Hybrid Connectivity: AWS Whitepaper
Copyright © 2020 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon’s trademarks and trade dress may not be used in connection with any product or service that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are the property of their respective owners, who may or may not be affiliated with, connected to, or sponsored by Amazon.
Table of Contents

Abstract .. 1
Abstract .. 1
Introduction .. 2
AWS Hybrid Connectivity Building Blocks ... 3
AWS hybrid connectivity services ... 3
Hybrid network connection ... 4
 Site-to-Site Virtual Private Network (VPN) ... 4
 AWS Direct Connect ... 4
Hybrid connectivity type and design considerations .. 6
 Connectivity Type selection ... 7
 Time to deploy .. 7
 Security .. 9
 Service-level agreement (SLA) ... 10
 Performance .. 11
 Cost .. 13
 Connectivity type selection summary .. 15
 Connectivity design selection ... 16
 Scalability .. 16
 Connectivity Models .. 18
 Reliability .. 27
Customer-managed VPN and SD-WAN ... 33
 Definition .. 33
 Impact on design decisions ... 33
 Requirement definition .. 33
 Technical solutions ... 34
Example Corp. Automotive use case .. 35
 Architecture selected by Example Corp. Automotive .. 40
Conclusion ... 42
Contributors .. 43
Further Reading ... 44
Document Revisions .. 45
Notices .. 46
Hybrid Connectivity

Publication date: September 22, 2020 (Document Revisions (p. 45))

Abstract

Many organizations need to connect their on-premises data centers, remote sites, and the cloud. A hybrid network connects these different environments. This whitepaper describes AWS building blocks and the key things to consider when deciding which hybrid connectivity model is right for you. To help you determine the best solution for your business and technical requirements, we provide decision trees to guide you through the logical selection process.
Introduction

A modern organization uses extensive array of IT resources. In the past, it was common to host these resources in an on-premises data center or a colocation facility. With the increased adoption of cloud computing, IT resources are delivered and consumed from cloud service providers over a network connection. In some cases, organizations have opted to migrate all existing IT resources to the cloud. In other cases, organizations maintain IT resources both on premises and in the cloud. In both cases, a common network is required to connect on-premises and cloud resources. Coexistence of on-premises and cloud resources is called **hybrid cloud** and the common network connecting them is referred to as a **hybrid network**. Even if your organization keeps all of its IT resources in the cloud, it may still require hybrid connectivity to remote sites.

There are several connectivity models to choose from. Although having options adds flexibility, selecting the best option requires analysis of the business and technical requirements, and elimination of options that are not suitable. Requirements can be grouped together across considerations such as: security, time to deploy, performance, reliability, communication model, scalability, and more. Once requirements are carefully collected, analyzed, and considered, network and cloud architects identify applicable AWS hybrid network building blocks and solutions. To identify and select the optimal model(s), architects must understand advantages and disadvantages of each model. There are also technical limitations that might cause an otherwise good model to be excluded.

To simplify the selection process, this whitepaper guides you through each key consideration in a logical order. Questions used to collect requirements are listed under each consideration. The impact of each design decision is identified along with possible solutions. Decision trees are presented for some of the considerations as a method to aid decision-making process, eliminate options, and understand consequences of each decision. The whitepaper also applies the whole connectivity model selection and design process to a scenario covering a hybrid use case. It helps you to see how the process is executed end-to-end in a practical example.

This whitepaper is intended to help you select and design the most optimal hybrid connectivity model. This whitepaper is structured as follows:

- **Hybrid connectivity building blocks** - overview of AWS services used for hybrid connectivity.
- **Connectivity selection and design considerations** - definition of each connectivity model, how each impacts the design decision, requirement identification questions, solutions, and decision trees.
- **A customer use case** - an example of how to apply the considerations and decision trees in practice.
AWS Hybrid Connectivity Building Blocks

From the hybrid connectivity architecture point of view, there are three primary components that construct the building blocks of a hybrid network connectivity architecture:

AWS hybrid connectivity services: these services represent the abstraction layer of the AWS Cloud networking components. They handle the connectivity and routing to the customer infrastructure in AWS and are running on highly scalable and reliable AWS infrastructure.

Hybrid network connection: this component refers to the connection from the on-premises networking edge device to the AWS Cloud (it can be physical connection such as AWS Direct Connect, or an overlay connection such as a Site-to-Site (S2S) VPN)

On-premises customer gateway device: this networking device must meet AWS technical requirements and perform IP routing and forwarding.

Note
For connections to AWS Direct Connect with port speeds of 1 Gbps or higher, your customer gateway device needs to meet the requirements listed under the Prerequisites section of the AWS Direct Connect user guide.

Note
For Site-Site VPN, the customer gateway device can be a physical or software appliance. For more information about tested network devices by AWS, refer to list of tested customer gateway devices.

Note
As this whitepaper focuses on the selection and design of the hybrid connectivity, the following list provides a brief definition of each of the connectivity types with a link to the documentation of each for further details. It is recommended that you have a good understand of the content covered in Amazon Virtual Private Cloud Connectivity Options Whitepaper.

AWS hybrid connectivity services

The AWS network services provide an abstraction layer to highly scalable and available networking components. They play an essential role to enable and facilitate building hybrid networking solutions. At the time of this whitepaper writing, there are three primary service endpoints:

- **AWS Virtual Private Gateway (VGW)** is a regional service, that is highly available (redundant component within a VPC across multiple Availability Zones). It offers distributed IP routing and forwarding at the VPC level. In other words, it acts as the gateway for the VPC to communicate with your remote networks such as on-premises sites. VGW is capable of terminating AWS S2S VPN connections as well as AWS Direct Connect private virtual interfaces.

- **Direct Connect Gateway (DXGW)** is a globally available service, where you can create the DXGW in any public AWS Region and access it from any other public AWS Regions. An AWS Direct Connect connection can be linked to an AWS DXGW. DXGW can be associated with either VGW (directly to a VPC) or can be associated with AWS Transit Gateway.
• **AWS Transit Gateway** is a regionally highly available and scalable service that enables you to connect multiple VPCs with each other, as well as with the on-premises networks over Site-to-Site VPN and/or Direct Connect using a single centralized gateway. Conceptually, an AWS Transit Gateway acts like a virtual cloud router. However, it is more scalable and reliable than a virtual router. AWS Transit Gateway uses AWS Hyperplane system in the backend (to learn more about the AWS Hyperplane, refer to AWS re:Invent session here). Because it is a logical object, AWS Transit Gateway provides an abstraction centralized layer, where you can create and manage connecting, connectivity rules and routing control, which helps to simplify the manageability of the network solution. AWS Transit Gateway enables you to scale your connection throughput with equal cost multi-path (ECMP) routing support over multiple Direct Connect connections or VPN tunnels. For more details see AWS Transit Gateway scenarios.

Hybrid network connection

Site-to-Site Virtual Private Network (VPN)

A site to site IPsec VPN enables two different networks (sites) to communicate in a secure manner over an untrusted transport such as the internet. From a hybrid connectivity point of view the VPN connection is established between an on-premises site and Amazon Virtual Private Cloud (Amazon VPC). There are two options to establish a Site-to-Site VPN with AWS:

• **AWS Managed Site-to-Site VPN (AWS S2S VPN):** Is a fully managed and highly available VPN service. See AWS Managed VPN for more information. Also, you can optionally enable acceleration for your Site-to-Site VPN connection. See Accelerated Site-to-Site VPN connections

• **Software Site-to-Site VPN (Customer-managed VPN):** Unlike the AWS Managed VPN, with this VPN connectivity option, the customer is responsible for provisioning and managing the entire VPN solution, typically running a VPN software on an EC2 instance, or it could be a VPN virtual appliance from AWS Marketplace, including SD-WAN solutions. See Software Site-to-Site VPN for more information.

AWS Direct Connect

AWS Direct Connect is a cloud service solution that makes it easy to establish a dedicated network connection from your premises to AWS. See AWS Direct Connect

There are two types of AWS Direct Connect connections: dedicated connection and hosted connection. See AWS Direct Connect connections for more information.

• **AWS Direct Connect Virtual Interface (VIF):** Virtual interface is logical interface built on top of the physical connection. There are three primary types of VIFs: Private VIF, Public VIF and Transit VIF. See AWS Direct Connect virtual interfaces for more information. Figure 1 illustrates hybrid connectivity model that uses Private and Public VIFs. Public VIF in particular, is used to access all AWS public services, such S3, DynamoDB, as well as public EC2 IP ranges. Public VIF provides the ability to reach any AWS public IP, including AWS S2S VPN endpoints. VPN over public VIF is a common connectivity option for scenarios that require encryption in transit for the Direct Connect (DX) connection.

Note

Hosted Virtual Interface (Hosted VIF) is another option that technically offers connectivity to AWS resources. It can refer to either a VIF assigned to a different AWS account than the AWS account which owns the AWS Direct Connect connection. Also, it can refer to a VIF provided by an AWS Direct Connect partner. AWS no longer allows new partners to offer this model, for more information see Hosted Virtual Interfaces (Hosted VIF).
Figure 1 – AWS Direct Connect Private and Public VIFs
Hybrid connectivity type and design considerations

This section of the whitepaper covers the considerations that impact your choices when selecting a hybrid network to connect your on-premises environments to AWS. It follows a logical thought process to support you selecting the most optimal hybrid connectivity solution. The considerations impacting your design are categorized into considerations that impact your connectivity type, and considerations that impact your connectivity design. Connectivity type considerations will support you deciding between using an internet-based VPN or Direct Connect. Connectivity design considerations will support you deciding how to set up the connections.

The following considerations that impact your connectivity type are covered: time to deploy, security, SLA, performance and cost. After reviewing those considerations, and how they impact your design choices, you will be able to decide if using an internet-based connection or Direct Connect is recommended to meet your requirements.

The following considerations that impact your connectivity design are covered: Scalability, Communication Model, Reliability and third-party SD-WAN integration. After reviewing those considerations, and how they impact your design choices, you will be able to decide the optimal logical design recommended to meet your requirements.

The following structure is used to discuss and analyze each of the selection and design considerations:

- **Definition** - Brief definition of what is the consideration.
- **Impact on design decision** - How the consideration impacts the design choices.
- **Requirement definition** - Provides a set of questions to enable you to collect the requirements associated with the consideration.
- **Technical solutions** - Solutions to address the requirements associated with the consideration.
- **Decision tree** - For some considerations or a group of considerations, a decision tree is provided to help you select the optimal hybrid network solution.

The considerations impacting your hybrid network design are covered in an order where the output of one consideration is considered as part of the input for the subsequent consideration. As illustrated in Figure 2, the first step is to decide on the connectivity type, followed by refining it with the design selection considerations.

Figure 2 demonstrates the two consideration categories, the individual considerations and the logical order in which the considerations are covered in the subsequent sub-sections. Those are the essential considerations when making a hybrid network design decision. However, if the targeted design does not require all these considerations, you can focus on the ones that are relevant to your requirements.
Connectivity Type selection

This sub-section of the whitepaper covers the considerations that impact your connectivity type selection.

The following considerations are going to be covered: time to deploy, security, SLA, performance and cost. After covering the considerations, we then provide a summary and a decision tree which demonstrates how those considerations together help you decide between using an internet-based VPN or Direct Connect as your connectivity type.

Topics
- Time to deploy (p. 7)
- Security (p. 9)
- Service-level agreement (SLA) (p. 10)
- Performance (p. 11)
- Cost (p. 13)
- Connectivity type selection summary (p. 15)

Time to deploy

Definition

From a design selection thought process, this is typically the first consideration you need to look at to determine the options you have. This consideration is related with how long you must establish the connectivity with AWS. You need to consider if you need to establish the connectivity within hours, days, weeks, or months. This will influence your decision to use an internet-based connection, a private and dedicated connection or a private connection provided as a managed service by a service provider or AWS Direct Connect Partner.

Impact on design decision

Depending on how long you have before the connection needs to be established will impact if you need to leverage existing links or if you have time to engage service providers to provision new links that can meet your connectivity requirements.
You also need to consider if the connection is required for a long period of time such as when your company will operate for months or years in a hybrid mode or if the connection is required for a temporary purpose. Temporary refers to the need of a connection to achieve certain goal within a defined period of time of usually a few weeks. For example, temporarily test and development in the cloud that needs connection to on-premises for the test and development period only, or for performing data processing in the cloud for a given period of time only.

Requirement definition

- What is the required timeline for the deployment? Hours, days, weeks, or months?

Technical solutions

When you have hours or a few days to establish connectivity with AWS, you will most likely need to use a link that already exists. For most customers this means using the internet connection that already exists in their companies. On top of the existing internet connection you would establish a site to site VPN to AWS.

When you have a few weeks, in addition to leveraging an internet-based connection, you can look into working with an AWS Direct Connect Partner to establish connectivity with AWS. AWS Direct Connect Partners help you establish network connectivity between AWS Direct Connect locations and your data center, office, or colocation environment. Certain AWS Direct Connect Partners are approved to offer Direct Connect Hosted Connections. Hosted Connections are usually provisioned faster than Dedicated Connections. When providing a Hosted Connection, in most cases, the AWS Direct Connect Partner leverages their existing physical interconnection to AWS. The AWS Direct Connect Partner will provision each Hosted Connection over a network link between themselves and AWS that is shared by multiple customers.

When you have several weeks to months, in addition to the options mentioned in the previous paragraphs, you can look into establishing a dedicated private connection with AWS. AWS Direct Connect Dedicated Connections are facilitated by service providers and AWS Direct Connect Partners. It’s common for service providers to install a router (or other network devices) at the customer’s premises as well as in the direct connect location to facilitate a Direct Connect Dedicated Connection. Depending on the service provider, location of your site and other physical factors, the installation of a Direct Connect Dedicated Connection can take from several weeks to a few months.

If you already have your network equipment installed in the same colocation facility where the AWS Direct Connect location exist then you can within days establish an AWS Direct Connect Dedicated Connection. After you request the connection, AWS makes a Letter of Authorization and Connecting Facility Assignment (LOA-CFA) available to you to download, or emails you with a request for more information. The LOA-CFA is the authorization to connect to AWS, and is required by your network provider to order a cross connect for you.

<table>
<thead>
<tr>
<th></th>
<th>internet-based connectivity</th>
<th>DX Dedicated Connection when you already have equipment within DX location</th>
<th>Direct Connect Hosted Connections</th>
<th>Direct Connect Dedicated Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Provisioning time</td>
<td>Hours to days</td>
<td>Days</td>
<td>Few weeks</td>
<td>Several weeks to months</td>
</tr>
</tbody>
</table>

Note

The provided provision time guidelines are based on our experience working with customers. However, when taking into considerations your site location, proximity to direct connect...
Security

Definition

This section refers to the security considerations that influence the hybrid connectivity type selection. These considerations are:

- transport type – internet or private network connection
- encryption in transit

Impact on design decision

Your security requirements and policies might permit use of internet or require usage of a private network connection between AWS and your company network. They also impact the decision, if encryption in transit must be provided by the network or if performing encryption at application layer is acceptable.

Requirement definition

- Do your security requirements and policies allow the usage of encrypted connections over the internet to connect to AWS or mandate the usage of private network connections?
- When leveraging private network connections, does the network layer have to provide encryption in transit?

Technical solutions

If you can leverage the internet, then AWS Site-to-Site VPN could be used to create encrypted tunnels between your network and your Amazon VPCs or AWS Transit Gateways over the internet. Extending your SD-WAN solution into AWS over the internet may also be an option if you are leveraging an internet-based connection. The section Customer-managed VPN and SD-WAN later in this whitepaper covers the specific considerations for SD-WAN.

If you require the usage of a private network connection between AWS and your company network, then AWS recommends the usage of AWS Direct Connect Dedicated Connections or Hosted Connections. If encryption in transit is required over the private network connection, then you should establish a VPN over Direct Connect.

<table>
<thead>
<tr>
<th>Site-to-Site VPN</th>
<th>Direct Connect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transport</td>
<td>Over the internet</td>
</tr>
<tr>
<td>Encryption in transit</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Service-level agreement (SLA)

Definition

Enterprise organizations often require a service provider to specify an SLA for each service the organization may consume. The organization in turn builds its own service(s) on top and may offer their own consumer an SLA. The SLA is important as it describes how the service is provided, operated, and it often includes specific measurable characteristics such as availability. Should the service break the defined SLA, a service provider usually offers a financial compensation under the SLA. The SLA defines the type of measure, the requirement, and measurement period. As example, refer to uptime target definition under AWS Direct Connect SLA.

Impact on design decision

SLA can be a non-negotiable consideration that can force other tradeoffs. If the connectivity is not available, resources running in the cloud could not be accessed. If a formal SLA with applicable service credits for the connectivity is required, appropriate connectivity to satisfy this requirement should be selected.

It could be possible that only a subset of cloud resources requires an SLA, such as the ones used for production applications. Other environments such as development and testing may not require SLAs. This is where a mix of connectivity options could be considered.

Requirement definition

- Is hybrid connectivity connection SLA with service credits required?
- Does the entire hybrid network need to adhere to the uptime target?

Technical solutions

Connectivity type: internet connectivity as underlying transport doesn't provide an SLA. While great care is taken to have multiple links in place with diverse set of ISPs, the administration of the internet simply outside of AWS or a single provider administrative domain. There is limited amount of route engineering and traffic influence a cloud provider can do once the traffic has left the border of the cloud network.

AWS Direct Connect offers a formal SLA with service credits. This is the recommended transport if an SLA is required. AWS Direct Connect lists specific minimal configuration requirements for each uptime target such as number of AWS Direct Connect locations, connections, and other configuration details. The failure to satisfy the requirements means that service credits cannot be offered should the service break defined SLAs. At the time of writing, dedicated AWS Direct Connect links are required at a minimum of 2 locations. Make sure to review the requirements as they may change overtime.

Importantly, even if the service selected to provide the hybrid connectivity is configured to meet the SLA requirements, the rest of the network may not provide the same level of SLA. The AWS responsibility ends at the AWS Direct Connect location, more specifically at the AWS Direct Connect port. Once traffic is handed into to your organization's network, it is no longer the responsibility of AWS. If you use a service provider between AWS and your on-premises network, connectivity is subject to SLA between yourself and the service provider, if applicable. Keep in mind that entire hybrid network is just as good as the weakest part of it when designing hybrid connectivity.

APN AWS Direct Connect partners offer AWS Direct Connect connectivity. The partner may offer an SLA with service credits based on their product offering up to the demarcation point with AWS. The option should be evaluated and further researched directly with APN Partners. AWS publishes a list of validated delivery partners on AWS website.
Logical design: In addition to the connectivity type you also have to consider other building blocks as part of your overall design. As example, AWS Transit Gateway has its own SLA as does AWS S2S VPN. You might be using AWS Transit Gateway for scale and AWS S2S VPN for security reasons but both have to be designed in a certain way to be eligible for service credits with each respective service.

Connectivity type selection based on the SLA Decision Tree

Figure 3 – SLA consideration decision tree

Performance

Definition

A definition of the noun performance is how well something does its intended function. In the content of this whitepaper, we have hybrid connectivity which has intended function of delivering network traffic between on-premises network and the AWS Cloud. There are multiple factors which influence network performance such as latency, packet loss, jitter, and bandwidth. Depending on applications requirements the importance of each of these factors can vary.

Impact on design decision

Based on your application requirements, you need to identify and prioritize the network performance factors that impact your application behavior and user experience. To give further context, we define key factors which impact your connectivity type selection:

- Bandwidth: the maximum data transfer rate of a connection.
- Throughput: the successful transfer rate over a network path which an application can achieve.
- Traffic flow: a flow represents a single, point-to-point network connection between a source and destination.
- Latency: time taken for a packet to go from source to destination over a network connection.

Having a lot of bandwidth, doesn’t mean that application can use all of it and achieve required throughput. VPNs can restrict throughput due to tunneling overheads. Application might require to use multiple traffic flows in parallel if it is hitting per traffic flow bandwidth limit. Some application might require deterministic performance over a high-bandwidth connection, while others may require both deterministic performance and high bandwidth.
Example: Business requirements may state that certain activity has to complete within a defined amount of time. As example, a backup window has a duration of 4 hours or a batch processing job must be completed before the start of business hours. The business requirement(s) leads to understanding of technical requirement(s). How much data needs to be copied during the backup window and the throughput required to achieve it. Virtual Desktop Infrastructure (VDI) where a user interacts with an interface streamed as image over a network connection is sensitive to latency. Delay between input and resultant action affecting user experience. Other applications may not operate well even when latency is low if there is an occasional jitter. Jitter means there is an unpredictable delay. Voice-based applications are susceptible to poor voice quality due to jitter.

Requirement definition

- What are the most critical network performance factors for your applications?
- What is the required throughput? (e.g. 10Gbps symmetric)
- What is the maximum acceptable latency between AWS and on-premises network? (AWS can recommend Direct Connect location selection but does not provide latency guarantees)
- What is the maximum acceptable network variance (jitter)?

Technical solutions

When predictable latency and throughput are required, AWS Direct Connect is the recommended choice. It provides deterministic performance. Bandwidth could be selected based on throughput requirements. AWS recommends using AWS Direct Connect when a customer requires a more consistent network experience than -based connections. Private VIF and Transit VIF support jumbo frames which reduce number of packets (and overheads) through the network and can improve throughput.

Using a VPN over AWS Direct Connect adds encryption. However, it reduces MTU size which might reduce throughput. AWS managed S2S VPN technical capabilities can be found in the technical documentation. It is worth noting that AWS Transit Gateway allows customers to horizontally scale the number of VPN connections and throughput accordingly with Equal-cost multi-path routing (ECMP). More information on this is in traffic engineering subsection found later in this paper.

Another option is to use a site-to-site VPN over the internet. Bandwidth available over internet has been steadily growing over the years. While it is an attractive option due to low cost and almost universally accessible, keep in mind that performance over the internet is best effort but it can provide high bandwidth considering your on-premises access speed. Internet weather events, congestion, increased latency periods are not unusual. AWS does offer a solution with AWS Accelerated S2S VPN which can mitigate some of the downsides of the internet. The Accelerated S2S VPN uses AWS Global Accelerator which allows VPN traffic to enter AWS network as early as possible and as close as possible to the customer gateway device. This option helps organizations optimize their VPN over the internet. It optimizes the network path, using the congestion-free AWS global network to route traffic to the endpoint that provides the best application performance. You can use an accelerated VPN connection to avoid network disruptions that might occur when traffic is routed over the public internet.
Hybrid Connectivity AWS Whitepaper

Cost

Definition

In the cloud, the cost of hybrid connectivity includes cost of provisioned resources and usage. Cost of provisioned resources is measured in units of time such as hourly. Usage is for data transfer and processing usually measured in gigabytes (GB). Other cost includes the cost of connectivity to the AWS network point of presence. If your network is within the same colocation facility, it might be as little as the cost of a cross connect. If your network is in different location, there will be a service provider and/or APN Direct Connect partner costs involved.

Impact on design decisions

Organizations try to maximize efficiency and reduce cost. An optimal hybrid connectivity solution has to meet business and technical requirements at the lowest cost possible. If connectivity is provisioned with just enough bandwidth to meet requirements, it optimizes for current cost. However, it might be hard and costly to scale the connectivity if requirements change. Another aspect to consider is at scale, private connectivity can often be cheaper even with the higher cost of provisioned resources including service provider cost. This is because data transfer cost per GB over AWS Direct Connect is cheaper than internet. For example, if you have bandwidth-heavy workloads that you wish to run on AWS, AWS Direct Connect reduces your network costs into and out of AWS in two ways. First, by transferring data to and from AWS directly, you can reduce your bandwidth commitment to your internet service provider. Second, all data transferred over your dedicated connection is charged at the reduced AWS Direct Connect data transfer rate rather than internet data transfer rates.

With AWS, you can elastically adjust your usage up and down. If you are using a network service provider for connectivity between on-premises and a Direct Connect location, your ability to change your bandwidth commitments is based on your contract with the service provider. AWS can deliver your traffic to any AWS Region except China from any AWS network point of presence using AWS backbone. This capability has many technical benefits over using just internet to access remote AWS Regions. There is a data transfer cost premium for using AWS backbone. If there is an AWS Transit Gateway in the traffic path, it adds data processing cost per GB.

Finally, AWS charges for data egress with hybrid connectivity solutions. Optimal application design keeps data processing within AWS and minimizes unnecessary data egress. Data ingress to AWS is free. It
means that any use case which sends a lot of data to AWS is very economical from the data transfer cost perspective.

Note: As part of the overall connectivity solution, in addition to the AWS connection cost, you should also consider cost of the end to end connectivity including service provider cost, cross connects, racks and equipment within DX location (if required).

Requirement definition

- How much data do you anticipate to send to AWS per month?
- How much data do you anticipate to send from AWS per month?
- Is this connectivity permanent?

Technical solutions

If you are not sure if you should use internet or private connectivity at this point, calculate a breakeven point before AWS Direct Connect becomes cheaper than using internet. If the volume of data means that AWS Direct Connect is cheaper, and you require a permanent connectivity, AWS Direct Connect is the optimal connectivity choice.

If the connectivity is temporary and internet meets other requirements. It could be cheaper to use AWS S2S VPN over internet due to elasticity of the internet. This choice assumes that you have sufficient internet connectivity in your on-premises network.

If you are within a facility which has AWS Direct Connect, you can establish a cross connect to AWS. This means using dedicated connection that comes at fixed sizes. AWS Direct Connect partner offer further bandwidth granularity and smaller sizes which may optimize your connectivity cost. As example, you can start at 50Mbps Hosted Connection vs 1Gbps Dedicated Connection.

With AWS Transit Gateway you can share your VPN and Direct Connect connections with many VPCs. While you are charged for the number of connections that you make to the AWS Transit Gateway per hour and the amount of traffic that flows through AWS Transit Gateway it simplifies management and reduces number of VPN connections and VIFs required. Benefits and cost savings of lower operation overhead can easily outweigh the additional cost of data processing. Optionally you can consider a design where AWS Transit Gateway is in the traffic path to most VPCs but not all. This approach avoids the AWS Transit Gateway data processing fees for use cases where you require to transfer very large amounts of data into AWS. Refer to the connectivity models' section for further details on this design. Another approach it to combine AWS Direct Connect as a primary path and use AWS S2S VPN over the internet as backup/failover path. While technically feasible and very cost effective, this solution has technical downsides discussed in reliability section and harder to manage. AWS doesn’t recommend it for highly critical or critical workloads.

The last approach is a customer-managed VPN or SD-WAN deployed in Amazon EC2 instance(s). This can be cheaper at scale if many tunnels, each with low-bandwidth needs, are required when compared to AWS S2S VPN. There is also a management overhead, the cost of licensing, and the cost EC2 resources for each virtual appliance to consider.

Table 1 – Cost effectiveness comparison

<table>
<thead>
<tr>
<th>Category</th>
<th>Customer-managed VPN or SD-WAN</th>
<th>AWS S2S VPN</th>
<th>AWS Accelerated S2S VPN</th>
<th>AWS Direct Connect Hosted Connection</th>
<th>AWS Direct Connect Dedicated Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requires customer</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Connectivity type selection summary

The considerations discussed up so far focused on the connectivity type selection. The following decision tree provides a summary of the considerations covered on the preceding sections. For details about each consideration refer to the associated consideration section.

<table>
<thead>
<tr>
<th>Category</th>
<th>Customer-managed VPN or SD-WAN</th>
<th>AWS S2S VPN</th>
<th>AWS Accelerated S2S VPN</th>
<th>AWS Direct Connect Hosted Connection</th>
<th>AWS Direct Connect Dedicated Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>internet connection</td>
<td>EC2 instance and software licensing</td>
<td>AWS S2S VPN</td>
<td>AWS S2S VPN and AWS Global Accelerator</td>
<td>Applicable capacity slice of port cost</td>
<td>Dedicated port cost</td>
</tr>
<tr>
<td>Provisioned resources cost</td>
<td>Internet rate</td>
<td>Internet rate or DIRECT CONNECT rate</td>
<td>Internet with data transfer premium</td>
<td>DX rate</td>
<td>DX rate</td>
</tr>
<tr>
<td>Data transfer cost</td>
<td>Optional</td>
<td>Optional</td>
<td>Required</td>
<td>Optional</td>
<td>Optional</td>
</tr>
<tr>
<td>Transit Gateway</td>
<td>N/A</td>
<td>Only with AWS Transit Gateway</td>
<td>Yes</td>
<td>Only with AWS Transit Gateway</td>
<td>Only with AWS Transit Gateway</td>
</tr>
<tr>
<td>Data processing cost</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Can be used over AWS Direct Connect?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connectivity design selection

This sub-section of the whitepaper covers the considerations which impact your connectivity design selection. Connectivity design includes the logical aspects as well as how to design and optimize the hybrid connectivity reliability.

The following considerations are going to be covered: scalability, connectivity models, reliability, and customer-managed VPN and SD-WAN.

Topics
- Scalability (p. 16)
- Connectivity Models (p. 18)
- Reliability (p. 27)

Scalability

Definition

Scalability refers to the size of the solution, this size can be related to the entire solution or to a specific component(s) of it.

When designing a solution and hybrid networking connectivity in particular, you need to consider the current size, as well as the anticipated growth of the solution. This growth can be either an organic growth of a solution, or might be related to a merger & acquisition type of scenarios, where the size can be increased dramatically within a short period of time. Furthermore, scalability, in the context
of a hybrid network connectivity design, refers to the design ability to support the current and future requirements related with 1) number of on-premises sites to be connected to AWS 2) number of AWS Regions to be used 3) Number of Amazon VPCs within each Region 4) number of routes to be exchanged and 5) bandwidth requirements.

Impact on the design

The understanding of the current and the anticipated future scale requirements is critical, because it will influence the optimal design decision with regard to the connectivity option selection and design. To be able to analyze the connectivity options in relation to the targeted solution scale, first we need to identify what are the influencing factors that need to be considered as part of the scale analysis when selecting and designing a hybrid connectivity solution architecture. The following list summarizes the key elements that impact the design decision regarding scale:

- **Number of Amazon VPCs**: the number of VPCs that need to be connected to an on-premises site(s). Different connectivity options have limits that need to be taken into consideration, at the decision-making stage.

- **Number of AWS Regions to be used**: for multi-Region architectures, identifying the required number of Regions to connect or anticipated to be connected to on-premises site(s) is important. This helps to minimize unexpected limitations in terms of the supported number of Regions to connect to, and major design changes.

- **Number of on-premises sites to be connected to AWS**: the number of sites to be connected to AWS impacts the decision of how many connections are required to be set up in which it will influence the entire hybrid connectivity design. From a logical design point of view, this also has implications on the control plane complexity such as number of BGP peering sessions.

- **The number of advertised prefixes**: this element is related to the control plane aspect (IP routing). The required scale of IP routing information (routes) to be advertised to or from AWS can influence the design decision, as different AWS services have different quotas.

- **Bandwidth**: in the context of scalability, refers to the ability of a connection or link to support increase of bandwidth capacity for example from 1G to 10G over same fiber link, or more VPN bandwidth capacity by adding more VPN Tunnels.

Note

Depending on the targeted solution architecture, not all of the preceding elements might need to be taken into consideration. However, they can serve as the foundational elements to identify scalability requirements of most common hybrid network solutions. This whitepaper focuses on the hybrid connectivity selection and design. Therefore, the preceding scale elements are mainly focused on the hybrid connectivity selection and design. Nevertheless, it's recommended to look at the big picture. Therefore, its recommended to expand the scale consideration of the hybrid connectivity to the VPCs networking architecture. To expand on the selected hybrid connectivity design refer to the AWS whitepaper *Building a Scalable and Secure Multi-VPC AWS Network Infrastructure*.

Requirement definition

- What is the current or anticipated number of VPCs which require connectivity to on-premises site(s)?
- Are these VPCs deployed in a single AWS Region or multiple Regions?
- How many on-premises sites need to be connected to AWS?
- How many customer gateway devices (e.g. routers) you have per site that need to connect to AWS?
- How many routes are expected to be advertised to Amazon VPCs as well as the number of expected routes to be received from AWS side?
- Is there a requirement to increase bandwidth to AWS overtime?
Technical solutions

To address scale requirements as part of the hybrid connectivity design, ideally it should be combined with the connectivity model design. Therefore the subsequent section (Connectivity Models) will incorporate scale as part of the targeted connectivity model design.

The following are recommended best practices to minimize scale complexity of hybrid network connectivity design:

- Route summarization should be used to reduce the number of routes advertised to and received from AWS. This indicates that IP addressing schema needs to be planned to consider a structured IP addressing that ultimately will simplify the use of route summarization. This should be designed with traffic engineering in mind, refer to Traffic engineering subsection under Reliability section in this whitepaper for more information about traffic engineering.
- Minimize the number of BGP peering sessions by using DXGW with VGW or AWS Transit Gateway, where a single BGP session can provide connectivity to multiple VPCs.

Connectivity Models

Definition

The connectivity models, refers to the communication pattern between on-premises network(s) and the cloud resources in AWS. Cloud resources could be deployed within an Amazon VPC within a single AWS Region or across multiple Regions, as well as AWS services which have a public endpoint in a single or multiple AWS Regions such as (S3 and DynamoDB, etc.).

Impact on the design decision

The connectivity model, is typically driven by the required communication or traffic pattern. That is essential to be identified and taken into consideration at the early design decision stage.

Defining the requirements

- Is there a requirement for inter-VPC communication to be enabled (within a Region and/or across Regions)?
- Is there any requirement to access AWS public endpoints directly from on-premises?
- Is there a requirement to access AWS services using VPC endpoints from on-premises?

Technical solution

The following are some of the most common connectivity model scenarios. Each connectivity model covers requirements, attributes, and considerations.

Note

As highlighted earlier this whitepaper is focused on the hybrid connectivity between on-premises networks and AWS. For further details on the design to interconnect VPCs refer to the AWS whitepaper Building a Scalable and Secure Multi-VPC AWS Network Infrastructure.

AWS Accelerated Site-to-Site VPN – AWS Transit Gateway, Single AWS Region.

This model is constructed of:

- Single AWS Region.
• AWS Managed Site-to-Site VPN connection with AWS Transit Gateway.
• Accelerated VPN enabled.

Figure 6 – AWS Managed VPN – AWS Transit Gateway, Single AWS Region

Connectivity model attributes:

• Provide the ability to establish more optimized VPN connection performance over the public internet, by using AWS accelerated site to site VPN connections.
• Provide the ability to achieve higher VPN connection bandwidth, by configuring multiple VPN tunnels with ECMP.
• Can be used for connection from one or multiple (high scale) numbers of remote sites.
• Offers automated failover, with dynamic routing (BGP).
• With AWS Transit Gateway connected to VPCs, all the connected VPCs can share the VPN connection, as well as full mesh connectivity or partial mesh connectivity can be achieved between the VPCs (with AWS Transit Gateway you can control the desired communication model among the VPCs, for more information refer to How transit gateways work).
• Offers flexible design options to integrate third-party security and SDWAN virtual appliances with AWS Transit Gateway. See: Centralized network security for VPC-to-VPC and on-premises to VPC traffic.

Scale considerations:

• Up 50Gbps of bandwidth with multiple IPsec tunnels and ECMP configured (each traffic flow will be limited to the maximum bandwidth per VPN tunnel).
• Hundreds of VPCs can be connected per AWS Transit Gateway.
• Route to the Site-to-Site VPN quotas for other scale limits such as number of routes.

Other considerations:

• Additional AWS Transit Gateway processing cost for data transfer the on-premises data center and AWS.
• Security groups of a remote VPC cannot be referenced over AWS Transit Gateway (need VPC peering).
AWS DX – DXGW with VGW, Single Region

This model is constructed of:

- Single AWS Region.
- Dual AWS Direct Connect Connections to independent DX locations.
- AWS DXGW directly attached to the VPCs using VGW.
- Optional usage of AWS Transit Gateway for Inter-VPC communication.

![AWS DX – DXGW with VGW, Single Region](image)

Figure 7 – AWS DX – DXGW with VGW, Single AWS Region.

Connectivity model attributes:

- Provide the ability to connect to VPCs and/or DX connection(s) in other Regions in the future.
- Offers automated failover, with dynamic routing (BGP).
- With AWS Transit Gateway connected to VPCs, Full mesh connectivity or partial mesh connectivity can be achieved between the VPCs (with AWS Transit Gateway you can control the desired communication model among the VPCs, for more information refer to [How transit gateways work](#)).

Scale considerations:

- 100 routes per Private VIF.
- Up to 10 VPCs can be connect per DXGW over s single BGP session, if more VPCs need to be connected, additional DXGWs can be added to facilitate the connectivity at scale.
- Additional AWS Direct Connect can be added as desired.
- Refer to the [AWS Direct Connect quotas](#) for more information about the scale limits, such number of supported prefixes, number of VIFs per DX connection type (Dedicated, hosted).

Other considerations:

- Does not incur AWS Transit Gateway related processing cost for data transfer between AWS and on-premises networks.
- Security groups of a remote VPC cannot be referenced over AWS Transit Gateway (need VPC peering).
• VPC peering can be used instead of AWS Transit Gateway to facilitate the communication between the VPCs, however, this will add operational complexity to build and manage large number VPC point-to-point peering at scale.
• If Inter-VPC communication is not required, neither AWS Transit Gateway nor VPC peering is required in this connectivity model.

AWS DX – DXGW with VGW, Multi-Regions, and AWS Public Peering

This model is constructed of:

• Multiple AWS Regions.
• Dual AWS Direct Connect Connections to independent DX locations.
• Single on-premises data centers with dual connections to AWS.
• AWS DXGW directly attached to more than 10 VPCs using VGW.
• Optional usage of AWS Transit Gateway for Inter-VPC and Inter-Region communication.

Figure 8 – AWS DX – DXGW with VGW, Multi-Regions, and Public VIF

Connectivity model attributes:

• AWS DX public VIF is used to access AWS public services such as S3 directly over the AWS DX connections.
• Provide the ability to connect to VPCs and/or DX connection(s) in other Regions in the future.
• With AWS Transit Gateway connected to VPCs, Full mesh connectivity or partial mesh connectivity can be achieved between the VPCs.
• Inter-VPC and Inter-Region VPC communication facilitated by AWS Transit Gateway peering.
Scale considerations:

- 100 routes per Private VIF.
- Up to 10 VPCs can be connected per DXGW over a single BGP session, if more VPCs need to be connected, additional DXGWs can be added to facilitate the connectivity at scale.
- Additional AWS DX can be added as desired.

Other considerations:

- Does not incur AWS Transit Gateway related processing cost for data transfer between AWS and on-premises networks.
- Security groups of a remote VPC cannot be referenced over AWS Transit Gateway (need VPC peering).
- VPC peering can be used instead of AWS Transit Gateway to facilitate the communication between the VPCs, however, this will add operational complexity to build and manage large number VPC point-to-point peering at scale.
- If Inter-VPC communication is not required, neither AWS Transit Gateway nor VPC peering is required in this connectivity model.

AWS DX – DXGW with AWS Transit Gateway, Multi-Regions, and AWS Public Peering

This model is constructed of:

- Multi AWS Regions.
- Dual AWS Direct Connect Connections to independent DX locations.
- Single on-premises data center with dual connections to AWS.
- AWS DXGW with AWS Transit Gateway.
- High scale of VPCs per Region.
Figure 9 – AWS DX – DXGW with AWS Transit Gateway, Multi-Regions, and AWS Public VIF

Connectivity model attributes:

- AWS DX public VIF is used to access AWS public resources such as S3 directly over the AWS DX connections.
- Provide the ability to connect to VPCs and/or DX connection(s) in other Regions in the future.
- With AWS Transit Gateway connected to VPCs, Full mesh connectivity or partial mesh connectivity can be achieved between the VPCs.
- Inter-VPC and Inter-Region VPC communication facilitated by AWS Transit Gateway peering.
- Offers flexible design options to integrate third-party security and SDWAN virtual appliances with AWS Transit Gateway. See: Centralized network security for VPC-to-VPC and on-premises to VPC traffic.

Scale considerations:

- The number of routes to and from AWS Transit Gateway is limited to the maximum supported number of routes over a Transit VIF (inbound and outbound numbers vary). Refer to the AWS Direct Connect quotas for more information about the scale limits and support number of routes, and VIFs.
- Scale up to thousands of VPCs per AWS Transit Gateway over a single BGP session to DXGW (assuming the provided performance by the provisioned AWS DX connection(s) is sufficient).
- Single Transit VIF per AWS DX.
- Additional AWS DX connection(s) can be added as desired.

Other considerations:

- Incurs additional AWS Transit Gateway processing cost for data transfer between AWS and on-premises site.
- Security groups of a remote VPC cannot be referenced over AWS Transit Gateway (need VPC peering).
• VPC peering can be used instead of AWS Transit Gateway to facilitate the communication between the VPCs, however, this will add operational complexity to build and manage large numbers of VPC point-to-point peering at scale.
• If more than three AWS Transit Gateways are required, additional DXGW had to be added (refer to the following connectivity mode).

AWS DX – DXGW with AWS Transit Gateway, Multi-Regions (more than 3)

This model is constructed of:
• Multi AWS Regions (more than 3).
• Dual on-premises data centers.
• Dual AWS Direct Connect Connections across to independent DX locations per Region.
• AWS DXGW with AWS Transit Gateway.
• High scale of VPCs per Region.
• Full mesh of peering between AWS Transit Gateways.
Hybrid Connectivity AWS Whitepaper
Connectivity Models

Figure 10 – AWS DX – DXGW with AWS Transit Gateway, Multi-Regions (more than 3)

Connectivity model attributes:

- Lowest operational overhead.
- AWS DX public VIF is used to access AWS public resources such as S3 directly over the AWS DX connections.
- Provide the ability to connect to VPCs and/or DX connection(s) in other Regions in the future.
- With AWS Transit Gateway connected to VPCs, Full mesh connectivity or partial mesh connectivity can be achieved between the VPCs.
- Inter-Region VPC communication is facilitated by AWS Transit Gateway peering.
- Offers flexible design options to integrate third-party security and SDWAN virtual appliances with AWS Transit Gateway. See: Centralized network security for VPC-to-VPC and on-premises to VPC traffic.
Scale considerations:

- The number of routes to and from AWS Transit Gateway is limited to the maximum supported number of routes over a Transit VIF (inbound and outbound numbers vary). Refer to the [AWS Direct Connect quotas](https://aws.amazon.com/directconnect/pricing) for more information about the scale limits. (Routes summarization recommended).
- Scale up to thousands of VPCs per AWS Transit Gateway over a single BGP session per DXGW (assuming the provided performance by the provisioned AWS DX connection(s) is sufficient).
- Up to 3x AWS Transit Gateways can be connected per DXGW.
- If more than 3 Regions need to be connected using AWS Transit Gateway, then additional DXGWs are required.
- Single Transit VIF per AWS DX.
- Additional AWS DX connection(s) can be added as desired.

Other considerations:

- Incurs additional AWS Transit Gateway processing cost for data transfer the on-premises site and AWS.
- Security groups of a remote VPC cannot be referenced over AWS Transit Gateway (need VPC peering).
- VPC peering can be use instead of AWS Transit Gateway to facilitate the communication between the VPCs, however, this will add operational complexity to build and manage large number VPC point-to-point peering at scale.

The following decision tree covers the scalability and communication model considerations:

![Decision Tree](image)

Figure 11 – Scalability and communication model decision tree

Note

If the selected connection type is VPN, typically at the performance consideration, the decision should be made whether the VPN termination point, is AWS VGW or AWS Transit Gateway AWS S2S VPN connection. If not made yet, then you can consider the required communication model between the VPC along with the number of required VPC to be connected to the VPN connection(s) to help you to make the decision.
Reliability

Definition

Reliability refers to the ability of a service or system to perform its expected function when required. Also, the reliability of a system can be measured by the level of its operational quality within a given timeframe. On the other hand, resiliency refers to the ability of a system to recover from infrastructure or service disruptions, dynamically and reliably.

For more details of how availability and resiliency are used to measure reliability refer to the AWS Well-Architected Framework, Reliability Pillar.

Impact on the design decision

The following are the primary aspects that impact the design decision:

The required level of availability: availability of a connection to AWS needs to be evaluated based on its level of criticality to the business with regard to the connected on-premises site, criticality of the resources access in AWS site and the impact magnitude of a downtime on the business.

The required level of resiliency: evaluate the impact of a downtime duration. There are use cases that demand minimum downtime, example include financial services, and critical infrastructure management services.

Similarly, if the redundant network component (link, network devices, etc.) is not reliable enough to provide the expected function on its own, such as connection performance, then, this means low resiliency to failures. The consequence is poor and degraded user experience.

Requirements definition

- What is the impact magnitude on the business in case of a connectivity failure to AWS?
- What is the required level of availability (up time target e.g. 99.9%) per on-premises site that need to be connected to AWS?
- From business point of view, is the cost following a connectivity failure to AWS, overweighs the cost of deploying a highly reliable connectivity model to AWS?
- Is the cost in anyway the primary limiting factor to the business?

Technical Solution

Reliability of a hybrid network connection, depends on several factors, such as security, operational excellence, etc. however, the primary of which is resiliency. Therefore, resiliency is the primary focus of this section.

First, it is important to note, that not every hybrid network connectivity solution, or business requires high level of reliability. Therefore, it was explicitly mentioned earlier to evaluate first, in order to be able to identify where high level of reliability is needed. In some scenarios, a primary site may require reliable (redundant and resilient) connections as the downtime has higher impact on the business, while regional sites, may not require same level of reliability due to the lower impact on the business in case of a failure event. It is recommended to refer to the AWS Direct Connect Resiliency Recommendations as it explains the AWS best practices for ensuring high resiliency with AWS Direct Connect design.

To achieve a reliable hybrid network connectivity solution in the context of resiliency, the design needs to take into consideration the following aspects:
• **Redundancy**: aims to eliminate any single point of failure in the hybrid network connectivity path, including but not limited to; network connections, edge network devices, redundancy across Availability Zones, AWS Regions, and DX locations, as well as power sources to the devices, etc. For the purpose and scope of this whitepaper redundancy focuses on the network connections, edge devices (e.g. customer gateway devices), AWS DX location, and AWS Regions (for multi-Region architectures).

• **Reliable failover components**: in some scenarios a system might be available (functioning) but it is not performing its functions at the minimum required level. From operational quality point of view, the system not delivering the intended service or performing a function reliably even it is technically available. Such situation is very common, following a failover event, to a redundant component (e.g. redundant network link). This is where a reliable redundant component can help to mitigate or eliminate such situation and make the overall design more resilient.

• **Failover time**: this is another key aspect of resiliency, because you may have a redundant component or connection, however, following a failure event of the primary component, it takes long time for the secondary component to start taking over, or even requires manual configuration update by administrator. This typically leads to a less resilient solution even though there is redundant component in the design. as part of the hybrid network connectivity, one of the key timers cloud and network architect need to take into consideration, is the failure detection time; this is a very important aspect since you may have a routing design or protocol tuned to failover very quickly, however, this failover operation won’t be triggered fast if the failure itself is not reported fast enough to the routing protocol. There are many techniques to speed up the failure detection depending on the connectivity type, physical medium etc. With AWS hybrid connectivity, if you are using VPN you might need to look into VPN dead peer detection and if you are working with AWS DX connection, you need to look at Bidirectional Forwarding Detection (BFD), which helps to achieve a faster routing re-convergence time, and will result in a higher solution resiliency. In addition, you need to take into consideration the on-premises network side, because if there is any routing protocol deployed, peering with multiple CGWs, this routing protocol needs to converge as well (each routing protocol has its own convergence speed, and recommended tuning timers to achieve fast and stable convergence time).

• **Traffic Engineering**: traffic engineering in the context of resilient hybrid network connectivity design, aims to address how traffic should flow over multiple available connections in normal and failure scenarios. Therefore, it is recommended to follow the concept of ‘design for failure’, where you need to look at how the solution will operate in different failure scenarios and whether it will be acceptable by the business or not. This section discusses some of the common traffic engineering uses case that aims to enhance the overall resiliency level of the hybrid network connectivity solution. To design an effective traffic engineering solution, you need to have a good understanding of how each of the AWS networking components (AWS VPC and gateways), handle IP routing in terms route evaluation and selection as well as the possible mechanisms to influence the route selection. The figure below illustrates a summarized version of how the IP routing decision is made at different level within AWS from the VPC to the networking gateways components.
Figure 12 – Routing evaluation within Amazon VPC and associated gateways

Note
In the VPC route table you might reference prefix list which has addition route selection rules, refer to route priority for prefix lists for more information about this use case. AWS Transit Gateway route table also supports prefix lists but once applied they get expanded to specific route entries.

Dual Site-to-Site VPN connections with more specific routes example

This scenario is based on a small on-premises site connect to a single AWS Region over redundant VPN connections over the internet to AWS Transit Gateway. The traffic engineering design depicted in Figure 13, shows a with traffic engineering you can influence the path selection, that increases the hybrid connectivity solution reliability by:

- Providing resilient hybrid connectivity: redundant VPN connection that provides same performance capacity, automated failover by using dynamic routing protocol (BGP), speed up connection failure detection by using VPN dead peer detection.
- Providing performance efficiency: configure ECMP per VPN connection to AWS Transit Gateway, helps to maximize the overall VPN connection bandwidth, also, (optionally) by advertising different more specific routes along with the site summary route helps to distribute the load over the two VPN connections
The scenario illustrated in Figure 14 shows two on-premises data center sites located in different geographical Regions, and connected to AWS using the Maximum Resiliency connectivity model (described in the AWS Direct Connect Resiliency Recommendations) using AWS DX with DXGW and VGW. These two on-premises sites are interconnected to each other over a data center interconnect (DCI) link. One of the on-premises IP prefixes (192.168.0.0/16) that belongs to remote branch sites, is advertised from both on-premises data center sites. The primary path for this prefix should be data center 1. Traffic to and from the remote branch sites will failover to data center 2 in a failure event of data center 1 or both DX locations. Also, there is site-specific IP prefix for each data center. These prefixes need to be reached directly, and via the other data center site in case of both DX locations failure.

By associating BGP Community attributes with the routes advertised to AWS DXGW, you can influence the egress path selection from AWS DXGW side. Because with these values you can control the value of the BGP Local_Preference attribute that to be assigned to the advertised route. For more information refer to AWS DX Routing policies and BGP communities.

In addition, to maximize the reliability of the connectivity at the AWS Region level, each pair of AWS DX connections configure with ECMP where both can be utilized at the same time for data transfer between each on-premises site and AWS.
Figure 14 – Dual on-premises sites with multiple DX connections example

With this design, the traffic flows destined to the on-premises networks (with the same advertised prefix length and BGP community) will be distributed across the dual DX connections per site using ECMP. However, if ECMP is not required across the DX connection, the same concept discussed earlier and described in the Routing policies and BGP communities documentation can be used to further engineer the path selection at a DX connection level.

Note
If there are security devices in the path within the on-premises data centers, these devices need to be configured to allow traffic flows leaving over one DX link and coming from another DX link (both links utilized with ECMP) within the same data center site.

VPN connection as a backup to AWS DX connection example

In some scenarios, VPN can be selected to provide a backup hybrid network connection to an AWS DX. Typically, this type of connectivity model is driven by cost, because it provides lower level of reliability to the overall hybrid connectivity solution for the reasons discussed earlier in this whitepaper, such as indeterministic performance over the internet, there is no SLA that can be obtained for a connection over the public internet. It is a valid and cost-effective connectivity model, and should be used when cost is the top priority consideration and there is limited budget, or possibly as an interim solution until a secondary DX to be provisioned. Figure 15 illustrates the design of this connectivity model. One key consideration to be taken into account, is that with this design where both the VPN and DX connections are terminating at the AWS Transit Gateway, the VPN connection can advertise higher number of routes compared to the ones that can be advertised over a DX connection connected to AWS Transit Gateway. This may result in suboptimal routing situation, in case more specific routes are advertised over the VPN connection. One simple way to avoid such issue, is to configure route filtering at the customer gateway device CGW for the routes received from the VPN connection, where only for example the summary route(s) is accepted.
Note
To create the summary route on the AWS Transit Gateway you need to specify a static route to an arbitrary attachment in the AWS Transit Gateway route table so that it's sent along the more specific route. Otherwise if the CGW filters specifics it will not see the aggregate.

From AWS Transit Gateway routing table point of view, the routes for the on-premises prefix received from the AWS DX connection (via DXGW) and from VPN, both are with the same prefix length and propagated dynamically over BGP. Following the route priority logic of AWS Transit Gateway (routes received over Direct Connect have a higher preference than the ones received over Site-to-Site VPN), the path over the AWS Direct Connect will be the preferred to reach the on-premises network(s).

![Diagram of hybrid connectivity](image)

Figure 15 – VPN connection as a backup to AWS DX connection example

The following decision tree guides you through making the desired decision for achieving a resilient (which will result in a reliably) hybrid network connectivity. For more information refer to AWS Direct Connect Resiliency Toolkit.
Customer-managed VPN and SD-WAN

Definition

Connectivity to the internet is a commodity and available bandwidth continues to increase every year. Some customers choose to build a virtual WAN on top of the internet instead of building and operating a private WAN. A software-defined wide area network (SD-WAN) through clever use of software allows companies to rapidly provision and manage centrally this virtual WAN. Other customers choose to adopt traditional self-managed site to site VPNs.

Impact on design decisions

SD-WAN and customer-managed VPNs can run over internet or AWS Direct Connect. SD-WAN or any software VPN overlay, is as reliable as the underlying network transport. Therefore, the considerations discussed earlier in this whitepaper with regard to reliability and SLA, are applicable here. For instance, building and SD-WAN overlay over the internet will not offer the same reliability if it's built over an AWS Direct Connect.

Requirement definition

- Do you use SD-WAN in your on-premises network?
- Are there specific features you require which are only available on certain virtual appliances used for VPN termination?
Technical solutions

AWS recommends integrating SD-WAN with AWS Transit Gateway, explore the vendors who support AWS Transit Gateway integration. AWS can act as a hub for SD-WAN sites or as a spoke site. AWS backbone can be used to connect different SD-WAN hubs deployed in AWS with a highly reliable and performant network. SD-WAN solutions support automated failover through any available path, additional monitoring, and observability capabilities in a single management pane. Extensive use of auto configuration and automation allows rapid provisioning and visibility compare to traditional WANs. Still, use of tunneling and encryption overheads do not compare to dedicated, high-speed fiber links used in private connectivity.

In some cases, you may choose to use a virtual appliance with VPN capability. Reasons for selecting a self-managed virtual appliance include technical features and compatibility with rest of your network. When you select a self-managed VPN or an SD-WAN solution which uses a virtual appliance deployed in an EC2 instance you are responsible for the management of such appliance. You are also responsible for high availability and failover between virtual appliances. Such design increases your operational responsibility; however, it could provide you more flexibility. The features and capabilities of the solution depend on the virtual appliance you select.

AWS Marketplace contains many VPN virtual appliances which customers can deploy on Amazon EC2. AWS recommends starting with AWS managed S2S VPN and look at other options if it doesn't meet your requirements. The management overhead of virtual appliances is the customer responsibility.
Example Corp. Automotive use case

This section of the whitepaper demonstrates how the considerations, requirement definition questions, and decision trees are used to help you decide on the optimal hybrid network design. Identifying and capturing requirements is important since they are used as input to the decision trees. Capturing requirements upfront avoids further design iterations. Halting a project altogether if the design must be revisited and having valuable resources on hold can be minimized and ideally avoided when requirements are understood upfront.

Example Corp. Automotive will be used throughout this section as the illustrative customer. They are looking to initially deploy their first analytics project on AWS. The analytics project is focused on analyzing data from cars manufactured by the company and other datasets that already exist in the company's data centers. Initially, the company's architecture group thinks that they will need an AWS account, an Amazon VPC, and few subnets to host production, and development environments. Project team is eager to get started and they requested development environment access as soon as possible. They aim to go in production in 3 months from now.

Example Corp. Automotive also plans to use AWS for several additional projects, such as migrating their ERP systems, Virtual Desktop Infrastructure (VDI), and another 20 applications from on-premises to AWS over the next 6 months. Some of the requirements for additional projects are still being defined, but it's clear that their AWS Cloud usage is going to grow.

The architecture team decided to leverage the approach outlined in this whitepaper. They used the requirement definition questions outlined under each consideration to capture the inputs to make their design decisions.

They start with requirements related to the connectivity type which are summarized in the table below.

Table 2 – Example Automotive Corp connectivity type requirements

<table>
<thead>
<tr>
<th>Connectivity type selection considerations</th>
<th>Requirement definition questions</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Deploy</td>
<td>What is the required timeline for the deployment? Hours, days, weeks, or months?</td>
<td>Dev/Test: 1 week Production: 3 months</td>
</tr>
<tr>
<td>Security</td>
<td>Do your security requirements and policies allow the usage of encrypted connections over the internet to connect to AWS or mandate the usage of private network connections?</td>
<td>Dev/Test: Site-to-Site VPN acceptable Production: private network required</td>
</tr>
<tr>
<td></td>
<td>When leveraging private network connections, does the network layer have to provide encryption in transit?</td>
<td>No, application layer encryption will be used.</td>
</tr>
<tr>
<td>SLA</td>
<td>Is hybrid connectivity SLA with service credits required? (yes/no)</td>
<td>Dev/Test: No Production: Yes</td>
</tr>
<tr>
<td></td>
<td>What is the uptime target? (e.g. 99.9%)</td>
<td>Dev/Test: N/A. Production: 99.99%</td>
</tr>
<tr>
<td>Connectivity type selection considerations</td>
<td>Requirement definition questions</td>
<td>Answers</td>
</tr>
<tr>
<td>--</td>
<td>----------------------------------</td>
<td>---------</td>
</tr>
<tr>
<td></td>
<td>Does the entire hybrid network adhere to the uptime target? (yes/no)</td>
<td>Dev/Test: N/A. Production: Yes.</td>
</tr>
<tr>
<td>Performance</td>
<td>What is the required throughput? (e.g. 10Gbps symmetric)</td>
<td>Dev/Test: 100 Mbps Production: 500Mbps growing to 2Gbps</td>
</tr>
<tr>
<td></td>
<td>What is the maximum acceptable latency between AWS and on-premises network? (e.g. under 10ms at p99)</td>
<td>Dev/Test: no hard requirements. Production: less than 30 ms.</td>
</tr>
<tr>
<td></td>
<td>What is the maximum acceptable network variance (jitter)?</td>
<td>Dev/Test: no hard requirements. Production: minimum jitter required.</td>
</tr>
<tr>
<td>Cost</td>
<td>How much data would you send to AWS per month?</td>
<td>Dev/Test: 2TB Production: 20TB growing to 50TB</td>
</tr>
<tr>
<td></td>
<td>How much data would you send from AWS per month?</td>
<td>Dev/Test: 1TB Production: 10TB growing to 25TB</td>
</tr>
<tr>
<td></td>
<td>Is this connectivity permanent?</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Based on requirements received the architecture team followed the connectivity type decision tree from Figure 6 (found in connectivity type selection summary section). It allowed the architecture team to decide on the connectivity type for the development and test environment as well as for the production environment. For the production environment, they considered the immediate as well as the upcoming requirements. As illustrated on the Figure 17, for development and test Example Corp. Automotive will establish a site to site VPN over the internet. For production they are going to work with a service provider to connect their corporate network with AWS Direct Connect. Example Corp. Automotive initially considered using a Direct Connect Hosted Connection, however due to the requirements for an AWS provided SLA they selected Direct Connect Dedicated Connections.
After deciding on the connectivity type, the next step is to capture the requirements which impacts the connectivity design selection. This is related with the logical design, such how the connections are configured and which AWS services to use to support business and technical requirements.

To capture the scalability and communication model requirements the architecture team used the requirement definition questions from the associated sections of this whitepaper. The requirements related with those two considerations are summarized on the table below.

Table 3 – Example Corp. Automotive connectivity design inputs

<table>
<thead>
<tr>
<th>Connectivity design selection considerations</th>
<th>Requirement definition questions</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scalability</td>
<td>What is the current or anticipated number of VPCs which require connectivity to on-premises sites?</td>
<td>2 initially, growing to 30 in 6 months.</td>
</tr>
<tr>
<td></td>
<td>Are these VPCs deployed in a single AWS Region or multiple Regions?</td>
<td>Single Region.</td>
</tr>
<tr>
<td></td>
<td>How many on-premises sites need to be connected to AWS?</td>
<td>2 data centers.</td>
</tr>
<tr>
<td></td>
<td>How many customer gateway devices (e.g. routers) you have, per site that need to connect to AWS?</td>
<td>2 routers per data center.</td>
</tr>
</tbody>
</table>
Connectivity design selection considerations

<table>
<thead>
<tr>
<th>Requirement definition questions</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>How many routes are expected to be advertised to AWS VPCs as well as the number of expected routes to be received from AWS side?</td>
<td>Routes to be advertised to AWS: 20 routes. Routes to be received from AWS: 1 /16 route.</td>
</tr>
<tr>
<td>Is there any plan to consider bandwidth increase of the connection to AWS, in the near future?</td>
<td>Dev/Test: 100 Mbps. Production: 500Mbps growing to 2Gbps.</td>
</tr>
</tbody>
</table>

Connectivity Design Models

<table>
<thead>
<tr>
<th>Requirement definition questions</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is there a requirement for inter-VPC communication to be enabled (within a Region and/or across Regions)?</td>
<td>Yes, within an AWS Region.</td>
</tr>
<tr>
<td>Is there a requirement to access AWS public endpoints services directly from on-premises?</td>
<td>Yes.</td>
</tr>
<tr>
<td>Is there a requirement to access AWS services using VPC endpoints from on-premises?</td>
<td>No.</td>
</tr>
</tbody>
</table>

Based on inputs, the architecture team followed the decision tree from on section XXX (Connectivity Design Model). After anticipating that the number of VPCs is going to grow from 2 to 30 in the next 6 months, the architecture team decided to use AWS Transit Gateway as the termination gateway for the connection as well as for inter-VPC routing. Independent AWS Transit Gateways will be used to terminate the VPN connection used for development and testing and the production connectivity with AWS Direct Connect. The usage of separated AWS Transit Gateways makes change management simpler and provide a clear demarcation between dev/test and production environments. For the production, AWS Direct Connect gateway is required due to AWS Transit Gateway. Public VIF will be used for access to AWS public endpoint services. Figure 18 illustrates the path taken on the decision tree based on requirements collected.
After deciding on the solution to meet the scalability and communication model requirements, the next step is to capture the requirements associated with reliability. This is related with the required level of availability and resilience.

To capture the reliability requirements the architecture team used the requirement definition questions from the associated section of this whitepaper. The requirements are summarized in the table below.

Table 4 – Example Automotive Corp reliability inputs

<table>
<thead>
<tr>
<th>Connectivity design selection considerations</th>
<th>Requirement definition questions</th>
<th>Answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reliability</td>
<td>What is the impact magnitude on the business in case of a connectivity failure to AWS?</td>
<td>Dev/Test: Low. Production: High.</td>
</tr>
<tr>
<td></td>
<td>From business point of view, is the cost following a connectivity failure to AWS, overweighs the cost of deploying a highly reliable connectivity model to AWS?</td>
<td>Dev/Test: No Production: Yes.</td>
</tr>
</tbody>
</table>

Based on inputs received the architecture team followed the decision tree from the reliability considerations sections covered previously on this whitepaper. After considering the uptime target of 99.99% for the production connectivity and the high business impact if there was a service interruption, the architecture team decided to use 2 Direct Connect locations and have 2 links from each on-premises data center to each Direct Connect location (4 links in total). The VPN connectivity used for development and testing will also use two VPN connections for additional redundancy. Using route engineering techniques discussed in the reliability section, connectivity will be configured as follows:
Hybrid Connectivity AWS Whitepaper
Architecture selected by Example Corp. Automotive

- For development and testing, traffic is going to be load balanced using ECMP over the 2 tunnels going to the primary data center. This allows for higher throughput. The tunnels going to the secondary data center are going to be used in case of failure of the primary tunnels.
- For production, the latency between on-premises and AWS over either one of the direct connect locations is very similar. In this case, it has been decided to load balance the traffic between AWS and on-premises over the two connections going to the primary data center for the on-premises systems deployed in the primary data center. Similarly, for on-premises systems running in the secondary data center traffic is going to be load balanced between the two connections to the secondary data center. In case of failure of the connections BGP will facilitate an automated failover.

Figure 19 illustrates the path taken on the decision tree based on requirements collected.

![Decision Tree Diagram](image)

Figure 19 – Example Corp. Automotive reliability decision tree

Architecture selected by Example Corp. Automotive

The following diagram illustrates the architecture selected by Example Corp. Automotive after collecting the requirements and navigating the decision trees covered in the previous sections of this whitepaper.

It uses AWS S2S VPN over the internet terminating on AWS Transit Gateway for development and testing. It then uses AWS Direct Connect with Direct Connect gateway and a second AWS Transit Gateway for the production traffic. AWS Transit Gateway is used for Inter-VPC routing. From a data path perspective, the VPN tunnels for the primary data center are used as primary paths for development and testing, with the tunnels to the secondary data center used as failover paths. For the production traffic, all connections are used simultaneously. Traffic from AWS prefers the most optional network connection based on the data center in which the on-premises system is located. Example Corp. Automotive use similar route engineering techniques to prefer appropriate path when traffic is sent to AWS ensuring symmetric traffic paths are used to minimize the use of the corporate network between on-premises primary and secondary data centers.
Figure 20 – Example Corp. Automotive selected hybrid connectivity model
Conclusion

Once organization makes a decision to use AWS Cloud, a hybrid connectivity model is almost always required. To provide the connectivity, a hybrid network can be built with the most applicable and optimal solution following the connectivity model selection process outlined in this whitepaper. The process consists of considerations arranged in a logical order. The order closely resembles a mental model followed by a seasoned network and cloud architects. Within each group of considerations, decision trees allow for rapid connectivity model selection even with limited input requirements. You may find that some considerations, corresponding impact, and consequences point to different solutions. In those cases, as a decision maker, you may need to compromise on some requirements and select the most optimal solution that meets your business and technical requirements.
Contributors

Contributors to this document include:

- Marwan Al Shawi, Solutions Architect, Amazon Web Services
- Santiago Freitas, Head of Technology, Amazon Web Services
- Evgeny Vaganov, Specialist Solutions Architect – Networking, Amazon Web Services
- Tom Adamski, Specialist Solutions Architect – Networking, Amazon Web Services
Further Reading

- Building a Scalable and Secure Multi-VPC AWS Network Infrastructure
- Hybrid Cloud DNS Options for Amazon VPC
- Amazon Virtual Private Cloud Connectivity Options
- Amazon Virtual Private Cloud Documentation
- AWS Direct Connect Documentation
- What’s the difference between a hosted virtual interface (VIF) and a hosted connection?
Document Revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

<table>
<thead>
<tr>
<th>update-history-change</th>
<th>update-history-description</th>
<th>update-history-date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial publication (p. 45)</td>
<td>Whitepaper first published</td>
<td>September 22, 2020</td>
</tr>
</tbody>
</table>
Notices

Customers are responsible for making their own independent assessment of the information in this document. This document: (a) is for informational purposes only, (b) represents current AWS product offerings and practices, which are subject to change without notice, and (c) does not create any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or services are provided “as is” without warranties, representations, or conditions of any kind, whether express or implied. The responsibilities and liabilities of AWS to its customers are controlled by AWS agreements, and this document is not part of, nor does it modify, any agreement between AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.