demand on AWS Foundation solution in the AWS Cloud. It includes links to an AWS CloudFormation template that launches and configures the AWS services required to deploy this solution using AWS best practices for security and availability.

The guide is intended for IT infrastructure architects, administrators, and DevOps professionals who have practical experience with video on demand workflows and architecting in the AWS Cloud.
Cost

You are responsible for the cost of the AWS services used while running this solution. The total cost for running this solution depends on the size of your videos, the number of outputs created, and the number of views the published content receives through Amazon CloudFront. After encoding all of your videos with this solution, the monthly cost will be for Amazon Simple Storage Service (Amazon S3) storage, and any CloudFront costs from streaming your new video content to users. As of July 2021, the estimated cost of running this solution for a 60-minute video with the dimensions listed in the following table, in the US East (N. Virginia) Region is approximately $232.86 per month, per job.

Cost table for a 60-minute source video

<table>
<thead>
<tr>
<th>AWS service</th>
<th>Dimensions</th>
<th>Cost per month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon CloudFront</td>
<td>Using the price of $0.085 per GB for CloudFront. A 60-minute video with the</td>
<td>$229.50</td>
</tr>
<tr>
<td></td>
<td>default job settings streamed to 1,000 users would cost approximately:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.75 MB/s * 1000 users * 3600 seconds = 2700 GB/hour.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2700 GB/hour * $0.085 = $229.50 an hour.</td>
<td></td>
</tr>
<tr>
<td>Amazon S3</td>
<td>A 60-minute video will at most use 9 GB of storage on S3 depending on the</td>
<td>$0.207</td>
</tr>
<tr>
<td></td>
<td>complexity of the video content. $0.023 per GB * 9 GB = $0.207.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source videos uploaded to Amazon S3 will add to this cost.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>After MediaConvert processing, delete source content from S3 to save</td>
<td></td>
</tr>
<tr>
<td></td>
<td>storage costs.</td>
<td></td>
</tr>
<tr>
<td>AWS Lambda</td>
<td>4 requests per file using $0.20 per million requests.</td>
<td>$0.0000024</td>
</tr>
<tr>
<td>Amazon CloudWatch</td>
<td>Free tier. Check the CloudWatch pricing page for more information.</td>
<td>$0.00</td>
</tr>
</tbody>
</table>
A significant cost of running this solution comes from MediaConvert. This section breaks down the MediaConvert costs for the sample 60-minute source video.

The video outputs in this example use the following basic tier MediaConvert settings: AVC codec, 1 pass quality, and 30 fps. Pricing increases when using higher frame rates than 30 fps. For more information about MediaConvert pricing, refer to [AWS Elemental MediaConvert Pricing](#).

We recommend creating a budget through [AWS Cost Explorer](#) to help manage costs. Prices are subject to change. For full details, see the pricing webpage for each AWS service used in this solution.
Architecture overview

Deploying this solution builds the following environment in the AWS Cloud.

The AWS CloudFormation template deploys the following infrastructure:

1. An Amazon Simple Storage Service (Amazon S3) bucket to store source video files. A sample job settings file, used to define the encoding settings for MediaConvert, is uploaded to the source S3 bucket.
2. An AWS Lambda job submit function to create the encoding jobs in AWS Elemental MediaConvert.
3. MediaConvert transcodes the video into HLS Adaptive Bitrate files.
4. Amazon CloudWatch tracks encoding jobs in MediaConvert and invokes the Lambda job complete function.
5. A Lambda job complete function to process the outputs.
6. An Amazon Simple Notification Service (Amazon SNS) topic sends notifications of completed jobs.
7. A destination S3 bucket to store the outputs from MediaConvert.
8. Amazon CloudFront is configured with the destination S3 bucket as the origin for global distribution of the transcoded video content.

Figure 1: Video on Demand on AWS Foundation architecture
Solution components

Ingest

To invoke the video processing workflow, you must upload the source video assets to the source S3 bucket through standard tools. For example, the AWS Management Console, AWS Command Line Interface (Snowball clientAWS CLI), or third-party tools that interface with Amazon Simple Storage Service (Amazon S3).

By default, this solution creates an assets01 folder in the root of the source S3 bucket with a job-settings.json file. Each time you upload a video to the assets01 folder, or any other folder that you created, an Amazon CloudWatch Events rule invokes the job-submit Lambda function. This function receives the details for the source video from the event, applies the settings contained in the job settings file in the same top-level folder as the uploaded video in S3, and submits a job to AWS Elemental MediaConvert using the processed job settings file.

To track the job in MediaConvert, the name of the workflow defined at deployment and a globally unique identifier (GUID) created by the job-submit Lambda function, are included in the job submitted to MediaConvert.

Encoding

The sample job settings file created as part of the AWS CloudFormation deployment has the Quality Variable Bit Rate (QVBR) rate control activated with accelerated transcoding set to PREFERRED and generates the following output:

- HLS Adaptive Bit Rate (ABR) with 5 renditions @ 1920 x 1080, 1280 x 720, 960 x 540, 640 x 360, 480 x 270

To change the settings, you can update or replace the job settings file in Amazon S3 with your own settings. For details, refer to Exporting and importing AWS Elemental MediaConvert jobs in the MediaConvert User Guide. Only export jobs that have successfully run and completed to ensure validity of job settings file.

Processing

A CloudWatch Events rule is configured to invoke the job-complete Lambda function each time an encoding job starts up, completes successfully, or fails in MediaConvert. This function retrieves the details of the job from the event and generates the CloudFront URLs for the MediaConvert outputs. The details for the input file, job settings, and outputs are then added to a jobs-manifest.json file stored at the root of the source S3 bucket.

```json
{
"Jobs":
{
   "jobId-0001": {
      "FileInput": "s3://SOURCE_BUCKET/example.mp4",
      "JobSettings": {...}
   }
}
```
"Outputs": {
 "HLS": "https://cloudfront.net/...",
 }
},
"jobId-0002": {
 "FileInput": "s3://SOURCE_BUCKET/example2.mp4",
 "JobSettings": {...},
 "Outputs": {
 "HLS": "https://cloudfront.net/...",
 }
}

Video on Demand on AWS Foundation jobs manifest file

Figure 2: Video on Demand on AWS Foundation jobs manifest file

The job-complete Lambda function also sends a summary of the job and the outputs to the Amazon Simple Notification Service (Amazon SNS) topic created at deployment. Any errors from the encoding process are also captured by the Lambda function and sent to the SNS topic.
Security

When you build systems on AWS infrastructure, security responsibilities are shared between you and AWS. This shared model can reduce your operational burden as AWS operates, manages, and controls the components from the host operating system and virtualization layer down to the physical security of the facilities in which the services operate. For more information about security on AWS, visit the AWS Cloud Security.

Amazon S3 bucket policy

The Amazon Simple Storage Service (Amazon S3) buckets for AWS Elemental MediaConvert output includes a policy that allows access from Amazon CloudFront. Because the Amazon CloudFront endpoints are publicly accessible, the MediaConvert output bucket is also publicly accessible when accessed via CloudFront. For information on how to secure Amazon CloudFront, refer to Serving Private Content through CloudFront in the Amazon CloudFront Developer Guide.

IAM roles

AWS Identity and Access Management (IAM) roles allow customers to assign granular access policies and permissions to services and users in the AWS Cloud. The Video on Demand on AWS Foundation solution creates several IAM roles, including a role that grants AWS Elemental MediaConvert access to Amazon Simple Storage Service. This role is necessary to allow the services to operate in your account.
Design considerations

Customization

This solution is a serverless architecture that can be easily updated and extended for your specific video processing needs. For example, adding or replacing Amazon Simple Notification Service (Amazon SNS) with Amazon Simple Queue Service (Amazon SQS) to allow upstream workflows to subscribe and get notifications on the workflow outputs. You can also add multiple folders and job settings files in the source S3 bucket to accommodate different use cases. For details, refer to Working with multiple job settings files (p. 14).

Regional deployments

This solution uses AWS Elemental MediaConvert which is available in specific AWS Regions only. Therefore, you must deploy this solution in a Region that supports this service. For the most current service availability by Region, refer to the AWS Regional Services Link.
AWS CloudFormation template

This solution uses AWS CloudFormation to automate the deployment of Video on Demand on AWS Foundation in the AWS Cloud. It includes the following AWS CloudFormation template, which you can download before deployment:

View Template

video-on-demand-on-aws-foundation.template: Use this template to launch the Video on Demand on AWS Foundation solution and all associated components. The default configuration deploys AWS Lambda functions, Amazon Simple Storage Service (Amazon S3) buckets, AWS Elemental MediaConvert, Amazon CloudWatch Logs, Amazon CloudWatch Events rules, Amazon Simple Notification Service (Amazon SNS) topics, and an Amazon CloudFront distribution. You can also customize the template based on your specific needs.
Video on Demand on AWS
Foundation Implementation Guide
Launch the stack

Automated deployment

Before you launch the automated deployment, review the architecture and other considerations discussed in this guide. Follow the step-by-step instructions in this section to configure and deploy the Video on Demand on AWS Foundation solution into your account.

Time to deploy: Approximately 10 minutes

Launch the stack

Important
This solution includes an option to send anonymous operational metrics to AWS. We use this data to better understand how customers use this solution and related services and products. AWS owns the data gathered though this survey. Data collection is subject to the AWS Privacy Notice.
To opt out of this feature, download the template, modify the AWS CloudFormation mapping section, and then use the AWS CloudFormation console to upload your template and deploy the solution. For more information, refer to the Operational metrics (p. 16) section of this guide.

The automated AWS CloudFormation template deploys the Video on Demand on AWS Foundation solution in the AWS Cloud.

Note
You are responsible for the cost of the AWS services used while running this solution. For detailed, refer to the Cost (p. 2) section of this guide, and refer to the pricing webpage for each AWS service used in this solution.

1. Sign in to the AWS Management Console and select the button to launch the video-on-demand-on-aws-foundation.template AWS CloudFormation template.

You can also download the template as a starting point for your own implementation.

2. The template launches in the US East (N. Virginia) Region by default. To launch this solution in a different AWS Region, use the Region selector in the console navigation bar.

Note
This solution uses AWS Elemental MediaConvert, which is available in specific AWS Regions only. Therefore, you must deploy this solution in a Region that supports this service. For the most current service availability by Region, refer to the AWS Regional Services List.

3. On the Select template page, verify that you selected the correct template and choose Next.

4. On the Specify stack details page, assign a name to your solution stack.

5. Under Parameters, review the parameters for the template and modify them as necessary.

This solution uses the following default value.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Notification Email Address</td>
<td><Requires input></td>
<td>A valid email address to receive Amazon SNS notifications.</td>
</tr>
</tbody>
</table>
6. Choose **Next**.
7. On the **Options** page, choose **Next**.
8. On the **Review** page, review and confirm the settings. Check the box acknowledging that the template will create AWS Identity and Access Management (IAM) resources.
9. Choose **Create** to deploy the stack.

You can view the status of the stack in the AWS CloudFormation console in the **Status** column. You should see a status of **CREATE_COMPLETE** in approximately 10 minutes.

After the stack is created, Amazon SNS sends three subscription notifications to the admin email address with links to allow encoding, publishing, and error notifications.
10. In the subscription notification emails, select each link to allow SNS notifications.

Note
In addition to the AWS Lambda functions that create solution resources and manage the workflow, this solution includes the **custom-resource** Lambda function, which runs only during initial configuration or when resources are updated or deleted. When running this solution, the **custom-resource** Lambda function is inactive. However, do not delete the function, since it is necessary to manage associated resources.
Additional resources

<table>
<thead>
<tr>
<th>AWS services</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amazon CloudFront</td>
</tr>
<tr>
<td>AWS CloudFormation</td>
</tr>
<tr>
<td>Amazon CloudWatch</td>
</tr>
<tr>
<td>AWS Elemental MediaConvert</td>
</tr>
<tr>
<td>Amazon Simple Notification Service</td>
</tr>
<tr>
<td>AWS Lambda</td>
</tr>
<tr>
<td>Amazon Simple Storage Service</td>
</tr>
</tbody>
</table>
Changing the job settings file

By default, this solution creates an assets01 folder in the root of the Amazon Simple Storage Service (Amazon S3) bucket with a job-settings.json file. Each time a video is uploaded to this folder, it invokes a workflow to apply job settings to the job created in AWS Elemental MediaConvert.

This job-settings.json file can be customized, or replaced with a new MediaConvert job template. To make a new job template or to customize the existing job-settings.json job template, refer to Working with AWS Elemental MediaConvert job templates in the AWS MediaConvert User Guide.

When your updated job template json file is ready, name the file job-settings.json and upload it to replace the one that is already in the assets01 folder of the Amazon S3 source bucket.
Working with multiple job settings files

By default, this solution creates an assets01 folder in the root of the Amazon Simple Storage Service (Amazon S3) bucket with a job-settings.json file. Each time a video is uploaded to this folder, it invokes a workflow to apply job settings to the job created in AWS Elemental MediaConvert.

To support different job settings, create additional folders at the root of the source S3 bucket and include different job setting for each folder. For example:

```
assets01/  
    job-settings.json  
    video-01.mp4  
assets02/  
    job-settings.json  
    video-02.mp4  
    subfolder/video-03.mpg
```

With the above configuration in the source S3 bucket, video-01.mp4 files are encoded with the settings stored in the assets01 folder. Meanwhile, video-02.mp4 and video-03.mpg files are encoded using the settings in the assets02 folder.

Note

There are no specific requirements for the folder names, except you must name the settings file job-settings.json.

Although you can export a completed job from MediaConvert to use as a job settings file, this solution does not support input stitching or input clipping, because it only launches on the upload of one video file source.

If AccelerationSettings is not defined in the job settings JSON file, this solution will automatically add this and set it to PREFERRED.

We recommend that you provide a custom name for your output groups, especially if your job settings include more than one output group of the same type, for example, three HLS output groups. The output group name is used as part of the output destination path and having distinct names makes it easier to locate where each output is being written.
Troubleshooting

The email address you provided when deploying this solution gets notifications both when jobs complete successfully on AWS Elemental MediaConvert and when jobs fail. It also gets notifications about errors that might have occurred while trying to submit a job or process the output from a job.

If notified about a MediaConvert job failure, navigate to the MediaConvert console and select the job ID of the job that failed. This takes you to the Job Summary page. The Overview section includes an error message with more information on why the job failed. Also, on this page there are AWS Elemental MediaConvert error codes that you can look up on the MediaConvert User Guide for details on how to address the issue.

If the error is not a MediaConvert job failure, possibly one of the two Lambda functions, job_submit or job_complete, encountered an error. The email you received has an ErrorDetails link that takes you directly to the CloudWatch logs generated by the failed function. The logs have additional details on why it failed.

Note

When overriding the sample job-settings.json, we recommend exporting job settings from a MediaConvert job that has successfully completed. Incorrect encoding settings will result in the job_submit Lambda function to fail.
Collection of operational metrics

This solution includes an option to send anonymous operational metrics to AWS. We use this data to better understand how customers use this solution and related services and products. When activated, the following information is collected and sent to AWS each time a video is processed:

- **Solution ID:** The AWS solution identifier.
- **Unique ID (UUID):** Randomly generated, unique identifier for each live streaming solution deployment.
- **Timestamp:** Data-collection timestamp.
- **Job Settings:** The job settings with the source and destination object paths removed. This helps us understand what output groups customers are looking for.

AWS owns the data gathered via this survey. Data collection will be subject to the AWS Privacy Policy. To opt out of this feature, modify the AWS CloudFormation template mapping section from:

```yaml
AnonymousData:
  SendAnonymousData:
    Data: Yes
```

to:

```yaml
AnonymousData:
  SendAnonymousData:
    Data: No
```
Source code

Visit our GitHub repository to download the templates and scripts for this solution, and to share your customizations with others.
Revisions

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>November 2020</td>
<td>Initial release</td>
</tr>
<tr>
<td>July 2021</td>
<td>Release version 1.1.0: Cost reductions, job-settings.json file default settings change to 30 fps and support for additional file extensions, NPM CDK package updates, and Axios update. For more information, refer to the CHANGELOG.MD file in the GitHub repository.</td>
</tr>
</tbody>
</table>
Contributors

The following individuals contributed to this document:

- Tom Nightingale
- Joan Morgan
- Eddie Goynes
Notices

Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

The Video on Demand on AWS Foundation solution is licensed under the terms of the Apache License Version 2.0 available at The Apache Software Foundation.