aws

Developer Guide

AWS X-Ray

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS X-Ray Developer Guide

AWS X-Ray: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS X-Ray Developer Guide

Table of Contents

WHRaAt iS AWS X-RAY? cuuiiiiiiiiiiiiineeessseenisssseecesss 1
Getting StArtedcccciiiiiiiieeeeeiiiiiieiiiiiitenetneenisisisseeesseesssass 4
ChoO0SING AN INEEIFACE a.uuuiiiiiiiiiiiiiiientiiiiiieeceitittanassssesssssseteesssnsane 6
USE @N SDK .ttt ettt sttt e a e et b e st a e et e bt s s st e et e s ae et e e st e sae s b enns 8
USE the ADOT SDK ...eoiiiiirieirinientetsestetetsestetsesse st eessestestesessestesassassessssessessessssessessesessessensesessessesens 9

USE The X-RAY SDK ...ttt te e s e s te e e e sa et e st et esse s s e s e e se s s essesse b assassassassesssassensansansans 10

USE @ CONSOLE .ttt sttt ettt ettt s s be st et s s e s b et e e s b et et saabastesassensesaesansansenenns 12
Use the Amazon CloudWatch CONSOLE ...ttt 12

USE the X-RAY CONSOLE ..ttt e e et et et este s e s e e e e et et e sbe s e sessnesnans 13
EXPLlore the X-RAY CONSOLE ...ttt sttt st sae st s e e a e et et e s s 14
TPACE IMNIAP ceeiiieiierciteectteecte et e e sre s e st e se st e sesatessseessseasssseasssseessssasssssessssesssssessssessssesssseessssaessnsaessnses 15
THACES ettt ettt et e et s a st a e et a e s bt e b et et eebe st e st s s e et e st e b e st e eat e s e et e st enees 22
FILLEr @XPIESSIONS ...veeeeeieieteteeteeeetee e ee e steste s e s teste s e e e e e et et e sa st assesseeseessensastessansansessasssessessensensansans 30
CroSS-aCCOUNT TFrACING ..viivieiiiirieeiecceeest et cete st e st e s sae e st e s st e s s e esssesssaessasssaasssesssaesssessseasssessssesseens 42
Tracing event-driven apPliCAtioNS ...ttt sae st s re e e nnens 46
HISEOGIAMIS .ottt et sa e s s e e s e e st e s b e s s sa e s b e e sa e s sesssaessa e saasssessssesssaesnsesssannns 49
INSIGIILS ettt ettt et e st e st et e e e e e et et et et e st e e s e e s e eaa e e et esaetentatesseeseesneneanaans 52
ANALYTICS oottt ettt et e st e st e e e e e e e e et et et et et e b e e e e r e e e et et e benteesaereenee e ententanaanes 59
GIOUPS eevtieeteeieeeeiteesueeetessseestessseesssessstesssesssaasssessssasssessssesssessssesssessssesssessssesssessssesssessseesssessssessssessaessseesne 67
SAMIPLING ettt ettt et e st e st e s ae s e e e e e s se e b e te b e st e beereeaeens e st eaebatenseeseeseenaenaanes 76
CONSOLE AEEP LINKING .ottt ettt te st e tesse e e e e e e e e et e b e stessassassessaenneneensansan 83

USE ThE X-RAY AP ...ttt sttt e it sae st e st e st e st s e e e e et e b e st et e aasseeseesaesaenaenaentensansanes 85
TULOTTAL oottt ettt st ettt et e st et e s b et et e e ae st esassa st et esessansenassesensenarsans 87

Y= g Te [TaTe [F- | = [O TSROSO 92
GEEEING AATA ettt et e st s e e e e e et e st e b e st e s ae e e e se e e et e tenaeaanes 97
CONFIGUIATION <.ttt et te s be st e e be e e e e e e e e et et e aessassaesaesaansensansanes 111
SAMIPLING ettt et e st et e st e et e e e e e e e s et et et e e seere e s e eaa e st et e tetentansaesaereeneenaan 118
SEGMENT AOCUMENTS ...ttt ettt e st e st et este e e e e e s e e et e st e tessassessessaensanaansansan 122
L0001 1= 1 3P 142
SEOMENTS ..ottt et st e et e e s ae e st e s sse e s ae e sae e st e s saessse s saesssessseesssaesstesssesssaessseesstesssesssaensees 142
SUDSEGIMENTES ...ttt te et e e e et e e e e e et et et e st e st e s sessessaesaensessassensansansansassesseensesaansans 143
SEIVICE GFAPHN ettt e ettt e st e st et e st e s e e e e e e e e te b e tessesseeseeseensansentantan 147
THACES ettt ettt et ettt ettt a e st e e e a e et e et e bt st et e e s e e b e e Rt s s e et e e Rt e b e et e st e eseennas 148

SAMIPLING ettt ettt e st e st e e e et e st et e st e s be s s e e s e e re e s et et et e seeseeseeReere et et et enteseereeseenaanes 149

AWS X-Ray Developer Guide

TrACING NEAMEN ..ttt e e ettt e st st e s b e st e s seesessa e s et et assassassassasseeseenean 150
FILLEI @XPIESSIONSeeceieeieteteiecteeteeee et e rtetestestestessesse e e et e s et et assessassassesssessensansansessansensassaesaensensansantans 151
GIOUPS eevtiereierteeiteesteesteseseeesseesstesssesssaessseesstasssessssesssassstasssessssesssessstesssessseesssessstesssesssaesssessseesssessssesssessnaens 152
ANNOtations anNd MEtAdAta ..ottt sttt a e as 152
Errors, faults, and @XCEPLIONS ...ttt e et st e st ae s e se e nnens 153
SECUNITY ceiiiiiiiieennniiiiiiiiniiiinnsesssssssssssessssssssssssssssssssssssess 154
... 154
DAta PrOTECLION ...ttt s e et s s ae e s e e s sae e sae e s aesssaessaaessnasssaasssasssaesssesssnanns 154
Identity and access MANAGEMENT ..ottt e s te e e e e e e e e e s esaesaaeans 157
AUAIENCE ..ttt sttt et et s b et s s b et et e st e st e e s s et et s sa s e st esassassestesassassesessansensenanns 157
Authenticating With ide@ntities ...ttt nnens 158
Managing access USING POLICIES ...cceeeeiecieiecieeececeeee ettt se e e s e e e e saestestesse s e sse e e e saennennan 161
How AWS X-Ray WOIKS With TAMooeeeeeeteeetete ettt sae st re e a e sa e ae st aas 163
Identity-based POliCYy EXAMPLES ..ottt e e e e et aesaanaens 170
TrOUBLESNOOTING .ottt sttt et et e st esae s be e e e sa e e e e e s e b entanean 181
LOgging and MONTLOIING ..ceccueeuieeeeieieteceeecectee e e et stestesteste e e e e e e e s e ssesaesaassessassaesaensensansansans 183
ComPLiANCE VAlIAAtiONeoeeeeeeee ettt e e e st e st esae s aesbe s s e s e e e e e e aenanaans 184
RESILIEICE .ottt ettt ettt s s b et et s s et et e e b et esa s s et e st esassastesasansensenn 185
INFrasStrUCTUIE SECUNILY c.uviieeeeececeeee ettt ste st e s e e e e e se s e et e saesbesaa s s e s seesnesaesaensensansans 185
VP C @NAPOINTES ..ottt e et e st et esteste e e e e e e e e et e sae b e st e st essaessesaeseessantansesansassasseesesnsansanes 186
Creating @ VPC endpoint fOr X-RaYccceeeririeieiciesiececiesteseeee et stestesaesse s e e e e s e s e saessessansens 186
Controlling access to your X-Ray VPC endpointcccoeeieieieiecienececeeeeeeee e sve e e e 188
SUPPOIEEA REGIONS ...ttt ste st e e e et e e e st e aesaestesseeseess e s et estestesbassassessaessensansansansansanes 189
Cross-service confused deputy Prevention ...ttt e e aennas 190
Sample apPLICAtioNceeeeeiiiiiiiiiiiiiiiieetiiiiiieeeetteteeassssesssssssseetsssans 192
SCOMEKEEP TULOMTAL vttt ettt te s te e e s e e e e e e e st e st et e sesaassessaeseesaenaessansansansansans 194
PrErEQUISITES .eeeeiieeecttceteccterte ettt ettt re s st e s ae s s e e s e e e st e s saesssaeeaa e s st essseessaesssaesssassseesssessssennaes 195
Install the Scorekeep application using CloudFormationccceeeeeeeeveeceeceecececeeeceeee e 196
GENEIAtE traCE At .ucieiecieiiecectr ettt a e sttt st s b et esaesbe e eneen 197
View the trace map in the AWS Management CONSOLEcccevereeeeeeceeceectececeeeee s 198
Configuring AmMazon SNS NOtIfiCAtIONSeoueeieieceeee e eaeas 206
Explore the sample appliCaAtion ...ttt s ve s aenens 207
Optional: Least privilege POLICY ...ttt sttt ae e s ns 212
CLEAN UP ettt ettt et et et e st e st e e e e e e e et et et e s s e s b e s s asseesasaaessastessansansassesseessensensansantansanes 214
NEXE SEEPS ettt te et s e s re e st e e ae e s e e s saeessaessse e st e s saessseessaesssesssessssessseesssassseassaennses 215
AWS SDK CLIENTS ..ttt stest et ste st sae st e e sseste st s e s s et e e ssesbe st esassestesassassensssensessesassan 216

AWS X-Ray Developer Guide

CUSEOM SUDSEGIMENTS ...ttt te et e e bt e st e s s e seesa e e e s et et e saassassassessasneansanes 217
ANNOtations anNd MEtAdAta ...ttt ettt s as 217
HTTP CLIENTS ettt ettt ettt ettt et st et e st et et s et et ssasaastesassansenaasas 219
Y O] I el L T=] o} SRR 220
AWS Lambda fUNCLIONS ..cviieieteeeeceetrtsetcteeste ettt sttt et s sbe st e s sa et s s be st e e s saees 223
RANAOM NAIME .ttt ettt st e sttt st et e s ae st et e s et e e e e be st esassassensssensansenans 224
WVOTKET ettt ettt st ettt b et et s e b et e s s b et e e sse b et esasbastesassesensesarsansensons 226
INSTrUMENting StArtUP COAE ottt st b e s ae s s e e e a e a e aa s 228
INSErUMENTING SCIIPLS ettt st e s ae s s e e sae e s e e s saesssaessaeessnesssasssaesssessseesssannns 231
INSTrUMENtING WED CLENTS ..ottt ettt e s be s e s s e aeaenaennan 233
WOTKEE TRFQAAS ..ttt sttt s s a e st st sb et e s st e st e s s e s et ssassestesasens 237
X-RAY ACIMION ...cuieeeeeennnniiiiiiiiiiiieneeessssnssssssseessasss 239
Downloading the dA@MON ...ttt ste s te st e s e e e e s e e e aanaasans 240
Verifying the daemon archive's SIQNAtUre ...ttt aeaeaens 241
RUNNING the AQBMION ...ttt ettt e st e e et et e b e s ae b e taebe s e esnenaensanean 242
Giving the daemon permission to send data to X-Raycccccceeereeeeiecieceececiesesese e 243
X-RAY AQEMON LOGS ..ottt ettt et et e st e e s e e e e e et et e st e stassasseeseensensensansanes 243
CONFIGUIALION ettt te e e e e e e et et et et e st e s s e s seese e e esaesaantesansassessassnaseensansansans 244
Supported enviroNMEeNt Variables ...ttt aan 245
Using command liN@ OPLIONScueeueeieieieietetetesesee ettt st e e s e s e sae st e saesaesse s e s e ennannens 245
UsiNg @ coONfIGUIAtion File c..ceeueeeeeeeee ettt a e et es 247
RUN the daemon LOCALLY ...ttt et ettt esbe e s e raenaenanes 248
Running the X-Ray daemon 0N LiNUX ...ccccceeeeieieieieieciesieseeeeeeeeseseessesaesaessesses e essesessesaeneens 249
Running the X-Ray daemon in @ Docker CoNtainerocoueeeeeeeeeceececeeeeeeeceeee s 249
Running the X-Ray daemon 0N WINAOWS ...ttt ste e sse s e s saesaeneens 250
Running the X-Ray daemon 0N OS X ...ttt ettt ste e sse e e e e e s e sae s e saessanaens 251
ON ELastiC BEANSTALKcoveiiirieiiieienieteentetecseste sttt sttt st e e s e st et s e ssesa e e s e ssastesassassensons 252
Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemonccccccuevveuenenenn. 253
Downloading and running the X-Ray daemon manually (advanced)ccccceeeeeveeeeeennenene. 254
ON AMAZON EC2 ...ttt ettt st st s et et s e st e st s st st et s s ae s b e s st e sesbesntessesasasnean 256
ON AMAZON ECS ...ttt sttt ettt st e et sb e et s e st s b e st e se s b e s st e esesbesatesseenbesneens 258
Using the official DOCKEr iIMAQGE ...ttt st s ns 258
Create and build @ DOCKEr IMAGE ...ttt ae e s re e e s ae s eens 259
Configure command line options in the Amazon ECS consoleccvceeeeecececveneeeeeeeenen. 262
Integrating With AWS SEIVICEScccciiiiiiiiimeeennniiiiicccciiiinnnsss 264
AmMazon BedroCk AGENTCOIEcucueeeeeeeceetetetete et s e e e stestestestesse s e e e e e e s et essasaessessassasssenaanes 266

AWS X-Ray Developer Guide

AMAZON S3 ...ttt ettt et e e st s b st a s b et e b st e e st e b e et e e st e be s ae s st e seeabennt 267
AMAZON S3 ...ttt ettt et e e st s b st a s b et e b st e e st e b e et e e st e be s ae s st e seeabennt 267
AMAZON EC2Z ..ttt ettt b e st st e b e st eseb e s b e st e b e et e e st s e be st e e ntesaeebesneeas 267
AMAZON SNS Lttt ettt st s e bt st st a e st a et et s b st e at e be et e ne e ne s b enes 267
Configure AmMazon SNS actiVe traCing ...ttt s re s e ns 268
View Amazon SNS publisher and subscriber traces in the X-Ray consolecccceoveveveunneene 269
AMNQZON SQS ..o ecrree e rtre e e e e ssaae e e s baee e e e ssaseeessssaseesessaaeees s st e eeea s aaaeeessareeessraeeeennsaraeeen 271
Send the HTTP trace NEAAEN ...ttt sttt sttt et e st e e s e ssesa e e snans 272
Retrieve the trace header and recover trace CONtEXTEcocevivererenieenenenenenetres e 273
AMQAZON S35 .ttt ettt s ae s st s e b st et b et et e b e et e e Rt s b e et e e st e be et e st s be st e eaeebessaeas 274
Configure Amazon S3 event NOtIfICAtioNSocceeiiieeceeeee e 274
AWS Distro for OPeNTELEMELIY ...c.ueueeeeeeeeeeeeceeee ettt e e e e e e s sae s s e saesaessa e s e e ennannan 275
AWS Distro for OPeNTELEMELIYccueeieieeeeceeee ettt ste s e e e ss e e saestesaessessesseesnennennens 275
AWS CONFIG ettt et e et et e s te s e e e e seese s e e b et e s b e st assessaeseesaestassansassassassasseensanaantans 276
Creating @ Lambda fUuNCioN trigQer ...ttt 277
Creating a custom AWS Config rule for X-ray ...ttt 278
EXQIMIPLE FESULES .ottt ettt e sae s te st estesteese s e e e e s et et e aesaassessessaesasnsensansansans 279
AmMAazon SNS NOLIICAtIONScouiiiieteeee ettt sa e 280
AWS APPSYNC ceeiiiiiitieieeeteetteetes st estesseeestesssessssessseesstasssaesssessssssssessssesssessseesssessssesssessseesssessssesssesssessns 280
AP GALEWAY ...eeiieiiiiieiieeiercteete et ee et ssseesste s st esssesssaessaessstasssesssaesssessstasssessssessessstesssessssesssessseesssessssensees 280
A o o 3 17 =T o [OO OO TR TSRS 282
APP RUNNEE .ttt sttt st s ae s vt e st e s s st e s ae s sae e st e s sa e s bassseesssessssesssaesssasssessssesssessssessseesssennses 285
CLOUATIAIL 1ttt ettt sttt st e s bt s st et et s s et et esase st esasaessenassansansenssansanens 285
X-Ray management events in CloUdTrail ..ottt nens 287
X-Ray data events in CloUdTrail ...t aan 287
X-Ray €VENT EXAMPLES ..ottt ettt e st esae s e s e e e e e e s e aestesbesaessassassassnansansans 289
CLOUAWATLCRN ettt et b e st s st ettt e e s e st e st s aasbe s e e saasae st esassanseneesansan 291
CLOUAWALEN RUM ettt sttt sttt et et et st et s et et e e ssa s et ssasaensesanan 292
CLoUudWaAtCh SYNERELICS ..ottt ettt e st e s ae e e e e e e e a e aennans 293
ELAStiC BEANSTALK ...cveeiiiiieteeetccecte ettt sttt ettt ettt et e s e b e e s s be e e e nas 302
ELastic LOAd BaAlanCinNg ...ttt e stesteste s e s e e s e s e saesaessessessassesssensensensansansansans 303
EVENTBIIAGE ..ottt et et et st e st e st e st e s ae s e e sa et e st e st et e s seesaesaessesaantansasansassessnesaanaan 304
Viewing source and targets on the X-Ray Service€ mMapcccccceeveeeeeeeeeeceeceeseseseseeeeeeseeseenns 304
Propagate the trace context to event targets ... e 304
LAMIDAQ .ttt sttt et s a et ettt e b et et e s et et e e s et et e sensetentne 311
STEP FUNCLIONS ..ottt ettt s et e s ae e st e s b e s sa e s sae e saa e s besssa e s bessaaesssessssesssassseesssenssaenssens 313

Vi

AWS X-Ray Developer Guide

Instrumenting your apPliCationciciciiiiiiiieeeeeiniiiiiiiiiiiieeeessessisisiicseteessssssssssssssssssessssssssssssssses 315
Instrumenting your application with the AWS Distro for OpenTelemetrycccooeveeviecvecvecrennen. 316
Instrumenting your application with AWS X-Ray SDKSc.ccceeererenerenieeeeeeectectesreeseseeseeenens 317
Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKSccoeveeveveecreceecvennene 318

LI L T Tt A0 4 I =T T o 5 N 320

OpenTelemetry Protocol (OTLP) ENdpointeeiiiiiiiiiiiiineeennnncisscccccennnnsssssssssssssssssscssssssssssss 321

WOKrKiNG WIth GO ...cceeeeeeeiiiiiiiiiiiiiinnnennnniiiiiiieeeisess 322
AWS Distro for OpenTelemMELry GOccciiecieciecieceeeeeeeeeete et sre s e e e st saeste st e saesse s e e s e e enennan 322
X-RAY SDK FOF GO ettt ettt te e teste s e e e e et e st e st e st e s sesseesa e e e s entestansansassessnesesnaans 323

REQUIFEIMENTS ...ttt sttt ettt s s e e sae e st e s s ae e st e s sae e st e s saessaessaeesssasssaesssassseesssesssennnes 325
Reference doCUMENTATION ..ottt st s et s s s e nen 325
CONFIGUIATION <.ttt et et et e s b e st e e be s e e e e e e e et et e sessassaessesaansensansanes 325
INCOMING FEQUESTS ...ttt ettt sre et essae s sse e s sae e s st e s ssesssaesssesssaasssesssaessassssessseessaessseenseens 332
AWS SDK CLIENLES ..ttt sttt et sae st e s s st e st e s b e st e e ssa b et e e sasaesassansanasas 335
OULGOING HTTP CALLS ..ttt ettt e te st te e e e e e et e st e st e st e s aeesasseesn e e ennennenaanes 337
SQL QUETIES ettt st esteestsstessaeestessaesssaesssaesssessseesssesssaesssessseasssessssesssessseesssessseessaessseessaennn 338
CUSEOM SUDSEGIMENTS ..ottt e e et e st et et e st e s se e e e e e s e se st essassassassaesessaensansansans 339
ANnotations and Metadata ...ttt aas 340

WOrking With JAVvacceeeeiiiiiiiiiiiiiiiinnenmniiiiiiiiiiiiiseessssssssisssssesss 343
AWS Distro for OpenTelemMELry JAVA ...ttt saestesse e sae e nnens 343
X=RAY SDK FOF JAVA .ottt ettt e ae s aesaeste s s e et e e e s et et e st e aassasseesaessennansantans 344

SUDMOAULES ...ttt ettt ettt st et s st et e s s e b et e sesaessesassensensns 345
REQUIFEIMENTS ...ttt ettt s e sae e st e s st e et e s s s e e s e e s saeessaeesaeesssesssaesssessseesssessssennees 346
Dependency MANAGEMENTc.ccviieieireiiecteeeeeeee e ee e et e saestesaessessee e e e eaesaesessessessessassesssensensansensan 347
AUto-INStrumMENtation AQENT ...t s e a e s ra e ans 349
CONFIGUIATION <.ttt et te s be st e e be e e e e e e e e et et e aessassaesaesaansensansanes 360
INCOMING FEQUESTS ...eviiieiiteeteecteeteect et st s e et eesaessse e st e s s st e s sse s s st essaeessaasssasssaesssaesssessseasseessseensaens 371
AWS SDK CLIENLES ..ttt sttt et sae st et s s st st e s b et e e ssesbe st s e ssasaesassansenasas 376
OULGOING HTTP CALLS ettt ettt te et e s e s e e e e e e e e s e st e st e b e saessasseesn e e ennennanaanes 378
SQL QUETIES ettt st esteestsstessaeestessaeessaesssaesssessseasssessssesssessseasssessssesssessseesssessssesssessseessaennns 381
CUSEOM SUDSEGIMENTS ...ttt et et et e st e st e s se e e s e e s e s et estessassessaesessaenaansansans 384
ANnotations anNd Metadata ...ttt aas 386
MONIEOTING ceeiiiiiieeieecteeteete ettt te e st e st e s be e s ae e sae e s s e s s saesbessseasssassaesssessstesssessssessseesseesssessssennses 392
MULLIERIEAAING ettt ste e et e e s e sae st esbe st e s sesse e e e e e e esaestessansansans 396
AOP WItH SPIING oottt ettt et e st e st e s e e e e e e et et et e te st e bassaesaesaensannan 397
WOrking With NOAE.|S cueeeeiiiiiiiiiiiiieennnneiiiiiiiieiiiinneeessssssssssseesessasas 403

vii

AWS X-Ray Developer Guide

AWS Distro for OpenTelemetry JAVaSCriPt ...t stesae e ae s e sesnnens 403
X-RAY SDK fOr NOGE.JS ..veeieeiieeeectetetetete et este st e stesteste s e s e e s e e et e st et e stassassessaessansenaensansansanses 404
REQUIFEIMENTS ...ttt sttt ettt s s e e sae e st e s s ae e st e s sae e st e s saessaessaeesssasssaesssassseesssesssennnes 406
Dependency MANAGEMENTcceieeieiieiiececeeeeee e ee e testestesaessessee e e e e aeaetessessessessassesseensensensansan 406
NOAE.JS SAMIPLES ..ttt ettt et e st e s s e st e e b e e e e s et et e bestesassasseeseensansansansan 407
CONFIGUIATION <.ttt et et et e s b e st e e be s e e e e e e e et et e sessassaessesaansensansanes 408
INCOMING FEQUESTS ...eeeiieeiteeteecteetecct ettt re et essaessre e s sae e s st e s sesssaessaeesssesssasssaessassssessseesseessssesseens 413
AWS SDK CLIENLES .ttt sttt et sae st s s st st st et e e s sesb et s e sasaesassansanasas 417
OULGOING HTTP CALLS ettt ettt te e te s e se e e e e e e et e st e st e st e s aessasseesn e e ennenaenaanes 421
SQL QUETIES ettt st este e st eetessseesteesaesssaesssaesssessseasssesssassssessstesssessssesssessssesssessssesssessseesssennns 423
CUSEOM SUDSEGIMENTS ..ottt ettt e st et e st e st e sae e e e s e e e se b estassassesseesessaenaansansans 425
ANnotations anNd Metadata ...ttt aas 427
Working With PYtRONeeiiiiiiiiiiiiiiiiiiiiinciiiniineeenssseisiieseenietnss 432
AWS Distro for OpenTelemetry PYython ...ttt ae e nens 432
X=RAY SDK fOr PYTRON ..ttt ettt te s te s te st s s e e st et e b e s aessa e s e e nnanns 433
REQUIFEIMENTS ...ttt ettt ettt et e s sae e st e s s re e st e s s st e s e e s saaessaessatesssesssaesssessseesssessssennnes 435
Dependency MAaNAGEMENTc.cceiieiieiieiieeteceeesee e te et e stestestestes e e e e e eaesaesessessessessassesssensensansensan 436
CONFIGUIATION <.ttt et et e s b e st e s be s e s e e e e e et et e aeesassessseseansensansanes 436
INCOMING FEQUESTS ...eeiiieieeeteecteetecet et st es e et essaessse e s s e e st e s sasssaessaeessaasssesssaesseesssessseesssessseassaens 443
PAtChiNg LIDIAri@s ..ttt st et e e e s sa et e st e saa s b e s e s anennanaans 450
AWS SDK CLIENLES .ttt sttt et sae st et s e ste st s b et e e ssesbe st s e ssasaesassansanasas 453
OULGOING HTTP CALLS ..ottt ettt te st et e st e s se e e e et e st e st e b e s aesbasseesn e e ennenaenaanes 454
CUSEOM SUDSEGIMENTS ..ottt ettt e te st e st e s se s e s e e e e s et estassassesseesessaensansansans 456
ANnotations anNd Metadata ...ttt aas 458
Instrument serverless aQPPLICAtIONS ...ttt anens 462
WOrKing With (NET .ueiiiiiiiiiiiiiieeennmiiiiiiicciiiessssssssssssssssssessse 469
AWS Distro for OpenTelemMetry .NET ... ettt ste e eesaestesaessessesse e e e s esaesaanaens 469
X=RAY SDK FOI INET ..eoieiiirieietrentetsesiestetsieste st e e sae st ese s e sse st ssessessesassassesassassessssessassensssassessesessansensesensn 470
REQUIFEIMIENTS ...ttt sttt ettt s e e sae e st e s s ae e st e s sae e s e e s aaessaessaeesssasssaesssessseesssessssennees 472
Adding the X-Ray SDK for .NET to your applicationcccceeeeeeieieceeceecrecececeeeeee e 472
Dependency MAaNAGEMENTc.ccviieieireiieceeeeeeee e ee et estestesaestessee e e s eseaesessessessessassesssensensassensan 472
CONFIGUIATION <.ttt ettt e st e st e e be e e e e e e e s et et e aessassaesnessansensansanes 474
INCOMING FEQUESTS ...eviiiiiiteeteecteetecct et st rre et essae s sse e s s e e st e ssae s s st essaesssaasssasssaesssaesssessseesseessssessaens 481
AWS SDK CLIENTES .ottt ettt sttt et sae st s s st e st e s b e st e e ssesbe st s e sasaesassansanasas 485
OULGOING HTTP CALLS ettt ettt st et e s re e e e e e e e et e st e st e st e s aessasseesa e e ennenaanaanes 488
SQL QUETIES oottt st esteesteestessaeestessaeessaesssaesssessseasssesssaesssessstesssessssesssessseesssessssesssessseesssennn 490

viii

AWS X-Ray Developer Guide

CUSEOM SUDSEGIMENTS ..ottt et e te st e st e s se e e e e e e e s et essessassesseeseesaensansansans 493
ANNotations and Metadata ...ttt aas 495
WOrking With RUDYciiiiiiiiiiiiiereeiiiiniciiiiiiineeessessniiisiceiiesses 499
AWS Distro for OpenTelemetry RUDY ...t sae e e 499
X=RAY SDK Or RUDY ..ttt sttt e e e sa e st e st e s ae s s e s se e e e e et e st e saesaa s assnssasnnans 500
REQUIFEIMENTS ...ttt sttt ettt s s e e sae e st e s s ae e st e s sae e st e s saessaessaeesssasssaesssassseesssesssennnes 501
CONFIGUIATION <.ttt et et et e s b e st e e be s e e e e e e e et et e sessassaessesaansensansanes 502
INCOMING FEQUESTS ...ttt ettt sre et essae s sse e s sae e s st e s ssesssaesssesssaasssesssaessassssessseessaessseenseens 508
PAtChinNg LIDIAriEs ..ttt e e e et e st e ba b e e s snennannens 512
AWS SDK CLIENLES .ttt sttt et sae st s s st st st et e e s sesb et s e sasaesassansanasas 513
CUSEOM SUDSEGIMENTS ..ottt ettt e st et e st e st e sae e e e s e e e se b estassassesseesessaenaansansans 515
ANnotations anNd Metadata ...ttt aas 516
X-Ray SDK and daemon end of support timelineccciiiiiiiiiiiinennnncniiiiccicnnnnnneeeessessssssseesnnns 520
Migrating from X-Ray instrumentation to OpenTelemetry instrumentationccccceiiieeenns 522
Understanding OPenTELEMELIY ...ttt ettt te s e s ae s e e s s tesae st et e ssasse s e e sn e s eaennan 523
OpenTelemetry SUPPOIt iN AWS ... ettt cte e re e e e saesse st e sessesse s e e e e s e aenaaneans 523
Understanding OpenTelemetry concepts for migration ... 524
COMPANNG TEATUIES ...ttt ettt s e e e e e et et e be st e s b e e se e e e saenaesaesaanean 525
Setting up and configuriNg traCingceoeeieieceeeeeeeeeee et ae 526
Detecting resources in your €NVIFONMENTc.cooviiiiiiiiinienneineenreeseesseeseseesseeeseesssessseesssessseans 527
Managing SAMPLING SErAtEQIESc.eeieiecieeeeeeee ettt e saesaesse st e s e s e e s e aeaennan 528
ManNaging trace CONTEXT ...ttt st et e sre s ae e st e s sae e s b e ssseessnessseasssesssaennnas 528
Propagating trace CONTEXT ...ttt s sre s e e et s s ae s sre e s sa e e saeessae s saesnnes 529
Using library inStrumentation ...ttt s aesae st aenens 529
EXPOITING LtrACES ..ottt ettt e et e st e s sae s sa e s sae e st e s saesssaessaeesstassasssaesssasssaesssasnne 530
Processing and forwarding traces ...ttt saeste s s e sa e sa et aan 530
Span processing (OpenTelemetry-specific CONCEPL) ..coveveeererieiiicieeeeecee e 531
Baggage (OpenTelemetry-soecific CONCEPL) ..cuevueeieieciecieececeeeeeetere ettt sre e 531
MiIGFAtiON OVEIVIEW ..ottt sre et esaessae e s ste e st e s sae s saesaaesaeasssessssesssassssesssessseesssesssnesssannn 531
Recommendations for new and existing applications ... 532
Tracing SELUP CRANGES ..ottt e et e st et e st e st e st e ese e e s e e s e s et e stessassessaeseessensansansans 533
Library instrumentation ChangEs ...ttt sae e aas 533
Lambda environment instrumentation changes ... 533
Manually creating trace data ..ottt re e ettt ste s e e e e aenennan 534
Migrating from X-Ray Daemon to AWS CloudWatch agent or OpenTelemetry collector 535
Migrating on Amazon EC2 Or ON-PremiSES SEIVELSccceeevuerreeereerseenrsessreesseesssessssessseesssessssssses 535

AWS X-Ray Developer Guide

Migrating 0N AMQAzZON ECS ...ttt e st e stessseessaessaeesaesssaessaesssnasssesssaesanas 539
Migrating on ELastic BEANStALK ..ottt 543
Migrating to OpenTEleMELIY JAVA ...ttt e et saesaestesse s e e e e e saeaanaans 544
Zero code automatic instrumentation SOLULIONccccceieiiinirinincrceceeee e 545
Manual instrumentation solutions with the SDKccocviviineninninereeeesee e 545
Tracing incoming requests (spring framework instrumentation)cccceeeeeeeneeveececceeceeeenee. 548
AWS SDK V2 INSErumMentation ..ottt ettt sae st et saeene s 549
Instrumenting outgoing HTTP CAllS ...ttt e s aesaesaesaens 551
Instrumentation support for other Lbraries ..., 552
Manually creating trace dataccceceeieiececeececeeee ettt a e et st esre s e e e e aeaenan 552
Lambda iNStrumMeEntation ...ttt st st sse st sbe st e s e sae e sassan 555
Migrate to OPeNnTELEMELIY GO ..ottt e e et et e s aesa e e se e e e e e e ennanes 561
Manual instrumentation With the SDK ... 561
Tracing incoming requests (HTTP handler instrumentation)cccceoeeeveeenecveevecceceeeeeenee. 563
AWS SDK for GO V2 inStrumentationcccovieerininineniecnenietseseste et sesse e ssessesassessessens 564
Instrumenting outgoing HTTP CAllS ...ttt aesae st saens 565
Instrumentation support for other Lbraries ..., 566
Manually creating trace dataccceeeeieieeeeceeee ettt a et et esae s e e e aenenaan 567
Lambda manual inStrumentation ...ttt sae e e enes 568
Migrate to OpenTelemMEtry NOGE.|S ...ttt et aesae s e re e e nennan 575
Zero code automatic instrumentation SOLULIONSccocvveriiirineninieneeeee et 575
Manual instrumentation SOLULIONScccoeeviirinerieecreretreete ettt sse st eaes 576
Tracing INCOMING FEQUESTSuviiiiicieeieecteriteestee e estessteestessaessseessessseesssessseesssessseesssesssessssessssessaens 579
AWS SDK JavaScript V3 instrumentation ...ttt sseessaeeseessaesssnesnne 564
Instrumenting outgoing HTTP CAllS ...ttt nesae st saens 582
Instrumentation support for other Lbraries ..., 583
Manually creating trace dataccceeeeieiececececeeee ettt e et et sre s e e e aeaeaan 567
Lambda iNStrumMENntation ...ttt sttt e e sbesae e s sae e e e sane 568
Migrate to OpenTelemMELry .NET ... ettt et sa et e tesre st s e se s e e a e b e sranas 587
Zero code automatic instrumentation SOLULIONSccoceverirririneniienecreee e 587
Manual instrumentation solutions with the SDK ... 588
Manually creating trace dataccceceeieieeececeeceeeere et a e e et e st e ste s s e e e aeaenan 591
Tracing incoming requests (ASP.NET and ASP.NET core instrumentation)ccccceceevevennee. 594
AWS SDK iNSErUMENTATION ..ceeiiiiiieieeeeee ettt ettt e sae et s sae st et sbe s e e sne e 595
Instrumenting outgoing HTTP CAllS ...ttt a e et saens 596
Instrumentation support for other Lbraries ..., 597

AWS X-Ray Developer Guide

Lambda iNStrumMeEntation ...ttt sttt e sse st e s e sae e e e sans 568
Migrate to OpenTelemMetry PYtRON ... ettt ettt 601
Zero code automatic instrumentation SOLULIONSccocvveriiinineninenereee et 602
Manually instrument your apPLliCAtioNSc.coviieieieeeeeee et aens 602
Tracing setup iNItIAliZAtIONcoueeeieeeeeeee et te e re s ae e enaens 603
Tracing INCOMING FEQUESTSuuiiiiiicieeieerteriteestee e estessteesreesseessseessessstesssessseesssessseesssessseesssessssessaens 606
AWS SDK iNSErUMENTATION ..c.eeiiiieieieeee ettt ettt et e e et sne st s st e sbessaesne e 607
Instrumenting outgoing HTTP calls through requestscccceeeeeeeeceeceeceeeeeceeee e 609
Instrumentation support for other Lbraries ..., 610
Manually creating trace dataccceceeieiececeececeeee ettt a e et st esre s e e e e aeaenan 610
Lambda iNStrumMeEntation ...ttt st st sse st sbe st e s e sae e sassan 612
Migrate to OpenTelemMEtry RUDY ...ttt st 613
Manually instrument your solutions with the SDK ... 614
Tracing incoming requests (Rails instrumentation) ..., 616
AWS SDK iNSErUMENTATION ..c.eeiiiiieeeeee ettt ettt ssae s e et sbe s e e sne e 617
Instrumenting outgoing HTTP CAllS ...ttt aesae st saens 618
Instrumentation support for other Lbraries ..., 619
Manually creating trace dataccceeeeieieeeeceeee ettt a et et esae s e e e aenenaan 619
Lambda manual inStrumentation ...ttt sae e e enes 622
Creating X-Ray resources with CloudFormationeeiiiiiiiiiiiiinnneenneniiiiiiecininnsnesssssssssssseees 625
X-Ray and AWS CloudFormation teMPLAtesoeiececeececeeeeeeeete e 625
Learn more about AWS CloUudFOrMation ...ttt sse s 625
TAGGING cereriiiiiiiiiiiiiinnnnnennsiiisseeteesesss 626
TAQG FESTFICLIONS ..ottt et s e st e e st e s b e s s se e s b e e s st e s b e s saessaeesaeesssesasaessseasssesssessseensees 627
Managing tags iN the CONSOLE .ttt st 627
Add tags to @ NEW group (CONSOLE)eccueereeereeeeeeeeeeeese ettt sae e e e e e saesaesaasaens 628
Add tags to a new sampling rule (CONSOLE)ccuvuireeeeeeeeeetecteceee et ennens 628
Edit or delete tags for @ group (CONSOLE)eueeuiieeeieeeeceee et ae s 629
Edit or delete tags for a sampling rule (CONSOLE)ocueeieieiecieeeeee e 629
Managing tags iN the AWS CLI ..ttt tesaesse e e s e s e a et e aa s 629
Add tags to a new X-Ray group or sampling rule (CLI) .cccceeeeeeieeeeeeeeeececeeeceeeee e 630
Add tags to an existing reSoUrce (CLI) ...ttt steste e ae e e e snennas 632
List tags 0N @ r@SOUICE (CLI) .oieeieeeieeeeeeeeeeee ettt ste ettt saesaestesbe s e e e e s n e a e s e aesaenes 633
Delete tags 0N @ reSOUNCE (CLI) cuviiiiieeeeceeeeee ettt teeve e se et et esaesaessessesse s s e nnennens 633
Control access to X-Ray resources based 0N tagscccceeeeiieecieieceesecesee ettt 634
TroubLeShOOTING ..cciiiiiieeiiiiiiiiiiiiiiiieeennnniiiiieeeettteessssssssssssssseesesssanns 635

Xi

AWS X-Ray Developer Guide

X-Ray trace map and trace detailsS PAGES ... 635

| don't see all of My CloudWatch LOgS ... 635

| don't see all of my alarms on the X-Ray trace mMap ... 636

| don't see some AWS resources on the trace Map ...cccccceeeeereceeecceceeee e 636
There are too many nodes 0N the trace MAPcccceeeeeeeeieecceee et eneens 637
X=RAY SDK FOF JAVA .ottt ettt e s ae st esae st e st e e e et et et et e bassasseesaesaennensansans 637
X-RAY SDK fOr NOGE.JS ..veeirireeecectetetectectectese e ettt e stesteste s e s e e e e e e saesae st e stassassessaesnansessensansansansen 637
THE X-RAY ABIMON ...ttt s te e ettt esaesae st e st e s e e e e e et et et e ssassessaesnensassansansanes 638
(0T oYal 1Ty 1 L= 31 o 1T o] oV UPUTS R 639

xii

AWS X-Ray Developer Guide

What is AWS X-Ray?

AWS X-Ray is a service that collects data about requests that your application serves, and provides
tools that you can use to view, filter, and gain insights into that data to identify issues and
opportunities for optimization. For any traced request to your application, you can see detailed
information not only about the request and response, but also about calls that your application
makes to downstream AWS resources, microservices, databases, and web APIs.

Segments Timeline info &

0.0ms 20ms 40ms 60ms B0ms 100ms 120ms
L 1]

@O Group by nodes Segment status Response code Duration

¥ Scorekeep AWS:ECS:Container

Scorekeep ®@ ok 200 118ms PUT http://scorekeep. t-2.elb 1aws.com/api/game/rules/TicTacToe
DynamoDB ®@ok 200 3ms Getltem: scorekeep-game
DynamoDB ®@ok 200 34ms Getltem: scorekeep-session
DynamoDB ®@ok 200 40ms Getitem: scorekeep-game
DynamoDB @ oK 200 25ms Updateltem: scorekeep-state
DynamoDB ®okK 200 4ms Getitem: scorekeep-session
DynamoDB ®@ok 200 5ms Updateltem: scorekeep-game

AWS X-Ray receives traces from your application, in addition to AWS services your application
uses that are already integrated with X-Ray. Instrumenting your application involves sending
trace data for incoming and outbound requests and other events within your application, along
with metadata about each request. Many instrumentation scenarios require only configuration
changes. For example, you can instrument all incoming HTTP requests and downstream calls to
AWS services that your Java application makes. There are several SDKs, agents, and tools that can
be used to instrument your application for X-Ray tracing. See Instrumenting your application for
more information.

AWS services that are integrated with X-Ray can add tracing headers to incoming requests, send
trace data to X-Ray, or run the X-Ray daemon. For example, AWS Lambda can send trace data
about requests to your Lambda functions, and run the X-Ray daemon on workers to make it
simpler to use the X-Ray SDK.

AWS X-Ray Developer Guide

4 a
Host server
Your instrumented application
AWS services, HTTP
AWS SDK or API requests, SQL queries,
methods, +
Request
trace id, -
*——> : t
@ s @
segment
~
service
node
e
Service graph
A J

Instead of sending trace data directly to X-Ray, each client SDK sends JSON segment documents
to a daemon process listening for UDP traffic. The X-Ray daemon buffers segments in a queue and
uploads them to X-Ray in batches. The daemon is available for Linux, Windows, and macOS, and is
included on AWS Elastic Beanstalk and AWS Lambda platforms.

X-Ray uses trace data from the AWS resources that power your cloud applications to generate a
detailed trace map. The trace map shows the client, your front-end service, and backend services
that your front-end service calls to process requests and persist data. Use the trace map to
identify bottlenecks, latency spikes, and other issues to solve to improve the performance of your
applications.

AWS X-Ray

Developer Guide

-

Client

scorekeep-move
DynamoDB Table

O Scorekeep SNS
ECS Container

O scorekeep-session
DynamoDB Table

AWS X-Ray Developer Guide

Getting started with X-Ray

® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

To use X-Ray, take the following steps:

1.

Instrument your application, which allows X-Ray to track how your application processes a
request.

» Use the X-Ray SDKs, X-Ray APIs, ADOT or CloudWatch Application Signals to send trace data
to X-Ray. For more information about which interface to use, see Choosing an interface.

For more information about instrumentation, see Instrumenting your application for AWS X-

Ray.

(Optional) Configure X-Ray to work with other AWS services that integrate with X-Ray. You
can sample traces and add headers to incoming requests, run an agent or collector, and
automatically send trace data to X-Ray. For more information, see Integrating AWS X-Ray with

other AWS services.

Deploy your instrumented application. As your application receives requests, the X-Ray SDK
will record trace, segment and subsegment data. In this step, you might also have to set up an
IAM policy and deploy an agent or collector.

» For example scripts to deploy an application using the AWS Distro for OpenTelemetry
(ADQOT) SDK and the CloudWatch agent on different platforms, see Application Signals

Demo Scripts.
« For an example script to deploy an application using the X-Ray SDK and the X-Ray daemon,

see AWS X-Ray sample application.

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws-observability/application-signals-demo/tree/main/scripts
https://github.com/aws-observability/application-signals-demo/tree/main/scripts

AWS X-Ray Developer Guide

4. (Optional) Open a console to view and analyze the data. You can see a GUI representation of a
trace map, service map, and more to inspect how your application functions. Use the graphical
information in the console to optimize, debug and understand your application. For more
information about choosing a console, see Use a console.

The following diagram shows how to get started using X-Ray:

-

Instrument your
application

Your application

Legend Enable x-RaY with
other AWS services

Required step

Deploy application
Optional
customization

Analyze trace data

Optimize, debug, or
otherwise change
your application

. /

For an example of the data and maps that are available in the console, launch a sample application
that is already instrumented to generate trace data. In a few minutes, you can generate traffic,
send segments to X-Ray, and view a trace and service map.

AWS X-Ray Developer Guide

Choosing an interface

AWS X-Ray can provide insights into how your application works and how well it interacts

with other services and resources. After you instrument or configure your application, X-Ray
collects trace data as your application serves requests. You can analyze this trace data to identify
performance issues, troubleshoot errors, and optimization your resources. This guide shows you
how to interact with X-Ray with the following guidelines:

« Use an AWS Management Console if you want to get started quickly or can use pre-built
visualizations to perform basic tasks.

» Choose the Amazon CloudWatch console for the most updated user experience that contains
all of the X-Ray console's functionality.

» Use the X-Ray console if you want a simpler interface or don’t want to change how you
interact with X-Ray.

« Use an SDK if you need more custom tracing, monitoring or logging capabilities than an AWS
Management Console can provide.

» Choose the ADOT SDK if you want a vendor-agnostic SDK based on the open source
OpenTelemetry SDK with added layers of AWS security and optimization.

« Choose the X-Ray SDK if you want a simpler SDK or don't want to update your application
code.

« Use X-Ray API operations if an SDK does not support your application’s programming language.

The following diagram helps you choose how to interact with X-Ray:

AWS X-Ray Developer Guide

-

~

Use a command line How do you

interface with customized want to

functionality interact with
X-Ray?

Use a low-code GUI
with basic functions and
visualizations

prug:iming Do you want
language is Zhed:lt::

supported in pdz .
an SDK experience?

Use a simpler
interface or don't
want to change how you
interact with X-Ray

Use the most updated
interface with added
functionality

N

N
NS

X-Ray API CloudWatch

X-Ray console console

Use the X-Ray API Do you want

the most
updated
experience?

Use the legacy X-Ray
console

Use the CloudWatch
console

Use a simpler SDK
or want to keep using the
X-Ray SDK

Use an SDK based on the
OpenTelemetry standard with
AWS layers of security and

optimization

N N

X-Ray SDK ADOT SDK

Use the legacy Use the AWS Distro for

X-Ray SDK OpenTelemetry SDK

.

Explore the interface types
e Use an SDK

« Use a console

» Use the X-Ray API

AWS X-Ray Developer Guide

Use an SDK

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

Use an SDK if you want to use a command line interface or need more custom tracing, monitoring,
or logging capabilities than what is available in an AWS Management Console. You can also use

an AWS SDK to develop programs that use the X-Ray APIs. You can use either the AWS Distro for
OpenTelemetry (ADOT) SDK or the X-Ray SDK.

If you use an SDK, you can add customizations to your workflow both when you instrument
your application and when you configure your collector or agent. You can use an SDK to do the
following tasks that you can’t do using an AWS Management Console:

 Publish custom metrics — Sample metrics at high resolutions down to 1 second, use multiple
dimensions to add information about a metric, and aggregate data points into a statistic set.

» Customize your collector — Customize the configuration for any portion of a collector including
the receiver, processor, exporter, and connector.

« Customize your instrumentation — Customize segments and subsegments, add custom key-value
pairs as attributes, and create custom metrics.

« Create and update sampling rules programmatically.

Use the ADOT SDK if you want the flexibility of using a standardized OpenTelemetry SDK with
added layers of AWS security and optimization. The AWS Distro for OpenTelemetry (ADOT) SDK is
a vendor-agnostic package that allows for integration with back ends from other vendors and non-
AWS services without having to reinstrument your code.

Use the X-Ray SDK if you are already using the X-Ray SDK, only integrate with AWS backends, and
don’'t want to change the way you interact with X-Ray or your application code.

Use an SDK 3

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

For more information about each feature, see Choosing between the AWS Distro for

OpenTelemetry and X-Ray SDKs.

Use the ADOT SDK

The ADOT SDK is a set of open source APIs, libraries and agents that send data to backend services.
ADQT is supported by AWS, integrates with multiple backends and agents, and provides a large
number of open source libraries maintained by the OpenTelemetry community. Use the ADOT SDK
to instrument your application and collect logs, metadata, metrics and traces. You can also use
ADOT to monitor services and set an alarm based on your metrics in CloudWatch.

If you are using the ADOT SDK, you have the following options, in combination with an agent:

» Use the ADOT SDK with the CloudWatch agent - recommended.

» Use the ADOT SDK with the ADOT Collector - recommended if you want to use vendor agnostic
software with AWS layers of security and optimization.

To use the ADOT SDK, do the following:

 Instrument your application using the ADOT SDK. For more information, see the documentation
for your programming language in the ADOT technical documentation.

» Configure an ADOT collector to tell it where to send data that it collects.

After the ADOT collector receives your data, it sends it to the backend that you specify in the ADOT
configuration. ADOT can send data to multiple backends, including to vendors outside of AWS, as
shown in the following diagram:

Use the ADOT SDK 9

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

4 N\

Instrument your Configure the ADOT

Your application . . :
PP application with the collector for data

ADOT SDK Expnrt

[

ADOT Collector
gathers data

Backend

Backend

o S

AWS regularly updates ADOT to add functionality and align with the OpenTelemetry framework.
Updates and future plans for developing ADOT are part of a roadmap that is available to the
public. ADOT supports several programming languages which include the following:

e GO

Java

JavaScript

Python
« .NET

Ruby
« PHP

If you are using Python, ADOT can automatically instrument your application. To get started using
ADQT, see Introduction and Getting Started with the AWS Distro for OpenTelemetry Collector.

Use the X-Ray SDK

The X-Ray SDK is a set of AWS APIs and libraries that send data to AWS backend services. Use the
X-Ray SDK to instrument your application and collect trace data. You cannot use the X-Ray SDK to
collect log or metric data.

If you are using the X-Ray SDK, you have the following options, in combination with an agent:

Use the X-Ray SDK 10

https://opentelemetry.io/docs/
https://github.com/orgs/aws-observability/projects/4
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/getting-started/collector

AWS X-Ray Developer Guide

« Use the X-Ray SDK with the AWS X-Ray daemon - Use this if you don't want to update your
application code.

« Use the X-Ray SDK with the CloudWatch agent — (recommended) The CloudWatch agent is
compatible with the X-Ray SDK.

To use the X-Ray SDK, do the following:

« Instrument your application using the X-Ray SDK.

« Configure a collector to tell it where to send data that it collects. You can use either the
CloudWatch agent or the X-Ray daemon to collect your trace information.

After the collector or agent receives your data, it sends it to an AWS backend that you specify in
the agent configuration. The X-Ray SDK can only send data to an AWS backend as shown in the

following diagram:

Instrument your Choose an
application with the agent or
X-Ray SDK collector

Recommended for
new users

CloudWatch collects
trace data

Your application

Continue using the
X-Ray daemon

X-Ray daemon
collects trace data

AWS Backend

If you are using Java, you can use the X-Ray SDK to automatically instrument your application.
To get started using the X-Ray SDK, see the libraries associated with the following programming
languages:

e GO

e Java

« Node.js

Use the X-Ray SDK

11

AWS X-Ray Developer Guide

« Python
o NET

« Ruby

Use a console

Use a console if you want a graphical user interface (GUI) that requires minimal coding. Users that
are new to X-Ray can get started quickly using pre-built visualizations, and performing basic tasks.
You can do the following directly from the console:

Enable X-Ray.

View high-level summaries of your application's performance.

Check the health status of your applications.

Identify high-level errors.

View basic trace summaries.

You can use either the Amazon CloudWatch console at https://console.aws.amazon.com/

cloudwatch/ or the X-Ray console at https://console.aws.amazon.com/xray/home to interact with
X-Ray.

Use the Amazon CloudWatch console

The CloudWatch console includes new X-Ray functionality that is redesigned from the X-Ray
console to make it easier to use. If you use the CloudWatch console, you can view CloudWatch logs
and metrics along with X-Ray trace data. Use the CloudWatch console to view and analyze data
including the following:

« X-Ray traces - View, analyze and filter traces associated with your application as it serves a
request. Use these traces to find high latencies, debug errors, and optimize your application
workflow. View a trace map and service map to see visual representations of your application
workflow.

» Logs - View, analyze and filter logs that your application produces. Use logs to troubleshoot
errors and set up monitoring based on specific log values.

» Metrics — Measure and monitor your application performance using metrics that your resources
emit or create your own metrics. View these metrics in graphs and charts.

Use a console 12

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Monitoring networks and infrastructure — Monitor major networks for outages and the health
and performance of your infrastructure including containerized applications, other AWS services,
and clients.

All of the functionality from the X-Ray console listed in the following Use the X-Ray console
section.

For more information about the CloudWatch console, see Getting started with Amazon
CloudWatch.

Login the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Use the X-Ray console

The X-Ray console offers distributed tracing for application requests. Use the X-Ray console if you

want a simpler console experience or don’t want to update your application code. AWS is no longer

developing the X-Ray console. The X-Ray console contains the following features for instrumented

applications:

Insights — Automatically detect anomalies in your application’s performance and find the
underlying causes. Insights are included in the CloudWatch console under Insights. For more
information, see the Use X-Ray Insights in Use the X-Ray console.

Service map - View a graphical structure of your application and its connections with clients,
resources, services, and dependencies.

Traces — See an overview of traces that are generated by your application as it serves a request.
Use trace data to understand how your application performs against basic metrics including
HTTP response and response time.

Analytics — Interpret, explore and analyze trace data using graphs for response time distribution.
Configuration — Create customized traces to change the default configurations for the following:

« Sampling - Create a rule that defines how often to sample your application for trace
information. For more information, see Configure sampling rules in Use the X-Ray console .

« Encryption — Encrypt data at rest using a key that you can audit or disable using AWS Key
Management Service.

» Groups — Use a filter expression to define a group of traces with a common feature such as the
name of a url or a response time. For more information, see Configure groups.

Login the X-Ray console at https://console.aws.amazon.com/xray/home.

Use the X-Ray console 13

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingStarted.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-groups
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Explore the X-Ray console

Use the X-Ray console to view a map of services and associated traces for requests that your
applications serve, and to configure groups and sampling rules which affect how traces are sent to
X-Ray.

(® Note

The X-Ray Service map and CloudWatch ServiceLens map have been combined into the X-
Ray trace map within the Amazon CloudWatch console. Open the CloudWatch console and

choose Trace Map under X-Ray traces from the left navigation pane.
CloudWatch now includes Application Signals, which can discover and monitor your

application services, clients, Synthetics canaries, and service dependencies. Use Application
Signals to see a list or visual map of your services, view health metrics based on your
service level objectives (SLOs), and drill down to see correlated X-Ray traces for more
detailed troubleshooting.

The primary X-Ray console page is the trace map, which is a visual representation of the JSON
service graph that X-Ray generates from the trace data generated by your applications. The map
consists of service nodes for each application in your account that serves requests, upstream client
nodes that represent the origins of the requests, and downstream service nodes that represent
web services and resources used by an application while processing a request. There are additional
pages for viewing traces and trace details, and configuring groups and sampling rules.

View the console experience for X-Ray and compare with the CloudWatch console in the following
sections.

Explore the X-Ray and CloudWatch consoles
» Using the X-Ray trace map

» Viewing traces and trace details

» Using filter expressions

» Cross-account tracing

» Tracing event-driven applications

« Using latency histograms

« Using X-Ray insights

Explore the X-Ray console 14

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html

AWS X-Ray Developer Guide

Interacting with the Analytics console

Configuring groups

Configuring sampling rules

Console deep linking

Using the X-Ray trace map

View the X-Ray trace map to identify services where errors are occurring, connections with high
latency, or traces for requests that were unsuccessful.

® Note

CloudWatch now includes Application Signals, which can discover and monitor your
application services, clients, synthetics canaries, and service dependencies. Use Application

Signals to see a list or visual map of your services, view health metrics based on your
service level objectives (SLOs), and drill down to see correlated X-Ray traces for more
detailed troubleshooting.

The X-Ray service map and CloudWatch ServiceLens map are combined into the X-Ray trace
map within the Amazon CloudWatch console. Open the CloudWatch console and choose
Trace Map under X-Ray traces from the left navigation pane.

Viewing the trace map

The trace map is a visual representation of the trace data that's generated by your applications.
The map shows service nodes that serve requests, upstream client nodes that represent the origins
of the requests, and downstream service nodes that represent web services and resources that are
used by an application while processing a request.

The trace map displays a connected view of traces across event-driven applications that use
Amazon SQS and Lambda. For more information, see tracing event-driven applications. The trace

map also supports cross-account tracing, displaying nodes from multiple accounts in a single map.

Trace map 15

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

CloudWatch console
To view the trace map in the CloudWatch console

1. Open the CloudWatch console. Choose Trace Map under the X-Ray Traces section in the
left navigation pane.

Q, Filter by X-Ray group Q_ Select a node ‘ @ ‘ ° ‘ Q H { ‘

» Legend and options
O scorekeep-state
Q DynamoDB Table
Client O Scorekeep
ECS Container

O scorekeep-game
DynamoDB Table

v

2. Choose a service node to view requests for that node, or an edge between two nodes to
view requests that traveled that connection.

3. Additional information is displayed below the trace map, including tabs for metrics, alerts,
and response time distribution. On the Metrics tab, select a range within each graph to
drill down to view more detail, or choose Faults or Errors options to filter traces. On the
Response time distribution tab, select a range within the graph to filter traces by response
time.

Trace map 16

https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

v api

ElasticBeanstalk Environment

View traces ‘ I Analyze traces [4 ’ ‘ View dashboard

Metrics Alerts Response time distribution

6% Faults (5xx) 1% Errors (4xx) Latency (avg): 402ms Requests: 5717.52/min Faults: 328.97/min

Latency i Requests ¢ Faults (5xx)
Seconds No unit Percent
3.0 8,764 26.05
L M - MNWWNWW 1502
| /A il U
0 LS A 0 0
09:00 12:00 09:00 12:00 09:00 12:00
@ ResponseTime p50 ResponseTime p90 @ TracedRequestCount @ FaultRate

4. View traces by choosing View traces, or if a filter has been applied, choose View filtered
traces.

5. Choose View logs to see CloudWatch logs associated with the selected node. Not all

trace map nodes support viewing logs. See troubleshooting CloudWatch logs for more
information.

The trace map indicates issues within each node by outlining it with colors:

« Red for server faults (500 series errors)
» Yellow for client errors (400 series errors)

o Purple for throttling errors (429 Too Many Requests)

If your trace map is large, use the on-screen controls or mouse to zoom in and out and move
the map around.

X-Ray console

To view the Service map

1. Open the X-Ray console. The service map is displayed by default. You can also choose
Service Map from the left navigation pane.

Trace map 17

https://console.aws.amazon.com/xray/home#

Developer Guide

AWS X-Ray
Default ¥ | Q Enter service name, annotation, trace ID. Or ¢ Last 30 minutes v [4
Enter a service name to find and select the node on map ' (Map legend €@
avg. 5ms
0.2 t/min
scorekeep-state
AWS::DynamoDB::Table
avg. 8ms
0.5 t/min
Client Scorekeep
AWS::ECS::Container
avg. Tms
03 t/min
scorekeep-game
AWS::DynamoDB::Table
2. Choose a service node to view requests for that node, or an edge between two nodes to

view requests that traveled that connection.

Use the response distribution histogram to filter traces by duration, and select status codes
for which you want to view traces. Then choose View traces to open the trace list with the

filter expression applied.

Trace map

18

AWS X-Ray Developer Guide

Service details ©)

Name: Scorekeep

Type: AWS:.ECS::Container

Response distribution

Click and drag to select an area to zoom in on or use as a latency filter when

viewing traces.

30% —
20% —

10% —

0% /\/

|]] |
0 10ms 20ms 30ms 40ms
Duration

Response status

Choose response statuses to add to the filter when viewing traces.

B Fault: 0% Error: 0%
I Throttle: 0% B OK: 100%

Analyze traces [~ View traces >

Trace map 19

AWS X-Ray

Developer Guide

The service map indicates the health of each node by coloring it based on the ratio of successful

calls to errors and faults:

« Green for successful calls

« Red for server faults (500 series errors)
» Yellow for client errors (400 series errors)

o Purple for throttling errors (429 Too Many Requests)

If your service map is large, use the on-screen controls or mouse to zoom in and out and move

the map around.

® Note

The X-Ray trace map can display up to 10,000 nodes. In rare scenarios where the total

number of service nodes exceeds this limit, you may receive an error and be unable to

display a complete trace map in the console.

Filtering the trace map by group

Using a filter expression, you can define criteria by which to include traces within a group. Use the
following steps to then display that specific group in the trace map.

CloudWatch console

Choose a group name from the group filter on the top-left of the trace map.

Q Filter by X-Ray group

+

TestGroup

X-Ray console

Q Select a node

Choose a group name from the drop-down menu to the left of the search bar.

Trace map

20

AWS X-Ray Developer Guide

Default ~ Q

Q, Enter a group name

Default

Create group

Leam more '

The service map will now be filtered to display traces that match the filter expression of the
selected group.

Trace map legend and options

The trace map includes a legend and several options for customizing the map display.

CloudWatch console

Choose the Legend and options drop-down at the top-right of the map. Choose what is
displayed within nodes, including:

o Metrics displays the average response time and number of traces sent per minute during the
chosen time range.

» Nodes displays the service icon within each node.

Choose additional map settings from the Preferences pane, which can be accessed via the
gear icon at the top-right of the map. These settings include selecting which metric is used to
determine the size of each node, and which canaries should be displayed on the map.

X-Ray console

Display the service map legend by choosing the Map legend link at the top-right of the map.
Service map options can be chosen at the bottom-right of the trace map, including:

« Service Icons toggles what is displayed within each node, displaying either the service icon,
or the average response time and number of traces sent per minute during the chosen time
range.

» Node sizing: None sets all nodes to the same size.

Trace map 21

AWS X-Ray Developer Guide

» Node sizing: Health sizes nodes by the number of impacted requests including errors, faults,
or throttled requests.

» Node sizing: Traffic sizes nodes by the total number of requests.

Viewing traces and trace details

Use the Traces page in the X-Ray console to find traces by URL, response code, or other data from
the trace summary. After selecting a trace from the trace list, the Trace details page displays a map
of service nodes that are associated with the selected trace and a timeline of trace segments.

Viewing traces
CloudWatch console
To view traces in the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose X-Ray traces, then choose Traces. You can filter by
group or enter a filter expression. This filters the traces that are displayed in the Traces

section at the bottom of the page.

Alternatively, you can use the service map to navigate to a specific service node, and then
view traces. This opens the Traces page with a query already applied.

3. Refine your query in the Query refiners section. To filter traces by a common attribute,
choose an option from the down arrow next to Refine query by. The options include the
following:

» Node - Filter traces by service node.

» Resource ARN - Filter traces by a resource associated with a trace. Examples of these
resources include Amazon Elastic Compute Cloud (Amazon EC2) instance, an AWS
Lambda function, or an Amazon DynamoDB table.

« User - Filter traces with a user ID.
» Error root cause message - Filter traces by error root cause.
« URL - Filter traces by a URL path used by your application.

o HTTP status code - Filter traces by the HTTP status code returned by your application.
You can specify a custom response code or select from the following:

Traces 22

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray

Developer Guide

e 200 - The request was successful.

e 401 - The request lacked valid authentication credentials.
e 403 - The request lacked valid permissions.

« 4Q4 —The server could not find the requested resource.

» 500 - The server encountered an unexpected condition and generated an internal
error.

Choose one or more entries and then choose Add to query to add to the filter expression at
the top of the page.

To find a single trace, enter a trace ID directly into the query field. You can use X-Ray
format or World Wide Web Consortium (W3C) format. For example, a trace that's created
using the AWS Distro for OpenTelemetry is in W3C format.

(® Note

When you query traces that are created with a W3C-format trace ID, the console
displays the matching trace in X-Ray format. For example, if you query for
Lefaat4dle8720b39541901950019ee5 in W3C format, the console displays the
X-Ray equivalent: 1-4efaaf4d-1e8720b39541901950019¢ee5.

Choose Run query at any time to display a list of matching traces within the Traces section
at the bottom of the page.

To display the Trace details page for a single trace, select a trace ID from the list.

The following image shows a Trace map containing service nodes associated with the trace
and edges between the nodes representing the path taken by segments that compose the
trace. A Trace summary follows the Trace Map. The summary contains information about a
sample GET operation, its Response Code, the Duration that the trace took to run, and the
Age of the request. The Segments Timeline follows the Trace Summary that shows the
duration of trace segments and subsegments.

Traces

23

AWS X-Ray Developer Guide

P Legend and options n-n
A

O customers

(@ /@\ r /é\ DynamoDB Table

Client : api i products —
ElasticBea...Environment ElasticBea...Environment / \

No node selected

Select a node to see its details

Trace Summary

Method Response Code Duration Age
GET 200 17ms a few seconds (2022-01-20 16:35:56)

Segments Timeline info

Segment Response Duration 00 20 40 60 80 10 1 14 - 18
status Cﬂde LI'ﬂS Jms Jms .| Lms LI'ﬂS JT'TTS Jms rl'IS {TIS ‘T'TTS
¥ api Aws:ElasticBeanstalk:Environment
api ® oK 200 17ms 1 GET ...
auth @ oK - Oms |
forward ® ok - 17ms I
products.eba-cvikws4f...©) OK 200 17ms I, e

If you have an event-driven application that uses Amazon SQS and Lambda, you can see
a connected view of traces for each request in the Trace map. In the map, traces from
message producers are linked to traces from AWS Lambda consumers and are displayed
as a dashed-line edge. For more information about event-driven applications, see Tracing
event-driven applications.

The Traces and Trace details pages also support cross-account tracing, which can list traces
from multiple accounts in the trace list and inside a single trace map.

Traces 24

AWS X-Ray Developer Guide

X-Ray console
To view traces in the X-Ray console

1. Open the Traces page in the X-Ray console. The Trace overview panel shows a list of traces
that are grouped by common features including Error root causes, ResourceARN, and
Instanceld.

2. To select a common feature to view a grouped set of traces, expand the down arrow next to
Group by. The following illustration shows a trace overview of traces that are grouped by
URL for the AWS X-Ray sample application, and a list of associated traces.

Trace overview

Group by URL -
URL = Avg response time . % of Traces . Response -
nitp fiscofekeep elastic beanstalk comvapuuser 391 ms 4.76% 1 OK, 0 Throttied, 0 Efrors, 0 Fauls ,.
hitp:iscorekeep elastic beanstalk com/apisessionaNE3LUOS 330 ms 4.76% 1 Q. O Throdtied, O Emrors, 0 Faulls
hitp:/iscorekeep elastic beanstalk com/apysession 90.5 ms 0.52% 2 OK. 0 Throdtied, O Emrors, 0 Faults

Trace list (21)

(11 Age » Method = Response - Response time - URL = Annotations -
1562473 5.0 min POST 200 31 ms http:fiscorekeep elastic beanstalk com/apliuser o
cle3gasn 5.0 min PUT 200 330 ms hitp: fiscorekeep elastic beanstalk com/apiisession/BNE3LUCE o
dgES3edc 5.0 min POST 200 19.0 ms hitp:fiscorekeep elasticbeanstalk comiaplisession 0
ATESTecE 5.0 min GET 200 1862 ms hitp fiscorekeep elastic beanstalk com/aplsession o]
BdeeelFD 4.7 min POST 200 95.0 ms hittpiisconeksep elastic beanstalk comapimove/SNEILUQEZNSEACTL/PFMPELIB
Jab33fgb 48min POST 200 5.0 ms hittp fiscorekeep. elastic eanstalk com/apimove/SNE3LUQEZNSEACT LIPPMPELIB
237e0705 4.8 min POST 200 205 ms hitpiisconekeep. elastic beanstalk comfapiimove/SNEILUQEZNSEACTL/PFMPELIB
BETAZ22T 4.9 min POST 200 25.0 ms hitpsconekeep elastic Deanstalk comfapiigameBNGILUQEZNSBACT Lusers
3232 4.9 min PUT 200 121 ms hittp fiscorekeep elastic beanstalk comapiigameBNEILUREZNIEACTLIMIes T Tac Toe

1.4 min GET 200 14.0 ms. hitp fiscorekeep elastic beanstalk comfapl'gameGHNEIL UGN ISACTL 0
1.7 min GET 200 12.0 ms hitp:fiscomkeep elastic beanstalk com/apiigameBNE3LUOG2NSEACTL 0
delebelds 1.9 min GET 200 g0ms hitp:fiscorekeep elasiic beansialk com/apligameBNEILUQE2ZNSEACTL 0
246370 4.9 min PUT 200 E9.0ms nitpoiscorekeep elastic DEansalk comiaplgame BNE3LUQEZNSEACTL
fafShbe T 49min POST 200 g1.0ms nitpiiscorekesp elastic beanstalk coMiapligameaNe3LUOE

3. Choose the ID of a trace to view it under the Trace list. You can also choose Service map in
the navigation pane to view traces for a specific service node. Then you can view traces that
are associated with that node.

The Timeline tab shows the request flow for the trace, and includes the following:

« A map of the path for each segment in the trace.

« How long it took for the segment to reach a node in the trace map.

Traces 25

https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide

« How many requests were made to the node in the trace map.

The following illustration shows an example Trace Map associated with a GET request
made to a sample application. The arrows show the path that each segment took to
complete the request. The service nodes show the number of requests made during the
GET request.

Timeline Raw data

Method v Response - Duration v Age -
GET 200 80.1 ms 9.4 min (2022-01-21 00:35:05 U...
¥ Trace Map

api “f 15m

AWS: ElasticBeanstalk::Environment

& 80me 1 Request

1 Request

products
V3 ElasticBeanstalk::Erwironment

Client W
AWS:ElasticBeanstalk: Envimnment

2ITS
1 Requeat
avg. 4|n5
auth
AWS::BlasticBasnstalk::Environment 4 Requests
customers
Name Res. Duration Status D.olms 1D|Ins zo:ns 30|I‘ns
¥ WWW AWS::ElasticBeanstalk::Environment
www 200 80.1ms & |
auth - 3.9 ms =]
auth.eba-cvkws4fz.us-east-1.elasticbeanstalk 200 3.9ms] Remote: GET ... /auth/delay/
request - 0.0ms =
response - 3.8ms

For more information about the Timeline tab, see the following Exploring the trace
timeline section.

The Raw data tab shows information about the trace, and the segments and subsegments
that compose the trace, in JSON format. This information may include the following:

Traces 26

AWS X-Ray Developer Guide

o Timestamps

» Unique IDs

» Resources associated with the segment or subsegment
» The source, or origin, of the segment or subsegment

« Additional information about the request to your application such as the response from
an HTTP request

Exploring the trace timeline

The Timeline section shows a hierarchy of segments and subsegments next to a horizontal bar that

corresponds to time they used to complete their tasks. The first entry in the list is the segment,
which represents all data recorded by the service for a single request. Subsegments are indented
and listed following the segment. Columns contain information about each segment.

CloudWatch console

In the CloudWatch console, the Segments Timeline provides the following information:

» The first column: Lists the segments and subsegments in the selected trace.
« The Segment status column: Lists the status outcome of each segment and subsegment.

« The Response code column: Lists an HTTP response status code to a browser request made
by the segment or subsegment, when available.

o The Duration column: Lists how long the segment or subsegment ran.

« The Hosted in column: Lists the namespace or environment where the segment or
subsegment is ran, if applicable. For more information, see Dimensions collected and

dimension combinations.

« The last column: Displays horizontal bars that correspond to the duration that the segment or

subsegment ran, in relation to the other segments or subsegments in the timeline.

To group the list of segments and subsegments by service node, turn on Group by nodes.

X-Ray console

In the trace details page, choose the Timeline tab to see the timeline for each segment and
subsegment that makes up a trace.

Traces

27

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions

AWS X-Ray Developer Guide

In the X-Ray console, the Timeline provides the following information:

o The Name column: Lists the names of the segments and subsegments in the trace.

» The Res. column: Lists an HTTP response status code to a browser request made by the
segment or subsegment, when available.

« The Duration column: Lists how long the segment or subsegment ran.
» The Status column: Lists the outcome of the segment or subsegment status.

» The last column: Displays horizontal bars that correspond to the duration that the segment or
subsegment ran, in relation to the other segments or subsegments in the timeline.

To see the raw trace data that the console uses to generate the timeline, choose the Raw data
tab. The raw data shows you information about the trace, and the segments and subsegments
that compose the trace in JSON format. This information may include the following:

o Timestamps

« Unique IDs

« Resources associated with the segment or subsegment
» The source, or origin, of the segment or subsegment

« Additional information about the request to your application such as the response from an
HTTP request.

When you use an instrumented AWS SDK, HTTP, or SQL client to make calls to external resources,
the X-Ray SDK records subsegments automatically. You can also use the X-Ray SDK to record
custom subsegments for any function or block of code. Additional subsegments that are recorded
while a custom subsegment are open become children of the custom subsegment.

Viewing segment details
From the trace Timeline, choose the name of a segment to view its details.

The Segment details panel shows the Overview, Resources, Annotations, Metadata, Exceptions,
and SQL tabs. The following apply:

« The Overview tab shows information about the request and response. Information includes the
name, start time, end time, duration, the request URL, request operation, request response code,
and any errors and faults.

Traces 28

AWS X-Ray Developer Guide

« The Resources tab for a segment shows information from the X-Ray SDK and about the AWS
resources running your application. Use the Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS
plugins for the X-Ray SDK to record service-specific resource information. For more information
about plugins, see the Service plugins section in Configuring the X-Ray SDK for Java.

« The remaining tabs show Annotations, Metadata, and Exceptions that are recorded for the
segment. Exceptions are captured automatically when they are generated from an instrumented
request. Annotations and metadata contain additional information that you record by using the
operations that the X-Ray SDK provides. To add annotations or metadata to your segments, use
the X-Ray SDK. For more information, see the language-specific link listed under Instrumenting
your application with AWS X-Ray SDKs in Instrumenting your application for AWS X-Ray.

Viewing subsegment details

From the trace timeline, choose the name of a subsegment to view its details:

« The Overview tab contains information about the request and response. This includes the name,
start time, end time, duration, the request URL, request operation, request response code, and
any errors and faults. For subsegments generated with instrumented clients, the Overview tab
contains information about the request and response from your application's point of view.

» The Resources tab for a subsegment shows details about the AWS resources that were used to
run the subsegment. For example, the resources tab may include an AWS Lambda function ARN,
information about a DynamoDB table, any operation that is called, and request ID.

« The remaining tabs show Annotations, Metadata, and Exceptions recorded on the subsegment.
Exceptions are captured automatically when they are generated from an instrumented request.
Annotations and metadata contain additional information that you record by using the
operations that the X-Ray SDK provides. Use the X-Ray SDK to add annotations or metadata to
your segments. For more information, see the language-specific link listed under Instrumenting
your application with AWS X-Ray SDKs in Instrumenting your application for AWS X-Ray.

For custom subsegments, the Overview tab shows the name of the subsegment, which you can set
to specify the area of the code or function that it records. For more information, see the language-
specific link listed under Instrumenting your application with AWS X-Ray SDKs in Generating
custom subsegments with the X-Ray SDK for Java.

The following image shows the Overview tab for a custom subsegment. The overview contains the
subsegment ID, parent ID, Name, start and end times, duration, status and errors or faults.

Traces 29

AWS X-Ray Developer Guide

Subsegment - # GameModel.saveGame

Overview Resources Annotations Metadata Exceptions

Subsegment ID 5075ca6246049416
Parent ID 69e25bbS5Sbfedc13f
Name ## GameModel saveGame

Time

Start time 2017-03-14 17:10:56 800 (UTC)
End time 2017-03-14 17:10:56.814 (UTC)
Duration 14.0 ms

In progress False

Errors & Faults

Error False
Fault False

The Metadata tab for a custom subsegment contains information in JSON format about resources
used by that subsegment.

Using filter expressions

Use filter expressions to view a trace map or traces for a specific request, service, connection
between two services (an edge), or requests that satisfy a condition. X-Ray provides a filter
expression language for filtering requests, services, and edges based on data in request headers,
response status, and indexed fields on the original segments.

When you choose a time period of traces to view in the X-Ray console, you might get more results
than the console can display. In the upper-right corner, the console shows the number of traces
that it scanned and whether there are more traces available. You can use a filter expression to
narrow the results to just the traces that you want to find.

Filter expressions 30

AWS X-Ray Developer Guide

Topics

« Filter expression details

» Using filter expressions with groups

« Filter expression syntax

» Boolean keywords

o Number keywords

« String keywords

o Complex keywords

« id function

Filter expression details

When you choose a node in the trace map, the console constructs a filter expression based on the
service name of the node, and the types of error present based on your selection. To find traces
that show performance issues or that relate to specific requests, you can adjust the expression that

the console provides or create your own. If you add annotations with the X-Ray SDK, you can also
filter based on the presence of an annotation key or the value of a key.

(® Note

If you choose a relative time range in the trace map and choose a node, the console
converts the time range to an absolute start and end time. To ensure that the traces for the
node appear in the search results, and avoid scanning times when the node wasn't active,
the time range only includes times when the node sent traces. To search relative to the
current time, you can switch back to a relative time range in the traces page and scan again.

If there are still more results available than the console can show, the console shows you how many
traces matched and the number of traces scanned. The percentage shown is the percentage of the
selected time frame that was scanned. To ensure that you see all matching traces represented in
the results, narrow your filter expression further, or choose a shorter time frame.

To get the freshest results first, the console starts scanning at the end of the time range and works
backward. If there are a large number of traces, but few results, the console splits the time range
into chunks and scans them in parallel. The progress bar shows the parts of the time range that
have been scanned.

Filter expressions 31

AWS X-Ray Developer Guide

Loading 52% scanned (found 49 iraces) $ 'ﬁ‘

Using filter expressions with groups

Groups are a collection of traces that are defined by a filter expression. You can use groups to
generate additional service graphs and supply Amazon CloudWatch metrics.

Groups are identified by their name or an Amazon Resource Name (ARN), and contain a filter
expression. The service compares incoming traces to the expression and stores them accordingly.

You can create and modify groups by using the dropdown menu to the left of the filter expression

search bar.

® Note

If the service encounters an error in qualifying a group, that group is no longer included in
processing incoming traces and an error metric is recorded.

For more information about groups, see Configuring groups.

Filter expression syntax

Filter expressions can contain a keyword, a unary or binary operator, and a value for comparison.

keyword operator value

Filter expressions 32

AWS X-Ray Developer Guide

Different operators are available for different types of keyword. For example, responsetime is a
number keyword and can be compared with operators related to numbers.

Example - requests where response time was greater than 5 seconds

responsetime > 5

You can combine multiple expressions in a compound expression by using the AND or OR operators.

Example - requests where the total duration was 5-8 seconds

duration >= 5 AND duration <= 8

Simple keywords and operators find issues only at the trace level. If an error occurs downstream,
but is handled by your application and not returned to the user, a search for error will not find it.

To find traces with downstream issues, you can use the complex keywords service() and

edge(). These keywords let you apply a filter expression to all downstream nodes, a single
downstream node, or an edge between two nodes. For more granularity, you can filter services and
edges by type with the id() function.

Boolean keywords

Boolean keyword values are either true or false. Use these keywords to find traces that resulted in
errors.

Boolean keywords

» ok — Response status code was 2XX Success.

« error - Response status code was 4XX Client Error.

« throttle - Response status code was 429 Too Many Requests.
« fault - Response status code was 5XX Server Error.

« partial - Request has incomplete segments.

« inferred - Request has inferred segments.

o first - Element is the first of an enumerated list.

« last - Element is the last of an enumerated list.

« remote — Root cause entity is remote.

« root - Service is the entry point or root segment of a trace.

Filter expressions 33

AWS X-Ray Developer Guide

Boolean operators find segments where the specified key is true or false.
Boolean operators

« none - The expression is true if the keyword is true.
« | —The expression is true if the keyword is false.

« =, 1=— Compare the value of the keyword to the string true or false. These operators act the
same as the other operators but are more explicit.

Example - response status is 2XX OK

ok
Example - response status is not 2XX OK
lok
Example - response status is not 2XX OK
ok = false
Example - last enumerated fault trace has error name "deserialize"

rootcause.fault.entity { last and name = "deserialize" }

Example - requests with remote segments where coverage is greater than 0.7 and the service
name is "traces"

rootcause.responsetime.entity { remote and coverage > 0.7 and name = "traces" }
Example - requests with inferred segments where the service type is "AWS:DynamoDB"

rootcause.fault.service { inferred and name = traces and type = "AWS::DynamoDB" }

Example - requests that have a segment with the name "data-plane" as the root

service("data-plane") {root = true and fault = true}

Filter expressions 34

AWS X-Ray Developer Guide

Number keywords

Use number keywords to search for requests with a specific response time, duration, or response
status.

Number keywords

« responsetime - Time that the server took to send a response.

« duration - Total request duration, including all downstream calls.
 http.status - Response status code.

« index - Position of an element in an enumerated list.

« coverage - Decimal percentage of entity response time over root segment response time.
Applicable only for response time root cause entities.

Number operators
Number keywords use standard equality and comparison operators.

« =,1=-The keyword is equal to or not equal to a number value.

e <,<=,>>=-The keyword is less than or greater than a number value.

Example - response status is not 200 OK
http.status != 200
Example - request where the total duration was 5-8 seconds

duration >= 5 AND duration <= 8

Example - requests that completed successfully in less than 3 seconds, including all
downstream calls

ok !partial duration <3

Example - enumerated list entity that has an index greater than 5

rootcause.fault.service { index > 5 }

Filter expressions 35

AWS X-Ray Developer Guide

Example - requests where the last entity that has coverage greater than 0.8

rootcause.responsetime.entity { last and coverage > 0.8 }

String keywords
Use string keywords to find traces with specific text in the request headers, or specific user IDs.

String keywords

e http.url - Request URL.

« http.method - Request method.

« http.useragent - Request user agent string.

e http.clientip - Requestor's IP address.

« user - Value of the user field on any segment in the trace.

« name - The name of a service or exception.

« type - Service type.

« message - Exception message.

« availabilityzone - Value of the availabilityzone field on any segment in the trace.
« instance.id - Value of the instance ID field on any segment in the trace.

« resource.arn - Value of the resource ARN field on any segment in the trace.

String operators find values that are equal to or contain specific text. Values must always be
specified in quotation marks.

String operators

« =,1=-The keyword is equal to or not equal to a number value.
« CONTAINS - The keyword contains a specific string.
« BEGINSWITH, ENDSWITH - The keyword begins or ends with a specific string.

Example - http.url filter

http.url CONTAINS "/api/game/"

Filter expressions 36

AWS X-Ray Developer Guide

To test if a field exists on a trace, regardless of its value, check to see if it contains the empty string.
Example - user filter

Find all traces with user IDs.

user CONTAINS "™

Example - select traces with a fault root cause that includes a service named "Auth"

rootcause.fault.service { name = "Auth" }

Example - select traces with a response time root cause whose last service has a type of
DynamoDB

rootcause.responsetime.service { last and type = "AWS::DynamoDB" }

Example - select traces with a fault root cause whose last exception has the message "access
denied for account_id: 1234567890"

rootcause.fault.exception { last and message = "Access Denied for account_id:
1234567890"

Complex keywords

Use complex keywords to find requests based on service name, edge name, or annotation value.
For services and edges, you can specify an additional filter expression that applies to the service
or edge. For annotations, you can filter on the value of an annotation with a specific key using
Boolean, number, or string operators.

Complex keywords

« annotation[key] - Value of an annotation with field key. The value of an annotation can be a
Boolean, number, or string, so you can use any of the comparison operators of those types. You
can use this keyword in combination with the service or edge keyword. An annotation key that
contains dots (periods) must be wrapped in square brackets ([]).

» edge(source, destination) {filter} - Connection between services source and
destination. Optional curly braces can contain a filter expression that applies to segments on
this connection.

Filter expressions 37

AWS X-Ray Developer Guide

e group.name / group.arn - The value of a group's filter expression, referenced by group
name or group ARN.

« json - JSON root cause object. See Getting data from AWS X-Ray for steps to create JSON
entities programmatically.

o service(name) {filter} - Service with name name. Optional curly braces can contain a
filter expression that applies to segments created by the service.

Use the service keyword to find traces for requests that hit a certain node on your trace map.
Complex keyword operators find segments where the specified key has been set, or not set.
Complex keyword operators

» none - The expression is true if the keyword is set. If the keyword is of boolean type, it will
evaluate to the boolean value.

« | —The expression is true if the keyword is not set. If the keyword is of boolean type, it will
evaluate to the boolean value.

o =,1=— Compare the value of the keyword.

« edge(source, destination) {filter} - Connection between services source and
destination. Optional curly braces can contain a filter expression that applies to segments on
this connection.

« annotation[key] - Value of an annotation with field key. The value of an annotation can be a
Boolean, number, or string, so you can use any of the comparison operators of those types. You
can use this keyword in combination with the service or edge keyword.

« json - JSON root cause object. See Getting data from AWS X-Ray for steps to create JSON
entities programmatically.

Use the service keyword to find traces for requests that hit a certain node on your trace map.
Example - Service filter

Requests that included a call to api.example.com with a fault (500 series error).

service("api.example.com") { fault }

You can exclude the service name to apply a filter expression to all nodes on your service map.

Filter expressions 38

AWS X-Ray Developer Guide

Example - service filter

Requests that caused a fault anywhere on your trace map.

service() { fault }

The edge keyword applies a filter expression to a connection between two nodes.
Example - edge filter

Request where the service api.example.com made a call to backend.example. com that failed
with an error.

edge("api.example.com", "backend.example.com") { error }

You can also use the ! operator with service and edge keywords to exclude a service or edge from
the results of another filter expression.

Example - service and request filter

Request where the URL begins with http://api.example.com/ and contains /v2/ but does not
reach a service named api.example.com.

http.url BEGINSWITH "http://api.example.com/" AND http.url CONTAINS "/v2/" AND !
service("api.example.com")

Example - service and response time filter
Find traces where http url is set and response time is greater than 2 seconds.

http.url AND responseTime > 2

For annotations, you can call all traces where annotation[key] is set, or use the comparison
operators that correspond to the type of value.

Example - annotation with string value

Requests with an annotation named gameid with string value "817DL6V0".

annotation[gameid] = "817DL6VO"

Filter expressions 39

AWS X-Ray Developer Guide

Example - annotation is set

Requests with an annotation named age set.

annotation[age]

Example - annotation is not set

Requests without an annotation named age set.

lannotation[age]

Example - annotation with number value

Requests with annotation age with numerical value greater than 29.

annotation[age] > 29

Example - annotation in combination with service or edge

service { annotation[request.id] = "917DL6VO" }

edge { source.annotation[request.id] = "916DL6VO" }

edge { destination.annotation[request.id] = "918DL6V0" }

Example - group with user

Requests where traces meet the high_response_time group filter (e.g. responseTime > 3),
and the user is named Alice.

group.name = "high_response_time" AND user = "alice"

Example - JSON with root cause entity

Requests with matching root cause entities.

Filter expressions 40

AWS X-Ray Developer Guide

rootcause.json = #[{ "Services": [{ "Name'": "GetWeatherData'", "EntityPath": [{ "Name":
"GetWeatherData" }, { "Name'": '"get_temperature" }] }, { "Name": "GetTemperature",
"EntityPath": [{ "Name": "GetTemperature" }] }] }]

id function

When you provide a service name to the service or edge keyword, you get results for all nodes
that have that name. For more precise filtering, you can use the id function to specify a service
type in addition to a name to distinguish between nodes with the same name.

Use the account. id function to specify a particular account for the service, when viewing traces
from multiple accounts in a monitoring account.

id(name: "service-name", type:'"service::type", account.id:"account-ID")

You can use the id function in place of a service name in service and edge filters.

service(id(name: "service-name", type:'"service::type")) { filter }

edge(id(name: "service-one", type:"service::type"), id(name: "service-two",
type:"service::type")) { filter }

For example, AWS Lambda functions result in two nodes in the trace map; one for the function
invocation, and one for the Lambda service. The two nodes have the same name but different
types. A standard service filter will find traces for both.

Example - service filter

Requests that include an error on any service named random-name.

service("random-name") { error }

Use the id function to narrow the search to errors on the function itself, excluding errors from the
service.

Example - service filter with id function

Requests that include an error on a service named random-name with type
AWS: :Lambda: :Function.

Filter expressions 41

AWS X-Ray Developer Guide

service(id(name: "random-name", type: "AWS::Lambda::Function")) { error }

To search for nodes by type, you can also exclude the name entirely.
Example - service filter with id function and service type

Requests that include an error on a service with type AWS: : Lambda: : Function.

service(id(type: "AWS::Lambda::Function")) { error }

To search for nodes for a particular AWS account, specify an account ID.
Example - service filter with id function and account ID

Requests that include a service within a specific account ID AWS: : Lambda: : Function.

service(id(account.id: "account-id"))

Cross-account tracing

AWS X-Ray supports cross-account observability, enabling you to monitor and troubleshoot
applications that span multiple accounts within an AWS Region. You can seamlessly search,
visualize, and analyze your metrics, logs, and traces in any of the linked accounts as if you were
operating in a single account. This provides a complete view of requests that travel across multiple
accounts. You can view cross-account traces in the X-Ray trace map and traces pages within the
CloudWatch console.

The shared observability data can include any of the following types of telemetry:

Metrics in Amazon CloudWatch

Log groups in Amazon CloudWatch Logs
Traces in AWS X-Ray

Applications in Amazon CloudWatch Application Insights

Configure cross-account observability

To turn on cross-account observability, set up one or more AWS monitoring accounts and link them
with multiple source accounts. A monitoring account is a central AWS account that can view and

Cross-account tracing 42

https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

interact with observability data that's generated from source accounts. A source account is an
individual AWS account that generates observability data for the resources that it contains.

Source accounts share their observability data with monitoring accounts. Traces are copied from
each source account to up to five monitoring accounts. Copies of traces from source accounts to
the first monitoring account are free. Copies of traces sent to additional monitoring accounts are
charged to each source account, based on standard pricing. For more information, see AWS X-Ray
pricing and Amazon CloudWatch pricing.

To create links between monitoring accounts and source accounts, use the CloudWatch console or
the new Observability Access Manager commands in the AWS CLI and API. For more information,
see CloudWatch cross-account observability.

(® Note

X-Ray traces are billed to the AWS account where they're received. If a sampled request
spans services across more than one AWS account, each account records a separate trace,
and all traces share the same trace ID. To learn more about cross-account observability
pricing, see AWS X-Ray pricing and Amazon CloudWatch pricing.

Viewing cross-account traces

Cross-account traces are displayed in the monitoring account. Each source account displays only
local traces for that specific account. The following sections assume that you're signed in to the
monitoring account and have opened the Amazon CloudWatch console. On both the trace map and
traces pages, a monitoring account badge is displayed in the upper-right corner.

W LL GG BE D] 4 |ast updated now

5m 15m 30m 1h 3h 6h Custom C v 2 Map view List view

Trace map

In the CloudWatch console, choose Trace Map under X-Ray traces from the left navigation pane.
By default, the trace map displays nodes for all source accounts that send traces to the monitoring
account, and nodes for the monitoring account itself. On the trace map, choose Filters from the
upper left to filter the trace map using the Accounts drop-down. After an account filter is applied,
service nodes from accounts that don't match the current filter are grayed out.

Cross-account tracing 43

https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/cloudwatch/pricing/

AWS X-Ray Developer Guide

Y Filters o Q, Filter by X-Ray group + Q Select a node

Y Filters X

Accounts

Select accounts v

Monitoring account X
1234567890123

Clear all

Map layout
@ show nodes with no filters
applied.

O TestLambda
Lambda Function

When you choose a service node, the node details pane includes the service's account ID and label.

v TestLambda I View logs [4 H View traces H Analyze traces [4 H View dashboard l

Lambda Function Account: Monitoring account (1234567890123)

Metrics Alerts Response time distribution

In the upper-right corner of the trace map, choose List view to see a list of service nodes. The list
of service nodes includes services from the monitoring account and all configured source accounts.
Filter the list of nodes by Account label or Account id by choosing them from the Nodes filter.

Nodes (2)
Q, Account id =| X
Use: "Accountid ="
Alarms Vv Latency (avg) Vv Faults (5xx) ¥
Values
A1 13ms 0.00/min

Account id = 461265027466

Cross-account tracing 44

AWS X-Ray Developer Guide

Traces

View trace details for traces that span multiple accounts by opening the CloudWatch console from
the monitoring account, and choosing Traces under X-Ray traces in the left navigation pane. You
can also open this page by choosing a node in the X-Ray Trace Map, and then choosing View traces
from the node details pane.

The Traces page supports querying by account ID. To get started, enter a query that includes one
or more account IDs. The following example queries for traces that have passed through account ID
XorY:

service(id(account.id:"X")) OR service(id(account.id:"Y"))

Traces Info 5m 15m 30m 1h 3h 6h Custom

Q Filter by X-Ray group service(id(account.id: "1234567890123"))

m ® 5 traces retrieved

Refine your query by Account. Select one or more accounts from the list, and choose Add to query.

¥ Query refiners

Refine query by | Account v 1 selected Add to query

Select rows to filter traces

Q 1
Account name and ID v
Monitoring account (1234567890123)

Trace details

View details for a trace by choosing it from the Traces list at the bottom of the Traces page. The
Trace details displays, including a trace details map with service nodes from across all accounts
that the trace passed through. Choose a specific service node to see its corresponding account.

The Segments timeline section displays the account details for each segment in the timeline.

Cross-account tracing 45

AWS X-Ray

Developer Guide

V TestLambda AWS::Lambda::Function Monitoring account (1234567890123)

TestLambda ®@ oK = 28ms
Invocation ®@oK - 1ms
Overhead ®@ ok - 8ms

Tracing event-driven applications

AWS X-Ray supports tracing event-driven applications using Amazon SQS and AWS Lambda. Use

the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS

and processed by one or more Lambda functions. Traces from upstream message producers are

automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end

view of the application.

(® Note

Each trace segment can be linked to up to 20 traces, while a trace can include a maximum

of 100 links. In certain scenarios, linking additional traces may result in exceeding the

maximum trace document size, causing a potentially incomplete trace. This can happen,

for example, when a Lambda function with tracing enabled sends many SQS messages to

a queue in a single invocation. If you encounter this issue, a mitigation is available which
uses the X-Ray SDKs. See the X-Ray SDK for Java, Node.js, Python, Go, or .NET for more

information.

View linked traces in the trace map

Use the Trace Map page within the CloudWatch console to view a trace map with traces from

message producers that are linked to traces from Lambda consumers. These links are displayed

with a dashed-line edge that connects the Amazon SQS node and downstream Lambda consumer

nodes.

Tracing event-driven applications

46

https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray
https://github.com/aws/aws-xray-sdk-java#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-node/tree/master/packages/core#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-python#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-go#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-dotnet#oversampling-mitigation
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

|

O ProducerFunction O https://...MySQSQueue
SQS Queue

O ConsumerFunction
Lambda Context

Select a dashed-line edge to display a received event age histogram, which maps the spread of
event age when it's received by consumers. The age is calculated each time an event is received.

v Edge details

Source: https://sgs.us-east-1.amazonaws.com/1234567890123/MySQSQueue Destination: ConsumerFunction

Received event age distribution
The time taken for data to be retrieved from an asynchronous system.

8%
6%
4%

2%

0% li\

0 20s 40s 1.0m 1.3m 1.7m 2.0m
Duration

View linked trace details
View trace details sent from a message producer, Amazon SQS queue, or Lambda consumer:

1. Use the Trace Map to select a message producer, Amazon SQS, or Lambda consumer node.

2. Choose View traces from the node details pane to display a list of traces. You can also navigate
directly to the Traces page within the CloudWatch console.

3. Choose a specific trace from the list to open the trace details page. The trace details page
displays a message when the selected trace is part of a linked set of traces.

CloudWatch Traces Trace 1-4368449e-afb1eac1c8de3d4c027ec436

Trace 1-6368449e-afb1eac1c8de3d4c027ec436 Info

Tracing event-driven applications 47

AWS X-Ray Developer Guide

The trace details map displays the current trace, along with upstream and downstream linked
traces, each of which are contained within a box that indicates the bounds of each trace. If the
currently selected trace is linked to multiple upstream or downstream traces, the nodes within the
upstream or downstream linked traces are stacked, and a Select trace button is displayed.

» Legend and options “-n

2. Current trace. Id: 1-4368449e-afb1eac1c8de3d4c027ec436 3. Linked traces. Id: 1-63684¢
@ @ _______________ >@)4’@>4’. _____________ -’®
O HellowWorldFunction O https://...MySQSQueue
5QS Queue O ConsumerFunction O ConsumerFunction Ohttps://...MySQSQueue2 O ConsumerFunction2
Lambda Context Lambda Function SQS Queue Lambda Context

Select trace

Beneath the trace details map, a timeline of trace segments displays, including upstream and
downstream linked traces. If there are multiple upstream or downstream linked traces, their
segment details can't be displayed. To view segment details for a single trace within a set of linked
traces, select a single trace as described below.

Segments Timeline info

0.0ms 20ms 40ms 60ms 80ms 100ms
Name Segment status Response code Duration ' : : ' : :
» 1. Linked trace. 2x batch
¥ 2, Current trace. Id: 1-4368449e-afb1eac1c8de3d4c027ec436
¥ ConsumerFunction AWS:Lambda
ConsumerFunction ® oK 200 167ms
¥ ConsumerFunction AWS::Lambda::Function
ConsumerFunction ® oK - 160ms
Invocation ® ok - 159ms
lambda_function.la... ® ok - 40ms
SQSs @ OK 200 40ms SendMessage: https://sqgs.us-east-1.amaz
Overhead ® ok - oms
¥ SQS AWS:SQS::Queue
SQS @ OK 200 40ms SendMessage: https://sgs.us-east-1.amaz

QueueTime ® ok - 40ms

» 3. Linked trace. Id: 1-4368449e-38dd979cba3833b657057436

Tracing event-driven applications 48

AWS X-Ray Developer Guide

Select a single trace within a set of linked traces
Filter a linked set of traces to a single trace, to see segment details in the timeline.

1. Choose Select trace underneath the linked traces on the trace details map. A list of traces
displays.

Traces (2)

Q, Start typing to filter trace list

ID v Trace status Vv Timestamp v Response code ¥
(o] ...3fd6e9600d58fea82597e9af @ oK 11.7min (2022-11-06 15:34:54) 200
O ..223d41cc17bae4a5394423a0 @ OK 11.7min (2022-11-06 15:34:54) 200

2. Select the radio button next to a trace to view it within the trace details map.
3. Choose Cancel trace selection to view the entire set of linked traces.

2, Current trace. Id: 1-4368449e-afb1eac1c8de3d4c027ec436

O https://...MySQSQueue O ConsumerFunction O ConsumerFunction Ohttps://...MySQSQueue2
SQS Queue Lambda Context Lambda Function SQS Queue

‘ X Cancel trace selection ‘

Using latency histograms

When you select a node or edge on an AWS X-Ray trace map, the X-Ray console shows a latency
distribution histogram.

Latency

Latency is the amount of time between when a request starts and when it completes. A histogram
shows a distribution of latencies. It shows duration on the x-axis, and the percentage of requests
that match each duration on the y-axis.

Histograms 49

AWS X-Ray Developer Guide

This histogram shows a service that completes most requests in less than 300 ms. A small
percentage of requests take up to 2 seconds, and a few outliers take more time.

::|=.a—|||

!
15%—|i|
10% |

5% |

0% \—" =W

Interpreting service details

Service histograms and edge histograms provide a visual representation of latency from the
viewpoint of a service or requester.

» Choose a service node by clicking the circle. X-Ray shows a histogram for requests served by the
service. The latencies are those recorded by the service, and don't include any network latency
between the service and the requester.

» Choose an edge by clicking the line or arrow tip of the edge between two services. X-Ray shows
a histogram for requests from the requester that were served by the downstream service. The

latencies are those recorded by the requester, and include latency in the network connection
between the two services.

To interpret the Service details panel histogram, you can look for values that differ the most
from the majority of values in the histogram. These outliers can be seen as peaks or spikes in the
histogram, and you can view the traces for a specific area to investigate what's going on.

To view traces filtered by latency, select a range on the histogram. Click where you want to start

the selection and drag from left to right to highlight a range of latencies to include in the trace
filter.

Histograms 50

AWS X-Ray

Developer Guide

Service details §)

Name: Scorekeep

Type: AWS: ElasticBeanstalk Environment

Response distribution

Click and drag to zoom or to add the selection to the filter when
viewing traces.

Foom
20% —
15% — e}
10% —
5% —|
:]% PN J-I o ™ o, W, LN o T P]
a 1.0= 2.0= 3.0=

Duration

After selecting a range, you can choose Zoom to view just that portion of the histogram and refine

your selection.

Histograms

51

AWS X-Ray Developer Guide

Service details £

Mame: Scorekeep

Type: AWS:ElasticBeanstalk::Environment

Response distribution

Click and drag to zoom or to add the selection to the filter when
viewing traces.

Reset
0.3% | !l
0.2% —
0.10%
0% T T T 1
2.0= 2.8= 2.0=
Duration

Response status

Choose one or more colors to add response status to the filter
when viewing traces.

Bl 0K 100% Error: 0%

Bl Fault 0% Bl Throttle: 0%

Once you have the focus set to the area you're interested in, choose View traces.
Using X-Ray insights

AWS X-Ray continuously analyzes trace data in your account to identify emergent issues in your
applications. When fault rates exceed the expected range, it creates an insight that records the
issue and tracks its impact until it's resolved. With insights, you can:

« Identify where in your application issues are occurring, the root cause of the issue, and associated
impact. The impact analysis provided by insights enables you to derive the severity and priority
of an issue.

Insights 52

AWS X-Ray Developer Guide

» Receive notifications as the issue changes over time. Insights notifications can be integrated with
your monitoring and alerting solution using Amazon EventBridge. This integration enables you
to send automated emails or alerts based on the severity of the issue.

The X-Ray console identifies nodes with ongoing incidents in the trace map. To see a summary of
the insight, choose the affected node. You can also view and filter insights by choosing Insights
from the navigation pane on the left.

products ® @® © Q l @ Maplegend @ Service details

Name: products

Type: AWS::DynamoDB::Table

The incident lasted for 10 minutes. Overall, 47% of the client
requests were impacted and 6% of the reguests to products

= Imlgh'l
(AWS::DynamoDB::Table) had issues.
Jul 27th 2020, 19:11
Insight Theotse 4% :
5.6K v * View full Insight

products
AWS:DynamoDa::Table Response distribution

Click and drag to select an area to zoom in on or use as a latency filter when
viewing traces.

ED%—‘

40“.0—‘

products

X-Ray creates an insight when it detects an anomaly in one or more nodes of the service map. The
service uses statistical modeling to predict the expected fault rates of services in your application.
In the preceding example, the anomaly is an increase in faults from AWS Elastic Beanstalk.

The Elastic Beanstalk server experienced multiple API call timeouts, causing an anomaly in the
downstream nodes.

Enable insights in the X-Ray console

Insights must be enabled for each group you want to use insights features with. You can enable
insights from the Groups page.

1. Open the X-Ray console.

Insights 53

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Select an existing group or create a new one by choosing Create group, and then select
Enable Insights. For more information about configuring groups in the X-Ray console, see
Configuring groups.

3. In the navigation pane on the left, choose Insights, and then choose an insight to view.

From 2021-01-18 20:00 | [To 2021-01-2011:00 | [Group Default - State All v c e
Description Duration Root cause service Anomalous services Group Start time -
Overall, 30% of the client requests failed 2 minutes 58 api www Default Jan 19th 2021, 19:02
due to faults and 19% of the requests to seconds (AWS::ElasticBeanstalk::Envir... (AWS::ElasticBeanstalk::Envir...
api (AWS::ElasticBeanstalk::Environment) api
failed due to faults. (AWS::ElasticBeanstalk::Envir...

(® Note

X-Ray uses GetlnsightSummaries, Getlnsight, GetlnsightEvents, and GetlnsightimpactGraph
API operations to retrieve data from insights.
For more information, see How AWS X-Ray works with IAM.

Enable insights notifications

With insights notifications, a notification is created for each insight event, such as when an insight
is created, changes significantly, or is closed. Customers can receive these notifications through
Amazon EventBridge events, and use conditional rules to take actions such as SNS notification,
Lambda invocation, posting messages to an SQS queue, or any of the targets EventBridge
supports. Insights notifications are emitted on a best-effort basis but are not guaranteed. For more
information about targets, see Amazon EventBridge Targets.

You can enable insights notifications for any insights enabled group from the Groups page.
To enable notifications for an X-Ray group

1. Open the X-Ray console.

2. Select an existing group or create a new one by choosing Create group, ensure that Enable
Insights is selected, and then select Enable Notifications. For more information about
configuring groups in the X-Ray console, see Configuring groups.

Insights 54

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

To configure Amazon EventBridge conditional rules

1. Open the Amazon EventBridge console.

2. Navigate to Rules in the left navigation bar, and choose Create rule.

3. Provide a name and description for the rule.

4. Choose Event pattern, and then choose Custom pattern. Provide a pattern containing

"source": ["aws.xray"] and "detail-type": ["AWS X-Ray Insight
Update"]. The following are some examples of possible patterns.

« Event pattern to match all incoming events from X-Ray insights:

{

"source": ["aws.xray" 1],
"detail-type": ["AWS X-Ray Insight Update"]
}

« Event pattern to match a specified state and category:

{
"source": ["aws.xray"],
"detail-type": ["AWS X-Ray Insight Update"],
"detail": {
"State": ["ACTIVE"],
"Category": ["FAULT"]

5. Select and configure the targets that you would like to invoke when an event matches this
rule.

6. (Optional) Provide tags to more easily identify and select this rule.

7. Choose Create.

® Note

X-Ray insights notifications sends events to Amazon EventBridge, which does not currently
support customer managed keys. For more information, see Data protection in AWS X-Ray.

Insights 55

https://console.aws.amazon.com/events/home

AWS X-Ray Developer Guide

Insight overview

The overview page for an insight attempts to answer three key questions:

o What is the underlying issue?
« What is the root cause?

o What is the impact?

The Anomalous services section shows a timeline for each service that illustrates the change in
fault rates during the incident. The timeline shows the number of traces with faults overlaid on a
solid band that indicates the expected number of faults based on the amount of traffic recorded.
The duration of the insight is visualized by the Incident window. The incident window begins when
X-Ray observes the metric becoming anomalous and persists while the insight is active.

The following example shows an increase in faults that caused an incident:

products (AWS::DynamoDB::Table) of Default group

Overview Inspect

The incident lasted for 5 minutes. Overall, 43% of the client requests were impacted and 5% of the requests to products (AWS::DynamoDB::Table) had Analyze insight [~
issues.

Root cause service products(AWS::DynamoDB::Table) State Start time Jul 30th 2020, 21:37
Anomaly products(AWS::ElasticBeanstalk::Environment) Group Default End time Jul 30th 2020, 21:43
Impact 0.52% request to products(AWS::DynamoDB::Table)
40.79% of total client request Categories ([Z¥D) Duration 5 minutes 58 seconds
Anomalous services
products (AWS::ElasticBeanstalk::Environment)
: Insight start time | Insight end time Incident window Prediction

\

\

—

B =N _— —

21:20:00 21:25:00 21:30:00 21:35:00 21:40:00 21:45:00 21:50:00 21:55:00 22:00:00

1

RN
/\/I :

| \

1

1

The Root cause section shows a trace map focused on the root cause service and the impacted
path. You may hide the unaffected nodes by selecting the eye icon in the top right of the Root
cause map. The root cause service is the farthest downstream node where X-Ray identified

an anomaly. It can represent a service that you instrumented or an external service that your
service called with an instrumented client. For example, if you call Amazon DynamoDB with an

Insights 56

AWS X-Ray Developer Guide

instrumented AWS SDK client, an increase in faults from DynamoDB results in an insight with
DynamoDB as the root cause.

To further investigate the root cause, select View root cause details on the root cause graph.
You can use the Analytics page to investigate the root cause and related messages. For more
information, see Interacting with the Analytics console.

Root cause

View root cause details (' @ ©®& Q | @, Maplegend @

Anomaly

2.9K vmn

api
Seanstal

Client

Anomaly
'y \

Faults that continue upstream in the map can impact multiple nodes and cause multiple anomalies.
If a fault is passed all the way back to the user that made the request, the result is a client fault.
This is a fault in the root node of the trace map. The Impact graph provides a timeline of the

client experience for the entire group. This experience is calculated based on percentages of the
following states: Fault, Error, Throttle, and Okay.

Impact

Client requests impact for Default group

: Insight start time | Insight end time Incident window
100 %
80 %
60 %
40%

20 %
0%
21:20:00 21:25:00 21:30:00 21:35:00 21:40:00 21:45:00 21:50:00 21:55:00 22:00:00

This example shows an increase in traces with a fault at the root node during the time of an
incident. Incidents in downstream services don't always correspond to an increase in client errors.

Choosing Analyze insight opens the X-Ray Analytics console in a window where you can dive deep
into the set of traces causing the insight. For more information, see Interacting with the Analytics
console.

Understanding impact

Insights 57

AWS X-Ray Developer Guide

AWS X-Ray measures the impact caused by an ongoing issue as part of generating insights and
notifications. The impact is measured in two ways:

« Impact to the X-Ray group

« Impact on the root cause service

This impact is determined by the percentage of request that are failing or causing an error within
a given time period. This impact analysis allows you to derive the severity and priority of the issue
based on your particular scenario. This impact is available as part of the console experience in
addition to insights notifications.

Deduplication

AWS X-Ray insights de-duplicates issues across multiple microservices. It uses anomaly detection
to determine the service that is the root cause of an issue, determines if other related services
are exhibiting anomalous behavior due to the same root cause, and records the result as a single
insight.

Review an insight's progress

X-Ray reevaluates insights periodically until they are resolved, and records each notable
intermediate change as a notification, which can be sent as an Amazon EventBridge event. This
enables you to build processes and workflows to determine how the issue has changed over time,
and take appropriate actions such as sending an email or integrating with an alerting system using
EventBridge.

You can review incident events in the Impact Timeline on the Inspect page. By default the timeline
displays the most impacted service until you choose a different service.

Insights 58

AWS X-Ray Developer Guide

products (AWS::DynamoDB::Table) of Default group

Overview Inspect

You can use this section to investigate the progress of the insight by choosing an event on the timeline, and then viewing the impact and the correspending incident graph.

Impact timeline (5 Events) Details for Jul 30th 2020, 21:42

— o N
O Jul 30th 2020, 21:43 6% of the requests to products are now having issues.

40.66%
8.27% 3 Since the start of the incident, 43% of the client requests were impacted and 5% of the requests to products

(AWS::DynamoDB::Table) had issues.

Client impact has decreased; 49% of the client requests are now impacted.

@ Insight is closed

Analyze event [+ Map time range : 2020-07-30T21:37:00~2020-07-30721:42:00
® Jul30th 2020, 21:42
48.93% ® © q | @ Maplegend ©
9.44% + R
il o
2 (o) e
products S Uy T

Cuent

O Jul 30th 2020, 21:39

58.37%
11.32% +

0.87%
0.29% 4+

nrodiints

To see a trace map and graphs for an event, choose it from the impact timeline. The trace map
shows services in your application that are affected by the incident. Under Impact analysis, graphs
show fault timelines for the selected node and for clients in the group.

Impact analysis
Choose a node in the event map or choose a service from the list to view its statistical data over time.
products (AWS::ElasticBeanstalk::Envir... +

:Insightstantime Insight end time | Event time reported Event window Prediction

£ J\x/”\k - — - — —

21:20:00 21:25:00 213000 21:35:00 21:40:00 21:45:00 21:50:00 21:55:00 22:00:00

@ I Fault Error I Throttle Il Ok

To take a deeper look at the traces involved in an incident, choose Analyze event on the Inspect
page. You can use the Analytics page to refine the list of traces and identify affected users. For
more information, see Interacting with the Analytics console.

Interacting with the Analytics console

The AWS X-Ray Analytics console is an interactive tool for interpreting trace data to quickly
understand how your application and its underlying services are performing. The console enables

Analytics 59

AWS X-Ray Developer Guide

you to explore, analyze, and visualize traces through interactive response time and time-series
graphs.

When making selections in the Analytics console, the console constructs filters to reflect the
selected subset of all traces. You can refine the active dataset with increasingly granular filters by
clicking the graphs and the panels of metrics and fields that are associated with the current trace
set.

Topics

o Console features

» Response time distribution

« Time series activity

» Workflow examples

» Observe faults on the service graph

« Identify response time peaks

« View all traces marked with a status code

« View all items in a subgroup and associated to a user

« Compare two sets of traces with different criteria

« Identify a trace of interest and view its details

Console features

The X-Ray Analytics console uses the following key features for grouping, filtering, comparing, and
quantifying trace data.

Features
Feature Description
Groups The initial selected group is Default. To

change the retrieved group, select a different
group from the menu to the right of the main
filter expression search bar. To learn more
about groups see, Using filter expressions with

groups.

Analytics 60

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html#groups
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html#groups

AWS X-Ray

Developer Guide

Feature

Retrieved traces

Show in charts/Hide from charts

Filtered trace set A

Refine

Description

By default, the Analytics console generates
graphs based on all traces in the selected
group. Retrieved traces represent all traces
in your working set. You can find the trace
count in this tile. Filter expressions you apply
to the main search bar refine and update the
retrieved traces.

A toggle to compare the active group against
the retrieved traces. To compare the data
related to the group against any active filters,
choose Show in charts. To remove this view
from the charts, choose Hide from charts.

Through interactions with the graphs and
tables, apply filters to create the criteria for
Filtered trace set A. As the filters are applied,
the number of applicable traces and the
percentage of traces from the total that are
retrieved are calculated within this tile. Filters
populate as tags within the Filtered trace set
A tile and can also be removed from the tile.

This function updates the set of retrieved
traces based on the filters applied to trace set
A. Refining the retrieved trace set refreshes
the working set of all traces retrieved based
on the filters for trace set A. The working set
of retrieved traces is a sampled subset of all
traces in the group.

Analytics

61

AWS X-Ray Developer Guide

Feature Description

Filtered trace set B When created, Filtered trace set B is a copy
of Filtered trace set A. To compare the two
trace sets, make new filter selections that will
apply to trace set B, while trace set A remains
fixed. As the filters are applied, the number
of applicable traces and the percentage of
traces from the total retrieved are calculated
within this tile. Filters populate as tags within
the Filtered trace set B tile and can also be
removed from the tile.

Response time root cause entity paths A table of recorded entity paths. X-Ray
determines which path in your trace is the
most likely cause for the response time.
The format indicates a hierarchy of entities
that are encountered, ending in a response
time root cause. Use these rows to filter for
recurring response time faults. For more
information about customizing a root cause
filter and getting data through the API see,
Retrieving and refining root cause analytics.

Delta (@) A column that is added to the metrics tables
when both trace set A and trace set B are
active. The Delta column calculates the
difference in percentage of traces between
trace set A and trace set B.

Response time distribution
The X-Ray Analytics console generates two primary graphs to help you visualize traces: Response

Time Distribution and Time Series Activity. This section and the following provide examples of
each, and explain the basics of how to read the graphs.

Analytics 62

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-gettingdata.html#xray-api-analytics

AWS X-Ray Developer Guide

The following are the colors associated with the response time line graph (the time series graph
uses the same color scheme):

All traces in the group - gray

Retrieved traces - orange

Filtered trace set A — green

Filtered trace set B — blue

Example - Response time distribution

The response time distribution is a chart that shows the number of traces with a given response
time. Click and drag to make selections within the response time distribution. This selects and
creates a filter on the working trace set named responseTime for all traces within a specific
response time.

Response time distribution @

Click and drag to filter the traces by response time.

" ":':_"pED p90 p9s
2K ' ' '
1.5K

1K
500

500ms 1.0s 15s 20s 25s

Time series activity

The time series activity chart shows the number of traces at a given time period. The color
indicators mirror the line graph colors of the response time distribution. The darker and fuller the
color block within the activity series, the more traces are represented at the given time.

Example - Time series activity

Click and drag to make selections within the time series activity graph. This selects and creates a
filter named timerange on the working trace set for all traces within a specific range of time.

Time series activity @
Click and drag to filter the traces by time.

05:08:00 PM

05:07:00 PM

05:09:00 PM 05:10:00 PM 05:11:00 PM . 05:12:00 PM

Analytics 63

AWS X-Ray Developer Guide

Workflow examples

The following examples show common use cases for the X-Ray Analytics console. Each example
demonstrates a key function of the console experience. As a group, the examples follow a basic
troubleshooting workflow. The steps walk through how to first spot unhealthy nodes, and then
how to interact with the Analytics console to automatically generate comparative queries. Once
you have narrowed the scope through queries, you will finally look at the details of traces of
interest to determine what is damaging the health of your service.

Observe faults on the service graph

The trace map indicates the health of each node by coloring it based on the ratio of successful calls
to errors and faults. When you see a percentage of red on your node, it signals a fault. Use the X-
Ray Analytics console to investigate it.

For more information about how to read the trace map, see Viewing the trace map.

Analytics 64

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap

AWS X-Ray Developer Guide

avg. 34ms

0.06 t/min

avg. 22ms

scorekeep-user
AWS::DynamoDB::Table 0.3 vmin

scorekeep-session
AWS::DynamoDB::Table

. avg. 412ms
- O 6 t/min
Client Scorekeep scorekeep-game

AWS::ElasticBeanstalk::Environment AWS::DynamoDB::Table

avg. 988ms
0.03 vmin scorekeep-state
AWS::DynamoDB::Table
SNS
AWS::SNS

Identify response time peaks

Using the response time distribution, you can observe peaks in response time. By selecting the
peak in response time, the tables below the graphs will update to expose all associated metrics,

such as status codes.

When you click and drag, X-Ray selects and creates a filter. It's shown in a gray shadow on top of
the graphed lines. You can now drag that shadow left and right along the distribution to update

your selection and filter.

Analytics 65

AWS X-Ray Developer Guide

I All traces in the group @ 5.2K traces in the group. Show in charts @

Retrieved traces @ Filtered trace set A ©®
5.2K traces 4590 traces (87.66% of retrieved traces.)

Filters: responsetime @ Refine

Response time distribution @
Click and drag to filter the traces by response time.

1.5K

1K

View all traces marked with a status code

You can drill into traces within the selected peak by using the metrics tables below the graphs. By
clicking a row in the HTTP STATUS CODE table, you automatically create a filter on the working
dataset. For example, you could view all traces of status code 500. This creates a filter tag in the
trace set tile named http.status.

View all items in a subgroup and associated to a user

Drill into the error set based on user, URL, response time root cause, or other predefined attributes.
For example, to additionally filter the set of traces with a 500 status code, select a row from the
USERS table. This results in two filter tags in the trace set tile: http.status, as designated
previously, and user.

Compare two sets of traces with different criteria

Compare across various users and their POST requests to find other discrepancies and correlations.
Apply your first set of filters. They are defined by a blue line in the response time distribution. Then
select Compare. Initially, this creates a copy of the filters on trace set A.

To proceed, define a new set of filters to apply to trace set B. This second set is represented by
a green line. The following example shows different lines according to the blue and green color
scheme.

Analytics 66

AWS X-Ray Developer Guide

l All traces in the group @ 7 5K traces in the group. Show in charts @ Complete 100% scanned (found 8K traces)

Retrieved traces @ Filtered trace set A @ Filtered trace setB @
BK trace: 7611 traces (94.88% of retrieved traces.) 853 traces (11,88% of retrieved traces.)
Filters: responsetime Filters: timerange ©

Response time distribution @
Click and drag to filter the traces by response time.

Time series activity @
Click and drag to filter the traces by time.

— ; m o commemm
H D -l'_“‘ [EENee.

Identify a trace of interest and view its details

As you narrow your scope using the console filters, the trace list below the metrics tables becomes
more meaningful. The trace list table combines information about URL, USER, and STATUS CODE
into one view. For more insights, select a row from this table to open the trace's detail page and
view its timeline and raw data.

Configuring groups

Groups are a collection of traces that are defined by a filter expression. You can use groups to
generate additional service graphs and supply Amazon CloudWatch metrics. You can use the AWS
X-Ray console or X-Ray API to create and manage groups for your services. This topic describes how
to create and manage groups by using the X-Ray console. For information about how to manage
groups by using the X-Ray API, see Groups.

You can create groups of traces for trace maps, traces, or analytics. When you create a group, the
group becomes available as a filter on the group dropdown menu on all three pages: Trace Map,
Traces, and Analytics.

Groups 67

AWS X-Ray Developer Guide

Default ~ | Q
Q Enter a group name

Default

faults

Create group

Learn more &

Groups are identified by their name or an Amazon Resource Name (ARN), and contain a filter
expression. The service compares incoming traces to the expression and stores them accordingly.
For more information about how to build a filter expression, see Using filter expressions.

Updating a group's filter expression doesn't change data that's already recorded. The update
applies only to subsequent traces. This can result in a merged graph of the new and old
expressions. To avoid this, delete a current group and create a new one.

(@ Note

Groups are billed by the number of retrieved traces that match the filter expression. For
more information, see AWS X-Ray pricing.

Topics

« Create a group

» Apply a group
 Edit a group

» Clone a group

» Delete a group

» View group metrics in Amazon CloudWatch

Groups 68

https://aws.amazon.com/xray/pricing/

AWS X-Ray Developer Guide

Create a group

(@ Note

You can now configure X-Ray groups from within the Amazon CloudWatch console. You can
also continue to use the X-Ray console.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Choose Settings in the left navigation pane.
Choose View settings under Groups within the X-Ray traces section.

Choose Create group above the list of groups.

oA W

On the Create group page, enter a name for the group. A group name can have a maximum
of 32 characters, and contain alphanumeric characters and dashes. Group names are case
sensitive.

6. Enter a filter expression. For more information about how to build a filter expression, see
Using filter expressions. In the following example, the group filters for fault traces from

the service api.example.com. and requests to the service where the response time was
greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

7. InInsights, enable or disable insights access for the group. For more information about
insights, see Using X-Ray insights.

Enable insights

Enable notifications
Deliver insight events using Amazon EventBridge.

8. InTags, choose Add new tag to enter a tag key, and optionally, a tag value. Continue to
add additional tags as desired. Tag keys must be unique. To delete a tag, choose Remove
underneath each tag. For more information about tags, see Tagging X-Ray sampling rules

and groups.

Groups 69

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Key Value - optional
Q Q
Remove

9. Choose Create group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Create group page from the Groups page in the left navigation pane, or from the
group menu on one of the following pages: Trace Map, Traces, and Analytics.

3. On the Create group page, enter a name for the group. A group name can have a maximum
of 32 characters, and contain alphanumeric characters and dashes. Group names are case
sensitive.

4. Enter a filter expression. For more information about how to build a filter expression, see
Using filter expressions. In the following example, the group filters for fault traces from

the service api.example.com. and requests to the service where the response time was
greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

5. InInsights, enable or disable insights access for the group. For more information about
insights, see Using X-Ray insights.

Enable Insights |«

Enable Notifications |« Deliver insight events using Amazon EventBridge. Learn more about Data Protection in EventBridge. Learn more (4

6. In Tags, enter a tag key, and optionally, a tag value. As you add a tag, a new line appears
for you to enter another tag. Tag keys must be unique. To delete a tag, choose X at the end
of the tag's row. For more information about tags, see Tagging X-Ray sampling rules and

groups.

Groups 70

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

application game ®

stage prod b 4

7. Choose Create group.

Apply a group
CloudWatch console

1. Signin to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Open one of the following pages from the navigation pane under X-Ray traces:

» Trace Map
« Traces

3. Enter a group name into the Filter by X-Ray group filter. The data shown on the page
changes to match the filter expression set in the group.
X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open one of the following pages from the navigation pane:

» Trace Map
» Traces
« Analytics

3. On the group menu, choose the group that you created in the section called “Create a
group”. The data shown on the page changes to match the filter expression set in the

group.

Groups 71

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray

Developer Guide

Edit a group

CloudWatch console

i A W

8.

Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Choose Settings in the left navigation pane.
Choose View settings under Groups within the X-Ray traces section.
Choose a group from the Groups section and then choose Edit.

Although you can't rename a group, you can update the filter expression. For more
information about how to build a filter expression, see Using filter expressions. In the

following example, the group filters for fault traces from the service api.example.com,
where the request URL address contains example/game, and response time for requests
was greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

In Insights, enable or disable insights access for the group. For more information about
insights, see Using X-Ray insights.

Enable insights

Enable notifications
Deliver insight events using Amazon EventBridge.

In Tags, choose Add new tag to enter a tag key, and optionally, a tag value. Continue to
add additional tags as desired. Tag keys must be unique. To delete a tag, choose Remove
underneath each tag. For more information about tags, see Tagging X-Ray sampling rules

and groups.

Key Value - optional
Q Q
Remove

When you're finished updating the group, choose Update group.

Groups

72

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray

Developer Guide

X-Ray console

1.

6.

Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

Do one of the following to open the Edit group page.

a. On the Groups page, choose the name of a group to edit it.
b. On the group menu on one of the following pages, point to a group, and then choose
Edit.
« Trace Map
» Traces
« Analytics

Although you can't rename a group, you can update the filter expression. For more
information about how to build a filter expression, see Using filter expressions. In the

following example, the group filters for fault traces from the service api.example.com,
where the request URL address contains example/game, and response time for requests
was greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

In Insights, enable or disable insights and insights notifications for the group. For more
information about insights, see Using X-Ray insights.

Enable Insights |«
Enable Notifications |v| Deliver insight events using Amazon EventBridge. Learn more about Data Protection in EventBridge. Learn more (4
In Tags, edit tag keys and values. Tag keys must be unique. Tag values are optional; you can

delete values, if you want. To delete a tag, choose X at the end of the tag's row. For more
information about tags, see Tagging X-Ray sampling rules and groups.

application game X

stage prod b

When you're finished updating the group, choose Update group.

Groups

73

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Clone a group

Cloning a group creates a new group that has the filter expression and tags of an existing group.
When you clone a group, the new group has the same name as the group from which it's cloned,
with -clone appended to the name.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Choose Settings in the left navigation pane.
Choose View settings under Groups within the X-Ray traces section.

Choose a group from the Groups section and then choose Clone.

o W

On the Create group page, the name of the group is group-name-clone. Optionally,
enter a new name for the group. A group name can have a maximum of 32 characters, and
contain alphanumeric characters and dashes. Group names are case sensitive.

6. You can keep the filter expression from the existing group, or optionally, enter a new filter
expression. For more information about how to build a filter expression, see Using filter
expressions. In the following example, the group filters for fault traces from the service
api.example.com. and requests to the service where the response time was greater than
or equal to five seconds.

service("api.example.com") { fault = true OR responsetime >= 5 }

7. In Tags, edit tag keys and values, if needed. Tag keys must be unique. Tag values are
optional; you can delete values if you want. To delete a tag, choose X at the end of the tag's
row. For more information about tags, see Tagging X-Ray sampling rules and groups.

8. Choose Create group.

X-Ray console

1. Signin to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to clone.

3. Choose Clone group from the Actions menu.

Groups 74

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

4. On the Create group page, the name of the group is group-name-clone. Optionally,
enter a new name for the group. A group name can have a maximum of 32 characters, and
contain alphanumeric characters and dashes. Group names are case sensitive.

5. You can keep the filter expression from the existing group, or optionally, enter a new filter
expression. For more information about how to build a filter expression, see Using filter
expressions. In the following example, the group filters for fault traces from the service
api.example.com. and requests to the service where the response time was greater than
or equal to five seconds.

service("api.example.com") { fault = true OR responsetime >= 5 }

6. In Tags, edit tag keys and values, if needed. Tag keys must be unique. Tag values are
optional; you can delete values if you want. To delete a tag, choose X at the end of the tag's
row. For more information about tags, see Tagging X-Ray sampling rules and groups.

7. Choose Create group.

Delete a group
Follow steps in this section to delete a group. You can't delete the Default group.
CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Choose Settings in the left navigation pane.
Choose View settings under Groups within the X-Ray traces section.

Choose a group from the Groups section and then choose Delete.

i A W

When you're prompted to confirm, choose Delete.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to delete.

3. On the Actions menu, choose Delete group.

Groups 75

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

4. When you're prompted to confirm, choose Delete.

View group metrics in Amazon CloudWatch

After a group is created, incoming traces are checked against the group’s filter expression as they're
stored in the X-Ray service. Metrics for the number of traces matching each criteria are published
to Amazon CloudWatch every minute. Choosing View metric on the Edit group page opens the
CloudWatch console to the Metric page. For more information about how to use CloudWatch
metrics, see Using Amazon CloudWatch Metrics in the Amazon CloudWatch User Guide.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

Choose Settings in the left navigation pane.
Choose View settings under Groups within the X-Ray traces section.

Choose a group from the Groups section and then choose Edit.

ik W

On the Edit group page, choose View metric.

The CloudWatch console Metrics page opens in a new tab.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to view metrics for.

3. On the Edit group page, choose View metric.

The CloudWatch console Metrics page opens in a new tab.

Configuring sampling rules

You can use the AWS X-Ray console to configure sampling rules for your services. The X-Ray SDK
and AWS services that support active tracing with sampling configuration use sampling rules to

determine which requests to record.

Sampling 76

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Topics

» Configuring sampling rules

« Customizing sampling rules

« Sampling rule options

o Sampling rule examples

» Configuring your service to use sampling rules

» Viewing sampling results

» Next steps

Configuring sampling rules
You can configure sampling for the following use cases:

« API Gateway Entrypoint — API Gateway supports sampling and active tracing. To enable active
tracing on an API stage, see Amazon API Gateway active tracing support for AWS X-Ray.

« AWS AppSync - AWS AppSync supports sampling and active tracing. To enable active tracing on
AWS AppSync requests, see Tracing with AWS X-Ray.

 Instrument X-Ray SDK on compute platforms — When using compute platforms such as
Amazon EC2, Amazon ECS, or AWS Elastic Beanstalk, sampling is supported when the application
has been instrumented with the latest X-Ray SDK.

Customizing sampling rules

By customizing sampling rules, you can control the amount of data that you record. You can also
modify sampling behavior without modifying or redeploying your code. Sampling rules tell the X-
Ray SDK how many requests to record for a set of criteria. By default, the X-Ray SDK records the
first request each second, and five percent of any additional requests. One request per second is
the reservoir. This ensures that at least one trace is recorded each second as long as the service is
serving requests. Five percent is the rate at which additional requests beyond the reservoir size are
sampled.

You can configure the X-Ray SDK to read sampling rules from a JSON document that you include
with your code. However, when you run multiple instances of your service, each instance performs
sampling independently. This causes the overall percentage of requests sampled to increase

Sampling 77

https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html

AWS X-Ray Developer Guide

because the reservoirs of all of the instances are effectively added together. Additionally, to update
local sampling rules, you must redeploy your code.

By defining sampling rules in the X-Ray console, and configuring the SDK to read rules from the
X-Ray service, you can avoid both of these issues. The service manages the reservoir for each rule,
and assigns quotas to each instance of your service to distribute the reservoir evenly, based on
the number of instances that are running. The reservoir limit is calculated according to the rules
you set. Because the rules are configured in the service, you can manage rules without making

additional deployments.

(@ Note

X-Ray uses a best-effort approach in applying sampling rules, and in some cases the
effective sampling rate may not exactly match the configured sampling rules. However,
over time the number of requests sampled should be close to the configured percentage.

You can now configure X-Ray sampling rules from within the Amazon CloudWatch console. You can
also continue to use the X-Ray console.

CloudWatch console
To configure sampling rules in the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.
Choose View settings under Sampling rules within the X-Ray traces section.

4. To create a rule, choose Create sampling rule.
To edit a rule, choose a rule and choose Edit to edit it.

To delete a rule, choose a rule and choose Delete to delete it.

X-Ray console
To configure sampling rules in the X-Ray console

1. Open the X-Ray console.

Sampling 78

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Choose Sampling in the left navigation pane.

3. To create a rule, choose Create sampling rule.
To edit a rule, choose a rule's name.

To delete a rule, choose a rule and use the Actions menu to delete it.

Sampling rule options

The following options are available for each rule. String values can use wildcards to match a single
character (?) or zero or more characters (*).

Sampling rule options

o Rule name (string) — A unique name for the rule.

« Priority (integer between 1 and 9999) - The priority of the sampling rule. Services evaluate rules
in ascending order of priority, and make a sampling decision with the first rule that matches.

» Reservoir (non-negative integer) — A fixed number of matching requests to instrument per
second, before applying the fixed rate. The reservoir is not used directly by services, but applies
to all services using the rule collectively.

» Rate (integer between 0 and 100) — The percentage of matching requests to instrument, after
the reservoir is exhausted. When configuring a sampling rule in the console, choose a percentage
between 0 and 100. When configuring a sampling rule in a client SDK using a JSON document,
provide a percentage value between 0 and 1.

« Service name (string) — The name of the instrumented service, as it appears in the trace map.
« X-Ray SDK - The service name that you configure on the recorder.
« Amazon API Gateway - api-name/stage.

» Service type (string) — The service type, as it appears in the trace map. For the X-Ray SDK, set the
service type by applying the appropriate plugin:

« AWS::ElasticBeanstalk::Environment — An AWS Elastic Beanstalk environment (plugin).
e« AWS::EC2::Instance - An Amazon EC2 instance (plugin).
e« AWS::ECS::Container — An Amazon ECS container (plugin).
o AWS: :APIGateway: :Stage — An Amazon APl Gateway stage.
o AWS: :AppSync::GraphQLAPI - An AWS AppSync API request.
» Host (string) — The hostname from the HTTP host header.

Sampling 79

AWS X-Ray Developer Guide

o HTTP method (string) - The method of the HTTP request.

« URL path (string) — The URL path of the request.
» X-Ray SDK - The path portion of the HTTP request URL.

» Resource ARN (string) — The ARN of the AWS resource running the service.
« X-Ray SDK - Not supported. The SDK can only use rules with Resource ARN set to *.
« Amazon APl Gateway — The stage ARN.

o (Optional) Attributes (key and value) — Segment attributes that are known when the sampling
decision is made.

» X-Ray SDK - Not supported. The SDK ignores rules that specify attributes.

« Amazon APl Gateway — Headers from the original HTTP request.

Sampling rule examples
Example - Default rule with no reservoir and a low rate

You can modify the default rule's reservoir and rate. The default rule applies to requests that don't
match any other rule.

« Reservoir: 0

« Rate: 5 (0.05 if configured using a JSON document)

Example - Debugging rule to trace all requests for a problematic route
A high-priority rule applied temporarily for debugging.

e Rule name: DEBUG - history updates
 Priority: 1

« Reservoir: 1

» Rate: 100 (1 if configured using a JSON document)
» Service name: Scorekeep

» Service type: *

e Host: *

e HTTP method: PUT

e URL path: /history/*

Sampling 80

AWS X-Ray Developer Guide

 Resource ARN: *

Example - Higher minimum rate for POSTs

« Rule name: POST minimum

« Priority: 100

« Reservoir: 10

« Rate: 10 (.1 if configured using a JSON document)
« Service name: *

« Service type: *

e Host: *

o HTTP method: POST

o URL path: *

¢ Resource ARN: *

Configuring your service to use sampling rules

The X-Ray SDK requires additional configuration to use sampling rules that you configure in the
console. See the configuration topic for your language for details on configuring a sampling
strategy:

Java: Sampling rules

Go: Sampling rules

Node.js: Sampling rules

Python: Sampling rules

Ruby: Sampling rules

.NET: Sampling rules

For APl Gateway, see Amazon API Gateway active tracing support for AWS X-Ray.

Viewing sampling results

The X-Ray console Sampling page shows detailed information about how your services use each
sampling rule.

Sampling 81

AWS X-Ray Developer Guide

The Trend column shows how the rule has been used in the last few minutes. Each column shows
statistics for a 10-second window.

Sampling statistics

Total matched rule: The number of requests that matched this rule. This number doesn't include
requests that could have matched this rule, but matched a higher-priority rule first.

» Total sampled: The number of requests recorded.
« Sampled with fixed rate: The number of requests sampled by applying the rule's fixed rate.
« Sampled with reservoir limit: The number of requests sampled using a quota assigned by X-Ray.

« Borrowed from reservoir: The number of requests sampled by borrowing from the reservoir.
The first time a service matches a request to a rule, it has not yet been assigned a quota by X-
Ray. However, if the reservoir is at least 1, the service borrows one trace per second until X-Ray
assigns a quota.

For more information about sampling statistics and how services use sampling rules, see Using
sampling rules with the X-Ray API.

Next steps

You can use the X-Ray APl to manage sampling rules. With the API, you can create and update
rules programmatically on a schedule, or in response to alarms or notifications. See Configuring
sampling, groups, and encryption settings with the AWS X-Ray API for instructions and additional

rule examples.

The X-Ray SDK and AWS services also use the X-Ray API to read sampling rules, report sampling
results, and get sampling targets. Services must keep track of how often they apply each rule,
evaluate rules based on priority, and borrow from the reservoir when a request matches a rule for
which X-Ray has not yet assigned the service a quota. For more detail about how a service uses the
API for sampling, see Using sampling rules with the X-Ray API.

When the X-Ray SDK calls sampling APIs, it uses the X-Ray daemon as a proxy. If you already use
TCP port 2000, you can configure the daemon to run the proxy on a different port. See Configuring
the AWS X-Ray daemon for details.

Sampling 82

AWS X-Ray Developer Guide

Console deep linking

You can use routes and queries to deep link into specific traces, or filtered views of traces and the
trace map.

Console pages

Welcome page — xray/home#/welcome

Getting started — xray/home#/getting-started

Trace map — xray/home#/service-map

Traces — xray/home#/traces

Traces

You can generate links for timeline, raw, and map views of individual traces.
Trace timeline — xray/home#/traces/trace-id

Raw trace data - xray/home#/traces/trace-id/raw

Example - raw trace data

https://console.aws.amazon.com/xray/home#/traces/1-57f5498f-d91047849216d0f2ea3bb442/
raw

Filter expressions
Link to a filtered list of traces.
Filtered traces view — xray/home#/traces?filter=filter-expression

Example - filter expression

https://console.aws.amazon.com/xray/home#/traces?filter=service("api.amazon.com")
{ fault = true OR responsetime > 2.5 } AND annotation.foo = "bar"

Console deep linking 83

https://console.aws.amazon.com/xray/home#/welcome
https://console.aws.amazon.com/xray/home#/getting-started
https://console.aws.amazon.com/xray/home#/service-map
https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide

Example - filter expression (URL encoded)

https://console.aws.amazon.com/xray/home#/traces?filter=service(%22api.amazon.com
%22)%20%7B%20Tault%20%3D%20true%200R%20responsetime%20%3E%202 .5%20%7D%20AND
%2@annotation.f00%20%3D%20%22bar%22

For more information about filter expressions, see Using filter expressions.

Time range

Specify a length of time or start and end time in ISO8601 format. Time ranges are in UTC and can
be up to 6 hours long.

Length of time - xray/home#/page?timeRange=range-in-minutes

Example - trace map for the last hour

https://console.aws.amazon.com/xray/home#/service-map?timeRange=PT1H

Start and end time - xray/home#/page?timeRange=start~end

Example - time range accurate to seconds

https://console.aws.amazon.com/xray/home#/traces?
timeRange=2023-7-01T16:00:00~2023-7-01T22:00:00

Example - time range accurate to minutes

https://console.aws.amazon.com/xray/home#/traces?
timeRange=2023-7-01T16:00~2023-7-01T722:00

Region

Specify an AWS Region to link to pages in that Region. If you don't specify a Region, the console
redirects you to the last visited Region.

Region - xray/home?region=region#/page

Example - trace map in US West (Oregon) (us-west-2)

https://console.aws.amazon.com/xray/home?region=us-west-2#/service-map

Console deep linking 84

AWS X-Ray Developer Guide

When you include a Region with other query parameters, the Region query goes before the hash,
and the X-Ray-specific queries go after the page name.

Example - trace map for the last hour in US West (Oregon) (us-west-2)

https://console.aws.amazon.com/xray/home?region=us-west-2#/service-map?timeRange=PT1H

Combined

Example - recent traces with a duration filter

https://console.aws.amazon.com/xray/home#/traces?timeRange=PT15M&filter=duration%20%3E
%3D%205%20AND%20duration%20%3C%3D%208

Output

» Page - Traces
« Time Range - Last 15 minutes

o Filter — duration >= 5 AND duration <=8

Use the X-Ray API

If the X-Ray SDK doesn't support your programming language, you can use either the X-Ray APIs
directly or the AWS Command Line Interface (AWS CLI) to call X-Ray APl commands. Use the
following guidance to choose how you interact with the API:

» Use the AWS CLI for simpler syntax using pre-formatted commands or with options inside your
request.

« Use the X-Ray API directly for maximum flexibility and customization for requests that you make
to X-Ray.

If you use the X-Ray API directly instead of the AWS CLI, you must parametrize your request in the
correct data format and may also have to configure authentication and error handling.

The following diagram shows guidance to choose how to interact with the X-Ray API:

Use the X-Ray API 85

https://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide

4)

Maximum
flexibility and
customization

Choose how to
use an API

Use the X-Ray API

Your application directly

Simple syntax

and pre-
formatted
commands

Instrument your
application

Configure your
collector or agent — Analyze trace data

- S

Use the AWS CLI *——

Use the X-Ray API to send trace data to directly to X-Ray. The X-Ray API supports all functions
available in the X-Ray SDK including the following common actions:

« PutTraceSegments — Uploads segment documents to X-Ray.

« BatchGetTraces — Retrieves a list of traces in a list of trace IDs. Each retrieved trace is a collection

of segment documents from a single request.

» GetTraceSummaries — Retrieves IDs and annotations for traces. You can specify a
FilterExpression to retrieve a subset of trace summaries.

» GetTraceGraph — Retrieves a service graph for a specific trace ID.

» GetServiceGraph — Retrieves a JSON formatted document that describes services that process

incoming requests and call downstream requests.

You can also use the AWS Command Line Interface (AWS CLI) inside your application code to
programmatically interact with X-Ray. The AWS CLI supports all functions available in the X-
Ray SDK including those for other AWS services. The following functions are versions of the API
operations listed previously with a simpler format:

» put-trace-segments — Uploads segment documents to X-Ray.

Use the X-Ray API 86

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/put-trace-segments.html

AWS X-Ray Developer Guide

» batch-get-traces — Retrieves a list of traces in a list of trace IDs. Each retrieved trace is a

collection of segment documents from a single request.

» get-trace-summaries — Retrieves IDs and annotations for traces. You can specify a

FilterExpression to retrieve a subset of trace summaries.

« get-trace-graph — Retrieves a service graph for a specific trace ID.

» get-service-graph — Retrieves a JSON formatted document that describes services that process

incoming requests and call downstream requests.

To get started, you must install the AWS CLI for your operating system. AWS supports Linux,
macOS and Windows operating systems. For more information about the list of X-Ray commands,
see the AWS CLI Command Reference guide for X-Ray.

Topics

» Using the AWS X-Ray APl with the AWS CLI

» Sending trace data to AWS X-Ray

» Getting data from AWS X-Ray

« Configuring sampling, groups, and encryption settings with the AWS X-Ray API

» Using sampling rules with the X-Ray API

» AWS X-Ray segment documents

Using the AWS X-Ray API with the AWS CLI

The AWS CLI lets your access the X-Ray service directly and use the same APIs that the X-Ray
console uses to retrieve the service graph and raw traces data. The sample application includes
scripts that show how to use these APIs with the AWS CLI.

Prerequisites

This tutorial uses the Scorekeep sample application and included scripts to generate tracing data
and a service map. Follow the instructions in the getting started tutorial to launch the application.

This tutorial uses the AWS CLI to show basic use of the X-Ray API. The AWS CLI, available for
Windows, Linux, and OS-X, provides command line access to the public APIs for all AWS services.

Tutorial 87

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/batch-get-traces.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-trace-summaries.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-trace-graph.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-service-graph.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/index.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS X-Ray Developer Guide

® Note

You must verify that your AWS CLI is configured to the same Region that your Scorekeep
sample application was created in.

Scripts included to test the sample application uses cURL to send traffic to the APl and jq to parse
the output. You can download the jq executable from stedolan.github.io, and the curl executable
from https://curl.haxx.se/download.html. Most Linux and OS X installations include cURL.

Generate trace data

The web app continues to generate traffic to the API every few seconds while the game is in-
progress, but only generates one type of request. Use the test-api.sh script to run end to end
scenarios and generate more diverse trace data while you test the API.

To use the test-api.sh script

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.

1
2
3. Copy the environment URL from the page header.
4

Open bin/test-api.sh and replace the value for API with your environment's URL.

#!/bin/bash
API=scorekeep.9hbtbm23t2.us-west-2.elasticbeanstalk.com/api

5. Run the script to generate traffic to the API.

~/debugger-tutorial$./bin/test-api.sh

Creating users,

session,

game,

configuring game,

playing game,

ending game,

game complete.

{"id" :"MTBP8BAS", "session":"HUF6IT64", "name":"tic-tac-toe-test", "users":

["QFF3HBGM", "KL6JR98D"], "rules":"102","startTime" :1476314241,"endTime" : 1476314245, "states":
["JQVLEOM2","D67QLPIC","VF9BMINC", "OEAAGGK9", "2A705073","1U2LFTLJI", "HUKIDD70Q", "BAN1C8FI",6 "C
["BS8F8LQ", "4MTTSPKP", "4630ETES", "SVEBCL3N", "N7CQ1GHP", "0840NEPD", "EG4BPROQ", "V4BLIDJ3", "9R

Tutorial 88

https://stedolan.github.io/jq/
https://curl.haxx.se/download.html
https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

Use the X-Ray API

The AWS CLI provides commands for all of the API actions that X-Ray provides, including
GetServiceGraph and GetTraceSummaries. See the AWS X-Ray API Reference for more
information on all of the supported actions and the data types that they use.

Example bin/service-graph.sh

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The script retrieves a service graph for the last 10 minutes.

~/eb-java-scorekeep$./bin/service-graph.sh | less
{
"StartTime": 1479068648.0,
"Services": [
{
"StartTime": 1479068648.0,
"Referenceld": O,
"State": "unknown",
"EndTime": 1479068651.0,
"Type": "client",
"Edges": [
{
"StartTime": 1479068648.0,
"ReferenceId": 1,
"SummaryStatistics": {
"ErrorStatistics": {
"ThrottleCount": O,
"TotalCount": 0O,
"OtherCount": 0
},
"FaultStatistics": {
"TotalCount": 0,
"OtherCount": 0
},
"TotalCount": 2,
"OkCount": 2,
"TotalResponseTime": 0.054000139236450195
},
"EndTime": 1479068651.0,
"Aliases": []

Tutorial 89

https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide

}
]
},
{
"StartTime": 1479068648.0,
"Names": [
"scorekeep.elasticbeanstalk.com"
1,
"Referenceld": 1,
"State": "active",

"EndTime": 1479068651.0,
"Root": true,
"Name": "scorekeep.elasticbeanstalk.com",

Example bin/trace-urls.sh

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time $(($EPOCH-60)) --
query 'TraceSummaries[*].Http.HttpURL'

The script retrieves the URLs of traces generated between one and two minutes ago.

~/eb-java-scorekeep$./bin/trace-urls.sh

[
"http://scorekeep.elasticbeanstalk.com/api/game/6QOUE1DG/5FGLMIU3/
endtime/1479069438",
"http://scorekeep.elasticbeanstalk.com/api/session/KH4341QH",
"http://scorekeep.elasticbeanstalk.com/api/game/GLQBJI3K5/153AHDIA",
"http://scorekeep.elasticbeanstalk.com/api/game/VPDL672]/G2V41HM6/
endtime/1479069466"

]

Example bin/full-traces.sh

EPOCH=$(date +%s)

TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time
$(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)

aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

The script retrieves full traces generated between one and two minutes ago.

Tutorial 90

AWS X-Ray Developer Guide

~/eb-java-scorekeep$./bin/full-traces.sh | less

L

"Segments": [
{

"Id": "3f212bc237bafd5d",

"Document": "{\"id\":\"3f212bc237bafd5d\",\"name\" :\"DynamoDB\",
\"trace_id\":\"1-5828d9f2-a90669393f4343211bclcf75\",\"start_time\":1.479072242459E9,
\"end_time\":1.479072242477E9,\"parent_id\":\"72a08dcf87991cad9\",\"http\":
{\"response\":{\"content_length\":60,\"status\":200}},\"inferred\":true,\"aws\":
{\"consistent_read\":false,\"table_name\":\"scorekeep-session-xray\",\"operation\":
\"GetItem\",\"request_id\":\"QAKE@S8DDOLIM245KA0OPMA746BVV4KQNSO5AEMVIF66Q9ASUAAIG\",
\"resource_names\":[\"scorekeep-session-xray\"1},\"origin\":\"AWS: :DynamoDB: :Table\"}"

1,
{

"Id": "309e355f1148347f",

"Document": "{\"id\":\"309e355f1148347f\",\"name\" :\"DynamoDB\",
\"trace_id\":\"1-5828d9f2-a90669393f4343211bclcf75\",\"start_time\":1.479072242477E9,
\"end_time\":1.479072242494E9,\"parent_id\":\"37f14ef837f00022\",\"http\":
{\"response\":{\"content_length\":606,\"status\":200}},\"inferred\":true,\"aws\":
{\"table_name\":\"scorekeep-game-xray\",\"operation\":\"UpdateItem\",\"request_id
\":\"388GEROC4PCA6D59ED3CTI5SEEIVV4KQNSO5AEMVIF66Q9ASUAAIG\",\"resource_names\":
[\"scorekeep-game-xray\"]1},\"origin\":\"AWS: :DynamoDB: :Table\"}"

}
1,
"Id": "1-5828d9f2-a90669393f4343211bclcf75",
"Duration": 0.05099987983703613

Cleanup

Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB

tables and other resources.

To terminate your Elastic Beanstalk environment

P WD

Open the Elastic Beanstalk console.

Navigate to the management console for your environment.

Choose Actions.

Choose Terminate Environment.

Tutorial 91

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

5. Choose Terminate.

Trace data is automatically deleted from X-Ray after 30 days.
Sending trace data to AWS X-Ray

You can send trace data to X-Ray in the form of segment documents. A segment document is
a JSON formatted string that contains information about the work that your application does
in service of a request. Your application can record data about the work that it does itself in
segments, or work that uses downstream services and resources in subsegments.

Segments record information about the work that your application does. A segment, at a
minimum, records the time spent on a task, a name, and two IDs. The trace ID tracks the request
as it travels between services. The segment ID tracks the work done for the request by a single
service.

Example Minimal complete segment

{
"name" : "Scorekeep",
"id" : "70de5b6f19ff9a0a",
"start_time" : 1.478293361271E9,
"trace_id" : "1-581cf771-a006649127e371903a2de979",
"end_time" : 1.478293361449E9
}

When a request is received, you can send an in-progress segment as a placeholder until the request
is completed.

Example In-progress segment

{
"name" : "Scorekeep",
"id" : "70de5b6f19ff9a0b",
"start_time" : 1.478293361271E9,
"trace_id" : "1-581cf771-a006649127e371903a2de979",
“in_progress”: true
}

You can send segments to X-Ray directly, with PutTraceSegments, or through the X-Ray daemon.

Sending data 92

AWS X-Ray Developer Guide

Most applications call other services or access resources with the AWS SDK. Record information
about downstream calls in subsegments. X-Ray uses subsegments to identify downstream services
that don't send segments and create entries for them on the service graph.

A subsegment can be embedded in a full segment document, or sent separately. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size (64 kB).

Example Subsegment

A subsegment has a type of subsegment and a parent_id that identifies the parent segment.

"name" : "www2.example.com",

"id" : "70de5b6f19ff9a0c",

"start_time" : 1.478293361271E9,

"trace_id" : "1-581cf771-a006649127e371903a2de979"
“end_time” : 1.478293361449E9,

“type” : “subsegment”,

“parent_id” : “70de5b6f19ff9a0b”

For more information on the fields and values that you can include in segments and subsegments,
see AWS X-Ray segment documents.

Sections

» Generating trace IDs

» Using PutTraceSegments

« Sending segment documents to the X-Ray daemon

Generating trace IDs
To send data to X-Ray, you must generate a unique trace ID for each request.
X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

e The version number, which is 1.

Sending data 93

AWS X-Ray Developer Guide

« The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

« A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

(® Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,

W3C trace ID 4efaaf4d1e8720b39541901950019¢ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

You can write a script to generate X-Ray trace IDs for testing. Here are two examples.

Python

import time
import os
import binascii

START_TIME = time.time()
HEX=hex(int(START_TIME))[2:]
TRACE_ID="1-{}-{}".format(HEX, binascii.hexlify(os.urandom(12)).decode('utf-8'))

Bash

START_TIME=$(date +%s)

HEX_TIME=$(printf '%x\n' $START_TIME)

GUID=$(dd if=/dev/random bs=12 count=1 2>/dev/null | od -An -tx1 | tr -d ' \t\n')
TRACE_ID="1-HEX_TIME-GUID"

See the Scorekeep sample application for scripts that create trace IDs and send segments to the X-
Ray daemon.

Sending data 94

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

e Python - xray_start.py

e Bash-xray_start.sh

Using PutTraceSegments

You can upload segment documents with the PutTraceSegments API. The API has a single
parameter, TraceSegmentDocuments, that takes a list of JSON segment documents.

With the AWS CLI, use the aws xray put-trace-segments command to send segment
documents directly to X-Ray.

$ DOC='{"trace_id": "1-5960082b-ab52431b496add878434aa25", "id": "6226467e3f845502",
"start_time": 1498082657.37518, "end_time": 1498082695.4042, "name':

"test.elasticbeanstalk.com"}'
$ aws xray put-trace-segments --trace-segment-documents "$DOC"

{

"UnprocessedTraceSegments": []
}
® Note

Windows Command Processor and Windows PowerShell have different requirements for
quoting and escaping quotes in JSON strings. See Quoting Strings in the AWS CLI User
Guide for details.

The output lists any segments that failed processing. For example, if the date in the trace ID is too
far in the past, you see an error like the following.

{
"UnprocessedTraceSegments": [
{
"ErrorCode": "InvalidTraceId",
"Message": "Invalid segment. ErrorCode: InvalidTraceId",
"Id": "6226467e3f845502"
}
]
}

You can pass multiple segment documents at the same time, separated by spaces.

Sending data 95

https://github.com/awslabs/eb-java-scorekeep/blob/xray/bin/xray_start.py
https://github.com/awslabs/eb-java-scorekeep/blob/xray/bin/xray_start.sh
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html#quoting-strings

AWS X-Ray Developer Guide

$ aws xray put-trace-segments --trace-segment-documents "$DOC1" "$DOC2"

Sending segment documents to the X-Ray daemon

Instead of sending segment documents to the X-Ray API, you can send segments and subsegments
to the X-Ray daemon, which will buffer them and upload to the X-Ray API in batches. The X-Ray
SDK sends segment documents to the daemon to avoid making calls to AWS directly.

(@ Note

See Running the X-Ray daemon locally for instructions on running the daemon.

Send the segment in JSON over UDP port 2000, prepended by the daemon header, {"format" :
"json", "version": 1}\n

{"format": "json", "version": 1}\n{"trace_id": "1-5759e988-bd862e3felbes46a994272793",
"id": "defdfd9912dc5a56", "start_time": 1461096053.37518, "end_time": 1461096053.4042,
"name": "test.elasticbeanstalk.com"}

On Linux, you can send segment documents to the daemon from a Bash terminal. Save the header
and segment document to a text file and pipe it to /dev/udp with cat.

$ cat segment.txt > /dev/udp/127.0.0.1/2000

Example segment.txt

{"format": "json", "version": 1}

{"trace_id": "1-594aed87-ad72e26896b3f9d3a27054bb", "id": "6226467e3f845502",
"start_time": 1498082657.37518, "end_time": 1498082695.4042, '"name":
"test.elastichbeanstalk.com"}

Check the daemon log to verify that it sent the segment to X-Ray.

2017-07-07T0Q1:57:24Z [Debug] processor: sending partial batch
2017-07-07T01:57:24Z [Debug] processor: segment batch size: 1. capacity: 50
2017-07-07T01:57:24Z [Info] Successfully sent batch of 1 segments (0.020 seconds)

Sending data 96

AWS X-Ray Developer Guide

Getting data from AWS X-Ray

AWS X-Ray processes the trace data that you send to it to generate full traces, trace summaries,
and service graphs in JSON. You can retrieve the generated data directly from the APl with the
AWS CLI.

Sections

Retrieving the service graph

Retrieving the service graph by group

Retrieving traces

Retrieving and refining root cause analytics

Retrieving the service graph

You can use the GetServiceGraph API to retrieve the JSON service graph. The API requires a start
time and end time, which you can calculate from a Linux terminal with the date command.

$ date +%s
1499394617

date +%s prints a date in seconds. Use this number as an end time and subtract time from it to
get a start time.

Example Script to retrieve a service graph for the last 10 minutes

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The following example shows a service graph with 4 nodes, including a client node, an EC2
instance, a DynamoDB table, and an Amazon SNS topic.

Example GetServiceGraph output

{
"Services": [
{
"ReferenceId": 0O,
"Name": "xray-sample.elasticbeanstalk.com",
"Names": [

Getting data 97

https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html

AWS X-Ray Developer Guide

"xray-sample.elasticbeanstalk.com"

15
"Type": "client",
"State": "unknown",

"StartTime": 1528317567.0,
"EndTime": 1528317589.0,
"Edges": [
{
"ReferenceId": 2,
"StartTime": 1528317567.0,
"EndTime": 1528317589.0,
"SummaryStatistics": {
"OkCount": 3,
"ErrorStatistics": {
"ThrottleCount": 0,
"OtherCount": 1,
"TotalCount": 1
I
"FaultStatistics": {
"OtherCount": 0,
"TotalCount": 0
I
"TotalCount": 4,
"TotalResponseTime": 0.273

},
"ResponseTimeHistogram": [
{
"Value": 0.005,
"Count": 1
I
{
"Value": 0.015,
"Count": 1
I
{
"Value": 0.157,
"Count": 1
I
{
"Value": 0.096,
"Count": 1
}
1,

"Aliases": []

Getting data 98

AWS X-Ray Developer Guide

"ReferenceId": 1,

"Name": "awseb-e-dixzws4s9p-stack-StartupSignupsTable-4IMSMHAYX2BA",

"Names": [
"awseb-e-dixzws4s9p-stack-StartupSignupsTable-4IMSMHAYX2BA"

1,
"Type": "AWS::DynamoDB: :Table",
"State": "unknown",

"StartTime": 1528317583.0,
"EndTime": 1528317589.0,

"Edges": [],
"SummaryStatistics": {
"OkCount": 2,

"ErrorStatistics": {
"ThrottleCount": 0O,
"OtherCount": 0,
"TotalCount": 0

},

"FaultStatistics": {
"OtherCount": 0,
"TotalCount": 0

},

"TotalCount": 2,

"TotalResponseTime": 0.12

I
"DurationHistogram": [
{
"Value": 0.076,
"Count": 1
},
{
"Value": 0.044,
"Count": 1
}
1,
"ResponseTimeHistogram": [
{
"Value": 0.076,
"Count": 1
},
{

Getting data 99

AWS X-Ray

Developer Guide

"Value": 0.044,
"Count": 1

"ReferenceId": 2,

"Name": "xray-sample.elasticbeanstalk.com",

"Names" :

"xray-sample.elasticbeanstalk.com"

1,
"Root":
IlTypell :
"State":

L

true,
"AWS::EC2::Instance",
"active",

"StartTime": 1528317567.0,
"EndTime": 1528317589.0,

"Edges":
{

[
"ReferenceId": 1,
"StartTime": 1528317567.0,
"EndTime": 1528317589.0,
"SummaryStatistics": {
"OkCount": 2,
"ErrorStatistics": {
"ThrottleCount": 0,
"OtherCount": 0,
"TotalCount": 0
I
"FaultStatistics": {
"OtherCount": 0,
"TotalCount": 0
I
"TotalCount": 2,
"TotalResponseTime": 0.
},

"ResponseTimeHistogram": [

{
"Value": 0.076,

"Count": 1

I

{
"Value": 0.044,
"Count": 1

}

12

Getting data

100

AWS X-Ray Developer Guide

]I

"Aliases": []

},
{
"ReferenceId": 3,
"StartTime": 1528317567.0,
"EndTime": 1528317589.0,
"SummaryStatistics": {
"OkCount": 2,
"ErrorStatistics": {
"ThrottleCount": 0,
"OtherCount": 0,
"TotalCount": 0
I
"FaultStatistics": {
"OtherCount": 0,
"TotalCount": 0
I
"TotalCount": 2,
"TotalResponseTime": 0.125
},
"ResponseTimeHistogram": [
{
"Value": 0.049,
"Count": 1
I
{
"Value": 0.076,
"Count": 1
}
1,
"Aliases": []
}
1,
"SummaryStatistics": {
"OkCount": 3,

"ErrorStatistics": {
"ThrottleCount": 0O,
"OtherCount": 1,
"TotalCount": 1

},

"FaultStatistics": {
"OtherCount": 0,
"TotalCount": 0

Getting data 101

AWS X-Ray

Developer Guide

}I

"TotalCount":
"TotalResponseTime":

iy

4,

"DurationHistogram": [

{

1,

"ResponseTimeHistogram":

{

"Value":
"Count":

"Value":
"Count":

"Value":
"Count":

"Value":
"Count":

"Value":
"Count":

"Value":
"Count":

"Value":
"Count":

"Value":
"Count":

"ReferenceId":

"Name" :

IISNSII ,

3,

0.005,

1

0.015,

0.157,

0.096,

0.005,

1

0.015,

0.157,

0.096,

0.273

Getting data

102

AWS X-Ray Developer Guide

"Names": [
"SNS"
]I
"Type": "AWS::SNS",
"State": "unknown",

"StartTime": 1528317583.0,
"EndTime": 1528317589.0,

"Edges": [],
"SummaryStatistics": {
"OkCount": 2,

"ErrorStatistics": {
"ThrottleCount": 0O,
"OtherCount": 0,
"TotalCount": 0

},

"FaultStatistics": {
"OtherCount": 0,
"TotalCount": 0

},

"TotalCount": 2,

"TotalResponseTime": 0.125

I
"DurationHistogram": [
{
"Value": 0.049,
"Count": 1
},
{
"Value": 0.076,
"Count": 1
}
1,
"ResponseTimeHistogram": [
{
"Value": 0.049,
"Count": 1
},
{
"Value": 0.076,
"Count": 1
}
]

Getting data 103

AWS X-Ray Developer Guide

}

Retrieving the service graph by group

To call for a service graph based on the contents of a group, include a groupName or groupARN.
The following example shows a service graph call to a group named Example1.

Example Script to retrieve a service graph by name for group Example1

aws xray get-service-graph --group-name "Examplel"

Retrieving traces

You can use the GetTraceSummaries API to get a list of trace summaries. Trace summaries

include information that you can use to identify traces that you want to download in full, including
annotations, request and response information, and IDs.

There are two TimeRangeType flags available when calling aws xray get-trace-summaries:

» Traceld - The default GetTraceSummaries search uses TracelD time and returns traces started
within the computed [start_time, end_time) range. This range of timestamps is calculated
based on the encoding of the timestamp within the Traceld, or can be defined manually.

» Event time - To search for events as they happen over the time, AWS X-Ray allows searching
for traces using event timestamps. Event time returns traces active during the [start_time,
end_time) range, regardless of when the trace began.

Use the aws xray get-trace-summaries command to get a list of trace summaries. The
following commands get a list of trace summaries from between 1 and 2 minutes in the past using
the default Traceld time.

Example Script to get trace summaries

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time $(($EPOCH-60))

Example GetTraceSummaries output

"TraceSummaries": [

{

Getting data 104

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray

Developer Guide

"HasError": false,
"Http": {
"HttpStatus": 200,
"ClientIp": "205.255.255.183",

"HttpURL": "http://scorekeep.elasticbeanstalk.com/api/session"

"UserAgent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",

"HttpMethod": "POST"

},

"Users": [1,

"HasFault": false,

"Annotations": {3},

"ResponseTime": 0.084,

"Duration": 0.084,

"Id": "1-59602606-a43alac52fc7ee@eeal2a82c",

"HasThrottle": false

"HasError": false,

"Http": {
"HttpStatus": 200,
"ClientIp": "205.255.255.183",
"HttpURL": "http://scorekeep.elasticbeanstalk.com/api/user",
"UserAgent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)

AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",

"HttpMethod": "POST"

},
"Users": [
{
"UserName": "5M388M1E"
}
1,

"HasFault": false,
"Annotations": {
"UserID": [
{
"AnnotationValue": {
"StringValue": "5M388M1E"

}
}
1,
"Name": [
{

"AnnotationValue": {

Getting data

105

AWS X-Ray Developer Guide

"StringValue": "0la"

},

"ResponseTime": 3.232,

"Duration": 3.232,

"Id": "1-59602603-23fc5b688855d396af79b496",
"HasThrottle": false

iF
"ApproximateTime": 1499473304.0,
"TracesProcessedCount": 2

Use the trace ID from the output to retrieve a full trace with the BatchGetTraces AP

Example BatchGetTraces command

$ aws xray batch-get-traces --trace-ids 1-596025b4-7170afe49f7aa708b1dd4a6b

Example BatchGetTraces output

"Traces": [
{
"Duration": 3.232,
"Segments": [
{

"Document": "{\"id\":\"1fb07842d944e714\",\"name\":
\"random-name\",\"start_time\":1.499473411677E9,\"end_time\":1.499473414572E9,
\"parent_id\":\"0c544c1blbbff948\",\"http\":{\"response\": {\"status\":200}},
\"aws\":{\"request_id\":\"ac086670-6373-11e7-al174-f31b3397f190\"},\"trace_id\":
\"1-59602603-23fc5b688855d396af79b496\",\"origin\":\"AWS: :Lambda\",\"resource_arn\":
\"arn:aws:lambda:us-west-2:123456789012: function:random-name\"}",

"Id": "1fb@7842d944e714"

},
{

"Document": "{\"id\":\"194fcc8747581230\",\"name\":\"Scorekeep
\",\"start_time\":1.499473411562E9,\"end_time\":1.499473414794E9,\"http\":{\"request
\":{\"url\":\"http://scorekeep.elasticbeanstalk.com/api/user\",\"method\":\"POST\",
\"user_agent\":\"Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML,

like Gecko) Chrome/59.0.3071.115 Safari/537.36\",\"client_ip\":\"205.251.233.183\"},

Getting data 106

https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide

\"response\":{\"status\":200}},\"aws\":{\"elastic_beanstalk\":{\"version_label\":\"app-
abb9-170708_002045\",\"deployment_id\":406,\"environment_name\":\"scorekeep-dev\"},
\"ec2\":{\"availability_ zone\":\"us-west-2c\",\"instance_id\":\"i-0cd9e448944061b4a
\"},\"xray\":{\"sdk_version\":\"1.1.2\",\"sdk\":\"X-Ray for Java\"}},\"service
\":{3},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"user\":\"5M388M1E
\",\"origin\":\"AWS: :ElasticBeanstalk: :Environment\",\"subsegments\":[{\"id\":
\"@c544c1lblbbff948\",\"name\":\"Lambda\",\"start_time\":1.499473411629E9,\"end_time
\":1.499473414572E9,\"http\":{\"response\": {\"status\":200,\"content_length\":14}},
\"aws\":{\"log_type\":\"None\",\"status_code\":200,\"function_name\":\"random-name
\",\"invocation_type\":\"RequestResponse\",\"operation\":\"Invoke\",\"request_id
\":\"ac086670-6373-11e7-al74-f31b3397f190\",\"resource_names\":[\"random-name\"]},
\"namespace\":\"aws\"}, {\"id\":\"071684f2e555e571\",\"name\" :\"## UserModel.saveUser
\",\"start_time\":1.499473414581E9,\"end_time\":1.499473414769E9,\"metadata\":{\"debug
\":{\"test\":\"Metadata string from UserModel.saveUser\"}},\"subsegments\":[{\"id\":
\"4cd3f10b76c624b4\",\"name\" :\"DynamoDB\", \"start_time\":1.49947341469E9,\"end_time
\":1.499473414769E9,\"http\":{\"response\": {\"status\":200,\"content_length\":57}},
\"aws\":{\"table_name\":\"scorekeep-user\",\"operation\":\"UpdateItem\",\"request_id
\":\"MFQ8CGJ3JTDDVVVASUAAJGQ6NI82F738B0OB4KQNSO5AEMVIF66Q9\", \"resource_names\":
[\"scorekeep-user\"]},\"namespace\":\"aws\"}1}1}",
"Id": "194fcc8747581230"

},

{

"Document”: "{\"id\":\"00f91aa@1f4984fd\",\"name\":
\"random-name\",\"start_time\":1.49947341283E9,\"end_time\":1.49947341457E9,
\"parent_id\":\"1fb07842d944e714\",\"aws\": {\"function_arn\":\"arn:aws:lambda:us-
west-2:123456789012: function:random-name\",\"resource_names\":[\"random-name\"],
\"account_id\":\"123456789012\"},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",
\"origin\":\"AWS: :Lambda: :Function\",\"subsegments\":[{\"id\":\"e6d2fe619f827804\",
\"name\":\"annotations\",\"start_time\":1.499473413012E9,\"end_time\":1.499473413069E9,
\"annotations\":{\"UserID\":\"5M388M1E\",\"Name\":\"01la\"}}, {\"id\":\"b29b548af4d54a0f
\",\"name\" :\"SNS\",\"start_time\":1.499473413112E9,\"end_time\":1.499473414071E9,
\"http\":{\"response\":{\"status\":200}},\"aws\":{\"operation\":\"Publish\",
\"region\":\"us-west-2\",\"request_id\":\"a2137970-f6fc-5029-83e8-28aadeb99198\",
\"retries\":0,\"topic_arn\":\"arn:aws:sns:us-west-2:123456789012:awseb-e-
ruag3jyweb-stack-NotificationTopic-6B829NT9V509\"},\"namespace\":\"aws\"}, {\"id\":
\"2279c0030c955e52\",\"name\":\"Initialization\",\"start_time\":1.499473412064E9,
\"end_time\":1.499473412819E9,\"aws\":{\"function_arn\":\"arn:aws:lambda:us-
west-2:123456789012: function:random-name\"}}]1}",

"Id": "@0f91aa@1f4984fd"

.
{

"Document": "{\"id\":\"17ba309b32c7fbaf\",\"name\":
\"DynamoDB\",\"start_time\":1.49947341469E9,\"end_time\":1.499473414769E9,
\"parent_id\":\"4cd3f10b76c624bs\",\"inferred\":true,\"http\":{\"response

Getting data 107

AWS X-Ray Developer Guide

\":{\"status\":200,\"content_length\":57}},\"aws\":{\"table_name
\":\"scorekeep-user\",\"operation\":\"UpdateItem\",\"request_id\":
\"MFQ8CGJ3JTDDVVVASUAAJGQ6NI82F738BOB4KQNSO5AEMVIF66Q9\",\"resource_names\":
[\"scorekeep-user\"1},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"origin\":
\"AWS: :DynamoDB: : Table\"}",

"Id": "17ba309b32c7fbaf"

},
{

"Document”: "{\"id\":\"1lee3c4a523f89ca5\",\"name\" :\"SNS
\",\"start_time\":1.499473413112E9,\"end_time\":1.499473414071E9,\"parent_id\":
\"b29b548af4d54a0f\",\"inferred\":true,\"http\":{\"response\": {\"status\":200}},\"aws
\":{\"operation\":\"Publish\",\"region\":\"us-west-2\",\"request_id\":\"a2137970-
f6fc-5029-83e8-28aadeb99198\",\"retries\":0,\"topic_arn\":\"arn:aws:sns:us-
west-2:123456789012:awseb-e-ruag3jyweb-stack-NotificationTopic-6B829NT9V509\"},
\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"origin\":\"AWS: :SNS\"}",

"Id": "lee3c4a523f89ca5"

1,
"Id": "1-59602603-23fc5b688855d396af79b496"

]I

"UnprocessedTracelds": []

The full trace includes a document for each segment, compiled from all of the segment documents
received with the same trace ID. These documents don't represent the data as it was sent to X-

Ray by your application. Instead, they represent the processed documents generated by the X-

Ray service. X-Ray creates the full trace document by compiling segment documents sent by your
application, and removing data that doesn't comply with the segment document schema.

X-Ray also creates inferred segments for downstream calls to services that don't send segments
themselves. For example, when you call DynamoDB with an instrumented client, the X-Ray SDK
records a subsegment with details about the call from its point of view. However, DynamoDB
doesn't send a corresponding segment. X-Ray uses the information in the subsegment to create an
inferred segment to represent the DynamoDB resource in the trace map, and adds it to the trace
document.

To get multiple traces from the API, you need a list of trace IDs, which you can extract from the
output of get-trace-summaries with an AWS CLI query. Redirect the list to the input of batch-
get-traces to get full traces for a specific time period.

Getting data 108

https://docs.aws.amazon.com/cli/latest/userguide/controlling-output.html#controlling-output-filter

AWS X-Ray

Developer Guide

Example Script to get full traces for a one minute period

EPOCH=$(date +%s)
TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time

$(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)
aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

Retrieving and refining root cause analytics

Upon generating a trace summary with the GetTraceSummaries API, partial trace summaries can

be reused in their JSON format to create a refined filter expression based upon root causes. See the

examples below for a walkthrough of the refinement steps.

Example Example GetTraceSummaries output - response time root cause section

"Services": [

{

"Name": "GetWeatherData",
"Names": ["GetWeatherData"],
"AccountId": 123456789012,
"Type": null,
"Inferred": false,
"EntityPath": [
{
"Name": "GetWeatherData",
"Coverage": 1.0,
'Remote": false

"Name": "get_temperature",
"Coverage": 0.8,
"Remote": false

"Name": "GetTemperature",
"Names": ["GetTemperature"],
"AccountId": 123456789012,
"Type": null,

"Inferred": false,

Getting data

109

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

Developer Guide

AWS X-Ray
"EntityPath": [
{
"Name": "GetTemperature",
"Coverage": 0.7,
"Remote": false
}
]
}
]
}

By editing and making omissions to the above output, this JSON can become a filter for matched
root cause entities. For every field present in the JSON, any candidate match must be exact, or the
trace will not be returned. Removed fields become wildcard values, a format which is compatible

with the filter expression query structure.

Example Reformatted response time root cause

{
"Services": [
{
"Name": "GetWeatherData",
"EntityPath": [
{
"Name": "GetWeatherData"
b
{
"Name": "get_temperature"
}
]
},
{
"Name": "GetTemperature",
"EntityPath": [
{
"Name": "GetTemperature"
}
]
}
]
}

Getting data

110

AWS X-Ray Developer Guide

This JSON is then used as part of a filter expression through a call to rootcause.json = #[{}].
Refer to the Filter Expressions chapter for more details about querying with filter expressions.

Example Example JSON filter

rootcause.json = #[{ "Services": [{ "Name": '"GetWeatherData", "EntityPath": [{ "Name':
"GetWeatherData" }, { "Name'": '"get_temperature" }] }, { "Name": "GetTemperature",
"EntityPath": [{ "Name": "GetTemperature" }] }] }]

Configuring sampling, groups, and encryption settings with the AWS X-
Ray API

AWS X-Ray provides APIs for configuring sampling rules, group rules, and encryption settings.

Sections

» Encryption settings

o Sampling rules

« Groups

Encryption settings

Use PutEncryptionConfig to specify an AWS Key Management Service (AWS KMS) key to use
for encryption.

(@ Note
X-Ray does not support asymmetric KMS keys.

$ aws xray put-encryption-config --type KMS --key-id alias/aws/xray
{
"EncryptionConfig": {
"KeyId": "arn:aws:kms:us-east-2:123456789012:key/c234g4e8-39e9-4gb0-84e2-
bOea215cbba5",
"Status": "UPDATING",
"Type": "KMS"

Configuration 1

https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html

AWS X-Ray Developer Guide

For the key ID, you can use an alias (as shown in the example), a key ID, or an Amazon Resource
Name (ARN).

Use GetEncryptionConfig to get the current configuration. When X-Ray finishes applying your
settings, the status changes from UPDATING to ACTIVE.

$ aws xray get-encryption-config

{
"EncryptionConfig": {

"KeyId": "arn:aws:kms:us-east-2:123456789012:key/c234g4e8-39e9-4gb0-84e2-
b@ea215cbba5",

"Status": "ACTIVE",
IlTypell : IIKMSII

To stop using a KMS key and use default encryption, set the encryption type to NONE.

$ aws xray put-encryption-config --type NONE

{
"EncryptionConfig": {
"Status": "UPDATING",
"Type": "NONE"
}
}

Sampling rules

You can manage the sampling rules in your account with the X-Ray API. For more information
about adding and managing tags, see Tagging X-Ray sampling rules and groups.

Get all sampling rules with GetSamplingRules.

$ aws xray get-sampling-rules
{
"SamplingRuleRecords": [
{
"SamplingRule": {

"RuleName": "Default",
"RuleARN": "arn:aws:xray:us-east-2:123456789012:sampling-rule/Default"
"ResourceARN": "*'",
"Priority": 10000,

Configuration 112

https://docs.aws.amazon.com/xray/latest/api/API_GetEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

"FixedRate": 0.05,
"ReservoirSize": 1,

"ServiceName": "*",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "*",
"URLPath": "=*",
"Version": 1,
"Attributes": {}

iy
"CreatedAt": 0.0,
"ModifiedAt": 1529959993.0

The default rule applies to all requests that don't match another rule. It is the lowest priority
rule and cannot be deleted. You can, however, change the rate and reservoir size with
UpdateSamplingRule.

Example APl input for UpdateSamplingRule - 10000-default.json

{

"SamplingRuleUpdate": {
"RuleName": "Default",
"FixedRate": 0.01,
"ReservoirSize": 0

}

}

The following example uses the previous file as input to change the default rule to one percent
with no reservoir. Tags are optional. If you choose to add tags, a tag key is required, and tag values
are optional. To remove existing tags from a sampling rule, use UntagResource

$ aws xray update-sampling-rule --cli-input-json file://1000-default.json --tags
[{"Key": "key_name","Value": "value"}, {"Key": "key_name",6"Value": "value"}]
{
"SamplingRuleRecords": [
{
"SamplingRule": {
"RuleName": "Default",
"RuleARN": "arn:aws:xray:us-east-2:123456789012:sampling-rule/Default",

Configuration 113

https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html

AWS X-Ray

Developer Guide

iy

"ResourceARN": "*'",
"Priority": 10000,
"FixedRate": 0.01,
"ReservoirSize": 0,

"ServiceName": "*",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "*",
"URLPath": "=*",
"Version": 1,
"Attributes": {}

"CreatedAt": 0.0,

"ModifiedAt":

}I

1529959993.0

Create additional sampling rules with CreateSamplingRule. When you create a rule, most of

the rule fields are required. The following example creates two rules. This first rule sets a base rate
for the Scorekeep sample application. It matches all requests served by the API that don't match a

higher priority rule.

Example API input for UpdateSamplingRule - 9000-base-scorekeep.json

{
"SamplingRule": {
"RuleName": "base-scorekeep",
"ResourceARN": '"*'",
"Priority": 9000,
"FixedRate": 0.1,
"ReservoirSize": 5,
"ServiceName": "Scorekeep",
"ServiceType": "*",
"Host": "*",
"HTTPMethod": "*",
"URLPath": "*",
"Version": 1
}
}

The second rule also applies to Scorekeep, but it has a higher priority and is more specific. This rule

sets a very low sampling rate for polling requests. These are GET requests made by the client every

few seconds to check for changes to the game state.

Configuration

https://docs.aws.amazon.com/xray/latest/api/API_CreateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html

AWS X-Ray

Developer Guide

Example API input for UpdateSamplingRule - 5000-polling-scorekeep.json

"SamplingRule": {

"RuleName": "polling-scorekeep",
"ResourceARN": '"*'",

"Priority": 5000,

"FixedRate": 0.003,
"ReservoirSize": 0,

"ServiceName": "Scorekeep",
"ServiceType": "*",
IIHOStII: Il*ll’

"HTTPMethod": "GET",
"URLPath": "/api/state/*",
"Version": 1

Tags are optional. If you choose to add tags, a tag key is required, and tag values are optional.

$ aws xray create-sampling-rule --cli-input-json file://5000-polling-scorekeep.json --
tags [{"Key": "key_name","Value": "value"},{"Key": "key_ name","Value": "value"}]

{

"SamplingRuleRecord": {

"SamplingRule": {

"RuleName": "polling-scorekeep",

"RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/polling-

scorekeep",

"ResourceARN": "*'",
"Priority": 5000,

"FixedRate": 0.003,
"ReservoirSize": 0,

"ServiceName": "Scorekeep",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "GET",
"URLPath": "/api/state/*",
"Version": 1,
"Attributes": {}

.

"CreatedAt": 1530574399.0,

"ModifiedAt": 1530574399.0

Configuration

https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html

AWS X-Ray

Developer Guide

}

$ aws xray create-sampling-rule --cli-input-json file://9000-base-scorekeep.json

{

"SamplingRuleRecord": {
"SamplingRule": {

scorekeep",

iy

"RuleName": "base-scorekeep",
"RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/base-

"ResourceARN": "*'",
"Priority": 9000,
"FixedRate": 0.1,
"ReservoirSize": 5,

"ServiceName": "Scorekeep",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "*",
"URLPath": "=*",
"Version": 1,
"Attributes": {}

"CreatedAt": 1530574410.0,
"ModifiedAt": 1530574410.0

To delete a sampling rule, use DeleteSamplingRule.

$ aws xray delete-sampling-rule --rule-name polling-scorekeep

{

"SamplingRuleRecord": {
"SamplingRule": {

scorekeep",

"RuleName": "polling-scorekeep",
"RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/polling-

"ResourceARN": "*'",
"Priority": 5000,

"FixedRate": 0.003,
"ReservoirSize": 0,

"ServiceName": "Scorekeep",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "GET",
"URLPath": "/api/state/*",

Configuration

116

https://docs.aws.amazon.com/xray/latest/api/API_DeleteSamplingRule.html

AWS X-Ray Developer Guide

"Version": 1,
"Attributes": {3}

+
"CreatedAt": 1530574399.0,

"ModifiedAt": 1530574399.0

Groups

You can use the X-Ray API to manage groups in your account. Groups are a collection of traces
that are defined by a filter expression. You can use groups to generate additional service graphs
and supply Amazon CloudWatch metrics. See Getting data from AWS X-Ray for more details about

working with service graphs and metrics through the X-Ray API. For more information about
groups, see Configuring groups. For more information about adding and managing tags, see

Tagging X-Ray sampling rules and groups.

Create a group with CreateGroup. Tags are optional. If you choose to add tags, a tag key is
required, and tag values are optional.

$ aws xray create-group --group-name "TestGroup" --filter-expression
"service(\"example.com\") {fault}" --tags [{"Key": "key_name","Value": "value"},
{"Key": "key_name","Value": "value"}]

{

"GroupName": "TestGroup",
"GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniquelD",
"FilterExpression": "service(\"example.com\") {fault OR error}"

Get all existing groups with GetGroups.

$ aws xray get-groups

{
"Groups": [

{
"GroupName": "TestGroup",
"GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniquelD",
"FilterExpression": "service(\"example.com\") {fault OR error}"

1,

{

"GroupName": "TestGroup2",

Configuration 117

AWS X-Ray Developer Guide

"GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup2/

UniquelID",
"FilterExpression": "responsetime > 2"
}
1,
"NextToken": "tokenstring"
}

Update a group with UpdateGroup. Tags are optional. If you choose to add tags, a tag key is
required, and tag values are optional. To remove existing tags from a group, use UntagResource.

$ aws xray update-group --group-name "TestGroup" --group-arn "arn:aws:Xray:us-
east-2:123456789012:group/TestGroup/UniqueID" --filter-expression
"service(\"example.com\") {fault OR errox}" --tags [{"Key": "Stage","Value": "Prod"},
{"Key": "Department","Value": "QA"}]

{
"GroupName": "TestGroup",
"GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniquelD",
"FilterExpression": "service(\"example.com\") {fault OR error}"

}

Delete a group with DeleteGroup.

$ aws xray delete-group --group-name "TestGroup" --group-arn "arn:aws:Xxray:us-
east-2:123456789012:gxroup/TestGroup/UniquelID"

{

}

Using sampling rules with the X-Ray API

The AWS X-Ray SDK uses the X-Ray API to get sampling rules, report sampling results, and get
quotas. You can use these APIs to get a better understanding of how sampling rules work, or to
implement sampling in a language that the X-Ray SDK doesn't support.

Start by getting all sampling rules with GetSamplingRules.

$ aws xray get-sampling-rules

{
"SamplingRuleRecords": [

{
"SamplingRule": {

Sampling 118

https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

"RuleName": "Default",

"RuleARN": "arn:aws:xray:us-east-1::sampling-rule/Default",
"ResourceARN": "*'",

"Priority": 10000,

"FixedRate": 0.01,

"ReservoirSize": 0,

"ServiceName": "*",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "*",
"URLPath": "*",
"Version": 1,
"Attributes": {}

.

"CreatedAt": 0.0,

"ModifiedAt": 1530558121.0

"SamplingRule": {
"RuleName": "base-scorekeep",
"RuleARN": "arn:aws:xray:us-east-1::sampling-rule/base-scorekeep",
"ResourceARN": "*'",
"Priority": 9000,
"FixedRate": 0.1,
"ReservoirSize": 2,
"ServiceName": "Scorekeep",
"ServiceType": "*",
"Host": "*",
"HTTPMethod": "*",
"URLPath": "*",
"Version": 1,
"Attributes": {3}
},
"CreatedAt": 1530573954.0,
"ModifiedAt": 1530920505.0

"SamplingRule": {
"RuleName": "polling-scorekeep",
"RuleARN": "arn:aws:xray:us-east-1::sampling-rule/polling-scorekeep",
"ResourceARN": "*'",
"Priority": 5000,
"FixedRate": 0.003,
"ReservoirSize": 0,

Sampling 119

AWS X-Ray Developer Guide

"ServiceName": "Scorekeep",
"ServiceType": "*",
IIHOStII: II*II’

"HTTPMethod": "GET",
"URLPath": "/api/state/*",
"Version": 1,
"Attributes": {}

.

"CreatedAt": 1530918163.0,

"ModifiedAt": 1530918163.0

The output includes the default rule and custom rules. See Sampling rules if you haven't yet

created sampling rules.

Evaluate rules against incoming requests in ascending order of priority. When a rule matches, use
the fixed rate and reservoir size to make a sampling decision. Record sampled requests and ignore
(for tracing purposes) unsampled requests. Stop evaluating rules when a sampling decision is
made.

A rules reservoir size is the target number of traces to record per second before applying the fixed
rate. The reservoir applies across all services cumulatively, so you can't use it directly. However,

if it is non-zero, you can borrow one trace per second from the reservoir until X-Ray assigns a
quota. Before receiving a quota, record the first request each second, and apply the fixed rate to
additional requests. The fixed rate is a decimal between 0 and 1.00 (100%).

The following example shows a call to GetSamplingTargets with details about sampling

decisions made over the last 10 seconds.

$ aws xray get-sampling-targets --sampling-statistics-documents '[

{
"RuleName": "base-scorekeep",
"ClientID": "ABCDEF1234567890ABCDEF10",
"Timestamp'": "2018-07-07T00:20:06",
"RequestCount": 110,
"SampledCount": 20,
"BorrowCount": 10

}I

{

Sampling 120

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingTargets.html

AWS X-Ray Developer Guide

"RuleName": "polling-scorekeep",
"ClientID": "ABCDEF1234567890ABCDEF10",
"Timestamp": "2018-07-07T00:20:06",
"RequestCount": 10500,

"SampledCount": 31,

"BorrowCount": 0

}
1
{
"SamplingTargetDocuments": [
{
"RuleName": "base-scorekeep",
"FixedRate": 0.1,
"ReservoirQuota": 2,
"ReservoirQuotaTTL": 1530923107.0,
"Interval": 10
},
{
"RuleName": "polling-scorekeep",
"FixedRate": 0.003,
"ReservoirQuota": 0,
"ReservoirQuotaTTL": 1530923107.0,
"Interval": 10
}
1,
"LastRuleModification": 1530920505.0,
"UnprocessedStatistics": []
}

The response from X-Ray includes a quota to use instead of borrowing from the reservoir. In this
example, the service borrowed 10 traces from the reservoir over 10 seconds, and applied the fixed
rate of 10 percent to the other 100 requests, resulting in a total of 20 sampled requests. The quota
is good for five minutes (indicated by the time to live) or until a new quota is assigned. X-Ray may
also assign a longer reporting interval than the default, although it didn't here.

(@ Note

The response from X-Ray might not include a quota the first time you call it. Continue
borrowing from the reservoir until you are assigned a quota.

Sampling 121

AWS X-Ray Developer Guide

The other two fields in the response might indicate issues with the input. Check
LastRuleModification against the last time you called GetSamplingRules. If it's newer, get
a new copy of the rules. UnprocessedStatistics caninclude errors that indicate that a rule has

been deleted, that the statistics document in the input was too old, or permissions errors.

AWS X-Ray segment documents

A trace segment is a JSON representation of a request that your application serves. A trace
segment records information about the original request, information about the work that your
application does locally, and subsegments with information about downstream calls that your
application makes to AWS resources, HTTP APIs, and SQL databases.

A segment document conveys information about a segment to X-Ray. A segment document can
be up to 64 kB and contain a whole segment with subsegments, a fragment of a segment that
indicates that a request is in progress, or a single subsegment that is sent separately. You can send
segment documents directly to X-Ray by using the PutTraceSegments API.

X-Ray compiles and processes segment documents to generate queryable trace summaries and
full traces that you can access by using the GetTraceSummaries and BatchGetTraces APIs,
respectively. In addition to the segments and subsegments that you send to X-Ray, the service
uses information in subsegments to generate inferred segments and adds them to the full trace.
Inferred segments represent downstream services and resources in the trace map.

X-Ray provides a JSON schema for segment documents. You can download the schema here: xray-
segmentdocument-schema-v1.0.0. The fields and objects listed in the schema are described in
more detail in the following sections.

A subset of segment fields are indexed by X-Ray for use with filter expressions. For example, if you
set the user field on a segment to a unique identifier, you can search for segments associated
with specific users in the X-Ray console or by using the GetTraceSummaries API. For more
information, see Using filter expressions.

When you instrument your application with the X-Ray SDK, the SDK generates segment documents
for you. Instead of sending segment documents directly to X-Ray, the SDK transmits them over a
local UDP port to the X-Ray daemon. For more information, see Sending segment documents to

the X-Ray daemon.

Sections

« Segment fields

Segment documents 122

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
samples/xray-segmentdocument-schema-v1.0.0.zip
samples/xray-segmentdocument-schema-v1.0.0.zip

AWS X-Ray Developer Guide

Subsegments

HTTP request data

Annotations
Metadata

AWS resource data

Errors and exceptions

SQL queries

Segment fields

A segment records tracing information about a request that your application serves. At a minimum,

a segment records the name, ID, start time, trace ID, and end time of the request.

Example Minimal complete segment

"name" : "example.com",

"id" : "70de5b6f19ff9a0a",

"start_time" : 1.478293361271E9,

"trace_id" : "1-581cf771-a006649127e371903a2de979",
"end_time" : 1.478293361449E9

The following fields are required, or conditionally required, for segments.

(® Note

Values must be strings (up to 250 characters) unless noted otherwise.

Required Segment Fields

name - The logical name of the service that handled the request, up to 200 characters. For
example, your application's name or domain name. Names can contain Unicode letters, numbers,
and whitespace, and the following symbols: _, ., :, /, %, & #, =, +,\, -, @

id - A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

Segment documents 123

AWS X-Ray Developer Guide

« trace_id - A unique identifier that connects all segments and subsegments originating from a
single client request.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example,
1-58406520-a006649127e371903a2de979. This includes:

e The version number, which is 1.

» The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

« A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

(® Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,

W3C trace ID 4efaaf4d1e8720b39541901950019¢ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

@ Trace ID Security

Trace IDs are visible in response headers. Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests
with those IDs to your application.

e start_time - number that is the time the segment was created, in floating point seconds
in epoch time. For example, 1480615200.010 or 1.480615200010E9. Use as many decimal
places as you need. Microsecond resolution is recommended when available.

« end_time - number that is the time the segment was closed. For example, 1480615200 .090 or
1.480615200090E9. Specify either an end_time or in_progress.

Segment documents 124

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

e in_progress - boolean, set to true instead of specifying an end_time to record that a
segment is started, but is not complete. Send an in-progress segment when your application
receives a request that will take a long time to serve, to trace the request receipt. When the
response is sent, send the complete segment to overwrite the in-progress segment. Only send
one complete segment, and one or zero in-progress segments, per request.

(@ Service Names

A segment's name should match the domain name or logical name of the service that
generates the segment. However, this is not enforced. Any application that has permission
to PutTraceSegments can send segments with any name.

The following fields are optional for segments.
Optional Segment Fields

« service - An object with information about your application.
« version - A string that identifies the version of your application that served the request.
» user — A string that identifies the user who sent the request.

e origin - The type of AWS resource running your application.

Supported Values

e AWS::EC2::Instance - An Amazon EC2 instance.
e AWS: :ECS::Container — An Amazon ECS container.

e AWS::ElasticBeanstalk: :Environment — An Elastic Beanstalk environment.

When multiple values are applicable to your application, use the one that is most specific. For
example, a Multicontainer Docker Elastic Beanstalk environment runs your application on an
Amazon ECS container, which in turn runs on an Amazon EC2 instance. In this case you would set
the origin to AWS: :ElasticBeanstalk: :Environment as the environment is the parent of
the other two resources.

« parent_id - A subsegment ID you specify if the request originated from an instrumented
application. The X-Ray SDK adds the parent subsegment ID to the tracing header for
downstream HTTP calls. In the case of nested subsegments, a subsegment can have a segment

or a subsegment as its parent.

Segment documents 125

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

« http - http objects with information about the original HTTP request.

« aws - aws object with information about the AWS resource on which your application served the
request.

e« error, throttle, fault, and cause — error fields that indicate an error occurred and that
include information about the exception that caused the error.

e annotations - annotations object with key-value pairs that you want X-Ray to index for

search.
« metadata - metadata object with any additional data that you want to store in the segment.

« subsegments - array of subsegment objects.

Subsegments

You can create subsegments to record calls to AWS services and resources that you make with the
AWS SDK, calls to internal or external HTTP web APIs, or SQL database queries. You can also create
subsegments to debug or annotate blocks of code in your application. Subsegments can contain
other subsegments, so a custom subsegment that records metadata about an internal function call
can contain other custom subsegments and subsegments for downstream calls.

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray
uses subsegments to identify downstream services that don't send segments and create entries for
them on the service graph.

A subsegment can be embedded in a full segment document or sent independently. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size.

Example Segment with embedded subsegment

An independent subsegment has a type of subsegment and a parent_id that identifies the
parent segment.

{
"trace_id" : "1-5759e988-bd862e3felbe46a994272793",
"id" : "defdfd9912dc5a56",
"start_time" : 1461096053.37518,
"end_time" : 1461096053. 4042,
"name" : "www.example.com",
"http" : {
"request" : {

Segment documents 126

AWS X-Ray

Developer Guide

Ilurlll
"method"
"user_agent"

"https://www.example.com/health",

IIGETII ,

"Mozilla/5.0 (Macintosh;

AppleWebKit/601.7.7",

"client_ip"
.
"response" : {
"status"

"11.0.3.111"

1 200,

"content_length" : 86

}
},
"subsegments"
{
nid"
"name"
"start_time"
"end_time"
"namespace"
"http"
"request"
"url"
"method"
"traced"
.
"response"
"status"
"content

For long-running requests, you can send an in-progress segment to notify X-Ray that the request

"53995c3f42cdB8ad8",
"api.example.com",

: 1461096053.37769,
: 1461096053.40379,

"remote",

{
{

"https://api.example.com/health",

"POST",

. true

1 200,

_length" : 861

Intel Mac 0S X 10_11_6)

was received, and then send subsegments separately to trace them before completing the original

request.

Example In-progress segment

"name" : "example.com",
"id" : "70de5b6f19ff9a0b",
"start_time" : 1.478293361271E9,

Segment documents

127

AWS X-Ray Developer Guide

"trace_id" : "1-581cf771-a0@06649127e371903a2de979",
"in_progress": true

Example Independent subsegment

An independent subsegment has a type of subsegment, a trace_id, and a parent_id that
identifies the parent segment.

"name" : "api.example.com",

"id" : "53995c3f42cd8ad8",

"start_time" : 1.478293361271E9,

"end_time" : 1.478293361449E9,

"type" : "subsegment",

"trace_id" : "1-581cf771-a006649127e371903a2de979"

"parent_id" : "defdfd9912dc5a56",

"namespace" : "remote",

"http" : {

"request" : {

"url" : "https://api.example.com/health",
"method" : "POST",
"traced" : true

1,

"response" : {
"status" . 200,
"content_length" : 861

When the request is complete, close the segment by resending it with an end_time. The complete
segment overwrites the in-progress segment.

You can also send subsegments separately for completed requests that triggered asynchronous
workflows. For example, a web API may return a OK 200 response immediately prior to starting
the work that the user requested. You can send a full segment to X-Ray as soon as the response is
sent, followed by subsegments for work completed later. As with segments, you can also send a
subsegment fragment to record that the subsegment has started, and then overwrite it with a full
subsegment once the downstream call is complete.

The following fields are required, or are conditionally required, for subsegments.

Segment documents 128

AWS X-Ray Developer Guide

® Note

Values are strings up to 250 characters unless noted otherwise.

Required Subsegment Fields

« id - A 64-bit identifier for the subsegment, unique among segments in the same trace, in 16
hexadecimal digits.

« name — The logical name of the subsegment. For downstream calls, name the subsegment after
the resource or service called. For custom subsegments, name the subsegment after the code
that it instruments (e.g., a function name).

« start_time — number that is the time the subsegment was created, in floating point seconds in
epoch time, accurate to milliseconds. For example, 1480615200.010 or 1.480615200010E9.

« end_time — number that is the time the subsegment was closed. For example,
1480615200.090 or 1.480615200090E9. Specify an end_time or in_progress.

« in_progress - boolean that is set to true instead of specifying an end_time to record that
a subsegment is started, but is not complete. Only send one complete subsegment, and one or
zero in-progress subsegments, per downstream request.

« trace_id - Trace ID of the subsegment's parent segment. Required only if sending a
subsegment separately.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example,
1-58406520-3006649127e371903a2de979. This includes:

e The version number, which is 1.

« The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

« A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

(® Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID

Segment documents 129

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

must be formatted in X-Ray trace ID format when sending to X-Ray. For example,

W3C trace ID 4efaaf4d1e8720b39541901950019¢ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

« parent_id - Segment ID of the subsegment's parent segment. Required only if sending a
subsegment separately. In the case of nested subsegments, a subsegment can have a segment or
a subsegment as its parent.

« type - subsegment. Required only if sending a subsegment separately.

The following fields are optional for subsegments.

Optional Subsegment Fields

« namespace — aws for AWS SDK calls; remote for other downstream calls.
« http - http object with information about an outgoing HTTP call.

« aws — aws object with information about the downstream AWS resource that your application
called.

e error, throttle, fault, and cause — error fields that indicate an error occurred and that
include information about the exception that caused the error.

« annotations - annotations object with key-value pairs that you want X-Ray to index for

search.
« metadata - metadata object with any additional data that you want to store in the segment.
« subsegments - array of subsegment objects.

e precursor_ids - array of subsegment IDs that identifies subsegments with the same parent
that completed prior to this subsegment.

HTTP request data

Use an HTTP block to record details about an HTTP request that your application served (in a
segment) or that your application made to a downstream HTTP API (in a subsegment). Most of the
fields in this object map to information found in an HTTP request and response.

Segment documents 130

AWS X-Ray Developer Guide

http

All fields are optional.

« request - Information about a request.

method - The request method. For example, GET.

url — The full URL of the request, compiled from the protocol, hostname, and path of the
request.

user_agent — The user agent string from the requester's client.

client_ip - The IP address of the requester. Can be retrieved from the IP packet's Source
Address or, for forwarded requests, from an X-Forwarded-For header.

x_forwarded_for - (segments only) boolean indicating that the client_ip was read from
an X-Forwarded-For header and is not reliable as it could have been forged.

traced - (subsegments only) boolean indicating that the downstream call is to another
traced service. If this field is set to true, X-Ray considers the trace to be broken until the
downstream service uploads a segment with a parent_id that matches the id of the
subsegment that contains this block.

« response - Information about a response.

status - integer indicating the HTTP status of the response.

content_length - integer indicating the length of the response body in bytes.

When you instrument a call to a downstream web api, record a subsegment with information about
the HTTP request and response. X-Ray uses the subsegment to generate an inferred segment for
the remote API.

Example Segment for HTTP call served by an application running on Amazon EC2

"id": "6b55dcc497934f1la",
"start_time": 1484789387.126,
"end_time": 1484789387.535,
"trace_id": "1-5880168b-fd5158284b67678a3bb5a78c",
"name": "www.example.com",
"origin": "AWS::EC2::Instance",
"aws": {
"ec2": {
"availability_zone": "us-west-2c",

Segment documents 131

AWS X-Ray Developer Guide

"instance_id": "i-0@b5a4678fc325bg98"

.
"xray": {
"sdk_version": "2.11.0 for Java"
},
.
"http": {

"request": {
"method": "POST",
"client_ip": "78.255.233.48",
"url": "http://www.example.com/api/user",
"user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101
Firefox/45.0",
"x_forwarded_for": true
},
"response": {
"status": 200

Example Subsegment for a downstream HTTP call

{
"id": "@04f72bel9cddc2a",
"start_time": 1484786387.131,
"end_time": 1484786387.501,
"name": "names.example.com",
"namespace": "remote",
"http": {
"request": {
"method": "GET",
"url": "https://names.example.com/"
I
"response": {
"content_length": -1,
"status": 200
}
}
}

Example Inferred segment for a downstream HTTP call

Segment documents 132

AWS X-Ray

Developer Guide

"id": "168416dc2ea97781",
"name": "names.example.com",
"trace_id": "1-62bel272-1b71c4274f39f122afab4eab",
"start_time": 1484786387.131,
"end_time": 1484786387.501,
"parent_id": "@@4f72bel9cddc2a",
"http": {
"request": {
"method": "GET",
"url": "https://names.example.com/"
},
"response": {
"content_length": -1,
"status": 200
}
.

"inferred": true

Annotations

Segments and subsegments can include an annotations object containing one or more fields
that X-Ray indexes for use with filter expressions. Fields can have string, number, or Boolean values

(no objects or arrays). X-Ray indexes up to 50 annotations per trace.

Example Segment for HTTP call with annotations

"id": "6b55dcc497932f1la",

"start_time": 1484789187.126,

"end_time": 1484789187.535,

"trace_id": "1-5880168b-fd515828bs@7678a3bb5a78c",

"name": "www.example.com",
"origin": "AWS::EC2::Instance",
"aws": {
"ec2": {
"availability_zone": "us-west-2c",
"instance_id": "i-@b5a4678fc325bg98"
},
"xray": {
"sdk_version": "2.11.0 for Java"
I
},

Segment documents

133

AWS X-Ray Developer Guide

"annotations": {

"customer_category" : 124,
"zip_code" : 98101,
"country" : "United States",
"internal" : false

}I

"http": {

"request": {
"method": "POST",
"client_ip": "78.255.233.48",
"url": "http://www.example.com/api/user",
"user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101
Firefox/45.0",
"x_forwarded_for": true

},
"response": {
"status": 200

Keys must be alphanumeric in order to work with filters. Underscore is allowed. Other symbols and
whitespace are not allowed.

Metadata

Segments and subsegments can include a metadata object containing one or more fields with
values of any type, including objects and arrays. X-Ray does not index metadata, and values can
be any size, as long as the segment document doesn't exceed the maximum size (64 kB). You can
view metadata in the full segment document returned by the BatchGetTraces API. Field keys
(debug in the following example) starting with AWS . are reserved for use by AWS-provided SDKs

and clients.

Example Custom subsegment with metadata

"id": "0e58d2918e9038e8",
"start_time": 1484789387.502,
"end_time": 1484789387.534,

"name": "## UserModel.saveUser",
"metadata": {
"debug": {
"test": "Metadata string from UserModel.saveUser"

Segment documents 134

https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide

}
}I
"subsegments": [
{
"id": "0f910026178b71eb",
"start_time": 1484789387.502,
"end_time": 1484789387.534,
"name": "DynamoDB",

"namespace": "aws",

"http": {
"response": {
"content_length": 58,
"status": 200
}
},
"aws": {
"table_name": "scorekeep-user",
"operation": "UpdateItem",
"request_id": "3AIENM5J4ELQ3SPODHKBIRVIC3VV4KQNSO5AEMVIF66Q9ASUAAIG",
"resource_names": [
"scorekeep-user"

AWS resource data

For segments, the aws object contains information about the resource on which your application

is running. Multiple fields can apply to a single resource. For example, an application running in a
multicontainer Docker environment on Elastic Beanstalk could have information about the Amazon
EC2 instance, the Amazon ECS container running on the instance, and the Elastic Beanstalk
environment itself.

aws (Segments)
All fields are optional.

« account_id - If your application sends segments to a different AWS account, record the ID of
the account running your application.

« cloudwatch_logs - Array of objects that describe a single CloudWatch log group.

Segment documents 135

AW

S X-Ray Developer Guide

« log_group - The CloudWatch Log Group name.
e arn-The CloudWatch Log Group ARN.

ec2 - Information about an Amazon EC2 instance.

instance_id - The instance ID of the EC2 instance.

instance_size - The type of EC2 instance.

ami_id - The Amazon Machine Image ID.

availability_zone - The Availability Zone in which the instance is running.
ecs - Information about an Amazon ECS container.

« container - The hostname of your container.

e container_id - The full container ID of your container.

e container_arn - The ARN of your container instance.

eks - Information about an Amazon EKS cluster.

« pod - The hostname of your EKS pod.

e cluster_name — The EKS cluster name.

« container_id - The full container ID of your container.

elastic_beanstalk - Information about an Elastic Beanstalk environment. You can find this
information in a file named /var/elasticbeanstalk/xray/environment.conf on the
latest Elastic Beanstalk platforms.

e environment_name — The name of the environment.

« version_label - The name of the application version that is currently deployed to the
instance that served the request.

« deployment_id - number indicating the ID of the last successful deployment to the instance
that served the request.

xray — Metadata about the type and version of instrumentation used.

e auto_instrumentation - Boolean indicating whether auto-instrumentation was used (for
example, the Java Agent).

» sdk_version - The version of SDK or agent being used.
» sdk — The type of SDK.

Example AWS block with plugins

aws":{

Segment documents 136

AWS X-Ray Developer Guide

"elastic_beanstalk":{
"version_label":"app-5a56-170119_190650-stage-170119_190650",
"deployment_id":32,

"environment_name":"scorekeep"

},

"ec2":{
"availability_zone":"us-west-2c",
"instance_id":"i-075ad396f12bc325a",
"ami_id":

.

"cloudwatch_logs": [

{

"log_group":"my-cw-log-group",
"arn":"arn:aws:logs:us-west-2:012345678912:1og-group:my-cw-log-group"

1,

"xray":{
"auto_instrumentation":false,
"sdk":"X-Ray for Java",
"sdk_version":"2.8.0"

For subsegments, record information about the AWS services and resources that your application

accesses. X-Ray uses this information to create inferred segments that represent the downstream

services in your service map.

aws (Subsegments)

All fields are optional.

operation - The name of the API action invoked against an AWS service or resource.

account_id - If your application accesses resources in a different account, or sends segments
to a different account, record the ID of the account that owns the AWS resource that your
application accessed.

region - If the resource is in a region different from your application, record the region. For
example, us-west-2.

request_id - Unique identifier for the request.
queue_url - For operations on an Amazon SQS queue, the queue's URL.

table_name - For operations on a DynamoDB table, the name of the table.

Segment documents 137

AWS X-Ray Developer Guide

Example Subsegment for a call to DynamoDB to save an item

"id": "24756640c0d0978a",
"start_time": 1.480305974194E9,
"end_time": 1.4803059742E9,
"name": "DynamoDB",
"namespace": "aws",
"http": {
"response": {
"content_length": 60,
"status": 200
}
.
"aws": {
"table_name": "scorekeep-user",
"operation": "Updateltem",
"request_id": "UBQNSOSAEM8T4FDA4RQDEBS40VTDRVV4AK4HIRGVIF66Q9ASUAAIG",

}

Errors and exceptions

When an error occurs, you can record details about the error and exceptions that it generated.
Record errors in segments when your application returns an error to the user, and in subsegments
when a downstream call returns an error.

error types

Set one or more of the following fields to true to indicate that an error occurred. Multiple types
can apply if errors compound. For example, a 429 Too Many Requests error from a downstream
call may cause your application to return 500 Internal Server Error, in which case all three
types would apply.

« error - boolean indicating that a client error occurred (response status code was 4XX Client
Error).

« throttle - boolean indicating that a request was throttled (response status code was 429 Too
Many Requests).

« fault - boolean indicating that a server error occurred (response status code was 5XX Server
Error).

Segment documents 138

AWS X-Ray Developer Guide

Indicate the cause of the error by including a cause object in the segment or subsegment.
cause
A cause can be either a 16 character exception ID or an object with the following fields:

« working_directory - The full path of the working directory when the exception occurred.
« paths - The array of paths to libraries or modules in use when the exception occurred.

« exceptions - The array of exception objects.

Include detailed information about the error in one or more exception objects.
exception
All fields are optional.

« id - A 64-bit identifier for the exception, unique among segments in the same trace, in 16
hexadecimal digits.

« message - The exception message.
« type - The exception type.

« remote — boolean indicating that the exception was caused by an error returned by a
downstream service.

« truncated - integer indicating the number of stack frames that are omitted from the stack.

« skipped - integer indicating the number of exceptions that were skipped between this
exception and its child, that is, the exception that it caused.

« cause - Exception ID of the exception's parent, that is, the exception that caused this exception.

« stack - array of stackFrame objects.

If available, record information about the call stack in stackFrame obijects.
stackFrame
All fields are optional.

« path - The relative path to the file.
e line - The line in the file.

e label — The function or method name.

Segment documents 139

AWS X-Ray Developer Guide

SQL queries

You can create subsegments for queries that your application makes to an SQL database.

sql

All fields are optional.

connection_string - For SQL Server or other database connections that don't use URL
connection strings, record the connection string, excluding passwords.

url - For a database connection that uses a URL connection string, record the URL, excluding
passwords.

sanitized_query - The database query, with any user provided values removed or replaced by
a placeholder.

database_type - The name of the database engine.
database_version - The version number of the database engine.

driver_version - The name and version number of the database engine driver that your
application uses.

user — The database username.

preparation - call if the query used a PreparedCall; statement if the query used a
PreparedStatement.

Example Subsegment with an SQL Query

"id": "3fd8634e78ca9560",
"start_time": 1484872218.696,
"end_time": 1484872218.697,

"name": "ebdbeaawijb5u25wdoy.cpamxznpdoq8.us-west-2.rds.amazonaws.com",
"namespace": "remote",
Ilsqlll : {

"url": "jdbc:postgresql://aawijb5u25wdoy.cpamxznpdoq8.us-
west-2.rds.amazonaws.com:5432/ebdb",

"preparation": "statement",

"database_type": "PostgreSQL",

"database_version": "9.5.4",

"driver_version": "PostgreSQL 9.4.1211.jre7",

"user" : "dbuser",

Segment documents 140

AWS X-Ray Developer Guide

"sanitized_query" : "SELECT * FROM customers WHERE customer_id=?;"

Segment documents 141

AWS X-Ray Developer Guide

AWS X-Ray concepts

AWS X-Ray receives data from services as segments. X-Ray then groups segments that have a
common request into traces. X-Ray processes the traces to generate a service graph that provides a
visual representation of your application.

Concepts

« Segments

« Subsegments

» Service graph

o Traces

« Sampling

» Tracing header

« Filter expressions

« Groups

« Annotations and metadata

 Errors, faults, and exceptions

Segments

The compute resources running your application logic send data about their work as segments.
A segment provides the resource's name, details about the request, and details about the work
done. For example, when an HTTP request reaches your application, it can record the following
data about:

The host — hostname, alias or IP address

The request — method, client address, path, user agent

The response - status, content

The work done - start and end times, subsegments

Issues that occur - errors, faults and exceptions, including automatic capture of exception stacks.

Segments 142

AWS X-Ray Developer Guide

Segment details: Scorekeep @ X
Overview Resources Annotations Metadata Exceptions sQL

Overview Time Errors and faults Requests & Response
Subsegment ID Start Time Error Request url
1-12345678- 2023-06-23 20:34:58.099 (UTC) false http://scorekeep.us-west-
5120cbe96265dfa965¢cbalac- 2.elb.amazonaws.com/fapi/game/
556f7a611a12900FF End Time Fault

2023-06-23 20:34:58.110 (UTC) false Request method
Name GET
Scorekeep Duration

11ms Response code
Origin 200

AWS:ECS:Container

The X-Ray SDK gathers information from request and response headers, the code in your
application, and metadata about the AWS resources on which it runs. You choose the data to
collect by modifying your application configuration or code to instrument incoming requests,
downstream requests, and AWS SDK clients.

(@ Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

You can use the X-Ray SDK to record additional information such as annotations and metadata.

For details about the structure and information that is recorded in segments and subsegments, see
AWS X-Ray segment documents. Segment documents can be up to 64 kB in size.

Subsegments

A segment can break down the data about the work done into subsegments. Subsegments provide
more granular timing information and details about downstream calls that your application made
to fulfill the original request. A subsegment can contain additional details about a call to an AWS
service, an external HTTP API, or an SQL database. You can even define arbitrary subsegments to
instrument specific functions or lines of code in your application.

Subsegments 143

AWS X-Ray Developer Guide

Segments Timeline info &

0.0ms 20ms 40ms 60ms B0ms 100ms 120ms
L 1]

@O Group by nodes Segment status Response code Duration

¥ Scorekeep AWS:ECS:Container

Scorekeep @ ok 200 118ms PUT http://scorekeey t-2.elb com/api/game/rules/TicTacToe
DynamoDB ®@ok 200 3ms Getltem: scorekeep-game
DynamoDB @ OK 200 34ms Getltemn: scorekeep-session
DynamoDB ®@ok 200 40ms Getitem: scorekeep-game
DynamoDB @ oK 200 25ms Updateltem: scorekeep-state
DynamoDB @ oK 200 4ms Getltem: scorekeep-session
DynamoDB ®@ok 200 5ms Updateltem: scorekeep-game

For services that don't send their own segments, like Amazon DynamoDB, X-Ray uses subsegments
to generate inferred segments and downstream nodes on the trace map. This lets you see all of
your downstream dependencies, even if they don't support tracing, or are external.

Subsegments represent your application's view of a downstream call as a client. If the downstream
service is also instrumented, the segment that it sends replaces the inferred segment generated
from the upstream client's subsegment. The node on the service graph always uses information
from the service's segment, if it's available, while the edge between the two nodes uses the
upstream service's subsegment.

For example, when you call DynamoDB with an instrumented AWS SDK client, the X-Ray SDK
records a subsegment for that call. DynamoDB doesn't send a segment, so the inferred segment
in the trace, the DynamoDB node on the service graph, and the edge between your service and
DynamoDB all contain information from the subsegment.

Subsegments 144

AWS X-Ray Developer Guide

y
| =¥)
7 R\g/

— L O scorekeep-state

/,_\ , / \ _ f,-f'“"f DynamoDB Table

: Ok 100%
Client O Scorekeep 0.17 t/min

ECS Container / \

O scorekeep-game
DynamoDB Table

v Edge details

Source: Scorekeep Destination: scorekeep-game

Response time distribution filter

Ta filter traces by response time, select the corresponding area of the chart.

n_

5.0ms 10ms= 15ms 20ms

When you call another instrumented service with an instrumented application, the downstream
service sends its own segment to record its view of the same call that the upstream service
recorded in a subsegment. In the service graph, both services' nodes contain timing and error

information from those services' segments, while the edge between them contains information
from the upstream service's subsegment.

Subsegments 145

AWS X-Ray

Developer Guide

O MyLambdaFunction Gkl —
Lambda Function /__\
|I

_//
/_\ Anps:ﬂs:;t_mmmueue
——»| ‘\ | SQS Queue

N

© MyLambdaFunction2
Lambda Function

v Edge details

Source: MyLambdaFunction Destination: https://sqgs.us-west-2.amazonaws.com/MySQSQueue

Response time distribution filter

To filter traces by response time, select the corresponding area of the chart.

10
8%
%

4%

E0ms=

B0m=

Both viewpoints are useful, as the downstream service records precisely when it started and ended
work on the request, and the upstream service records the round trip latency, including time that

the request spent traveling between the two services.

Subsegments

146

AWS X-Ray Developer Guide

Service graph

X-Ray uses the data that your application sends to generate a service graph. Each AWS resource
that sends data to X-Ray appears as a service in the graph. Edges connect the services that work
together to serve requests. Edges connect clients to your application, and your application to the
downstream services and resources that it uses.

(@ Service Names

A segment's name should match the domain name or logical name of the service that
generates the segment. However, this is not enforced. Any application that has permission
to PutTraceSegments can send segments with any name.

A service graph is a JSON document that contains information about the services and resources
that make up your application. The X-Ray console uses the service graph to generate a visualization
or service map.

7N\
{ k|
(@)
N
scorekeep-move
DynamoDB Table

TN / \\
|' 1 { 1
\ A ,J'l | 0 'Ii
\\»,__ _..-// \.\\ / .’I
‘ ~— O SNS
Client O Scorekeep SNS

ECS Container

b N
|: g’ I|
\
N, /
_____ » e
O scorekeep-session
DynamoDB Table

Service graph 147

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

For a distributed application, X-Ray combines nodes from all services that process requests with
the same trace ID into a single service graph. The first service that the request hits adds a tracing
header that is propagated between the front end and services that it calls.

For example, Scorekeep runs a web API that calls a microservice (an AWS Lambda function) to
generate a random name by using a Node.js library. The X-Ray SDK for Java generates the trace

ID and includes it in calls to Lambda. Lambda sends tracing data and passes the trace ID to the
function. The X-Ray SDK for Node.js also uses the trace ID to send data. As a result, nodes for the
API, the Lambda service, and the Lambda function all appear as separate, but connected, nodes on
the trace map.

Service graph data is retained for 30 days.

Traces

A trace ID tracks the path of a request through your application. A trace collects all the segments
generated by a single request. That request is typically an HTTP GET or POST request that travels
through a load balancer, hits your application code, and generates downstream calls to other AWS
services or external web APIs. The first supported service that the HTTP request interacts with adds
a trace ID header to the request, and propagates it downstream to track the latency, disposition,
and other request data.

Traces 148

AWS X-Ray

Developer Guide

Trace Map

» Legend and options

Client

No node selected

Select a node to see its details

‘ Go to service map |

L

O customers
DynamoDB Table

o api
ElasticBea...Environment

/n\

prod ucts
ElasticBea...Environment / \

Trace Summary

Method Response Code
GET 200

Duration

17ms

Age
a few seconds (2022-01-20 16:35:56)

Segments Timeline Info

Segment Response

Duration

status wode 0.0lms 2.0lm5 4.0]ms S.Olms 8 Olms 10]ms 12:’\’15 14!113 16{7"\3 WB‘mS
¥ api AWS:ElasticBeanstalk::Environment
api @ oK 200 17ms [, cET
auth ® oK - Oms |
forward ®@ok - 17ms 1
products.eba-cvkws4f...© OK 200 17ms I, Rem

See AWS X-Ray pricing for information about how X-Ray traces are billed. Trace data is retained for

30 days.

Sampling

To ensure efficient tracing and provide a representative sample of the requests that your
application serves, the X-Ray SDK applies a sampling algorithm to determine which requests get
traced. By default, the X-Ray SDK records the first request each second, and five percent of any

additional requests.

Sampling

149

https://aws.amazon.com/xray/pricing/

AWS X-Ray Developer Guide

To avoid incurring service charges when you are getting started, the default sampling rate is
conservative. You can configure X-Ray to modify the default sampling rule and configure additional
rules that apply sampling based on properties of the service or request.

For example, you might want to disable sampling and trace all requests for calls that modify state
or handle users or transactions. For high-volume read-only calls, like background polling, health
checks, or connection maintenance, you can sample at a low rate and still get enough data to see
any issues that arise.

For more information, see Configuring sampling rules.

Tracing header

All requests are traced, up to a configurable minimum. After reaching that minimum, a percentage
of requests are traced to avoid unnecessary cost. The sampling decision and trace ID are added to
HTTP requests in tracing headers named X-Amzn-Trace-Id. The first X-Ray-integrated service
that the request hits adds a tracing header, which is read by the X-Ray SDK and included in the
response.

Example Tracing header with root trace ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3felbe46a994272793; Parent=53995c3f42cd8ad8; Sampled=1

(@ Tracing Header Security

A tracing header can originate from the X-Ray SDK, an AWS service, or the client request.
Your application can remove X-Amzn-Trace-Id from incoming requests to avoid issues
caused by users adding trace IDs or sampling decisions to their requests.

The tracing header can also contain a parent segment ID if the request originated from an
instrumented application. For example, if your application calls a downstream HTTP web API
with an instrumented HTTP client, the X-Ray SDK adds the segment ID for the original request
to the tracing header of the downstream request. An instrumented application that serves the
downstream request can record the parent segment ID to connect the two requests.

Tracing header 150

AWS X-Ray Developer Guide

Example Tracing header with root trace ID, parent segment ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3felbe46a994272793; Parent=53995c3f42cd8ad8; Sampled=1

Lineage may be appended to the trace header by Lambda and other AWS services as part of their
processing mechanisms, and should not be directly used.

Example Tracing header with Lineage

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3felbe46a994272793; Parent=53995c3f42cd8ad8; Sampled=1;Lineage=25:a87bd80c:1

Filter expressions

Even with sampling, a complex application generates a lot of data. The AWS X-Ray console
provides an easy-to-navigate view of the service graph. It shows health and performance
information that helps you identify issues and opportunities for optimization in your application.
For advanced tracing, you can drill down to traces for individual requests, or use filter expressions
to find traces related to specific paths or users.

Traces Info 5m 15m 30m
Find traces by typing a trace 1D or query, build a query using the Query refiners section, or choose a sample query. You can also type a trace |D here,

Q. Filter by X-Ray group http.url CONTAINS “opi/moves™

Run query () 5 traces retrieved

¥ Query refiners

Traces (5)

This table shows the most recent traces with an average response time of 0,165 It shows as many as 1000 traces

Q. Start typing to filter trace list

11} v Trace status ¥ Timestamp v Response code ¥ Response Time ¥ Duration ¥ HTTP Methed
..561513004630e58c75c992ed @ oK 3.4min (2023-08-16 17:39:20) 200 0.104s 0.104s POST
.2e83714b7daac593167d2e73 oK 3.4min (2023-08-16 17:39:19) 200 0.07s 0.07s POST
. 54740787431329383155f154 @DK 3.4min (2023-08-16 17:39:18) 200 0.1s 0.1s POST

Filter expressions 151

AWS X-Ray Developer Guide

Groups

Extending filter expressions, X-Ray also supports the group feature. Using a filter expression, you
can define criteria by which to accept traces into the group.

You can call the group by name or by Amazon Resource Name (ARN) to generate its own service
graph, trace summaries, and Amazon CloudWatch metrics. Once a group is created, incoming traces
are checked against the group's filter expression as they are stored in the X-Ray service. Metrics for
the number of traces matching each criteria are published to CloudWatch every minute.

Updating a group's filter expression doesn't change data that's already recorded. The update
applies only to subsequent traces. This can result in a merged graph of the new and old
expressions. To avoid this, delete the current group and create a fresh one.

(® Note

Groups are billed by the number of retrieved traces that match the filter expression. For
more information, see AWS X-Ray pricing.

For more information about groups, see Configuring groups.

Annotations and metadata

When you instrument your application, the X-Ray SDK records information about incoming

and outgoing requests, the AWS resources used, and the application itself. You can add other
information to the segment document as annotations and metadata. Annotations and metadata
are aggregated at the trace level, and can be added to any segment or subsegment.

Annotations are simple key-value pairs that are indexed for use with filter expressions. Use

annotations to record data that you want to use to group traces in the console, or when calling the
GetTraceSummaries API.

X-Ray indexes up to 50 annotations per trace.

Metadata are key-value pairs with values of any type, including objects and lists, but that are not
indexed. Use metadata to record data you want to store in the trace but don't need to use for
searching traces.

Groups 152

https://aws.amazon.com/xray/pricing/
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray

Developer Guide

You can view annotations and metadata in the segment or subsegment details window, within the

Trace details page in the CloudWatch console.

¥ DynamoDB AWS::DynamoDB::Table

DynamoDB &) 0K 200 9ms Getltem: scorekeep-session

DynamoDB) 0K 200 10ms Updateltem: scorekeep-game
DynamoDB @ oK 200 46ms Getitem: scorekeep-session
DynamoDB oK 200 39ms

Segment details: DynamoDB

Overview Resources

Errors, faults, and exceptions

Annotations

Metadata

Exceptions

X-Ray tracks errors that occur in your application code, and errors that are returned by downstream

services. Errors are categorized as follows.

e Exrrorx - Client errors (400 series errors)
e Fault - Server faults (500 series errors)

« Throttle - Throttling errors (429 Too Many Requests)

When an exception occurs while your application is serving an instrumented request, the X-Ray
SDK records details about the exception, including the stack trace, if available. You can view

exceptions under segment details in the X-Ray console.

Errors, faults, and exceptions

153

AWS X-Ray Developer Guide

Security in AWS X-Ray

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

» Security of the cloud — AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of the
AWS compliance programs. To learn about the compliance programs that apply to X-Ray, see

AWS services in Scope by Compliance Program.

« Security in the cloud - Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using X-Ray. The following topics show you how to configure X-Ray to meet your security and
compliance objectives. You'll also learn how to use other AWS services that can help you to monitor
and secure your X-Ray resources.

Topics

» Data protection in AWS X-Ray

« Identity and access management for AWS X-Ray

« Compliance validation for AWS X-Ray
» Resilience in AWS X-Ray

o Infrastructure security in AWS X-Ray

Data protection in AWS X-Ray

AWS X-Ray always encrypts traces and related data at rest. When you need to audit and disable
encryption keys for compliance or internal requirements, you can configure X-Ray to use an AWS
Key Management Service (AWS KMS) key to encrypt data.

Data protection 154

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS X-Ray Developer Guide

X-Ray provides an AWS managed key named aws/xray. Use this key when you just want to audit
key usage in AWS CloudTrail and don't need to manage the key itself. When you need to manage
access to the key or configure key rotation, you can create a customer managed key.

When you change encryption settings, X-Ray spends some time generating and propagating data
keys. While the new key is being processed, X-Ray may encrypt data with a combination of the new
and old settings. Existing data is not re-encrypted when you change encryption settings.

(® Note
AWS KMS charges when X-Ray uses a KMS key to encrypt or decrypt trace data.

o Default encryption - Free.
« AWS managed key - Pay for key use.

» customer managed key — Pay for key storage and use.

See AWS Key Management Service Pricing for details.

(@ Note

X-Ray insights notifications sends events to Amazon EventBridge, which does not currently
support customer managed keys. For more information, see Data Protection in Amazon

EventBridge.

You must have user-level access to a customer managed key to configure X-Ray to use it, and to
then view encrypted traces. See User permissions for encryption for more information.

CloudWatch console
To configure X-Ray to use a KMS key for encryption using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.
Choose View settings under Encryption within the X-Ray traces section.

4. Choose Edit in the Encryption configuration section.

Data protection 155

https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/eventbridge/latest/userguide/data-protection.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/data-protection.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

5. Choose Use a KMS key.

6. Choose a key from the dropdown menu:

« aws/xray — Use the AWS managed key.
 key alias — Use a customer managed key in your account.

« Manually enter a key ARN - Use a customer managed key in a different account. Enter
the full Amazon Resource Name (ARN) of the key in the field that appears.

7. Choose Update encryption.

X-Ray console
To configure X-Ray to use a KMS key for encryption using the X-Ray console

1. Open the X-Ray console.

2. Choose Encryption.
3. Choose Use a KMS key.
4

Choose a key from the dropdown menu:

« aws/xray — Use the AWS managed key.
» key alias — Use a customer managed key in your account.

« Manually enter a key ARN - Use a customer managed key in a different account. Enter
the full Amazon Resource Name (ARN) of the key in the field that appears.

5. Choose Apply.

(@ Note
X-Ray does not support asymmetric KMS keys.

If X-Ray is unable to access your encryption key, it stops storing data. This can happen if your user
loses access to the KMS key, or if you disable a key that's currently in use. When this happens, X-Ray
shows a notification in the navigation bar.

To configure encryption settings with the X-Ray API, see Configuring sampling, groups, and
encryption settings with the AWS X-Ray API.

Data protection 156

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

Identity and access management for AWS X-Ray

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use X-Ray resources. IAM is an AWS service that you can use
with no additional charge.

Topics
e Audience

« Authenticating with identities

« Managing access using policies

» How AWS X-Ray works with IAM

« AWS X-Ray identity-based policy examples

« Troubleshooting AWS X-Ray identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in X-Ray.

Service user - If you use the X-Ray service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more X-Ray features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in X-Ray, see
Troubleshooting AWS X-Ray identity and access.

Service administrator - If you're in charge of X-Ray resources at your company, you probably have
full access to X-Ray. It's your job to determine which X-Ray features and resources your service
users should access. You must then submit requests to your IAM administrator to change the
permissions of your service users. Review the information on this page to understand the basic
concepts of IAM. To learn more about how your company can use IAM with X-Ray, see How AWS X-
Ray works with IAM.,

IAM administrator - If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to X-Ray. To view example X-Ray identity-based policies that
you can use in IAM, see AWS X-Ray identity-based policy examples.

Identity and access management 157

AWS X-Ray Developer Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for APl requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in

the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 158

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS X-Ray Developer Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-

term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but

a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

» Federated user access — To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates

the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

o Temporary IAM user permissions — An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 159

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS X-Ray Developer Guide

» Cross-account access — You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

» Cross-service access — Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

» Forward access sessions (FAS) — When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

» Service role — A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

» Service-linked role - A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

» Applications running on Amazon EC2 - You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 160

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS X-Ray Developer Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 161

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS X-Ray Developer Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS

services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

» Permissions boundaries — A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

» Service control policies (SCPs) — SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

» Resource control policies (RCPs) — RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the 1AM policies attached

Managing access using policies 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS X-Ray Developer Guide

to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root

user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

» Session policies — Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS X-Ray works with IAM

Before you use IAM to manage access to X-Ray, you should understand what IAM features are
available to use with X-Ray. To get a high-level view of how X-Ray and other AWS services work
with 1AM, see AWS services That Work with IAM in the IAM User Guide.

You can use AWS Identity and Access Management (IAM) to grant X-Ray permissions to users and
compute resources in your account. IAM controls access to the X-Ray service at the API level to
enforce permissions uniformly, regardless of which client (console, AWS SDK, AWS CLI) your users
employ.

To use the X-Ray console to view trace maps and segments, you only need read permissions. To
enable console access, add the AWSXrayReadOnlyAccess managed policy to your IAM user.

For local development and testing, create an IAM role with read and write permissions. Assume
the role and store temporary credentials for the role. You can use these credentials with the X-Ray
daemon, the AWS CLI, and the AWS SDK. See using temporary security credentials with the AWS
CLI for more information.

To deploy your instrumented app to AWS, create an IAM role with write permissions and assign it

to the resources running your application. AWSXRayDaemonWriteAccess includes permission to
upload traces, and some read permissions as well to support the use of sampling rules.

How AWS X-Ray works with IAM 163

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS X-Ray Developer Guide

The read and write policies do not include permission to configure encryption key settings and

sampling rules. Use AWSXrayFullAccess to access these settings, or add configuration APIs in a
custom policy. For encryption and decryption with a customer managed key that you create, you
also need permission to use the key.

Topics

« X-Ray identity-based policies

» X-Ray resource-based policies

» Authorization based on X-Ray tags

« Running your application locally

« Running your application in AWS

« User permissions for encryption

X-Ray identity-based policies

With 1AM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. X-Ray supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in X-Ray use the following prefix before the action: xray:. For example, to grant
someone permission to retrieve group resource details with the X-Ray GetGroup API operation,
you include the xray:GetGroup action in their policy. Policy statements must include either an
Action or NotAction element. X-Ray defines its own set of actions that describe tasks that you
can perform with this service.

How AWS X-Ray works with IAM 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS X-Ray Developer Guide

To specify multiple actions in a single statement, separate them with commas as follows:
"Action": [

"xray:actionl",
"xray:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "xray:Get*"

To see a list of X-Ray actions, see Actions Defined by AWS X-Ray in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support

a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

You can control access to resources by using an 1AM policy. For actions that support resource-level
permissions, you use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to.

All X-Ray actions can be used in an IAM policy to grant or deny users permission to use that action.
However, not all X-Ray actions support resource-level permissions, which enable you to specify the
resources on which an action can be performed.

For actions that don't support resource-level permissions, you must use "*" as the resource.

The following X-Ray actions support resource-level permissions:

How AWS X-Ray works with IAM 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/xray/latest/api/API_Operations.html

AWS X-Ray Developer Guide

e« CreateGroup

e GetGroup

« UpdateGroup

» DeleteGroup

e CreateSamplingRule
« UpdateSamplingRule
» DeleteSamplingRule

The following is an example of an identity-based permissions policy for a CreateGroup action.
The example shows the use of an ARN relating to Group name local-users with the unique ID as
a wildcard. The unique ID is generated when the group is created, and so it can't be predicted in the
policy in advance. When using GetGroup, UpdateGroup, or DeleteGroup, you can define this as
either a wildcard or the exact ARN, including ID.

® Note

The ARN of a sampling rule is defined by its name. Unlike group ARNs, sampling rules have
no uniquely generated ID.

To see a list of X-Ray resource types and their ARNs, see Resources Defined by AWS X-Ray in the

IAM User Guide. To learn with which actions you can specify the ARN of each resource, see Actions
Defined by AWS X-Ray.

Condition keys

X-Ray does not provide any service-specific condition keys, but it does support using some global
condition keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the
IAM User Guide.

Examples

To view examples of X-Ray identity-based policies, see AWS X-Ray identity-based policy examples.

X-Ray resource-based policies

X-Ray supports resource-based policies for current and future AWS service integration, such
as Amazon SNS active tracing. X-Ray resource-based policies can be updated by other AWS

How AWS X-Ray works with IAM 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html#awsx-ray-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html

AWS X-Ray Developer Guide

Management Consoles, or through the AWS SDK or CLI. For example, the Amazon SNS console
attempts to automatically configure resource-based policy for sending traces to X-Ray. The
following policy document provides an example of manually configuring X-Ray resource-based

policy.
Example Example X-Ray resource-based policy for Amazon SNS active tracing

This example policy document specifies the permissions that Amazon SNS needs to send trace data
to X-Ray:

Version: "2012-10-17",
Statement: [
{

Sid: "SNSAccess",

Effect: Allow,

Principal: {
Service: '"sns.amazonaws.com",

.

Action: [
"xray:PutTraceSegments",
"xray:GetSamplingRules",
"xray:GetSamplingTargets"

1))

Resource: "*",

Condition: {
StringEquals: {

"aws:SourceAccount": "account-id"
.
StringlLike: {
"aws:SourceArn": "arn:partition:sns:region:account-id:topic-name"

Use the CLI to create a resource-based policy that gives Amazon SNS permissions to send trace
data to X-Ray:

aws xray put-resource-policy --policy-name MyResourcePolicy --policy-document
'{ "Version": "2012-10-17", "Statement": [{ "Sid": "SNSAccess", "Effect": "Allow",

How AWS X-Ray works with IAM 167

AWS X-Ray Developer Guide

"Principal": { "Service": "sns.amazonaws.com" }, "Action": ["xray:PutTraceSegments",
"xray:GetSamplingRules", "xray:GetSamplingTargets"], "Resource": "*",

"Condition": { "StringEquals": { "aws:SourceAccount": "account-id" }, "StringlLike":

{ "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name" } } } 1 }'

To use these examples, replace partition, region, account-id, and topic-name with your
specific AWS partition, region, account ID, and Amazon SNS topic name. To give all Amazon SNS
topics permission to send trace data to X-Ray, replace the topic name with *.

Authorization based on X-Ray tags

You can attach tags to X-Ray groups or sampling rules, or pass tags in a request to X-Ray. To
control access based on tags, you provide tag information in the condition element of a policy

using the xray:ResourceTag/key-name, aws :RequestTag/key-name, or aws : TagKeys
condition keys. For more information about tagging X-Ray resources, see Tagging X-Ray sampling
rules and groups.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Managing access to X-Ray groups and sampling rules based on tags.

Running your application locally

Your instrumented application sends trace data to the X-Ray daemon. The daemon buffers
segment documents and uploads them to the X-Ray service in batches. The daemon needs write
permissions to upload trace data and telemetry to the X-Ray service.

When you run the daemon locally, create an IAM role, assume the role and store temporary

credentials in environment variables, or in a file named credentials within a folder named
.aws in your user folder. See using temporary security credentials with the AWS CLI for more
information.

Example ~/.aws/credentials

[default]

aws_access_key_id={access key ID}
aws_secret_access_key={access key}
aws_session_token={AWS session token}

If you already configured credentials for use with the AWS SDK or AWS CLI, the daemon can use
those. If multiple profiles are available, the daemon uses the default profile.

How AWS X-Ray works with IAM 168

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS X-Ray Developer Guide

Running your application in AWS

When you run your application on AWS, use a role to grant permission to the Amazon EC2 instance
or Lambda function that runs the daemon.

« Amazon Elastic Compute Cloud (Amazon EC2) - Create an IAM role and attach it to the EC2
instance as an instance profile.

« Amazon Elastic Container Service (Amazon ECS) — Create an IAM role and attach it to container
instances as a container instance IAM role.

« AWS Elastic Beanstalk (Elastic Beanstalk) — Elastic Beanstalk includes X-Ray permissions in its
default instance profile. You can use the default instance profile, or add write permissions to a

custom instance profile.

o AWS Lambda (Lambda) - Add write permissions to your function's execution role.

To create a role for use with X-Ray

1. Open the IAM console.

Choose Roles.

Choose Create New Role.

For Role Name, type xray-application. Choose Next Step.

For Role Type, choose Amazon EC2.

o v kA W

Attach the following managed policy to give your application access to AWS services:
« AWSXRayDaemonWriteAccess — Gives the X-Ray daemon permission to upload trace data.

If your application uses the AWS SDK to access other services, add policies that grant access to
those services.

7. Choose Next Step.

8. Choose Create Role.

User permissions for encryption

X-Ray encrypts all trace data and by default, and you can configure it to use a key that you
manage. If you choose a AWS Key Management Service customer managed key, you need to ensure

How AWS X-Ray works with IAM 169

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts-roles.html#concepts-roles-instance
https://console.aws.amazon.com/iam/home

AWS X-Ray Developer Guide

that the key's access policy lets you grant permission to X-Ray to use it to encrypt. Other users in
your account also need access to the key to view encrypted trace data in the X-Ray console.

For a customer managed key, configure your key with an access policy that allows the following
actions:

» User who configures the key in X-Ray has permission to call kms:CreateGrant and
kms:DescribeKey.

» Users who can access encrypted trace data have permission to call kms:Decrypt.

When you add a user to the Key users group in the key configuration section of the IAM console,
they have permission for both of these operations. Permission only needs to be set on the key
policy, so you don't need any AWS KMS permissions on your users, groups, or roles. For more
information, see Using Key Policies in the AWS KMS Developer Guide.

For default encryption, or if you choose the AWS managed CMK (aws/xray), permission is based
on who has access to X-Ray APIs. Anyone with access to PutEncryptionConfig, included in

AWSXrayFullAccess, can change the encryption configuration. To prevent a user from changing
the encryption key, do not give them permission to use PutEncryptionConfig.

AWS X-Ray identity-based policy examples

By default, users and roles don't have permission to create or modify X-Ray resources. They also
can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An administrator
must create IAM policies that grant users and roles permission to perform specific APl operations
on the specified resources they need. The administrator must then attach those policies to the
users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

Policy best practices

Using the X-Ray console

Allow users to view their own permissions

Managing access to X-Ray groups and sampling rules based on tags

IAM managed policies for X-Ray

Identity-based policy examples 170

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS X-Ray Developer Guide

» X-Ray updates to AWS managed policies

» Specifying a resource within an IAM policy

Policy best practices

Identity-based policies determine whether someone can create, access, or delete X-Ray resources in
your account. These actions can incur costs for your AWS account. When you create or edit identity-
based policies, follow these guidelines and recommendations:

» Get started with AWS managed policies and move toward least-privilege permissions — To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS

managed policies for job functions in the IAM User Guide.

« Apply least-privilege permissions — When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

» Use conditions in IAM policies to further restrict access — You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

« Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions — IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

» Require multi-factor authentication (MFA) - If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

Identity-based policy examples 171

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

AWS X-Ray Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the X-Ray console

To access the AWS X-Ray console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the X-Ray resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

To ensure that those entities can still use the X-Ray console, attach the AWSXRayReadOnlyAccess
AWS managed policy to the entities. This policy is described in more detail in IAM managed policies

for X-Ray. For more information, see Adding Permissions to a User in the IAM User Guide.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

"Version": "2012-10-17",
"Statement": [
{

"Sid": "ViewOwnUserInfo",

"Effect": "Allow",

"Action": [
"iam:GetUserPolicy",
"iam:ListGroupsForUser",
"iam:ListAttachedUserPolicies",
"iam:ListUserPolicies",
"iam:GetUser"

1,

"Resource": ["arn:aws:iam::*:user/${aws:usernamel}"]

"Sid": "NavigateInConsole",
"Effect": "Allow",

Identity-based policy examples 172

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS X-Ray Developer Guide

"Action": [
"iam:GetGroupPolicy",
"iam:GetPolicyVersion",

"iam:GetPolicy",

"iam:ListAttachedGroupPolicies",

"iam:ListGroupPolicies",

"iam:ListPolicyVersions",

"iam:ListPolicies",

jam:ListUsers"

1,

"Resource": "*"

Managing access to X-Ray groups and sampling rules based on tags

You can use conditions in your identity-based policy to control access to X-Ray groups and
sampling rules based on tags. The following example policy could be used to deny a user role the
permissions to create, delete, or update groups with the tags stage:prod or stage:preprod.
For more information about tagging X-Ray sampling rules and groups, see Tagging X-Ray sampling
rules and groups.

To deny the creation of a sampling rule, use aws : RequestTag to indicate tags that cannot
be passed as part of a creation request. To deny the update or deletion of a sampling rule, use
aws :ResourceTag to deny actions based on the tags on those resources.

You can attach these policies (or combine them into a single policy, then attach the policy) to the
users in your account. For the user to make changes to a group or sampling rule, the group or
sampling rule must not be tagged stage=prepod or stage=prod. The condition tag key Stage
matches both Stage and stage because condition key names are not case-sensitive. For more
information about the condition block, see IAM JSON Policy Elements: Condition in the IAM User
Guide.

A user with a role that has the following policy attached cannot add the tag role:admin to
resources, and cannot remove tags from a resource that has role:admin associated with it.

JSON

"Version": "2012-10-17",

Identity-based policy examples 173

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS X-Ray

Developer Guide

"Statement": [

{

"Sid": "AllowAllXRay",
"Effect": "Allow",
"Action": "xray:*",
"Resource": "*"

"Sid": "DenyRequestTagAdmin",
"Effect": "Deny",
"Action": "xray:TagResource",
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:RequestTag/role": "admin"

"Sid": "DenyResourceTagAdmin",
"Effect": "Deny",
"Action": "xray:UntagResource",
"Resource": "*",
"Condition": {
"StringEquals": {
"aws:ResourceTag/role": "admin"

IAM managed policies for X-Ray

To make granting permissions easy, IAM supports managed policies for each service. A service

can update these managed policies with new permissions when it releases new APIs. AWS X-Ray

provides managed policies for read only, write only, and administrator use cases.

« AWSXrayReadOnlyAccess - Read permissions for using the X-Ray console, AWS CLI, or

AWS SDK to get trace data, trace maps, insights, and X-Ray configuration from the X-Ray API.

Includes Observability Access Manager (OAM) oam:ListSinks and oam:ListAttachedSinks

Identity-based policy examples

174

AWS X-Ray

Developer Guide

permissions to allow the console to view traces shared from source accounts as part
of CloudWatch cross-account observability. The BatchGetTraceSummaryById and

GetDistinctTraceGraphs API actions are not intended to be called by your code, and not
included in the AWS CLI and AWS SDKs.

"Version": "2012-10-17",

"Statement": [
{
"Effect":
"Action":
"xray

"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:
"xray:

"Allow",
L

:GetSamplingRules",
"xray:

GetSamplingTargets",
GetSamplingStatisticSummaries",
BatchGetTraces",
BatchGetTraceSummaryById",
GetDistinctTraceGraphs",
GetServiceGraph",
GetTraceGraph",
GetTraceSummaries",

GetGroups",

GetGroup",
ListTagsForResource",
ListResourcePolicies",
GetTimeSeriesServiceStatistics",
GetInsightSummaries",
GetInsight",

GetInsightEvents",
GetInsightImpactGraph",

"oam:ListSinks"

1,

"Resource'

nin

"Effect":
"Action":

1 : [

"Allow",
[

"oam:ListAttachedLinks"

]I

"Resource'

': "arn:aws:oam:*:*:sink/*"

Identity-based policy examples

175

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

}

« AWSXRayDaemonWriteAccess — Write permissions for using the X-Ray daemon, AWS CLlI,
or AWS SDK to upload segment documents and telemetry to the X-Ray API. Includes read
permissions to get sampling rules and report sampling results.

JSON
{
"Version": "2012-10-17",
"Statement": [
{

"Effect": "Allow",

"Action": [
"xray:PutTraceSegments",
"xray:PutTelemetryRecords",
"xray:GetSamplingRules",
"xray:GetSamplingTargets",
"xray:GetSamplingStatisticSummaries"

]I

"Resouxce": [
wxn

]

}
]
}

« AWSXrayCrossAccountSharingConfiguration - Grants permissions to create, manage, and
view Observability Access Manager links for sharing X-Ray resources between accounts. Used to
enable CloudWatch cross-account observability between source and monitoring accounts.

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"xray:Link",
"oam:ListLinks"
]I

"Resource": "*"

Identity-based policy examples 176

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

"Effect": "Allow",

"Action": [
"oam:DeleteLink",
"oam:GetLink",
"oam:TagResource"

1,

"Resource": "arn:aws:oam:*:*:link/*"

"Effect": "Allow",
"Action": [
"oam:CreatelLink",
"oam:UpdateLink"
]I

"Resource": [
"arn:aws:oam:*:*:1link/*",
"arn:aws:oam:*:*:sink/*"

« AWSXrayFullAccess - Permission to use all X-Ray APIs, including read permissions, write
permissions, and permission to configure encryption key settings and sampling rules. Includes
Observability Access Manager (OAM) oam:ListSinks and oam:ListAttachedSinks
permissions to allow the console to view traces shared from source accounts as part of
CloudWatch cross-account observability.

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"xray:*",
"oam:ListSinks"
]I

"Resource": [

Identity-based policy examples 177

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray

Developer Guide

myn

]
},
{

"Effect": "Allow",

"Action": [

"oam:ListAttachedLinks"

]I

"Resource": "arn:aws:oam:*:*:sink/*"
}

To add a managed policy to an IAM user, group, or role

1. Open the IAM console.

2. Open the role associated with your instance profile, an IAM user, or an 1AM group.

3. Under Permissions, attach the managed policy.

X-Ray updates to AWS managed policies

View details about updates to AWS managed policies for X-Ray since this service began tracking
these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the

X-Ray Document history page.

Change

IAM managed policies for X-
Ray — Added new AWSXrayCr
ossAccountSharingC

onfiguration ,and
updated AWSXrayRe
adOnlyAccess and
AwWSXrayFullAccess
policies.

Description

X-Ray added Observabi

lity Access Manager (OAM)
permissions oam:ListS
inks andoam:ListA
ttachedSinks to these
policies to allow the console
to view traces shared from
source accounts as part of
CloudWatch cross-account

observability.

Date

November 27, 2022

Identity-based policy examples

178

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray

Developer Guide

Change

IAM managed policies for X-
Ray — Update to AWSXrayRe
adOnlyAccess policy.

Using the X-Ray console
— Update to AWSXrayRe
adOnlyAccess policy

Description

X-Ray added an API action,
ListResourcePolicies

X-Ray added two new

API actions, BatchGetT
raceSummaryById and
GetDistinctTraceGr
aphs .

These actions are not
intended to be called by your
code. Therefore, these API
actions are not included in
the AWS CLI and AWS SDKs.

Specifying a resource within an IAM policy

Date

November 15, 2022

November 11, 2022

You can control access to resources by using an 1AM policy. For actions that support resource-level

permissions, you use an Amazon Resource Name (ARN) to identify the resource that the policy

applies to.

All X-Ray actions can be used in an 1AM policy to grant or deny users permission to use that action.

However, not all X-Ray actions support resource-level permissions, which enable you to specify the

resources on which an action can be performed.

For actions that don't support resource-level permissions, you must use "*" as the resource.

The following X-Ray actions support resource-level permissions:

« CreateGroup
 GetGroup

» UpdateGroup

o DeleteGroup

e CreateSamplingRule

Identity-based policy examples

179

https://docs.aws.amazon.com/xray/latest/api/API_Operations.html

AWS X-Ray Developer Guide

» UpdateSamplingRule
« DeleteSamplingRule

The following is an example of an identity-based permissions policy for a CreateGroup action.
The example shows the use of an ARN relating to Group name local-users with the unique ID as
a wildcard. The unique ID is generated when the group is created, and so it can't be predicted in the
policy in advance. When using GetGroup, UpdateGroup, or DeleteGroup, you can define this as
either a wildcard or the exact ARN, including ID.

JSON

{
"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"xray:CreateGroup"
]I
"Resource": [
"arn:aws:xray:eu-west-1:123456789012:group/local-users/*"
]
}
]
}

The following is an example of an identity-based permissions policy for a CreateSamplingRule
action.

JSON

"Version": "2012-10-17",
"Statement": [
{
"Effect": "Allow",
"Action": [
"xray:CreateSamplingRule"

Identity-based policy examples 180

AWS X-Ray Developer Guide

1,
"Resource": [
"arn:aws:xray:eu-west-1:123456789012:sampling-rule/base-

scorekeep"
]
}
]
}
(® Note

The ARN of a sampling rule is defined by its name. Unlike group ARNs, sampling rules have
no uniquely generated ID.

Troubleshooting AWS X-Ray identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with X-Ray and IAM.

Topics

| Am not authorized to perform an action in X-Ray

| Am not authorized to perform iam:PassRole

I'm an administrator and want to allow others to access X-Ray

| want to allow people outside of my AWS account to access my X-Ray resources

| Am not authorized to perform an action in X-Ray

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when the mateojackson user tries to use the console to view
details about a sampling rule but does not have xray:GetSamplingRules permissions.

Troubleshooting 181

AWS X-Ray Developer Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to
perform: xray:GetSamplingRules on resource: arn:${Partition}:xray:${Region}:
${Account}:sampling-rule/${SamplingRuleName}

In this case, Mateo asks his administrator to update his policies to allow him to access the sampling
rule resource using the xray:GetSamplingRules action.

| Am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam: PassRole action, your
policies must be updated to allow you to pass a role to X-Ray.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in X-Ray. However, the action requires the service to have permissions that are
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I'm an administrator and want to allow others to access X-Ray

To allow others to access X-Ray, you must grant permission to the people or applications that need
access. If you are using AWS IAM Identity Center to manage people and applications, you assign
permission sets to users or groups to define their level of access. Permission sets automatically
create and assign IAM policies to IAM roles that are associated with the person or application. For
more information, see Permission sets in the AWS IAM Identity Center User Guide.

If you are not using IAM Identity Center, you must create IAM entities (users or roles) for the people
or applications that need access. You must then attach a policy to the entity that grants them

Troubleshooting 182

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS X-Ray Developer Guide

the correct permissions in X-Ray. After the permissions are granted, provide the credentials to
the user or application developer. They will use those credentials to access AWS. To learn more
about creating IAM users, groups, policies, and permissions, see IAM Identities and Policies and
permissions in IAM in the IAM User Guide.

| want to allow people outside of my AWS account to access my X-Ray resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

» To learn whether X-Ray supports these features, see How AWS X-Ray works with IAM.

« To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

« To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

» To learn how to provide access through identity federation, see Providing access to externally

authenticated users (identity federation) in the IAM User Guide.

» To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in AWS X-Ray

Monitoring is an important part of maintaining the reliability, availability, and performance of your
AWS solutions. You should collect monitoring data from all of the parts of your AWS solution so
that you can more easily debug a multi-point failure if one occurs. AWS provides several tools for
monitoring your X-Ray resources and responding to potential incidents:

AWS CloudTrail Logs

AWS X-Ray integrates with AWS CloudTrail to record API actions made by a user, a role, or an
AWS service in X-Ray. You can use CloudTrail to monitor X-Ray API requests in real time and
store logs in Amazon S3, Amazon CloudWatch Logs, and Amazon CloudWatch Events. For more
information, see Logging X-Ray API calls with AWS CloudTrail.

Logging and monitoring 183

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS X-Ray Developer Guide

AWS Config Tracking

AWS X-Ray integrates with AWS Config to record configuration changes made to your X-Ray
encryption resources. You can use AWS Config to inventory X-Ray encryption resources, audit
the X-Ray configuration history, and send notifications based on resource changes. For more
information, see Tracking X-Ray encryption configuration changes with AWS Config.

Amazon CloudWatch Monitoring

You can use the X-Ray SDK for Java to publish unsampled Amazon CloudWatch metrics from
your collected X-Ray segments. These metrics are derived from the segment's start and end
time, and the error, fault and throttled status flags. Use these trace metrics to expose retries
and dependency issues within subsegments. For more information, see AWS X-Ray metrics for
the X-Ray SDK for Java.

Compliance validation for AWS X-Ray

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are

interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

« Security Compliance & Governance — These solution implementation guides discuss architectural

considerations and provide steps for deploying security and compliance features.

« HIPAA Eligible Services Reference - Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

« AWS Compliance Resources — This collection of workbooks and guides might apply to your
industry and location.

o AWS Customer Compliance Guides — Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map

the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCl), and
International Organization for Standardization (ISO)).

Compliance validation 184

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

AWS X-Ray Developer Guide

« Evaluating Resources with Rules in the AWS Config Developer Guide — The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

o AWS Security Hub — This AWS service provides a comprehensive view of your security state within

AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

« Amazon GuardDuty — This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious

activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

o AWS Audit Manager — This AWS service helps you continuously audit your AWS usage to simplify

how you manage risk and compliance with regulations and industry standards.

Resilience in AWS X-Ray

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in AWS X-Ray

As a managed service, AWS X-Ray is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To

design your AWS environment using the best practices for infrastructure security, see Infrastructure

Protection in Security Pillar AWS Well-Architected Framework.

You use AWS published API calls to access X-Ray through the network. Clients must support the
following:

» Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

Resilience 185

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS X-Ray Developer Guide

 Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Using AWS X-Ray with VPC endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and X-Ray. This enables resources in your Amazon
VPC to communicate with the X-Ray service without going through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network
that you define. With a VPC, you have control over your network settings, such as the IP address
range, subnets, route tables, and network gateways. To connect your VPC to X-Ray, you define an
interface VPC endpoint. The endpoint provides reliable, scalable connectivity to X-Ray without

requiring an internet gateway, network address translation (NAT) instance, or VPN connection. For
more information, see What Is Amazon VPC in the Amazon VPC User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables
private communication between AWS services by using an elastic network interface with private IP
addresses. For more information, see the New — AWS PrivateLink for AWS services blog post and
Getting Started in the Amazon VPC User Guide.

To ensure you can create a VPC endpoint for X-Ray in your chosen AWS Region, see Supported
Regions.

Creating a VPC endpoint for X-Ray

To start using X-Ray with your VPC, create an interface VPC endpoint for X-Ray.

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Navigate to Endpoints within the navigation pane and choose Create Endpoint.

3. Search for and select the name of the AWS X-Ray service: com.amazonaws.region.xray.

VPC endpoints 186

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://aws.amazon.com/blogs/aws/new-aws-privatelink-endpoints-kinesis-ec2-systems-manager-and-elb-apis-in-your-vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://console.aws.amazon.com/vpc/

AWS X-Ray

Developer Guide

Service category

@® AWS services

) Find service by name
D Your AWS Marketplace services

Service Name com.amazonaws.us-west-2.xray €

Filter by attributes or search by keyword

Service Name

com.amazonaws.us-west-2.transfer.server
com.amazonaws.us-west-2.workspaces

[] com.amazonaws.us-west-2.xray

Owner

amazon
amazon

amazon

Type
Interface
Interface

Interface

4. Select the VPC you want and then select a subnet in your VPC to use the interface endpoint.
An endpoint network interface is created in the selected subnet. You can specify more than
one subnet in different Availability Zones (as supported by the service) to help ensure that
your interface endpoint is resilient to Availability Zone failures. If you do so, an interface

network interface is created in each subnet that you specify.

VPC* | vpc-4f6e3a37

Subnets = subnet-40d87938 (1]

Availability Zone

a

us-west-2a (usw2-az1)
us-west-2b (usw2-az2)

us-west-2¢ (usw2-az3)

0o oo

us-west-2d (usw2-az4)

~C®oO

Subnet ID

subnet-40d87938

subnet-ff4281b5

subnet-d14bfb8c

subnet-1faf8734

5. (Optional) Private DNS is enabled by default for the endpoint, so that you can make requests

to X-Ray using its default DNS hostname. You can choose to disable it.

6. Specify the security groups to associate with the endpoint network interface.

Creating a VPC endpoint for X-Ray

187

AWS X-Ray Developer Guide

Security group = sg-d4f14ff4 Create a new security group (i)

Select security groups &

o
Filter by tags and attributes or search by keyword 1to50f5
Group ID Group Name VPC ID Description Owner ID
sg-0683c... ssh-hitp vpc-4f6e3a3y EC2-VPC launch-wizar... 979300271395
sg-0774... awseb-e-7xv5... vpc-4f6e3a37 EC2-VPC SecurityGrou... 979300271395
sg-0ad6... launch-wizard-1 vpc-4f6e3a3v EC2-VPC launch-wizar... 979300271395
sg-0d62... awseb-e-7xv5... vpc-4f6e3a37 EC2-VPC Elastic Beans... 979300271395
@ sg-ddfi4... default vpc-4f6e3a37 EC2-VPC default VPC s... 979300271395
Close

7. (Optional) Specify custom policy to control permissions to access the X-Ray service. By default,
full access is allowed.

Controlling access to your X-Ray VPC endpoint

A VPC endpoint policy is an IAM resource policy that you attach to an endpoint when you create

or modify the endpoint. If you don't attach a policy when you create an endpoint, Amazon VPC
attaches a default policy for you that allows full access to the service. An endpoint policy doesn't
override or replace IAM user policies or service-specific policies. It's a separate policy for controlling
access from the endpoint to the specified service. Endpoint policies must be written in JSON
format. For more information, see Controlling Access to Services with VPC Endpoints in the
Amazon VPC User Guide.

VPC endpoint policy enables you to control permissions to various X-Ray actions. For example,

you can create a policy to allow only PutTraceSegment and deny all other actions. This restricts
workloads and services in the VPC to send only trace data to X-Ray and deny any other action such
as retrieve data, change encryption config, or create/update groups.

The following is an example of an endpoint policy for X-Ray. This policy allows users connecting to
X-Ray through the VPC to send segment data to X-Ray, and also prevents them from performing
other X-Ray actions.

{"Statement": [

Controlling access to your X-Ray VPC endpoint 188

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS X-Ray Developer Guide

{"Sid": "Allow PutTraceSegments",
"Principal": "*",
"Action": [
"xray:PutTraceSegments"

1,
"Effect": "Allow",
"Resource": "*"

To edit the VPC endpoint policy for X-Ray

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. If you haven't already created the endpoint for X-Ray, follow the steps in Creating a VPC
endpoint for X-Ray.

4. Select the com.amazonaws.region.xray endpoint, and then choose the Policy tab.

5. Choose Edit Policy, and then make your changes.

Supported Regions

X-Ray currently supports VPC endpoints in the following AWS Regions:

« US East (Ohio)

« US East (N. Virginia)

o US West (N. California)
» US West (Oregon)

o Africa (Cape Town)

« Asia Pacific (Hong Kong)
 Asia Pacific (Mumbai)
 Asia Pacific (Osaka)

« Asia Pacific (Seoul)

« Asia Pacific (Singapore)
« Asia Pacific (Sydney)

Supported Regions 189

https://console.aws.amazon.com/vpc/

AWS X-Ray Developer Guide

« Asia Pacific (Tokyo)

« Canada (Central)

« Europe (Frankfurt)

o Europe (Ireland)

o Europe (London)

» Europe (Milan)

» Europe (Paris)

» Europe (Stockholm)

« Middle East (Bahrain)

« South America (Sao Paulo)
e AWS GovCloud (US-East)
o AWS GovCloud (US-West)

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws : SourceArn, aws :SourceAccount, aws:SourceOrglD,

and aws : SourceOrgPaths global condition context keys in resource policies to limit the

permissions that xraylong gives another service to the resource. Use aws : SourceArn to associate
only one resource with cross-service access. Use aws : SourceAccount to let any resource in

that account be associated with the cross-service use. Use aws : SourceOrgID to allow any
resource from any account within an organization be associated with the cross-service use. Use
aws : SourceOrgPaths to associate any resource from accounts within an AWS Organizations
path with the cross-service use. For more information about using and understanding paths, see
Understand the AWS Organizations entity path.

Cross-service confused deputy prevention 190

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgpaths
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-view-data-orgs.html#access_policies_access-advisor-viewing-orgs-entity-path

AWS X-Ray Developer Guide

The most effective way to protect against the confused deputy problem is to use the

aws : SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws : SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012: *.

If the aws : SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both aws :SourceAccount and aws : SourceArn to limit permissions.

To protect against the confused deputy problem at scale, use the aws : SourceOxrgID or

aws :SourceOrgPaths global condition context key with the organization ID or organization path
of the resource in your resource-based policies. Policies that include the aws : SourceOrgID or
aws :SourceOrgPaths key will automatically include the correct accounts and you don't have to
manually update the policies when you add, remove, or move accounts in your organization.

The following example shows how you can use the aws : SourceArn and aws : SourceAccount
global condition context keys in xray to prevent the confused deputy problem.

"Sid": "BlockCrossAccountUnlessSameSource",
"Effect": "Deny",
"Principal": {
"AWS'" A
.
"Action": [
"kms:Decrypt",
"kms:GenerateDataKeyWithoutPlaintext"
1,
"Resource": "*",
"Condition": {

"StringNotEquals": {
"aws:PrincipalAccount": "123456789012",
"aws:SourceAccount": "123456789012"

.

"ArnNotLike": {

"aws:SourceArn": "arn:*:*:*:123456789012:*"

Cross-service confused deputy prevention 191

AWS X-Ray Developer Guide

AWS X-Ray sample application

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support

for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The AWS X-Ray eb-java-scorekeep sample app, available on GitHub, shows the use of the AWS X-
Ray SDK to instrument incoming HTTP calls, DynamoDB SDK clients, and HTTP clients. The sample
app uses AWS CloudFormation to create DynamoDB tables, compile Java code on instance, and run
the X-Ray daemon without any additional configuration.

See the Scorekeep tutorial to start installing and using an instrumented sample application, using
the AWS Management Console or the AWS CLI.

Username games tac
Create a game
random -
ac |
) Rules: | Tic Tac Toe ¥ |
Session

(e | =y @
Games
-
* 1
' e

| session ID ﬂ|

The sample includes a front-end web app, the API that it calls, and the DynamoDB tables that it
uses to store data. Basic instrumentation with filters, plugins, and instrumented AWS SDK clients

is shown in the project's xray-gettingstarted branch. This is the branch that you deploy in the
getting started tutorial. Because this branch only includes the basics, you can diff it against the
master branch to quickly understand the basics.

192

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide
arn:aws:sns:us-west-2:97930027 ...
AWS::SNS
scorekeep-session
AWS::DynamoDB:: Table
avg. 11ms
avg. 10ms 0.6 vmin
| 4
1 tmin
scorekeep-move
AWS::DynamoDB::Table
scorekeep-state
AWS::DynamoDB::Table
Client Scorekeep
AWS::ECS::Container
;' N
710ms
007 t/min
SNS
AWS::SNS
scorekeep-game
AWS::DynamoDB::Table
v
60ms
0.07 t/min

scorekeep-user
AWS::DynamoDB::Table

The sample application shows basic instrumentation in these files:

o HTTP request filter - WebConfig.java

o AWS SDK client instrumentation-build.gradle

193

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/build.gradle

AWS X-Ray Developer Guide

The xray branch of the application includes the use of HTTPClient, Annotations, SQL queries,
custom subsegments, an instrumented AWS Lambda function, and instrumented initialization code

and scripts.

To support user log-in and AWS SDK for JavaScript use in the browser, the xray-cognito branch
adds Amazon Cognito to support user authentication and authorization. With credentials retrieved
from Amazon Cognito, the web app also sends trace data to X-Ray to record request information
from the client's point of view. The browser client appears as its own node on the trace map, and
records additional information, including the URL of the page that the user is viewing, and the
user's ID.

Finally, the xray-worker branch adds an instrumented Python Lambda function that runs
independently, processing items from an Amazon SQS queue. Scorekeep adds an item to the queue
each time a game ends. The Lambda worker, triggered by CloudWatch Events, pulls items from the
queue every few minutes and processes them to store game records in Amazon S3 for analysis.

Topics

» Getting started with the Scorekeep sample application

« Manually instrumenting AWS SDK clients

» Creating additional subsegments

» Recording annotations, metadata, and user IDs

 Instrumenting outgoing HTTP calls

 Instrumenting calls to a PostgreSQL database

 Instrumenting AWS Lambda functions

 Instrumenting startup code

« Instrumenting scripts

 Instrumenting a web app client

« Using instrumented clients in worker threads

Getting started with the Scorekeep sample application

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

Scorekeep tutorial 194

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

This tutorial uses the xray-gettingstarted branch of the Scorekeep sample application, which
uses AWS CloudFormation to create and configure the resources that run the sample application
and X-Ray daemon on Amazon ECS. The application uses the Spring framework to implement a
JSON web API and the AWS SDK for Java to persist data to Amazon DynamoDB. A servlet filter in
the application instruments all incoming requests served by the application, and a request handler
on the AWS SDK client instruments downstream calls to DynamoDB.

You can follow this tutorial using either the AWS Management Console or the AWS CLI.

Sections

 Prerequisites

« Install the Scorekeep application using CloudFormation

o Generate trace data

» View the trace map in the AWS Management Console

» Configuring Amazon SNS notifications

» Explore the sample application

« Optional: Least privilege policy
» Clean up
» Next steps

Prerequisites

This tutorial uses AWS CloudFormation to create and configure the resources that run the sample
application and X-Ray daemon. The following prerequisites are required to install and run through
the tutorial:

1. If you use an IAM user with limited permissions, add the following user policies in the IAM
console:

e AWSCloudFormationFullAccess - to access and use CloudFormation

Prerequisites 195

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

AWS X-Ray Developer Guide

AmazonS3FullAccess - to upload a template file to CloudFormation using the AWS
Management Console

IAMFullAccess - to create the Amazon ECS and Amazon EC2 instance roles
AmazonEC2FullAccess - to create the Amazon EC2 resources
AmazonDynamoDBFullAccess - to create the DynamoDB tables
AmazonECS_FullAccess - to create Amazon ECS resources
AmazonSNSFullAccess - to create the Amazon SNS topic

AWSXrayReadOnlyAccess - for permission to view the trace map and traces in the X-Ray
console

2. To run through the tutorial using the AWS CLlI, install the CLI version 2.7.9 or later, and
configure the CLI with the user from the previous step. Make sure the region is configured

when configuring the AWS CLI with the user. If a region is not configured, you will need to

append --region AWS-REGION to every CLI command.

3. Ensure that Git is installed, in order to clone the sample application repo.

4. Use the following code example to clone the xray-gettingstarted branch of the

Scorekeep repository:

git clone https://github.com/aws-samples/eb-java-scorekeep.git xray-scorekeep -b

xray-gettingstarted

Install the Scorekeep application using CloudFormation

AWS Management Console

Install the sample application using the AWS Management Console

1.

2
3.
4

Open the CloudFormation console

Choose Create stack and then choose With new resources from the drop-down menu.
In the Specify template section, choose Upload a template file.

Select Choose file, navigate to the xray-scorekeep/cloudformation folder that was
created when you cloned the git repo, and choose the cf-resources.yaml file.

Choose Next to continue.

Install the Scorekeep application using CloudFormation 196

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://github.com/git-guides/install-git
https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

6. Enter scorekeep into the Stack name textbox, and then choose Next at the bottom
of the page to continue. Note that the rest of this tutorial assumes the stack is named
scorekeep.

7. Scroll to the bottom of the Configure stack options page and choose Next to continue.

8. Scroll to the bottom of the Review page, choose the check-box acknowledging that
CloudFormation may create IAM resources with custom names, and choose Create stack.

9. The CloudFormation stack is now being created. The stack status will be
CREATE_IN_PROGRESS for about five minutes before changing to CREATE_COMPLETE. The
status will refresh periodically, or you can refresh the page.

AWS CLI

Install the sample application using the AWS CLI

1. Navigate to the cloudformation folder of the xray-scorekeep repository that you
cloned earlier in the tutorial:

cd xray-scorekeep/cloudformation/

2. Enter the following AWS CLI command to create the CloudFormation stack:

aws cloudformation create-stack --stack-name scorekeep --capabilities
"CAPABILITY_NAMED_IAM" --template-body file://cf-resources.yaml

3. Wait until the CloudFormation stack status is CREATE_COMPLETE, which will take about
five minutes. Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
"Stacks[@].StackStatus"

Generate trace data

The sample application includes a front-end web app. Use the web app to generate traffic to the
API and send trace data to X-Ray. First, retrieve the web app URL using the AWS Management
Console or the AWS CLI:

Generate trace data 197

AWS X-Ray Developer Guide

AWS Management Console
Find the application URL using the AWS Management Console

1. Open the CloudFormation console

2. Choose the scorekeep stack from the list.

3. Choose the Outputs tab on the scorekeep stack page, and choose the
LoadBalancerUrl URL link to open the web application.
AWS CLI
Find the application URL using the AWS CLI

1. Use the following command to display the URL of the web application:

aws cloudformation describe-stacks --stack-name scorekeep --query
"Stacks[@].Outputs[@].OutputValue"

2. Copy this URL and open in a browser to display the Scorekeep web application.

Use the web application to generate trace data

1. Choose Create to create a user and session.
Type a game name, set the Rules to Tic Tac Toe, and then choose Create to create a game.

Choose Play to start the game.

P WD

Choose a tile to make a move and change the game state.

Each of these steps generates HTTP requests to the API, and downstream calls to DynamoDB to
read and write user, session, game, move, and state data.

View the trace map in the AWS Management Console

You can see the trace map and traces generated by the sample application in the X-Ray and
CloudWatch consoles.

View the trace map in the AWS Management Console 198

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

X-Ray console
Use the X-Ray console

1. Open the trace map page of the X-Ray console.

2. The console shows a representation of the service graph that X-Ray generates from
the trace data sent by the application. Be sure to adjust the time period of the trace
map if needed, to make sure that it will display all traces since you first started the web
application.

0 Last 15 minutes ¥

Custom (UTC) Relative

Minutes (1) (5

Hours (1] (2] (6]

The trace map shows the web app client, the API running in Amazon ECS, and each DynamoDB
table that the application uses. Every request to the application, up to a configurable maximum
number of requests per second, is traced as it hits the API, generates requests to downstream
services, and completes.

You can choose any node in the service graph to view traces for requests that generated traffic
to that node. Currently, the Amazon SNS node is yellow. Drill down to find out why.

View the trace map in the AWS Management Console 199

https://console.aws.amazon.com/xray/home#/service-map

AWS X-Ray Developer Guide

100ms

0.07 ymin

arn:aws:sns:us-west-2:97930027 ...

4 AWS:SNS
scorekeep-session
AWS::DynamoDB::Table

avg. 1 Oms
»
1 t/min
>
scorekeep-move
AWS::DynamoDB::Table
scorekeep-state
AWS::DynamoDB::Table
Client Scorekeep

AWS::ECS::Container

710ms
007 t/min

SNS
AWS::SNS

scorekeep-game
AWS::DynamoDB::Table

60ms
0.07 t/min

scorekeep-user
AWS::DynamoDB::Table

To find the cause of the error

1. Choose the node named SNS. The node details panel is displayed.
2. Choose View traces to access the Trace overview screen.

3. Choose the trace from the Trace list. This trace doesn't have a method or URL because it
was recorded during startup instead of in response to an incoming request.

View the trace map in the AWS Management Console 200

AWS X-Ray Developer Guide

Q, senice("SNS") © | Last5Minutes v =

Trace overview

Group by: URL -
URL « Avg Latency « % of Traces = Response -
- 1.3 sec 100.00% 1 OK, 0 Throttled, 0 Errors, 0 Faults
Trace list (1)
ID « Age v Method Response « Latency « URL o Client IP » Annotations

___48b5a1 1.1 min 1.3 sec 0

4. Choose the error status icon within the Amazon SNS segment at the bottom of the page, to
open the Exceptions page for the SNS subsegment.

Traces > Details

Q, 1-62f40175-86b347fc50bc57a992e9b835 (2] 5]
Timeline Raw data

Method Response Duration Age ID

-- - 2.1 sec 8.3 min (2022-08-10 19:05:25 UTC) 1-62f40175-86b347fc50bc57a992e9b835

¥ Trace Map

|E Q ' Q Map legend €

2.11s 728ms
>
1 Request 1 Request
Client Scorekeep SNS
AWS::EC2:Instance AWS::SNS Services lcons (I
m Health = Traffic
No node resizing
Name Res. Duration Status D.Dlms zﬂﬁlms -‘IDDIms Bnnlms Boulms 1,?5 1 IZs 1 .:Is 1.:is I.Ias Z.Ps Z.IZS
¥ Scorekeep AWS::EC2:Instance
Scorekeep - 2.1 sec
SNS 400 728 ms Subscribe

P SNS AWS::SNS (Client Response)

View the trace map in the AWS Management Console 201

AWS X-Ray Developer Guide

5. The X-Ray SDK automatically captures exceptions thrown by instrumented AWS SDK clients
and records the stack trace.

Subsegment - SNS x

Overview Resources Annotations Metadata Exceptions

Working directory /varfapp/current
Paths -

m

Cause

COM.amazonaws senices sns model InvalidParameterException: Invalid parameter: Email address (Service:
Amazonshg; Status Code: 400; Error Code: InvalidParameter; Request |ID: 8d29cd97-003a-5e7d-9dfb-
9cffe0b7b9ab)

at handleErrorResponse (AmazonHitpClient java: 1545) =—

at executeOneRequest (AmazonHitpClient java: 1183)
at executeHelper (AmazonHttpClient java:964)

at doExecute (AmazonHttpClient java:676)

at executeWithTimer (AmazonHttpClient java:650)
at execute (AmazonHttpClient java:633)

at access$300 (AmazonHitpClient java:601)

at execute (AmazonHttpClient java:583)

at execute (AmazonHttpClient java:447)

at dolnvoke (AmazonskaSClient java 2003)

at invoke (Amazon3M3Client java:1979)

at subscribe (AmazonSMSClient java:1881)

at createSubscription (Utils java:34)

at =clinit= (WebConfig java:52)

at foriame0 (Class java-2)

at farflame (Class.iava. 348}

CloudWatch console
Use the CloudWatch console

1. Open the X-Ray trace map page of the CloudWatch console.

2. The console shows a representation of the service graph that X-Ray generates from
the trace data sent by the application. Be sure to adjust the time period of the trace

View the trace map in the AWS Management Console 202

https://console.aws.amazon.com/cloudwatch/home#xray:service-map/map

AWS X-Ray Developer Guide

map if needed, to make sure that it will display all traces since you first started the web
application.

Add to dashboard 5m 15m 30m 1h 3h 6h Custom

The trace map shows the web app client, the API running in Amazon EC2, and each DynamoDB
table that the application uses. Every request to the application, up to a configurable maximum
number of requests per second, is traced as it hits the API, generates requests to downstream
services, and completes.

You can choose any node in the service graph to view traces for requests that generated traffic
to that node. Currently, the Amazon SNS node is orange. Drill down to find out why.

View the trace map in the AWS Management Console 203

AWS X-Ray Developer Guide

DynlamoDB Table

O storekeep-game
ynamoDB Table

scorekeep-move
DynamoDB Table

. O SNS
Client O Scorek SNS
ECS Container
O scorekeep-session
DynamoDB Table

View the trace map in the AWS Management Console 204

AWS X-Ray Developer Guide

To find the cause of the error

1. Choose the node named SNS. The SNS node details panel is displayed below the map.
2. Choose View traces to access the Traces page.

3. Add the bottom of the page, choose the trace from the Traces list. This trace doesn't have
a method or URL because it was recorded during startup instead of in response to an
incoming request.

Traces Info 5m 15m 30m 1h 3h 6h Custom

Q, Filter by X-Ray group service(id(name: "SNS", type: "AWS::SNS")) P
’
m ® 1 traces retrieved
BQuery refiners
Traces (1) Add to dashboard
This table shows the most recent traces with an average response time of 2.11s. It shows as many as 1000 traces.
Q, Start typing to filter trace list 1 &
ID v Trace status v Timestamp v Response code v Response Time ¥ Duratior
.-.86b347fc50bc57a992e9b835 ®ok 19.7min (2022-08-10 12:05:25) - 2.11s 2.11s

4. Choose the Amazon SNS subsegment at the bottom of the segments timeline, and choose
the Exceptions tab for the SNS subsegment to view the exception details.

Segments Timeline info

0.0ms 200ms 400ms 600ms B800ms 1.0s 12s 14s 16s 18s 20s 225
Segment status Response code Duration L L L : L L L L L L L)
¥ Scorekeep AWS::EC2:Instance
Scorekeep @ ok - 2.11s I ——
SNS ® Fault (5xx) 400 728ms I subscribe
¥ SNS AWS:SNS
SNS A Error (4xx) 400 728ms I SUhscriﬂ|e
Segment details: SNS
Overview Resources Exceptions
Exceptions
Working Directory Paths message

- Invalid parameter: Email address (Service:
AmazonSNS; Status Code: 400; Error Code:
InvalidParameter; Request ID: 8b80c997-
630d-5¢94-a67f-92f960ba0d3e)

View the trace map in the AWS Management Console 205

AWS X-Ray Developer Guide

The cause indicates that the email address provided in a call to createSubscription madein
the WebConfig class was invalid. In the next section, we'll fix that.

Configuring Amazon SNS notifications

Scorekeep uses Amazon SNS to send notifications when users complete a game. When

the application starts up, it tries to create a subscription for an email address defined in a
CloudFormation stack parameter. That call is currently failing. Configure a notification email to
enable notifications, and resolve the failures highlighted in the trace map.

AWS Management Console
To configure Amazon SNS notifications using the AWS Management Console

1. Open the CloudFormation console

2. Choose the radio button next to the scorekeep stack name in the list, and then choose
Update.

3. Make sure that Use current template is chosen, and then click Next on the Update stack
page.

4. Find the Email parameter in the list, and replace the default value with a valid email
address.

EcsinstanceTypeT3
Specifies the EC2 instance type for your container instances. Defaults to t3.micro.

t3.micro

Email

UPDATE_ME|

FrontendimageUri

public.ecr.aws/xray/scorekeep-frontend:latest

5. Scroll to the bottom of the page and choose Next.

6. Scroll to the bottom of the Review page, choose the check-box acknowledging that
CloudFormation may create IAM resources with custom names, and choose Update stack.

7. The CloudFormation stack is now being updated. The stack status will be
UPDATE_IN_PROGRESS for about five minutes before changing to UPDATE_COMPLETE. The
status will refresh periodically, or you can refresh the page.

Configuring Amazon SNS notifications 206

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

AWS CLI
To configure Amazon SNS notifications using the AWS CLI

1. Navigate to the xray-scorekeep/cloudformation/ folder you previously created, and
open the cf-resources.yaml file in a text editor.

2. Find the Default value within the Email parameter and change it from UPDATE_ME to a
valid email address.

Parameters:
Email:
Type: String
Default: UPDATE_ME # <- change to a valid abcedef.xyz email address

3. From the cloudformation folder, update the CloudFormation stack with the following
AWS CLI command:

aws cloudformation update-stack --stack-name scorekeep --capabilities
"CAPABILITY_NAMED_IAM" --template-body file://cf-resources.yaml

4. Wait until the CloudFormation stack status is UPDATE_COMPLETE, which will take a few
minutes. Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
"Stacks[@].StackStatus"

When the update completes, Scorekeep restarts and creates a subscription to the SNS topic. Check
your email and confirm the subscription to see updates when you complete a game. Open the trace
map to verify that the calls to SNS are no longer failing.

Explore the sample application

The sample application is an HTTP web APl in Java that is configured to use the X-Ray SDK for Java.
When you deploy the application with the CloudFormation template, it creates the DynamoDB
tables, Amazon ECS Cluster, and other services required to run Scorekeep on ECS. A task definition
file for ECS is created through CloudFormation. This file defines the container images used per task
in an ECS cluster. These images are obtained from the official X-Ray public ECR. The scorekeep API
container image has the API compiled with Gradle. The container image of the Scorekeep frontend

Explore the sample application 207

AWS X-Ray Developer Guide

container serves the frontend using the nginx proxy server. This server routes requests to paths
starting with /api to the API.

To instrument incoming HTTP requests, the application adds the TracingFilter provided by the
SDK.

Example src/main/java/scorekeep/WebConfig.java - servlet filter

import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;

@Configuration
public class WebConfig {

@Bean
public Filter TracingFilter() {

return new AWSXRayServletFiltex("Scorekeep");
}

This filter sends trace data about all incoming requests that the application serves, including
request URL, method, response status, start time, and end time.

The application also makes downstream calls to DynamoDB using the AWS SDK for Java.
To instrument these calls, the application simply takes the AWS SDK-related submodules as
dependencies, and the X-Ray SDK for Java automatically instruments all AWS SDK clients.

The application uses Docker to build the source code on-instance with the Gradle Docker
Image and the Scorekeep API Dockerfile file to run the executable JAR that Gradle
generates at its ENTRYPOINT.

Example use of Docker to build via Gradle Docker Image

docker run --rm -v /PATH/TO/SCOREKEEP_REPO/home/gradle/project -w /home/gradle/project
gradle:4.3 gradle build

Example Dockerfile ENTRYPOINT

ENTRYPOINT ["sh", "-c", "java -Dserver.port=5000 -jar scorekeep-api-1.0.0.jar"]

Explore the sample application 208

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

The build.gradle file downloads the SDK submodules from Maven during compilation by
declaring them as dependencies.

Example build.gradle -- dependencies

dependencies {
compile("org.springframework.boot:spring-boot-starter-web")
testCompile('org.springframework.boot:spring-boot-starter-test')
compile('com.amazonaws:aws-java-sdk-dynamodb')
compile("com.amazonaws:aws-xray-recorder-sdk-coxre")
compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")

}
dependencyManagement {
imports {
mavenBom('"com.amazonaws:aws-java-sdk-bom:1.11.67")
mavenBom("com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0")
}
}

The core, AWS SDK, and AWS SDK Instrumentor submodules are all that's required to automatically
instrument any downstream calls made with the AWS SDK.

To relay the raw segment data to the X-Ray API, the X-Ray daemon is required to listen for traffic
on UDP port 2000. To do so, the application has the X-Ray daemon run in a container that is
deployed alongside the Scorekeep application on ECS as a sidecar container. Check out the X-Ray
daemon topic for more information.

Example X-Ray Daemon Container Definition in an ECS Task Definition

Resources:
ScorekeepTaskDefinition:
Type: AWS::ECS::TaskDefinition
Properties:
ContainerDefinitions:

- Cpu: '256'
Essential: true

Explore the sample application 209

AWS X-Ray

Developer Guide

Image: amazon/aws-xray-daemon
MemoryReservation: '128'
Name: xray-daemon

PortMappings:
- ContainerPort: '2000'
HostPort: '2000'
Protocol: udp

The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a
TracingHandler that you can use to instrument your code. You can configure the global recorder
to customize the AWSXRayServletFilter that creates segments for incoming HTTP calls. The
sample includes a static block in the WebConfig class that configures the global recorder with
plugins and sampling rules.

Example src/main/java/scorekeep/WebConfig.java - recorder

import
import
import
import
import
import

com.
com.
com.
com.
com.
com.

amazonaws.
.xray
amazonaws.

amazonaws

amazonaws.
amazonaws.
amazonaws.

@Configuration
public class WebConfig {

static {
AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
ECSPlugin()).withPlugin(new EC2Plugin());

URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

Xxray

Xxray
Xray
Xxray
Xray

.AWSXRay;

.AWSXRayRecorderBuilder;
.javax.servlet.AWSXRayServletFilter;
.plugins.ECSPlugin;

.plugins.EC2Plugin;
.strategy.sampling.LocalizedSamplingStrategy;

AWSXRay.setGlobalRecorder(builder.build());

Explore the sample application

210

AWS X-Ray

Developer Guide

This example uses the builder to load sampling rules from a file named sampling-rules. json.
Sampling rules determine the rate at which the SDK records segments for incoming requests.

Example src/main/java/resources/sampling-rules.json

{
"version": 1,
"rules": [
{
"description": "Resource creation.",
"service_name": "*",

"rate": 1.0

},

{
"description": "Session polling.
"service_name": "*",
"http_method": "GET",
"url_path": "/api/session/*",
"fixed_target": 0,
"rate": 0.05

},

{
"description": "Game polling.",
"service_name": "*",
"http_method": "GET",
"url_path": "/api/game/*/*",
"fixed_target": 0,
"rate": 0.05

},

{
"description": "State polling.",
"service_name": "*",
"http_method": "GET",
"url_path": "/api/state/*/*/*",
"fixed_target": 0,
"rate": 0.05

}

1,
"default": {
"fixed_target": 1,
"rate": 0.1

"http_method": "POST",
"url_path": "/api/*",
"fixed_target": 1,

Explore the sample application

211

AWS X-Ray Developer Guide

}
}

The sampling rules file defines four custom sampling rules and the default rule. For each incoming
request, the SDK evaluates the custom rules in the order in which they are defined. The SDK applies
the first rule that matches the request's method, path, and service name. For Scorekeep, the first
rule catches all POST requests (resource creation calls) by applying a fixed target of one request per
second and a rate of 1.0, or 100 percent of requests after the fixed target is satisfied.

The other three custom rules apply a five percent rate with no fixed target to session, game, and
state reads (GET requests). This minimizes the number of traces for periodic calls that the front end
makes automatically every few seconds to ensure the content is up to date. For all other requests,
the file defines a default rate of one request per second and a rate of 10 percent.

The sample application also shows how to use advanced features such as manual SDK client
instrumentation, creating additional subsegments, and outgoing HTTP calls. For more information,
see AWS X-Ray sample application.

Optional: Least privilege policy

The Scorekeep ECS containers access resources using full access policies, such as
AmazonSNSFullAccess and AmazonDynamoDBFullAccess. Using full access policies is not

the best practice for production applications. The following example updates the DynamoDB IAM
policy to improve the security of the application. To learn more about security best practices in IAM
policies, see Identity and access management for AWS X-Ray.

Example cf-resources.yaml template ECSTaskRole definition

ECSTaskRole:
Type: AWS::IAM::Role
Properties:
AssumeRolePolicyDocument:
Version: "2012-10-17"
Statement:
Effect: "Allow"
Principal:
Service:
- "ecs-tasks.amazonaws.com"
Action:

Optional: Least privilege policy 212

AWS X-Ray Developer Guide

- "sts:AssumeRole"
ManagedPolicyAzrns:
- "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess"
- "arn:aws:iam::aws:policy/AmazonSNSFullAccess"

- "arn:aws:iam::aws:policy/AWSXrayFullAccess"
RoleName: "scorekeepRole"

To update your policy, first you identify the ARN of your DynamoDB resources. Then you use the

ARN in a custom IAM policy. Finally, you apply that policy to your instance profile.

To identify the ARN of your DynamoDB resource:

]
2
3.
4

Open the DynamoDB console.

Choose Tables from the left navigation bar.
Choose any of the scorekeep-* to display the table detail page.

Under the Overview tab, choose Additional info to expand the section and view the Amazon
Resource Name (ARN). Copy this value.

Insert the ARN into the following IAM policy, replacing the AWS_REGION and
AWS_ACCOUNT_ID values with your specific region and account ID. This new policy allows only
the actions specified, instead of the AmazonDynamoDBFullAccess policy which allows any
action.

Example

The tables that the application creates follow a consistent naming convention. You can use the
scorekeep-* format to indicate all Scorekeep tables.

Change your IAM policy

N

N o v s~ W

Open the Scorekeep task role (scorekeepRole) from the IAM console.

Choose the check box next to the AmazonDynamoDBFullAccess policy and choose Remove
to remove this policy.

Choose Add permissions, and then Attach policies, and finally Create policy.
Choose the JSON tab and paste in the policy created above.

Choose Next: Tags at the bottom of the page.

Choose Next: Review at the bottom of the page.

For Name, assign a name for the policy.

Optional: Least privilege policy 213

https://console.aws.amazon.com/dynamodbv2
https://console.aws.amazon.com/iamv2/home#/roles/details/scorekeepRole

AWS X-Ray Developer Guide

8. Choose Create policy at the bottom of the page.

9. Attach the newly created policy to the scorekeepRole role. It may take a few minutes for the
attached policy to take effect.

If you have attached the new policy to the scorekeepRole role, you must detach it before
deleting the CloudFormation stack, since this attached policy will block the stack from being
deleted. The policy can be automatically detached by deleting the policy.

Remove your custom IAM policy

1. Open the IAM console.
2. Choose Policies from the left navigation bar.

3. Search for the custom policy name you created earlier in this section, and choose the radio
button next to the policy name to highlight it.

4. Choose the Actions drop-down and then choose Delete.

5. Type the name of the custom policy and then choose Delete to confirm deletion . This will
automatically detach the policy from the scorekeepRole role.

Clean up

Follow these steps to delete the Scorekeep application resources:

(@ Note

If you created and attached custom policies using the prior section of this tutorial, you
must remove the policy from the scorekeepRole before deleting the CloudFormation
stack.

AWS Management Console
Delete the sample application using the AWS Management Console

1. Open the CloudFormation console

2. Choose the radio button next to the scorekeep stack name in the list, and then choose
Delete.

Clean up 214

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

3. The CloudFormation stack is now being deleted. The stack status will be
DELETE_IN_PROGRESS for a few minutes until all resources are deleted. The status will
refresh periodically, or you can refresh the page.

AWS CLI
Delete the sample application using the AWS CLI

1. Enter the following AWS CLI command to delete the CloudFormation stack:

aws cloudformation delete-stack --stack-name scorekeep

2. Wait until the CloudFormation stack no longer exists, which will take about five minutes.
Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
"Stacks[@].StackStatus"

Next steps

Learn more about X-Ray in the next chapter, AWS X-Ray concepts.

To instrument your own app, learn more about the X-Ray SDK for Java or one of the other X-Ray
SDKs:

« X-Ray SDK for Java — AWS X-Ray SDK for Java

« X-Ray SDK for Node.js - AWS X-Ray SDK for Node.js

« X-Ray SDK for .NET — AWS X-Ray SDK for .NET

To run the X-Ray daemon locally or on AWS, see AWS X-Ray daemon.

To contribute to the sample application on GitHub, see eb-java-scorekeep.

Next steps 215

https://github.com/awslabs/eb-java-scorekeep/tree/xray-gettingstarted

AWS X-Ray Developer Guide

Manually instrumenting AWS SDK clients

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the AWS
SDK Instrumentor submodule in your build dependencies.

You can disable automatic client instrumentation by removing the Instrumentor submodule. This
enables you to instrument some clients manually while ignoring others, or use different tracing
handlers on different clients.

To illustrate support for instrumenting specific AWS SDK clients, the application passes a tracing
handler to AmazonDynamoDBClientBuilder as a request handler in the user, game, and session
model. This code change tells the SDK to instrument all calls to DynamoDB using those clients.

Example src/main/java/scorekeep/SessionModel. java - Manual AWS SDK client
instrumentation

import com.amazonaws.xray.AWSXRay;

import com.amazonaws.xray.handlers.TracingHandler;

public class SessionModel {
private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
.withRegion(Constants.REGION)
.withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecoxdex()))
.build();
private DynamoDBMapper mapper = new DynamoDBMapper(client);

If you remove the AWS SDK Instrumentor submodule from project dependencies, only the
manually instrumented AWS SDK clients appear in the trace map.

AWS SDK clients 216

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/SessionModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/handlers/TracingHandler.html

AWS X-Ray Developer Guide

Creating additional subsegments

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

In the user model class, the application manually creates subsegments to group all downstream
calls made within the saveUser function and adds metadata.

Example src/main/java/scorekeep/UserModel. java - Custom subsegments

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;

public void saveUser(User user) {
// Wrap in subsegment
Subsegment subsegment = AWSXRay.beginSubsegment("## UserModel.saveUser");
try {
mapper.save(user);
} catch (Exception e) {
subsegment.addException(e);
throw e;
} finally {
AWSXRay.endSubsegment();

Recording annotations, metadata, and user IDs

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

Custom subsegments 217

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

In the game model class, the application records Game objects in a metadata block each time it
saves a game in DynamoDB. Separately, the application records game IDs in annotations for use
with filter expressions.

Example src/main/java/scorekeep/GameModel. java — Annotations and metadata

import com.amazonaws.xray.AWSXRay;

import com.amazonaws.xray.entities.Segment;

import com.amazonaws.xray.entities.Subsegment;

public void saveGame(Game game) throws SessionNotFoundException {
// wrap in subsegment
Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");
try {
// check session
String sessionId = game.getSession();
if (sessionModel.loadSession(sessionId) == null) {
throw new SessionNotFoundException(sessionId);
}
Segment segment = AWSXRay.getCurrentSegment();
subsegment.putMetadata("resources", '"game", game);
segment.putAnnotation('gameid", game.getId());
mapper.save(game);
} catch (Exception e) {
subsegment.addException(e);
throw e;
} finally {
AWSXRay.endSubsegment();

In the move controller, the application records user IDs with setUser. User IDs are recorded in a
separate field on segments and are indexed for use with search.

Annotations and metadata 218

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

Example src/main/java/scorekeep/MoveController.java - User ID

import com.amazonaws.xray.AWSXRay;

@RequestMapping(value="/{userId}", method=RequestMethod.POST)
public Move newMove(@PathVariable String sessionlId, @PathVariable String
gameIld, @PathVariable String userId, @RequestBody String move) throws
SessionNotFoundException, GameNotFoundException, StateNotFoundException,
RulesException {

AWSXRay.getCurrentSegment().setUsexr(userId);

return moveFactory.newMove(sessionId, gameld, userId, move);

}

Instrumenting outgoing HTTP calls

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support

for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The user factory class shows how the application uses the X-Ray SDK for Java's version of
HTTPClientBuilder to instrument outgoing HTTP calls.

Example src/main/java/scorekeep/UserFactory. java - HTTPClient instrumentation

import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;

public String randomName() throws IOException {
CloseableHttpClient httpclient = HttpClientBuildexr.create().build();
HttpGet httpGet = new HttpGet("http://uinames.com/api/");
CloseableHttpResponse response = httpclient.execute(httpGet);
try {
HttpEntity entity = response.getEntity();
InputStream inputStream = entity.getContent();

HTTP clients 219

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveController.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserFactory.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/proxies/apache/http/HttpClientBuilder.html

AWS X-Ray Developer Guide

ObjectMapper mapper = new ObjectMapper();
Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);
String name = jsonMap.get('"name");
EntityUtils.consume(entity);
return name;
} finally {
response.close();

If you currently use org.apache.http.impl.client.HttpClientBuilder,
you can simply swap out the import statement for that class with one for
Ccom.amazonaws.xray.proxies.apache.http.HttpClientBuilder.

Instrumenting calls to a PostgreSQL database

® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

The application-pgsql.properties file adds the X-Ray PostgreSQL tracing interceptor to the
data source created in RdsWebConfig. java.

Example application-pgsql.properties - PostgreSQL database instrumentation

spring.datasource.continue-on-error=true

spring.jpa.show-sql=false

spring.jpa.hibernate.ddl-auto=create-drop
spring.datasource.jdbc-interceptors=com.amazonaws.xray.sql.postgres.TracingIntexrceptor
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQL94Dialect

SQL clients 220

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/resources/application-pgsql.properties

AWS X-Ray Developer Guide

® Note
See Configuring Databases with Elastic Beanstalk in the AWS Elastic Beanstalk Developer

Guide for details on how to add a PostgreSQL database to the application environment.

The X-Ray demo page in the xray branch includes a demo that uses the instrumented data source
to generate traces that show information about the SQL queries that it generates. Navigate to the
/#/xxay path in the running application or choose Powered by AWS X-Ray in the navigation bar

to see the demo page.

SQL clients 221

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

AWS X-Ray Developer Guide

Scorekeep

AWS X-Ray integration

This branch is integrated with the AWS X-Ray SDK for Java to record information about
requests from this web app to the Scorekeep APL and calls that the API makes to Amazon
DynamoDB and other downstream services

Trace game sessions

Create users and a session, and then create and play a game of tic-tac-toe with those users.
Each call to Scorekeep is traced with AWS X-Ray, which generates a service map from the
data.

| Trace game sessions |

Trace SQL queries

Simulate game sessions, and store the results in a PostgreSQL Amazon RDS database
attached to the AWS Elastic Beanstalk environment running Scorekeep. This demo uses an
instrumented JDBC data source to send details about the SQL queries to X-Ray.

For more information about Scorekeep’s SQL integration, see the sql branch of this project.

Trace SQL queries

ID Winner Loser

1 Mugur Gheorghita
2 Paula Adorjan

3 Apylog Stela

4 B Parvansa

SQi—ctients 222

AWS X-Ray Developer Guide

Choose Trace SQL queries to simulate game sessions and store the results in the attached
database. Then, choose View traces in AWS X-Ray to see a filtered list of traces that hit the API's /
api/history route.

Choose one of the traces from the list to see the timeline, including the SQL query.

0 1-5Beeebfd-I34chdaddB40de 185223037
Traces » Details
Timeline Raw data
Method Résponsd Duratien Age o
GET 200 16.0 ms 2.6 min (2017-04-13 02:42:37 UTC) 1-58eee50d-334cbdadd840dc 10 85a23037
Name Res. Duration Status @ 'Jlm 2/0ms 4 Gms & lJlrm B.0ms 1ms 'l:'lr-u 1dms 1ems 1ime
i t 1 |
* Scorekaap
ordkaep 200 180 ms I ——
ebdbi@aalTkgs|i75i8 - 1.0 ms

Instrumenting AWS Lambda functions

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

Scorekeep uses two AWS Lambda functions. The first is a Node.js function from the 1ambda branch
that generates random names for new users. When a user creates a session without entering a
name, the application calls a function named random-name with the AWS SDK for Java. The X-
Ray SDK for Java records information about the call to Lambda in a subsegment like any other call
made with an instrumented AWS SDK client.

AWS Lambda functions 223

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

® Note

Running the random-name Lambda function requires the creation of additional resources
outside of the Elastic Beanstalk environment. See the readme for more information and
instructions: AWS Lambda Integration.

The second function, scorekeep-worker, is a Python function that runs independently of the
Scorekeep API. When a game ends, the API writes the session ID and game ID to an SQS queue. The
worker function reads items from the queue, and calls the Scorekeep API to construct complete
records of each game session for storage in Amazon S3.

Scorekeep includes AWS CloudFormation templates and scripts to create both functions.
Because you need to bundle the X-Ray SDK with the function code, the templates create the
functions without any code. When you deploy Scorekeep, a configuration file included in the
.ebextensions folder creates a source bundle that includes the SDK, and updates the function
code and configuration with the AWS Command Line Interface.

Functions

« Random name

+ Worker

Random name

Scorekeep calls the random name function when a user starts a game session without signing in
or specifying a user name. When Lambda processes the call to random-name, it reads the tracing
header, which contains the trace ID and sampling decision written by the X-Ray SDK for Java.

For each sampled request, Lambda runs the X-Ray daemon and writes two segments. The first
segment records information about the call to Lambda that invokes the function. This segment
contains the same information as the subsegment recorded by Scorekeep, but from the Lambda
point of view. The second segment represents the work that the function does.

Lambda passes the function segment to the X-Ray SDK through the function context. When you
instrument a Lambda function, you don't use the SDK to create a segment for incoming requests.

Lambda provides the segment, and you use the SDK to instrument clients and write subsegments.

Random name 224

https://github.com/awslabs/eb-java-scorekeep/tree/xray/README.md#aws-lambda-integration

AWS X-Ray

Developer Guide

avg. 629ms

1 t'min

random-name
AWS: Lambda::Function

SNS
AWEIENS

avg. 688ms
avg. 443ms

1 timin
9 t'min

random-name

Scorekee
AWS: Lambdsa P

AWS: ElasticBeanstalk:: Environment

The random-name function is implemented in Node.js. It uses the SDK for JavaScript in

Node.js to send notifications with Amazon SNS, and the X-Ray SDK for Node.js to instrument
the AWS SDK client. To write annotations, the function creates a custom subsegment with
AWSXRay.captureFunc, and writes annotations in the instrumented function. In Lambda, you
can't write annotations directly to the function segment, only to a subsegment that you create.

Example function/index. js -- Random name Lambda function

var AWSXRay = require('aws-xray-sdk-core');
var AWS = AWSXRay.captureAWS(require('aws-sdk'));

AWS.config.update({region: process.env.AWS_REGION});
var Chance = require('chance');

var myFunction = function(event, context, callback) {
var sns = new AWS.SNS();
var chance = new Chance();
var userid = event.userid;
var name = chance.first();

AWSXRay.captureFunc('annotations', function(subsegment){

Random name

225

https://github.com/awslabs/eb-java-scorekeep/tree/xray/function/index.js

AWS X-Ray Developer Guide

subsegment.addAnnotation('Name', name);
subsegment.addAnnotation('UserID’', event.userid);

};
// Notify
var params = {
Message: 'Created randon name "' + name + '"" for user "' + userid + '".',
Subject: 'New user: ' + name,
TopicArn: process.env.TOPIC_ARN
i
sns.publish(params, function(err, data) {
if (err) {
console.log(err, err.stack);
callback(err);
}
else {
console.log(data);
callback(null, {"name": name});
}
1)

i

exports.handler = myFunction;

This function is created automatically when you deploy the sample application to Elastic Beanstalk.
The xray branch includes a script to create a blank Lambda function. Configuration files in the
.ebextensions folder build the function package with npm install during deployment, and
then update the Lambda function with the AWS CLI.

Worker

The instrumented worker function is provided in its own branch, xray-worker, as it cannot
run unless you create the worker function and related resources first. See the branch readme for
instructions.

The function is triggered by a bundled Amazon CloudWatch Events event every 5 minutes. When
it runs, the function pulls an item from an Amazon SQS queue that Scorekeep manages. Each
message contains information about a completed game.

The worker pulls the game record and documents from other tables that the game record
references. For example, the game record in DynamoDB includes a list of moves that were executed

Worker 226

https://github.com/awslabs/eb-java-scorekeep/tree/xray-worker/README.md

AWS X-Ray Developer Guide

during the game. The list does not contain the moves themselves, but rather IDs of moves that are
stored in a separate table.

Sessions, and states are stored as references as well. This keeps the entries in the game table from
being too large, but requires additional calls to get all of the information about the game. The
worker dereferences all of these entries and constructs a complete record of the game as a single
document in Amazon S3. When you want to do analytics on the data, you can run queries on it
directly in Amazon S3 with Amazon Athena without running read-heavy data migrations to get
your data out of DynamoDB.

@ @ L4
SCorek
AW Lyna

Soorekeap-workear hitps-VsQs. us-wesk-2

Scorekeep

SCOrekeep-game

VLR B Tabds

The worker function has active tracing enabled in its configuration in AWS Lambda. Unlike the
random name function, the worker does not receive a request from an instrumented application, so
AWS Lambda doesn't receive a tracing header. With active tracing, Lambda creates the trace ID and
makes sampling decisions.

The X-Ray SDK for Python is just a few lines at the top of the function that import the SDK and run
its patch_all function to patch the AWS SDK for Python (Boto) and HT Tclients that it uses to call
Amazon SQS and Amazon S3. When the worker calls the Scorekeep API, the SDK adds the tracing
header to the request to trace calls through the API.

Worker 227

AWS X-Ray Developer Guide

Example _lambda/scorekeep-worker/scorekeep-worker.py -- Worker Lambda function

import os

import boto3

import json

import requests

import time

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

patch_all()
queue_url = os.environ['WORKER_QUEUE']

def lambda_handler(event, context):
Create SQS client
sqs = boto3.client('sqgs')
s3client = boto3.client('s3')

Receive message from SQS queue
response = sqgs.receive_message(
QueueUrl=queue_url,
AttributeNames=[
'SentTimestamp'

1,

MaxNumberOfMessages=1,

MessageAttributeNames=[
'All’

1,

VisibilityTimeout=0,

WaitTimeSeconds=0

Instrumenting startup code

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

Instrumenting startup code 228

https://github.com/awslabs/eb-java-scorekeep/tree/xray-worker/_lambda/scorekeep-worker/scorekeep-worker.py

AWS X-Ray Developer Guide

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Java automatically creates segments for incoming requests. As long as a request
is in scope, you can use instrumented clients and record subsegments without issue. If you try to
use an instrumented client in startup code, though, you'll get a SegmentNotFoundException.

Startup code runs outside of the standard request/response flow of a web application, so you need
to create segments manually to instrument it. Scorekeep shows the instrumentation of startup
code in its WebConfig files. Scorekeep calls an SQL database and Amazon SNS during startup.

avg. 12ms

ebdb@aaw25wdopdogly...

Database: 5QL

- avg. 841ms

Clients

0.1 t'min

Scorekeep-init

AWS:ElasticBeanstalk:: Enviromment

SNS

AWSIENS

The default WebConfig class creates an Amazon SNS subscription for notifications. To provide
a segment for the X-Ray SDK to write to when the Amazon SNS client is used, Scorekeep calls
beginSegment and endSegment on the global recorder.

Instrumenting startup code 229

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/exceptions/SegmentNotFoundException.html

AWS X-Ray Developer Guide

Example src/main/java/scorekeep/WebConfig. java - Instrumented AWS SDK client in

startup code

AWSXRay.beginSegment('"Scorekeep-init");
if (System.getenv("NOTIFICATION_EMAIL") != null){
try { Sns.createSubscription(); }
catch (Exception e) {
logger.warn("Failed to create subscription for email "+
System.getenv("NOTIFICATION_EMAIL"));

}

}
AWSXRay.endSegment();

In RdsWebConfig, which Scorekeep uses when an Amazon RDS database is connected, the
configuration also creates a segment for the SQL client that Hibernate uses when it applies the
database schema during startup.

Example src/main/java/scorekeep/RdsWebConfig. java - Instrumented SQL database
client in startup code

@PostConstruct
public void schemaExport() {
EntityManagerFactoryImpl entityManagerFactoryImpl = (EntityManagerFactoryImpl)
localContainerEntityManagerFactoryBean.getNativeEntityManagerFactory();
SessionFactoryImplementor sessionFactoryImplementor =
entityManagerFactoryImpl.getSessionFactory();
StandardServiceRegistry standardServiceRegistry =
sessionFactoryImplementor.getSessionFactoryOptions().getServiceRegistry();
MetadataSources metadataSources = new MetadataSources(new
BootstrapServiceRegistryBuilder().build());
metadataSources.addAnnotatedClass(GameHistory.class);
MetadataImplementor metadataImplementor = (MetadataImplementor)
metadataSources.buildMetadata(standardServiceRegistry);
SchemaExport schemaExport = new SchemaExport(standardServiceRegistry,
metadatalmplementor);

AWSXRay.beginSegment("Scorekeep-init");
schemaExport.create(true, true);
AWSXRay.endSegment();

}

Instrumenting startup code 230

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java#L49
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java#L83

AWS X-Ray Developer Guide

SchemaExport runs automatically and uses an SQL client. Since the client is instrumented,
Scorekeep must override the default implementation and provide a segment for the SDK to use
when the client is invoked.

Instrumenting scripts

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support

for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can also instrument code that isn't part of your application. When the X-Ray daemon is
running, it will relay any segments that it receives to X-Ray, even if they are not generated by the
X-Ray SDK. Scorekeep uses its own scripts to instrument the build that compiles the application
during deployment.

Example bin/build. sh - Instrumented build script

SEGMENT=$(python bin/xray_start.py)
gradle build --quiet --stacktrace &> /var/log/gradle.log; GRADLE_RETURN=$?
if ((GRADLE_RETURN != @)); then
echo "Gradle failed with exit status $GRADLE_RETURN" >&2
python bin/xray_error.py "$SEGMENT" "$(cat /var/log/gradle.log)"
exit 1
fi
python bin/xray_success.py "$SEGMENT"

xray_start.py, xray_error.pyand xray_success.py are simple Python scripts that
construct segment objects, convert them to JSON documents, and send them to the daemon over
UDP. If the Gradle build fails, you can find the error message by clicking on the scorekeep-build
node in the X-Ray console trace map.

Instrumenting scripts 231

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/build.sh
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_start.py
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_error.py
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_success.py

AWS X-Ray

Clients

Developer Guide

avg. 14.6s

0.07 t/min

Scorekeep-build

Traces » Details

Timeline Raw data
Method Response Duration Age ID
-- -- 14.6 sec 4.5 min (2017-09-14 01:25:01 UTC) 1-59b9dabd-ab8caz2666217b31a03eff86d
Name Res. Duration Status 0.ll|m5 Z.iIJs IUIJS B.?s 8.1)5 1l|]5 1?5 1.||15 1?5
¥ Scorekeep-build
Scorekeep-build 1d46sec A |
Segment - Scorekeep-build X
Overview Resources Annotations Metadata Exceptions
Working directory Mvarfapp/current
Paths Mvarfapp/current/src/main/javalscorekeep/
Cause

Ivarfappfstaging/src/main/javalscorekeep/RdsWebConfig java:89: error. cannot find symbol

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder standard() withPlugininew EC2Plugin{)).withPlugin{new ElasticBeanstalkPlugin());

symbaol: class ElasticBeanstalkPlugin

location: class RdsWebConfig
1 error

FAILURE: Build failed with an exception.

n

Instrumenting scripts

232

AWS X-Ray Developer Guide

Instrumenting a web app client

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

In the xray-cognito branch, Scorekeep uses Amazon Cognito to enable users to create an

account and sign in with it to retrieve their user information from an Amazon Cognito user pool.
When a user signs in, Scorekeep uses an Amazon Cognito identity pool to get temporary AWS
credentials for use with the AWS SDK for JavaScript.

The identity pool is configured to let signed-in users write trace data to AWS X-Ray. The web app
uses these credentials to record the signed-in user's ID, the browser path, and the client's view of
calls to the Scorekeep API.

Most of the work is done in a service class named xray. This service class provides methods
for generating the required identifiers, creating in-progress segments, finalizing segments, and
sending segment documents to the X-Ray API.

Example public/xray. js — Record and upload segments

service.beginSegment = function() {
var segment = {};
var traceld = 'l-' + service.getHexTime() + '-' + service.getHexId(24);

var id = service.getHexId(16);
var startTime = service.getEpochTime();

segment.trace_id = traceld;
segment.id = id;
segment.start_time = startTime;
segment.name = 'Scorekeep-client';
segment.in_progress = true;

Instrumenting web clients 233

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito
https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito/public/app/xray.js

AWS X-Ray Developer Guide

segment.user = sessionStorage['userid'];
segment.http = {
request: {
url: window.location.href
}
i

var documents = [];

documents[@] = JSON.stringify(segment);
service.putDocuments(documents);

return segment;

service.endSegment = function(segment) {
var endTime = service.getEpochTime();
segment.end_time = endTime;
segment.in_progress = false;
var documents = [];
documents[@] = JSON.stringify(segment);
service.putDocuments(documents);

sexrvice.putDocuments = function(documents) {
var xray = new AWS.XRay();
var params = {
TraceSegmentDocuments: documents
};
xray.putTraceSegments(params, function(err, data) {
if (err) {
console.log(err, err.stack);
} else {
console.log(data);
}
1)

These methods are called in header and transformResponse functions in the resource services
that the web app uses to call the Scorekeep API. To include the client segment in the same trace
as the segment that the API generates, the web app must include the trace ID and segment ID in
a tracing header (X-Amzn-Trace-1d) that the X-Ray SDK can read. When the instrumented Java
application receives a request with this header, the X-Ray SDK for Java uses the same trace ID and
makes the segment from the web app client the parent of its segment.

Instrumenting web clients 234

AWS X-Ray Developer Guide

Example public/app/services. js — Recording segments for angular resource calls and
writing tracing headers

var module = angular.module('scorekeep');
module.factory('SessionService', function($resource, api, XRay) {
return $resource(api + 'session/:id', { id: 'e@_id' }, {
segment: {3},
get: {
method: 'GET',
headers: {
'X-Amzn-Trace-Id': function(config) {
segment = XRay.beginSegment();
return XRay.getTraceHeader(segment);
}
},
transformResponse: function(data) {
XRay.endSegment(segment);
return angular.fromJson(data);
},
1,

The resulting trace map includes a node for the web app client.

Instrumenting web clients 235

https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito/public/app/services.js

AWS X-Ray Developer Guide

o avg. 38ms

& t'min

Scorekeep-client

avyg. 46ms
> 22 timin

Scorekeep

AWS: ElasticBeanstalk: Environmernt

avg. 717ms

12 t/min

avg. 6.43s

11 timin
SNS
AWS:SNE

random-name
AwWSs:Lambada

random-name

»

Traces that include segments from the web app show the URL that the user sees in the browser

(paths starting with /#/). Without client instrumentation, you only get the URL of the API resource
that the web app calls (paths starting with /api/).

Trace overview

Group by: | URL -
URL v Avg response time -
hitp://scorekeep.elasticheanstalk. comi# 86.2 ms
http:/iscorekeep.elastichbeanstalk. com/#/session/40RFTOBXATHASETD 8.5 ms
hitp://scorekeep.elasticheanstalk. comi#/game/4ORPTOBS/AI4SAFFD/ATHASETD 255 ms

Instrumenting web clients 236

AWS X-Ray Developer Guide

Using instrumented clients in worker threads

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Scorekeep uses a worker thread to publish a notification to Amazon SNS when a user wins a game.
Publishing the notification takes longer than the rest of the request operations combined, and
doesn't affect the client or user. Therefore, performing the task asynchronously is a good way to
improve response time.

However, the X-Ray SDK for Java doesn't know which segment was active when the thread is
created. As a result, when you try to use the instrumented AWS SDK for Java client within the
thread, it throws a SegmentNotFoundException, crashing the thread.

Example Web-1.error.log

Exception in thread "Thread-2" com.amazonaws.xray.exceptions.SegmentNotFoundException:
Failed to begin subsegment named 'AmazonSNS': segment cannot be found.
at sun.reflect.NativeConstructorAccessorImpl.newInstance@(Native Method)
at
sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
at
sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.ja

To fix this, the application uses GetTraceEntity to get a reference to the segment in the main
thread, and Entity.run() to safely run the worker thread code with access to the segment's
context.

Example src/main/java/scorekeep/MoveFactory. java — Passing trace context to a worker
thread

import com.amazonaws.xray.AWSXRay;

Worker threads 237

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveFactory.java#L70
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray

Developer Guide

import
import
import
import

com.amazonaws.xray.AWSXRayRecorder;
com.amazonaws.xray.entities.Entity;

com.amazonaws.xray.entities.Segment;
com.amazonaws.xray.entities.Subsegment;

Entity segment = recorder.getTraceEntity();
Thread comm = new Thread() {
public void run() {
segment.run(() -> {
Subsegment subsegment = AWSXRay.beginSubsegment("## Send notification");
Sns.sendNotification("Scorekeep game completed", "Winner: " + userId);
AWSXRay.endSubsegment();

Because the request is now resolved before the call to Amazon SNS, the application creates a
separate subsegment for the thread. This prevents the X-Ray SDK from closing the segment before
it records the response from Amazon SNS. If no subsegment is open when Scorekeep resolved the

request, the response from Amazon SNS could be lost.
Name Res. Duration Status U.Dlms ZD:IIS ﬂﬂ:ns BUTns sDIIIIs 10E|rms 12|Jlms ‘|-lﬂlms ‘Hsfrms ﬂwlms
¥ Scorekeep AWS::ElasticBeanstalk:-Environment
Scorekeep 200 I O T scorekeep.elastichea

DynamoDB 200 Bl Getitem: scorekeep-game

DynamoDB 200 I Getitemn: scorekeep-state

DynamoDB 200 . Getltem: scorekeep-game

Send notiicaton g —_—]
SNS 200 Publish

GameModel saveGame _ =
DynamoDB 200 Gelltem: scorekeep-session
DynameoDB 200 Updateltem: scorekeep-game

DynamoDB 200 Bl Updateltem: scorekeep-game

DynamoDB 200 B Getitem: scorekeep-game

GameModel saveGame]
DynamoDB 200 Getltem: scorekeep-session
DynamoDB 200 Updateltem: scorekeep-game

DynamoDB 200 - Updateltem: scorekeep-game

DynameDB 200 B Getitem: scorekeep-session

DynamoDB 200 B Getitem: scorekeep-game

DynamoDB 200 B Updateltem: scorekeep-move

DynamoDB 200 Bl Getitem: scorekeep-session

DynamoDB 200 B Getitem: scorekeep-game

DynamoDB 200 - Updateltem: scorekeep-state

See Passing segment context between threads in a multithreaded application for more information

about multithreading.

Worker thre

ads 238

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

AWS X-Ray daemon

® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support

for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

® Note

You can now use the CloudWatch agent to collect metrics, logs and traces from Amazon
EC2 instances and on-premise servers. CloudWatch agent version 1.300025.0 and later can
collect traces from OpenTelemetry or X-Ray client SDKs, and send them to X-Ray. Using the
CloudWatch agent instead of the AWS Distro for OpenTelemetry (ADOT) Collector or X-Ray
daemon to collect traces can help you reduce the number of agents that you manage. See
the CloudWatch agent topic in the CloudWatch User Guide for more information.

The AWS X-Ray daemon is a software application that listens for traffic on UDP port 2000, gathers
raw segment data, and relays it to the AWS X-Ray API. The daemon works in conjunction with the
AWS X-Ray SDKs and must be running so that data sent by the SDKs can reach the X-Ray service.
The X-Ray daemon is an open source project. You can follow the project and submit issues and pull
requests on GitHub: github.com/aws/aws-xray-daemon

On AWS Lambda and AWS Elastic Beanstalk, use those services' integration with X-Ray to run the
daemon. Lambda runs the daemon automatically any time a function is invoked for a sampled
request. On Elastic Beanstalk, use the XRayEnabled configuration option to run the daemon on
the instances in your environment. For more information, see

To run the X-Ray daemon locally, on-premises, or on other AWS services, download it, run it, and
then give it permission to upload segment documents to X-Ray.

239

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://github.com/aws/aws-xray-daemon

AWS X-Ray Developer Guide

Downloading the daemon

You can download the daemon from Amazon S3, Amazon ECR, or Docker Hub, and then run it

locally, or install it on an Amazon EC2 instance on launch.

Amazon S3

X-Ray daemon installers and executables

Linux (executable) — aws-xray-daemon-linux-3.x.zip (sig)

Linux (RPM installer) — aws-xray-daemon-3.x.rpm

Linux (DEB installer) — aws-xray-daemon-3.x.deb

Linux (ARM64, executable) — aws-xray-daemon-linux-arm64-3.x.zip (sig)

Linux (ARM64, RPM installer) - aws-xray-daemon-arm64-3.x.rpm

Linux (ARM64, DEB installer) — aws-xray-daemon-arm64-3.x.deb

OS X (executable) — aws-xray-daemon-macos-3.x.zip (sig)

Windows (executable) — aws-xray-daemon-windows-process-3.x.zip (sig)

Windows (service) — aws-xray-daemon-windows-service-3.x.zip (sig)

These links always point to the latest 3.x release of the daemon. To download a specific release,
do the following:

If you want to download a release prior to version 3.3.0, replace 3. x with the version
number. For example, 2.1.0. Prior to version 3.3.0, the only available architecture is arm64.
For example, 2.1.0 and arm64.

If you want to download a release after version 3.3.0, replace 3. x with the version number
and arch with the architecture type.

X-Ray assets are replicated to buckets in every supported region. To use the bucket closest to

you or your AWS resources, replace the region in the above links with your region.

https://s3.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-daemon/aws-xray-
daemon-3.x.rpm

Downloading the daemon 240

https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.rpm
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.deb
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-arm64-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-arm64-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-arm64-3.x.rpm
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-arm64-3.x.deb
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-macos-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-macos-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-process-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-process-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-service-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-service-3.x.zip.sig

AWS X-Ray Developer Guide

Amazon ECR

As of version 3.2.0 the daemon can be found on Amazon ECR. Before pulling an image you
should authenticate your docker client to the Amazon ECR public registry.

Pull the latest released 3.x version tag by running the following command:

docker pull public.ecr.aws/xray/aws-xray-daemon:3.x

Prior or alpha releases can be downloaded by replacing 3. x with alpha or a specific version
number. It is not recommended to use a daemon image with an alpha tag in a production
environment.

Docker Hub

The daemon can be found on Docker Hub. To download the latest released 3.x version, run the
following command:

docker pull amazon/aws-xray-daemon:3.x

Prior releases of the daemon can be released by replacing 3. x with the desired version.

Verifying the daemon archive's signature

GPG signature files are included for daemon assets compressed in ZIP archives. The public key is
here: aws-xray.gpg.

You can use the public key to verify that the daemon's ZIP archive is original and unmodified. First,
import the public key with GnuPG.

To import the public key

1. Download the public key.

$ BUCKETURL=https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2
$ wget $BUCKETURL/xray-daemon/aws-xray.gpg

2. Import the public key into your keyring.

$ gpg --import aws-xray.gpg

Verifying the daemon archive's signature 241

https://gallery.ecr.aws/xray/aws-xray-daemon
https://docs.aws.amazon.com/AmazonECR/latest/public/public-registries.html#public-registry-auth
https://hub.docker.com/r/amazon/aws-xray-daemon
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray.gpg
https://gnupg.org/index.html

AWS X-Ray Developer Guide

gpg: /Users/me/.gnupg/trustdb.gpg: trustdb created

gpg: key 7BFEQ36BFE6157D3: public key "AWS X-Ray <aws-xray@amazon.com>" imported
gpg: Total number processed: 1

gpg: imported: 1

Use the imported key to verify the signature of the daemon's ZIP archive.
To verify an archive's signature

1. Download the archive and signature file.

$ BUCKETURL=https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2
$ wget $BUCKETURL/xray-daemon/aws-xray-daemon-linux-3.x.zip
$ wget $BUCKETURL/xray-daemon/aws-xray-daemon-linux-3.x.zip.sig

2. Rungpg --verify to verify the signature.

$ gpg --verify aws-xray-daemon-linux-3.x.zip.sig aws-xray-daemon-linux-3.x.zip
gpg: Signature made Wed 19 Apr 2017 05:06:31 AM UTC using RSA key ID FE6157D3
gpg: Good signature from "AWS X-Ray <aws-xray@amazon.com>"

gpg: WARNING: This key is not certified with a trusted signature!

gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: EA6D 9271 FBF3 6990 277F 4B87 7BFE ©36B FE61 57D3

Note the warning about trust. A key is only trusted if you or someone you trust has signed it. This
does not mean that the signature is invalid, only that you have not verified the public key.

Running the daemon

Run the daemon locally from the command line. Use the -0 option to run in local mode, and -n to
set the region.

~/Downloads$./xray -o -n us-east-2

For detailed platform-specific instructions, see the following topics:

o Linux (local) - Running the X-Ray daemon on Linux

« Windows (local) — Running the X-Ray daemon on Windows

Running the daemon 242

AWS X-Ray Developer Guide

« Elastic Beanstalk — Running the X-Ray daemon on AWS Elastic Beanstalk

« Amazon EC2 - Running the X-Ray daemon on Amazon EC2

« Amazon ECS - Running the X-Ray daemon on Amazon ECS

You can customize the daemon's behavior further by using command line options or a
configuration file. See Configuring the AWS X-Ray daemon for details.

Giving the daemon permission to send data to X-Ray

The X-Ray daemon uses the AWS SDK to upload trace data to X-Ray, and it needs AWS credentials
with permission to do that.

On Amazon EC2, the daemon uses the instance's instance profile role automatically. For
information about credentials required to run the daemon locally, see running your application

locally.

If you specify credentials in more than one location (credentials file, instance profile, or
environment variables), the SDK provider chain determines which credentials are used. For more
information about providing credentials to the SDK, see Specifying Credentials in the AWS SDK for

Go Developer Guide.

The IAM role or user that the daemon's credentials belong to must have permission to write data to
the service on your behalf.

» To use the daemon on Amazon EC2, create a new instance profile role or add the managed policy
to an existing one.

» To use the daemon on Elastic Beanstalk, add the managed policy to the Elastic Beanstalk default
instance profile role.

« To run the daemon locally, see running your application locally.

For more information, see Identity and access management for AWS X-Ray.

X-Ray daemon logs

The daemon outputs information about its current configuration and segments that it sends to
AWS X-Ray.

Giving the daemon permission to send data to X-Ray 243

https://aws.github.io/aws-sdk-go-v2/docs/configuring-sdk/#specifying-credentials

AWS X-Ray Developer Guide

2016-11-24T06:07:06Z [Info] Initializing AWS X-Ray daemon 2.1.0
2016-11-24T06:07:06Z [Info] Using memory limit of 49 MB

2016-11-24T06:07:06Z [Info] 313 segment buffers allocated

2016-11-24T06:07:08Z [Info] Successfully sent batch of 1 segments (0.123 seconds)
2016-11-24T06:07:09Z [Info] Successfully sent batch of 1 segments (0.006 seconds)

By default, the daemon outputs logs to STDOUT. If you run the daemon in the background, use the
--log-file command line option or a configuration file to set the log file path. You can also set
the log level and disable log rotation. See Configuring the AWS X-Ray daemon for instructions.

On Elastic Beanstalk, the platform sets the location of the daemon logs. See Running the X-Ray

daemon on AWS Elastic Beanstalk for details.

Configuring the AWS X-Ray daemon

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

You can use command line options or a configuration file to customize the X-Ray daemon's
behavior. Most options are available using both methods, but some are only available in
configuration files and some only at the command line.

To get started, the only option that you need to know is -n or --region, which you use to set the
region that the daemon uses to send trace data to X-Ray.

~/xray-daemon$./xray -n us-east-2

If you are running the daemon locally, that is, not on Amazon EC2, you can add the -o option to
skip checking for instance profile credentials so the daemon will become ready more quickly.

~/xray-daemon$./xray -o -n us-east-2

Configuration 244

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

The rest of the command line options let you configure logging, listen on a different port, limit the
amount of memory that the daemon can use, or assume a role to send trace data to a different
account.

You can pass a configuration file to the daemon to access advanced configuration options and do
things like limit the number of concurrent calls to X-Ray, disable log rotation, and send traffic to a

proxy.

Sections

» Supported environment variables

« Using command line options

» Using a configuration file

Supported environment variables

The X-Ray daemon supports the following environment variables:

o AWS_REGION - Specifies the AWS Region of the X-Ray service endpoint.

o HTTPS_PROXY - Specifies a proxy address for the daemon to upload segments through. This can
be either the DNS domain names or IP addresses and port numbers used by your proxy servers.

Using command line options

Pass these options to the daemon when you run it locally or with a user data script.
Command Line Options

e -b, --bind - Listen for segment documents on a different UDP port.

--bind "127.0.0.1:3000"

Default - 2000.
e -t, --bind-tcp - Listen for calls to the X-Ray service on a different TCP port.

-bind-tcp "127.0.0.1:3000"

Default - 2000.

Supported environment variables 245

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration-region

AWS X-Ray Developer Guide

-c, --config - Load a configuration file from the specified path.

--config "/home/ec2-user/xray-daemon.yaml"

-f, --log-file - Output logs to the specified file path.

--log-file "/var/log/xray-daemon.log"

-1, --log-level - Log level, from most verbose to least: dev, debug, info, warn, error, prod.

--log-level warn

Default - prod

-m, --buffer-memory - Change the amount of memory in MB that buffers can use (minimum
3).

--buffer-memory 50

Default — 1% of available memory.
-0, --local-mode — Don't check for EC2 instance metadata.

-1, --role-arn - Assume the specified IAM role to upload segments to a different account.

--role-arn "arn:aws:iam::123456789012:ro0le/xray-cross-account"
-a, --resource-arn - Amazon Resource Name (ARN) of the AWS resource running the
daemon.

-p, --proxy-address - Upload segments to AWS X-Ray through a proxy. The proxy server's
protocol must be specified.

--proxy-address "http://192.0.2.0:3000"

-n, --region - Send segments to X-Ray service in a specific region.
-v, --version - Show AWS X-Ray daemon version.

-h, --help - Show the help screen.

Using command line options 246

AWS X-Ray Developer Guide

Using a configuration file

You can also use a YAML format file to configure the daemon. Pass the configuration file to the
daemon by using the -c option.

~$./xray -c ~/xray-daemon.yaml

Configuration file options
e TotalBufferSizeMB — Maximum buffer size in MB (minimum 3). Choose 0 to use 1% of host
memory.

e Concurrency — Maximum number of concurrent calls to AWS X-Ray to upload segment
documents.

» Region - Send segments to AWS X-Ray service in a specific region.
« Socket - Configure the daemon's binding.
« UDPAddress - Change the port on which the daemon listens.

« TCPAddress - Listen for calls to the X-Ray service on a different TCP port.

« Logging - Configure logging behavior.
« LogRotation - Set to false to disable log rotation.

« LogLevel - Change the log level, from most verbose to least: dev, debug, info or prod,
warn, error, prod. The default is prod, which is equivalent to info.

« LogPath - Output logs to the specified file path.
» LocalMode - Set to true to skip checking for EC2 instance metadata.
» ResourceARN - Amazon Resource Name (ARN) of the AWS resource running the daemon.
» RoleARN - Assume the specified IAM role to upload segments to a different account.
» ProxyAddress - Upload segments to AWS X-Ray through a proxy.

« Endpoint - Change the X-Ray service endpoint to which the daemon sends segment
documents.

« NoVerifySSL - Disable TLS certificate verification.

« Version - Daemon configuration file format version. The file format version is a required field.

Using a configuration file 247

AWS X-Ray Developer Guide

Example Xray-daemon.yaml

This configuration file changes the daemon's listening port to 3000, turns off checks for instance
metadata, sets a role to use for uploading segments, and changes region and logging options.

Socket:
UDPAddress: "127.0.0.1:3000"
TCPAddress: "127.0.0.1:3000"
Region: "us-west-2"
Logging:
LogLevel: "warn"
LogPath: "/var/log/xray-daemon.log"
LocalMode: true
RoleARN: "arn:aws:iam::123456789012:role/xray-cross-account"
Version: 2

Running the X-Ray daemon locally

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support

for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can run the AWS X-Ray daemon locally on Linux, MacOS, Windows, or in a Docker container.
Run the daemon to relay trace data to X-Ray when you are developing and testing your
instrumented application. Download and extract the daemon by using the instructions here.

When running locally, the daemon can read credentials from an AWS SDK credentials file (. aws/
credentials in your user directory) or from environment variables. For more information, see
Giving the daemon permission to send data to X-Ray.

The daemon listens for UDP data on port 2000. You can change the port and other options by
using a configuration file and command line options. For more information, see Configuring the
AWS X-Ray daemon.

Run the daemon locally 248

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Running the X-Ray daemon on Linux

You can run the daemon executable from the command line. Use the -0 option to run in local
mode, and -n to set the region.

~/xray-daemon$./xray -o -n us-east-2
To run the daemon in the background, use &.
~/xray-daemon$./xray -o -n us-east-2 &
Terminate a daemon process running in the background with pkill.

~$ pkill xray

Running the X-Ray daemon in a Docker container

To run the daemon locally in a Docker container, save the following text to a file named
Dockerfile. Download the complete example image on Amazon ECR. See downloading the

daemon for more information.

Example Dockerfile - Amazon Linux

FROM amazonlinux

RUN yum install -y unzip

RUN curl -o daemon.zip https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-linux-3.x.zip

RUN unzip daemon.zip && cp xray /usr/bin/xray

ENTRYPOINT ["/usr/bin/xray", "-t", "0.0.0.0:2000", "-b", "0.0.0.0:2000"]

EXPOSE 2000/udp

EXPOSE 2000/tcp

Build the container image with docker build.
~/xray-daemon$ docker build -t xray-daemon .
Run the image in a container with docker run.

~/xray-daemon$ docker run \

Running the X-Ray daemon on Linux 249

https://gallery.ecr.aws/xray/aws-xray-daemon

AWS X-Ray Developer Guide

--attach STDOUT \

-v ~/.aws/:/root/.aws/:xro \
--net=host \

-e AWS_REGION=us-east-2 \
--name xray-daemon \

-p 2000:2000/udp \
xray-daemon -o

This command uses the following options:

e --attach STDOUT - View output from the daemon in the terminal.

e -v ~/.aws/:/root/.aws/:ro - Give the container read-only access to the . aws directory to
let it read your AWS SDK credentials.

e AWS_REGION=us-east-2 - Set the AWS_REGION environment variable to tell the daemon
which region to use.

e --net=host - Attach the container to the host network. Containers on the host network can
communicate with each other without publishing ports.

e -p 2000:2000/udp — Map UDP port 2000 on your machine to the same port on the container.
This is not required for containers on the same network to communicate, but it does let you send
segments to the daemon from the command line or from an application not running in Docker.

e« --name xray-daemon - Name the container xray-daemon instead of generating a random
name.

« -0 (after the image name) — Append the -o option to the entry point that runs the daemon
within the container. This option tells the daemon to run in local mode to prevent it from trying
to read Amazon EC2 instance metadata.

To stop the daemon, use docker stop. If you make changes to the Dockerfile and build a new
image, you need to delete the existing container before you can create another one with the same
name. Use docker rm to delete the container.

$ docker stop xray-daemon
$ docker rm xray-daemon

Running the X-Ray daemon on Windows

You can run the daemon executable from the command line. Use the -0 option to run in local
mode, and -n to set the region.

Running the X-Ray daemon on Windows 250

AWS X-Ray Developer Guide

> .\xray_windows.exe -0 -n us-east-2

Use a PowerShell script to create and run a service for the daemon.

Example PowerShell script - Windows

if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue){
sc.exe stop AWSXRayDaemon
sc.exe delete AWSXRayDaemon

}

if (Get-Item -path aws-xray-daemon -ErrorAction SilentlyContinue) {
Remove-Item -Recurse -Force aws-xray-daemon

$currentLocation = Get-Location

$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"

$zipPath = "$currentLocation\$zipFileName"

$destPath = "$currentLocation\aws-xray-daemon"

$daemonPath = "$destPath\xray.exe"

$daemonLogPath = "C:\inetpub\wwwroot\xray-daemon.log"

$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-
daemon/aws-xray-daemon-windows-service-3.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

sc.exe create AWSXRayDaemon binPath= "$daemonPath -f $daemonLogPath"
sc.exe start AWSXRayDaemon

Running the X-Ray daemon on OS X

You can run the daemon executable from the command line. Use the -0 option to run in local
mode, and -n to set the region.

~/xray-daemon$./xray_mac -o -n us-east-2
To run the daemon in the background, use &.

~/xray-daemon$./xray_mac -o -n us-east-2 &

Running the X-Ray daemon on OS X 251

AWS X-Ray Developer Guide

Use nohup to prevent the daemon from terminating when the terminal is closed.

~/xray-daemon$ nohup ./xray_mac &

Running the X-Ray daemon on AWS Elastic Beanstalk

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

To relay trace data from your application to AWS X-Ray, you can run the X-Ray daemon on your
Elastic Beanstalk environment's Amazon EC2 instances. For a list of supported platforms, see
Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk Developer Guide.

(® Note

The daemon uses your environment's instance profile for permissions. For instructions
about adding permissions to the Elastic Beanstalk instance profile, see Giving the daemon
permission to send data to X-Ray.

Elastic Beanstalk platforms provide a configuration option that you can set to run the daemon
automatically. You can enable the daemon in a configuration file in your source code or by
choosing an option in the Elastic Beanstalk console. When you enable the configuration option, the
daemon is installed on the instance and runs as a service.

The version included on Elastic Beanstalk platforms might not be the latest version. See the
Supported Platforms topic to find out the version of the daemon that is available for your platform

configuration.

Elastic Beanstalk does not provide the X-Ray daemon on the Multicontainer Docker (Amazon ECS)
platform.

On Elastic Beanstalk 252

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.html

AWS X-Ray Developer Guide

Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon

Use the console to turn on X-Ray integration, or configure it in your application source code with a
configuration file.

To enable the X-Ray daemon in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console.

Navigate to the management console for your environment.

Choose Configuration.
Choose Software Settings.

For X-Ray daemon, choose Enabled.

o v A WD

Choose Apply.

You can include a configuration file in your source code to make your configuration portable
between environments.

Example .ebextensions/xray-daemon.config

option_settings:
aws:elasticbeanstalk:xray:
XRayEnabled: true

Elastic Beanstalk passes a configuration file to the daemon and outputs logs to a standard location.

On Windows Server Platforms

« Configuration file - C:\Program Files\Amazon\XRay\cfg.yaml
e Logs-c:\Program Files\Amazon\XRay\logs\xray-service.log

On Linux Platforms

» Configuration file - /etc/amazon/xray/cfg.yaml
e Logs-/var/log/xray/xray.log

Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon 253

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

Elastic Beanstalk provides tools for pulling instance logs from the AWS Management Console or
command line. You can tell Elastic Beanstalk to include the X-Ray daemon logs by adding a task
with a configuration file.

Example .ebextensions/xray-logs.config - Linux

files:
"/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
mode: "0Q00644"
owner: root
group: root
content: |
/var/log/xray/xray.log

Example .ebextensions/xray-logs.config - Windows server

files:
"c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-daemon.conf" :
mode: "0Q00644"
owner: root
group: root
content: |
c:\Progam Files\Amazon\XRay\logs\xray-service.log

See Viewing Logs from Your Elastic Beanstalk Environment's Amazon EC2 Instances in the AWS
Elastic Beanstalk Developer Guide for more information.

Downloading and running the X-Ray daemon manually (advanced)

If the X-Ray daemon isn't available for your platform configuration, you can download it from
Amazon S3 and run it with a configuration file.

Use an Elastic Beanstalk configuration file to download and run the daemon.

Example .ebextensions/xray.config - Linux

commands:
Q1-stop-tracing:
command: yum remove -y Xray
ignoreErrors: true
@2-copy-tracing:

Downloading and running the X-Ray daemon manually (advanced) 254

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.logging.html

AWS X-Ray Developer Guide

command: curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-
daemon/aws-xray-daemon-3.x.rpm -o /home/ec2-user/xray.rpm
03-start-tracing:
command: yum install -y /home/ec2-user/xray.rpm

files:
"/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf"
mode: "0Q00644"
owner: root
group: root
content: |
/var/log/xray/xray.log
"/etc/amazon/xray/cfg.yaml"
mode: "0Q00644"
owner: root
group: root
content: |
Logging:
LogLevel: "debug"
Version: 2

Example .ebextensions/xray.config - Windows server

container_commands:
01-execute-config-script:
command: Powershell.exe -ExecutionPolicy Bypass -File c:\\temp\\installDaemon.psl
waitAfterCompletion: 0

files:
"c:/temp/installDaemon.psl":
content: |
if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
sc.exe stop AWSXRayDaemon
sc.exe delete AWSXRayDaemon

$targetLocation = "C:\Program Files\Amazon\XRay"
if ((Test-Path $targetLocation) -eq 0) {
mkdir $targetLocation

$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
$zipPath = "$targetLocation\$zipFileName"

Downloading and running the X-Ray daemon manually (advanced) 255

AWS X-Ray Developer Guide

$destPath = "$targetLocation\aws-xray-daemon"
if ((Test-Path $destPath) -eq 1) {
Remove-Item -Recurse -Force $destPath

$daemonPath = "$destPath\xray.exe"

$daemonLogPath = "$targetlLocation\xray-daemon.log"

$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/
xray-daemon/aws-xray-daemon-windows-service-3.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
"*"$daemonPath'" -f '"$daemonLogPath ' ""
sc.exe start AWSXRayDaemon
encoding: plain
"c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-daemon.conf" :
mode: "Q00644"
owner: root
group: root
content: |
C:\Program Files\Amazon\XRay\xray-daemon.log

These examples also add the daemon's log file to the Elastic Beanstalk tail logs task, so that it's
included when you request logs with the console or Elastic Beanstalk Command Line Interface (EB
CLI).

Running the X-Ray daemon on Amazon EC2

(@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to

OpenTelemetry instrumentation .

On Amazon EC2 256

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

You can run the X-Ray daemon on the following operating systems on Amazon EC2:

« Amazon Linux
« Ubuntu
« Windows Server (2012 R2 and newer)

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the daemon permission to send data to X-Ray.

Use a user data script to run the daemon automatically when you launch the instance.

Example User data script - Linux

#!/bin/bash

curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-
daemon-3.x.rpm -o /home/ec2-user/xray.rpm

yum install -y /home/ec2-user/xray.rpm

Example User data script - Windows server

<powershell>

if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
sc.exe stop AWSXRayDaemon
sc.exe delete AWSXRayDaemon

$targetLocation = "C:\Program Files\Amazon\XRay"
if ((Test-Path $targetlLocation) -eq 0) {
mkdir $targetLocation

}

$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
$zipPath = "$targetLocation\$zipFileName"

$destPath = "$targetLocation\aws-xray-daemon"

if ((Test-Path $destPath) -eq 1) {
Remove-Item -Recurse -Force $destPath

$daemonPath = "$destPath\xray.exe"

$daemonLogPath = "$targetlLocation\xray-daemon.log"

$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-
daemon/aws-xray-daemon-windows-service-3.x.zip"

On Amazon EC2 257

AWS X-Ray Developer Guide

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
"*"$daemonPath’" -f '"$daemonLogPath ""

sc.exe start AWSXRayDaemon

</powershell>

Running the X-Ray daemon on Amazon ECS

(® Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support

for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

In Amazon ECS, create a Docker image that runs the X-Ray daemon, upload it to a Docker image
repository, and then deploy it to your Amazon ECS cluster. You can use port mappings and network
mode settings in your task definition file to allow your application to communicate with the
daemon container.

Using the official Docker image

X-Ray provides a Docker container image on Amazon ECR that you can deploy alongside your
application. See downloading the daemon for more information.

Example Task definition

{
"name": "xray-daemon",
"image": "amazon/aws-xray-daemon",
"cpu": 32,

On Amazon ECS 258

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://gallery.ecr.aws/xray/aws-xray-daemon

AWS X-Ray Developer Guide

"memoryReservation": 256,
"portMappings" : [

{
"hostPoxt": O,
"containerPort": 2000,
"protocol": "udp"

}

Create and build a Docker image

For custom configuration, you may need to define your own Docker image.

Add managed policies to your task role to grant the daemon permission to upload trace data to X-
Ray. For more information, see Giving the daemon permission to send data to X-Ray.

Use one of the following Dockerfiles to create an image that runs the daemon.

Example Dockerfile - Amazon Linux

FROM amazonlinux

RUN yum install -y unzip

RUN curl -o daemon.zip https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-linux-3.x.zip

RUN unzip daemon.zip && cp xray /usr/bin/xray

ENTRYPOINT ["/usr/bin/xray", "-t", "0.0.0.0:2000", "-b", "0.0.0.0:2000"]

EXPOSE 2000/udp

EXPOSE 2000/tcp

® Note

Flags -t and -b are required to specify a binding address to listen to the loopback of a
multi-container environment.

Example Dockerfile — Ubuntu

For Debian derivatives, you also need to install certificate authority (CA) certificates to avoid issues
when downloading the installer.

Create and build a Docker image 259

AWS X-Ray Developer Guide

FROM ubuntu:16.04

RUN apt-get update && apt-get install -y --force-yes --no-install-recommends apt-

transport-https curl ca-certificates wget && apt-get clean && apt-get autoremove && rm
-rf /var/lib/apt/lists/*

RUN wget https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-

xray-daemon-3.x.deb

RUN dpkg -i aws-xray-daemon-3.x.deb

ENTRYPOINT ["/usr/bin/xray", "--bind=0.0.0.0:2000", "--bind-tcp=0.0.0.0:2000"]

EXPOSE 2000/udp
EXPOSE 2000/tcp

In your task definition, the configuration depends on the networking mode that you use. Bridge
networking is the default and can be used in your default VPC. In a bridge network, set the
AWS_XRAY_DAEMON_ADDRESS environment variable to tell the X-Ray SDK which container-port to
reference and set the host port. For example, you could publish UDP port 2000, and create a link
from your application container to the daemon container.

Example Task definition

{
"name": "xray-daemon",
"image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/xray-daemon",
"cpu": 32,
"memoryReservation": 256,
"portMappings" : [
{
"hostPoxrt": O,
"containexPort": 2000,
"protocol": "udp"
}
]
.
{
"name": "scorekeep-api",
"image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/scorekeep-api",
"cpu": 192,

"memoryReservation": 512,
"environment": [
{ "name" : "AWS_REGION", "value" : "us-east-2" 1},
{ "name" : "NOTIFICATION_TOPIC", "value" : "arn:aws:sns:us-
east-2:123456789012:scorekeep-notifications" },

Create and build a Docker image 260

AWS X-Ray Developer Guide

{ "name" : "AWS_XRAY_DAEMON_ADDRESS", "value" : "xray-daemon:2000" }

1,
"portMappings" : [
{
"hostPort": 5000,
"containerPort": 5000
}
1,
"links": [
"xray-daemon"
]

If you run your cluster in the private subnet of a VPC, you can use the awsvpc network mode

to attach an elastic network interface (ENI) to your containers. This enables you to avoid using
links. Omit the host port in the port mappings, the link, and the AWS_XRAY_DAEMON_ADDRESS
environment variable.

Example VPC task definition

"family": "scorekeep",
"networkMode": "awsvpc",
"containerDefinitions": [

{
"name": "xray-daemon",
"image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/xray-daemon",
"cpu": 32,
"memoryReservation": 256,
"portMappings" : [
{
"containerPort": 2000,
"protocol": "udp"
}
]
I
{
"name": "scorekeep-api",
"image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/scorekeep-api",
"cpu": 192,

"memoryReservation": 512,
"environment": [
{ "name" : "AWS_REGION", "value" : "us-east-2" 1},

Create and build a Docker image 261

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

AWS X-Ray Developer Guide

{ "name" : "NOTIFICATION_TOPIC", "value" : "arn:aws:sns:us-
east-2:123456789012:scorekeep-notifications" }

1,
"portMappings" : [

{

"containerPort": 5000

}

]

Configure command line options in the Amazon ECS console

Command line options override any conflicting values in your image's config file. Command line
options are typically used for local testing, but can also be used for convenience while setting
environment variables, or to control the startup process.

By adding command line options, you are updating the Docker CMD that is passed to the container.
For more information, see the Docker run reference.

To set a command line option

1. Open the Amazon ECS classic console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that contains your task definition.
3. In the navigation pane, choose Task Definitions.
4

On the Task Definitions page, select the box to the left of the task definition to revise and
choose Create new revision.

b

On the Create new revision of Task Definition page, select the container.

6. Inthe ENVIRONMENT section, add your comma-separated list of command line options to the
Command field.

7. Choose Update.

8. Verify the information and choose Create.

The following example shows how to write a comma-separated command line option for the
RoleARN option. The RoleARN option assumes the specified IAM role to upload segments to a
different account.

Configure command line options in the Amazon ECS console 262

https://docs.docker.com/engine/reference/run/#overriding-dockerfile-image-defaults
https://console.aws.amazon.com/ecs/

AWS X-Ray Developer Guide

Example

--role-arn, arn:aws:iam::123456789012:r0le/xray-cross-account

To learn more about the available command line options in X-Ray, see Configuring the AWS X-Ray
Daemon.

Configure command line options in the Amazon ECS console 263

AWS X-Ray Developer Guide

Integrating AWS X-Ray with other AWS services

@ Note

End-of-support notice — On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and

daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Many AWS services provide varying levels of X-Ray integration, including sampling and adding
headers to incoming requests, running the X-Ray daemon, and automatically sending trace data to
X-Ray. Integration with X-Ray can include the following:

Active instrumentation — Samples and instruments incoming requests

Passive instrumentation — Instruments requests that have been sampled by another service

Request tracing — Adds a tracing header to all incoming requests and propagates it downstream

Tooling — Runs the X-Ray daemon to receive segments from the X-Ray SDK

(® Note

The X-Ray SDKs include plugins for additional integration with AWS services. For example,
you can use the X-Ray SDK for Java Elastic Beanstalk plugin to add information about the
Elastic Beanstalk environment that runs your application, including the environment name
and ID.

Here are some examples of AWS services that are integrated with X-Ray:

o AWS Distro for OpenTelemetry (ADOT) — With ADOT, engineers can instrument their applications
once and send correlated metrics and traces to multiple AWS monitoring solutions including

Amazon CloudWatch, AWS X-Ray, Amazon OpenSearch Service, and Amazon Managed Service
for Prometheus.

264

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

AWS Lambda - Active and passive instrumentation of incoming requests on all runtimes. AWS
Lambda adds two nodes to your trace map, one for the AWS Lambda service, and one for the
function. When you enable instrumentation, AWS Lambda also runs the X-Ray daemon on Java
and Node.js runtimes for use with the X-Ray SDK.

Amazon AP| Gateway — Active and passive instrumentation. APl Gateway uses sampling rules to
determine which requests to record, and adds a node for the gateway stage to your service map.

AWS Elastic Beanstalk — Tooling. Elastic Beanstalk includes the X-Ray daemon on the following

platforms:

Java SE - 2.3.0 and later configurations

Tomcat - 2.4.0 and later configurations

Node.js — 3.2.0 and later configurations

Windows Server — All configurations other than Windows Server Core that have been released
after December 9th, 2016

You can use the Elastic Beanstalk console to tell Elastic Beanstalk to run the daemon on these
platforms, or use the XRayEnabled option in the aws:elasticbeanstalk:xray namespace.

Elastic Load Balancing — Request tracing on Application Load Balancers. The Application Load

Balancer adds the trace ID to the request header before sending it to a target group.

Amazon EventBridge - Passive instrumentation. If a service that publishes events to EventBridge

is instrumented with the X-Ray SDK, event targets will receive the tracing header and can
continue to propagate the original trace ID.

Amazon Simple Notification Service — Passive instrumentation. If an Amazon SNS publisher

traces its client with the X-Ray SDK, subscribers can retrieve the tracing header and continue to
propagate the original trace from the publisher with the same trace ID.

Amazon Simple Queue Service — Passive instrumentation. If a service traces requests by using

the X-Ray SDK, Amazon SQS can send the tracing header and continue to propagate the original
trace from the sender to the consumer with a consistent trace ID.

Amazon Bedrock AgentCore — AgentCore supports distributed tracing through X-Ray integration,

allowing you to track requests as they flow through your agent applications. When you enable
observability for your AgentCore resources, you can propagate trace context across service
boundaries and gain visibility into the performance of your Al agents and tools.

Choose from the following topics to explore the full set of integrated AWS services.

Topics

265

AWS X-Ray Developer Guide

« Amazon Bedrock AgentCore and AWS X-Ray

« Amazon Elastic Compute Cloud and AWS X-Ray

o Amazon SNS and AWS X-Ray

o Amazon SQS and AWS X-Ray

o Amazon S3 and AWS X-Ray

o AWS Distro for OpenTelemetry and AWS X-Ray

» Tracking X-Ray encryption configuration changes with AWS Config

o AWS AppSync and AWS X-Ray

« Amazon API Gateway active tracing support for AWS X-Ray

« Amazon EC2 and AWS App Mesh

o AWS App Runner and X-Ray

» Logging X-Ray API calls with AWS CloudTrail

o CloudWatch integration with X-Ray

o AWS Elastic Beanstalk and AWS X-Ray

 Elastic Load Balancing and AWS X-Ray

« Amazon EventBridge and AWS X-Ray

o AWS Lambda and AWS X-Ray

o AWS Step Functions and AWS X-Ray

Amazon Bedrock AgentCore and AWS X-Ray

Amazon Bedrock AgentCore integrates with AWS X-Ray to provide distributed tracing capabilities
for your Al agents and tools. This integration allows you to track requests as they flow through
your agent applications, helping you identify performance bottlenecks and troubleshoot issues.

AgentCore supports distributed tracing through X-Ray integration, allowing you to monitor the
performance of your Al agents and tools. When you enable observability for your AgentCore
resources, you can propagate trace context across service boundaries and gain visibility into
how your agents interact with other AWS services. For more information, see Amazon Bedrock

AgentCore.

AgentCore supports the following X-Ray features:

Amazon Bedrock AgentCore 266

https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/what-is-genesis.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/what-is-genesis.html

AWS X-Ray Developer Guide

» Propagation of trace context to downstream services

« Custom instrumentation using the AWS Distro for OpenTelemetry (ADOT) SDK

Setting up X-Ray with AgentCore

To use X-Ray with AgentCore, you need to enable CloudWatch Transaction Search in your AWS
account. This is a one-time setup that allows AgentCore to send trace data to X-Ray. For more
information, see Enable transaction search .

For more information about setting up observability for AgentCore, see Add observability to your
Amazon Bedrock AgentCore agent or tool .

Using trace headers with AgentCore

AgentCore supports the X-Ray trace header format for distributed tracing. You can include the X-
Amzn-Trace-Id header in your requests to AgentCore to maintain trace context across service
boundaries.

Amazon Elastic Compute Cloud and AWS X-Ray

You can install and run the X-Ray daemon on an Amazon EC2 instance with a user data script. See
Running the X-Ray daemon on Amazon EC2 for instructions.

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the daemon permission to send data to X-Ray.

Amazon SNS and AWS X-Ray

You can use AWS X-Ray with Amazon Simple Notification Service (Amazon SNS) to trace and
analyze requests as they travel through your SNS topics to your SNS-supported subscription
services. Use X-Ray tracing with Amazon SNS to analyze latencies in your messages and their

back-end services, such as how long a request spends in a topic, and how long it takes to deliver
the message to each of the topic’'s subscriptions. Amazon SNS supports X-Ray tracing for both
standard and FIFO topics.

If you publish to an Amazon SNS topic from a service that's already instrumented with X-Ray,
Amazon SNS passes the trace context from publisher to subscribers. In addition, you can turn on

Amazon S3 267

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Transaction-Search.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/observability-configure.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/observability-configure.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html

AWS X-Ray Developer Guide

active tracing to send segment data about your Amazon SNS subscriptions to X-Ray for messages
published from an instrumented SNS client. Turn on active tracing for an Amazon SNS topic by
using the Amazon SNS console, or by using the Amazon SNS API or CLI. See Instrumenting your
application for more information about instrumenting your SNS clients.

Configure Amazon SNS active tracing

You can use the Amazon SNS console or the AWS CLI or SDK to configure Amazon SNS active
tracing.

When you use the Amazon SNS console, Amazon SNS attempts to create the necessary permissions
for SNS to call X-Ray. The attempt can be rejected if you don't have sufficient permissions to
modify X-Ray resource policies. For more information about these permissions, see Identity and
access management in Amazon SNS and Example cases for Amazon SNS access control in the

Amazon Simple Notification Service Developer Guide. For more information about turning on
active tracing using the Amazon SNS console, see Enabling active tracing on an Amazon SNS topic
in the Amazon Simple Notification Service Developer Guide.

When using the AWS CLI or SDK to turn on active tracing, you must manually configure the
permissions using resource-based policies. Use PutResourcePolicy to configure X-Ray with the

necessary resource-based policy to allow Amazon SNS to send traces to X-Ray.
Example Example X-Ray resource-based policy for Amazon SNS active tracing

This example policy document specifies the permissions that Amazon SNS needs to send trace data
to X-Ray:

Version: "2012-10-17",
Statement: [
{

Sid: "SNSAccess",

Effect: Allow,

Principal: {

Service: "sns.amazonaws.com",

.

Action: [
"xray:PutTraceSegments",
"xray:GetSamplingRules",
"xray:GetSamplingTargets"

1,

Configure Amazon SNS active tracing 268

https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/xray/latest/api/API_PutResourcePolicy.html

AWS X-Ray Developer Guide

Resource: "*",
Condition: {
StringEquals: {

"aws:SourceAccount": "account-id"
1,
StringlLike: {
"aws:SourceArn": "arn:partition:sns:region:account-id:topic-name"
}
}
}

Use the CLI to create a resource-based policy that gives Amazon SNS permissions to send trace
data to X-Ray:

aws xray put-resource-policy --policy-name MyResourcePolicy --policy-document
'{ "Version": "2012-10-17", "Statement": [{ "Sid": "SNSAccess", "Effect": "Allow",
"Principal": { "Service": "sns.amazonaws.com" }, "Action": ["xray:PutTraceSegments",
"xray:GetSamplingRules", "xray:GetSamplingTargets"], "Resource": "*",
"Condition": { "StringEquals": { "aws:SourceAccount": "account-id" }, "StringlLike":
{ "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name" } } } 1 }'

To use these examples, replace partition, region, account-1id, and topic-name with your
specific AWS partition, region, account ID, and Amazon SNS topic name. To give all Amazon SNS
topics permission to send trace data to X-Ray, replace the topic name with *.

View Amazon SNS publisher and subscriber traces in the X-Ray console

Use the X-Ray console to view a trace map and trace details that display a connected view of
Amazon SNS publishers and subscribers. When Amazon SNS active tracing is turned on for a topic,
the X-Ray trace map and trace details map displays connected nodes for Amazon SNS publishers,
the Amazon SNS topic, and downstream subscribers:

(%) L)
)

Client O Publisher O myTopic
SNS Topic

O https://s...mySqsQueue
SQS Queue

View Amazon SNS publisher and subscriber traces in the X-Ray console 269

AWS X-Ray Developer Guide

After choosing a trace that spans an Amazon SNS publisher and subscriber, the X-Ray trace details
page displays a trace details map and segment timeline.

Example Example timeline with Amazon SNS publisher and subscriber

This example shows a timeline that includes an Amazon SNS publisher that sends a message to an
Amazon SNS topic, which is processed by an Amazon SQS subscriber.

Segments Timeline info &
0.0ms 50ms 100ms 150ms 200ms 250ms 300ms 350ms
Name Segment status Response code Duration ! ! ! ! ! ! ! !
¥ Publisher
Publisher ®@ oK - 295ms
SNS @ OK 200 263ms Publish: arn:aws:sns:us-east-1:....myTopic

¥ myTopic AWS::SNS::Topic

myTopic ®@oK 200 37ms

SQS ®@ ok 200 36ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue
¥ SQS AWS::SQS::Queue

SQs @ OK 200 36ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySgsQueue
QueueTime ®oK - 36ms

The example timeline above provides details about the Amazon SNS message flow:

« The SNS segment represents the round-trip duration of the Publish API call from the client.

« The myTopic segment represents the latency of the Amazon SNS response to the publish
request.

« The SQS subsegment represents the round-trip time it takes Amazon SNS to publish the
message to an Amazon SQS queue.

« The time between the myTopic segment and the SQS subsegment represents the time that the
message spends in the Amazon SNS system.

Example Example timeline with batched Amazon SNS messages

If multiple Amazon SNS messages are batched within a single trace, the segment timeline displays
segments that represent each message that's processed.

View Amazon SNS publisher and subscriber traces in the X-Ray console 270

AWS X-Ray Developer Guide

Segments Timeline info &
0.0ms 50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms
Name Segment status Response code Duration ! ! ! ! ! ! ! ! !
¥ Publisher
Publisher ®@oK - 356ms
SNS @ oK 200 323ms PublishBatch

¥ myTopic AWS:SNS::Topic

myTopic ®@oK 200 63ms
Message-3 ® oK - 58ms
SQS @ oK 200 62ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue
Message-2 ®@oK - 57ms
SQS ®@ ok 200 51ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue
Message-1 ®@oK - 57ms
SQS @ oK 200 55ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue

¥ SQS AWS:SQS::Queue

SQs @ oK 200 55ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue
QueueTime ®@oK - 55ms

SQS ©@ ok 200 51ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue
QueueTime ®oK - 51ms

SQS @ oK 200 62ms SendMessage: https://sgs.us-east-1.amazonaws.com/.../mySqsQueue
QueueTime ®@oK - 62ms

Amazon SQS and AWS X-Ray

AWS X-Ray integrates with Amazon Simple Queue Service (Amazon SQS) to trace messages that
are passed through an Amazon SQS queue. If a service traces requests by using the X-Ray SDK,
Amazon SQS can send the tracing header and continue to propagate the original trace from the
sender to the consumer with a consistent trace ID. Trace continuity enables users to track, analyze,
and debug throughout downstream services.

AWS X-Ray supports tracing event-driven applications using Amazon SQS and AWS Lambda. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by a downstream Lambda function. Traces from upstream message producers are
automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application. For more information, see tracing event-driven applications.

Amazon SQS 271

AWS X-Ray Developer Guide

o

O ProducerFunction O https://...MySQSQueue
SQS Queue

.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
v

O ConsumerFunction
Lambda Context

Amazon SQS supports the following tracing header instrumentation:

o Default HTTP Header - The X-Ray SDK automatically populates the trace header as an HTTP
header when you call Amazon SQS through the AWS SDK. The default trace header is carried
by X-Amzn-Trace-1Id and corresponds to all messages included in a SendMessage or

SendMessageBatch request. To learn more about the default HTTP header, see Tracing header.

« AWSTraceHeader System Attribute — The AWSTraceHeader is a message system attribute
reserved by Amazon SQS to carry the X-Ray trace header with messages in the queue.
AWSTraceHeader is available for use even when auto-instrumentation through the X-Ray
SDK is not, for example when building a tracing SDK for a new language. When both header
instrumentations are set, the message system attribute overrides the HTTP trace header.

When running on Amazon EC2, Amazon SQS supports processing one message at a time. This
applies when running on an on-premises host, and when using container services, such as AWS
Fargate, Amazon ECS, or AWS App Mesh.

The trace header is excluded from both Amazon SQS message size and message attribute quotas.
Enabling X-Ray tracing will not exceed your Amazon SQS quotas. To learn more about AWS quotas,
see Amazon SQS Quotas.

Send the HTTP trace header

Sender components in Amazon SQS can send the trace header automatically through the
SendMessageBatch or SendMessage call. When AWS SDK clients are instrumented, they can

be automatically tracked through all languages supported through the X-Ray SDK. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

Send the HTTP trace header 272

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageSystemAttributeValue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-limits.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

AWS X-Ray Developer Guide

To learn how to trace AWS SDK calls with your preferred language, see the following topics in the
supported SDKs:

Go - Tracing AWS SDK calls with the X-Ray SDK for Go

Java - Tracing AWS SDK calls with the X-Ray SDK for Java
Node.js — Tracing AWS SDK calls with the X-Ray SDK for Node.js
Python - Tracing AWS SDK calls with the X-Ray SDK for Python
Ruby — Tracing AWS SDK calls with the X-Ray SDK for Ruby
.NET - Tracing AWS SDK calls with the X-Ray SDK for .NET

Retrieve the trace header and recover trace context

If you are using a Lambda downstream consumer, trace context propagation is automatic. To
continue context propagation with other Amazon SQS consumers, you must manually instrument
the handoff to the receiver component.

There are three main steps to recovering the trace context:

« Receive the message from the queue for the AWSTraceHeader attribute by calling the
ReceiveMessage API.

o Retrieve the trace header from the attribute.

» Recover the trace ID from the header. Optionally, add more metrics to the segment.

The following is an example implementation written with the X-Ray SDK for Java.

Example : Retrieve the trace header and recover trace context

// Receive the message from the queue, specifying the "AWSTraceHeader"
ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest()
.withQueueUrl(QUEUE_URL)
.withAttributeNames("AWSTraceHeader");
List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();

if (!messages.isEmpty()) {
Message message = messages.get(Q);

// Retrieve the trace header from the AWSTraceHeader message system attribute
String traceHeaderStr = message.getAttributes().get("AWSTraceHeader");

Retrieve the trace header and recover trace context 273

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

AWS X-Ray Developer Guide

if (traceHeaderStr != null) {
TraceHeader traceHeader = TraceHeader.fromString(traceHeaderStr);

// Recover the trace context from the trace header
Segment segment = AWSXRay.getCurrentSegment();
segment.setTraceld(traceHeader.getRootTraceId());
segment.setParentId(traceHeader.getParentId());

segment.setSampled(traceHeader.getSampled().equals(TraceHeader.SampleDecision.SAMPLED));
}

Amazon S3 and AWS X-Ray

AWS X-Ray integrates with Amazon S3 to trace upstream requests to update your application's

S3 buckets. If a service traces requests by using the X-Ray SDK, Amazon S3 can send the tracing
headers to downstream event subscribers such as AWS Lambda, Amazon SQS, and Amazon SNS. X-
Ray enables trace messages for Amazon S3 event notifications.

You can use the X-Ray trace map to view the connections between Amazon S3 and other services
that your application uses. You can also use the console to view metrics such as average latency
and failure rates. For more information about the X-Ray console, see Use the X-Ray console.

Amazon S3 support