
AWS Whitepaper

Best Practices for Designing Amazon
API Gateway Private APIs and Private
Integration

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Best Practices for Designing Amazon API Gateway Private APIs and
Private Integration : AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Table of Contents

Abstract and introduction .. i
Abstract ... 1
Are you Well-Architected? .. 1
Introduction ... 1

Overview of Amazon API Gateway ... 3
Rest API .. 4

Private endpoint type .. 4
DNS names for private APIs ... 4
Resource-based policy .. 6

Private integration ... 6
Sample architecture patterns .. 7

Basic architecture .. 7
Cross-account architecture .. 8
On-premises architecture .. 9
Multi-Region private API gateway ... 11
Private integration architecture with Amazon ECS .. 14
Private integration cross-account .. 14

WebSocket API ... 17
Private integration ... 17
Sample architecture pattern .. 17

Sample architecture ... 17
HTTP API .. 19

Private integration ... 19
Sample architecture patterns .. 20

ALB architecture (ECS) ... 20
Cloud Map architecture (microservices) ... 21
Private integration cross-account .. 21

Security .. 24
Cost optimization .. 26
Conclusion .. 29
Contributors ... 30
Further reading .. 31
Document revisions ... 32
Notices .. 33

iii

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

AWS Glossary ... 34

iv

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Best Practices for Designing Amazon API Gateway Private
APIs and Private Integration

Publication date: August 26, 2022 (Document revisions)

Abstract

For many enterprise customers, AWS Direct Connect or a virtual private network (VPN) is often
used to build a network connection between an on-premises network and an Amazon Web Services
(AWS) virtual private cloud (VPC). This can add additional complexity to a network design, and
introduces challenges to Amazon API Gateway private API and private integration setup. This
whitepaper introduces best practices for deploying private APIs and private integrations in API
Gateway, and discusses security, usability, and architecture.

It is aimed at developers who use API Gateway, or are considering using it in the future.

Are you Well-Architected?

The AWS Well-Architected Framework helps you understand the pros and cons of the decisions
you make when building systems in the cloud. The six pillars of the Framework allow you to learn
architectural best practices for designing and operating reliable, secure, efficient, cost-effective,
and sustainable systems. Using the AWS Well-Architected Tool, available at no charge in the AWS
Management Console, you can review your workloads against these best practices by answering a
set of questions for each pillar.

For more expert guidance and best practices for your cloud architecture—reference architecture
deployments, diagrams, and whitepapers—refer to the AWS Architecture Center.

Introduction

API Gateway private integration makes it simple to expose your HTTP/HTTPS resources behind
an Amazon VPC, for access by clients outside of the VPC. Additionally, private integration can
integrate with private APIs, so the APIs can send requests to a Network Load Balancer (NLB)
through a private link. For HTTP APIs, Application Load Balancer (ALB) and AWS Cloud Map are also
supported. Private integration forwards external traffic sent to APIs to private resources, without
exposing the APIs to the internet.

Abstract 1

https://aws.amazon.com/directconnect/
https://aws.amazon.com/api-gateway/
https://aws.amazon.com/architecture/well-architected/
https://aws.amazon.com/well-architected-tool/
https://console.aws.amazon.com/wellarchitected
https://console.aws.amazon.com/wellarchitected
https://aws.amazon.com/architecture/
https://docs.aws.amazon.com/elasticloadbalancing/latest/network/introduction.html
https://docs.aws.amazon.com/elasticloadbalancing/latest/application/introduction.html
https://aws.amazon.com/cloud-map/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Based on security requirements, different security measures can be placed at different security
layers. To secure VPC resources such as Elastic Network Interface (ENI), associate resources are
associated with a security group. VPC endpoints are associated with both the security group and
the resource policy. For NLB, Transport Secure Layer (TLS) listeners are used to secure a listener. For
ALB, security groups and HTTPS listeners are used.

Compared to regional and edge-optimized API implementations, private API implementation
and private integrations add additional components, such as interface VPC endpoints and load
balancers. This can lead to additional complexity in application architectures.

This whitepaper includes sample architectures to help understand private APIs, along with private
integration implementation and best practices. It also covers security and cost optimizations.

Introduction 2

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Overview of Amazon API Gateway

Amazon API Gateway is a fully managed service that helps you easily create, publish, maintain,
monitor, and secure APIs at any scale. It provides three different types of APIs: REST, WebSocket,
and HTTP. Depending on your business needs and architectural patterns, you can use one or more
of the API types:

• The REST API type has three endpoint types: edge-optimized, regional, and private. Edge-
optimized and regional REST APIs are publicly accessible and serve requests over the internet.
For customers who need to access an API in a private network, a private REST API is the
preferred choice. REST APIs provide an easy means to secure APIs such as resource policies, IAM
authentication, and custom authorizers.

• WebSocket APIs enable you to build real-time, two-way communication applications such as
chat apps and streaming dashboards. Although there is no private endpoint type available,
WebSocket APIs provide an option to create a route with a VPC link for private integration.

• HTTP APIs are the newest type of APIs in API Gateway. They include enhanced features such as
auto deployment and cross-origin resource sharing (CORS) support, improved performance, and
low costs. HTTP API private integrations work with Application Load Balancer and AWS Cloud
Map, in addition to Network Load Balancer.

3

https://aws.amazon.com/api-gateway/
https://aws.amazon.com/elasticloadbalancing/application-load-balancer/
https://aws.amazon.com/cloud-map/
https://aws.amazon.com/cloud-map/
https://aws.amazon.com/elasticloadbalancing/network-load-balancer/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Rest API

REST APIs help create APIs that follow the REST architectural style. Developers can use their
existing knowledge and apply best practices while building REST APIs in API Gateway.

While designing a REST API, a key consideration is security. Use least privilege access when giving
access to APIs. The private endpoint type restricts API access through interface VPC endpoints
only. If REST APIs are publicly exposed but integration endpoints exist in a private subnet, private
integration offers a way to access the endpoints via a VPC link. You can create a VPC link with a
Network Load Balancer. API Gateway creates a VPC endpoint service for API Gateway to access
Network Load Balancer.

Private endpoint type

To make APIs accessible only from Amazon VPCs, you can use REST APIs with the private endpoint
type. The traffic to the APIs will not leave the AWS network. There are three options to invoke a
private API through different domain name system (DNS) names:

• Private DNS names

• Interface VPC endpoint public DNS hostnames

• Amazon Route53 alias

While configuring private APIs, there are several key points to consider. The “DNS Names for
Private APIs” section provides use cases, pros, and cons about each option.

DNS names for private APIs

Table 1 – Private API DNS names

DNS names Private DNS option
on VPCs

Pros Cons

Private DNS names Enabled Easy to set up DNS issue with
regional and edge-
optimized APIs

Private endpoint type 4

https://en.wikipedia.org/wiki/Representational_state_transfer
https://en.wikipedia.org/wiki/Principle_of_least_privilege
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-nlb-for-vpclink-using-console.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-nlb-for-vpclink-using-console.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

DNS names Private DNS option
on VPCs

Pros Cons

Interface VPC
endpoint public DNS
hostnames

Disabled The domain name is
publicly resolvable

Requires a Host or x-
apigw-api-id header
in requests

Route53 alias Disabled The domain name is
publicly resolvable.

The host or x-apigw-
api-id header is not.
required

Requires an interface
VPC endpoint
association with each
private API

Private DNS names

This option works when the private DNS option on an interface VPC endpoint is enabled. In
addition, to resolve the name, AmazonProvidedDNS should be present in the DHCP options set for
the clients in the VPC. Because those are the only requirements, this option is usually easy to use
for a simple use case such as invoking a private API within a VPC.

However, if you use a custom DNS server, a conditional forwarder must be set on the DNS that
points to the AmazonProvidedDNS or Route53 Resolver. Because of the private DNS option
enabled on the interface VPC endpoint, DNS queries against *.execute-api.amazonaws.com
will be resolved to private IPs of the endpoint. This causes issues when clients in the VPC try to
invoke regional or edge-optimized APIs, because those types of APIs must be accessed over the
internet. Traffic through interface VPC endpoints is not allowed. The only workaround is to use an
edge-optimized custom domain name. Refer to Why do I get an HTTP 403 Forbidden error when
connecting to my API Gateway APIs from a VPC? for the troubleshooting steps.

VPC endpoint public DNS hostnames

If your use case requires the private DNS option to be turned off, consider using interface VPC
endpoint public DNS hostnames. When you create an interface VPC endpoint, it also generates the
public DNS hostname. When invoking a private API through the hostname, you must pass a Host or
x-apigw-api-id header.

DNS names for private APIs 5

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-api-test-invoke-url.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-private-api-test-invoke-url.html
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_DHCP_Options.html#AmazonDNS
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-getting-started.html
https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-vpc-connections/
https://aws.amazon.com/premiumsupport/knowledge-center/api-gateway-vpc-connections/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

The header requirement can cause issues when the hostname is used in a web application. For
cross-origin, non-simple requests, modern browsers send a preflight request to an endpoint. This
option requires clients to send requests with a custom header. Because browsers will not send the
custom header for the preflight request, this will cause CORS issues. This option is not a preferred
option for customers who need to use a private API from a web application.

Amazon Route 53 alias

This Amazon Route 53 option resolves the header requirement imposed by the VPC endpoint
public DNS hostnames option. Additionally, the Route 53 alias is publicly resolvable, and does not
require private DNS to be enabled. Clients in a VPC can access private APIs through the Route 53
alias, as well as other types of APIs such as regional and edge-optimized REST APIs.

Each alias is generated after associating a VPC endpoint to a private API. The association is required
every time you create new interface VPC endpoints and private APIs.

Resource-based policy

Resource-based policies are attached to a resource like a REST API in API Gateway. For resource-
based policies, you can specify who has access to the resource and what actions are permitted.

Unlike regional and edge-optimized endpoint types, private APIs require the use of a resource
policy. Deployments without a resource policy will fail. For private APIs, there are additional
keys within the condition block you can use in the resource policy, such as aws:sourceVpc and
aws:SourceVpce. The aws:sourceVpc policy allows traffic to originate from specific VPCs, and
aws:SourceVpce allows traffic originating from interface VPC endpoints.

Private integration

Private integrations allow routing traffic from API Gateway to customers’ VPCs. The integrations
are based on VPC links, and rely on a VPC endpoint service that is tied to NLBs for REST and
WebSocket APIs. VPC link integrations work in a similar way as HTTP integrations. A common use
case is to invoke Amazon Elastic Compute Cloud (Amazon EC2)-hosted applications behind NLBs
through VPC links. There are several design considerations in this case:

• For existing applications with a Classic Load Balancer (CLB) or ALB:

• Create an NLB in front of a CLB or ALB.

• This creates an additional network hop and infrastructure cost.

Resource-based policy 6

https://medium.com/@f2004392/cors-preflight-request-options-9d05b9248e5a
https://aws.amazon.com/route53/
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_identity-vs-resource.html
https://aws.amazon.com/ec2/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

• Route traffic through NLB instead of CLB or ALB.

• This requires migration from CLB or ALB to NLB to shift traffic and redesign the existing
architecture. Refer to Migrate your Classic Load Balancer for the migration process.

• NLB listener type

• Transmission control protocol (TCP) (Secure Socket Layer (SSL) passthrough or non-SSL traffic)

• Transport Layer Security (TLS) (ending the SSL connection on NLB)

Sample architecture patterns

When implementing a private API, using an authorizer such as AWS Identity and Access
Management (IAM) or Amazon Cognito is highly recommended. This ensures an additional layer
of security, and helps verify requests using IAM credentials for IAM authorization, and access/ID
tokens for the Amazon Cogito authorizer.

Basic architecture

In the basic architecture, Amazon EC2 instances and VPC-enabled AWS Lambda functions access a
private API through an interface VPC endpoint. The security group attached to the endpoint must
allow the Transmission Control Protocol (TCP) port 443. In the private API resource policy, requests
from the VPC and interface VPC endpoint should be allowed.

Sample architecture patterns 7

https://docs.aws.amazon.com/elasticloadbalancing/latest/userguide/migrate-classic-load-balancer.html
https://aws.amazon.com/iam
https://aws.amazon.com/iam
https://aws.amazon.com/cognito/
https://aws.amazon.com/lambda/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

REST private API basic architecture

Cross-account architecture

If you want to allow access to a private API from other accounts, an interface VPC endpoint in a
different account can be used to invoke the API. However, they both must exist in the same Region,
such as us-east-1 (N. Virginia). Additionally, the private API resource policy must allow access from
the other account’s VPC or interface VPC endpoint.

Cross-account architecture 8

https://aws.amazon.com/about-aws/global-infrastructure/regions_az/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

REST private API cross-account architecture

On-premises architecture

If you have users accessing from on-premises locations, you will need a Direct Connect or VPN
connection between the on-premises networks and your VPC. All requests must still go through
interface VPC endpoints. For the on-premises architecture, VPC endpoint public DNS hostnames
or Route 53 alias records are good options when invoking private APIs. If on-premises users access

On-premises architecture 9

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resource-record-sets-choosing-alias-non-alias.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

the network through a web application, Route 53 alias records are a better approach to avoid CORS
issues. If the Route 53 alias record option does not work, one solution is to create a conditional
forwarder on an on-premises DNS pointing to a Route 53 resolver. Refer to Resolving DNS queries
between VPCs and your network.

The following diagram shows a sample architecture where on-premises clients access a web
application hosted in the on-premises network. The web application uses a private API for its API
endpoint. For the private API endpoint, a Route 53 alias is used. Because a Route 53 alias record is
publicly resolvable, there is no need to set up a conditional forwarder on on-premises DNS servers
to resolve the hostname.

REST private API on-premises architecture

On-premises architecture 10

https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Setup

• The Private API is associated with the VPC endpoint vpce-0123abcd. This generates a Route 53
alias to invoke a private API.

• The on-premises network and VPC are connected through Direct Connect.

1. On-premises users access a web application hosted in the on-premises network.

2. For non-simple requests, a web browser makes a preflight request (OPTIONS) to the private
API.

3. When the preflight response includes the appropriate CORS headers such as Access-Control-
Origin;*, the web browser makes an HTTP request such as POST on the private API.

Multi-Region private API gateway

Customers want to build active-active or active-passive multi-Region API deployments for
addressing requirements such as failover between Regions, reducing API latency when there are
API clients in other Regions, and meeting data sovereignty requirements.

The core solution has private APIs configured with Regional custom domain names associated with
a certificate from AWS Certificate Manager. Each Region has a VPC Endpoint setup for the private
API gateway to be accessed from VPC. At the time of this writing, custom domain names are not
supported for private APIs directly, so the solution uses an NLB in front of the API Gateway using
the same certificates configured with the custom domain name. A Route 53 private hosted zone
in each VPC has alias records pointing to the NLB with the desired routing policy. The following
routing polices can help in achieving the multi-Region architecture for API Gateway:

• Failover routing policy — This is used in an active-passive setup where the API Gateway primary
Region receives the traffic in normal operation, and the API Gateway secondary Region receives
the traffic only when there is a failure in primary Region. This requires a health check to be
configured and enabled in Route 53.

• Weighted routing policy — This is used in an active-active setup where a portion of traffic is
always sent to the secondary Region. This can also be configured with a health check, similar to
the failover policy, where traffic will only be routed to healthy Regions.

To resolve the private API custom domain name, there is an inbound resolver endpoint setup for
both Regions, which provides two or more private IPs in each VPC across multiple availability zones

Multi-Region private API gateway 11

https://aws.amazon.com/certificate-manager/
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/routing-policy.html
https://docs.aws.amazon.com/Route53/latest/DeveloperGuide/resolver-forwarding-inbound-queries.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

to ensure high availability. This enables the resolution of the custom domain name using the VPC
resolver.

The previous solution uses an NLB, however, you can use an ALB instead if required. When using
an ALB, target groups need to be created with VPC endpoint IP addresses. The target group health
check path should be set to /ping (API Gateway service health check) to return a HTTP 200
success code, otherwise the health check will fail with a 403 response. The Route 53 private hosted
zone in each VPC has alias records configured to point to ALB hostname with the desired routing
policy. The API Gateway, VPC endpoint and Route 53 inbound resolver setup remains as described
for the NLB.

The following diagram shows a sample architecture for on-premises clients to access private
API Gateway APIs deployed across two AWS Regions. However, the solution described above
can equally apply to clients accessing from another VPC or AWS account with appropriate DNS
configurations on client VPC and appropriate resource policy on the private API. The on-premises
DNS server is configured to forward the request for the private API domain name to the inbound
resolver endpoint private IP addresses in the nearest region and a fallback IP address pointing to
the farther Region.

The solution assumes mechanisms are in place to synchronize state (if any) across regions for the
backend APIs and associated datastores.

Multi-Region private API gateway 12

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Multi-Region API Gateway integrated with on-premise network via Route53 Resolver

1. The application server in the corporate data center needs to resolve an API Gateway Private
domain name. It sends the query to its pre-configured DNS server.

2. The DNS server in the corporate data center has a forwarding rule that forwards the DNS query
for the specified domain name to the Route 53 Resolver inbound endpoint in Region A.

3. The Route 53 Resolver inbound endpoint uses the Route 53 Resolver to resolve the query.

4. The domain name is resolved to the Network Load Balancer (NLB) in one of the Regions based
on the Route 53 routing policy.

Multi-Region private API gateway 13

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

5. The NLB target group sends the request to the interface VPC endpoint.

6. The interface VPC endpoint points to the API gateway.

7. The API gateway authenticates the request and sends it to the target service, such as Lambda.

There are also Route 53 inbound resolver endpoints in Region B for redundancy.

Private integration architecture with Amazon ECS

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration service.
Customers can use ECS to run their most sensitive and mission critical applications because of
its security, reliability, and scalability. For private integration in REST APIs, one common design
pattern is to use an NLB to route traffic to an Amazon ECS cluster in private subnets. Many
customers deploy ECS as their backend compute service. The following diagram shows clients in
one VPC accessing an ECS cluster in another VPC through a private API and private integration.

Cross-VPC ECS access via private integration with private API

Private integration cross-account

Many customers want to use API Gateway with resources that exist in a different AWS account.
Although the VPC Link must exist in the same account as the API Gateway API, it is still possible
to access resources in another account using AWS PrivateLink or through private VPC routing such
as VPC peering or using AWS Transit Gateway.

Private integration architecture with Amazon ECS 14

https://aws.amazon.com/ecs/
https://aws.amazon.com/privatelink/
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://aws.amazon.com/transit-gateway/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

The following diagram shows a sample architecture where a PrivateLink (VPC Endpoint Service)
connection has been established between the Central API Gateway Account and an ECS cluster
in Resource Account A and an EC2 Auto Scaling Group (ASG) in Resource Account B. As this is a REST
API Gateway, the VPC link uses an NLB to point to the private IP addresses of the VPC endpoint for
each PrivateLink connection. API Gateway can invoke cross-account Lambda functions without the
need for VPC link by using resource-based policies.

REST private cross-account integration using AWS PrivateLink

In this example, there is no private routing between the different account VPCs. PrivateLink
provides a secure private connection to a single endpoint. Example use cases for this architecture
include where there are overlapping Classless Inter-Domain Routing (CIDR) ranges between VPCs,
or you wish to provide access to only a specific service or application rather than create a route to
all resources in another VPC.

Many multi-account customers already have a cross-account VPC architecture in place using VPC
peering or AWS Transit Gateway. In this case the NLB used for the VPC Link can be pointed directly
to the private IP addresses of the resources in a different account, removing the need for the VPC
endpoint and simplifying the architecture. This is shown in the following sample architecture.

Private integration cross-account 15

https://docs.aws.amazon.com/lambda/latest/dg/access-control-resource-based.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

REST private cross-account integration using VPC peering

Private integration cross-account 16

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

WebSocket API

WebSocket APIs offer APIs that the client can access through the WebSocket protocol. Unlike
REST and HTTP APIs, WebSocket APIs allow bidirectional communications. WebSocket APIs are
often used in real-time applications such as chat applications, collaboration platforms, multiplayer
games, and financial trading platforms.

Private integration

Private integrations with WebSocket APIs are very similar to those using REST APIs. The difference
is how responses are handled, because integration responses are optional in WebSocket API routes.
However, integration requests to the VPC links work the same way as requests to REST APIs, so the
same design considerations apply to WebSocket APIs.

Sample architecture pattern

Currently, WebSocket APIs are offered only with a Regional endpoint type. The APIs must be
accessed over the internet. Using a private integration, requests through APIs can be routed to
EC2 instances or VPC resources through an NLB privately. You can perform TLS termination on
a TLS listener of the NLB, or pass the TLS traffic through to the target group instances. If the
TLS termination happens on the target group instances, you can implement client certificates
generated by API Gateway to enhance security. Refer to Generate and configure an SSL certificate
for backend authentication.

Sample architecture

The following figure shows a sample architecture where WebSocket API users access a route
key mapped to a VPC link integration method. The NLB has a TLS listener for the domain
“example.com”, and listens on TCP port 443. The target group for the listener points to ECS
services.

Private integration 17

https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-client-side-ssl-authentication.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-client-side-ssl-authentication.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

WebSocket API private integration with ECS

Sample architecture 18

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

HTTP API

HTTP API is a new flavor of API Gateway. Benefits of using the API include delivering enhanced
features, improved performance, and an easier developer experience. In addition, HTTP APIs come
with reduced request pricing.

For private integrations, HTTP APIs offer additional integration endpoints for a VPC link, such as
ALBs, NLBs, and AWS Cloud Map. For any existing applications or micro services that have ALBs or
AWS Cloud Map to route traffic, you can use the same setup. HTTP APIs can route traffic to those
endpoints through a VPC link.

Private integration

Because HTTP APIs offer three different private integration targets, you should consider which
integration target best suits your use case. Depending on the backend service, one or more targets
can be used by creating multiple VPC endpoints.

Table 2 – HTTP API private integration

Integration target Listener Use cases

NLB TCP or TLS listener TLS passthrough is possible

High throughput

ALB HTTP or HTTPS listener Layer 7 routing

Content-based routing

AWS Cloud Map Namespace/service

AWS Cloud Map parameters
(optional)

Service discovery

Private integration 19

https://aws.amazon.com/cloud-map/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Sample architecture patterns

ALB architecture (ECS)

HTTP API private integration allows NLB and ALB for integration targets for load balancers. If you
have any backend service fronted with ALBs, you can use the existing setup without re-architecting.
Because ALBs allow different routing options, such as path-based routing, this option provides
flexibility on the ALB routing level. To create listener rules to achieve path-based routing, refer to
Listener rules for your Application Load Balancer.

The following figure shows private integration with ALB in HTTP API. The ALB uses path-based
routing rules to route traffic to two different ECS services.

HTTP API private integration with ALB

Sample architecture patterns 20

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/listener-update-rules.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Cloud Map architecture (microservices)

With the AWS Cloud Map target option, you can use AWS Cloud Map to discover services like ECS
and EC2-based services. Using AWS Cloud Map as a front-end service for microservices, you can
leverage a private integration with an AWS Cloud Map target in HTTP APIs to route requests to
different endpoints.

HTTP API private integration with Cloud Map

Private integration cross-account

For cross-account access of private resources with HTTP APIs the architecture is very similar to that
of REST APIs. The difference is you now have the choice of ALB, NLB or AWS Cloud Map for the VPC
Link, rather than just an NLB.

In the sample architecture below AWS PrivateLink is used to access resources in another AWS
account. The VPC link must exist in the same account as the API Gateway. The Application
Load Balancer used in this VPC link is pointing to the VPC endpoint private IP addresses of the
PrivateLink connection.

Cloud Map architecture (microservices) 21

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

HTTP private cross-account integration using AWS PrivateLink

For more detail on the above architecture and to deploy a code example, refer to Building private
cross-account APIs using Amazon API Gateway and AWS PrivateLink.

With HTTP APIs, you can also use AWS Cloud Map to create a VPC link connection. In the following
sample architecture, AWS Cloud Map is used to resolve private resources in another AWS account.
The central API Gateway account and the resource account VPCs are connected using AWS Transit
Gateway VPC attachments to provide private routing. Transit Gateway is an alternative to using
VPC peering by providing a hub and spoke network design.

Private integration cross-account 22

https://aws.amazon.com/blogs/compute/building-private-cross-account-apis-using-amazon-api-gateway-and-aws-privatelink/
https://aws.amazon.com/blogs/compute/building-private-cross-account-apis-using-amazon-api-gateway-and-aws-privatelink/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

HTTP private cross-account integration using AWS Cloud Map and AWS Transit Gateway

Note

AWS Cloud Map integration using Amazon ECS service discovery does not support cross-
account patterns. To implement the architecture shown in the previous diagram, you must
register cross-account ECS resources manually in the AWS Cloud Map namespace.

Private integration cross-account 23

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-discovery.html
https://docs.aws.amazon.com/cloud-map/latest/dg/registering-instances.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Security

Private APIs and private integration offer an extra layer of security from a network standpoint,
because communications are limited within a private network. However, malicious users can
potentially gain access to private networks, so it’s a best practice to implement an authorizer
for APIs. REST and WebSocket offer the same set of authorizers, such as IAM, Amazon Cognito,
and Lambda authorizers. Currently, HTTP APIs come with a JSON Web Token (JWT) authorizer.
Serverless Application Lens covers identity and access management in serverless API in depth.

Table 3 – Authorizations

Authorization type Available API type Use case

IAM REST, WebSocket, HTTP If clients have IAM user or role
credentials, they can sign the
request with IAM credentials.

Amazon Cognito REST, WebSocket This is commonly used for
web and mobile applicati
ons where end users log in
through Amazon Cognito user
pools or federated identity
providers.

Lambda REST, WebSocket, HTTP A Lambda authorizer enables
developers to design a
business logic around
authorization. This can act as
a JWT. authorizer, or validate
other types of tokens.

JWT HTTP The JWT authorizer is
available only for HTTP APIs,
and allows clients to pass a
JWT token, including tokens
from Amazon Cognito.

24

https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/identity-and-access-management.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Enable API Gateway Access Logs and selectively choose data you need as logs might contain
sensitive data.

It is recommended to setup basic API Gateway request validation as a first step to ensure that the
request adheres to the configured JSON-schema, and has the required parameter query strings and
headers.

Learn more in the Security pillar of the Serverless Well-Architected Whitepaper.

25

https://docs.aws.amazon.com/apigateway/latest/developerguide/set-up-logging.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/security-pillar.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Cost optimization

Infrastructure cost is an important factor when choosing application architectures. For application
use cases that require REST or HTTP APIs, HTTP APIs offer lower pricing tiers. For existing REST
APIs, consider migrating to HTTP APIs. When planning for migration, refer to Choosing between
HTTP APIs and REST APIs to compare HTTP API and REST API supported features.

For serverless API cost optimization, Serverless Application Lens covers cost optimization best
practices such as cost-effective resources, matching supply and demand, expenditure awareness,
and optimizing over time in Cost Optimization Pillar section.

For REST and HTTP API pricing, refer to Amazon API Gateway pricing. You may incur additional
charges if you use API Gateway in conjunction with other AWS services, or transfer data out of
AWS.

Table 4 – REST and HTTP API pricing

Endpoint type Pricing

REST Free tier: one million API calls per month for
up to 12 months.

API calls:

1. First 333 million requests (per month):
$3.50 (per million)

2. Next 667 million requests (per month):
$2.80 (per million)

3. Next 19 billion requests (per month): $2.38
(per million)

4. Over 20 billion requests (per month): $1.51
(per million)

Caching: Billed per hour based on the cache
memory size (not eligible for free tier)

26

https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/http-api-vs-rest.html
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/cost-optimization.html
https://aws.amazon.com/api-gateway/pricing/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Endpoint type Pricing

HTTP Free tier: one million API calls per month for
up to 12 months.

API calls (us-east-1);

1. First 300 million requests (per month):
$1.00 (per million)

2. 300+ million requests (per month): $0.90
(per million)

HTTP APIs are metered in 512 KB increments.

For private integration with REST and WebSocket APIs, a Network Load Balancer is required. The
NLB cost is billed per hour, so while a VPC link remains active, you pay for the NLB. For a use case
where requests to a REST or HTTP API are made infrequently, such as five requests per day, a VPC-
enabled Lambda function can be a more cost-effective option. VPC-enabled Lambda functions can
access VPC resources. Because Lambda bills per request and code execution duration, using a VPC-
enabled Lambda function can cost less. Refer to Elastic Load Balancing pricing and AWS Lambda
Pricing.

Table 5 – Private integration vs. Lambda pricing

Integration/Lambda Cost Use cases

Private integration (NLB) Billed per hour regardless of
use.

If there is a backend service
hosted in ECS or other target
such as EC2 instances that can
be directly integrated with
NLB, using an NLB to route
traffic simplifies the architect
ure.

VPC-enabled Lambda Lambda pricing is billed on-
demand, so if a Lambda

If there is any private resource
like RDS which cannot be
directly accessed by NLB,

27

https://aws.amazon.com/elasticloadbalancing/pricing/
https://aws.amazon.com/lambda/pricing/
https://aws.amazon.com/lambda/pricing/

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Integration/Lambda Cost Use cases

function is not used, there is
no charge.

using a VPC-enabled Lambda
function is a good alternative.

28

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Conclusion

Amazon API Gateway provides different API types and endpoint types. This paper primarily covered
private API and integration design patterns, and best practices. Additionally, it covered security and
cost optimization. You can use the information provided in this whitepaper to determine the best-
suited architecture for your application.

29

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Contributors

Contributors to this document include:

• Takaki Matsumoto, Cloud Support Engineer II, Premium Support

• Thomas Moore, Solutions Architect, ISV

• Ramesh Ranganathan, Senior Partner Solution Architect, GSI

30

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Further reading

For additional information, see:

• AWS Well-Architected Framework

• Serverless Applications Lens - AWS Well-Architected Framework

31

https://aws.amazon.com/architecture/well-architected/
https://docs.aws.amazon.com/wellarchitected/latest/serverless-applications-lens/welcome.html

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Document revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Whitepaper updated Added new sections on
private integrations cross-acc
ount, and multi-Region API
Gateway

August 26, 2022

Initial publication Whitepaper published. January 3, 2021

32

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2022 Amazon Web Services, Inc. or its affiliates. All rights reserved.

33

Best Practices for Designing Amazon API Gateway Private APIs and Private
Integration

AWS Whitepaper

AWS Glossary

For the latest AWS terminology, see the AWS glossary in the AWS Glossary Reference.

34

https://docs.aws.amazon.com/glossary/latest/reference/glos-chap.html

	Best Practices for Designing Amazon API Gateway Private APIs and Private Integration
	Table of Contents
	Best Practices for Designing Amazon API Gateway Private APIs and Private Integration
	Abstract
	Are you Well-Architected?
	Introduction

	Overview of Amazon API Gateway
	Rest API
	Private endpoint type
	DNS names for private APIs
	Private DNS names
	VPC endpoint public DNS hostnames
	Amazon Route 53 alias

	Resource-based policy

	Private integration
	Sample architecture patterns
	Basic architecture
	Cross-account architecture
	On-premises architecture
	Setup

	Multi-Region private API gateway
	Private integration architecture with Amazon ECS
	Private integration cross-account

	WebSocket API
	Private integration
	Sample architecture pattern
	Sample architecture

	HTTP API
	Private integration
	Sample architecture patterns
	ALB architecture (ECS)
	Cloud Map architecture (microservices)
	Private integration cross-account

	Security
	Cost optimization
	Conclusion
	Contributors
	Further reading
	Document revisions
	Notices
	AWS Glossary

