Amazon Virtual Private Cloud

Traffic mirroring
Table of Contents

- What is Traffic Mirroring? ... 1
 - Traffic Mirroring concepts .. 1
 - Working with Traffic Mirroring .. 1
 - Traffic Mirroring benefits ... 1
 - Pricing ... 2

- How Traffic Mirroring works .. 3
 - Traffic mirror targets ... 3
 - Traffic mirror target options ... 4
 - Network Load Balancer considerations 4
 - Traffic mirror filters and filter rules ... 4
 - Traffic mirror filter rules .. 4
 - Traffic mirror sessions ... 4
 - Traffic Mirroring and VPC Flow Logs 5
 - Traffic mirror source and target connectivity options 5
 - Packet format .. 6
 - Authentication and access control .. 6

- Getting started .. 8
 - Prerequisites .. 8
 - Step 1: Create the traffic mirror target 8
 - Step 2: Create the traffic mirror filter 9
 - Step 3: Create the traffic mirror session 10

- Traffic Mirroring examples .. 12
 - Mirror inbound TCP traffic ... 12
 - Step 1: Create a traffic mirror target 12
 - Step 2: Create a traffic mirror filter 12
 - Step 3: Create a traffic mirror session 13
 - Mirror inbound TCP and UDP traffic to two different appliances 13
 - Step 1: Create a traffic mirror target for appliance a 13
 - Step 2: Create a traffic mirror target for appliance b 14
 - Step 3: Create a traffic mirror filter with a rule for TCP traffic 14
 - Step 4: Create a traffic mirror filter with a rule for UDP traffic 14
 - Step 5: Create a traffic mirror session for the TCP traffic .. 15
 - Step 6: Create a traffic mirror session for the UDP traffic ... 15
 - Mirror non-local VPC traffic ... 15
 - Step 1: Create a traffic mirror target 16
 - Step 2: Create a traffic mirror filter 16
 - Step 3: Create a traffic mirror session 18

- Working with open-source tools .. 19
 - Step 1: Install the Suricata software on the EC2 instance target 19
 - Step 2: Create a traffic mirror target 20
 - Step 3: Create a traffic mirror filter 20
 - Step 4: Create a traffic mirror session 20

- Working with Traffic Mirroring .. 21
 - Targets ... 21
 - Create a traffic mirror target ... 21
 - Modify traffic mirror target tags 22
 - View traffic mirror target details 22
 - Delete a traffic mirror target ... 22
 - Cross-account traffic mirror targets 23
 - Sharing a traffic mirror target .. 23
 - Accepting a resource share .. 24
 - Deleting a resource share .. 24
 - Filters ... 24
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a traffic mirror filter</td>
<td>25</td>
</tr>
<tr>
<td>Modify your traffic mirror filter rules</td>
<td>26</td>
</tr>
<tr>
<td>Modify traffic mirror filter tags</td>
<td>27</td>
</tr>
<tr>
<td>Modify traffic mirror filter network services</td>
<td>27</td>
</tr>
<tr>
<td>View your traffic mirror filters</td>
<td>28</td>
</tr>
<tr>
<td>Delete a traffic mirror filter</td>
<td>28</td>
</tr>
<tr>
<td>Sessions</td>
<td>28</td>
</tr>
<tr>
<td>Create a traffic mirror session</td>
<td>29</td>
</tr>
<tr>
<td>Modify your traffic mirror session</td>
<td>30</td>
</tr>
<tr>
<td>Modify traffic mirror session tags</td>
<td>31</td>
</tr>
<tr>
<td>View your traffic mirror sessions</td>
<td>31</td>
</tr>
<tr>
<td>Delete a traffic mirror session</td>
<td>31</td>
</tr>
<tr>
<td>Monitoring mirrored traffic using Amazon CloudWatch</td>
<td>33</td>
</tr>
<tr>
<td>Traffic Mirroring metrics and dimensions</td>
<td>33</td>
</tr>
<tr>
<td>Viewing Traffic Mirroring CloudWatch metrics</td>
<td>35</td>
</tr>
<tr>
<td>Quotas and considerations</td>
<td>36</td>
</tr>
<tr>
<td>Traffic types</td>
<td>36</td>
</tr>
<tr>
<td>Traffic Mirroring service quotas</td>
<td>37</td>
</tr>
<tr>
<td>Checksum offloading</td>
<td>38</td>
</tr>
<tr>
<td>Document history</td>
<td>39</td>
</tr>
</tbody>
</table>
What is Traffic Mirroring?

Traffic Mirroring is an Amazon VPC feature that you can use to copy network traffic from an elastic network interface of Amazon EC2 instances. You can then send the traffic to out-of-band security and monitoring appliances for:

- Content inspection
- Threat monitoring
- Troubleshooting

The security and monitoring appliances can be deployed as individual instances, or as a fleet of instances behind a Network Load Balancer with a UDP listener. Traffic Mirroring supports filters and packet truncation, so that you only extract the traffic of interest to monitor by using monitoring tools of your choice.

Traffic Mirroring concepts

The following are the key concepts for Traffic Mirroring:

- **Target** — The destination for mirrored traffic.
- **Filter** — A set of rules that defines the traffic that is copied in a traffic mirror session.
- **Session** — An entity that describes Traffic Mirroring from a source to a target using filters.

Working with Traffic Mirroring

You can create, access, and manage your traffic mirror resources using any of the following:

- **AWS Management Console** — Provides a web interface that you can use to access your traffic mirror resources.
- **AWS Command Line Interface (AWS CLI)** — Provides commands for a broad set of AWS services, including Amazon VPC. The AWS CLI is supported on Windows, macOS, and Linux. For more information, see [AWS Command Line Interface](https://aws.amazon.com/cli/).
- **AWS SDKs** — Provide language-specific APIs. The AWS SDKs take care of many of the connection details, such as calculating signatures, handling request retries, and handling errors. For more information, see [AWS SDKs](https://aws.amazon.com/sdk-for-java/).
- **Query API** — Provides low-level API actions that you call using HTTPS requests. Using the Query API is the most direct way to access Amazon VPC. However, it requires that your application handle low-level details such as generating the hash to sign the request and handling errors. For more information, see the [Amazon EC2 API Reference](https://docs.aws.amazon.com/AmazonVPC/latest/APIReference/)

Traffic Mirroring benefits

Traffic Mirroring offers the following benefits:

- **Simplified operation** — Mirror any range of your VPC traffic without having to manage packet forwarding agents on your EC2 instances.
Amazon Virtual Private Cloud Traffic mirroring

Pricing

- **Enhanced security** — Capture packets at the elastic network interface, which cannot be disabled or tampered with from a user space.
- **Increased monitoring options** — Send your mirrored traffic to any security device.

Pricing

For information about pricing, see [VPC pricing](#).
How Traffic Mirroring works

Traffic Mirroring copies inbound and outbound traffic from the network interfaces that are attached to your Amazon EC2 instances. You can send the mirrored traffic to the network interface of another EC2 instance, or a Network Load Balancer that has a UDP listener. The traffic mirror source and the traffic mirror target (monitoring appliance) can be in the same VPC. Or they can be in a different VPC connected via intra-Region VPC peering or a transit gateway.

Consider the following scenario, where you want to mirror traffic from two sources (Source A and Source B) to a single traffic mirror target (Target D). The following procedures are required:

- Identify the traffic mirror source (Source A)
- Identify the traffic mirror source (Source B)
- Configure the traffic mirror target (Target D)
- Configure the traffic mirror filter (Filter A)
- Configure the traffic mirror session for Source A, Filter A, and Target D
- Configure the traffic mirror session for Source B, Filter A, and Target D

After you create the traffic mirror session, any traffic that matches the filter rules is encapsulated in a VXLAN header. It is then sent to the target.

Contents

- Traffic mirror targets (p. 3)
- Traffic mirror filters and filter rules (p. 4)
- Traffic mirror sessions (p. 4)
- Traffic Mirroring and VPC Flow Logs (p. 5)
- Traffic mirror source and target connectivity options (p. 5)
- Traffic Mirroring packet format (p. 6)
- Traffic Mirroring authentication and access control (p. 6)

Traffic mirror targets

A traffic mirror target is the destination for mirrored traffic. The traffic mirror target can be owned by an AWS account that is different from the traffic mirror source.

Use any of the following resources for a traffic mirror target:

- A network interface
- A Network Load Balancer

A traffic mirror target can be used in more than one traffic mirror session. Make sure to allow VXLAN traffic (UDP port 4789) from the traffic mirror source in the security groups that are associated with the traffic mirror target.
Traffic mirror target options

You can either use open-source tools or choose a monitoring solution available on AWS Marketplace. You can stream replicated traffic to any network packet collector or analytics tool, without having to install vendor-specific agents.

Network Load Balancer considerations

When the traffic mirror target is a Network Load Balancer, the following rules apply:

- There must be UDP listeners on port 4789.
- If all of the Network Load Balancer traffic mirror targets in an Availability Zone become unhealthy, the mirrored traffic can still be sent to traffic mirror targets in other zones. In this case, enable cross-zone load balancing to allow the Network Load Balancer to forward the mirrored traffic to a healthy target in another zone.

Traffic mirror filters and filter rules

A traffic mirror filter is a set of inbound and outbound traffic rules that define the traffic that is copied from the traffic mirror source, and sent to the traffic mirror destination. By default, no traffic is mirrored. To mirror traffic, add traffic mirror rules to the filter. The rules that you add define what traffic gets mirrored. You can also choose to mirror certain network services traffic, including Amazon DNS. When you add network services traffic, all traffic (inbound and outbound) related to that network service is mirrored.

Traffic mirror filter rules

Traffic mirror filter rules define what traffic gets mirrored. You can define a set of parameters to apply to the traffic mirror source traffic to determine the traffic to mirror. The following traffic mirror filter rule parameters are available:

- Traffic direction: Inbound or outbound
- Action: The action to take, either to accept or reject the packet
- Protocol: The L4 protocol
- Source port range
- Destination port range
- Source CIDR block
- Destination CIDR block

Traffic mirror sessions

A traffic mirror session establishes a relationship between a traffic mirror source and a traffic mirror target.

A traffic mirror session contains the following resources:

- A traffic mirror source
- A traffic mirror target
• A traffic mirror filter

A given packet is only mirrored one time. However, you can use multiple traffic mirror sessions on the same source. This is useful if you want to send a subset of the mirrored traffic from a traffic mirror source to different tools. For example, you can filter HTTP traffic in a higher priority traffic mirror session and send it to a specific monitoring appliance. At the same time, you can filter all other TCP traffic in a lower priority traffic mirror session and send it to another monitoring appliance.

Traffic mirror sessions are evaluated based on the ascending session number that you define when you create the session.

Traffic Mirroring and VPC Flow Logs

You can use Traffic Mirroring and VPC Flow Logs to monitor your VPC traffic.

VPC Flow Logs allow customers to collect, store, and analyze network flow logs. The Flow Logs capture information about the following:

• Allowed and denied traffic
• Source and destination IP addresses
• Ports
• Protocol number
• Packet and byte counts
• Action taken (accept or reject)

You can use VPC Flow Logs to troubleshoot connectivity and security issues, and to make sure that the network access rules are working as expected.

Traffic Mirroring provides deeper insight into the network traffic by allowing you to analyze actual traffic content, including payload. Traffic Mirroring is targeted for the following types of cases:

• Analyzing the actual packets to perform a root-cause analysis on a performance issue
• Reverse-engineering a sophisticated network attack
• Detecting and stopping insider abuse or compromised workloads

Traffic mirror source and target connectivity options

The traffic mirror source and the traffic mirror target (monitoring appliance) can be in:

• The same VPC, or
• A different VPC connected by using an intra-Region VPC peering connection or a transit gateway.

The traffic mirror target can be owned by an AWS account that is different from the traffic mirror source.

The mirrored traffic is sent to the traffic mirror target using the source VPC route table. Before you configure Traffic Mirroring, make sure that the traffic mirror source can route to the traffic mirror target.
The following table describes the available resource configurations.

Available Traffic Mirroring configurations

<table>
<thead>
<tr>
<th>Source Owner</th>
<th>Source VPC</th>
<th>Source Type</th>
<th>Target Owner</th>
<th>Target VPC</th>
<th>Connectivity Option</th>
</tr>
</thead>
<tbody>
<tr>
<td>Account A</td>
<td>VPC 1</td>
<td>Network interface</td>
<td>Account A</td>
<td>VPC1</td>
<td>No additional configuration</td>
</tr>
<tr>
<td>Account A</td>
<td>VPC 1</td>
<td>Network interface</td>
<td>Account A</td>
<td>VPC 2</td>
<td>Intra-Region peering or a transit gateway</td>
</tr>
<tr>
<td>Account A</td>
<td>VPC 1</td>
<td>Network interface</td>
<td>Account B</td>
<td>VPC 2</td>
<td>Cross-account Intra-Region peering or an Intra-Region transit gateway</td>
</tr>
<tr>
<td>Account A</td>
<td>VPC 1</td>
<td>Network interface</td>
<td>Account B</td>
<td>VPC 1</td>
<td>VPC sharing</td>
</tr>
</tbody>
</table>

Traffic Mirroring packet format

Mirrored traffic is encapsulated with a VXLAN header. All appliances that receive traffic directly with this feature should be able parse a VXLAN-encapsulated packet. For more information about the VXLAN protocol, see [RFC 7348](http://example.com).

The following fields apply to Traffic Mirroring:

- **VXLAN ID** — The virtual network ID that you can assign to a traffic mirror session. If you do not assign a value, we assign a random value that is unique to all sessions in the account.
- **Source IP address** — The primary IP address of the source network interface.
- **Destination IP address** — The primary IP address of the appliance, or the Network Load Balancer when the appliance is deployed behind one.

Traffic Mirroring authentication and access control

To allow access to traffic mirror resources, you create and attach an IAM policy either to:

- The IAM user or
- The group to which the IAM user belongs.

The IAM user must be given permission to use the specific traffic mirror resources and API actions they need. When you attach a policy to a user or group of users, it allows or denies permission to perform specified tasks on specified resources.

You can also use resource-level permissions to restrict what resources users can use when they invoke APIs. For example, the following IAM policy restricts the traffic mirror target `tmt-12345645678` that can be used in a `CreateTrafficMirrorSession` API call by a user.
Example Example: CreateTrafficMirrorSession policy

```
{
    "Version": "2012-10-17",
    "Statement": [
        {
            "Effect": "Allow",
            "Action": "ec2:CreateTrafficMirrorSession",
            "Resource": [
                "arn:aws:ec2:*:*:traffic-mirror-target/tmt-12345678",
                "arn:aws:ec2:*:*:traffic-mirror-filter/*",
                "arn:aws:ec2:*:*:network-interface/*"
            ]
        }
    ]
}
```
Getting started with Traffic Mirroring

The following tasks help you to become familiar with traffic mirror targets, filters, and sessions. Follow the instructions to create a traffic mirror target and filter, and then use those resources to create a session.

Tasks
- Prerequisites (p. 8)
- Step 1: Create the traffic mirror target (p. 8)
- Step 2: Create the traffic mirror filter (p. 9)
- Step 3: Create the traffic mirror session (p. 10)

Prerequisites
- Make sure that the traffic mirror source and traffic mirror target are either:
 - In the same VPC, or
 - In different VPCs that are connected via VPC peering or a transit gateway.
- Make sure that the traffic mirror target instance allows traffic to UDP port 4789.
- Make sure that the traffic mirror target has a route table entry for the traffic mirror target.
- Make sure that there are no security group rules or network ACL rules on the traffic mirror target that drop the mirrored traffic from the traffic mirror source.
- Review the Traffic Mirroring considerations. For more information, see Quotas and considerations (p. 36).

Step 1: Create the traffic mirror target

Create a destination for mirrored traffic.

Create a traffic mirror target

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the VPCs.
3. On the navigation pane, choose Traffic Mirroring, Mirror Targets.
4. Choose Create Traffic Mirror Target.
5. For Name tag, enter a name for the traffic mirror target.
6. (Optional) For Description, enter a description for the traffic mirror target.
7. For Target type, choose the traffic mirror target type.
8. For Target, choose the traffic mirror target.
9. (Optional) Add or remove a tag.

[Add a tag] Choose Add tag and do the following:
- For Key, enter the key name.
- For Value, enter the key value.
Step 2: Create the traffic mirror filter

A traffic mirror filter contains one or more traffic mirror rules, and a set of network services. The filters and rules that you add define the traffic that is mirrored.

To create a traffic mirror filter

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the VPCs.
3. On the navigation pane, choose Traffic Mirroring, Mirror Filters.
4. Choose Create traffic mirror filter.
5. For Name tag, enter a name for the traffic mirror filter.
6. (Optional) For Description, enter a description for the traffic mirror filter.
7. (Optional) Mirror network services.

[Add a tag] Choose Add tag and do the following:

8. (Optional) Add inbound rules. Under Inbound rules, choose Add, rule, and then specify the following information about the traffic mirror source inbound traffic:
 - Rule Number: Enter a priority to assign to the rule.
 - Rule action: Choose the action to take for the packet.
 - Protocol: Choose the L4 protocol to assign to the rule.
 - (Optional) Source port range: Enter the source port range.
 - (Optional) Destination port range: Enter the destination port range.
 - Source CIDR block: Enter a source CIDR block.
 - Destination CIDR block: Enter a destination CIDR block.
 - (Optional) Description: Enter a description for the rule.

Repeat for each inbound rule that you want to add.

9. (Optional) Add outbound rules. Under Outbound rules, choose Add, rule, and then specify the following information about the traffic mirror source outbound traffic:
 - Rule number: Enter a priority to assign to the rule.
 - Rule action: Choose the action to take for the packet.
 - Protocol: Choose the IP protocol to assign to the rule.
 - (Optional) Source port range: Enter the source port range.
 - (Optional) Destination port range: Enter the destination port range.
 - Source CIDR block: Enter a source CIDR block.
 - Destination CIDR block: Enter a destination CIDR block.
 - (Optional) Description: Enter a description for the rule.

Repeat for each outbound rule that you want to add.

10. (Optional) Add or remove a tag.

[Remove a tag] Next to the tag, choose Remove tag.

Choose Create.
Step 3: Create the traffic mirror session

Create a traffic mirror session that sends mirrored packets from the source to a target so that you can monitor and analyze traffic.

To create a traffic mirror session

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the **Region** selector, choose the AWS Region that you used when you created the VPCs.
3. In the navigation pane, choose **Traffic Mirroring, Mirror Sessions**.
4. Choose **Create traffic mirror session**.
5. (Optional) For **Name tag**, enter a name for the traffic mirror session.
6. (Optional) For **Description**, enter a description for the traffic mirror session.
7. For **Mirror source**, choose the network interface of the instance that you want to monitor.
8. For **Mirror target**, choose the traffic mirror target.
9. Under **Additional settings**, do the following:
 a. For **Session number**, enter the session number.

 The session number determines the order that traffic mirror sessions are evaluated in both of the following situations:
 - When an interface is used by multiple sessions.
 - When an interface is used by different traffic mirror targets and traffic mirror filters.

 Traffic is only mirrored one time.

 Use 1 for the highest priority.

 Valid values are 1-32766.
 b. (Optional) For **VNI**, enter the VXLAN ID to use for the traffic mirror session. For more information about the VXLAN protocol, see RFC 7348.

 If you do not enter a value, we assign a random unused number.
 c. (Optional) For **Packet Length**, enter the number of bytes in each packet to mirror.

 If you do not want to mirror the entire packet, set **Packet Length** to the number of bytes in each packet to mirror. For example, if you set this value to 100, the first 100 bytes after the VXLAN header that meet the filter criteria are copied to the target.

 To mirror the entire packet, do not enter a value in this field.
 d. For **Filter**, choose the traffic mirror filter that determines what traffic gets mirrored.
10. (Optional) Add or remove a tag.

[Add a tag] Choose **Add tag** and do the following:
 - For **Key**, enter the key name.
 - For **Value**, enter the key value.
Step 3: Create the traffic mirror session

[Remove a tag] Next to the tag, choose **Remove tag**.

11. Choose **Create**.
Traffic Mirroring examples

The following are common use cases for Traffic Mirroring.

- the section called “Mirror inbound TCP traffic” (p. 12)
- the section called “Mirror inbound TCP and UDP traffic to two different appliances” (p. 13)
- the section called “Mirror non-local VPC traffic” (p. 15)
- For information about mirroring traffic from multiple network interfaces, see VPC Traffic Mirroring Source Automation Application on the github website.

Example: Mirror inbound TCP traffic to a single monitoring appliance

Consider the scenario where you want to mirror inbound TCP traffic on an instance, and send it to a single monitoring appliance. You need the following traffic mirror resources for this example:

- A traffic mirror target for the appliance (Target A)
- A traffic mirror filter with a traffic mirror rule for the TCP inbound traffic (Filter 1)
- A traffic mirror session that has the following:
 - A traffic mirror source
 - A traffic mirror target for the appliance
 - A traffic mirror filter with a traffic mirror rule for the TCP inbound traffic

Step 1: Create a traffic mirror target

Create a traffic mirror target (Target A) for the monitoring appliance. Depending on your configuration, the target is one of the following types:

- The network interface of the monitoring appliance
- The Network Load Balancer when the appliance is deployed behind one

For more information, see the section called “Create a traffic mirror target” (p. 21).

Step 2: Create a traffic mirror filter

Create a traffic mirror filter (Filter 1) that has the following inbound rule. For more information, see the section called “Create a traffic mirror filter” (p. 25).

Traffic mirror filter rule for inbound TCP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule action</td>
<td>Accept</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
</tbody>
</table>
Amazon Virtual Private Cloud Traffic mirroring

Step 3: Create a traffic mirror session

Create and configure a traffic mirror session with the following options. For more information, see the section called "Create a traffic mirror session" (p. 29).

Traffic mirror session to monitor inbound TCP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror source</td>
<td>The network interface of the instance that you want to monitor.</td>
</tr>
<tr>
<td>Mirror target</td>
<td>Target A</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter 1</td>
</tr>
</tbody>
</table>

Example: Mirror inbound TCP and UDP traffic to two different appliances

Consider the scenario where you want to mirror inbound TCP and UDP traffic on an instance. But you want to send the TCP traffic to one appliance (Appliance A), and the UDP traffic to a second appliance (Appliance B). You need the following traffic mirror entities for this example:

- A traffic mirror target for Appliance A (Target A)
- A traffic mirror target for Appliance B (Target B)
- A traffic mirror filter with a traffic mirror rule for the TCP inbound traffic (Filter 1)
- A traffic mirror filter with a traffic mirror rule for the UDP inbound traffic (Filter 2)
- A traffic mirror session that has the following:
 - A traffic mirror source
 - A traffic mirror target (Target A) for Appliance A
 - A traffic mirror filter (Filter 1) with a traffic mirror rule for the TCP inbound traffic
- A traffic mirror session that has the following:
 - A traffic mirror source
 - A traffic mirror target (Target B) for Appliance B
 - A traffic mirror filter (Filter 2) with a traffic mirror rule for the UDP inbound traffic

Step 1: Create a traffic mirror target for appliance a

Create a traffic mirror target for Appliance A (Target A). Depending on your configuration, the target is one of the following types:

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination port range</td>
<td></td>
</tr>
<tr>
<td>Source CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Destination CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Description</td>
<td>TCP Rule</td>
</tr>
</tbody>
</table>
• The network interface of the monitoring appliance
• The Network Load Balancer when the appliance is deployed behind one

For more information, see the section called “Create a traffic mirror target” (p. 21).

Step 2: Create a traffic mirror target for appliance b

Create a traffic mirror target (Target B) for Appliance B. Depending on your configuration, the target is one of the following types:

• The network interface of the monitoring appliance
• The Network Load Balancer when the appliance is deployed behind one

For more information, see the section called “Create a traffic mirror target” (p. 21).

Step 3: Create a traffic mirror filter with a rule for TCP traffic

Create a traffic mirror filter (Filter 1) with the following inbound rule for TCP traffic. For more information, see the section called “Create a traffic mirror filter” (p. 25)

Traffic mirror filter rule for inbound TCP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule action</td>
<td>Accept</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
<tr>
<td>Destination port range</td>
<td></td>
</tr>
<tr>
<td>Source CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Destination CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Description</td>
<td>TCP Rule</td>
</tr>
</tbody>
</table>

Step 4: Create a traffic mirror filter with a rule for UDP traffic

Create a traffic mirror filter (Filter 2) with the following inbound rule for UDP traffic. For more information, see the section called “Create a traffic mirror filter” (p. 25)

Traffic mirror filter rule for inbound UDP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule action</td>
<td>Accept</td>
</tr>
<tr>
<td>Protocol</td>
<td>UDP</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
</tbody>
</table>
Amazon Virtual Private Cloud Traffic mirroring

Step 5: Create a traffic mirror session for the TCP traffic

Create and configure a traffic mirror session with the following options. For more information, see the section called “Create a traffic mirror session” (p. 29).

Traffic mirror session to monitor inbound TCP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror source</td>
<td>The network interface of the instance that you want to monitor.</td>
</tr>
<tr>
<td>Mirror target</td>
<td>Target A</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter 1</td>
</tr>
<tr>
<td>Session number</td>
<td>1</td>
</tr>
</tbody>
</table>

Step 6: Create a traffic mirror session for the UDP traffic

Create and configure a traffic mirror session with the following options. For more information, see the section called “Create a traffic mirror session” (p. 29).

Traffic mirror session to monitor inbound UDP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror source</td>
<td>The network interface of the instance that you want to monitor.</td>
</tr>
<tr>
<td>Mirror target</td>
<td>Target B</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter 2</td>
</tr>
<tr>
<td>Session number</td>
<td>2</td>
</tr>
</tbody>
</table>

Example: Mirror non-local VPC traffic

Consider the scenario where you want to monitor traffic leaving your VPC or traffic whose source is outside your VPC. In this case, you will mirror all traffic except traffic passing within your VPC and send it to a single monitoring appliance. You need the following traffic mirror resources:
- A traffic mirror target for the appliance (Target A)
- A traffic mirror filter that has two sets of rules for outbound and inbound traffic. For outbound traffic, it will reject all packets which have a destination IP in the VPC CIDR block and accept all other outbound packets. For inbound traffic, it will reject all packets which have a source IP in the VPC CIDR block and accept all other inbound packets.
- A traffic mirror session that has the following:
 - A traffic mirror source
 - A traffic mirror target for the appliance (Target A)
 - A traffic mirror filter with a traffic mirror rule for the TCP inbound traffic (Filter F)

In this example, the VPC CIDR block is 10.0.0.0/16.

Step 1: Create a traffic mirror target

Create a traffic mirror target (Target A) for the monitoring appliance. Depending on your configuration, the target is one of the following types:

- The network interface of the monitoring appliance
- The Network Load Balancer when the appliance is deployed behind one

For more information, see the section called “Create a traffic mirror target” (p. 21).

Step 2: Create a traffic mirror filter

Create a traffic mirror filter (Filter F) that has the following rules. For more information, see the section called “Create a traffic mirror filter” (p. 25).

Outbound traffic mirror filter rules

Create the following outbound rules:

- Reject all outbound packets which have a destination IP in the VPC CIDR block
- Accept all other outbound packets (destination CIDR block 0.0.0.0/0)

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule number</td>
<td>10</td>
</tr>
<tr>
<td>Rule action</td>
<td>Reject</td>
</tr>
<tr>
<td>Protocol</td>
<td>All</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
<tr>
<td>Destination port range</td>
<td></td>
</tr>
<tr>
<td>Source CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Destination CIDR block</td>
<td>10.0.0.0/16</td>
</tr>
<tr>
<td>Description</td>
<td>Reject all intra-VPC traffic</td>
</tr>
</tbody>
</table>
Option | Value
---|---
Rule number | 20
Rule action | Accept
Protocol | All
Source port range |
Destination port range |
Source CIDR block | 0.0.0.0/0
Destination CIDR block | 0.0.0.0/0
Description | Accept all outbound traffic

Inbound traffic mirror filter rules

Create the following inbound rules:

- Reject all inbound packets which have a source IP in the VPC CIDR block
- Accept all other inbound packets (source CIDR block 0.0.0.0/0)

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule number</td>
<td>10</td>
</tr>
<tr>
<td>Rule action</td>
<td>Reject</td>
</tr>
<tr>
<td>Protocol</td>
<td>All</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
<tr>
<td>Destination port range</td>
<td></td>
</tr>
<tr>
<td>Source CIDR block</td>
<td>10.0.0.0/16</td>
</tr>
<tr>
<td>Destination CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Description</td>
<td>Reject all intra-VPC traffic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule number</td>
<td>20</td>
</tr>
<tr>
<td>Rule action</td>
<td>Accept</td>
</tr>
<tr>
<td>Protocol</td>
<td>All</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
<tr>
<td>Destination port range</td>
<td></td>
</tr>
<tr>
<td>Source CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
</tbody>
</table>
Amazon Virtual Private Cloud Traffic mirroring
Step 3: Create a traffic mirror session

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Destination CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Description</td>
<td>Accept all inbound traffic</td>
</tr>
</tbody>
</table>

Step 3: Create a traffic mirror session

Create and configure a traffic mirror session with the following options. For more information, see the section called “Create a traffic mirror session” (p. 29).

Traffic mirror session to monitor inbound TCP traffic

<table>
<thead>
<tr>
<th>Option</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mirror source</td>
<td>The network interface of the instance that you want to monitor.</td>
</tr>
<tr>
<td>Mirror target</td>
<td>Target A</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter F</td>
</tr>
</tbody>
</table>
Working with open-source tools for Traffic Mirroring

You can use open-source tools to monitor network traffic from Amazon EC2 instances. The following tools work with Traffic Mirroring:

- **Zeek** — For more information, see the [Zeek Network Monitor Security website](#).
- **Suricata** — For more information see the [Suricata website](#).

These open-source tools support VXLAN decapsulation, and they can be used at scale to monitor VPC traffic. For information about how Zeek handles VXLAN support and to download the code, see [Zeek vxlan](#) on the GitHub website. For information about how Suricata handles VXLAN support and to download the code, see [Suricata](#) on the GitHub website.

The following example uses the Suricata open-source tool. You can follow similar steps for Zeek.

Consider the scenario where you want to mirror inbound TCP traffic on an instance and send the traffic to an instance that has the Suricata software installed. You need the following traffic mirror entities for this example:

- An EC2 instance with the Suricata software installed on it
- A traffic mirror target for the EC2 instance (Target A)
- A traffic mirror filter with a traffic mirror rule for the TCP inbound traffic (Filter rule 1)
- A traffic mirror session that has the following:
 - A traffic mirror source
 - A traffic mirror target for the appliance
 - A traffic mirror filter with a traffic mirror rule for the TCP inbound traffic

Step 1: Install the Suricata software on the EC2 instance target

Launch an EC2 instance, and then install the Suricata software on it by using the following commands.

```bash
# Become sudo
sudo -s
# Install epel-release
amazon-linux-extras install -y epel
# Install suricata
yum install -y suricata
# Create the default suricata rules directory
mkdir /var/lib/suricata/rules
# Add a rule to match all UDP traffic
echo 'alert udp any any -> any any (msg:"UDP traffic detected"; sid:200001; rev:1;)' > /var/lib/suricata/rules/suricata.rules
# Start suricata listening on eth0 in daemon mode
suricata -c /etc/suricata/suricata.yaml -k none -i eth0 -D
# Capture logs can be found in /var/log/suricata/fast.log
```
Step 2: Create a traffic mirror target

Create a traffic mirror target (Target A) for the EC2 instance. Depending on your configuration, the target is one of the following types:

- The network interface of the monitoring appliance
- The Network Load Balancer when the appliance is deployed behind one.

For more information, see the section called “Create a traffic mirror target” (p. 21).

Step 3: Create a traffic mirror filter

Create a traffic mirror filter (Filter 1) with the following inbound rule. For more information, see the section called “Create a traffic mirror filter” (p. 25).

<table>
<thead>
<tr>
<th>Traffic mirror filter rule for inbound TCP traffic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Value</td>
</tr>
<tr>
<td>Rule action</td>
<td>Accept</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Source port range</td>
<td></td>
</tr>
<tr>
<td>Destination port range</td>
<td></td>
</tr>
<tr>
<td>Source CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Destination CIDR block</td>
<td>0.0.0.0/0</td>
</tr>
<tr>
<td>Description</td>
<td>TCP Rule</td>
</tr>
</tbody>
</table>

Step 4: Create a traffic mirror session

Create and configure a traffic mirror session with the following options. For more information, see the section called “Create a traffic mirror session” (p. 29).

<table>
<thead>
<tr>
<th>Traffic mirror session to monitor inbound TCP traffic</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Option</td>
<td>Value</td>
</tr>
<tr>
<td>Mirror source</td>
<td>The network interface of the instance that you want to monitor.</td>
</tr>
<tr>
<td>Mirror target</td>
<td>Target A</td>
</tr>
<tr>
<td>Filter</td>
<td>Filter 1</td>
</tr>
</tbody>
</table>
Working with Traffic Mirroring

You can work with traffic mirror targets, sessions, and filters by using the Amazon VPC console or the AWS CLI.

Contents
- Traffic mirror targets (p. 21)
- Cross-account traffic mirror targets (p. 23)
- Traffic mirror filters (p. 24)
- Traffic mirror sessions (p. 28)

Traffic mirror targets

A target is the destination for a traffic mirror session.

The traffic mirror target can be an elastic network interface, or a Network Load Balancer. After you create a target, assign it to a traffic mirror session. For more information, see the section called “Create a traffic mirror session” (p. 29).

You must configure a security group for the traffic mirror target that allows VXLAN traffic from the source to the target.

You can share a traffic mirror target across accounts. To share a traffic mirror target, create the target, and then share the target. For more information, see the section called “Sharing a traffic mirror target” (p. 23).

Create a traffic mirror target

Create a traffic mirror target.

To create a traffic mirror target using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the VPCs.
3. On the navigation pane, choose Traffic Mirroring, Mirror Targets.
4. Choose Create Traffic Mirror Target.
5. For Name tag, enter a name for the traffic mirror target.
6. (Optional) For Description, enter a description for the traffic mirror target.
7. For Target type, choose the traffic mirror target type.
8. For Target, choose the traffic mirror target.
9. (Optional) Add or remove a tag.

[Add a tag] Choose Add tag and do the following:
- For Key, enter the key name.
- For Value, enter the key value.
Amazon Virtual Private Cloud Traffic mirroring
Modify traffic mirror target tags

[Remove a tag] Next to the tag, choose Remove tag.

10. Choose Create.

To create a traffic mirror target using the AWS CLI
Use the create-traffic-mirror-target command.

Modify traffic mirror target tags

Add a tag to the traffic mirror target, or remove a tag from the traffic mirror target.

To modify your traffic mirror target tags using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror target.
3. On the navigation pane, choose Traffic Mirroring, Mirror Targets.
4. Select the traffic mirror target.
5. Choose Tags, Manage tags.
6. Add or remove a tag.
 1. [Add a tag] Choose Add tag, and then do the following:
 • For Key, enter the key name.
 • For Value, enter the key value.
 2. [Remove a tag] Next to the tag, choose Remove tag.
7. Choose Save changes.

To modify your traffic mirror target tags using the AWS CLI
Use the create-tags command to add a tag. Use the delete-tags command to remove a tag.

View traffic mirror target details

View the traffic mirror target details.

To view your traffic mirror targets using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror target.
3. On the navigation pane, choose Traffic Mirroring, Mirror Targets.
4. Select the traffic mirror target.

To view your traffic mirror targets using the AWS CLI
Use the describe-traffic-mirror-targets command.

Delete a traffic mirror target

Before you delete a traffic mirror target, pause all traffic mirror sessions that use the traffic mirror target.
To delete your traffic mirror target using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror target.
3. On the navigation pane, choose Traffic Mirroring, Mirror Targets.
4. Select the traffic mirror target.
5. Choose Delete.
6. In the Delete confirmation dialog box, enter delete, and then choose Delete.

To delete a traffic mirror target using the AWS CLI

Use the delete-traffic-mirror-target command.

Cross-account traffic mirror targets

A traffic mirror target can be owned by an AWS account that is different from the traffic mirror source.

Before you can use a cross-account traffic mirror target, the traffic mirror target owner shares the target with you by using the AWS Resource Access Manager. When you are in different AWS Organizations from the owner, after the owner shares the traffic mirror target, you accept the share request. After you accept the share request, you can use the traffic mirror target in a traffic mirror session. You can only create a traffic mirror session if you are the owner of the source network interface or its subnet.

The traffic mirror target is visible to shared accounts in their DescribeTrafficMirrorTarget API calls. Only the traffic mirror target owner can modify or delete the traffic mirror target.

Traffic mirror sessions that are created in a different account than the traffic mirror target are visible in DescribeTrafficMirrorSession API calls that are made by the traffic mirror target owner.

Sharing a traffic mirror target

You can use AWS Resource Access Manager (RAM) to share a traffic mirror target across accounts. Use the following procedure to share a traffic mirror target that you own.

You must create a traffic mirror target before you share it. For more information, see the section called “Create a traffic mirror target” (p. 21).

To share a traffic mirror target

2. Choose Create a resource share.
3. Under Description, for Name, enter a descriptive name for the resource share.
4. For Select resource type, choose Traffic Mirror Targets. Select the traffic mirror target.
5. For Principals, add principals to the resource share. For each AWS account, OU, or organization, specify its ID and choose Add.

For Allow external accounts, choose whether to allow sharing for this resource with AWS accounts that are external to your organization.

6. (Optional) Under Tags, enter a tag key and tag value pair for each tag. These tags are applied to the resource share but not to the traffic mirror target.
Accepting a resource share

If you are in different AWS Organizations from the share owner, you must accept the resource share before you can access the shared resources.

To accept a resource share

2. On the navigation pane, choose Shared with me, Resource shares.
3. Select the resource share.
4. Choose Accept resource share.
5. To view the shared traffic mirror target, open the Traffic Mirror Targets page in the Amazon VPC console.

Deleting a resource share

You can delete a resource share at any time. When you delete a resource share, all principals that are associated with the resource share lose access to the shared resources. Deleting a resource share does not delete the shared resources.

When you delete a shared traffic mirror target that is in use, the traffic mirror session becomes inactive.

To delete a resource share

2. On the navigation pane, choose Shared by me, Resource shares.
3. Select the resource share.

 Be sure to select the correct resource share. You cannot recover a resource share after you delete it.
4. Choose Delete.
5. In the Delete confirmation dialog box, enter delete, and then choose Delete.

Traffic mirror filters

Use a traffic mirror filter and its rules to define the traffic that is mirrored. A traffic mirror filter contains one or more traffic mirror rules, and a set of network services.

You can define a set of parameters to apply to the traffic mirror source traffic to determine the traffic to mirror. The following traffic mirror filter rule parameters are available:

- Traffic direction: Inbound or outbound
- Action: The action to take, either to accept or reject the packet
- Protocol: The L4 protocol
- Source port range
- Destination port range
- Source CIDR block
- Destination CIDR block
Create a traffic mirror filter

Create a traffic mirror filter.

Create a traffic mirror filter and add rules to the filter to define the traffic that is mirrored. A traffic mirror filter contains one or more traffic mirror rules, and a set of network services.

The Source CIDR block and Destination CIDR block values must both be either an IPv4 range or an IPv6 range.

To create a traffic mirror filter using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the VPCs.
3. On the navigation pane, choose Traffic Mirroring, Mirror Filters.
4. Choose Create traffic mirror filter.
5. For Name tag, enter a name for the traffic mirror filter.
6. (Optional) For Description, enter a description for the traffic mirror filter.
7. (Optional) Mirror network services.
 - [Mirror Amazon DNS traffic] Select amazon-dns.
8. (Optional) Add inbound rules. Choose Inbound rules, Add, rule, and then specify the following information about the traffic mirror source inbound traffic:
 - Rule number: Enter a priority to assign to the rule.
 - Rule action: Choose the action to take for the packet.
 - Protocol: Choose the L4 protocol to assign to the rule.
 - (Optional) Source port range: Enter the source port range.
 - (Optional) Destination port range: Enter the destination port range.
 - Source CIDR block: Enter a source CIDR block.
 - Destination CIDR block: Enter a destination CIDR block.
 - (Optional) Description: Enter a description for the rule.

Repeat for each inbound rule that you want to add.

9. (Optional) Add outbound rules. Choose Outbound rules, Add, rule, and then specify the following information about the traffic mirror source outbound traffic:
 - Rule number: Enter a priority to assign to the rule.
 - Rule action: Choose the action to take for the packet.
 - Protocol: Choose the IP protocol to assign to the rule.
 - (Optional) Source port range: Enter the source port range.
 - (Optional) Destination port range: Enter the destination port range.
 - Source CIDR block: Enter a source CIDR block.
 - Destination CIDR block: Enter a destination CIDR block.
 - (Optional) Description: Enter a description for the rule.

Repeat for each outbound rule that you want to add.

10. (Optional) Add or remove a tag.
 - [Add a tag] Choose Add tag and do the following:
For Key, enter the key name.
For Value, enter the key value.

[Remove a tag] Next to the tag, choose Remove tag.

11. Choose Create.

To create a traffic mirror filter using the AWS CLI

Use the create-traffic-mirror-filter command.

Modify your traffic mirror filter rules

Add or remove inbound and outbound traffic mirror filter rules.

The Source CIDR block and Destination CIDR block values must both be either an IPv4 range or an IPv6 range.

To modify your traffic mirror filter using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror filter.
3. On the navigation pane, choose Traffic Mirroring, Mirror Filters.
4. Select the traffic mirror filter.
5. Add inbound rules. Choose Inbound rules, Add inbound rule, and then specify the following information about the traffic mirror source inbound traffic:
 - Rule number: Enter a priority to assign to the rule.
 - Rule action: Choose the action to take for the packet.
 - Protocol: Choose the L4 protocol to assign to the rule.
 - (Optional) Source port range: Enter the source port range.
 - (Optional) Destination port range: Enter the destination port range.
 - Source CIDR block: Enter a source CIDR block.
 - Destination CIDR block: Enter a destination CIDR block.
 - (Optional) Description: Enter a description for the rule.

Repeat for each inbound rule that you want to add.
6. Add outbound rules. Choose Outbound rules, Add outbound rule, and then specify the following information about the traffic mirror source outbound traffic:
 - Rule number: Enter a priority to assign to the rule.
 - Rule action: Choose the action to take for the packet.
 - Protocol: Choose the IP protocol to assign to the rule.
 - (Optional) Source port range: Enter the source port range.
 - (Optional) Destination port range: Enter the destination port range.
 - Source CIDR block: Enter a source CIDR block.
 - Destination CIDR block: Enter a destination CIDR block.
 - (Optional) Description: Enter a description for the rule.

Repeat for each outbound rule that you want to add.
7. Delete an inbound rule.

Choose **Inbound rules**, and then do the following:
- Select the rule, and then choose **Delete**.
- In the **Delete confirmation** dialog box, enter delete, and then choose **Delete**.

8. Delete an outbound rule. Choose **Outbound rules**, and then do the following:
- Select the rule, and then choose **Delete**.
- In the **Delete confirmation** dialog box, enter delete, and then choose **Delete**.

9. Modify a rule. Choose **Inbound rules**, or **Outbound rules**, and then do the following:
- Select the rule, and choose **Modify inbound rule** or **Modify outbound rule**.
- Make the required changes, and then choose **Modify rule**.

Modify traffic mirror filter tags

To modify your traffic mirror filters using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the **Region** selector, choose the AWS Region that you used when you created the traffic mirror filter.
3. On the navigation pane, choose **Traffic Mirroring, Mirror Filters**.
4. Select the traffic mirror filter.
5. Choose Tags, **Manage tags**.
6. [Add a tag] Choose **Add tag** and do the following:
 - For **Key**, enter the key name.
 - For **Value**, enter the key value.

 [Remove a tag] Next to the tag, choose **Remove tag**.
7. Choose **Save changes**.

To modify the traffic mirror filter tags using the AWS CLI

Use the `create-tags` command to add a tag. Use the `delete-tags` command to remove a tag.

Modify traffic mirror filter network services

To modify your traffic mirror filter network services using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the **Region** selector, choose the AWS Region that you used when you created the traffic mirror filter.
3. On the navigation pane, choose **Traffic Mirroring, Mirror Filters**.
4. Select the traffic mirror filter.
5. Choose modify Network Services.
6. [Mirror Amazon DNS traffic] Select **amazon dns**.
7. Choose **Modify**.

To modify the network services traffic mirror filters using the AWS CLI
Use the `modify-traffic-mirror-filter-network-services` command.

View your traffic mirror filters

To view your traffic mirror filters using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the **Region** selector, choose the AWS Region that you used when you created the traffic mirror filter.
3. On the navigation pane, choose **Traffic Mirroring, Mirror Filters**.
4. Select the traffic mirror filter.

To view your traffic mirror filters using the AWS CLI

Use the `describe-traffic-mirror-filters` command.

Delete a traffic mirror filter

To delete a traffic mirror filter using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the **Region** selector, choose the AWS Region that you used when you created the traffic mirror filter.
3. On the navigation pane, choose **Traffic Mirroring, Mirror Filters**.
4. Select the traffic mirror filter filter, and then choose **Delete**.
5. In the **Delete confirmation** dialog box, enter `delete`, and then choose **Delete**.

To delete a traffic mirror filter using the AWS CLI

Use the `delete-traffic-mirror-filter` command.

Traffic mirror sessions

A traffic mirror session establishes a relationship between a traffic mirror source and a traffic mirror target.

A traffic mirror session contains the following resources:

- A traffic mirror source
- A traffic mirror target
- A traffic mirror filter

A given packet is only mirrored one time. However, you can use multiple traffic mirror sessions on the same source when you want to send a subset of the mirrored traffic from a traffic mirror source to different tools. For example, you can filter HTTP traffic in a higher priority traffic mirror session and send it to a specific monitoring appliance. Then you can filter all other TCP traffic in a lower priority traffic mirror session and send it to another monitoring appliance.

Traffic mirror sessions are evaluated based on the ascending priority that you define when you create the session.
Create a traffic mirror session

Create a traffic mirror session.

Before you create a traffic mirror session, make sure that you have the following information:

- The source
- The traffic mirror target
 - To use a target in your account, see the section called “Create a traffic mirror target” (p. 21).
 - To use a target that is owned by another account and shared with you, accept the shared resource before you create the traffic mirror session. For more information, see the section called “Accepting a resource share” (p. 24).
- The traffic mirror filter (for more information, see the section called “Create a traffic mirror filter” (p. 25))

To create a traffic mirror session using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the VPCs.
3. In the navigation pane, choose Traffic Mirroring, Mirror Sessions.
4. Choose Create traffic mirror session.
5. (Optional) For Name tag, enter a name for the traffic mirror session.
6. (Optional) For Description, enter a description for the traffic mirror session.
7. For Mirror source, choose the network interface of the instance that you want to monitor.
8. For Mirror target, choose the traffic mirror target.
 - To create a target, choose Create target. For more information, see the section called “Create a traffic mirror target” (p. 21).
9. Under Additional settings, do the following:
 a. For Session number, enter the session number.
 - The session number determines the order that traffic mirror sessions are evaluated when an interface is used by multiple sessions that have the same interface, but have different traffic mirror targets and traffic mirror filters. Traffic is only mirrored one time.
 - Use 1 for the highest priority.
 - Valid values are 1-32766.
 b. (Optional) For VNI, enter the VXLAN ID to use for the traffic mirror session. For more information about the VXLAN protocol, see RFC 7348.
 - If you do not enter a value, we assign a random number.
 c. (Optional) For Packet Length, enter the number of bytes in each packet to mirror.
 - If you do not want to mirror the entire packet, set Packet Length to the number of bytes in each packet to mirror. For example, if you set this value to 100, the first 100 bytes after the VXLAN header that meet the filter criteria are copied to the target.
 - To mirror the entire packet, do not enter a value in this field.
 d. For Filter, choose the traffic mirror filter that determines what traffic gets mirrored.
 - To create a filter, choose Create filter. For more information, see the section called “Step 2: Create the traffic mirror filter” (p. 9).
10. (Optional) Add or remove a tag.
 [Add a tag] Choose Add tag and do the following:
 • For Key, enter the key name.
 • For Value, enter the key value.

 [Remove a tag] Next to the tag, choose Remove tag.
11. Choose Create.

To create a traffic mirror session using the AWS CLI

Use the create-traffic-mirror-session command.

Modify your traffic mirror session

To modify your traffic mirror session using the console

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror session.
3. In the navigation pane, choose Traffic Mirroring, Mirror Sessions.
4. Select the traffic mirror session.
5. Choose Modify session.
6. (Optional) For Description, enter a description for the traffic mirror session.
7. For Mirror target, choose the traffic mirror target.
 To create a target, choose Create target. For more information, see the section called “Create a traffic mirror target” (p. 21).
8. Under Additional settings, do the following:
 a. For Session number, enter the session number.
 The session number determines the order that traffic mirror sessions are evaluated when an interface is used by multiple sessions, but that have different traffic mirror targets and traffic mirror filters. Traffic is only mirrored one time.
 Use 1 for the highest priority.
 Valid values are 1-32766.
 b. (Optional) For VNI, enter the VXLAN ID to use for the traffic mirror session. For more information about the VXLAN protocol, see RFC 7348.
 If you do not enter a value, we assign a random unused number.
 c. (Optional) For Packet Length, enter the number of bytes in each packet to mirror.
 If you do not want to mirror the entire packet, set Packet Length to the number of bytes in each packet to mirror. For example, if you set this value to 100, the first 100 bytes after the VXLAN header that meet the filter criteria are copied to the target.
 To mirror the entire packet, do not enter a value in this field.
 d. For Filter, choose the traffic mirror filter that determines what traffic gets mirrored.
9. Choose Modify.

To modify your traffic mirror session using the AWS CLI
Modify traffic mirror session tags

To modify your traffic mirror session tags using the console
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror session.
3. In the navigation pane, choose Traffic Mirroring, Mirror Sessions.
4. Select the traffic mirror session.
5. Choose Tags, Manage tags.
6. Add or remove a tag.
 [Add a tag] Choose Add tag, and then do the following:
 • For Key, enter the key name.
 • For Value, enter the key value.
 [Remove a tag] Next to the tag, choose Remove tag.
7. Choose Modify.

To modify your traffic mirror session using the AWS CLI
Use the create-tags command to add a tag. Use the delete-tags command to remove a tag.

View your traffic mirror sessions

To view your traffic mirror sessions using the console
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror session.
3. In the navigation pane, choose Traffic Mirroring, Mirror Sessions.
4. Select the traffic mirror session.

To view your traffic mirror session using the AWS CLI
Use the describe-traffic-mirror-sessions command.

Delete a traffic mirror session

To delete your traffic mirror session using the console
1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.
2. In the Region selector, choose the AWS Region that you used when you created the traffic mirror session.
3. On the navigation pane, choose Traffic Mirroring, Mirror Sessions.
4. Select the traffic mirror session, and then choose Delete.
5. In the Delete confirmation dialog box, enter delete, and then choose Delete.

To delete a traffic mirror session using the AWS CLI
Use the `delete-traffic-mirror-session` command.
Monitoring mirrored traffic using Amazon CloudWatch

You can monitor your mirrored traffic using Amazon CloudWatch, which collects information from your a network interface that is part of a traffic mirror session, and creates readable, near real-time metrics. You can use this information to monitor and troubleshoot Traffic Mirroring.

For more information about Amazon CloudWatch, see the Amazon CloudWatch User Guide. For more information about EC2 instance metrics, see List the Available CloudWatch Metrics for Your Instances in Amazon EC2 User Guide for Linux Instances. For more information about pricing, see Amazon CloudWatch Pricing.

Traffic Mirroring metrics and dimensions

The following metrics are available for your mirrored traffic.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkMirrorIn</td>
<td>The number of bytes received on all network interfaces by the instance that are mirrored.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes received during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkMirrorOut</td>
<td>The number of bytes sent out on all network interfaces by the instance that are mirrored.</td>
</tr>
<tr>
<td></td>
<td>The number reported is the number of bytes sent during the period. If you are using basic (five-minute) monitoring, you can divide this number by 300 to find Bytes/second. If you have detailed (one-minute) monitoring, divide it by 60.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkPacketsMirrorIn</td>
<td>The number of packets received on all network interfaces by the instance that are mirrored. This metric is available for basic monitoring only.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td>NetworkPacketsMirrorOut</td>
<td>The number of packets sent out on all network interfaces by the instance that are mirrored. This metric is available for basic monitoring only.</td>
</tr>
</tbody>
</table>
Metric Description

<table>
<thead>
<tr>
<th>Metric</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NetworkSkipMirrorIn</td>
<td>The number of bytes received, that meet the traffic mirror filter rules, that did not get mirrored because of production traffic taking priority.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkSkipMirrorOut</td>
<td>The number of bytes sent out, that meet the traffic mirror filter rules, that did not get mirrored because of production traffic taking priority.</td>
</tr>
<tr>
<td></td>
<td>Units: Bytes</td>
</tr>
<tr>
<td>NetworkPacketsSkipMirrorIn</td>
<td>The number of packets received, that meet the traffic mirror filter rules, that did not get mirrored because of production traffic taking priority.</td>
</tr>
<tr>
<td></td>
<td>This metric is available for basic monitoring only.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
<tr>
<td>NetworkPacketsSkipMirrorOut</td>
<td>The number of packets sent out, that meet the traffic mirror filter rules, that did not get mirrored because of production traffic taking priority.</td>
</tr>
<tr>
<td></td>
<td>This metric is available for basic monitoring only.</td>
</tr>
<tr>
<td></td>
<td>Units: Count</td>
</tr>
</tbody>
</table>

To filter the metric data, use the following dimensions.

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AutoScalingGroupName</td>
<td>This dimension filters the data you request for all instances in a specified capacity group. An Auto Scaling group is a collection of instances you define if you're using Auto Scaling. This dimension is available only for Amazon EC2 metrics when the instances are in such an Auto Scaling group. Available for instances with Detailed or Basic Monitoring enabled.</td>
</tr>
<tr>
<td>ImageId</td>
<td>This dimension filters the data you request for all instances running this Amazon EC2 Amazon Machine Image (AMI). Available for instances with Detailed Monitoring enabled.</td>
</tr>
<tr>
<td>InstanceId</td>
<td>This dimension filters the data you request for the identified instance only. This helps you pinpoint an exact instance from which to monitor data. Available for instances with Detailed or Basic Monitoring enabled.</td>
</tr>
<tr>
<td>InstanceType</td>
<td>This dimension filters the data you request for all instances running with this specified instance type. This helps you categorize your data by the type of instance running. For example, you might</td>
</tr>
</tbody>
</table>
Dimension | Description
--- | ---
 | compare data from an m1.small instance and an m1.large instance to determine which has the better business value for your application. Available for instances with Detailed Monitoring enabled.

Viewing Traffic Mirroring CloudWatch metrics

You can view the metrics for Traffic Mirroring as follows.

To view metrics using the CloudWatch console

Metrics are grouped first by the service namespace, and then by the various dimension combinations within each namespace.

2. In the navigation pane, choose **Metrics**.
3. Under **All metrics**, choose the **EC2** metric namespace.
4. To view the metrics, select the metric dimension.

To view metrics using the AWS CLI

At a command prompt, use the following command to list the metrics that are available for Traffic Mirroring:

```
aws cloudwatch list-metrics --namespace "AWS/EC2"
```

The Traffic Mirroring metrics are included with the EC2 metrics.
Traffic Mirroring quotas and considerations

Take the following information into consideration when you use Traffic Mirroring:

- Encapsulated mirror traffic is routed by using the VPC route table. Make sure that your route table is configured to send the mirrored traffic to the correct traffic mirror target.
- Traffic Mirroring is currently available only on virtualized Nitro-based instances.
- We truncate the packet to the MTU value when both of the following are true:
 - The traffic mirror target is a standalone instance.
 - The mirrored traffic packet size is greater than the traffic mirror target MTU value.

For example, if an 8996 byte packet is mirrored, and the traffic mirror target MTU value is 9001 bytes, the mirror encapsulation results in the mirrored packet being greater than the MTU value. In this case, the mirror packet is truncated. To prevent mirror packets from being truncated, set the traffic mirror source interface MTU value to 54 bytes less than the traffic mirror target MTU value. For more information about configuring the network MTU value, see Network Maximum Transmission Unit (MTU) for Your EC2 Instance in the Amazon EC2 User Guide for Linux Instances.

We recommend using a Network Load Balancer as a target for high availability.

- Mirrored traffic counts toward instance bandwidth. The impact depends on the amount of traffic and the traffic type. Consider a scenario where you mirror a network interface that has 1 Gbps of inbound traffic and 1 Gbps of outbound traffic. In this case, the instance needs to handle 1 Gbps of inbound traffic and 3 Gbps of outbound traffic (1 Gbps for the outbound traffic, 1 Gbps for the mirrored inbound traffic, and 1 Gbps for the mirrored outbound traffic).
- Production traffic has a higher priority than mirrored traffic when there is traffic congestion. As a result, mirrored traffic is dropped when there is congestion.
- Mirrored traffic on an instance is not subject to outgoing security group evaluation.
- Flow logs do not capture mirrored traffic.
- If you do not have UDP listeners on the Network Load Balancer, you can still use the Network Load Balancer as a target. However, Traffic Mirroring cannot occur because there are no UDP listeners.
- When you delete a network interface that is a traffic mirror source, the traffic mirror sessions that are associated with the source are automatically deleted.
- If you remove the UDP listeners from a Network Load Balancer that is a traffic mirror target, Traffic Mirroring fails without an error indication.
- When the Network Load Balancer removes the node in an Availability Zone from the DNS table, Traffic Mirroring continues to send the mirrored packets to that node.
- We recommend that you use cross-zone load balancing to ensure that the packets continue to be mirrored when all targets in an Availability Zone are not healthy.
- Packets that are dropped by incoming security group rules, or by network ACL rules at the traffic mirror source, do not get mirrored.
- Traffic Mirroring is not enabled on u-*.metal instances.

Traffic types

Not all traffic can be mirrored. The following traffic types cannot be mirrored:

- Encapsulated mirror traffic is routed by using the VPC route table. Make sure that your route table is configured to send the mirrored traffic to the correct traffic mirror target.
- Traffic Mirroring is currently available only on virtualized Nitro-based instances.
- We truncate the packet to the MTU value when both of the following are true:
 - The traffic mirror target is a standalone instance.
 - The mirrored traffic packet size is greater than the traffic mirror target MTU value.
Traffic Mirroring service quotas

The following are the Traffic Mirroring service quotas for your AWS account. Unless indicated otherwise, you can request an increase by using the Amazon VPC limits form. For more information about service quotas, see AWS Service Quotas in the Amazon Web Services General Reference.

The following quotas apply to traffic mirror sessions:

- Maximum number of sessions per account: 10,000
- Maximum number of sessions on a traffic mirror source network interface: 3

The following quotas apply to traffic mirror targets:

- Maximum number of traffic mirror targets per account: 10,000

The following quotas apply to a traffic mirror source to traffic mirror target ratio:

- Maximum number of mirror sources per Network Load Balancer: No limit
- Maximum number of mirror sources per a Dedicated instance type as target: 100
 - C3.8XL
 - C4.8XL
 - C5.18XL
 - C5N.18XL
 - C5D.18XL
 - p2.16XL
 - p3.16xl
 - G2.8XL
 - g3.16xl
 - m4.10XL
 - m5.24XL
 - m5d.24XL
 - R5.24XL
 - R5d.24XL
 - X1.32XL
 - X1e.32XL

 Maximum number of mirror sources per a non-dedicated instance type as target: 10

The following quotas apply to traffic mirror filters:

- Maximum number of rules per filter: 10
Checksum offloading

The Elastic Network Adapter (ENA) provides checksum offloading capabilities. If a packet is truncated, this might result in the packet checksum not being calculated for the mirrored packet. The following checksums are not calculated when the mirrored packet is truncated:

- If the mirror packet is truncated, the mirror packet L4 checksum is not calculated.
- If any part of the L3 header is truncated, the L3 checksum is not calculated.

Use the following commands to disable ENA checksum offloading on Amazon Linux 2 AMI:

```
[ec2-user@ip-11-0-0-166 ~]$ sudo ethtool --offload eth0 tx off
[ec2-user@ip-11-0-0-166 ~]$ sudo ethtool --show-offload eth0
Features for eth0:
rx-checksumming: on
tx-checksumming: off
tx-checksum-ipv4: off
tx-checksum-ip-generic: off [fixed]
tx-checksum-ipv6: off [fixed]
tx-checksum-fcoe-crc: off [fixed]
tx-checksum-sctp: off [fixed]
```
Document history for Traffic Mirroring

The following table describes the releases for Traffic Mirroring.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Description</th>
<th>Release Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Support for Amazon CloudWatch</td>
<td>Monitor your mirrored traffic using Amazon CloudWatch. For more information, see Monitoring mirrored traffic using Amazon CloudWatch (p. 33)</td>
<td>Nov 25, 2019</td>
</tr>
<tr>
<td>Initial release</td>
<td>This release introduces Traffic Mirroring.</td>
<td>June 25, 2019</td>
</tr>
</tbody>
</table>