
AWS Whitepaper

Overview of Deployment Options on AWS

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Overview of Deployment Options on AWS AWS Whitepaper

Overview of Deployment Options on AWS: AWS Whitepaper

Copyright © 2024 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

Overview of Deployment Options on AWS AWS Whitepaper

Table of Contents

Abstract .. 1
Abstract ... 1

Introduction ... 2
AWS Deployment Services .. 3

AWS CloudFormation ... 3
AWS Elastic Beanstalk ... 6
AWS CodeDeploy .. 9
Amazon Elastic Container Service .. 11
Amazon Elastic Kubernetes Service ... 13
AWS OpsWorks ... 16
Additional Deployment Services ... 19

Deployment Strategies .. 21
Prebaking vs. Bootstrapping AMIs .. 21
Blue/Green Deployments ... 22
Rolling Deployments ... 22
In-Place Deployments ... 22
Combining Deployment Services .. 23

Conclusion .. 24
Contributors ... 25
Further Reading ... 26
Document Revisions .. 27
Notices .. 28

iii

Overview of Deployment Options on AWS AWS Whitepaper

Overview of Deployment Options on AWS

Publication date: June 3, 2020 (Document Revisions)

Abstract

Amazon Web Services (AWS) offers multiple options for provisioning infrastructure and deploying
your applications. Whether your application architecture is a simple three-tier web application or
a complex set of workloads, AWS offers deployment services to meet the requirements of your
application and your organization.

This whitepaper is intended for those individuals looking for an overview of the different
deployment services offered by AWS. It lays out common features available in these deployment
services, and articulates basic strategies for deploying and updating application stacks.

Abstract 1

Overview of Deployment Options on AWS AWS Whitepaper

Introduction

Designing a deployment solution for your application is a critical part of building a well-architected
application on AWS. Based on the nature of your application and the underlying services (compute,
storage, database, etc.) that it requires, you can use AWS services to create a flexible deployment
solution that can be tailored to fit the needs of both your application and your organization.

The constantly growing catalog of AWS services not only complicates the process of deciding which
services will compose your application architecture, but also the process of deciding how you will
create, manage, and update your application. When designing a deployment solution on AWS, you
should consider how your solution will address the following capabilities:

• Provision: create the raw infrastructure (Amazon EC2, Amazon Virtual Private Cloud [Amazon
VPC], subnets, etc.) or managed service infrastructure (Amazon Simple Storage Service (Amazon
S3), Amazon Relational Database Service [Amazon RDS], Amazon CloudFront, etc.) required for
your application.

• Configure: customize your infrastructure based on environment, runtime, security, availability,
performance, network or other application requirements.

• Deploy: install or update your application component(s) onto infrastructure resources, and
manage the transition from a previous application version to a new application version.

• Scale: proactively or reactively adjust the amount of resources available to your application
based on a set of user-defined criteria.

• Monitor: provide visibility into the resources that are launched as part of your application
architecture. Track resources usage, deployment success/failure, application health, application
logs, configuration drift, and more.

This whitepaper highlights the deployment services offered by AWS and outlines strategies for
designing a successful deployment architecture for any type of application.

2

https://aws.amazon.com/ec2/
https://aws.amazon.com/vpc/
https://aws.amazon.com/s3/
https://aws.amazon.com/rds/
https://aws.amazon.com/cloudfront/

Overview of Deployment Options on AWS AWS Whitepaper

AWS Deployment Services
The task of designing a scalable, efficient, and cost-effective deployment solution should not
be limited to the issue of how you will update your application version, but should also consider
how you will manage supporting infrastructure throughout the complete application lifecycle.
Resource provisioning, configuration management, application deployment, software updates,
monitoring, access control, and other concerns are all important factors to consider when
designing a deployment solution.

AWS provides a number of services that provide management capabilities for one or more
aspects of your application lifecycle. Depending on your desired balance of control (i.e., manual
management of resources) versus convenience (i.e., AWS management of resources) and the
type of application, these services can be used on their own or combined to create a feature-rich
deployment solution. This section will provide an overview of the AWS services that can be used to
enable organizations to more rapidly and reliably build and deliver applications.

AWS CloudFormation

AWS CloudFormation is a service that enables customers to provision and manage almost any
AWS resource using a custom template language expressed in YAML or JSON. A CloudFormation
template creates infrastructure resources in a group called a “stack,” and allows you to define
and customize all components needed to operate your application while retaining full control
of these resources. Using templates introduces the ability to implement version control on your
infrastructure, and the ability to quickly and reliably replicate your infrastructure.

CloudFormation offers granular control over the provisioning and management of all application
infrastructure components, from low-level components such as route tables or subnet
configurations, to high-level components such as CloudFront distributions. CloudFormation
is commonly used with other AWS deployment services or third-party tools; combining
CloudFormation with more specialized deployment services to manage deployments of application
code onto infrastructure components.

AWS offers extensions to the CloudFormation service in addition to its base features:

• AWS Cloud Development Kit (AWS CDK) (AWS CDK) is an open source software development kit
(SDK) to programmatically model AWS infrastructure with TypeScript, Python, Java, or .NET.

• AWS Serverless Application Model (SAM) is an open source framework to simplify building
serverless applications on AWS.

AWS CloudFormation 3

https://aws.amazon.com/cloudformation/
https://aws.amazon.com/cdk/
https://aws.amazon.com/serverless/sam/

Overview of Deployment Options on AWS AWS Whitepaper

Table 1: AWS CloudFormation deployment features

Capability Description

Provision CloudFormation will automatically create and
update infrastructure components that are
defined in a template.

Refer to AWS CloudFormation Best Practices
for more details on creating infrastructure
using CloudFormation templates.

Configure CloudFormation templates offer extensive
flexibility to customize and update all infrastru
cture components.

Refer to CloudFormation Template Anatomy
for more details on customizing templates.

Deploy Update your CloudFormation templates to
alter the resources in a stack. Depending on
your application architecture, you may need
to use an additional deployment service to
update the application version running on
your infrastructure.

Refer to Deploying Applications on EC2 with
AWS CloudFormation for more details on how
CloudFormation can be used as a deployment
solution.

Scale CloudFormation will not automatically handle
infrastructure scaling on your behalf; however,
you can configure auto scaling policies for
your resources in a CloudFormation template.

Monitor CloudFormation provides native monitoring of
the success or failure of updates to infrastru
cture defined in a template, as well as “drift

AWS CloudFormation 4

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-anatomy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/deploying.applications.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/deploying.applications.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

detection” to monitor when resources defined
in a template do not meet specifications.
Additional monitoring solutions will need to
be in place for application-level monitoring
and metrics.

Refer to Monitoring the Progress of a Stack
Update for more details on how CloudForm
ation monitors infrastructure updates.

The following diagram shows a common use case for CloudFormation. Here, CloudFormation
templates are created to define all infrastructure components necessary to create a simple three-
tier web application. In this example, we are using bootstrap scripts defined in CloudFormation
to deploy the latest version of our application onto EC2 instances; however, it is also a common
practice to combine additional deployment services with CloudFormation (using CloudFormation
only for its infrastructure management and provisioning capabilities). Note that more than one
CloudFormation template is used to create the infrastructure.

AWS CloudFormation 5

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-monitor-stack.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/using-cfn-updating-stacks-monitor-stack.html

Overview of Deployment Options on AWS AWS Whitepaper

Figure 1: AWS CloudFormation use case

AWS Elastic Beanstalk

AWS Elastic Beanstalk is an easy-to-use service for deploying and scaling web applications and
services developed with Java, .NET, PHP, Node.js, Python, Ruby, Go, or Docker on familiar servers
such as Apache, Nginx, Passenger, and IIS. Elastic Beanstalk is a complete application management
solution, and manages all infrastructure and platform tasks on your behalf.

With Elastic Beanstalk, you can quickly deploy, manage, and scale applications without the
operational burden of managing infrastructure. Elastic Beanstalk reduces management complexity
for web applications, making it a good choice for organizations that are new to AWS or wish to
deploy a web application as quickly as possible.

When using Elastic Beanstalk as your deployment solution, simply upload your source code
and Elastic Beanstalk will provision and operate all necessary infrastructure, including servers,
databases, load balancers, networks, and auto scaling groups. Although these resources are created
on your behalf, you retain full control of these resources, allowing developers to customize as
needed.

AWS Elastic Beanstalk 6

https://aws.amazon.com/elasticbeanstalk/

Overview of Deployment Options on AWS AWS Whitepaper

Table 2: AWS Elastic Beanstalk Deployment Features

Capability Description

Provision Elastic Beanstalk will create all infrastructure
components necessary to operate a web
application or service that runs on one of its
supported platforms. If you need additiona
l infrastructure, this will have to be created
outside of Elastic Beanstalk.

Refer to Elastic Beanstalk Platforms for more
details on the web application platforms
supported by Elastic Beanstalk.

Configure Elastic Beanstalk provides a wide range of
options for customizing the resources in your
environment.

Refer to Configuring Elastic Beanstalk
 environments for more information about
customizing the resources that are created by
Elastic Beanstalk.

Deploy Elastic Beanstalk automatically handles
application deployments, and creates an
environment that runs a new version of your
application without impacting existing users.

Refer to Deploying Applications to AWS Elastic
Beanstalk for more details on application
deployments with Elastic Beanstalk.

Scale Elastic Beanstalk will automatically handle
scaling of your infrastructure with managed
auto scaling groups for your application
instances.

AWS Elastic Beanstalk 7

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts-all-platforms.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/customize-containers.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.deploy-existing-version.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

Refer to Auto Scaling Group for your Elastic
Beanstalk Environment for more details about
auto scaling with Elastic Beanstalk.

Monitor Elastic Beanstalk offers built-in environme
nt monitoring for applications including
deployment success/failures, environment
health, resource performance, and application
logs.

Refer to Monitoring an Environment for more
details on full-stack monitoring with Elastic
Beanstalk.

Elastic Beanstalk makes it easy for web applications to be quickly deployed and managed in AWS.
The following example shows a general use case for Elastic Beanstalk as it is used to deploy a
simple web application.

AWS Elastic Beanstalk 8

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.as.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-health.html

Overview of Deployment Options on AWS AWS Whitepaper

Figure 2: AWS Elastic Beanstalk use case

AWS CodeDeploy

AWS CodeDeploy is a fully managed deployment service that automates application deployments
to compute services such as Amazon EC2, Amazon Elastic Container Service (Amazon ECS), AWS
Lambda, or on-premises servers. Organizations can use CodeDeploy to automate deployments
of an application and remove error prone manual operations from the deployment process.
CodeDeploy can be used with a wide variety of application content including code, serverless
functions, configuration files, and more.

CodeDeploy is intended to be used as a “building block” service that is focused on helping
application developers deploy and update software that is running on existing infrastructure. It is
not an end-to-end application management solution, and is intended to be used in conjunction
with other AWS deployment services such as AWS CodeStar, AWS CodePipeline, other AWS
Developer Tools, and third-party services (see AWS CodeDeploy Product Integrations for
a complete list of product integrations) as part of a complete CI/CD pipeline. Additionally,
CodeDeploy does not manage the creation of resources on behalf of the user.

Table 3: AWS CodeDeploy deployment features

Capability Description

Provision CodeDeploy is intended for use with existing
compute resources and does not create
resources on your behalf. CodeDeploy requires
compute resources to be organized into a
construct called a “deployment group” in
order to deploy application content.

Refer to Working with Deployment Groups
in CodeDeploy for more details on linking
CodeDeploy to compute resources.

Configure CodeDeploy uses an application specification
file to define customizations for compute
resources.

AWS CodeDeploy 9

https://aws.amazon.com/codedeploy/
https://aws.amazon.com/ecs/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/
https://aws.amazon.com/codestar/
https://aws.amazon.com/codepipeline/
https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/products/developer-tools/
https://aws.amazon.com/codedeploy/product-integrations/
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployment-groups.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

Refer to CodeDeploy AppSpec File Reference
 for more details on the resource customiza
tions with CodeDeploy.

Deploy Depending on the type of compute resource
that CodeDeploy is used with, CodeDeploy
offers different strategies for deploying your
application.

Refer to Working with Deployments in
CodeDeploy for more details on the types of
deployment processes that are supported.

Scale CodeDeploy does not support scaling of your
underlying application infrastructure; however,
depending on your deployment configura
tions, it may create additional resources to
support blue/green deployments

Monitor CodeDeploy offers monitoring of the success
or failure of deployments, as well as a history
of all deployments, but does not provide
performance or application-level metrics.

Refer to Monitoring Deployments in
CodeDeploy for more details on the types of
monitoring capabilities offered by CodeDeploy

The following diagram illustrates a general use case for CodeDeploy as part of a complete CI/CD
solution. In this example, CodeDeploy is used in conjunction with additional AWS Developer Tools,
namely AWS CodePipeline (automate CI/CD pipelines), AWS CodeBuild (build and test application
components), and AWS CodeCommit (source code repository) to deploy an application onto a
group of EC2 instances.

AWS CodeDeploy 10

https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/reference-appspec-file.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployments.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/deployments.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring.html
https://docs.aws.amazon.com/codedeploy/latest/userguide/monitoring.html
https://aws.amazon.com/codebuild/
https://aws.amazon.com/codecommit/

Overview of Deployment Options on AWS AWS Whitepaper

Figure 3: AWS CodeDeploy use case

Amazon Elastic Container Service

Amazon Elastic Container Service (Amazon ECS) is a fully managed container orchestration
service that supports Docker containers and allows you to easily run applications on a managed
cluster. Amazon ECS eliminates the need to install, operate, and scale container management
infrastructure, and simplifies the creation of environments with familiar AWS core features like
Security Groups, Elastic Load Balancing, and AWS Identity and Access Management (IAM).

When running applications on Amazon ECS, you can choose to provide the underlying compute
power for your containers with Amazon EC2 instances or with AWS Fargate, a serverless compute
engine for containers. In either case, Amazon ECS automatically places and scales your containers
onto your cluster according to configurations defined by the user. Although Amazon ECS does not
create infrastructure components such as Load Balancers or IAM Roles on your behalf, the Amazon
ECS service provides a number of APIs to simplify the creation and use of these resources in an
Amazon ECS cluster.

Amazon ECS allows developers to have direct, fine-grained control over all infrastructure
components, allowing for the creation of custom application architectures. Additionally, Amazon
ECS supports different deployment strategies to update your application container images.

Table 4: Amazon ECS deployment features

Capability Description

Provision Amazon ECS will provision new application
container instances and compute resources
based on scaling policies and Amazon ECS

Amazon Elastic Container Service 11

https://docs.aws.amazon.com/vpc/latest/userguide/VPC_SecurityGroups.html
https://aws.amazon.com/elasticloadbalancing/
https://aws.amazon.com/iam/?nc=bc&pg=f-mr
https://aws.amazon.com/fargate/

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

configurations. Infrastructure resources such
as Load Balancers will need to be created
outside of Amazon ECS.

Refer to Getting Started with Amazon ECS for
more details on the types of resources that
can be created with Amazon ECS.

Configure Amazon ECS supports customization of the
compute resources created to run a container
ized application, as well as the runtime
conditions of the application containers
(e.g., environment variables, exposed ports,
reserved memory/CPU). Customization of
underlying compute resources is only available
if using Amazon EC2 instances.

Refer to Creating a Cluster for more details on
how to customize an Amazon ECS cluster to
run containerized applications.

Deploy Amazon ECS supports several deployment
strategies for you containerized applications.

Refer to Amazon ECS Deployment Types for
more details on the types of deployment
processes that are supported.

Scale Amazon ECS can be used with auto-scaling
policies to automatically adjust the number
of containers running in your Amazon ECS
cluster.

Refer to Service Auto Scaling for more details
on configuring auto scaling for your container
ized applications on Amazon ECS.

Amazon Elastic Container Service 12

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ECS_GetStarted.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/create_cluster.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-types.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/service-auto-scaling.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

Monitor Amazon ECS supports monitoring compute
resources and application containers with
CloudWatch.

Refer to Monitoring Amazon ECS for more
details on the types of monitoring capabilities
offered by Amazon ECS.

The following diagram illustrates Amazon ECS being used to manage a simple containerized
application. In this example, infrastructure components are created outside of Amazon ECS, and
Amazon ECS is used to manage the deployment and operation of application containers on the
cluster

Figure 4: Amazon ECS use case

Amazon Elastic Kubernetes Service

Amazon Elastic Kubernetes Service (Amazon EKS) is a fully-managed, certified Kubernetes
conformant service that simplifies the process of building, securing, operating, and maintaining
Kubernetes clusters on AWS. Amazon EKS integrates with core AWS services such as CloudWatch,
Auto Scaling Groups, and IAM to provide a seamless experience for monitoring, scaling and load
balancing your containerized applications.

Amazon Elastic Kubernetes Service 13

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/ecs_monitoring.html
https://aws.amazon.com/eks/
https://kubernetes.io/

Overview of Deployment Options on AWS AWS Whitepaper

Amazon EKS also integrates with AWS App Mesh and provides a Kubernetes-native experience to
consume service mesh features and bring rich observability, traffic controls and security features
to applications. Amazon EKS provides a scalable, highly-available control plane for Kubernetes
workloads. When running applications on Amazon EKS, as with Amazon ECS, you can choose to
provide the underlying compute power for your containers with EC2 instances or with AWS Fargate.

Table 5: Amazon EKS deployment features

Capability Description

Provision Amazon EKS provisions certain resources to
support containerized applications:

• Load Balancers, if needed.

• Compute Resources (“workers”). Amazon
EKS supports Windows and Linux.

• Application Container Instances (“pods”).

Refer to Getting Started with Amazon EKS for
more details on Amazon EKS cluster provision
ing.

Configure Amazon EKS supports customization of the
compute resources (“workers”) if using EC2
instances to supply compute power. EKS
also supports customization of the runtime
conditions of the application containers
(“pods”).

Refer to Worker Nodes and Fargate Pod
Configuration documentation for more details.

Deploy Amazon EKS supports the same deploymen
t strategies as Kubernetes, see Writing a
Kubernetes Deployment Spec -> Strategy for
more details.

Amazon Elastic Kubernetes Service 14

https://aws.amazon.com/app-mesh/
https://docs.aws.amazon.com/eks/latest/userguide/getting-started-console.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html
https://docs.aws.amazon.com/eks/latest/userguide/fargate-pod-configuration.html
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/#strategy

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

Scale Amazon EKS scales workers with Kubernetes
Cluster Autoscaler, and pods with Kubernete
s Horizontal Pod Autoscaler and Kubernetes
Vertical Pod Autoscaler.

Monitor The Amazon EKS control plane logs provide
audit and diagnostic information directly to
CloudWatch Logs. The Amazon EKS control
plane also integrates with AWS CloudTrail to
record actions taken in Amazon EKS.

Refer to Logging and Monitoring Amazon EKS
for more details.

Amazon EKS allows organizations to leverage open source Kubernetes tools and plugins, and can
be a good choice for organizations migrating to AWS with existing Kubernetes environments.
The following diagram illustrates Amazon EKS being used to manage a general containerized
application.

Amazon Elastic Kubernetes Service 15

https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/cluster-autoscaler.html
https://docs.aws.amazon.com/eks/latest/userguide/logging-monitoring.html

Overview of Deployment Options on AWS AWS Whitepaper

Figure 5: Amazon EKS use case

AWS OpsWorks

AWS OpsWorks is a configuration management service that enables customers to construct,
manage, and operate a wide variety of application architectures, from simple web applications to
highly complex custom applications. Organizations deploying applications with OpsWorks use the
automation platforms Chef or Puppet to manage key operational activities like server provisioning,
software configurations, package installations, database setups, scaling, and code deployments.
There are three ways to use OpsWorks:

• AWS OpsWorks for Chef Automate: fully managed configuration management service that
hosts Chef Automate.

• AWS OpsWorks for Puppet Enterprise: fully managed configuration management service that
hosts Puppet Enterprise.

• AWS OpsWorks Stacks: application and server management service that supports modeling
applications using the abstractions of “stacks” and “layers” that depend on Chef recipes for
configuration management.

AWS OpsWorks 16

https://aws.amazon.com/opsworks/
https://www.chef.io/
https://puppet.com/
https://aws.amazon.com/opsworks/chefautomate/
https://aws.amazon.com/opsworks/puppetenterprise/
https://aws.amazon.com/opsworks/stacks/

Overview of Deployment Options on AWS AWS Whitepaper

With OpsWorks for Chef Automate and OpsWorks for Puppet Enterprise, AWS creates a
fully managed instance of Chef or Puppet running on Amazon EC2. This instance manages
configuration, deployment, and monitoring of nodes in your environment that are registered to the
instance. When using OpsWorks with Chef Automate or Puppet Enterprise, additional services (e.g.,
CloudFormation) may need to be used to create and manage infrastructure components that are
not supported by OpsWorks.

OpsWorks Stacks provides a simple and flexible way to create and manage application
infrastructure. When working with OpsWorks Stacks, you model your application as a “stack”
containing different “layers.” A layer contains infrastructure components necessary to support a
particular application function, such as load balancers, databases, or application servers. OpsWorks
Stacks does not require the creation of a Chef server, but uses Chef recipes for each layer to
handle tasks such as installing packages on instances, deploying applications, and managing other
resource configurations. OpsWorks Stacks will create and provision infrastructure on your behalf,
but does not support all AWS services.

Provided that a node is network reachable from an OpsWorks Puppet or Chef instance, any node
can be registered with the OpsWorks, making this solution a good choice for organizations already
using Chef or Puppet and working in a hybrid environment. With OpsWorks Stacks, an on-premises
node must be able to communicate with public AWS endpoints.

Table 6: AWS OpsWorks deployment features

Capability Description

Provision OpsWorks Stacks can create and manage
certain AWS services as part of your applicati
on using Chef recipes. With OpsWorks for Chef
Automate or Puppet Enterprise, infrastructure
must be created elsewhere and registered to
the Chef or Puppet instance.

Refer to Create a New Stack for more details
on creating resources with OpsWorks Stacks.

Configure All OpsWorks operating models support
configuration management of registered
nodes. OpsWorks Stacks supports customiza

AWS OpsWorks 17

https://docs.aws.amazon.com/opsworks/latest/userguide/workingstacks-creating.html

Overview of Deployment Options on AWS AWS Whitepaper

Capability Description

tion of other infrastructure in your environme
nt through layer customization.

Refer to OpsWorks Layer Basics for more
details on customizing resources with
OpsWorks Layers.

Deploy All OpsWorks operating models support
deployment and update of applications
running on registered nodes.

Refer to Deploying Apps for more details on
how to deploy applications with OpsWorks
Stacks.

Scale OpsWorks Stacks can handle automatically
scaling instances in your environment based
on changes in incoming traffic.

Refer to Using Automatic Load-based
Scaling for more details on auto scaling with
OpsWorks Stacks.

Monitor OpsWorks provides several features to
monitor your application infrastructure and
deployment success. In addition to Chef/Pupp
et logs, OpsWorks provides a set of configura
ble Amazon CloudWatch and AWS CloudTrail
metrics for full-stack monitoring

Refer to Monitoring Stacks using Amazon
CloudWatch for more details on resource
monitoring in OpsWorks.

OpsWorks provides a complete, flexible, and automated solution that works with existing and
popular tools while allowing application owners to maintain full-stack control of an application.

AWS OpsWorks 18

https://docs.aws.amazon.com/opsworks/latest/userguide/workinglayers-basics.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workingapps-deploying.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling-loadbased.html
https://docs.aws.amazon.com/opsworks/latest/userguide/workinginstances-autoscaling-loadbased.html
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudtrail/
https://docs.aws.amazon.com/opsworks/latest/userguide/monitoring-cloudwatch.html
https://docs.aws.amazon.com/opsworks/latest/userguide/monitoring-cloudwatch.html

Overview of Deployment Options on AWS AWS Whitepaper

The following example shows a typical use case for AWS OpsWorks Stacks as it is used to create
and manage a three-tier web application.

Figure 6: AWS OpsWorks Stacks use case

This next example shows a typical use case for AWS OpsWorks for Chef Automate or Puppet
Enterprise as it is used to manage the compute instances of a web application.

Figure 7: AWS OpsWorks with Chef Automate or Puppet Enterprise use case

Additional Deployment Services

Amazon Simple Storage Service (Amazon S3) can be used as a web server for static content and
single-page applications (SPA). Combined with Amazon CloudFront to increase performance in
static content delivery, using Amazon S3 can be a simple and powerful way to deploy and update

Additional Deployment Services 19

Overview of Deployment Options on AWS AWS Whitepaper

static content. More details on this approach can be found in Hosting Static Websites on AWS
whitepaper.

Additional Deployment Services 20

https://docs.aws.amazon.com/whitepapers/latest/build-static-websites-aws/build-static-websites-aws.html

Overview of Deployment Options on AWS AWS Whitepaper

Deployment Strategies

In addition to selecting the right tools to update your application code and supporting
infrastructure, implementing the right deployment processes is a critical part of a complete, well-
functioning deployment solution. The deployment processes that you choose to update your
application can depend on your desired balance of control, speed, cost, risk tolerance, and other
factors.

Each AWS deployment service supports a number of deployment strategies. This section will
provide an overview of general-purpose deployment strategies that can be used with your
deployment solution.

Prebaking vs. Bootstrapping AMIs

If your application relies heavily on customizing or deploying applications onto Amazon EC2
instances, then you can optimize your deployments through bootstrapping and prebaking practices.

Installing your application, dependencies, or customizations whenever an Amazon EC2 instance is
launched is called bootstrapping an instance. If you have a complex application or large downloads
required, this can slow down deployments and scaling events.

An Amazon Machine Image (AMI) provides the information required to launch an instance
(operating systems, storage volumes, permissions, software packages, etc.). You can launch
multiple, identical instances from a single AMI. Whenever an EC2 instance is launched, you select
the AMI that is to be used as a template. Prebaking is the process of embedding a significant
portion of your application artifacts within an AMI.

Prebaking application components into an AMI can speed up the time to launch and operationalize
an Amazon EC2 instance. Prebaking and bootstrapping practices can be combined during
the deployment process to quickly create new instances that are customized to the current
environment.

Refer to Best practices for building AMIs for more details on creating optimized AMIs for your
application.

Prebaking vs. Bootstrapping AMIs 21

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html

Overview of Deployment Options on AWS AWS Whitepaper

Blue/Green Deployments

A blue/green deployment is a deployment strategy in which you create two separate, but
identical environments. One environment (blue) is running the current application version and
one environment (green) is running the new application version. Using a blue/green deployment
strategy increases application availability and reduces deployment risk by simplifying the rollback
process if a deployment fails. Once testing has been completed on the green environment, live
application traffic is directed to the green environment and the blue environment is deprecated.

A number of AWS deployment services support blue/green deployment strategies including
Elastic Beanstalk, OpsWorks, CloudFormation, CodeDeploy, and Amazon ECS. Refer to Blue/Green
Deployments on AWS for more details and strategies for implementing blue/green deployment
processes for your application.

Rolling Deployments

A rolling deployment is a deployment strategy that slowly replaces previous versions of an
application with new versions of an application by completely replacing the infrastructure on which
the application is running. For example, in a rolling deployment in Amazon ECS, containers running
previous versions of the application will be replaced one-by-one with containers running new
versions of the application.

A rolling deployment is generally faster than a blue/green deployment; however, unlike a blue/
green deployment, in a rolling deployment there is no environment isolation between the old
and new application versions. This allows rolling deployments to complete more quickly, but also
increases risks and complicates the process of rollback if a deployment fails.

Rolling deployment strategies can be used with most deployment solutions. Refer to
CloudFormation Update Policies for more information on rolling deployments with
CloudFormation; Rolling Updates with Amazon ECS for more details on rolling deployments with
Amazon ECS; Elastic Beanstalk Rolling Environment Configuration Updates for more details on
rolling deployments with Elastic Beanstalk; and Using a Rolling Deployment in AWS OpsWorks for
more details on rolling deployments with OpsWorks.

In-Place Deployments

An in-place deployment is a deployment strategy that updates the application version without
replacing any infrastructure components. In an in-place deployment, the previous version of the

Blue/Green Deployments 22

https://d1.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf
https://d1.awsstatic.com/whitepapers/AWS_Blue_Green_Deployments.pdf
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-attribute-updatepolicy.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/deployment-type-ecs.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.rollingupdates.html
https://docs.aws.amazon.com/opsworks/latest/userguide/best-deploy.html#best-deploy-rolling

Overview of Deployment Options on AWS AWS Whitepaper

application on each compute resource is stopped, the latest application is installed, and the new
version of the application is started and validated. This allows application deployments to proceed
with minimal disturbance to underlying infrastructure.

An in-place deployment allows you to deploy your application without creating new infrastructure;
however, the availability of your application can be affected during these deployments. This
approach also minimizes infrastructure costs and management overhead associated with creating
new resources.

Refer to Overview of an in-place deployment for more details on using in-place deployment
strategies with CodeDeploy.

Combining Deployment Services

There is not a “one size fits all” deployment solution on AWS. In the context of designing a
deployment solution, it is important to consider the type of application as this can dictate which
AWS services are most appropriate. To deliver complete functionality to provision, configure,
deploy, scale, and monitor your application, it is often necessary to combine multiple deployment
services

A common pattern for applications on AWS is to use CloudFormation (and its extensions) to
manage general-purpose infrastructure, and use a more specialized deployment solution for
managing application updates. In the case of a containerized application, CloudFormation could be
used to create the application infrastructure, and Amazon ECS and Amazon EKS could be used to
provision, deploy, and monitor containers.

AWS deployment services can also be combined with third-party deployment services. This allows
organizations to easily integrate AWS deployment services into their existing CI/CD pipelines
or infrastructure management solutions. For example, OpsWorks can be used to synchronize
configurations between on-premises and AWS nodes, and CodeDeploy can be used with a number
of third-party CI/CD services as part of a complete pipeline.

Combining Deployment Services 23

https://docs.aws.amazon.com/codedeploy/latest/userguide/welcome.html#welcome-deployment-overview-in-place

Overview of Deployment Options on AWS AWS Whitepaper

Conclusion

AWS provides number of tools to simplify and automate the provisioning of infrastructure and
deployment of applications; each deployment service offers different capabilities for managing
applications. To build a successful deployment architecture, evaluate the available features of each
service against the needs your application and your organization.

24

Overview of Deployment Options on AWS AWS Whitepaper

Contributors

Contributors to this document include:

• Bryant Bost, AWS ProServe Consultant

25

Overview of Deployment Options on AWS AWS Whitepaper

Further Reading

For additional information, see:

• AWS Whitepapers page

26

https://aws.amazon.com/whitepapers/

Overview of Deployment Options on AWS AWS Whitepaper

Document Revisions

To be notified about updates to this whitepaper, subscribe to the RSS feed.

Change Description Date

Minor update Blue/Green Deployments
section revised for clarity.

April 8, 2021

Whitepaper updated Updated with latest services
and features.

June 3, 2020

Initial publication Whitepaper first published March 1, 2015

27

Overview of Deployment Options on AWS AWS Whitepaper

Notices

Customers are responsible for making their own independent assessment of the information in
this document. This document: (a) is for informational purposes only, (b) represents current AWS
product offerings and practices, which are subject to change without notice, and (c) does not create
any commitments or assurances from AWS and its affiliates, suppliers or licensors. AWS products or
services are provided “as is” without warranties, representations, or conditions of any kind, whether
express or implied. The responsibilities and liabilities of AWS to its customers are controlled by
AWS agreements, and this document is not part of, nor does it modify, any agreement between
AWS and its customers.

© 2020 Amazon Web Services, Inc. or its affiliates. All rights reserved.

28

	Overview of Deployment Options on AWS
	Table of Contents
	Overview of Deployment Options on AWS
	Abstract

	Introduction
	AWS Deployment Services
	AWS CloudFormation
	AWS Elastic Beanstalk
	AWS CodeDeploy
	Amazon Elastic Container Service
	Amazon Elastic Kubernetes Service
	AWS OpsWorks
	Additional Deployment Services

	Deployment Strategies
	Prebaking vs. Bootstrapping AMIs
	Blue/Green Deployments
	Rolling Deployments
	In-Place Deployments
	Combining Deployment Services

	Conclusion
	Contributors
	Further Reading
	Document Revisions
	Notices

