
AWS Whitepaper

Database Caching Strategies Using Redis

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Database Caching Strategies Using Redis AWS Whitepaper

Database Caching Strategies Using Redis: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Database Caching Strategies Using Redis AWS Whitepaper

Table of Contents

Database Caching Strategies Using Redis .. 1
Abstract ... 1

Database challenges .. 2
Types of database caching .. 3

Database-integrated caches ... 3
Local caches ... 3
Remote caches .. 4

Caching patterns .. 5
Cache-Aside (Lazy Loading) .. 6
Write-Through ... 7

Cache Validity .. 9
Evictions ... 10
Relational Database Caching Techniques ... 12

Cache the Database SQL ResultSet .. 13
Cache Select Fields and Values in a Custom Format .. 16
Cache Select Fields and Values into an Aggregate Redis Data Structure 18
Cache Serialized Application Object Entities .. 19

Additional Caching with Redis ... 23
Object Caching with Amazon S3 .. 23

Amazon ElastiCache and Self-Managed Redis ... 24
Redis Engine Support .. 24
Available Instance Types ... 25
AWS Nitro System .. 26

Redis Cluster Modes: Enabled and Disabled .. 27
Reader Endpoint ... 27

Amazon ElastiCache for Redis Global Datastore ... 28
Sizing Best Practices Related to Workloads .. 29
Conclusion .. 30
Contributors ... 31
Document Revisions .. 32
Further Reading ... 33
Notes ... 34
Notices .. 35

iii

Database Caching Strategies Using Redis AWS Whitepaper

Database Caching Strategies Using Redis

Publication date: March 8, 2021 (Document Revisions)

Abstract

In-memory data caching can be one of the most effective strategies for improving your overall
application performance and reducing your database costs.

You can apply caching to any type of database, including relational databases (such as Amazon
Relational Database Service (Amazon RDS)) or NoSQL databases (such as Amazon DynamoDB,
Amazon DocumentDB (with MongoDB compatibility), and Amazon Keyspaces (for Apache
Cassandra)).

One of the benefits of caching is that it’s an easier option to implement, and it dramatically
improves the speed and scalability of your application. Caching can also apply to objects (for
instance, objects stored in Amazon Simple Storage Service), as this paper will explore.

This whitepaper describes some of the caching strategies and implementation approaches that
address the limitations and challenges associated with disk-based databases.

Abstract 1

https://aws.amazon.com/rds/
https://aws.amazon.com/rds/
https://aws.amazon.com/dynamodb/
https://aws.amazon.com/documentdb/
https://aws.amazon.com/keyspaces/
https://aws.amazon.com/s3/

Database Caching Strategies Using Redis AWS Whitepaper

Database challenges

When you’re building distributed applications that require low latency and scalability, disk-based
databases can pose a number of challenges. A few common ones include the following:

• Slow processing queries: There are a number of query optimization techniques and schema
designs that help boost query performance. However, the data retrieval speed from disk plus
the added query processing times generally put your query response times in double-digit
millisecond speeds, at best. This assumes that you have a steady load and your database is
performing optimally.

• Cost to scale: Whether the data is distributed in a disk-based NoSQL database or a vertically-
scaled relational database, scaling for extremely high reads can be costly. It also can require
several database read replicas to match what a single in-memory cache node can deliver in terms
of requests per second.

• The need to simplify data access: Although relational databases provide an excellent means
to data model relationships, they aren’t optimal for data access. There are instances where
your applications may want to access the data in a particular structure or view, to simplify data
retrieval and increase application performance.

Before implementing database caching, many architects and engineers spend great effort trying
to extract as much performance as they can from their databases. However, there is a limit to the
performance that you can achieve with a disk-based database, and it’s counterproductive to try to
solve a problem with the wrong tools. For example, a large portion of the latency of your database
query is dictated by the physics of retrieving data from disk.

2

Database Caching Strategies Using Redis AWS Whitepaper

Types of database caching

A database cache supplements your primary database by removing unnecessary pressure on it,
typically in the form of frequently-accessed read data. The cache itself can live in several areas,
including in your database, in the application, or as a standalone layer.

The following are the three most common types of database caches:

Database-integrated caches

Some databases, such as Amazon Aurora, offer an integrated cache that is managed within the
database engine and has built-in write-through capabilities. The database updates its cache
automatically when the underlying data changes. Nothing in the application tier is required to use
this cache.

The downside of integrated caches is their size and capabilities. Integrated caches are typically
limited to the available memory that is allocated to the cache by the database instance and can’t
be used for other purposes, such as sharing data with other instances.

Local caches

A local cache stores your frequently-used data within your application. This makes data retrieval
faster than with other caching architectures because it removes network traffic that is associated
with retrieving data.

A major disadvantage is that among your applications, each node has its own resident cache
working in a disconnected manner. The information that is stored in an individual cache node
(whether it’s cached database rows, web content, or session data) can’t be shared with other local
caches. This creates challenges in a distributed environment where information sharing is critical to
support scalable dynamic environments.

Because most applications use multiple application servers, coordinating the values across them
becomes a major challenge if each server has its own cache. In addition, when outages occur, the
data in the local cache is lost and must be rehydrated, which effectively negates the cache. The
majority of these disadvantages are mitigated with remote caches.

Database-integrated caches 3

https://aws.amazon.com/rds/aurora/

Database Caching Strategies Using Redis AWS Whitepaper

Remote caches

A remote cache (or side cache) is a separate instance (or separate instances) dedicated for storing
the cached data in-memory. Remote caches are stored on dedicated servers and are typically built
on key/value NoSQL stores, such as Redis and Memcached. They provide hundreds of thousands
of requests (and up to a million) per second per cache node. Many solutions, such as Amazon
ElastiCache for Redis, also provide the high availability needed for critical workloads.

The average latency of a request to a remote cache is on the sub-millisecond timescale, which, in
the order of magnitude, is faster than a request to a disk-based database. At these speeds, local
caches are seldom necessary. Remote caches are ideal for distributed environments because they
work as a connected cluster that all your disparate systems can utilize. However, when network
latency is a concern, you can apply a two-tier caching strategy that uses a local and remote cache
together. This paper doesn’t describe this strategy in detail, but it’s typically used only when
needed because of the complexity it adds.

With remote caches, the orchestration between caching the data and managing the validity of the
data is managed by your applications and/or processes that use it. The cache itself is not directly
connected to the database but is used adjacently to it.

The remainder of this paper focuses on using remote caches, and specifically Amazon ElastiCache
for Redis, for caching relational database data.

Remote caches 4

https://redis.io/download
https://memcached.org/
https://aws.amazon.com/elasticache/redis/
https://aws.amazon.com/elasticache/redis/

Database Caching Strategies Using Redis AWS Whitepaper

Caching patterns

When you are caching data from your database, there are caching patterns for Redis and
Memcached that you can implement, including proactive and reactive approaches. The patterns
you choose to implement should be directly related to your caching and application objectives.

Two common approaches are cache-aside or lazy loading (a reactive approach) and write-through
(a proactive approach). A cache-aside cache is updated after the data is requested. A write-through
cache is updated immediately when the primary database is updated. With both approaches, the
application is essentially managing what data is being cached and for how long.

The following diagram is a typical representation of an architecture that uses a remote distributed
cache.

Architecture using remote distributed cache

5

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html
https://en.wikipedia.org/wiki/Distributed_cache
https://en.wikipedia.org/wiki/Distributed_cache

Database Caching Strategies Using Redis AWS Whitepaper

Cache-Aside (Lazy Loading)

A cache-aside cache is the most common caching strategy available. The fundamental data
retrieval logic can be summarized as follows:

1. When your application needs to read data from the database, it checks the cache first to
determine whether the data is available.

2. If the data is available (a cache hit), the cached data is returned, and the response is issued to the
caller.

3. If the data isn’t available (a cache miss), the database is queried for the data. The cache is then
populated with the data that is retrieved from the database, and the data is returned to the
caller.

A cache-aside cache

This approach has a couple of advantages:

• The cache contains only data that the application actually requests, which helps keep the cache
size cost-effective.

Cache-Aside (Lazy Loading) 6

Database Caching Strategies Using Redis AWS Whitepaper

• Implementing this approach is straightforward and produces immediate performance gains,
whether you use an application framework that encapsulates lazy caching or your own custom
application logic.

A disadvantage when using cache-aside as the only caching pattern is that because the data is
loaded into the cache only after a cache miss, some overhead is added to the initial response time
because additional roundtrips to the cache and database are needed.

Write-Through

A write-through cache reverses the order of how the cache is populated. Instead of lazy-loading
the data in the cache after a cache miss, the cache is proactively updated immediately following
the primary database update. The fundamental data retrieval logic can be summarized as follows:

1. The application, batch, or backend process updates the primary database.

2. Immediately afterward, the data is also updated in the cache.

A write-through cache

Write-Through 7

Database Caching Strategies Using Redis AWS Whitepaper

The write-through pattern is almost always implemented along with lazy loading. If the
application gets a cache miss because the data is not present or has expired, the lazy loading
pattern is performed to update the cache.

The write-through approach has a couple of advantages:

• Because the cache is up-to-date with the primary database, there is a much greater likelihood
that the data will be found in the cache. This, in turn, results in better overall application
performance and user experience.

• The performance of your database is optimal because fewer database reads are performed.

A disadvantage of the write-through approach is that infrequently-requested data is also written
to the cache, resulting in a larger and more expensive cache.

A proper caching strategy includes effective use of both write-through and lazy loading of your
data and setting an appropriate expiration for the data to keep it relevant and lean.

Write-Through 8

Database Caching Strategies Using Redis AWS Whitepaper

Cache Validity

You can control the freshness of your cached data by applying a time to live (TTL) or expiration to
your cached keys. After the set time has passed, the key is deleted from the cache, and access to
the origin data store is required along with reaching the updated data.

Two principles can help you determine the appropriate TTLs to apply and the types of caching
patterns to implement. First, it’s important that you understand the rate of change of the
underlying data. Second, it’s important that you evaluate the risk of outdated data being returned
back to your application instead of its updated counterpart.

For example, it might make sense to keep static or reference data (that is, data that is seldom
updated) valid for longer periods of time with write-throughs to the cache when the underlying
data gets updated.

With dynamic data that changes often, you might want to apply lower TTLs that expire the data
at a rate of change that matches that of the primary database. This lowers the risk of returning
outdated data while still providing a buffer to offload database requests.

It’s also important to recognize that, even if you are only caching data for minutes or seconds
versus longer durations, appropriately applying TTLs to your cached keys can result in a huge
performance boost and an overall better user experience with your application.

Another best practice when applying TTLs to your cache keys is to add some time jitter to your
TTLs. This reduces the possibility of heavy database load occurring when your cached data expires.
Take, for example, the scenario of caching product information. If all your product data expires
at the same time and your application is under heavy load, then your backend database has to
fulfill all the product requests. Depending on the load, that could generate too much pressure on
your database, resulting in poor performance. By adding slight jitter to your TTLs, a randomly-
generated time value (for example, TTL = your initial TTL value in seconds + jitter) would reduce
the pressure on your backend database and also reduce the CPU use on your cache engine as a
result of deleting expired keys.

9

Database Caching Strategies Using Redis AWS Whitepaper

Evictions

Evictions occur when cache memory is overfilled or is greater than the maxmemory setting for the
cache, causing the engine to select keys to evict to manage its memory. The keys that are chosen
are based on the eviction policy you select.

By default, Amazon ElastiCache for Redis sets the volatile-lru eviction policy for your Redis cluster.
When this policy is selected, the least recently used (LRU) keys that have an expiration (TTL)
value set are evicted. Other eviction policies are available and can be applied in the configurable
maxmemory-policy parameter.

The following table summarizes eviction policies:

Eviction Policy Description

allkeys-lru The cache evicts the least recently used (LRU)
keys regardless of TTL set.

allkeys-lfu The cache evicts the least frequently used
(LFU) keys regardless of TTL set.

volatile-lru The cache evicts the least recently used (LRU)
keys from those that have a TTL set.

volatile-lfu The cache evicts the least frequently used
(LFU) keys from those that have a TTL set.

volatile-ttl The cache evicts the keys with the shortest
TTL set.

volatile-random The cache randomly evicts keys with a TTL set.

allkeys-random The cache randomly evicts keys regardless of
TTL set.

no-eviction The cache doesn’t evict keys at all. This blocks
future writes until memory frees up.

10

Database Caching Strategies Using Redis AWS Whitepaper

A good strategy in selecting an appropriate eviction policy is to consider the data stored in your
cluster and the outcome of keys being evicted.

Generally, LRU-based policies are more common for basic caching use cases. However, depending
on your objectives, you might want to use a TTL or random-based eviction policy that better suits
your requirements.

Also, if you are experiencing evictions with your cluster, it is usually a sign that you should scale up
(that is, use a node with a larger memory footprint) or scale out (that is, add more nodes to your
cluster) to accommodate the additional data. An exception to this rule is if you are purposefully
relying on the cache engine to manage your keys by means of eviction, also referred to as an LRU
cache.

In addition to the existing time-based LRU policy, Amazon ElastiCache for Redis also supports
a least frequently used (LFU) eviction policy for evicting keys. The LFU policy, which is based on
frequency of access, provides a better cache hit ratio by keeping frequently used data in-memory;
it traces access counter for each object and evicts keys according to the counter. Every time the
object is touched, it reduces the counter after a period called the decay period. This means data
used rarely is evicted while the data used often has a higher chance of remaining in the memory.

11

https://redis.io/topics/lru-cache
https://redis.io/topics/lru-cache

Database Caching Strategies Using Redis AWS Whitepaper

Relational Database Caching Techniques

Many of the caching techniques that are described in this section can be applied to any type of
database. However, this paper focuses on relational databases because they are the most common
database caching use case.

The basic paradigm when you query data from a relational database includes executing SQL
statements and iterating over the returned ResultSet object cursor to retrieve the database
rows. There are several techniques you can apply when you want to cache the returned data.
However, it’s best to choose a method that simplifies your data access pattern and/or optimizes the
architectural goals that you have for your application.

To visualize this, this whitepaper will examine snippets of Python code to explain the logic. You can
find additional information on the AWS caching site. The examples use the redis-py Redis client
library for connecting to Redis, although you can use any other Python Redis library.

Assume that you issued the following SQL statement against a customer database for
CUSTOMER_ID 1001. This whitepaper will examine the various caching strategies that you can use.

SELECT FIRST_NAME, LAST_NAME, EMAIL, CITY, STATE, ADDRESS,
COUNTRY FROM CUSTOMERS WHERE CUSTOMER_ID = “1001”;

The query returns this record:

Python example:

try:
 cursor.execute(key)
 results = cursor.fetchall()

 for row in results:
 print (row[“FirstName”])
 print (row[“LastName”])

Java example:

…
Statement stmt = connection.createStatement();
ResultSet rs = stmt.executeQuery(query);
while (rs.next()) {

12

https://aws.amazon.com/caching/
https://github.com/andymccurdy/redis-py

Database Caching Strategies Using Redis AWS Whitepaper

Customer customer = new Customer();
customer.setFirstName(rs.getString("FIRST_NAME"));
customer.setLastName(rs.getString("LAST_NAME"));
and so on …
}
…

Iterating over the ResultSet cursor lets you retrieve the fields and values from the database rows.
From that point, the application can choose where and how to use that data.

Assuming that your application framework can’t be used to abstract your caching implementation,
how do you best cache the returned database data?

Given this scenario, you have many options. The following sections evaluate some options, with
focus on the caching logic.

Cache the Database SQL ResultSet

Cache a serialized ResultSet object that contains the fetched database row.

• Advantage: When data retrieval logic is abstracted (for example, as in a Data Access Object
or DAO layer), the consuming code expects only a ResultSet object and does not need to be
made aware of its origination. A ResultSet object can be iterated over, regardless of whether
it originated from the database or was deserialized from the cache, which greatly reduces
integration logic. This pattern can be applied to any relational database.

• Disadvantage: Data retrieval still requires extracting values from the ResultSet object cursor and
does not further simplify data access; it only reduces data retrieval latency.

Note: When you cache the row, it’s important that it’s serializable. The following example uses a
CachedRowSet implementation for this purpose. When you are using Redis, this is stored as a byte
array value.

The following code converts the CachedRowSet object into a byte array and then stores that byte
array as a Redis byte array value. The actual SQL statement is stored as the key and converted into
bytes.

Python example:

if not r.exists(pickle.dumps(key)):

Cache the Database SQL ResultSet 13

http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

Database Caching Strategies Using Redis AWS Whitepaper

 try:
 cursor.execute(key)
 results = cursor.fetchall()
 r.set(pickle.dumps(key), pickle.dumps(results))
 r.expire(pickle.dumps(key), ttl)
 data = results

 except:
 print (“Error: unable to fetch data.”)
else:
 data = pickle.loads(r.get(pickle.dumps(key)))

Java example:

…
// rs contains the ResultSet, key contains the SQL statement
 if (rs != null) { //lets write-through to the cache
 CachedRowSet cachedRowSet = new CachedRowSetImpl();
 cachedRowSet.populate(rs, 1);
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 ObjectOutput out = new ObjectOutputStream(bos);
 out.writeObject(cachedRowSet);
 byte[] redisRSValue = bos.toByteArray();
 jedis.set(key.getBytes(), redisRSValue);
 jedis.expire(key.getBytes(), ttl);

 }
…

One advantage of storing the SQL statement as the key is that it enables a transparent caching
abstraction layer that hides the implementation details. The other added benefit is that you don’t
need to create any additional mappings between a custom key ID and the executed SQL statement.

At the time of setting data in the Redis, you are applying the expiry time, which is specified in
milliseconds.

For lazy caching/cache aside, you would initially query the cache before executing the query
against the database. To hide the implementation details, use the DAO pattern and expose a
generic method for your application to retrieve the data.

For example, because your key is the actual SQL statement, your method signature could look like
the following:

Cache the Database SQL ResultSet 14

Database Caching Strategies Using Redis AWS Whitepaper

Python example:

getResultSet(sql) # sql is the sql statement

Java example:

public ResultSet getResultSet(String key); // key is sql
statement

The code that calls (consumes) this method expects only a ResultSet object, regardless of what the
underlying implementation details are for the interface. Under the hood, the getResultSet method
executes a GET command for the SQL key, which, if present, is deserialized and converted into a
ResultSet object.

Python example:

def getResultSet(key):

 redisResultSet = None
 redisResultSet = r.get(pickle.dumps(key))

 if redisResultSet:
 rs = pickle.loads(redisResultSet)

 else:
 try:
 cursor.execute(key)
 results = cursor.fetchall()
 r.set(pickle.dumps(key), pickle.dumps(results))
 r.expire(pickle.dumps(key), ttl)
 rs = results

 except:
 print (“Error: unable to fetch data”)

 return rs

Java example:

public ResultSet getResultSet(String key) {
 byte[] redisResultSet = null;

Cache the Database SQL ResultSet 15

Database Caching Strategies Using Redis AWS Whitepaper

 redisResultSet = jedis.get(key.getBytes());
 ResultSet rs = null;
 if (redisResultSet != null) { // if cached value exists, deserialize it and return
 it
 try {
 cachedRowSet = new CachedRowSetImpl();
 ByteArrayInputStream bis = new
ByteArrayInputStream(redisResultSet);
 ObjectInput in = new ObjectInputStream(bis);
 cachedRowSet.populate((CachedRowSet) in.readObject()); rs =
 cachedRowSet;
 } …
} else {
// get the ResultSet from the database, store it in the rs object, then cache it.
…
}
…
return rs;
}

If the data is not present in the cache, query the database for it, and cache it before returning.

As mentioned earlier, a best practice would be to apply an appropriate TTL on the keys as well.

For all other caching techniques that we’ll review, you should establish a naming convention for
your Redis keys. A good naming convention is one that is easily predictable to applications and
developers. A hierarchical structure separated by colons is a common naming convention for keys,
such as object:type:id.

Cache Select Fields and Values in a Custom Format

Cache a subset of a fetched database row into a custom structure that can be consumed by your
applications.

• Advantage: This approach is easy to implement. You essentially store specific retrieved fields and
values into a structure such as JSON or XML and then SET that structure into a Redis string. The
format you choose should be something that conforms to your application’s data access pattern.

• Disadvantage: Your application is using different types of objects when querying for particular
data (for example, Redis string and database results). In addition, you are required to parse
through the entire structure to retrieve the individual attributes associated with it.

Cache Select Fields and Values in a Custom Format 16

Database Caching Strategies Using Redis AWS Whitepaper

The following code stores specific customer attributes in a customer JSON object and caches that
JSON object into a Redis string:

Python example:

try:
 cursor.execute(query)
 results = cursor.fetchall()

 for row in results:
 customer = {
 “FirstName”: row[“FirstName”],
 “LastName”: row[“LastName”]
 }
 r.set(“customer:id:” + str(row[“id”]), json.dumps(customer))

except:
 print (“Error: Unable to fetch data.”)

Java example:

…
// rs contains the ResultSet
while (rs.next()) {
 Customer customer = new Customer();
 Gson gson = new Gson();
 JsonObject customerJSON = new JsonObject();
 customer.setFirstName(rs.getString("FIRST_NAME"));
 customerJSON.add(“first_name”,
gson.toJsonTree(customer.getFirstName());
 customer.setLastName(rs.getString("LAST_NAME"));
 customerJSON.add(“last_name”, gson.toJsonTree(customer.getLastName()
);
 and so on …
 jedis.set(customer:id:"+customer.getCustomerID(), customerJSON.toString());
 }
…

For data retrieval, you can implement a generic method through an interface that accepts a
customer key (for example, customer:id:1001) and an SQL statement string argument. It will also
return whatever structure your application requires (for example, JSON or XML) and abstract the
underlying details.

Cache Select Fields and Values in a Custom Format 17

Database Caching Strategies Using Redis AWS Whitepaper

Upon initial request, the application executes a GET command on the customer key and, if the
value is present, returns it and completes the call. If the value is not present, it queries the
database for the record, writes-through a JSON representation of the data to the cache, and
returns.

Cache Select Fields and Values into an Aggregate Redis Data
Structure

Cache the fetched database row into a specific data structure that can simplify the application’s
data access.

• Advantage: When converting the ResultSet object into a format that simplifies access, such as
a Redis Hash, your application is able to use that data more effectively. This technique simplifies
your data access pattern by reducing the need to iterate over a ResultSet object or by parsing
a structure like a JSON object stored in a string. In addition, working with aggregate data
structures, such as Redis Lists, Sets, and Hashes provides various attribute level commands
associated with setting and getting data, and eliminating the overhead associated with
processing the data before being able to leverage it.

• Disadvantage: Your application is using different types of objects when querying for particular
data (for example, Redis Hash and database results).

The following code creates a HashMap object that is used to store the customer data. The map is
populated with the database data and SET into a Redis.

Python example:

try:
 cursor.execute(query)
 customer = cursor.fetchall()
 r.hset(“customer:id:” + str(customer[“id”]), “FirstName”, customer[0][“FirstName”])
 r.hset(“customer:id:” + str(customer[“id”]), “LastName”, customer[0][“LastName”])

except:
 print (“Error: Unable to fetch data.”)

Java example:

…

Cache Select Fields and Values into an Aggregate Redis Data Structure 18

Database Caching Strategies Using Redis AWS Whitepaper

// rs contains the ResultSet
 while (rs.next()) {
 Customer customer = new Customer();
 Map<String, String> map = new HashMap<String, String>();
 customer.setFirstName(rs.getString("FIRST_NAME"));
 map.put("firstName", customer.getFirstName());
 customer.setLastName(rs.getString("LAST_NAME"));
 map.put("lastName", customer.getLastName());
 and so on …
 jedis.hmset(customer:id:"+customer.getCustomerID(), map);
 }
…

For data retrieval, you can implement a generic method through an interface that accepts a
customer ID (the key) and an SQL statement argument. It returns a HashMap to the caller. Just as
in the other examples, you can hide the details of where the map is originating from. First, your
application can query the cache for the customer data using the customer ID key. If the data is not
present, the SQL statement executes and retrieves the data from the database. Upon retrieval, you
may also store a hash representation of that customer ID to lazy load.

Unlike JSON, the added benefit of storing your data as a hash in Redis is that you can query for
individual attributes within it. Say that for a given request you only want to respond with specific
attributes associated with the customer Hash, such as the customer name and address. This
flexibility is supported in Redis, along with various other features, such as adding and deleting
individual attributes in a map.

Cache Serialized Application Object Entities

Cache a subset of a fetched database row into a custom structure that can be consumed by your
applications.

• Pro: Use application objects in their native application state with simple serializing and
deserializing techniques. This can rapidly accelerate application performance by minimizing data
transformation logic.

• Con: Advanced application development use case.

The following code converts the customer object into a byte array and then stores that value in
Redis:

Cache Serialized Application Object Entities 19

Database Caching Strategies Using Redis AWS Whitepaper

Python example:

try:
 cursor.execute(query)
 results = cursor.fetchall()
 r.set(pickle.dumps(key), pickle.dumps(results))
 r.expire(pickle.dumps(key), ttl)

except:
 print (“Error: Unable to fetch data.”)

#pickle.loads(r.get(pickle.dumps(key)))

Java example:

….
// key contains customer id
 Customer customer = (Customer) object;
 ByteArrayOutputStream bos = new ByteArrayOutputStream();
 ObjectOutput out = null;

 try {
 out = new ObjectOutputStream(bos);
 out.writeObject(customer); out.flush();
 byte[] objectValue = bos.toByteArray();
 jedis.set(key.getBytes(), objectValue);
 jedis.expire(key.getBytes(), ttl);

 }
…

The key identifier is also stored as a byte representation and can be represented in the
customer:id:1001 format.

As the other examples show, you can create a generic method through an application interface
that hides the underlying details method details. In this example, when instantiating an object
or hydrating one with state, the method accepts the customer ID (the key) and either returns a
customer object from the cache or constructs one after querying the backend database. First, your
application queries the cache for the serialized customer object using the customer ID. If the data
is not present, the SQL statement executes and the application consumes the data, hydrates the
customer entity object, and then lazy loads the serialized representation of it in the cache.

Cache Serialized Application Object Entities 20

Database Caching Strategies Using Redis AWS Whitepaper

Python example:

def getObject(key):

 customer = None
 customer = r.get(key)

 if customer:
 customer = pickle.loads(customer)

 else:
 objectData = key.split(“:”)

 try:
 query = “SELECT * FROM customers WHERE id = ‘%d’ LIMIT 1” %
 (int(objectData[2]))
 cursor.execute(query)
 results = cursor.fetchall()
 r.set(key, pickle.dumps(results))
 r.expire(key, ttl)
 customer = results

 except:
 print (“Error: Unable to fetch data.”)
 return customer

#result = getObject(“customer:id:1001”)

Java example:

public Customer getObject(String key) {

 Customer customer = null;
 byte[] redisObject = null;
 redisObject = jedis.get(key.getBytes());

 if (redisObject != null) {

 try {

 ByteArrayInputStream in = new
ByteArrayInputStream(redisObject);
 ObjectInputStream is = new ObjectInputStream(in);

Cache Serialized Application Object Entities 21

Database Caching Strategies Using Redis AWS Whitepaper

 customer = (Customer) is.readObject();

 } …
 } …
 return customer;
}

Cache Serialized Application Object Entities 22

Database Caching Strategies Using Redis AWS Whitepaper

Additional Caching with Redis

Redis is traditionally used in a database cache setting. However, it can also be used to cache output
from other services, or full objects from storage services such as Amazon Simple Storage Service
(Amazon S3).

The low latency and high throughput of Amazon ElastiCache for Redis, coupled with the large item
storage availability, make it a great choice for further optimizing throughput and scalability to new
and existing applications.

Object Caching with Amazon S3

Amazon S3 is the persistent store for applications such as data lakes, media catalogs, and website-
related content. These applications often have latency requirements of 10 ms or less, with frequent
object requests on 1–10% of the total stored S3 data. Many customers achieve this by directly
writing to S3. Some applications, such as media catalog updates, require high frequency reads
and consistent throughput. For such applications, customers often complement S3 with Redis, to
reduce the S3 retrieval cost and to improve performance.

By using Amazon ElastiCache for Redis, applications can maintain a consistent and low-latency
throughput, sustained at less than 5 ms, when serving this content outside of S3 at scale. Serving
heavily-requested objects via Amazon ElastiCache for Redis in this manner can enable you to meet
performance goals, while also reducing retrieval and transfer costs.

A blog post on how to Turbocharge Amazon S3 with Amazon ElastiCache for Redis covers how to
set up, deploy, and organize data for this purpose.

Object Caching with Amazon S3 23

https://aws.amazon.com/s3/
https://aws.amazon.com/blogs/storage/turbocharge-amazon-s3-with-amazon-elasticache-for-redis/

Database Caching Strategies Using Redis AWS Whitepaper

Amazon ElastiCache and Self-Managed Redis

Redis is an open source, in-memory data store that has become the most popular key/value engine
in the market. Much of its popularity is due to its support for a variety of data structures as well
as other features, including Lua scripting support and Pub/Sub messaging capability. Other added
benefits include high availability topologies with support for read replicas and the ability to persist
data.

Amazon ElastiCache offers a fully-managed service for Redis. This means that all the administrative
tasks associated with managing your Redis cluster (including monitoring, patching, backups, and
automatic failover), are managed by Amazon. This lets you focus on your business and your data
instead of your operations.

Other benefits of using Amazon ElastiCache for Redis over self-managing your cache environment
include the following:

• An enhanced Redis engine that is fully compatible with the open source version but that also
provides added stability and robustness.

• Easily modifiable parameters, such as eviction policies, buffer limits, etc.

• Ability to scale and resize your cluster to terabytes of data.

• Hardened security that lets you isolate your cluster within Amazon Virtual Private Cloud
(Amazon VPC).

For more information about Redis or Amazon ElastiCache, see the Further reading section at the
end of this whitepaper.

Redis Engine Support

You can use Amazon ElastiCache for Redis to build HIPAA-compliant applications. To help do this,
you can enable at-rest encryption, in-transit encryption, and Redis AUTH when you create a Redis
cluster using ElastiCache for Redis versions 3.2.6 or later.

Amazon ElastiCache for Redis version 6.x also support a feature called Role-Based Access Control
(RBAC), which can be used instead of authenticating users with the Redis AUTH command. With
RBAC, users can be created with specific permissions by using an access string. Users can also be

Redis Engine Support 24

https://www.lua.org/
https://aws.amazon.com/vpc/
https://aws.amazon.com/elasticache/redis/

Database Caching Strategies Using Redis AWS Whitepaper

assigned to user groups aligned with a role that is specific to your use cases. More information on
RBAC can be found at: Authenticating Users with Role-Based Access Control documentation.

In versions 5.0.3 and later, Amazon ElastiCache for Redis adds dynamic network processing to
enhance I/O handling. By utilizing the extra CPU power available in nodes with four or more
vCPUs, Amazon ElastiCache transparently delivers an increase of up to 83% in throughput and
up to 47% reduction in latency per node. That is in addition to the significant performance
improvements delivered with the introduction of R5 and M5 instances on the service. You can now
benefit from the enhanced I/O handling to further boost application performance and reduce
costs. Refer to the Amazon Elasticache Pricing page.

Amazon ElastiCache for Redis improves throughput and reduces latency by leveraging more cores
for processing I/O and dynamically adjusting to the workload. These improvements work best for
applications that require a large number of concurrent connections to the Redis server. No client-
side changes are needed.

At the time of publication, Amazon ElastiCache for Redis supports Redis version 6.0.5 and earlier.

Because the newer Redis versions provide a better and more stable experience, Redis versions
2.6.13, 2.8.6, and 2.8.19 are deprecated when using the Amazon ElastiCache console. We
recommend against using these Redis versions. If you need to use one of them, work with the AWS
CLI or Amazon ElastiCache API. The latest version information can be found on the Supported
ElastiCache for Redis Versions page.

Available Instance Types

Amazon ElastiCache supports multiple instance node types. Generally speaking, the current
generation types provide more memory and computational power at lower cost when compared to
their equivalent previous generation counterparts.

Furthermore, you can launch both ElastiCache for Redis and Memcached on Graviton2 M6g and
R6g instance families. The latest Graviton2 instance types offer you ultra-low latency and high
throughput, and you can now enjoy a price/performance improvement of up to 45% over previous
generation instances. Graviton2 instances are now the default choice for ElastiCache customers.

You can launch general-purpose burstable T*-Standard cache nodes in Amazon ElastiCache. These
nodes provide a baseline level of CPU performance with the ability to burst CPU usage at any time
until the accrued credits are exhausted. A CPU credit provides the performance of a full CPU core
for one minute.

Available Instance Types 25

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Clusters.RBAC.html
https://aws.amazon.com/elasticache/pricing/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/supported-engine-versions.html

Database Caching Strategies Using Redis AWS Whitepaper

AWS Nitro System

The AWS Nitro System is the underlying platform for the next generation of EC2 instances that
enables AWS to innovate faster, further reduce cost for customers, and deliver added benefits like
increased security and new instance types.

AWS has completely re-imagined its virtualization infrastructure. Traditionally, hypervisors protect
the physical hardware and bios, virtualize the CPU, storage, and networking, and provide a rich set
of management capabilities. With the Nitro System, we are able to break apart those functions and
offload them to dedicated hardware and software.

The Nitro System delivers practically all of the compute and memory resources of the host
hardware to your instances, resulting in better overall performance.

Additionally, dedicated Nitro Cards enable high speed networking, high speed EBS, and I/O
acceleration. To benefit from the AWS Nitro System in Amazon ElastiCache for Redis, choose a
cache type from the list of supported instances: either M5 (cache.m5.xlarge or higher) or R5
(cache.r5.xlarge or higher), or later.

Latest information on supported instances (including listings of previous generation instances),
along with details around Burstable types can be found on the following page: Supported Node
Types.

AWS Nitro System 26

https://aws.amazon.com/ec2/nitro/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/CacheNodes.SupportedTypes.html

Database Caching Strategies Using Redis AWS Whitepaper

Redis Cluster Modes: Enabled and Disabled

Cluster Mode for Amazon ElastiCache for Redis is a feature that enables you to scale your Redis
cluster without any impact on the cluster performance. While you initiate a scale-out operation
by adding a specified number of new shards to a cluster, you also initiate scale-up or scale-down
operation by selecting a new desired node type, Amazon ElastiCache for Redis a new cluster
synchronizing the new nodes with the previous ones. Amazon ElastiCache for Redis supports three
cluster configurations (Redis (single node), Redis (cluster mode disabled), and Redis (cluster mode
enabled)), depending on your reliability, availability, and scaling requirements.

With Cluster Mode enabled, your Redis cluster can now scale horizontally (in or out) in addition to
scaling vertically (up and down). In a Redis cluster with cluster mode disabled, you can have up to
five read replicas in your replication group. Adding or removing replicas incurs no downtime to your
application. In a Redis cluster with cluster mode enabled, clusters can have up to ninety shards by
default (which can be increased if requested) and up to five read replicas in each node group.

Amazon ElastiCache for Redis with Cluster Mode enabled will help you to architect a cluster with
unpredictable network and storage requirements, or with a write-heavy workload. This horizontal
scalability is achieved by preparing a plan that results in an even distribution of the key spaces,
which distributes the hash slots to the available shards within the cluster, and thus by spreading
the workload over a greater number of nodes. By default, the hash slots get evenly distributed
between shards, but customers can also configure a custom hash slot. It is recommended to resize
your cluster during off-peak hours.

Reader Endpoint

Amazon ElastiCache for Redis cluster with multiple nodes and with cluster mode disabled provides
the reader endpoint to direct all your read traffic to a single cluster level endpoint. For more
information on reader endpoints, see Finding Replication Group Endpoints.

This reader endpoint splits your incoming read connection requests evenly between all read
replicas. This reduces the need for the clients to direct traffic to an individual replica, and simplifies
configuration to look up and access cached data. Reader endpoint also helps your Amazon
ElastiCache for Redis cluster to load balance all read traffic, as well as to achieve High Availability
by placing read replicas in different AWS Availability Zones (AZ).

Reader endpoints works with ElastiCache for Redis clusters with cluster-mode disabled. For more
information, see Finding Replication Group Endpoints.

Reader Endpoint 27

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Endpoints.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Replication.Endpoints.html

Database Caching Strategies Using Redis AWS Whitepaper

Amazon ElastiCache for Redis Global Datastore

Amazon ElastiCache for Redis Global Datastore is a feature that has been introduced to handle two
primary use cases: the ability to have global low latency reads and to support Disaster Recovery
scenarios. For more information, see Replication across AWS Regions using global datastores.

With the Amazon ElastiCache for Redis you can now architect a global application with extremely
low latency local reads by reading from a geo-local Global Datastore, and also maintain cluster
resiliency at the same time. In the unlikely event of the primary region degrading, it can failover to
a secondary region.

Each Global Datastore is a collection of one and more clusters that replicates to one another: A
Primary (Active) Cluster (that accepts writes which are replicated to all clusters) and a Secondary
(Passive) Cluster (that only accepts read requests and replicates data updates from a Primary
cluster). Applications with media contents can now write to an active cluster and the same content
can be read in the local regions.

Amazon ElastiCache for Redis Global Datastore lets you create a reliable, secure and fully-managed
cross-region replication that enables you to easily promote your secondary cluster to primary.
During cross-region replication, Global Datastore can be set up on new cluster as well as existing
cluster, provided the cluster is running the latest Redis engine version (5.0.6 or later). Scalability
is built in to Global Datastore, with regional clusters that can be scaled both vertically and
horizontally by modifying Global Datastore without any interruption.

Amazon ElastiCache Global Datastore enables encryption in transit for cross-region communication
in addition to encryption at rest.

28

https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Redis-Global-Datastore.html

Database Caching Strategies Using Redis AWS Whitepaper

Sizing Best Practices Related to Workloads

With Redis version 5.0.5, you can scale up or scale down your Amazon ElastiCache for Redis cluster
online without any downtime. This enables your cluster to stay online and respond to incoming
requests while scaling.

In order to increase read and write capacity, you can scale up your cluster by selecting a larger node
type, and alternatively read and write capacity can be reduced by selecting a smaller node. Amazon
ElastiCache can resize your cluster dynamically without any downtime.

You can also scale out read capacity by adding read replicas and write capacity by adding a
specified number of new shards to a cluster.

To ensure uninterrupted scaling, you need to follow these best practices:

1. To scale up, you need to ensure sufficient number of ENI (Elastic Network Interface) availability.

2. To scale down, you need to ensure smaller nodes have adequate memory to absorb the
incoming traffic.

3. Perform scaling activities when traffic towards your cluster is at a minimum. Although the
scaling process is designed to remain online, this will help to synchronize data to newer nodes.

4. Always test your application in a development environment, where possible.

29

Database Caching Strategies Using Redis AWS Whitepaper

Conclusion

Modern applications can’t afford poor performance. Today’s users have low tolerance for slow-
running applications and poor user experiences. When low latency and scaling databases are
critical to the success of your applications, it’s imperative that you use database caching.

Amazon ElastiCache provides two managed in-memory key value stores that you can use for
database caching. With zero-downtime scalability, Global datastore for regional low-latency
endpoints, and a simplified approach to running a Clustered, distributed cache without the
administrative tasks associated with it, Amazon ElastiCache for Redis is the primary choice for
engineering teams and customers.

30

Database Caching Strategies Using Redis AWS Whitepaper

Contributors

The following individuals and organizations contributed to this document:

• Michael Labib, Sr. Manager, NoSQL & Blockchain Technologies, AWS

• Pratip Bagchi, Partner Solutions Architect, AWS

• Mike Mackay, Sr NoSQL Specialist Solutions Architect, AWS

31

Database Caching Strategies Using Redis AWS Whitepaper

Document Revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Minor update Bug fixes and numerous
minor changes throughout.

April 1, 2022

Whitepaper updated Updated for latest services,
resources, and technologies.

March 8, 2021

Initial Publication First Publication May 1, 2017

32

Database Caching Strategies Using Redis AWS Whitepaper

Further reading

For more information, see the following resources:

• Performance at Scale with Amazon ElastiCache (AWS whitepaper)

• Full Redis command list

33

https://docs.aws.amazon.com/whitepapers/latest/scale-performance-elasticache/scale-performance-elasticache.html
https://redis.io/commands

Database Caching Strategies Using Redis AWS Whitepaper

Notes

1 https://aws.amazon.com/rds/aurora/

2 https://redis.io/download

3 https://memcached.org/

4 https://aws.amazon.com/elasticache/redis/

5 https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html">

6 https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html

7 https://redis.io/topics/lru-cache

8 https://www.lua.org/

9 https://aws.amazon.com/vpc/

10 https://aws.amazon.com/caching/

11 https://github.com/andymccurdy/redis-py

12 http://www.oracle.com/technetwork/java/dataaccessobject-138824.html

13 https://d1.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf

14 https://redis.io/commands

34

https://aws.amazon.com/rds/aurora/
https://redis.io/download
https://memcached.org/
https://aws.amazon.com/elasticache/redis/
https://docs.aws.amazon.com/AmazonElastiCache/latest/red-ug/Strategies.html
https://docs.aws.amazon.com/AmazonElastiCache/latest/mem-ug/Strategies.html
https://redis.io/topics/lru-cache
https://www.lua.org/
https://aws.amazon.com/vpc/
https://aws.amazon.com/caching/
https://github.com/andymccurdy/redis-py
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html
https://d1.awsstatic.com/whitepapers/performance-at-scale-with-amazon-elasticache.pdf
https://redis.io/commands

Database Caching Strategies Using Redis AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2021 Amazon Web Services, Inc. or its affiliates. All rights reserved.

35

	Database Caching Strategies Using Redis
	Table of Contents
	Database Caching Strategies Using Redis
	Abstract

	Database challenges
	Types of database caching
	Database-integrated caches
	Local caches
	Remote caches

	Caching patterns
	Cache-Aside (Lazy Loading)
	Write-Through

	Cache Validity
	Evictions
	Relational Database Caching Techniques
	Cache the Database SQL ResultSet
	Cache Select Fields and Values in a Custom Format
	Cache Select Fields and Values into an Aggregate Redis Data Structure
	Cache Serialized Application Object Entities

	Additional Caching with Redis
	Object Caching with Amazon S3

	Amazon ElastiCache and Self-Managed Redis
	Redis Engine Support
	Available Instance Types
	AWS Nitro System

	Redis Cluster Modes: Enabled and Disabled
	Reader Endpoint

	Amazon ElastiCache for Redis Global Datastore
	Sizing Best Practices Related to Workloads
	Conclusion
	Contributors
	Document Revisions
	Further reading
	Notes
	Notices

