
Developer Guide

AWS X-Ray

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

AWS X-Ray Developer Guide

AWS X-Ray: Developer Guide

Copyright © 2025 Amazon Web Services, Inc. and/or its affiliates. All rights reserved.

Amazon's trademarks and trade dress may not be used in connection with any product or service
that is not Amazon's, in any manner that is likely to cause confusion among customers, or in any
manner that disparages or discredits Amazon. All other trademarks not owned by Amazon are
the property of their respective owners, who may or may not be affiliated with, connected to, or
sponsored by Amazon.

AWS X-Ray Developer Guide

Table of Contents

What is AWS X-Ray? .. 1
Getting started .. 4
Choosing an interface ... 6

Use an SDK .. 8
Use the ADOT SDK ... 9
Use the X-Ray SDK ... 10

Use a console .. 12
Use the Amazon CloudWatch console .. 12
Use the X-Ray console ... 13
Explore the X-Ray console .. 14
Trace map ... 15
Traces ... 22
Filter expressions .. 30
Cross-account tracing ... 42
Tracing event-driven applications ... 46
Histograms ... 49
Insights .. 52
Analytics .. 59
Groups ... 67
Sampling ... 76
Console deep linking .. 83

Use the X-Ray API .. 85
Tutorial .. 87
Sending data .. 92
Getting data ... 97
Configuration ... 111
Sampling ... 118
Segment documents .. 122

Concepts ... 142
Segments ... 142
Subsegments ... 143
Service graph .. 147
Traces .. 148
Sampling .. 149

iii

AWS X-Ray Developer Guide

Tracing header .. 150
Filter expressions ... 151
Groups .. 152
Annotations and metadata .. 152
Errors, faults, and exceptions .. 153

Security .. 154
... 154
Data protection .. 154
Identity and access management ... 157

Audience ... 157
Authenticating with identities ... 158
Managing access using policies ... 161
How AWS X-Ray works with IAM .. 163
Identity-based policy examples ... 170
Troubleshooting .. 181

Logging and monitoring .. 183
Compliance validation .. 184
Resilience ... 185
Infrastructure security ... 185
VPC endpoints .. 186

Creating a VPC endpoint for X-Ray .. 186
Controlling access to your X-Ray VPC endpoint .. 188
Supported Regions ... 189

Cross-service confused deputy prevention ... 190
Sample application .. 192

Scorekeep tutorial .. 194
Prerequisites .. 195
Install the Scorekeep application using CloudFormation ... 196
Generate trace data ... 197
View the trace map in the AWS Management Console .. 198
Configuring Amazon SNS notifications .. 206
Explore the sample application ... 207
Optional: Least privilege policy ... 212
Clean up ... 214
Next steps .. 215

AWS SDK clients ... 216

iv

AWS X-Ray Developer Guide

Custom subsegments .. 217
Annotations and metadata .. 217
HTTP clients .. 219
SQL clients .. 220
AWS Lambda functions .. 223

Random name ... 224
Worker ... 226

Instrumenting startup code ... 228
Instrumenting scripts .. 231
Instrumenting web clients ... 233
Worker threads ... 237

X-Ray daemon .. 239
Downloading the daemon ... 240
Verifying the daemon archive's signature .. 241
Running the daemon .. 242
Giving the daemon permission to send data to X-Ray .. 243
X-Ray daemon logs ... 243
Configuration .. 244

Supported environment variables ... 245
Using command line options ... 245
Using a configuration file ... 247

Run the daemon locally ... 248
Running the X-Ray daemon on Linux .. 249
Running the X-Ray daemon in a Docker container ... 249
Running the X-Ray daemon on Windows .. 250
Running the X-Ray daemon on OS X ... 251

On Elastic Beanstalk .. 252
Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon 253
Downloading and running the X-Ray daemon manually (advanced) 254

On Amazon EC2 ... 256
On Amazon ECS ... 258

Using the official Docker image .. 258
Create and build a Docker image ... 259
Configure command line options in the Amazon ECS console ... 262

Integrating with AWS services .. 264
Amazon Bedrock AgentCore .. 266

v

AWS X-Ray Developer Guide

Amazon S3 ... 267
Amazon S3 ... 267

Amazon EC2 .. 267
Amazon SNS ... 267

Configure Amazon SNS active tracing ... 268
View Amazon SNS publisher and subscriber traces in the X-Ray console 269

Amazon SQS ... 271
Send the HTTP trace header .. 272
Retrieve the trace header and recover trace context .. 273

Amazon S3 .. 274
Configure Amazon S3 event notifications ... 274

AWS Distro for OpenTelemetry .. 275
AWS Distro for OpenTelemetry ... 275

AWS Config ... 276
Creating a Lambda function trigger ... 277
Creating a custom AWS Config rule for x-ray .. 278
Example results ... 279
Amazon SNS notifications .. 280

AWS AppSync ... 280
API Gateway .. 280
App Mesh ... 282
App Runner ... 285
CloudTrail ... 285

X-Ray management events in CloudTrail .. 287
X-Ray data events in CloudTrail .. 287
X-Ray event examples ... 289

CloudWatch ... 291
CloudWatch RUM .. 292
CloudWatch Synthetics .. 293

Elastic Beanstalk .. 302
Elastic Load Balancing .. 303
EventBridge ... 304

Viewing source and targets on the X-Ray service map .. 304
Propagate the trace context to event targets .. 304

Lambda ... 311
Step Functions .. 313

vi

AWS X-Ray Developer Guide

Instrumenting your application .. 315
Instrumenting your application with the AWS Distro for OpenTelemetry 316
Instrumenting your application with AWS X-Ray SDKs ... 317
Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs 318

Transaction Search .. 320
OpenTelemetry Protocol (OTLP) Endpoint .. 321
Working with Go ... 322

AWS Distro for OpenTelemetry Go .. 322
X-Ray SDK for Go .. 323

Requirements ... 325
Reference documentation ... 325
Configuration ... 325
Incoming requests .. 332
AWS SDK clients ... 335
Outgoing HTTP calls .. 337
SQL queries .. 338
Custom subsegments ... 339
Annotations and metadata ... 340

Working with Java ... 343
AWS Distro for OpenTelemetry Java ... 343
X-Ray SDK for Java .. 344

Submodules ... 345
Requirements ... 346
Dependency management .. 347
Auto-instrumentation agent .. 349
Configuration ... 360
Incoming requests .. 371
AWS SDK clients ... 376
Outgoing HTTP calls .. 378
SQL queries .. 381
Custom subsegments ... 384
Annotations and metadata ... 386
Monitoring .. 392
Multithreading ... 396
AOP with Spring ... 397

Working with Node.js .. 403

vii

AWS X-Ray Developer Guide

AWS Distro for OpenTelemetry JavaScript ... 403
X-Ray SDK for Node.js .. 404

Requirements ... 406
Dependency management .. 406
Node.js samples .. 407
Configuration ... 408
Incoming requests .. 413
AWS SDK clients ... 417
Outgoing HTTP calls .. 421
SQL queries .. 423
Custom subsegments ... 425
Annotations and metadata ... 427

Working with Python .. 432
AWS Distro for OpenTelemetry Python .. 432
X-Ray SDK for Python .. 433

Requirements ... 435
Dependency management .. 436
Configuration ... 436
Incoming requests .. 443
Patching libraries .. 450
AWS SDK clients ... 453
Outgoing HTTP calls .. 454
Custom subsegments ... 456
Annotations and metadata ... 458
Instrument serverless applications ... 462

Working with .NET ... 469
AWS Distro for OpenTelemetry .NET ... 469
X-Ray SDK for .NET .. 470

Requirements ... 472
Adding the X-Ray SDK for .NET to your application ... 472
Dependency management .. 472
Configuration ... 474
Incoming requests .. 481
AWS SDK clients ... 485
Outgoing HTTP calls .. 488
SQL queries .. 490

viii

AWS X-Ray Developer Guide

Custom subsegments ... 493
Annotations and metadata ... 495

Working with Ruby .. 499
AWS Distro for OpenTelemetry Ruby .. 499
X-Ray SDK for Ruby .. 500

Requirements ... 501
Configuration ... 502
Incoming requests .. 508
Patching libraries .. 512
AWS SDK clients ... 513
Custom subsegments ... 515
Annotations and metadata ... 516

X-Ray SDK and daemon end of support timeline ... 520
Migrating from X-Ray instrumentation to OpenTelemetry instrumentation 522

Understanding OpenTelemetry ... 523
OpenTelemetry support in AWS ... 523

Understanding OpenTelemetry concepts for migration .. 524
Comparing features .. 525
Setting up and configuring tracing .. 526
Detecting resources in your environment ... 527
Managing sampling strategies ... 528
Managing trace context .. 528
Propagating trace context .. 529
Using library instrumentation .. 529
Exporting traces .. 530
Processing and forwarding traces ... 530
Span processing (OpenTelemetry-specific concept) .. 531
Baggage (OpenTelemetry-soecific concept) .. 531

Migration overview .. 531
Recommendations for new and existing applications .. 532
Tracing setup changes ... 533
Library instrumentation changes .. 533
Lambda environment instrumentation changes .. 533
Manually creating trace data ... 534

Migrating from X-Ray Daemon to AWS CloudWatch agent or OpenTelemetry collector 535
Migrating on Amazon EC2 or on-premises servers ... 535

ix

AWS X-Ray Developer Guide

Migrating on Amazon ECS .. 539
Migrating on Elastic Beanstalk .. 543

Migrating to OpenTelemetry Java ... 544
Zero code automatic instrumentation solution .. 545
Manual instrumentation solutions with the SDK ... 545
Tracing incoming requests (spring framework instrumentation) .. 548
AWS SDK v2 instrumentation .. 549
Instrumenting outgoing HTTP calls .. 551
Instrumentation support for other libraries ... 552
Manually creating trace data ... 552
Lambda instrumentation .. 555

Migrate to OpenTelemetry Go .. 561
Manual instrumentation with the SDK .. 561
Tracing incoming requests (HTTP handler instrumentation) ... 563
AWS SDK for Go v2 instrumentation ... 564
Instrumenting outgoing HTTP calls .. 565
Instrumentation support for other libraries ... 566
Manually creating trace data ... 567
Lambda manual instrumentation .. 568

Migrate to OpenTelemetry Node.js .. 575
Zero code automatic instrumentation solutions .. 575
Manual instrumentation solutions .. 576
Tracing incoming requests .. 579
AWS SDK JavaScript V3 instrumentation .. 564
Instrumenting outgoing HTTP calls .. 582
Instrumentation support for other libraries ... 583
Manually creating trace data ... 567
Lambda instrumentation .. 568

Migrate to OpenTelemetry .NET ... 587
Zero code automatic instrumentation solutions .. 587
Manual instrumentation solutions with the SDK ... 588
Manually creating trace data ... 591
Tracing incoming requests (ASP.NET and ASP.NET core instrumentation) 594
AWS SDK instrumentation .. 595
Instrumenting outgoing HTTP calls .. 596
Instrumentation support for other libraries ... 597

x

AWS X-Ray Developer Guide

Lambda instrumentation .. 568
Migrate to OpenTelemetry Python .. 601

Zero code automatic instrumentation solutions .. 602
Manually instrument your applications ... 602
Tracing setup initialization ... 603
Tracing incoming requests .. 606
AWS SDK instrumentation .. 607
Instrumenting outgoing HTTP calls through requests ... 609
Instrumentation support for other libraries ... 610
Manually creating trace data ... 610
Lambda instrumentation .. 612

Migrate to OpenTelemetry Ruby .. 613
Manually instrument your solutions with the SDK .. 614
Tracing incoming requests (Rails instrumentation) ... 616
AWS SDK instrumentation .. 617
Instrumenting outgoing HTTP calls .. 618
Instrumentation support for other libraries ... 619
Manually creating trace data ... 619
Lambda manual instrumentation .. 622

Creating X-Ray resources with CloudFormation .. 625
X-Ray and AWS CloudFormation templates ... 625
Learn more about AWS CloudFormation .. 625

Tagging ... 626
Tag restrictions ... 627
Managing tags in the console ... 627

Add tags to a new group (console) .. 628
Add tags to a new sampling rule (console) .. 628
Edit or delete tags for a group (console) .. 629
Edit or delete tags for a sampling rule (console) .. 629

Managing tags in the AWS CLI ... 629
Add tags to a new X-Ray group or sampling rule (CLI) .. 630
Add tags to an existing resource (CLI) ... 632
List tags on a resource (CLI) ... 633
Delete tags on a resource (CLI) ... 633

Control access to X-Ray resources based on tags ... 634
Troubleshooting ... 635

xi

AWS X-Ray Developer Guide

X-Ray trace map and trace details pages ... 635
I don't see all of my CloudWatch logs ... 635
I don't see all of my alarms on the X-Ray trace map ... 636
I don't see some AWS resources on the trace map ... 636
There are too many nodes on the trace map ... 637

X-Ray SDK for Java .. 637
X-Ray SDK for Node.js .. 637
The X-Ray daemon .. 638

Document History .. 639

xii

AWS X-Ray Developer Guide

What is AWS X-Ray?

AWS X-Ray is a service that collects data about requests that your application serves, and provides
tools that you can use to view, filter, and gain insights into that data to identify issues and
opportunities for optimization. For any traced request to your application, you can see detailed
information not only about the request and response, but also about calls that your application
makes to downstream AWS resources, microservices, databases, and web APIs.

AWS X-Ray receives traces from your application, in addition to AWS services your application
uses that are already integrated with X-Ray. Instrumenting your application involves sending
trace data for incoming and outbound requests and other events within your application, along
with metadata about each request. Many instrumentation scenarios require only configuration
changes. For example, you can instrument all incoming HTTP requests and downstream calls to
AWS services that your Java application makes. There are several SDKs, agents, and tools that can
be used to instrument your application for X-Ray tracing. See Instrumenting your application for
more information.

AWS services that are integrated with X-Ray can add tracing headers to incoming requests, send
trace data to X-Ray, or run the X-Ray daemon. For example, AWS Lambda can send trace data
about requests to your Lambda functions, and run the X-Ray daemon on workers to make it
simpler to use the X-Ray SDK.

1

AWS X-Ray Developer Guide

Instead of sending trace data directly to X-Ray, each client SDK sends JSON segment documents
to a daemon process listening for UDP traffic. The X-Ray daemon buffers segments in a queue and
uploads them to X-Ray in batches. The daemon is available for Linux, Windows, and macOS, and is
included on AWS Elastic Beanstalk and AWS Lambda platforms.

X-Ray uses trace data from the AWS resources that power your cloud applications to generate a
detailed trace map. The trace map shows the client, your front-end service, and backend services
that your front-end service calls to process requests and persist data. Use the trace map to
identify bottlenecks, latency spikes, and other issues to solve to improve the performance of your
applications.

2

AWS X-Ray Developer Guide

3

AWS X-Ray Developer Guide

Getting started with X-Ray

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

To use X-Ray, take the following steps:

1. Instrument your application, which allows X-Ray to track how your application processes a
request.

• Use the X-Ray SDKs, X-Ray APIs, ADOT or CloudWatch Application Signals to send trace data
to X-Ray. For more information about which interface to use, see Choosing an interface.

For more information about instrumentation, see Instrumenting your application for AWS X-
Ray.

2. (Optional) Configure X-Ray to work with other AWS services that integrate with X-Ray. You
can sample traces and add headers to incoming requests, run an agent or collector, and
automatically send trace data to X-Ray. For more information, see Integrating AWS X-Ray with
other AWS services.

3. Deploy your instrumented application. As your application receives requests, the X-Ray SDK
will record trace, segment and subsegment data. In this step, you might also have to set up an
IAM policy and deploy an agent or collector.

• For example scripts to deploy an application using the AWS Distro for OpenTelemetry
(ADOT) SDK and the CloudWatch agent on different platforms, see Application Signals
Demo Scripts.

• For an example script to deploy an application using the X-Ray SDK and the X-Ray daemon,
see AWS X-Ray sample application.

4

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws-observability/application-signals-demo/tree/main/scripts
https://github.com/aws-observability/application-signals-demo/tree/main/scripts

AWS X-Ray Developer Guide

4. (Optional) Open a console to view and analyze the data. You can see a GUI representation of a
trace map, service map, and more to inspect how your application functions. Use the graphical
information in the console to optimize, debug and understand your application. For more
information about choosing a console, see Use a console.

The following diagram shows how to get started using X-Ray:

For an example of the data and maps that are available in the console, launch a sample application
that is already instrumented to generate trace data. In a few minutes, you can generate traffic,
send segments to X-Ray, and view a trace and service map.

5

AWS X-Ray Developer Guide

Choosing an interface

AWS X-Ray can provide insights into how your application works and how well it interacts
with other services and resources. After you instrument or configure your application, X-Ray
collects trace data as your application serves requests. You can analyze this trace data to identify
performance issues, troubleshoot errors, and optimization your resources. This guide shows you
how to interact with X-Ray with the following guidelines:

• Use an AWS Management Console if you want to get started quickly or can use pre-built
visualizations to perform basic tasks.

• Choose the Amazon CloudWatch console for the most updated user experience that contains
all of the X-Ray console’s functionality.

• Use the X-Ray console if you want a simpler interface or don’t want to change how you
interact with X-Ray.

• Use an SDK if you need more custom tracing, monitoring or logging capabilities than an AWS
Management Console can provide.

• Choose the ADOT SDK if you want a vendor-agnostic SDK based on the open source
OpenTelemetry SDK with added layers of AWS security and optimization.

• Choose the X-Ray SDK if you want a simpler SDK or don’t want to update your application
code.

• Use X-Ray API operations if an SDK does not support your application’s programming language.

The following diagram helps you choose how to interact with X-Ray:

6

AWS X-Ray Developer Guide

Explore the interface types

• Use an SDK

• Use a console

• Use the X-Ray API

7

AWS X-Ray Developer Guide

Use an SDK

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Use an SDK if you want to use a command line interface or need more custom tracing, monitoring,
or logging capabilities than what is available in an AWS Management Console. You can also use
an AWS SDK to develop programs that use the X-Ray APIs. You can use either the AWS Distro for
OpenTelemetry (ADOT) SDK or the X-Ray SDK.

If you use an SDK, you can add customizations to your workflow both when you instrument
your application and when you configure your collector or agent. You can use an SDK to do the
following tasks that you can’t do using an AWS Management Console:

• Publish custom metrics – Sample metrics at high resolutions down to 1 second, use multiple
dimensions to add information about a metric, and aggregate data points into a statistic set.

• Customize your collector – Customize the configuration for any portion of a collector including
the receiver, processor, exporter, and connector.

• Customize your instrumentation – Customize segments and subsegments, add custom key-value
pairs as attributes, and create custom metrics.

• Create and update sampling rules programmatically.

Use the ADOT SDK if you want the flexibility of using a standardized OpenTelemetry SDK with
added layers of AWS security and optimization. The AWS Distro for OpenTelemetry (ADOT) SDK is
a vendor-agnostic package that allows for integration with back ends from other vendors and non-
AWS services without having to reinstrument your code.

Use the X-Ray SDK if you are already using the X-Ray SDK, only integrate with AWS backends, and
don’t want to change the way you interact with X-Ray or your application code.

Use an SDK 8

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

For more information about each feature, see Choosing between the AWS Distro for
OpenTelemetry and X-Ray SDKs.

Use the ADOT SDK

The ADOT SDK is a set of open source APIs, libraries and agents that send data to backend services.
ADOT is supported by AWS, integrates with multiple backends and agents, and provides a large
number of open source libraries maintained by the OpenTelemetry community. Use the ADOT SDK
to instrument your application and collect logs, metadata, metrics and traces. You can also use
ADOT to monitor services and set an alarm based on your metrics in CloudWatch.

If you are using the ADOT SDK, you have the following options, in combination with an agent:

• Use the ADOT SDK with the CloudWatch agent – recommended.

• Use the ADOT SDK with the ADOT Collector – recommended if you want to use vendor agnostic
software with AWS layers of security and optimization.

To use the ADOT SDK, do the following:

• Instrument your application using the ADOT SDK. For more information, see the documentation
for your programming language in the ADOT technical documentation.

• Configure an ADOT collector to tell it where to send data that it collects.

After the ADOT collector receives your data, it sends it to the backend that you specify in the ADOT
configuration. ADOT can send data to multiple backends, including to vendors outside of AWS, as
shown in the following diagram:

Use the ADOT SDK 9

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

AWS regularly updates ADOT to add functionality and align with the OpenTelemetry framework.
Updates and future plans for developing ADOT are part of a roadmap that is available to the
public. ADOT supports several programming languages which include the following:

• Go

• Java

• JavaScript

• Python

• .NET

• Ruby

• PHP

If you are using Python, ADOT can automatically instrument your application. To get started using
ADOT, see Introduction and Getting Started with the AWS Distro for OpenTelemetry Collector.

Use the X-Ray SDK

The X-Ray SDK is a set of AWS APIs and libraries that send data to AWS backend services. Use the
X-Ray SDK to instrument your application and collect trace data. You cannot use the X-Ray SDK to
collect log or metric data.

If you are using the X-Ray SDK, you have the following options, in combination with an agent:

Use the X-Ray SDK 10

https://opentelemetry.io/docs/
https://github.com/orgs/aws-observability/projects/4
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/getting-started/collector

AWS X-Ray Developer Guide

• Use the X-Ray SDK with the AWS X-Ray daemon – Use this if you don't want to update your
application code.

• Use the X-Ray SDK with the CloudWatch agent – (recommended) The CloudWatch agent is
compatible with the X-Ray SDK.

To use the X-Ray SDK, do the following:

• Instrument your application using the X-Ray SDK.

• Configure a collector to tell it where to send data that it collects. You can use either the
CloudWatch agent or the X-Ray daemon to collect your trace information.

After the collector or agent receives your data, it sends it to an AWS backend that you specify in
the agent configuration. The X-Ray SDK can only send data to an AWS backend as shown in the
following diagram:

If you are using Java, you can use the X-Ray SDK to automatically instrument your application.
To get started using the X-Ray SDK, see the libraries associated with the following programming
languages:

• Go

• Java

• Node.js

Use the X-Ray SDK 11

AWS X-Ray Developer Guide

• Python

• .NET

• Ruby

Use a console

Use a console if you want a graphical user interface (GUI) that requires minimal coding. Users that
are new to X-Ray can get started quickly using pre-built visualizations, and performing basic tasks.
You can do the following directly from the console:

• Enable X-Ray.

• View high-level summaries of your application's performance.

• Check the health status of your applications.

• Identify high-level errors.

• View basic trace summaries.

You can use either the Amazon CloudWatch console at https://console.aws.amazon.com/
cloudwatch/ or the X-Ray console at https://console.aws.amazon.com/xray/home to interact with
X-Ray.

Use the Amazon CloudWatch console

The CloudWatch console includes new X-Ray functionality that is redesigned from the X-Ray
console to make it easier to use. If you use the CloudWatch console, you can view CloudWatch logs
and metrics along with X-Ray trace data. Use the CloudWatch console to view and analyze data
including the following:

• X-Ray traces – View, analyze and filter traces associated with your application as it serves a
request. Use these traces to find high latencies, debug errors, and optimize your application
workflow. View a trace map and service map to see visual representations of your application
workflow.

• Logs – View, analyze and filter logs that your application produces. Use logs to troubleshoot
errors and set up monitoring based on specific log values.

• Metrics – Measure and monitor your application performance using metrics that your resources
emit or create your own metrics. View these metrics in graphs and charts.

Use a console 12

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

• Monitoring networks and infrastructure – Monitor major networks for outages and the health
and performance of your infrastructure including containerized applications, other AWS services,
and clients.

• All of the functionality from the X-Ray console listed in the following Use the X-Ray console
section.

For more information about the CloudWatch console, see Getting started with Amazon
CloudWatch.

Login the Amazon CloudWatch console at https://console.aws.amazon.com/cloudwatch/.

Use the X-Ray console

The X-Ray console offers distributed tracing for application requests. Use the X-Ray console if you
want a simpler console experience or don’t want to update your application code. AWS is no longer
developing the X-Ray console. The X-Ray console contains the following features for instrumented
applications:

• Insights – Automatically detect anomalies in your application’s performance and find the
underlying causes. Insights are included in the CloudWatch console under Insights. For more
information, see the Use X-Ray Insights in Use the X-Ray console.

• Service map – View a graphical structure of your application and its connections with clients,
resources, services, and dependencies.

• Traces – See an overview of traces that are generated by your application as it serves a request.
Use trace data to understand how your application performs against basic metrics including
HTTP response and response time.

• Analytics – Interpret, explore and analyze trace data using graphs for response time distribution.

• Configuration – Create customized traces to change the default configurations for the following:

• Sampling – Create a rule that defines how often to sample your application for trace
information. For more information, see Configure sampling rules in Use the X-Ray console .

• Encryption – Encrypt data at rest using a key that you can audit or disable using AWS Key
Management Service.

• Groups – Use a filter expression to define a group of traces with a common feature such as the
name of a url or a response time. For more information, see Configure groups.

Login the X-Ray console at https://console.aws.amazon.com/xray/home.

Use the X-Ray console 13

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingStarted.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/GettingStarted.html
https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/xray/latest/devguide/aws-xray-interface-console.html#xray-console-groups
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Explore the X-Ray console

Use the X-Ray console to view a map of services and associated traces for requests that your
applications serve, and to configure groups and sampling rules which affect how traces are sent to
X-Ray.

Note

The X-Ray Service map and CloudWatch ServiceLens map have been combined into the X-
Ray trace map within the Amazon CloudWatch console. Open the CloudWatch console and
choose Trace Map under X-Ray traces from the left navigation pane.
CloudWatch now includes Application Signals, which can discover and monitor your
application services, clients, Synthetics canaries, and service dependencies. Use Application
Signals to see a list or visual map of your services, view health metrics based on your
service level objectives (SLOs), and drill down to see correlated X-Ray traces for more
detailed troubleshooting.

The primary X-Ray console page is the trace map, which is a visual representation of the JSON
service graph that X-Ray generates from the trace data generated by your applications. The map
consists of service nodes for each application in your account that serves requests, upstream client
nodes that represent the origins of the requests, and downstream service nodes that represent
web services and resources used by an application while processing a request. There are additional
pages for viewing traces and trace details, and configuring groups and sampling rules.

View the console experience for X-Ray and compare with the CloudWatch console in the following
sections.

Explore the X-Ray and CloudWatch consoles

• Using the X-Ray trace map

• Viewing traces and trace details

• Using filter expressions

• Cross-account tracing

• Tracing event-driven applications

• Using latency histograms

• Using X-Ray insights

Explore the X-Ray console 14

https://console.aws.amazon.com/cloudwatch/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html

AWS X-Ray Developer Guide

• Interacting with the Analytics console

• Configuring groups

• Configuring sampling rules

• Console deep linking

Using the X-Ray trace map

View the X-Ray trace map to identify services where errors are occurring, connections with high
latency, or traces for requests that were unsuccessful.

Note

CloudWatch now includes Application Signals, which can discover and monitor your
application services, clients, synthetics canaries, and service dependencies. Use Application
Signals to see a list or visual map of your services, view health metrics based on your
service level objectives (SLOs), and drill down to see correlated X-Ray traces for more
detailed troubleshooting.
The X-Ray service map and CloudWatch ServiceLens map are combined into the X-Ray trace
map within the Amazon CloudWatch console. Open the CloudWatch console and choose
Trace Map under X-Ray traces from the left navigation pane.

Viewing the trace map

The trace map is a visual representation of the trace data that's generated by your applications.
The map shows service nodes that serve requests, upstream client nodes that represent the origins
of the requests, and downstream service nodes that represent web services and resources that are
used by an application while processing a request.

The trace map displays a connected view of traces across event-driven applications that use
Amazon SQS and Lambda. For more information, see tracing event-driven applications. The trace
map also supports cross-account tracing, displaying nodes from multiple accounts in a single map.

Trace map 15

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

CloudWatch console

To view the trace map in the CloudWatch console

1. Open the CloudWatch console. Choose Trace Map under the X-Ray Traces section in the
left navigation pane.

2. Choose a service node to view requests for that node, or an edge between two nodes to
view requests that traveled that connection.

3. Additional information is displayed below the trace map, including tabs for metrics, alerts,
and response time distribution. On the Metrics tab, select a range within each graph to
drill down to view more detail, or choose Faults or Errors options to filter traces. On the
Response time distribution tab, select a range within the graph to filter traces by response
time.

Trace map 16

https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

4. View traces by choosing View traces, or if a filter has been applied, choose View filtered
traces.

5. Choose View logs to see CloudWatch logs associated with the selected node. Not all
trace map nodes support viewing logs. See troubleshooting CloudWatch logs for more
information.

The trace map indicates issues within each node by outlining it with colors:

• Red for server faults (500 series errors)

• Yellow for client errors (400 series errors)

• Purple for throttling errors (429 Too Many Requests)

If your trace map is large, use the on-screen controls or mouse to zoom in and out and move
the map around.

X-Ray console

To view the Service map

1. Open the X-Ray console. The service map is displayed by default. You can also choose
Service Map from the left navigation pane.

Trace map 17

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Choose a service node to view requests for that node, or an edge between two nodes to
view requests that traveled that connection.

3. Use the response distribution histogram to filter traces by duration, and select status codes
for which you want to view traces. Then choose View traces to open the trace list with the
filter expression applied.

Trace map 18

AWS X-Ray Developer Guide

Trace map 19

AWS X-Ray Developer Guide

The service map indicates the health of each node by coloring it based on the ratio of successful
calls to errors and faults:

• Green for successful calls

• Red for server faults (500 series errors)

• Yellow for client errors (400 series errors)

• Purple for throttling errors (429 Too Many Requests)

If your service map is large, use the on-screen controls or mouse to zoom in and out and move
the map around.

Note

The X-Ray trace map can display up to 10,000 nodes. In rare scenarios where the total
number of service nodes exceeds this limit, you may receive an error and be unable to
display a complete trace map in the console.

Filtering the trace map by group

Using a filter expression, you can define criteria by which to include traces within a group. Use the
following steps to then display that specific group in the trace map.

CloudWatch console

Choose a group name from the group filter on the top-left of the trace map.

X-Ray console

Choose a group name from the drop-down menu to the left of the search bar.

Trace map 20

AWS X-Ray Developer Guide

The service map will now be filtered to display traces that match the filter expression of the
selected group.

Trace map legend and options

The trace map includes a legend and several options for customizing the map display.

CloudWatch console

Choose the Legend and options drop-down at the top-right of the map. Choose what is
displayed within nodes, including:

• Metrics displays the average response time and number of traces sent per minute during the
chosen time range.

• Nodes displays the service icon within each node.

Choose additional map settings from the Preferences pane, which can be accessed via the
gear icon at the top-right of the map. These settings include selecting which metric is used to
determine the size of each node, and which canaries should be displayed on the map.

X-Ray console

Display the service map legend by choosing the Map legend link at the top-right of the map.
Service map options can be chosen at the bottom-right of the trace map, including:

• Service Icons toggles what is displayed within each node, displaying either the service icon,
or the average response time and number of traces sent per minute during the chosen time
range.

• Node sizing: None sets all nodes to the same size.

Trace map 21

AWS X-Ray Developer Guide

• Node sizing: Health sizes nodes by the number of impacted requests including errors, faults,
or throttled requests.

• Node sizing: Traffic sizes nodes by the total number of requests.

Viewing traces and trace details

Use the Traces page in the X-Ray console to find traces by URL, response code, or other data from
the trace summary. After selecting a trace from the trace list, the Trace details page displays a map
of service nodes that are associated with the selected trace and a timeline of trace segments.

Viewing traces

CloudWatch console

To view traces in the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. In the left navigation pane, choose X-Ray traces, then choose Traces. You can filter by
group or enter a filter expression. This filters the traces that are displayed in the Traces
section at the bottom of the page.

Alternatively, you can use the service map to navigate to a specific service node, and then
view traces. This opens the Traces page with a query already applied.

3. Refine your query in the Query refiners section. To filter traces by a common attribute,
choose an option from the down arrow next to Refine query by. The options include the
following:

• Node – Filter traces by service node.

• Resource ARN – Filter traces by a resource associated with a trace. Examples of these
resources include Amazon Elastic Compute Cloud (Amazon EC2) instance, an AWS
Lambda function, or an Amazon DynamoDB table.

• User – Filter traces with a user ID.

• Error root cause message – Filter traces by error root cause.

• URL – Filter traces by a URL path used by your application.

• HTTP status code – Filter traces by the HTTP status code returned by your application.
You can specify a custom response code or select from the following:

Traces 22

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

• 200 – The request was successful.

• 401 – The request lacked valid authentication credentials.

• 403 – The request lacked valid permissions.

• 404 – The server could not find the requested resource.

• 500 – The server encountered an unexpected condition and generated an internal
error.

Choose one or more entries and then choose Add to query to add to the filter expression at
the top of the page.

4. To find a single trace, enter a trace ID directly into the query field. You can use X-Ray
format or World Wide Web Consortium (W3C) format. For example, a trace that's created
using the AWS Distro for OpenTelemetry is in W3C format.

Note

When you query traces that are created with a W3C-format trace ID, the console
displays the matching trace in X-Ray format. For example, if you query for
4efaaf4d1e8720b39541901950019ee5 in W3C format, the console displays the
X-Ray equivalent: 1-4efaaf4d-1e8720b39541901950019ee5.

5. Choose Run query at any time to display a list of matching traces within the Traces section
at the bottom of the page.

6. To display the Trace details page for a single trace, select a trace ID from the list.

The following image shows a Trace map containing service nodes associated with the trace
and edges between the nodes representing the path taken by segments that compose the
trace. A Trace summary follows the Trace Map. The summary contains information about a
sample GET operation, its Response Code, the Duration that the trace took to run, and the
Age of the request. The Segments Timeline follows the Trace Summary that shows the
duration of trace segments and subsegments.

Traces 23

AWS X-Ray Developer Guide

If you have an event-driven application that uses Amazon SQS and Lambda, you can see
a connected view of traces for each request in the Trace map. In the map, traces from
message producers are linked to traces from AWS Lambda consumers and are displayed
as a dashed-line edge. For more information about event-driven applications, see Tracing
event-driven applications.

The Traces and Trace details pages also support cross-account tracing, which can list traces
from multiple accounts in the trace list and inside a single trace map.

Traces 24

AWS X-Ray Developer Guide

X-Ray console

To view traces in the X-Ray console

1. Open the Traces page in the X-Ray console. The Trace overview panel shows a list of traces
that are grouped by common features including Error root causes, ResourceARN, and
InstanceId.

2. To select a common feature to view a grouped set of traces, expand the down arrow next to
Group by. The following illustration shows a trace overview of traces that are grouped by
URL for the AWS X-Ray sample application, and a list of associated traces.

3. Choose the ID of a trace to view it under the Trace list. You can also choose Service map in
the navigation pane to view traces for a specific service node. Then you can view traces that
are associated with that node.

The Timeline tab shows the request flow for the trace, and includes the following:

• A map of the path for each segment in the trace.

• How long it took for the segment to reach a node in the trace map.

Traces 25

https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide

• How many requests were made to the node in the trace map.

The following illustration shows an example Trace Map associated with a GET request
made to a sample application. The arrows show the path that each segment took to
complete the request. The service nodes show the number of requests made during the
GET request.

For more information about the Timeline tab, see the following Exploring the trace
timeline section.

The Raw data tab shows information about the trace, and the segments and subsegments
that compose the trace, in JSON format. This information may include the following:

Traces 26

AWS X-Ray Developer Guide

• Timestamps

• Unique IDs

• Resources associated with the segment or subsegment

• The source, or origin, of the segment or subsegment

• Additional information about the request to your application such as the response from
an HTTP request

Exploring the trace timeline

The Timeline section shows a hierarchy of segments and subsegments next to a horizontal bar that
corresponds to time they used to complete their tasks. The first entry in the list is the segment,
which represents all data recorded by the service for a single request. Subsegments are indented
and listed following the segment. Columns contain information about each segment.

CloudWatch console

In the CloudWatch console, the Segments Timeline provides the following information:

• The first column: Lists the segments and subsegments in the selected trace.

• The Segment status column: Lists the status outcome of each segment and subsegment.

• The Response code column: Lists an HTTP response status code to a browser request made
by the segment or subsegment, when available.

• The Duration column: Lists how long the segment or subsegment ran.

• The Hosted in column: Lists the namespace or environment where the segment or
subsegment is ran, if applicable. For more information, see Dimensions collected and
dimension combinations.

• The last column: Displays horizontal bars that correspond to the duration that the segment or
subsegment ran, in relation to the other segments or subsegments in the timeline.

To group the list of segments and subsegments by service node, turn on Group by nodes.

X-Ray console

In the trace details page, choose the Timeline tab to see the timeline for each segment and
subsegment that makes up a trace.

Traces 27

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/AppSignals-StandardMetrics.html#AppSignals-StandardMetrics-Dimensions

AWS X-Ray Developer Guide

In the X-Ray console, the Timeline provides the following information:

• The Name column: Lists the names of the segments and subsegments in the trace.

• The Res. column: Lists an HTTP response status code to a browser request made by the
segment or subsegment, when available.

• The Duration column: Lists how long the segment or subsegment ran.

• The Status column: Lists the outcome of the segment or subsegment status.

• The last column: Displays horizontal bars that correspond to the duration that the segment or
subsegment ran, in relation to the other segments or subsegments in the timeline.

To see the raw trace data that the console uses to generate the timeline, choose the Raw data
tab. The raw data shows you information about the trace, and the segments and subsegments
that compose the trace in JSON format. This information may include the following:

• Timestamps

• Unique IDs

• Resources associated with the segment or subsegment

• The source, or origin, of the segment or subsegment

• Additional information about the request to your application such as the response from an
HTTP request.

When you use an instrumented AWS SDK, HTTP, or SQL client to make calls to external resources,
the X-Ray SDK records subsegments automatically. You can also use the X-Ray SDK to record
custom subsegments for any function or block of code. Additional subsegments that are recorded
while a custom subsegment are open become children of the custom subsegment.

Viewing segment details

From the trace Timeline, choose the name of a segment to view its details.

The Segment details panel shows the Overview, Resources, Annotations, Metadata, Exceptions,
and SQL tabs. The following apply:

• The Overview tab shows information about the request and response. Information includes the
name, start time, end time, duration, the request URL, request operation, request response code,
and any errors and faults.

Traces 28

AWS X-Ray Developer Guide

• The Resources tab for a segment shows information from the X-Ray SDK and about the AWS
resources running your application. Use the Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS
plugins for the X-Ray SDK to record service-specific resource information. For more information
about plugins, see the Service plugins section in Configuring the X-Ray SDK for Java.

• The remaining tabs show Annotations, Metadata, and Exceptions that are recorded for the
segment. Exceptions are captured automatically when they are generated from an instrumented
request. Annotations and metadata contain additional information that you record by using the
operations that the X-Ray SDK provides. To add annotations or metadata to your segments, use
the X-Ray SDK. For more information, see the language-specific link listed under Instrumenting
your application with AWS X-Ray SDKs in Instrumenting your application for AWS X-Ray.

Viewing subsegment details

From the trace timeline, choose the name of a subsegment to view its details:

• The Overview tab contains information about the request and response. This includes the name,
start time, end time, duration, the request URL, request operation, request response code, and
any errors and faults. For subsegments generated with instrumented clients, the Overview tab
contains information about the request and response from your application's point of view.

• The Resources tab for a subsegment shows details about the AWS resources that were used to
run the subsegment. For example, the resources tab may include an AWS Lambda function ARN,
information about a DynamoDB table, any operation that is called, and request ID.

• The remaining tabs show Annotations, Metadata, and Exceptions recorded on the subsegment.
Exceptions are captured automatically when they are generated from an instrumented request.
Annotations and metadata contain additional information that you record by using the
operations that the X-Ray SDK provides. Use the X-Ray SDK to add annotations or metadata to
your segments. For more information, see the language-specific link listed under Instrumenting
your application with AWS X-Ray SDKs in Instrumenting your application for AWS X-Ray.

For custom subsegments, the Overview tab shows the name of the subsegment, which you can set
to specify the area of the code or function that it records. For more information, see the language-
specific link listed under Instrumenting your application with AWS X-Ray SDKs in Generating
custom subsegments with the X-Ray SDK for Java.

The following image shows the Overview tab for a custom subsegment. The overview contains the
subsegment ID, parent ID, Name, start and end times, duration, status and errors or faults.

Traces 29

AWS X-Ray Developer Guide

The Metadata tab for a custom subsegment contains information in JSON format about resources
used by that subsegment.

Using filter expressions

Use filter expressions to view a trace map or traces for a specific request, service, connection
between two services (an edge), or requests that satisfy a condition. X-Ray provides a filter
expression language for filtering requests, services, and edges based on data in request headers,
response status, and indexed fields on the original segments.

When you choose a time period of traces to view in the X-Ray console, you might get more results
than the console can display. In the upper-right corner, the console shows the number of traces
that it scanned and whether there are more traces available. You can use a filter expression to
narrow the results to just the traces that you want to find.

Filter expressions 30

AWS X-Ray Developer Guide

Topics

• Filter expression details

• Using filter expressions with groups

• Filter expression syntax

• Boolean keywords

• Number keywords

• String keywords

• Complex keywords

• id function

Filter expression details

When you choose a node in the trace map, the console constructs a filter expression based on the
service name of the node, and the types of error present based on your selection. To find traces
that show performance issues or that relate to specific requests, you can adjust the expression that
the console provides or create your own. If you add annotations with the X-Ray SDK, you can also
filter based on the presence of an annotation key or the value of a key.

Note

If you choose a relative time range in the trace map and choose a node, the console
converts the time range to an absolute start and end time. To ensure that the traces for the
node appear in the search results, and avoid scanning times when the node wasn't active,
the time range only includes times when the node sent traces. To search relative to the
current time, you can switch back to a relative time range in the traces page and scan again.

If there are still more results available than the console can show, the console shows you how many
traces matched and the number of traces scanned. The percentage shown is the percentage of the
selected time frame that was scanned. To ensure that you see all matching traces represented in
the results, narrow your filter expression further, or choose a shorter time frame.

To get the freshest results first, the console starts scanning at the end of the time range and works
backward. If there are a large number of traces, but few results, the console splits the time range
into chunks and scans them in parallel. The progress bar shows the parts of the time range that
have been scanned.

Filter expressions 31

AWS X-Ray Developer Guide

Using filter expressions with groups

Groups are a collection of traces that are defined by a filter expression. You can use groups to
generate additional service graphs and supply Amazon CloudWatch metrics.

Groups are identified by their name or an Amazon Resource Name (ARN), and contain a filter
expression. The service compares incoming traces to the expression and stores them accordingly.

You can create and modify groups by using the dropdown menu to the left of the filter expression
search bar.

Note

If the service encounters an error in qualifying a group, that group is no longer included in
processing incoming traces and an error metric is recorded.

For more information about groups, see Configuring groups.

Filter expression syntax

Filter expressions can contain a keyword, a unary or binary operator, and a value for comparison.

keyword operator value

Filter expressions 32

AWS X-Ray Developer Guide

Different operators are available for different types of keyword. For example, responsetime is a
number keyword and can be compared with operators related to numbers.

Example – requests where response time was greater than 5 seconds

responsetime > 5

You can combine multiple expressions in a compound expression by using the AND or OR operators.

Example – requests where the total duration was 5–8 seconds

duration >= 5 AND duration <= 8

Simple keywords and operators find issues only at the trace level. If an error occurs downstream,
but is handled by your application and not returned to the user, a search for error will not find it.

To find traces with downstream issues, you can use the complex keywords service() and
edge(). These keywords let you apply a filter expression to all downstream nodes, a single
downstream node, or an edge between two nodes. For more granularity, you can filter services and
edges by type with the id() function.

Boolean keywords

Boolean keyword values are either true or false. Use these keywords to find traces that resulted in
errors.

Boolean keywords

• ok – Response status code was 2XX Success.

• error – Response status code was 4XX Client Error.

• throttle – Response status code was 429 Too Many Requests.

• fault – Response status code was 5XX Server Error.

• partial – Request has incomplete segments.

• inferred – Request has inferred segments.

• first – Element is the first of an enumerated list.

• last – Element is the last of an enumerated list.

• remote – Root cause entity is remote.

• root – Service is the entry point or root segment of a trace.

Filter expressions 33

AWS X-Ray Developer Guide

Boolean operators find segments where the specified key is true or false.

Boolean operators

• none – The expression is true if the keyword is true.

• ! – The expression is true if the keyword is false.

• =,!= – Compare the value of the keyword to the string true or false. These operators act the
same as the other operators but are more explicit.

Example – response status is 2XX OK

ok

Example – response status is not 2XX OK

!ok

Example – response status is not 2XX OK

ok = false

Example – last enumerated fault trace has error name "deserialize"

rootcause.fault.entity { last and name = "deserialize" }

Example – requests with remote segments where coverage is greater than 0.7 and the service
name is "traces"

rootcause.responsetime.entity { remote and coverage > 0.7 and name = "traces" }

Example – requests with inferred segments where the service type is "AWS:DynamoDB"

rootcause.fault.service { inferred and name = traces and type = "AWS::DynamoDB" }

Example – requests that have a segment with the name "data-plane" as the root

service("data-plane") {root = true and fault = true}

Filter expressions 34

AWS X-Ray Developer Guide

Number keywords

Use number keywords to search for requests with a specific response time, duration, or response
status.

Number keywords

• responsetime – Time that the server took to send a response.

• duration – Total request duration, including all downstream calls.

• http.status – Response status code.

• index – Position of an element in an enumerated list.

• coverage – Decimal percentage of entity response time over root segment response time.
Applicable only for response time root cause entities.

Number operators

Number keywords use standard equality and comparison operators.

• =,!= – The keyword is equal to or not equal to a number value.

• <,<=, >,>= – The keyword is less than or greater than a number value.

Example – response status is not 200 OK

http.status != 200

Example – request where the total duration was 5–8 seconds

duration >= 5 AND duration <= 8

Example – requests that completed successfully in less than 3 seconds, including all
downstream calls

ok !partial duration <3

Example – enumerated list entity that has an index greater than 5

rootcause.fault.service { index > 5 }

Filter expressions 35

AWS X-Ray Developer Guide

Example – requests where the last entity that has coverage greater than 0.8

rootcause.responsetime.entity { last and coverage > 0.8 }

String keywords

Use string keywords to find traces with specific text in the request headers, or specific user IDs.

String keywords

• http.url – Request URL.

• http.method – Request method.

• http.useragent – Request user agent string.

• http.clientip – Requestor's IP address.

• user – Value of the user field on any segment in the trace.

• name – The name of a service or exception.

• type – Service type.

• message – Exception message.

• availabilityzone – Value of the availabilityzone field on any segment in the trace.

• instance.id – Value of the instance ID field on any segment in the trace.

• resource.arn – Value of the resource ARN field on any segment in the trace.

String operators find values that are equal to or contain specific text. Values must always be
specified in quotation marks.

String operators

• =,!= – The keyword is equal to or not equal to a number value.

• CONTAINS – The keyword contains a specific string.

• BEGINSWITH , ENDSWITH – The keyword begins or ends with a specific string.

Example – http.url filter

http.url CONTAINS "/api/game/"

Filter expressions 36

AWS X-Ray Developer Guide

To test if a field exists on a trace, regardless of its value, check to see if it contains the empty string.

Example – user filter

Find all traces with user IDs.

user CONTAINS ""

Example – select traces with a fault root cause that includes a service named "Auth"

rootcause.fault.service { name = "Auth" }

Example – select traces with a response time root cause whose last service has a type of
DynamoDB

rootcause.responsetime.service { last and type = "AWS::DynamoDB" }

Example – select traces with a fault root cause whose last exception has the message "access
denied for account_id: 1234567890"

rootcause.fault.exception { last and message = "Access Denied for account_id:
 1234567890"

Complex keywords

Use complex keywords to find requests based on service name, edge name, or annotation value.
For services and edges, you can specify an additional filter expression that applies to the service
or edge. For annotations, you can filter on the value of an annotation with a specific key using
Boolean, number, or string operators.

Complex keywords

• annotation[key] – Value of an annotation with field key. The value of an annotation can be a
Boolean, number, or string, so you can use any of the comparison operators of those types. You
can use this keyword in combination with the service or edge keyword. An annotation key that
contains dots (periods) must be wrapped in square brackets ([]).

• edge(source, destination) {filter} – Connection between services source and
destination. Optional curly braces can contain a filter expression that applies to segments on
this connection.

Filter expressions 37

AWS X-Ray Developer Guide

• group.name / group.arn – The value of a group's filter expression, referenced by group
name or group ARN.

• json – JSON root cause object. See Getting data from AWS X-Ray for steps to create JSON
entities programmatically.

• service(name) {filter} – Service with name name. Optional curly braces can contain a
filter expression that applies to segments created by the service.

Use the service keyword to find traces for requests that hit a certain node on your trace map.

Complex keyword operators find segments where the specified key has been set, or not set.

Complex keyword operators

• none – The expression is true if the keyword is set. If the keyword is of boolean type, it will
evaluate to the boolean value.

• ! – The expression is true if the keyword is not set. If the keyword is of boolean type, it will
evaluate to the boolean value.

• =,!= – Compare the value of the keyword.

• edge(source, destination) {filter} – Connection between services source and
destination. Optional curly braces can contain a filter expression that applies to segments on
this connection.

• annotation[key] – Value of an annotation with field key. The value of an annotation can be a
Boolean, number, or string, so you can use any of the comparison operators of those types. You
can use this keyword in combination with the service or edge keyword.

• json – JSON root cause object. See Getting data from AWS X-Ray for steps to create JSON
entities programmatically.

Use the service keyword to find traces for requests that hit a certain node on your trace map.

Example – Service filter

Requests that included a call to api.example.com with a fault (500 series error).

service("api.example.com") { fault }

You can exclude the service name to apply a filter expression to all nodes on your service map.

Filter expressions 38

AWS X-Ray Developer Guide

Example – service filter

Requests that caused a fault anywhere on your trace map.

service() { fault }

The edge keyword applies a filter expression to a connection between two nodes.

Example – edge filter

Request where the service api.example.com made a call to backend.example.com that failed
with an error.

edge("api.example.com", "backend.example.com") { error }

You can also use the ! operator with service and edge keywords to exclude a service or edge from
the results of another filter expression.

Example – service and request filter

Request where the URL begins with http://api.example.com/ and contains /v2/ but does not
reach a service named api.example.com.

http.url BEGINSWITH "http://api.example.com/" AND http.url CONTAINS "/v2/" AND !
service("api.example.com")

Example – service and response time filter

Find traces where http url is set and response time is greater than 2 seconds.

http.url AND responseTime > 2

For annotations, you can call all traces where annotation[key] is set, or use the comparison
operators that correspond to the type of value.

Example – annotation with string value

Requests with an annotation named gameid with string value "817DL6VO".

annotation[gameid] = "817DL6VO"

Filter expressions 39

AWS X-Ray Developer Guide

Example – annotation is set

Requests with an annotation named age set.

annotation[age]

Example – annotation is not set

Requests without an annotation named age set.

!annotation[age]

Example – annotation with number value

Requests with annotation age with numerical value greater than 29.

annotation[age] > 29

Example – annotation in combination with service or edge

service { annotation[request.id] = "917DL6VO" }

edge { source.annotation[request.id] = "916DL6VO" }

edge { destination.annotation[request.id] = "918DL6VO" }

Example – group with user

Requests where traces meet the high_response_time group filter (e.g. responseTime > 3),
and the user is named Alice.

group.name = "high_response_time" AND user = "alice"

Example – JSON with root cause entity

Requests with matching root cause entities.

Filter expressions 40

AWS X-Ray Developer Guide

rootcause.json = #[{ "Services": [{ "Name": "GetWeatherData", "EntityPath": [{ "Name":
 "GetWeatherData" }, { "Name": "get_temperature" }] }, { "Name": "GetTemperature",
 "EntityPath": [{ "Name": "GetTemperature" }] }] }]

id function

When you provide a service name to the service or edge keyword, you get results for all nodes
that have that name. For more precise filtering, you can use the id function to specify a service
type in addition to a name to distinguish between nodes with the same name.

Use the account.id function to specify a particular account for the service, when viewing traces
from multiple accounts in a monitoring account.

id(name: "service-name", type:"service::type", account.id:"account-ID")

You can use the id function in place of a service name in service and edge filters.

service(id(name: "service-name", type:"service::type")) { filter }

edge(id(name: "service-one", type:"service::type"), id(name: "service-two",
 type:"service::type")) { filter }

For example, AWS Lambda functions result in two nodes in the trace map; one for the function
invocation, and one for the Lambda service. The two nodes have the same name but different
types. A standard service filter will find traces for both.

Example – service filter

Requests that include an error on any service named random-name.

service("random-name") { error }

Use the id function to narrow the search to errors on the function itself, excluding errors from the
service.

Example – service filter with id function

Requests that include an error on a service named random-name with type
AWS::Lambda::Function.

Filter expressions 41

AWS X-Ray Developer Guide

service(id(name: "random-name", type: "AWS::Lambda::Function")) { error }

To search for nodes by type, you can also exclude the name entirely.

Example – service filter with id function and service type

Requests that include an error on a service with type AWS::Lambda::Function.

service(id(type: "AWS::Lambda::Function")) { error }

To search for nodes for a particular AWS account, specify an account ID.

Example – service filter with id function and account ID

Requests that include a service within a specific account ID AWS::Lambda::Function.

service(id(account.id: "account-id"))

Cross-account tracing

AWS X-Ray supports cross-account observability, enabling you to monitor and troubleshoot
applications that span multiple accounts within an AWS Region. You can seamlessly search,
visualize, and analyze your metrics, logs, and traces in any of the linked accounts as if you were
operating in a single account. This provides a complete view of requests that travel across multiple
accounts. You can view cross-account traces in the X-Ray trace map and traces pages within the
CloudWatch console.

The shared observability data can include any of the following types of telemetry:

• Metrics in Amazon CloudWatch

• Log groups in Amazon CloudWatch Logs

• Traces in AWS X-Ray

• Applications in Amazon CloudWatch Application Insights

Configure cross-account observability

To turn on cross-account observability, set up one or more AWS monitoring accounts and link them
with multiple source accounts. A monitoring account is a central AWS account that can view and

Cross-account tracing 42

https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

interact with observability data that's generated from source accounts. A source account is an
individual AWS account that generates observability data for the resources that it contains.

Source accounts share their observability data with monitoring accounts. Traces are copied from
each source account to up to five monitoring accounts. Copies of traces from source accounts to
the first monitoring account are free. Copies of traces sent to additional monitoring accounts are
charged to each source account, based on standard pricing. For more information, see AWS X-Ray
pricing and Amazon CloudWatch pricing.

To create links between monitoring accounts and source accounts, use the CloudWatch console or
the new Observability Access Manager commands in the AWS CLI and API. For more information,
see CloudWatch cross-account observability.

Note

X-Ray traces are billed to the AWS account where they're received. If a sampled request
spans services across more than one AWS account, each account records a separate trace,
and all traces share the same trace ID. To learn more about cross-account observability
pricing, see AWS X-Ray pricing and Amazon CloudWatch pricing.

Viewing cross-account traces

Cross-account traces are displayed in the monitoring account. Each source account displays only
local traces for that specific account. The following sections assume that you're signed in to the
monitoring account and have opened the Amazon CloudWatch console. On both the trace map and
traces pages, a monitoring account badge is displayed in the upper-right corner.

Trace map

In the CloudWatch console, choose Trace Map under X-Ray traces from the left navigation pane.
By default, the trace map displays nodes for all source accounts that send traces to the monitoring
account, and nodes for the monitoring account itself. On the trace map, choose Filters from the
upper left to filter the trace map using the Accounts drop-down. After an account filter is applied,
service nodes from accounts that don't match the current filter are grayed out.

Cross-account tracing 43

https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/cloudwatch/pricing/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/cloudwatch/pricing/

AWS X-Ray Developer Guide

When you choose a service node, the node details pane includes the service's account ID and label.

In the upper-right corner of the trace map, choose List view to see a list of service nodes. The list
of service nodes includes services from the monitoring account and all configured source accounts.
Filter the list of nodes by Account label or Account id by choosing them from the Nodes filter.

Cross-account tracing 44

AWS X-Ray Developer Guide

Traces

View trace details for traces that span multiple accounts by opening the CloudWatch console from
the monitoring account, and choosing Traces under X-Ray traces in the left navigation pane. You
can also open this page by choosing a node in the X-Ray Trace Map, and then choosing View traces
from the node details pane.

The Traces page supports querying by account ID. To get started, enter a query that includes one
or more account IDs. The following example queries for traces that have passed through account ID
X or Y:

service(id(account.id:"X")) OR service(id(account.id:"Y"))

Refine your query by Account. Select one or more accounts from the list, and choose Add to query.

Trace details

View details for a trace by choosing it from the Traces list at the bottom of the Traces page. The
Trace details displays, including a trace details map with service nodes from across all accounts
that the trace passed through. Choose a specific service node to see its corresponding account.

The Segments timeline section displays the account details for each segment in the timeline.

Cross-account tracing 45

AWS X-Ray Developer Guide

Tracing event-driven applications

AWS X-Ray supports tracing event-driven applications using Amazon SQS and AWS Lambda. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by one or more Lambda functions. Traces from upstream message producers are
automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application.

Note

Each trace segment can be linked to up to 20 traces, while a trace can include a maximum
of 100 links. In certain scenarios, linking additional traces may result in exceeding the
maximum trace document size, causing a potentially incomplete trace. This can happen,
for example, when a Lambda function with tracing enabled sends many SQS messages to
a queue in a single invocation. If you encounter this issue, a mitigation is available which
uses the X-Ray SDKs. See the X-Ray SDK for Java, Node.js, Python, Go, or .NET for more
information.

View linked traces in the trace map

Use the Trace Map page within the CloudWatch console to view a trace map with traces from
message producers that are linked to traces from Lambda consumers. These links are displayed
with a dashed-line edge that connects the Amazon SQS node and downstream Lambda consumer
nodes.

Tracing event-driven applications 46

https://docs.aws.amazon.com/general/latest/gr/xray.html#limits_xray
https://github.com/aws/aws-xray-sdk-java#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-node/tree/master/packages/core#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-python#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-go#oversampling-mitigation
https://github.com/aws/aws-xray-sdk-dotnet#oversampling-mitigation
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Select a dashed-line edge to display a received event age histogram, which maps the spread of
event age when it's received by consumers. The age is calculated each time an event is received.

View linked trace details

View trace details sent from a message producer, Amazon SQS queue, or Lambda consumer:

1. Use the Trace Map to select a message producer, Amazon SQS, or Lambda consumer node.

2. Choose View traces from the node details pane to display a list of traces. You can also navigate
directly to the Traces page within the CloudWatch console.

3. Choose a specific trace from the list to open the trace details page. The trace details page
displays a message when the selected trace is part of a linked set of traces.

Tracing event-driven applications 47

AWS X-Ray Developer Guide

The trace details map displays the current trace, along with upstream and downstream linked
traces, each of which are contained within a box that indicates the bounds of each trace. If the
currently selected trace is linked to multiple upstream or downstream traces, the nodes within the
upstream or downstream linked traces are stacked, and a Select trace button is displayed.

Beneath the trace details map, a timeline of trace segments displays, including upstream and
downstream linked traces. If there are multiple upstream or downstream linked traces, their
segment details can't be displayed. To view segment details for a single trace within a set of linked
traces, select a single trace as described below.

Tracing event-driven applications 48

AWS X-Ray Developer Guide

Select a single trace within a set of linked traces

Filter a linked set of traces to a single trace, to see segment details in the timeline.

1. Choose Select trace underneath the linked traces on the trace details map. A list of traces
displays.

2. Select the radio button next to a trace to view it within the trace details map.

3. Choose Cancel trace selection to view the entire set of linked traces.

Using latency histograms

When you select a node or edge on an AWS X-Ray trace map, the X-Ray console shows a latency
distribution histogram.

Latency

Latency is the amount of time between when a request starts and when it completes. A histogram
shows a distribution of latencies. It shows duration on the x-axis, and the percentage of requests
that match each duration on the y-axis.

Histograms 49

AWS X-Ray Developer Guide

This histogram shows a service that completes most requests in less than 300 ms. A small
percentage of requests take up to 2 seconds, and a few outliers take more time.

Interpreting service details

Service histograms and edge histograms provide a visual representation of latency from the
viewpoint of a service or requester.

• Choose a service node by clicking the circle. X-Ray shows a histogram for requests served by the
service. The latencies are those recorded by the service, and don't include any network latency
between the service and the requester.

• Choose an edge by clicking the line or arrow tip of the edge between two services. X-Ray shows
a histogram for requests from the requester that were served by the downstream service. The
latencies are those recorded by the requester, and include latency in the network connection
between the two services.

To interpret the Service details panel histogram, you can look for values that differ the most
from the majority of values in the histogram. These outliers can be seen as peaks or spikes in the
histogram, and you can view the traces for a specific area to investigate what's going on.

To view traces filtered by latency, select a range on the histogram. Click where you want to start
the selection and drag from left to right to highlight a range of latencies to include in the trace
filter.

Histograms 50

AWS X-Ray Developer Guide

After selecting a range, you can choose Zoom to view just that portion of the histogram and refine
your selection.

Histograms 51

AWS X-Ray Developer Guide

Once you have the focus set to the area you're interested in, choose View traces.

Using X-Ray insights

AWS X-Ray continuously analyzes trace data in your account to identify emergent issues in your
applications. When fault rates exceed the expected range, it creates an insight that records the
issue and tracks its impact until it's resolved. With insights, you can:

• Identify where in your application issues are occurring, the root cause of the issue, and associated
impact. The impact analysis provided by insights enables you to derive the severity and priority
of an issue.

Insights 52

AWS X-Ray Developer Guide

• Receive notifications as the issue changes over time. Insights notifications can be integrated with
your monitoring and alerting solution using Amazon EventBridge. This integration enables you
to send automated emails or alerts based on the severity of the issue.

The X-Ray console identifies nodes with ongoing incidents in the trace map. To see a summary of
the insight, choose the affected node. You can also view and filter insights by choosing Insights
from the navigation pane on the left.

X-Ray creates an insight when it detects an anomaly in one or more nodes of the service map. The
service uses statistical modeling to predict the expected fault rates of services in your application.
In the preceding example, the anomaly is an increase in faults from AWS Elastic Beanstalk.
The Elastic Beanstalk server experienced multiple API call timeouts, causing an anomaly in the
downstream nodes.

Enable insights in the X-Ray console

Insights must be enabled for each group you want to use insights features with. You can enable
insights from the Groups page.

1. Open the X-Ray console.

Insights 53

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Select an existing group or create a new one by choosing Create group, and then select
Enable Insights. For more information about configuring groups in the X-Ray console, see
Configuring groups.

3. In the navigation pane on the left, choose Insights, and then choose an insight to view.

Note

X-Ray uses GetInsightSummaries, GetInsight, GetInsightEvents, and GetInsightImpactGraph
API operations to retrieve data from insights.
For more information, see How AWS X-Ray works with IAM.

Enable insights notifications

With insights notifications, a notification is created for each insight event, such as when an insight
is created, changes significantly, or is closed. Customers can receive these notifications through
Amazon EventBridge events, and use conditional rules to take actions such as SNS notification,
Lambda invocation, posting messages to an SQS queue, or any of the targets EventBridge
supports. Insights notifications are emitted on a best-effort basis but are not guaranteed. For more
information about targets, see Amazon EventBridge Targets.

You can enable insights notifications for any insights enabled group from the Groups page.

To enable notifications for an X-Ray group

1. Open the X-Ray console.

2. Select an existing group or create a new one by choosing Create group, ensure that Enable
Insights is selected, and then select Enable Notifications. For more information about
configuring groups in the X-Ray console, see Configuring groups.

Insights 54

https://docs.aws.amazon.com/eventbridge/latest/userguide/eventbridge-targets.html
https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

To configure Amazon EventBridge conditional rules

1. Open the Amazon EventBridge console.

2. Navigate to Rules in the left navigation bar, and choose Create rule.

3. Provide a name and description for the rule.

4. Choose Event pattern, and then choose Custom pattern. Provide a pattern containing
"source": ["aws.xray"] and "detail-type": ["AWS X-Ray Insight
Update"]. The following are some examples of possible patterns.

• Event pattern to match all incoming events from X-Ray insights:

{
"source": ["aws.xray"],
"detail-type": ["AWS X-Ray Insight Update"]
}

• Event pattern to match a specified state and category:

{
"source": ["aws.xray"],
"detail-type": ["AWS X-Ray Insight Update"],
"detail": {
 "State": ["ACTIVE"],
 "Category": ["FAULT"]
 }
}

5. Select and configure the targets that you would like to invoke when an event matches this
rule.

6. (Optional) Provide tags to more easily identify and select this rule.

7. Choose Create.

Note

X-Ray insights notifications sends events to Amazon EventBridge, which does not currently
support customer managed keys. For more information, see Data protection in AWS X-Ray.

Insights 55

https://console.aws.amazon.com/events/home

AWS X-Ray Developer Guide

Insight overview

The overview page for an insight attempts to answer three key questions:

• What is the underlying issue?

• What is the root cause?

• What is the impact?

The Anomalous services section shows a timeline for each service that illustrates the change in
fault rates during the incident. The timeline shows the number of traces with faults overlaid on a
solid band that indicates the expected number of faults based on the amount of traffic recorded.
The duration of the insight is visualized by the Incident window. The incident window begins when
X-Ray observes the metric becoming anomalous and persists while the insight is active.

The following example shows an increase in faults that caused an incident:

The Root cause section shows a trace map focused on the root cause service and the impacted
path. You may hide the unaffected nodes by selecting the eye icon in the top right of the Root
cause map. The root cause service is the farthest downstream node where X-Ray identified
an anomaly. It can represent a service that you instrumented or an external service that your
service called with an instrumented client. For example, if you call Amazon DynamoDB with an

Insights 56

AWS X-Ray Developer Guide

instrumented AWS SDK client, an increase in faults from DynamoDB results in an insight with
DynamoDB as the root cause.

To further investigate the root cause, select View root cause details on the root cause graph.
You can use the Analytics page to investigate the root cause and related messages. For more
information, see Interacting with the Analytics console.

Faults that continue upstream in the map can impact multiple nodes and cause multiple anomalies.
If a fault is passed all the way back to the user that made the request, the result is a client fault.
This is a fault in the root node of the trace map. The Impact graph provides a timeline of the
client experience for the entire group. This experience is calculated based on percentages of the
following states: Fault, Error, Throttle, and Okay.

This example shows an increase in traces with a fault at the root node during the time of an
incident. Incidents in downstream services don't always correspond to an increase in client errors.

Choosing Analyze insight opens the X-Ray Analytics console in a window where you can dive deep
into the set of traces causing the insight. For more information, see Interacting with the Analytics
console.

Understanding impact

Insights 57

AWS X-Ray Developer Guide

AWS X-Ray measures the impact caused by an ongoing issue as part of generating insights and
notifications. The impact is measured in two ways:

• Impact to the X-Ray group

• Impact on the root cause service

This impact is determined by the percentage of request that are failing or causing an error within
a given time period. This impact analysis allows you to derive the severity and priority of the issue
based on your particular scenario. This impact is available as part of the console experience in
addition to insights notifications.

Deduplication

AWS X-Ray insights de-duplicates issues across multiple microservices. It uses anomaly detection
to determine the service that is the root cause of an issue, determines if other related services
are exhibiting anomalous behavior due to the same root cause, and records the result as a single
insight.

Review an insight's progress

X-Ray reevaluates insights periodically until they are resolved, and records each notable
intermediate change as a notification, which can be sent as an Amazon EventBridge event. This
enables you to build processes and workflows to determine how the issue has changed over time,
and take appropriate actions such as sending an email or integrating with an alerting system using
EventBridge.

You can review incident events in the Impact Timeline on the Inspect page. By default the timeline
displays the most impacted service until you choose a different service.

Insights 58

AWS X-Ray Developer Guide

To see a trace map and graphs for an event, choose it from the impact timeline. The trace map
shows services in your application that are affected by the incident. Under Impact analysis, graphs
show fault timelines for the selected node and for clients in the group.

To take a deeper look at the traces involved in an incident, choose Analyze event on the Inspect
page. You can use the Analytics page to refine the list of traces and identify affected users. For
more information, see Interacting with the Analytics console.

Interacting with the Analytics console

The AWS X-Ray Analytics console is an interactive tool for interpreting trace data to quickly
understand how your application and its underlying services are performing. The console enables

Analytics 59

AWS X-Ray Developer Guide

you to explore, analyze, and visualize traces through interactive response time and time-series
graphs.

When making selections in the Analytics console, the console constructs filters to reflect the
selected subset of all traces. You can refine the active dataset with increasingly granular filters by
clicking the graphs and the panels of metrics and fields that are associated with the current trace
set.

Topics

• Console features

• Response time distribution

• Time series activity

• Workflow examples

• Observe faults on the service graph

• Identify response time peaks

• View all traces marked with a status code

• View all items in a subgroup and associated to a user

• Compare two sets of traces with different criteria

• Identify a trace of interest and view its details

Console features

The X-Ray Analytics console uses the following key features for grouping, filtering, comparing, and
quantifying trace data.

Features

Feature Description

Groups The initial selected group is Default. To
change the retrieved group, select a different
group from the menu to the right of the main
filter expression search bar. To learn more
about groups see, Using filter expressions with
groups.

Analytics 60

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html#groups
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html#groups

AWS X-Ray Developer Guide

Feature Description

Retrieved traces By default, the Analytics console generates
graphs based on all traces in the selected
group. Retrieved traces represent all traces
in your working set. You can find the trace
count in this tile. Filter expressions you apply
to the main search bar refine and update the
retrieved traces.

Show in charts/Hide from charts A toggle to compare the active group against
the retrieved traces. To compare the data
related to the group against any active filters,
choose Show in charts. To remove this view
from the charts, choose Hide from charts.

Filtered trace set A Through interactions with the graphs and
tables, apply filters to create the criteria for
Filtered trace set A. As the filters are applied,
the number of applicable traces and the
percentage of traces from the total that are
retrieved are calculated within this tile. Filters
populate as tags within the Filtered trace set
A tile and can also be removed from the tile.

Refine This function updates the set of retrieved
traces based on the filters applied to trace set
A. Refining the retrieved trace set refreshes
the working set of all traces retrieved based
on the filters for trace set A. The working set
of retrieved traces is a sampled subset of all
traces in the group.

Analytics 61

AWS X-Ray Developer Guide

Feature Description

Filtered trace set B When created, Filtered trace set B is a copy
of Filtered trace set A. To compare the two
trace sets, make new filter selections that will
apply to trace set B, while trace set A remains
fixed. As the filters are applied, the number
of applicable traces and the percentage of
traces from the total retrieved are calculated
within this tile. Filters populate as tags within
the Filtered trace set B tile and can also be
removed from the tile.

Response time root cause entity paths A table of recorded entity paths. X-Ray
determines which path in your trace is the
most likely cause for the response time.
The format indicates a hierarchy of entities
that are encountered, ending in a response
time root cause. Use these rows to filter for
recurring response time faults. For more
information about customizing a root cause
filter and getting data through the API see,
Retrieving and refining root cause analytics.

Delta (�) A column that is added to the metrics tables
when both trace set A and trace set B are
active. The Delta column calculates the
difference in percentage of traces between
trace set A and trace set B.

Response time distribution

The X-Ray Analytics console generates two primary graphs to help you visualize traces: Response
Time Distribution and Time Series Activity. This section and the following provide examples of
each, and explain the basics of how to read the graphs.

Analytics 62

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-gettingdata.html#xray-api-analytics

AWS X-Ray Developer Guide

The following are the colors associated with the response time line graph (the time series graph
uses the same color scheme):

• All traces in the group – gray

• Retrieved traces – orange

• Filtered trace set A – green

• Filtered trace set B – blue

Example – Response time distribution

The response time distribution is a chart that shows the number of traces with a given response
time. Click and drag to make selections within the response time distribution. This selects and
creates a filter on the working trace set named responseTime for all traces within a specific
response time.

Time series activity

The time series activity chart shows the number of traces at a given time period. The color
indicators mirror the line graph colors of the response time distribution. The darker and fuller the
color block within the activity series, the more traces are represented at the given time.

Example – Time series activity

Click and drag to make selections within the time series activity graph. This selects and creates a
filter named timerange on the working trace set for all traces within a specific range of time.

Analytics 63

AWS X-Ray Developer Guide

Workflow examples

The following examples show common use cases for the X-Ray Analytics console. Each example
demonstrates a key function of the console experience. As a group, the examples follow a basic
troubleshooting workflow. The steps walk through how to first spot unhealthy nodes, and then
how to interact with the Analytics console to automatically generate comparative queries. Once
you have narrowed the scope through queries, you will finally look at the details of traces of
interest to determine what is damaging the health of your service.

Observe faults on the service graph

The trace map indicates the health of each node by coloring it based on the ratio of successful calls
to errors and faults. When you see a percentage of red on your node, it signals a fault. Use the X-
Ray Analytics console to investigate it.

For more information about how to read the trace map, see Viewing the trace map.

Analytics 64

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap

AWS X-Ray Developer Guide

Identify response time peaks

Using the response time distribution, you can observe peaks in response time. By selecting the
peak in response time, the tables below the graphs will update to expose all associated metrics,
such as status codes.

When you click and drag, X-Ray selects and creates a filter. It's shown in a gray shadow on top of
the graphed lines. You can now drag that shadow left and right along the distribution to update
your selection and filter.

Analytics 65

AWS X-Ray Developer Guide

View all traces marked with a status code

You can drill into traces within the selected peak by using the metrics tables below the graphs. By
clicking a row in the HTTP STATUS CODE table, you automatically create a filter on the working
dataset. For example, you could view all traces of status code 500. This creates a filter tag in the
trace set tile named http.status.

View all items in a subgroup and associated to a user

Drill into the error set based on user, URL, response time root cause, or other predefined attributes.
For example, to additionally filter the set of traces with a 500 status code, select a row from the
USERS table. This results in two filter tags in the trace set tile: http.status, as designated
previously, and user.

Compare two sets of traces with different criteria

Compare across various users and their POST requests to find other discrepancies and correlations.
Apply your first set of filters. They are defined by a blue line in the response time distribution. Then
select Compare. Initially, this creates a copy of the filters on trace set A.

To proceed, define a new set of filters to apply to trace set B. This second set is represented by
a green line. The following example shows different lines according to the blue and green color
scheme.

Analytics 66

AWS X-Ray Developer Guide

Identify a trace of interest and view its details

As you narrow your scope using the console filters, the trace list below the metrics tables becomes
more meaningful. The trace list table combines information about URL, USER, and STATUS CODE
into one view. For more insights, select a row from this table to open the trace's detail page and
view its timeline and raw data.

Configuring groups

Groups are a collection of traces that are defined by a filter expression. You can use groups to
generate additional service graphs and supply Amazon CloudWatch metrics. You can use the AWS
X-Ray console or X-Ray API to create and manage groups for your services. This topic describes how
to create and manage groups by using the X-Ray console. For information about how to manage
groups by using the X-Ray API, see Groups.

You can create groups of traces for trace maps, traces, or analytics. When you create a group, the
group becomes available as a filter on the group dropdown menu on all three pages: Trace Map,
Traces, and Analytics.

Groups 67

AWS X-Ray Developer Guide

Groups are identified by their name or an Amazon Resource Name (ARN), and contain a filter
expression. The service compares incoming traces to the expression and stores them accordingly.
For more information about how to build a filter expression, see Using filter expressions.

Updating a group's filter expression doesn't change data that's already recorded. The update
applies only to subsequent traces. This can result in a merged graph of the new and old
expressions. To avoid this, delete a current group and create a new one.

Note

Groups are billed by the number of retrieved traces that match the filter expression. For
more information, see AWS X-Ray pricing.

Topics

• Create a group

• Apply a group

• Edit a group

• Clone a group

• Delete a group

• View group metrics in Amazon CloudWatch

Groups 68

https://aws.amazon.com/xray/pricing/

AWS X-Ray Developer Guide

Create a group

Note

You can now configure X-Ray groups from within the Amazon CloudWatch console. You can
also continue to use the X-Ray console.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose Create group above the list of groups.

5. On the Create group page, enter a name for the group. A group name can have a maximum
of 32 characters, and contain alphanumeric characters and dashes. Group names are case
sensitive.

6. Enter a filter expression. For more information about how to build a filter expression, see
Using filter expressions. In the following example, the group filters for fault traces from
the service api.example.com. and requests to the service where the response time was
greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

7. In Insights, enable or disable insights access for the group. For more information about
insights, see Using X-Ray insights.

8. In Tags, choose Add new tag to enter a tag key, and optionally, a tag value. Continue to
add additional tags as desired. Tag keys must be unique. To delete a tag, choose Remove
underneath each tag. For more information about tags, see Tagging X-Ray sampling rules
and groups.

Groups 69

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

9. Choose Create group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Create group page from the Groups page in the left navigation pane, or from the
group menu on one of the following pages: Trace Map, Traces, and Analytics.

3. On the Create group page, enter a name for the group. A group name can have a maximum
of 32 characters, and contain alphanumeric characters and dashes. Group names are case
sensitive.

4. Enter a filter expression. For more information about how to build a filter expression, see
Using filter expressions. In the following example, the group filters for fault traces from
the service api.example.com. and requests to the service where the response time was
greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

5. In Insights, enable or disable insights access for the group. For more information about
insights, see Using X-Ray insights.

6. In Tags, enter a tag key, and optionally, a tag value. As you add a tag, a new line appears
for you to enter another tag. Tag keys must be unique. To delete a tag, choose X at the end
of the tag's row. For more information about tags, see Tagging X-Ray sampling rules and
groups.

Groups 70

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

7. Choose Create group.

Apply a group

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Open one of the following pages from the navigation pane under X-Ray traces:

• Trace Map

• Traces

3. Enter a group name into the Filter by X-Ray group filter. The data shown on the page
changes to match the filter expression set in the group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open one of the following pages from the navigation pane:

• Trace Map

• Traces

• Analytics

3. On the group menu, choose the group that you created in the section called “Create a
group”. The data shown on the page changes to match the filter expression set in the
group.

Groups 71

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Edit a group

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Edit.

5. Although you can't rename a group, you can update the filter expression. For more
information about how to build a filter expression, see Using filter expressions. In the
following example, the group filters for fault traces from the service api.example.com,
where the request URL address contains example/game, and response time for requests
was greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

6. In Insights, enable or disable insights access for the group. For more information about
insights, see Using X-Ray insights.

7. In Tags, choose Add new tag to enter a tag key, and optionally, a tag value. Continue to
add additional tags as desired. Tag keys must be unique. To delete a tag, choose Remove
underneath each tag. For more information about tags, see Tagging X-Ray sampling rules
and groups.

8. When you're finished updating the group, choose Update group.

Groups 72

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Do one of the following to open the Edit group page.

a. On the Groups page, choose the name of a group to edit it.

b. On the group menu on one of the following pages, point to a group, and then choose
Edit.

• Trace Map

• Traces

• Analytics

3. Although you can't rename a group, you can update the filter expression. For more
information about how to build a filter expression, see Using filter expressions. In the
following example, the group filters for fault traces from the service api.example.com,
where the request URL address contains example/game, and response time for requests
was greater than or equal to five seconds.

fault = true AND http.url CONTAINS "example/game" AND responsetime >= 5

4. In Insights, enable or disable insights and insights notifications for the group. For more
information about insights, see Using X-Ray insights.

5. In Tags, edit tag keys and values. Tag keys must be unique. Tag values are optional; you can
delete values, if you want. To delete a tag, choose X at the end of the tag's row. For more
information about tags, see Tagging X-Ray sampling rules and groups.

6. When you're finished updating the group, choose Update group.

Groups 73

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Clone a group

Cloning a group creates a new group that has the filter expression and tags of an existing group.
When you clone a group, the new group has the same name as the group from which it's cloned,
with -clone appended to the name.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Clone.

5. On the Create group page, the name of the group is group-name-clone. Optionally,
enter a new name for the group. A group name can have a maximum of 32 characters, and
contain alphanumeric characters and dashes. Group names are case sensitive.

6. You can keep the filter expression from the existing group, or optionally, enter a new filter
expression. For more information about how to build a filter expression, see Using filter
expressions. In the following example, the group filters for fault traces from the service
api.example.com. and requests to the service where the response time was greater than
or equal to five seconds.

service("api.example.com") { fault = true OR responsetime >= 5 }

7. In Tags, edit tag keys and values, if needed. Tag keys must be unique. Tag values are
optional; you can delete values if you want. To delete a tag, choose X at the end of the tag's
row. For more information about tags, see Tagging X-Ray sampling rules and groups.

8. Choose Create group.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to clone.

3. Choose Clone group from the Actions menu.

Groups 74

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

4. On the Create group page, the name of the group is group-name-clone. Optionally,
enter a new name for the group. A group name can have a maximum of 32 characters, and
contain alphanumeric characters and dashes. Group names are case sensitive.

5. You can keep the filter expression from the existing group, or optionally, enter a new filter
expression. For more information about how to build a filter expression, see Using filter
expressions. In the following example, the group filters for fault traces from the service
api.example.com. and requests to the service where the response time was greater than
or equal to five seconds.

service("api.example.com") { fault = true OR responsetime >= 5 }

6. In Tags, edit tag keys and values, if needed. Tag keys must be unique. Tag values are
optional; you can delete values if you want. To delete a tag, choose X at the end of the tag's
row. For more information about tags, see Tagging X-Ray sampling rules and groups.

7. Choose Create group.

Delete a group

Follow steps in this section to delete a group. You can't delete the Default group.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Delete.

5. When you're prompted to confirm, choose Delete.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to delete.

3. On the Actions menu, choose Delete group.

Groups 75

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

4. When you're prompted to confirm, choose Delete.

View group metrics in Amazon CloudWatch

After a group is created, incoming traces are checked against the group’s filter expression as they're
stored in the X-Ray service. Metrics for the number of traces matching each criteria are published
to Amazon CloudWatch every minute. Choosing View metric on the Edit group page opens the
CloudWatch console to the Metric page. For more information about how to use CloudWatch
metrics, see Using Amazon CloudWatch Metrics in the Amazon CloudWatch User Guide.

CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Groups within the X-Ray traces section.

4. Choose a group from the Groups section and then choose Edit.

5. On the Edit group page, choose View metric.

The CloudWatch console Metrics page opens in a new tab.

X-Ray console

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. Open the Groups page from the left navigation pane, and the choose the name of a group
that you want to view metrics for.

3. On the Edit group page, choose View metric.

The CloudWatch console Metrics page opens in a new tab.

Configuring sampling rules

You can use the AWS X-Ray console to configure sampling rules for your services. The X-Ray SDK
and AWS services that support active tracing with sampling configuration use sampling rules to
determine which requests to record.

Sampling 76

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/working_with_metrics.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Topics

• Configuring sampling rules

• Customizing sampling rules

• Sampling rule options

• Sampling rule examples

• Configuring your service to use sampling rules

• Viewing sampling results

• Next steps

Configuring sampling rules

You can configure sampling for the following use cases:

• API Gateway Entrypoint – API Gateway supports sampling and active tracing. To enable active
tracing on an API stage, see Amazon API Gateway active tracing support for AWS X-Ray.

• AWS AppSync – AWS AppSync supports sampling and active tracing. To enable active tracing on
AWS AppSync requests, see Tracing with AWS X-Ray.

• Instrument X-Ray SDK on compute platforms – When using compute platforms such as
Amazon EC2, Amazon ECS, or AWS Elastic Beanstalk, sampling is supported when the application
has been instrumented with the latest X-Ray SDK.

Customizing sampling rules

By customizing sampling rules, you can control the amount of data that you record. You can also
modify sampling behavior without modifying or redeploying your code. Sampling rules tell the X-
Ray SDK how many requests to record for a set of criteria. By default, the X-Ray SDK records the
first request each second, and five percent of any additional requests. One request per second is
the reservoir. This ensures that at least one trace is recorded each second as long as the service is
serving requests. Five percent is the rate at which additional requests beyond the reservoir size are
sampled.

You can configure the X-Ray SDK to read sampling rules from a JSON document that you include
with your code. However, when you run multiple instances of your service, each instance performs
sampling independently. This causes the overall percentage of requests sampled to increase

Sampling 77

https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html

AWS X-Ray Developer Guide

because the reservoirs of all of the instances are effectively added together. Additionally, to update
local sampling rules, you must redeploy your code.

By defining sampling rules in the X-Ray console, and configuring the SDK to read rules from the
X-Ray service, you can avoid both of these issues. The service manages the reservoir for each rule,
and assigns quotas to each instance of your service to distribute the reservoir evenly, based on
the number of instances that are running. The reservoir limit is calculated according to the rules
you set. Because the rules are configured in the service, you can manage rules without making
additional deployments.

Note

X-Ray uses a best-effort approach in applying sampling rules, and in some cases the
effective sampling rate may not exactly match the configured sampling rules. However,
over time the number of requests sampled should be close to the configured percentage.

You can now configure X-Ray sampling rules from within the Amazon CloudWatch console. You can
also continue to use the X-Ray console.

CloudWatch console

To configure sampling rules in the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Sampling rules within the X-Ray traces section.

4. To create a rule, choose Create sampling rule.

To edit a rule, choose a rule and choose Edit to edit it.

To delete a rule, choose a rule and choose Delete to delete it.

X-Ray console

To configure sampling rules in the X-Ray console

1. Open the X-Ray console.

Sampling 78

https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

2. Choose Sampling in the left navigation pane.

3. To create a rule, choose Create sampling rule.

To edit a rule, choose a rule's name.

To delete a rule, choose a rule and use the Actions menu to delete it.

Sampling rule options

The following options are available for each rule. String values can use wildcards to match a single
character (?) or zero or more characters (*).

Sampling rule options

• Rule name (string) – A unique name for the rule.

• Priority (integer between 1 and 9999) – The priority of the sampling rule. Services evaluate rules
in ascending order of priority, and make a sampling decision with the first rule that matches.

• Reservoir (non-negative integer) – A fixed number of matching requests to instrument per
second, before applying the fixed rate. The reservoir is not used directly by services, but applies
to all services using the rule collectively.

• Rate (integer between 0 and 100) – The percentage of matching requests to instrument, after
the reservoir is exhausted. When configuring a sampling rule in the console, choose a percentage
between 0 and 100. When configuring a sampling rule in a client SDK using a JSON document,
provide a percentage value between 0 and 1.

• Service name (string) – The name of the instrumented service, as it appears in the trace map.

• X-Ray SDK – The service name that you configure on the recorder.

• Amazon API Gateway – api-name/stage.

• Service type (string) – The service type, as it appears in the trace map. For the X-Ray SDK, set the
service type by applying the appropriate plugin:

• AWS::ElasticBeanstalk::Environment – An AWS Elastic Beanstalk environment (plugin).

• AWS::EC2::Instance – An Amazon EC2 instance (plugin).

• AWS::ECS::Container – An Amazon ECS container (plugin).

• AWS::APIGateway::Stage – An Amazon API Gateway stage.

• AWS::AppSync::GraphQLAPI – An AWS AppSync API request.

• Host (string) – The hostname from the HTTP host header.

Sampling 79

AWS X-Ray Developer Guide

• HTTP method (string) – The method of the HTTP request.

• URL path (string) – The URL path of the request.

• X-Ray SDK – The path portion of the HTTP request URL.

• Resource ARN (string) – The ARN of the AWS resource running the service.

• X-Ray SDK – Not supported. The SDK can only use rules with Resource ARN set to *.

• Amazon API Gateway – The stage ARN.

• (Optional) Attributes (key and value) – Segment attributes that are known when the sampling
decision is made.

• X-Ray SDK – Not supported. The SDK ignores rules that specify attributes.

• Amazon API Gateway – Headers from the original HTTP request.

Sampling rule examples

Example – Default rule with no reservoir and a low rate

You can modify the default rule's reservoir and rate. The default rule applies to requests that don't
match any other rule.

• Reservoir: 0

• Rate: 5 (0.05 if configured using a JSON document)

Example – Debugging rule to trace all requests for a problematic route

A high-priority rule applied temporarily for debugging.

• Rule name: DEBUG – history updates

• Priority: 1

• Reservoir: 1

• Rate: 100 (1 if configured using a JSON document)

• Service name: Scorekeep

• Service type: *

• Host: *

• HTTP method: PUT

• URL path: /history/*

Sampling 80

AWS X-Ray Developer Guide

• Resource ARN: *

Example – Higher minimum rate for POSTs

• Rule name: POST minimum

• Priority: 100

• Reservoir: 10

• Rate: 10 (.1 if configured using a JSON document)

• Service name: *

• Service type: *

• Host: *

• HTTP method: POST

• URL path: *

• Resource ARN: *

Configuring your service to use sampling rules

The X-Ray SDK requires additional configuration to use sampling rules that you configure in the
console. See the configuration topic for your language for details on configuring a sampling
strategy:

• Java: Sampling rules

• Go: Sampling rules

• Node.js: Sampling rules

• Python: Sampling rules

• Ruby: Sampling rules

• .NET: Sampling rules

For API Gateway, see Amazon API Gateway active tracing support for AWS X-Ray.

Viewing sampling results

The X-Ray console Sampling page shows detailed information about how your services use each
sampling rule.

Sampling 81

AWS X-Ray Developer Guide

The Trend column shows how the rule has been used in the last few minutes. Each column shows
statistics for a 10-second window.

Sampling statistics

• Total matched rule: The number of requests that matched this rule. This number doesn't include
requests that could have matched this rule, but matched a higher-priority rule first.

• Total sampled: The number of requests recorded.

• Sampled with fixed rate: The number of requests sampled by applying the rule's fixed rate.

• Sampled with reservoir limit: The number of requests sampled using a quota assigned by X-Ray.

• Borrowed from reservoir: The number of requests sampled by borrowing from the reservoir.
The first time a service matches a request to a rule, it has not yet been assigned a quota by X-
Ray. However, if the reservoir is at least 1, the service borrows one trace per second until X-Ray
assigns a quota.

For more information about sampling statistics and how services use sampling rules, see Using
sampling rules with the X-Ray API.

Next steps

You can use the X-Ray API to manage sampling rules. With the API, you can create and update
rules programmatically on a schedule, or in response to alarms or notifications. See Configuring
sampling, groups, and encryption settings with the AWS X-Ray API for instructions and additional
rule examples.

The X-Ray SDK and AWS services also use the X-Ray API to read sampling rules, report sampling
results, and get sampling targets. Services must keep track of how often they apply each rule,
evaluate rules based on priority, and borrow from the reservoir when a request matches a rule for
which X-Ray has not yet assigned the service a quota. For more detail about how a service uses the
API for sampling, see Using sampling rules with the X-Ray API.

When the X-Ray SDK calls sampling APIs, it uses the X-Ray daemon as a proxy. If you already use
TCP port 2000, you can configure the daemon to run the proxy on a different port. See Configuring
the AWS X-Ray daemon for details.

Sampling 82

AWS X-Ray Developer Guide

Console deep linking

You can use routes and queries to deep link into specific traces, or filtered views of traces and the
trace map.

Console pages

• Welcome page – xray/home#/welcome

• Getting started – xray/home#/getting-started

• Trace map – xray/home#/service-map

• Traces – xray/home#/traces

Traces

You can generate links for timeline, raw, and map views of individual traces.

Trace timeline – xray/home#/traces/trace-id

Raw trace data – xray/home#/traces/trace-id/raw

Example – raw trace data

https://console.aws.amazon.com/xray/home#/traces/1-57f5498f-d91047849216d0f2ea3b6442/
raw

Filter expressions

Link to a filtered list of traces.

Filtered traces view – xray/home#/traces?filter=filter-expression

Example – filter expression

https://console.aws.amazon.com/xray/home#/traces?filter=service("api.amazon.com")
 { fault = true OR responsetime > 2.5 } AND annotation.foo = "bar"

Console deep linking 83

https://console.aws.amazon.com/xray/home#/welcome
https://console.aws.amazon.com/xray/home#/getting-started
https://console.aws.amazon.com/xray/home#/service-map
https://console.aws.amazon.com/xray/home#/traces

AWS X-Ray Developer Guide

Example – filter expression (URL encoded)

https://console.aws.amazon.com/xray/home#/traces?filter=service(%22api.amazon.com
%22)%20%7B%20fault%20%3D%20true%20OR%20responsetime%20%3E%202.5%20%7D%20AND
%20annotation.foo%20%3D%20%22bar%22

For more information about filter expressions, see Using filter expressions.

Time range

Specify a length of time or start and end time in ISO8601 format. Time ranges are in UTC and can
be up to 6 hours long.

Length of time – xray/home#/page?timeRange=range-in-minutes

Example – trace map for the last hour

https://console.aws.amazon.com/xray/home#/service-map?timeRange=PT1H

Start and end time – xray/home#/page?timeRange=start~end

Example – time range accurate to seconds

https://console.aws.amazon.com/xray/home#/traces?
timeRange=2023-7-01T16:00:00~2023-7-01T22:00:00

Example – time range accurate to minutes

https://console.aws.amazon.com/xray/home#/traces?
timeRange=2023-7-01T16:00~2023-7-01T22:00

Region

Specify an AWS Region to link to pages in that Region. If you don't specify a Region, the console
redirects you to the last visited Region.

Region – xray/home?region=region#/page

Example – trace map in US West (Oregon) (us-west-2)

https://console.aws.amazon.com/xray/home?region=us-west-2#/service-map

Console deep linking 84

AWS X-Ray Developer Guide

When you include a Region with other query parameters, the Region query goes before the hash,
and the X-Ray-specific queries go after the page name.

Example – trace map for the last hour in US West (Oregon) (us-west-2)

https://console.aws.amazon.com/xray/home?region=us-west-2#/service-map?timeRange=PT1H

Combined

Example – recent traces with a duration filter

https://console.aws.amazon.com/xray/home#/traces?timeRange=PT15M&filter=duration%20%3E
%3D%205%20AND%20duration%20%3C%3D%208

Output

• Page – Traces

• Time Range – Last 15 minutes

• Filter – duration >= 5 AND duration <= 8

Use the X-Ray API

If the X-Ray SDK doesn’t support your programming language, you can use either the X-Ray APIs
directly or the AWS Command Line Interface (AWS CLI) to call X-Ray API commands. Use the
following guidance to choose how you interact with the API:

• Use the AWS CLI for simpler syntax using pre-formatted commands or with options inside your
request.

• Use the X-Ray API directly for maximum flexibility and customization for requests that you make
to X-Ray.

If you use the X-Ray API directly instead of the AWS CLI, you must parametrize your request in the
correct data format and may also have to configure authentication and error handling.

The following diagram shows guidance to choose how to interact with the X-Ray API:

Use the X-Ray API 85

https://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide

Use the X-Ray API to send trace data to directly to X-Ray. The X-Ray API supports all functions
available in the X-Ray SDK including the following common actions:

• PutTraceSegments – Uploads segment documents to X-Ray.

• BatchGetTraces – Retrieves a list of traces in a list of trace IDs. Each retrieved trace is a collection
of segment documents from a single request.

• GetTraceSummaries – Retrieves IDs and annotations for traces. You can specify a
FilterExpression to retrieve a subset of trace summaries.

• GetTraceGraph – Retrieves a service graph for a specific trace ID.

• GetServiceGraph – Retrieves a JSON formatted document that describes services that process
incoming requests and call downstream requests.

You can also use the AWS Command Line Interface (AWS CLI) inside your application code to
programmatically interact with X-Ray. The AWS CLI supports all functions available in the X-
Ray SDK including those for other AWS services. The following functions are versions of the API
operations listed previously with a simpler format:

• put-trace-segments – Uploads segment documents to X-Ray.

Use the X-Ray API 86

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/put-trace-segments.html

AWS X-Ray Developer Guide

• batch-get-traces – Retrieves a list of traces in a list of trace IDs. Each retrieved trace is a
collection of segment documents from a single request.

• get-trace-summaries – Retrieves IDs and annotations for traces. You can specify a
FilterExpression to retrieve a subset of trace summaries.

• get-trace-graph – Retrieves a service graph for a specific trace ID.

• get-service-graph – Retrieves a JSON formatted document that describes services that process
incoming requests and call downstream requests.

To get started, you must install the AWS CLI for your operating system. AWS supports Linux,
macOS and Windows operating systems. For more information about the list of X-Ray commands,
see the AWS CLI Command Reference guide for X-Ray.

Topics

• Using the AWS X-Ray API with the AWS CLI

• Sending trace data to AWS X-Ray

• Getting data from AWS X-Ray

• Configuring sampling, groups, and encryption settings with the AWS X-Ray API

• Using sampling rules with the X-Ray API

• AWS X-Ray segment documents

Using the AWS X-Ray API with the AWS CLI

The AWS CLI lets your access the X-Ray service directly and use the same APIs that the X-Ray
console uses to retrieve the service graph and raw traces data. The sample application includes
scripts that show how to use these APIs with the AWS CLI.

Prerequisites

This tutorial uses the Scorekeep sample application and included scripts to generate tracing data
and a service map. Follow the instructions in the getting started tutorial to launch the application.

This tutorial uses the AWS CLI to show basic use of the X-Ray API. The AWS CLI, available for
Windows, Linux, and OS-X, provides command line access to the public APIs for all AWS services.

Tutorial 87

https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/batch-get-traces.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-trace-summaries.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-trace-graph.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/get-service-graph.html
https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/xray/index.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html
https://docs.aws.amazon.com/cli/latest/userguide/installing.html

AWS X-Ray Developer Guide

Note

You must verify that your AWS CLI is configured to the same Region that your Scorekeep
sample application was created in.

Scripts included to test the sample application uses cURL to send traffic to the API and jq to parse
the output. You can download the jq executable from stedolan.github.io, and the curl executable
from https://curl.haxx.se/download.html. Most Linux and OS X installations include cURL.

Generate trace data

The web app continues to generate traffic to the API every few seconds while the game is in-
progress, but only generates one type of request. Use the test-api.sh script to run end to end
scenarios and generate more diverse trace data while you test the API.

To use the test-api.sh script

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Copy the environment URL from the page header.

4. Open bin/test-api.sh and replace the value for API with your environment's URL.

#!/bin/bash
API=scorekeep.9hbtbm23t2.us-west-2.elasticbeanstalk.com/api

5. Run the script to generate traffic to the API.

~/debugger-tutorial$./bin/test-api.sh
Creating users,
session,
game,
configuring game,
playing game,
ending game,
game complete.
{"id":"MTBP8BAS","session":"HUF6IT64","name":"tic-tac-toe-test","users":
["QFF3HBGM","KL6JR98D"],"rules":"102","startTime":1476314241,"endTime":1476314245,"states":
["JQVLEOM2","D67QLPIC","VF9BM9NC","OEAA6GK9","2A705O73","1U2LFTLJ","HUKIDD70","BAN1C8FI","G3UDJTUF","AB70HVEV"],"moves":
["BS8F8LQ","4MTTSPKP","463OETES","SVEBCL3N","N7CQ1GHP","O84ONEPD","EG4BPROQ","V4BLIDJ3","9RL3NPMV"]}

Tutorial 88

https://stedolan.github.io/jq/
https://curl.haxx.se/download.html
https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

Use the X-Ray API

The AWS CLI provides commands for all of the API actions that X-Ray provides, including
GetServiceGraph and GetTraceSummaries. See the AWS X-Ray API Reference for more
information on all of the supported actions and the data types that they use.

Example bin/service-graph.sh

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The script retrieves a service graph for the last 10 minutes.

~/eb-java-scorekeep$./bin/service-graph.sh | less
{
 "StartTime": 1479068648.0,
 "Services": [
 {
 "StartTime": 1479068648.0,
 "ReferenceId": 0,
 "State": "unknown",
 "EndTime": 1479068651.0,
 "Type": "client",
 "Edges": [
 {
 "StartTime": 1479068648.0,
 "ReferenceId": 1,
 "SummaryStatistics": {
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "TotalCount": 0,
 "OtherCount": 0
 },
 "FaultStatistics": {
 "TotalCount": 0,
 "OtherCount": 0
 },
 "TotalCount": 2,
 "OkCount": 2,
 "TotalResponseTime": 0.054000139236450195
 },
 "EndTime": 1479068651.0,
 "Aliases": []

Tutorial 89

https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/Welcome.html

AWS X-Ray Developer Guide

 }
]
 },
 {
 "StartTime": 1479068648.0,
 "Names": [
 "scorekeep.elasticbeanstalk.com"
],
 "ReferenceId": 1,
 "State": "active",
 "EndTime": 1479068651.0,
 "Root": true,
 "Name": "scorekeep.elasticbeanstalk.com",
...

Example bin/trace-urls.sh

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time $(($EPOCH-60)) --
query 'TraceSummaries[*].Http.HttpURL'

The script retrieves the URLs of traces generated between one and two minutes ago.

~/eb-java-scorekeep$./bin/trace-urls.sh
[
 "http://scorekeep.elasticbeanstalk.com/api/game/6Q0UE1DG/5FGLM9U3/
endtime/1479069438",
 "http://scorekeep.elasticbeanstalk.com/api/session/KH4341QH",
 "http://scorekeep.elasticbeanstalk.com/api/game/GLQBJ3K5/153AHDIA",
 "http://scorekeep.elasticbeanstalk.com/api/game/VPDL672J/G2V41HM6/
endtime/1479069466"
]

Example bin/full-traces.sh

EPOCH=$(date +%s)
TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time
 $(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)
aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

The script retrieves full traces generated between one and two minutes ago.

Tutorial 90

AWS X-Ray Developer Guide

~/eb-java-scorekeep$./bin/full-traces.sh | less
[
 {
 "Segments": [
 {
 "Id": "3f212bc237bafd5d",
 "Document": "{\"id\":\"3f212bc237bafd5d\",\"name\":\"DynamoDB\",
\"trace_id\":\"1-5828d9f2-a90669393f4343211bc1cf75\",\"start_time\":1.479072242459E9,
\"end_time\":1.479072242477E9,\"parent_id\":\"72a08dcf87991ca9\",\"http\":
{\"response\":{\"content_length\":60,\"status\":200}},\"inferred\":true,\"aws\":
{\"consistent_read\":false,\"table_name\":\"scorekeep-session-xray\",\"operation\":
\"GetItem\",\"request_id\":\"QAKE0S8DD0LJM245KAOPMA746BVV4KQNSO5AEMVJF66Q9ASUAAJG\",
\"resource_names\":[\"scorekeep-session-xray\"]},\"origin\":\"AWS::DynamoDB::Table\"}"
 },
 {
 "Id": "309e355f1148347f",
 "Document": "{\"id\":\"309e355f1148347f\",\"name\":\"DynamoDB\",
\"trace_id\":\"1-5828d9f2-a90669393f4343211bc1cf75\",\"start_time\":1.479072242477E9,
\"end_time\":1.479072242494E9,\"parent_id\":\"37f14ef837f00022\",\"http\":
{\"response\":{\"content_length\":606,\"status\":200}},\"inferred\":true,\"aws\":
{\"table_name\":\"scorekeep-game-xray\",\"operation\":\"UpdateItem\",\"request_id
\":\"388GEROC4PCA6D59ED3CTI5EEJVV4KQNSO5AEMVJF66Q9ASUAAJG\",\"resource_names\":
[\"scorekeep-game-xray\"]},\"origin\":\"AWS::DynamoDB::Table\"}"
 }
],
 "Id": "1-5828d9f2-a90669393f4343211bc1cf75",
 "Duration": 0.05099987983703613
 }
...

Cleanup

Terminate your Elastic Beanstalk environment to shut down the Amazon EC2 instances, DynamoDB
tables and other resources.

To terminate your Elastic Beanstalk environment

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Actions.

4. Choose Terminate Environment.

Tutorial 91

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

5. Choose Terminate.

Trace data is automatically deleted from X-Ray after 30 days.

Sending trace data to AWS X-Ray

You can send trace data to X-Ray in the form of segment documents. A segment document is
a JSON formatted string that contains information about the work that your application does
in service of a request. Your application can record data about the work that it does itself in
segments, or work that uses downstream services and resources in subsegments.

Segments record information about the work that your application does. A segment, at a
minimum, records the time spent on a task, a name, and two IDs. The trace ID tracks the request
as it travels between services. The segment ID tracks the work done for the request by a single
service.

Example Minimal complete segment

{
 "name" : "Scorekeep",
 "id" : "70de5b6f19ff9a0a",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "end_time" : 1.478293361449E9
}

When a request is received, you can send an in-progress segment as a placeholder until the request
is completed.

Example In-progress segment

{
 "name" : "Scorekeep",
 "id" : "70de5b6f19ff9a0b",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 “in_progress”: true
}

You can send segments to X-Ray directly, with PutTraceSegments, or through the X-Ray daemon.

Sending data 92

AWS X-Ray Developer Guide

Most applications call other services or access resources with the AWS SDK. Record information
about downstream calls in subsegments. X-Ray uses subsegments to identify downstream services
that don't send segments and create entries for them on the service graph.

A subsegment can be embedded in a full segment document, or sent separately. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size (64 kB).

Example Subsegment

A subsegment has a type of subsegment and a parent_id that identifies the parent segment.

{
 "name" : "www2.example.com",
 "id" : "70de5b6f19ff9a0c",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979"
 “end_time” : 1.478293361449E9,
 “type” : “subsegment”,
 “parent_id” : “70de5b6f19ff9a0b”
}

For more information on the fields and values that you can include in segments and subsegments,
see AWS X-Ray segment documents.

Sections

• Generating trace IDs

• Using PutTraceSegments

• Sending segment documents to the X-Ray daemon

Generating trace IDs

To send data to X-Ray, you must generate a unique trace ID for each request.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, which is 1.

Sending data 93

AWS X-Ray Developer Guide

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,
W3C trace ID 4efaaf4d1e8720b39541901950019ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

You can write a script to generate X-Ray trace IDs for testing. Here are two examples.

Python

import time
import os
import binascii

START_TIME = time.time()
HEX=hex(int(START_TIME))[2:]
TRACE_ID="1-{}-{}".format(HEX, binascii.hexlify(os.urandom(12)).decode('utf-8'))

Bash

START_TIME=$(date +%s)
HEX_TIME=$(printf '%x\n' $START_TIME)
GUID=$(dd if=/dev/random bs=12 count=1 2>/dev/null | od -An -tx1 | tr -d ' \t\n')
TRACE_ID="1-HEX_TIME-GUID"

See the Scorekeep sample application for scripts that create trace IDs and send segments to the X-
Ray daemon.

Sending data 94

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

• Python – xray_start.py

• Bash – xray_start.sh

Using PutTraceSegments

You can upload segment documents with the PutTraceSegments API. The API has a single
parameter, TraceSegmentDocuments, that takes a list of JSON segment documents.

With the AWS CLI, use the aws xray put-trace-segments command to send segment
documents directly to X-Ray.

$ DOC='{"trace_id": "1-5960082b-ab52431b496add878434aa25", "id": "6226467e3f845502",
 "start_time": 1498082657.37518, "end_time": 1498082695.4042, "name":
 "test.elasticbeanstalk.com"}'
$ aws xray put-trace-segments --trace-segment-documents "$DOC"
{
 "UnprocessedTraceSegments": []
}

Note

Windows Command Processor and Windows PowerShell have different requirements for
quoting and escaping quotes in JSON strings. See Quoting Strings in the AWS CLI User
Guide for details.

The output lists any segments that failed processing. For example, if the date in the trace ID is too
far in the past, you see an error like the following.

{
 "UnprocessedTraceSegments": [
 {
 "ErrorCode": "InvalidTraceId",
 "Message": "Invalid segment. ErrorCode: InvalidTraceId",
 "Id": "6226467e3f845502"
 }
]
}

You can pass multiple segment documents at the same time, separated by spaces.

Sending data 95

https://github.com/awslabs/eb-java-scorekeep/blob/xray/bin/xray_start.py
https://github.com/awslabs/eb-java-scorekeep/blob/xray/bin/xray_start.sh
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-using-param.html#quoting-strings

AWS X-Ray Developer Guide

$ aws xray put-trace-segments --trace-segment-documents "$DOC1" "$DOC2"

Sending segment documents to the X-Ray daemon

Instead of sending segment documents to the X-Ray API, you can send segments and subsegments
to the X-Ray daemon, which will buffer them and upload to the X-Ray API in batches. The X-Ray
SDK sends segment documents to the daemon to avoid making calls to AWS directly.

Note

See Running the X-Ray daemon locally for instructions on running the daemon.

Send the segment in JSON over UDP port 2000, prepended by the daemon header, {"format":
"json", "version": 1}\n

{"format": "json", "version": 1}\n{"trace_id": "1-5759e988-bd862e3fe1be46a994272793",
 "id": "defdfd9912dc5a56", "start_time": 1461096053.37518, "end_time": 1461096053.4042,
 "name": "test.elasticbeanstalk.com"}

On Linux, you can send segment documents to the daemon from a Bash terminal. Save the header
and segment document to a text file and pipe it to /dev/udp with cat.

$ cat segment.txt > /dev/udp/127.0.0.1/2000

Example segment.txt

{"format": "json", "version": 1}
{"trace_id": "1-594aed87-ad72e26896b3f9d3a27054bb", "id": "6226467e3f845502",
 "start_time": 1498082657.37518, "end_time": 1498082695.4042, "name":
 "test.elasticbeanstalk.com"}

Check the daemon log to verify that it sent the segment to X-Ray.

2017-07-07T01:57:24Z [Debug] processor: sending partial batch
2017-07-07T01:57:24Z [Debug] processor: segment batch size: 1. capacity: 50
2017-07-07T01:57:24Z [Info] Successfully sent batch of 1 segments (0.020 seconds)

Sending data 96

AWS X-Ray Developer Guide

Getting data from AWS X-Ray

AWS X-Ray processes the trace data that you send to it to generate full traces, trace summaries,
and service graphs in JSON. You can retrieve the generated data directly from the API with the
AWS CLI.

Sections

• Retrieving the service graph

• Retrieving the service graph by group

• Retrieving traces

• Retrieving and refining root cause analytics

Retrieving the service graph

You can use the GetServiceGraph API to retrieve the JSON service graph. The API requires a start
time and end time, which you can calculate from a Linux terminal with the date command.

$ date +%s
1499394617

date +%s prints a date in seconds. Use this number as an end time and subtract time from it to
get a start time.

Example Script to retrieve a service graph for the last 10 minutes

EPOCH=$(date +%s)
aws xray get-service-graph --start-time $(($EPOCH-600)) --end-time $EPOCH

The following example shows a service graph with 4 nodes, including a client node, an EC2
instance, a DynamoDB table, and an Amazon SNS topic.

Example GetServiceGraph output

{
 "Services": [
 {
 "ReferenceId": 0,
 "Name": "xray-sample.elasticbeanstalk.com",
 "Names": [

Getting data 97

https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraph.html

AWS X-Ray Developer Guide

 "xray-sample.elasticbeanstalk.com"
],
 "Type": "client",
 "State": "unknown",
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "Edges": [
 {
 "ReferenceId": 2,
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "SummaryStatistics": {
 "OkCount": 3,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 1,
 "TotalCount": 1
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 4,
 "TotalResponseTime": 0.273
 },
 "ResponseTimeHistogram": [
 {
 "Value": 0.005,
 "Count": 1
 },
 {
 "Value": 0.015,
 "Count": 1
 },
 {
 "Value": 0.157,
 "Count": 1
 },
 {
 "Value": 0.096,
 "Count": 1
 }
],
 "Aliases": []

Getting data 98

AWS X-Ray Developer Guide

 }
]
 },
 {
 "ReferenceId": 1,
 "Name": "awseb-e-dixzws4s9p-stack-StartupSignupsTable-4IMSMHAYX2BA",
 "Names": [
 "awseb-e-dixzws4s9p-stack-StartupSignupsTable-4IMSMHAYX2BA"
],
 "Type": "AWS::DynamoDB::Table",
 "State": "unknown",
 "StartTime": 1528317583.0,
 "EndTime": 1528317589.0,
 "Edges": [],
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.12
 },
 "DurationHistogram": [
 {
 "Value": 0.076,
 "Count": 1
 },
 {
 "Value": 0.044,
 "Count": 1
 }
],
 "ResponseTimeHistogram": [
 {
 "Value": 0.076,
 "Count": 1
 },
 {

Getting data 99

AWS X-Ray Developer Guide

 "Value": 0.044,
 "Count": 1
 }
]
 },
 {
 "ReferenceId": 2,
 "Name": "xray-sample.elasticbeanstalk.com",
 "Names": [
 "xray-sample.elasticbeanstalk.com"
],
 "Root": true,
 "Type": "AWS::EC2::Instance",
 "State": "active",
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "Edges": [
 {
 "ReferenceId": 1,
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.12
 },
 "ResponseTimeHistogram": [
 {
 "Value": 0.076,
 "Count": 1
 },
 {
 "Value": 0.044,
 "Count": 1
 }

Getting data 100

AWS X-Ray Developer Guide

],
 "Aliases": []
 },
 {
 "ReferenceId": 3,
 "StartTime": 1528317567.0,
 "EndTime": 1528317589.0,
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.125
 },
 "ResponseTimeHistogram": [
 {
 "Value": 0.049,
 "Count": 1
 },
 {
 "Value": 0.076,
 "Count": 1
 }
],
 "Aliases": []
 }
],
 "SummaryStatistics": {
 "OkCount": 3,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 1,
 "TotalCount": 1
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0

Getting data 101

AWS X-Ray Developer Guide

 },
 "TotalCount": 4,
 "TotalResponseTime": 0.273
 },
 "DurationHistogram": [
 {
 "Value": 0.005,
 "Count": 1
 },
 {
 "Value": 0.015,
 "Count": 1
 },
 {
 "Value": 0.157,
 "Count": 1
 },
 {
 "Value": 0.096,
 "Count": 1
 }
],
 "ResponseTimeHistogram": [
 {
 "Value": 0.005,
 "Count": 1
 },
 {
 "Value": 0.015,
 "Count": 1
 },
 {
 "Value": 0.157,
 "Count": 1
 },
 {
 "Value": 0.096,
 "Count": 1
 }
]
 },
 {
 "ReferenceId": 3,
 "Name": "SNS",

Getting data 102

AWS X-Ray Developer Guide

 "Names": [
 "SNS"
],
 "Type": "AWS::SNS",
 "State": "unknown",
 "StartTime": 1528317583.0,
 "EndTime": 1528317589.0,
 "Edges": [],
 "SummaryStatistics": {
 "OkCount": 2,
 "ErrorStatistics": {
 "ThrottleCount": 0,
 "OtherCount": 0,
 "TotalCount": 0
 },
 "FaultStatistics": {
 "OtherCount": 0,
 "TotalCount": 0
 },
 "TotalCount": 2,
 "TotalResponseTime": 0.125
 },
 "DurationHistogram": [
 {
 "Value": 0.049,
 "Count": 1
 },
 {
 "Value": 0.076,
 "Count": 1
 }
],
 "ResponseTimeHistogram": [
 {
 "Value": 0.049,
 "Count": 1
 },
 {
 "Value": 0.076,
 "Count": 1
 }
]
 }
]

Getting data 103

AWS X-Ray Developer Guide

}

Retrieving the service graph by group

To call for a service graph based on the contents of a group, include a groupName or groupARN.
The following example shows a service graph call to a group named Example1.

Example Script to retrieve a service graph by name for group Example1

aws xray get-service-graph --group-name "Example1"

Retrieving traces

You can use the GetTraceSummaries API to get a list of trace summaries. Trace summaries
include information that you can use to identify traces that you want to download in full, including
annotations, request and response information, and IDs.

There are two TimeRangeType flags available when calling aws xray get-trace-summaries:

• TraceId – The default GetTraceSummaries search uses TraceID time and returns traces started
within the computed [start_time, end_time) range. This range of timestamps is calculated
based on the encoding of the timestamp within the TraceId, or can be defined manually.

• Event time – To search for events as they happen over the time, AWS X-Ray allows searching
for traces using event timestamps. Event time returns traces active during the [start_time,
end_time) range, regardless of when the trace began.

Use the aws xray get-trace-summaries command to get a list of trace summaries. The
following commands get a list of trace summaries from between 1 and 2 minutes in the past using
the default TraceId time.

Example Script to get trace summaries

EPOCH=$(date +%s)
aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time $(($EPOCH-60))

Example GetTraceSummaries output

{
 "TraceSummaries": [
 {

Getting data 104

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

 "HasError": false,
 "Http": {
 "HttpStatus": 200,
 "ClientIp": "205.255.255.183",
 "HttpURL": "http://scorekeep.elasticbeanstalk.com/api/session",
 "UserAgent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
 "HttpMethod": "POST"
 },
 "Users": [],
 "HasFault": false,
 "Annotations": {},
 "ResponseTime": 0.084,
 "Duration": 0.084,
 "Id": "1-59602606-a43a1ac52fc7ee0eea12a82c",
 "HasThrottle": false
 },
 {
 "HasError": false,
 "Http": {
 "HttpStatus": 200,
 "ClientIp": "205.255.255.183",
 "HttpURL": "http://scorekeep.elasticbeanstalk.com/api/user",
 "UserAgent": "Mozilla/5.0 (Windows NT 6.1; Win64; x64)
 AppleWebKit/537.36 (KHTML, like Gecko) Chrome/59.0.3071.115 Safari/537.36",
 "HttpMethod": "POST"
 },
 "Users": [
 {
 "UserName": "5M388M1E"
 }
],
 "HasFault": false,
 "Annotations": {
 "UserID": [
 {
 "AnnotationValue": {
 "StringValue": "5M388M1E"
 }
 }
],
 "Name": [
 {
 "AnnotationValue": {

Getting data 105

AWS X-Ray Developer Guide

 "StringValue": "Ola"
 }
 }
]
 },
 "ResponseTime": 3.232,
 "Duration": 3.232,
 "Id": "1-59602603-23fc5b688855d396af79b496",
 "HasThrottle": false
 }
],
 "ApproximateTime": 1499473304.0,
 "TracesProcessedCount": 2
}

Use the trace ID from the output to retrieve a full trace with the BatchGetTraces API.

Example BatchGetTraces command

$ aws xray batch-get-traces --trace-ids 1-596025b4-7170afe49f7aa708b1dd4a6b

Example BatchGetTraces output

{
 "Traces": [
 {
 "Duration": 3.232,
 "Segments": [
 {
 "Document": "{\"id\":\"1fb07842d944e714\",\"name\":
\"random-name\",\"start_time\":1.499473411677E9,\"end_time\":1.499473414572E9,
\"parent_id\":\"0c544c1b1bbff948\",\"http\":{\"response\":{\"status\":200}},
\"aws\":{\"request_id\":\"ac086670-6373-11e7-a174-f31b3397f190\"},\"trace_id\":
\"1-59602603-23fc5b688855d396af79b496\",\"origin\":\"AWS::Lambda\",\"resource_arn\":
\"arn:aws:lambda:us-west-2:123456789012:function:random-name\"}",
 "Id": "1fb07842d944e714"
 },
 {
 "Document": "{\"id\":\"194fcc8747581230\",\"name\":\"Scorekeep
\",\"start_time\":1.499473411562E9,\"end_time\":1.499473414794E9,\"http\":{\"request
\":{\"url\":\"http://scorekeep.elasticbeanstalk.com/api/user\",\"method\":\"POST\",
\"user_agent\":\"Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML,
 like Gecko) Chrome/59.0.3071.115 Safari/537.36\",\"client_ip\":\"205.251.233.183\"},

Getting data 106

https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide

\"response\":{\"status\":200}},\"aws\":{\"elastic_beanstalk\":{\"version_label\":\"app-
abb9-170708_002045\",\"deployment_id\":406,\"environment_name\":\"scorekeep-dev\"},
\"ec2\":{\"availability_zone\":\"us-west-2c\",\"instance_id\":\"i-0cd9e448944061b4a
\"},\"xray\":{\"sdk_version\":\"1.1.2\",\"sdk\":\"X-Ray for Java\"}},\"service
\":{},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"user\":\"5M388M1E
\",\"origin\":\"AWS::ElasticBeanstalk::Environment\",\"subsegments\":[{\"id\":
\"0c544c1b1bbff948\",\"name\":\"Lambda\",\"start_time\":1.499473411629E9,\"end_time
\":1.499473414572E9,\"http\":{\"response\":{\"status\":200,\"content_length\":14}},
\"aws\":{\"log_type\":\"None\",\"status_code\":200,\"function_name\":\"random-name
\",\"invocation_type\":\"RequestResponse\",\"operation\":\"Invoke\",\"request_id
\":\"ac086670-6373-11e7-a174-f31b3397f190\",\"resource_names\":[\"random-name\"]},
\"namespace\":\"aws\"},{\"id\":\"071684f2e555e571\",\"name\":\"## UserModel.saveUser
\",\"start_time\":1.499473414581E9,\"end_time\":1.499473414769E9,\"metadata\":{\"debug
\":{\"test\":\"Metadata string from UserModel.saveUser\"}},\"subsegments\":[{\"id\":
\"4cd3f10b76c624b4\",\"name\":\"DynamoDB\",\"start_time\":1.49947341469E9,\"end_time
\":1.499473414769E9,\"http\":{\"response\":{\"status\":200,\"content_length\":57}},
\"aws\":{\"table_name\":\"scorekeep-user\",\"operation\":\"UpdateItem\",\"request_id
\":\"MFQ8CGJ3JTDDVVVASUAAJGQ6NJ82F738BOB4KQNSO5AEMVJF66Q9\",\"resource_names\":
[\"scorekeep-user\"]},\"namespace\":\"aws\"}]}]}",
 "Id": "194fcc8747581230"
 },
 {
 "Document": "{\"id\":\"00f91aa01f4984fd\",\"name\":
\"random-name\",\"start_time\":1.49947341283E9,\"end_time\":1.49947341457E9,
\"parent_id\":\"1fb07842d944e714\",\"aws\":{\"function_arn\":\"arn:aws:lambda:us-
west-2:123456789012:function:random-name\",\"resource_names\":[\"random-name\"],
\"account_id\":\"123456789012\"},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",
\"origin\":\"AWS::Lambda::Function\",\"subsegments\":[{\"id\":\"e6d2fe619f827804\",
\"name\":\"annotations\",\"start_time\":1.499473413012E9,\"end_time\":1.499473413069E9,
\"annotations\":{\"UserID\":\"5M388M1E\",\"Name\":\"Ola\"}},{\"id\":\"b29b548af4d54a0f
\",\"name\":\"SNS\",\"start_time\":1.499473413112E9,\"end_time\":1.499473414071E9,
\"http\":{\"response\":{\"status\":200}},\"aws\":{\"operation\":\"Publish\",
\"region\":\"us-west-2\",\"request_id\":\"a2137970-f6fc-5029-83e8-28aadeb99198\",
\"retries\":0,\"topic_arn\":\"arn:aws:sns:us-west-2:123456789012:awseb-e-
ruag3jyweb-stack-NotificationTopic-6B829NT9V5O9\"},\"namespace\":\"aws\"},{\"id\":
\"2279c0030c955e52\",\"name\":\"Initialization\",\"start_time\":1.499473412064E9,
\"end_time\":1.499473412819E9,\"aws\":{\"function_arn\":\"arn:aws:lambda:us-
west-2:123456789012:function:random-name\"}}]}",
 "Id": "00f91aa01f4984fd"
 },
 {
 "Document": "{\"id\":\"17ba309b32c7fbaf\",\"name\":
\"DynamoDB\",\"start_time\":1.49947341469E9,\"end_time\":1.499473414769E9,
\"parent_id\":\"4cd3f10b76c624b4\",\"inferred\":true,\"http\":{\"response

Getting data 107

AWS X-Ray Developer Guide

\":{\"status\":200,\"content_length\":57}},\"aws\":{\"table_name
\":\"scorekeep-user\",\"operation\":\"UpdateItem\",\"request_id\":
\"MFQ8CGJ3JTDDVVVASUAAJGQ6NJ82F738BOB4KQNSO5AEMVJF66Q9\",\"resource_names\":
[\"scorekeep-user\"]},\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"origin\":
\"AWS::DynamoDB::Table\"}",
 "Id": "17ba309b32c7fbaf"
 },
 {
 "Document": "{\"id\":\"1ee3c4a523f89ca5\",\"name\":\"SNS
\",\"start_time\":1.499473413112E9,\"end_time\":1.499473414071E9,\"parent_id\":
\"b29b548af4d54a0f\",\"inferred\":true,\"http\":{\"response\":{\"status\":200}},\"aws
\":{\"operation\":\"Publish\",\"region\":\"us-west-2\",\"request_id\":\"a2137970-
f6fc-5029-83e8-28aadeb99198\",\"retries\":0,\"topic_arn\":\"arn:aws:sns:us-
west-2:123456789012:awseb-e-ruag3jyweb-stack-NotificationTopic-6B829NT9V5O9\"},
\"trace_id\":\"1-59602603-23fc5b688855d396af79b496\",\"origin\":\"AWS::SNS\"}",
 "Id": "1ee3c4a523f89ca5"
 }
],
 "Id": "1-59602603-23fc5b688855d396af79b496"
 }
],
 "UnprocessedTraceIds": []
}

The full trace includes a document for each segment, compiled from all of the segment documents
received with the same trace ID. These documents don't represent the data as it was sent to X-
Ray by your application. Instead, they represent the processed documents generated by the X-
Ray service. X-Ray creates the full trace document by compiling segment documents sent by your
application, and removing data that doesn't comply with the segment document schema.

X-Ray also creates inferred segments for downstream calls to services that don't send segments
themselves. For example, when you call DynamoDB with an instrumented client, the X-Ray SDK
records a subsegment with details about the call from its point of view. However, DynamoDB
doesn't send a corresponding segment. X-Ray uses the information in the subsegment to create an
inferred segment to represent the DynamoDB resource in the trace map, and adds it to the trace
document.

To get multiple traces from the API, you need a list of trace IDs, which you can extract from the
output of get-trace-summaries with an AWS CLI query. Redirect the list to the input of batch-
get-traces to get full traces for a specific time period.

Getting data 108

https://docs.aws.amazon.com/cli/latest/userguide/controlling-output.html#controlling-output-filter

AWS X-Ray Developer Guide

Example Script to get full traces for a one minute period

EPOCH=$(date +%s)
TRACEIDS=$(aws xray get-trace-summaries --start-time $(($EPOCH-120)) --end-time
 $(($EPOCH-60)) --query 'TraceSummaries[*].Id' --output text)
aws xray batch-get-traces --trace-ids $TRACEIDS --query 'Traces[*]'

Retrieving and refining root cause analytics

Upon generating a trace summary with the GetTraceSummaries API , partial trace summaries can
be reused in their JSON format to create a refined filter expression based upon root causes. See the
examples below for a walkthrough of the refinement steps.

Example Example GetTraceSummaries output - response time root cause section

{
 "Services": [
 {
 "Name": "GetWeatherData",
 "Names": ["GetWeatherData"],
 "AccountId": 123456789012,
 "Type": null,
 "Inferred": false,
 "EntityPath": [
 {
 "Name": "GetWeatherData",
 "Coverage": 1.0,
 'Remote": false
 },
 {
 "Name": "get_temperature",
 "Coverage": 0.8,
 "Remote": false
 }
]
 },
 {
 "Name": "GetTemperature",
 "Names": ["GetTemperature"],
 "AccountId": 123456789012,
 "Type": null,
 "Inferred": false,

Getting data 109

https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

 "EntityPath": [
 {
 "Name": "GetTemperature",
 "Coverage": 0.7,
 "Remote": false
 }
]
 }
]
}

By editing and making omissions to the above output, this JSON can become a filter for matched
root cause entities. For every field present in the JSON, any candidate match must be exact, or the
trace will not be returned. Removed fields become wildcard values, a format which is compatible
with the filter expression query structure.

Example Reformatted response time root cause

{
 "Services": [
 {
 "Name": "GetWeatherData",
 "EntityPath": [
 {
 "Name": "GetWeatherData"
 },
 {
 "Name": "get_temperature"
 }
]
 },
 {
 "Name": "GetTemperature",
 "EntityPath": [
 {
 "Name": "GetTemperature"
 }
]
 }
]
}

Getting data 110

AWS X-Ray Developer Guide

This JSON is then used as part of a filter expression through a call to rootcause.json = #[{}].
Refer to the Filter Expressions chapter for more details about querying with filter expressions.

Example Example JSON filter

rootcause.json = #[{ "Services": [{ "Name": "GetWeatherData", "EntityPath": [{ "Name":
 "GetWeatherData" }, { "Name": "get_temperature" }] }, { "Name": "GetTemperature",
 "EntityPath": [{ "Name": "GetTemperature" }] }] }]

Configuring sampling, groups, and encryption settings with the AWS X-
Ray API

AWS X-Ray provides APIs for configuring sampling rules, group rules, and encryption settings.

Sections

• Encryption settings

• Sampling rules

• Groups

Encryption settings

Use PutEncryptionConfig to specify an AWS Key Management Service (AWS KMS) key to use
for encryption.

Note

X-Ray does not support asymmetric KMS keys.

$ aws xray put-encryption-config --type KMS --key-id alias/aws/xray
{
 "EncryptionConfig": {
 "KeyId": "arn:aws:kms:us-east-2:123456789012:key/c234g4e8-39e9-4gb0-84e2-
b0ea215cbba5",
 "Status": "UPDATING",
 "Type": "KMS"
 }
}

Configuration 111

https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html

AWS X-Ray Developer Guide

For the key ID, you can use an alias (as shown in the example), a key ID, or an Amazon Resource
Name (ARN).

Use GetEncryptionConfig to get the current configuration. When X-Ray finishes applying your
settings, the status changes from UPDATING to ACTIVE.

$ aws xray get-encryption-config
{
 "EncryptionConfig": {
 "KeyId": "arn:aws:kms:us-east-2:123456789012:key/c234g4e8-39e9-4gb0-84e2-
b0ea215cbba5",
 "Status": "ACTIVE",
 "Type": "KMS"
 }
}

To stop using a KMS key and use default encryption, set the encryption type to NONE.

$ aws xray put-encryption-config --type NONE
{
 "EncryptionConfig": {
 "Status": "UPDATING",
 "Type": "NONE"
 }
}

Sampling rules

You can manage the sampling rules in your account with the X-Ray API. For more information
about adding and managing tags, see Tagging X-Ray sampling rules and groups.

Get all sampling rules with GetSamplingRules.

$ aws xray get-sampling-rules
{
 "SamplingRuleRecords": [
 {
 "SamplingRule": {
 "RuleName": "Default",
 "RuleARN": "arn:aws:xray:us-east-2:123456789012:sampling-rule/Default",
 "ResourceARN": "*",
 "Priority": 10000,

Configuration 112

https://docs.aws.amazon.com/xray/latest/api/API_GetEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

 "FixedRate": 0.05,
 "ReservoirSize": 1,
 "ServiceName": "*",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 0.0,
 "ModifiedAt": 1529959993.0
 }
]
}

The default rule applies to all requests that don't match another rule. It is the lowest priority
rule and cannot be deleted. You can, however, change the rate and reservoir size with
UpdateSamplingRule.

Example API input for UpdateSamplingRule – 10000-default.json

{
 "SamplingRuleUpdate": {
 "RuleName": "Default",
 "FixedRate": 0.01,
 "ReservoirSize": 0
 }
}

The following example uses the previous file as input to change the default rule to one percent
with no reservoir. Tags are optional. If you choose to add tags, a tag key is required, and tag values
are optional. To remove existing tags from a sampling rule, use UntagResource

$ aws xray update-sampling-rule --cli-input-json file://1000-default.json --tags
 [{"Key": "key_name","Value": "value"},{"Key": "key_name","Value": "value"}]
{
 "SamplingRuleRecords": [
 {
 "SamplingRule": {
 "RuleName": "Default",
 "RuleARN": "arn:aws:xray:us-east-2:123456789012:sampling-rule/Default",

Configuration 113

https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html

AWS X-Ray Developer Guide

 "ResourceARN": "*",
 "Priority": 10000,
 "FixedRate": 0.01,
 "ReservoirSize": 0,
 "ServiceName": "*",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 0.0,
 "ModifiedAt": 1529959993.0
 },

Create additional sampling rules with CreateSamplingRule. When you create a rule, most of
the rule fields are required. The following example creates two rules. This first rule sets a base rate
for the Scorekeep sample application. It matches all requests served by the API that don't match a
higher priority rule.

Example API input for UpdateSamplingRule – 9000-base-scorekeep.json

{
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 5,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1
 }
}

The second rule also applies to Scorekeep, but it has a higher priority and is more specific. This rule
sets a very low sampling rate for polling requests. These are GET requests made by the client every
few seconds to check for changes to the game state.

Configuration 114

https://docs.aws.amazon.com/xray/latest/api/API_CreateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html

AWS X-Ray Developer Guide

Example API input for UpdateSamplingRule – 5000-polling-scorekeep.json

{
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1
 }
}

Tags are optional. If you choose to add tags, a tag key is required, and tag values are optional.

$ aws xray create-sampling-rule --cli-input-json file://5000-polling-scorekeep.json --
tags [{"Key": "key_name","Value": "value"},{"Key": "key_name","Value": "value"}]
{
 "SamplingRuleRecord": {
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/polling-
scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530574399.0,
 "ModifiedAt": 1530574399.0
 }

Configuration 115

https://docs.aws.amazon.com/xray/latest/api/API_UpdateSamplingRule.html

AWS X-Ray Developer Guide

}
$ aws xray create-sampling-rule --cli-input-json file://9000-base-scorekeep.json
{
 "SamplingRuleRecord": {
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/base-
scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 5,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530574410.0,
 "ModifiedAt": 1530574410.0
 }
}

To delete a sampling rule, use DeleteSamplingRule.

$ aws xray delete-sampling-rule --rule-name polling-scorekeep
{
 "SamplingRuleRecord": {
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1:123456789012:sampling-rule/polling-
scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",

Configuration 116

https://docs.aws.amazon.com/xray/latest/api/API_DeleteSamplingRule.html

AWS X-Ray Developer Guide

 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530574399.0,
 "ModifiedAt": 1530574399.0
 }
}

Groups

You can use the X-Ray API to manage groups in your account. Groups are a collection of traces
that are defined by a filter expression. You can use groups to generate additional service graphs
and supply Amazon CloudWatch metrics. See Getting data from AWS X-Ray for more details about
working with service graphs and metrics through the X-Ray API. For more information about
groups, see Configuring groups. For more information about adding and managing tags, see
Tagging X-Ray sampling rules and groups.

Create a group with CreateGroup. Tags are optional. If you choose to add tags, a tag key is
required, and tag values are optional.

$ aws xray create-group --group-name "TestGroup" --filter-expression
 "service(\"example.com\") {fault}" --tags [{"Key": "key_name","Value": "value"},
{"Key": "key_name","Value": "value"}]
{
 "GroupName": "TestGroup",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniqueID",
 "FilterExpression": "service(\"example.com\") {fault OR error}"
}

Get all existing groups with GetGroups.

$ aws xray get-groups
{
 "Groups": [
 {
 "GroupName": "TestGroup",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniqueID",
 "FilterExpression": "service(\"example.com\") {fault OR error}"
 },
 {
 "GroupName": "TestGroup2",

Configuration 117

AWS X-Ray Developer Guide

 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup2/
UniqueID",
 "FilterExpression": "responsetime > 2"
 }
],
 "NextToken": "tokenstring"
}

Update a group with UpdateGroup. Tags are optional. If you choose to add tags, a tag key is
required, and tag values are optional. To remove existing tags from a group, use UntagResource.

$ aws xray update-group --group-name "TestGroup" --group-arn "arn:aws:xray:us-
east-2:123456789012:group/TestGroup/UniqueID" --filter-expression
 "service(\"example.com\") {fault OR error}" --tags [{"Key": "Stage","Value": "Prod"},
{"Key": "Department","Value": "QA"}]
{
 "GroupName": "TestGroup",
 "GroupARN": "arn:aws:xray:us-east-2:123456789012:group/TestGroup/UniqueID",
 "FilterExpression": "service(\"example.com\") {fault OR error}"
}

Delete a group with DeleteGroup.

$ aws xray delete-group --group-name "TestGroup" --group-arn "arn:aws:xray:us-
east-2:123456789012:group/TestGroup/UniqueID"
 {
 }

Using sampling rules with the X-Ray API

The AWS X-Ray SDK uses the X-Ray API to get sampling rules, report sampling results, and get
quotas. You can use these APIs to get a better understanding of how sampling rules work, or to
implement sampling in a language that the X-Ray SDK doesn't support.

Start by getting all sampling rules with GetSamplingRules.

$ aws xray get-sampling-rules
{
 "SamplingRuleRecords": [
 {
 "SamplingRule": {

Sampling 118

https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html

AWS X-Ray Developer Guide

 "RuleName": "Default",
 "RuleARN": "arn:aws:xray:us-east-1::sampling-rule/Default",
 "ResourceARN": "*",
 "Priority": 10000,
 "FixedRate": 0.01,
 "ReservoirSize": 0,
 "ServiceName": "*",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 0.0,
 "ModifiedAt": 1530558121.0
 },
 {
 "SamplingRule": {
 "RuleName": "base-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1::sampling-rule/base-scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 2,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530573954.0,
 "ModifiedAt": 1530920505.0
 },
 {
 "SamplingRule": {
 "RuleName": "polling-scorekeep",
 "RuleARN": "arn:aws:xray:us-east-1::sampling-rule/polling-scorekeep",
 "ResourceARN": "*",
 "Priority": 5000,
 "FixedRate": 0.003,
 "ReservoirSize": 0,

Sampling 119

AWS X-Ray Developer Guide

 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "GET",
 "URLPath": "/api/state/*",
 "Version": 1,
 "Attributes": {}
 },
 "CreatedAt": 1530918163.0,
 "ModifiedAt": 1530918163.0
 }
]
}

The output includes the default rule and custom rules. See Sampling rules if you haven't yet
created sampling rules.

Evaluate rules against incoming requests in ascending order of priority. When a rule matches, use
the fixed rate and reservoir size to make a sampling decision. Record sampled requests and ignore
(for tracing purposes) unsampled requests. Stop evaluating rules when a sampling decision is
made.

A rules reservoir size is the target number of traces to record per second before applying the fixed
rate. The reservoir applies across all services cumulatively, so you can't use it directly. However,
if it is non-zero, you can borrow one trace per second from the reservoir until X-Ray assigns a
quota. Before receiving a quota, record the first request each second, and apply the fixed rate to
additional requests. The fixed rate is a decimal between 0 and 1.00 (100%).

The following example shows a call to GetSamplingTargets with details about sampling
decisions made over the last 10 seconds.

$ aws xray get-sampling-targets --sampling-statistics-documents '[
 {
 "RuleName": "base-scorekeep",
 "ClientID": "ABCDEF1234567890ABCDEF10",
 "Timestamp": "2018-07-07T00:20:06",
 "RequestCount": 110,
 "SampledCount": 20,
 "BorrowCount": 10
 },
 {

Sampling 120

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingTargets.html

AWS X-Ray Developer Guide

 "RuleName": "polling-scorekeep",
 "ClientID": "ABCDEF1234567890ABCDEF10",
 "Timestamp": "2018-07-07T00:20:06",
 "RequestCount": 10500,
 "SampledCount": 31,
 "BorrowCount": 0
 }
]'
{
 "SamplingTargetDocuments": [
 {
 "RuleName": "base-scorekeep",
 "FixedRate": 0.1,
 "ReservoirQuota": 2,
 "ReservoirQuotaTTL": 1530923107.0,
 "Interval": 10
 },
 {
 "RuleName": "polling-scorekeep",
 "FixedRate": 0.003,
 "ReservoirQuota": 0,
 "ReservoirQuotaTTL": 1530923107.0,
 "Interval": 10
 }
],
 "LastRuleModification": 1530920505.0,
 "UnprocessedStatistics": []
}

The response from X-Ray includes a quota to use instead of borrowing from the reservoir. In this
example, the service borrowed 10 traces from the reservoir over 10 seconds, and applied the fixed
rate of 10 percent to the other 100 requests, resulting in a total of 20 sampled requests. The quota
is good for five minutes (indicated by the time to live) or until a new quota is assigned. X-Ray may
also assign a longer reporting interval than the default, although it didn't here.

Note

The response from X-Ray might not include a quota the first time you call it. Continue
borrowing from the reservoir until you are assigned a quota.

Sampling 121

AWS X-Ray Developer Guide

The other two fields in the response might indicate issues with the input. Check
LastRuleModification against the last time you called GetSamplingRules. If it's newer, get
a new copy of the rules. UnprocessedStatistics can include errors that indicate that a rule has
been deleted, that the statistics document in the input was too old, or permissions errors.

AWS X-Ray segment documents

A trace segment is a JSON representation of a request that your application serves. A trace
segment records information about the original request, information about the work that your
application does locally, and subsegments with information about downstream calls that your
application makes to AWS resources, HTTP APIs, and SQL databases.

A segment document conveys information about a segment to X-Ray. A segment document can
be up to 64 kB and contain a whole segment with subsegments, a fragment of a segment that
indicates that a request is in progress, or a single subsegment that is sent separately. You can send
segment documents directly to X-Ray by using the PutTraceSegments API.

X-Ray compiles and processes segment documents to generate queryable trace summaries and
full traces that you can access by using the GetTraceSummaries and BatchGetTraces APIs,
respectively. In addition to the segments and subsegments that you send to X-Ray, the service
uses information in subsegments to generate inferred segments and adds them to the full trace.
Inferred segments represent downstream services and resources in the trace map.

X-Ray provides a JSON schema for segment documents. You can download the schema here: xray-
segmentdocument-schema-v1.0.0. The fields and objects listed in the schema are described in
more detail in the following sections.

A subset of segment fields are indexed by X-Ray for use with filter expressions. For example, if you
set the user field on a segment to a unique identifier, you can search for segments associated
with specific users in the X-Ray console or by using the GetTraceSummaries API. For more
information, see Using filter expressions.

When you instrument your application with the X-Ray SDK, the SDK generates segment documents
for you. Instead of sending segment documents directly to X-Ray, the SDK transmits them over a
local UDP port to the X-Ray daemon. For more information, see Sending segment documents to
the X-Ray daemon.

Sections

• Segment fields

Segment documents 122

https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingRules.html
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
samples/xray-segmentdocument-schema-v1.0.0.zip
samples/xray-segmentdocument-schema-v1.0.0.zip

AWS X-Ray Developer Guide

• Subsegments

• HTTP request data

• Annotations

• Metadata

• AWS resource data

• Errors and exceptions

• SQL queries

Segment fields

A segment records tracing information about a request that your application serves. At a minimum,
a segment records the name, ID, start time, trace ID, and end time of the request.

Example Minimal complete segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0a",
 "start_time" : 1.478293361271E9,
 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "end_time" : 1.478293361449E9
}

The following fields are required, or conditionally required, for segments.

Note

Values must be strings (up to 250 characters) unless noted otherwise.

Required Segment Fields

• name – The logical name of the service that handled the request, up to 200 characters. For
example, your application's name or domain name. Names can contain Unicode letters, numbers,
and whitespace, and the following symbols: _, ., :, /, %, &, #, =, +, \, -, @

• id – A 64-bit identifier for the segment, unique among segments in the same trace, in 16
hexadecimal digits.

Segment documents 123

AWS X-Ray Developer Guide

• trace_id – A unique identifier that connects all segments and subsegments originating from a
single client request.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example,
1-58406520-a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID
must be formatted in X-Ray trace ID format when sending to X-Ray. For example,
W3C trace ID 4efaaf4d1e8720b39541901950019ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

Trace ID Security

Trace IDs are visible in response headers. Generate trace IDs with a secure random
algorithm to ensure that attackers cannot calculate future trace IDs and send requests
with those IDs to your application.

• start_time – number that is the time the segment was created, in floating point seconds
in epoch time. For example, 1480615200.010 or 1.480615200010E9. Use as many decimal
places as you need. Microsecond resolution is recommended when available.

• end_time – number that is the time the segment was closed. For example, 1480615200.090 or
1.480615200090E9. Specify either an end_time or in_progress.

Segment documents 124

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

• in_progress – boolean, set to true instead of specifying an end_time to record that a
segment is started, but is not complete. Send an in-progress segment when your application
receives a request that will take a long time to serve, to trace the request receipt. When the
response is sent, send the complete segment to overwrite the in-progress segment. Only send
one complete segment, and one or zero in-progress segments, per request.

Service Names

A segment's name should match the domain name or logical name of the service that
generates the segment. However, this is not enforced. Any application that has permission
to PutTraceSegments can send segments with any name.

The following fields are optional for segments.

Optional Segment Fields

• service – An object with information about your application.

• version – A string that identifies the version of your application that served the request.

• user – A string that identifies the user who sent the request.

• origin – The type of AWS resource running your application.

Supported Values

• AWS::EC2::Instance – An Amazon EC2 instance.

• AWS::ECS::Container – An Amazon ECS container.

• AWS::ElasticBeanstalk::Environment – An Elastic Beanstalk environment.

When multiple values are applicable to your application, use the one that is most specific. For
example, a Multicontainer Docker Elastic Beanstalk environment runs your application on an
Amazon ECS container, which in turn runs on an Amazon EC2 instance. In this case you would set
the origin to AWS::ElasticBeanstalk::Environment as the environment is the parent of
the other two resources.

• parent_id – A subsegment ID you specify if the request originated from an instrumented
application. The X-Ray SDK adds the parent subsegment ID to the tracing header for
downstream HTTP calls. In the case of nested subsegments, a subsegment can have a segment
or a subsegment as its parent.

Segment documents 125

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

• http – http objects with information about the original HTTP request.

• aws – aws object with information about the AWS resource on which your application served the
request.

• error, throttle, fault, and cause – error fields that indicate an error occurred and that
include information about the exception that caused the error.

• annotations – annotations object with key-value pairs that you want X-Ray to index for
search.

• metadata – metadata object with any additional data that you want to store in the segment.

• subsegments – array of subsegment objects.

Subsegments

You can create subsegments to record calls to AWS services and resources that you make with the
AWS SDK, calls to internal or external HTTP web APIs, or SQL database queries. You can also create
subsegments to debug or annotate blocks of code in your application. Subsegments can contain
other subsegments, so a custom subsegment that records metadata about an internal function call
can contain other custom subsegments and subsegments for downstream calls.

A subsegment records a downstream call from the point of view of the service that calls it. X-Ray
uses subsegments to identify downstream services that don't send segments and create entries for
them on the service graph.

A subsegment can be embedded in a full segment document or sent independently. Send
subsegments separately to asynchronously trace downstream calls for long-running requests, or to
avoid exceeding the maximum segment document size.

Example Segment with embedded subsegment

An independent subsegment has a type of subsegment and a parent_id that identifies the
parent segment.

{
 "trace_id" : "1-5759e988-bd862e3fe1be46a994272793",
 "id" : "defdfd9912dc5a56",
 "start_time" : 1461096053.37518,
 "end_time" : 1461096053.4042,
 "name" : "www.example.com",
 "http" : {
 "request" : {

Segment documents 126

AWS X-Ray Developer Guide

 "url" : "https://www.example.com/health",
 "method" : "GET",
 "user_agent" : "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_11_6)
 AppleWebKit/601.7.7",
 "client_ip" : "11.0.3.111"
 },
 "response" : {
 "status" : 200,
 "content_length" : 86
 }
 },
 "subsegments" : [
 {
 "id" : "53995c3f42cd8ad8",
 "name" : "api.example.com",
 "start_time" : 1461096053.37769,
 "end_time" : 1461096053.40379,
 "namespace" : "remote",
 "http" : {
 "request" : {
 "url" : "https://api.example.com/health",
 "method" : "POST",
 "traced" : true
 },
 "response" : {
 "status" : 200,
 "content_length" : 861
 }
 }
 }
]
}

For long-running requests, you can send an in-progress segment to notify X-Ray that the request
was received, and then send subsegments separately to trace them before completing the original
request.

Example In-progress segment

{
 "name" : "example.com",
 "id" : "70de5b6f19ff9a0b",
 "start_time" : 1.478293361271E9,

Segment documents 127

AWS X-Ray Developer Guide

 "trace_id" : "1-581cf771-a006649127e371903a2de979",
 "in_progress": true
}

Example Independent subsegment

An independent subsegment has a type of subsegment, a trace_id, and a parent_id that
identifies the parent segment.

{
 "name" : "api.example.com",
 "id" : "53995c3f42cd8ad8",
 "start_time" : 1.478293361271E9,
 "end_time" : 1.478293361449E9,
 "type" : "subsegment",
 "trace_id" : "1-581cf771-a006649127e371903a2de979"
 "parent_id" : "defdfd9912dc5a56",
 "namespace" : "remote",
 "http" : {
 "request" : {
 "url" : "https://api.example.com/health",
 "method" : "POST",
 "traced" : true
 },
 "response" : {
 "status" : 200,
 "content_length" : 861
 }
 }
}

When the request is complete, close the segment by resending it with an end_time. The complete
segment overwrites the in-progress segment.

You can also send subsegments separately for completed requests that triggered asynchronous
workflows. For example, a web API may return a OK 200 response immediately prior to starting
the work that the user requested. You can send a full segment to X-Ray as soon as the response is
sent, followed by subsegments for work completed later. As with segments, you can also send a
subsegment fragment to record that the subsegment has started, and then overwrite it with a full
subsegment once the downstream call is complete.

The following fields are required, or are conditionally required, for subsegments.

Segment documents 128

AWS X-Ray Developer Guide

Note

Values are strings up to 250 characters unless noted otherwise.

Required Subsegment Fields

• id – A 64-bit identifier for the subsegment, unique among segments in the same trace, in 16
hexadecimal digits.

• name – The logical name of the subsegment. For downstream calls, name the subsegment after
the resource or service called. For custom subsegments, name the subsegment after the code
that it instruments (e.g., a function name).

• start_time – number that is the time the subsegment was created, in floating point seconds in
epoch time, accurate to milliseconds. For example, 1480615200.010 or 1.480615200010E9.

• end_time – number that is the time the subsegment was closed. For example,
1480615200.090 or 1.480615200090E9. Specify an end_time or in_progress.

• in_progress – boolean that is set to true instead of specifying an end_time to record that
a subsegment is started, but is not complete. Only send one complete subsegment, and one or
zero in-progress subsegments, per downstream request.

• trace_id – Trace ID of the subsegment's parent segment. Required only if sending a
subsegment separately.

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example,
1-58406520-a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Note

X-Ray now supports trace IDs that are created using OpenTelemetry and any other
framework that conforms with the W3C Trace Context specification. A W3C trace ID

Segment documents 129

https://www.w3.org/TR/trace-context/

AWS X-Ray Developer Guide

must be formatted in X-Ray trace ID format when sending to X-Ray. For example,
W3C trace ID 4efaaf4d1e8720b39541901950019ee5 should be formatted as
1-4efaaf4d-1e8720b39541901950019ee5 when sending to X-Ray. X-Ray trace IDs
include the original request time stamp in Unix epoch time, but this isn't required when
sending W3C trace IDs in X-Ray format.

• parent_id – Segment ID of the subsegment's parent segment. Required only if sending a
subsegment separately. In the case of nested subsegments, a subsegment can have a segment or
a subsegment as its parent.

• type – subsegment. Required only if sending a subsegment separately.

The following fields are optional for subsegments.

Optional Subsegment Fields

• namespace – aws for AWS SDK calls; remote for other downstream calls.

• http – http object with information about an outgoing HTTP call.

• aws – aws object with information about the downstream AWS resource that your application
called.

• error, throttle, fault, and cause – error fields that indicate an error occurred and that
include information about the exception that caused the error.

• annotations – annotations object with key-value pairs that you want X-Ray to index for
search.

• metadata – metadata object with any additional data that you want to store in the segment.

• subsegments – array of subsegment objects.

• precursor_ids – array of subsegment IDs that identifies subsegments with the same parent
that completed prior to this subsegment.

HTTP request data

Use an HTTP block to record details about an HTTP request that your application served (in a
segment) or that your application made to a downstream HTTP API (in a subsegment). Most of the
fields in this object map to information found in an HTTP request and response.

Segment documents 130

AWS X-Ray Developer Guide

http

All fields are optional.

• request – Information about a request.

• method – The request method. For example, GET.

• url – The full URL of the request, compiled from the protocol, hostname, and path of the
request.

• user_agent – The user agent string from the requester's client.

• client_ip – The IP address of the requester. Can be retrieved from the IP packet's Source
Address or, for forwarded requests, from an X-Forwarded-For header.

• x_forwarded_for – (segments only) boolean indicating that the client_ip was read from
an X-Forwarded-For header and is not reliable as it could have been forged.

• traced – (subsegments only) boolean indicating that the downstream call is to another
traced service. If this field is set to true, X-Ray considers the trace to be broken until the
downstream service uploads a segment with a parent_id that matches the id of the
subsegment that contains this block.

• response – Information about a response.

• status – integer indicating the HTTP status of the response.

• content_length – integer indicating the length of the response body in bytes.

When you instrument a call to a downstream web api, record a subsegment with information about
the HTTP request and response. X-Ray uses the subsegment to generate an inferred segment for
the remote API.

Example Segment for HTTP call served by an application running on Amazon EC2

{
 "id": "6b55dcc497934f1a",
 "start_time": 1484789387.126,
 "end_time": 1484789387.535,
 "trace_id": "1-5880168b-fd5158284b67678a3bb5a78c",
 "name": "www.example.com",
 "origin": "AWS::EC2::Instance",
 "aws": {
 "ec2": {
 "availability_zone": "us-west-2c",

Segment documents 131

AWS X-Ray Developer Guide

 "instance_id": "i-0b5a4678fc325bg98"
 },
 "xray": {
 "sdk_version": "2.11.0 for Java"
 },
 },
 "http": {
 "request": {
 "method": "POST",
 "client_ip": "78.255.233.48",
 "url": "http://www.example.com/api/user",
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101
 Firefox/45.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200
 }
 }

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{

Segment documents 132

AWS X-Ray Developer Guide

 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Annotations

Segments and subsegments can include an annotations object containing one or more fields
that X-Ray indexes for use with filter expressions. Fields can have string, number, or Boolean values
(no objects or arrays). X-Ray indexes up to 50 annotations per trace.

Example Segment for HTTP call with annotations

{
 "id": "6b55dcc497932f1a",
 "start_time": 1484789187.126,
 "end_time": 1484789187.535,
 "trace_id": "1-5880168b-fd515828bs07678a3bb5a78c",
 "name": "www.example.com",
 "origin": "AWS::EC2::Instance",
 "aws": {
 "ec2": {
 "availability_zone": "us-west-2c",
 "instance_id": "i-0b5a4678fc325bg98"
 },
 "xray": {
 "sdk_version": "2.11.0 for Java"
 },
 },

Segment documents 133

AWS X-Ray Developer Guide

 "annotations": {
 "customer_category" : 124,
 "zip_code" : 98101,
 "country" : "United States",
 "internal" : false
 },
 "http": {
 "request": {
 "method": "POST",
 "client_ip": "78.255.233.48",
 "url": "http://www.example.com/api/user",
 "user_agent": "Mozilla/5.0 (Windows NT 6.1; WOW64; rv:45.0) Gecko/20100101
 Firefox/45.0",
 "x_forwarded_for": true
 },
 "response": {
 "status": 200
 }
 }

Keys must be alphanumeric in order to work with filters. Underscore is allowed. Other symbols and
whitespace are not allowed.

Metadata

Segments and subsegments can include a metadata object containing one or more fields with
values of any type, including objects and arrays. X-Ray does not index metadata, and values can
be any size, as long as the segment document doesn't exceed the maximum size (64 kB). You can
view metadata in the full segment document returned by the BatchGetTraces API. Field keys
(debug in the following example) starting with AWS. are reserved for use by AWS-provided SDKs
and clients.

Example Custom subsegment with metadata

{
 "id": "0e58d2918e9038e8",
 "start_time": 1484789387.502,
 "end_time": 1484789387.534,
 "name": "## UserModel.saveUser",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"

Segment documents 134

https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html

AWS X-Ray Developer Guide

 }
 },
 "subsegments": [
 {
 "id": "0f910026178b71eb",
 "start_time": 1484789387.502,
 "end_time": 1484789387.534,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 58,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "3AIENM5J4ELQ3SPODHKBIRVIC3VV4KQNSO5AEMVJF66Q9ASUAAJG",
 "resource_names": [
 "scorekeep-user"
]
 }
 }
]
}

AWS resource data

For segments, the aws object contains information about the resource on which your application
is running. Multiple fields can apply to a single resource. For example, an application running in a
multicontainer Docker environment on Elastic Beanstalk could have information about the Amazon
EC2 instance, the Amazon ECS container running on the instance, and the Elastic Beanstalk
environment itself.

aws (Segments)

All fields are optional.

• account_id – If your application sends segments to a different AWS account, record the ID of
the account running your application.

• cloudwatch_logs – Array of objects that describe a single CloudWatch log group.

Segment documents 135

AWS X-Ray Developer Guide

• log_group – The CloudWatch Log Group name.

• arn – The CloudWatch Log Group ARN.

• ec2 – Information about an Amazon EC2 instance.

• instance_id – The instance ID of the EC2 instance.

• instance_size – The type of EC2 instance.

• ami_id – The Amazon Machine Image ID.

• availability_zone – The Availability Zone in which the instance is running.

• ecs – Information about an Amazon ECS container.

• container – The hostname of your container.

• container_id – The full container ID of your container.

• container_arn – The ARN of your container instance.

• eks – Information about an Amazon EKS cluster.

• pod – The hostname of your EKS pod.

• cluster_name – The EKS cluster name.

• container_id – The full container ID of your container.

• elastic_beanstalk – Information about an Elastic Beanstalk environment. You can find this
information in a file named /var/elasticbeanstalk/xray/environment.conf on the
latest Elastic Beanstalk platforms.

• environment_name – The name of the environment.

• version_label – The name of the application version that is currently deployed to the
instance that served the request.

• deployment_id – number indicating the ID of the last successful deployment to the instance
that served the request.

• xray – Metadata about the type and version of instrumentation used.

• auto_instrumentation – Boolean indicating whether auto-instrumentation was used (for
example, the Java Agent).

• sdk_version – The version of SDK or agent being used.

• sdk – The type of SDK.

Example AWS block with plugins

"aws":{

Segment documents 136

AWS X-Ray Developer Guide

 "elastic_beanstalk":{
 "version_label":"app-5a56-170119_190650-stage-170119_190650",
 "deployment_id":32,
 "environment_name":"scorekeep"
 },
 "ec2":{
 "availability_zone":"us-west-2c",
 "instance_id":"i-075ad396f12bc325a",
 "ami_id":
 },
 "cloudwatch_logs":[
 {
 "log_group":"my-cw-log-group",
 "arn":"arn:aws:logs:us-west-2:012345678912:log-group:my-cw-log-group"
 }
],
 "xray":{
 "auto_instrumentation":false,
 "sdk":"X-Ray for Java",
 "sdk_version":"2.8.0"
 }
}

For subsegments, record information about the AWS services and resources that your application
accesses. X-Ray uses this information to create inferred segments that represent the downstream
services in your service map.

aws (Subsegments)

All fields are optional.

• operation – The name of the API action invoked against an AWS service or resource.

• account_id – If your application accesses resources in a different account, or sends segments
to a different account, record the ID of the account that owns the AWS resource that your
application accessed.

• region – If the resource is in a region different from your application, record the region. For
example, us-west-2.

• request_id – Unique identifier for the request.

• queue_url – For operations on an Amazon SQS queue, the queue's URL.

• table_name – For operations on a DynamoDB table, the name of the table.

Segment documents 137

AWS X-Ray Developer Guide

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

Errors and exceptions

When an error occurs, you can record details about the error and exceptions that it generated.
Record errors in segments when your application returns an error to the user, and in subsegments
when a downstream call returns an error.

error types

Set one or more of the following fields to true to indicate that an error occurred. Multiple types
can apply if errors compound. For example, a 429 Too Many Requests error from a downstream
call may cause your application to return 500 Internal Server Error, in which case all three
types would apply.

• error – boolean indicating that a client error occurred (response status code was 4XX Client
Error).

• throttle – boolean indicating that a request was throttled (response status code was 429 Too
Many Requests).

• fault – boolean indicating that a server error occurred (response status code was 5XX Server
Error).

Segment documents 138

AWS X-Ray Developer Guide

Indicate the cause of the error by including a cause object in the segment or subsegment.

cause

A cause can be either a 16 character exception ID or an object with the following fields:

• working_directory – The full path of the working directory when the exception occurred.

• paths – The array of paths to libraries or modules in use when the exception occurred.

• exceptions – The array of exception objects.

Include detailed information about the error in one or more exception objects.

exception

All fields are optional.

• id – A 64-bit identifier for the exception, unique among segments in the same trace, in 16
hexadecimal digits.

• message – The exception message.

• type – The exception type.

• remote – boolean indicating that the exception was caused by an error returned by a
downstream service.

• truncated – integer indicating the number of stack frames that are omitted from the stack.

• skipped – integer indicating the number of exceptions that were skipped between this
exception and its child, that is, the exception that it caused.

• cause – Exception ID of the exception's parent, that is, the exception that caused this exception.

• stack – array of stackFrame objects.

If available, record information about the call stack in stackFrame objects.

stackFrame

All fields are optional.

• path – The relative path to the file.

• line – The line in the file.

• label – The function or method name.

Segment documents 139

AWS X-Ray Developer Guide

SQL queries

You can create subsegments for queries that your application makes to an SQL database.

sql

All fields are optional.

• connection_string – For SQL Server or other database connections that don't use URL
connection strings, record the connection string, excluding passwords.

• url – For a database connection that uses a URL connection string, record the URL, excluding
passwords.

• sanitized_query – The database query, with any user provided values removed or replaced by
a placeholder.

• database_type – The name of the database engine.

• database_version – The version number of the database engine.

• driver_version – The name and version number of the database engine driver that your
application uses.

• user – The database username.

• preparation – call if the query used a PreparedCall; statement if the query used a
PreparedStatement.

Example Subsegment with an SQL Query

{
 "id": "3fd8634e78ca9560",
 "start_time": 1484872218.696,
 "end_time": 1484872218.697,
 "name": "ebdb@aawijb5u25wdoy.cpamxznpdoq8.us-west-2.rds.amazonaws.com",
 "namespace": "remote",
 "sql" : {
 "url": "jdbc:postgresql://aawijb5u25wdoy.cpamxznpdoq8.us-
west-2.rds.amazonaws.com:5432/ebdb",
 "preparation": "statement",
 "database_type": "PostgreSQL",
 "database_version": "9.5.4",
 "driver_version": "PostgreSQL 9.4.1211.jre7",
 "user" : "dbuser",

Segment documents 140

AWS X-Ray Developer Guide

 "sanitized_query" : "SELECT * FROM customers WHERE customer_id=?;"
 }
}

Segment documents 141

AWS X-Ray Developer Guide

AWS X-Ray concepts

AWS X-Ray receives data from services as segments. X-Ray then groups segments that have a
common request into traces. X-Ray processes the traces to generate a service graph that provides a
visual representation of your application.

Concepts

• Segments

• Subsegments

• Service graph

• Traces

• Sampling

• Tracing header

• Filter expressions

• Groups

• Annotations and metadata

• Errors, faults, and exceptions

Segments

The compute resources running your application logic send data about their work as segments.
A segment provides the resource's name, details about the request, and details about the work
done. For example, when an HTTP request reaches your application, it can record the following
data about:

• The host – hostname, alias or IP address

• The request – method, client address, path, user agent

• The response – status, content

• The work done – start and end times, subsegments

• Issues that occur – errors, faults and exceptions, including automatic capture of exception stacks.

Segments 142

AWS X-Ray Developer Guide

The X-Ray SDK gathers information from request and response headers, the code in your
application, and metadata about the AWS resources on which it runs. You choose the data to
collect by modifying your application configuration or code to instrument incoming requests,
downstream requests, and AWS SDK clients.

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

You can use the X-Ray SDK to record additional information such as annotations and metadata.
For details about the structure and information that is recorded in segments and subsegments, see
AWS X-Ray segment documents. Segment documents can be up to 64 kB in size.

Subsegments

A segment can break down the data about the work done into subsegments. Subsegments provide
more granular timing information and details about downstream calls that your application made
to fulfill the original request. A subsegment can contain additional details about a call to an AWS
service, an external HTTP API, or an SQL database. You can even define arbitrary subsegments to
instrument specific functions or lines of code in your application.

Subsegments 143

AWS X-Ray Developer Guide

For services that don't send their own segments, like Amazon DynamoDB, X-Ray uses subsegments
to generate inferred segments and downstream nodes on the trace map. This lets you see all of
your downstream dependencies, even if they don't support tracing, or are external.

Subsegments represent your application's view of a downstream call as a client. If the downstream
service is also instrumented, the segment that it sends replaces the inferred segment generated
from the upstream client's subsegment. The node on the service graph always uses information
from the service's segment, if it's available, while the edge between the two nodes uses the
upstream service's subsegment.

For example, when you call DynamoDB with an instrumented AWS SDK client, the X-Ray SDK
records a subsegment for that call. DynamoDB doesn't send a segment, so the inferred segment
in the trace, the DynamoDB node on the service graph, and the edge between your service and
DynamoDB all contain information from the subsegment.

Subsegments 144

AWS X-Ray Developer Guide

When you call another instrumented service with an instrumented application, the downstream
service sends its own segment to record its view of the same call that the upstream service
recorded in a subsegment. In the service graph, both services' nodes contain timing and error
information from those services' segments, while the edge between them contains information
from the upstream service's subsegment.

Subsegments 145

AWS X-Ray Developer Guide

Both viewpoints are useful, as the downstream service records precisely when it started and ended
work on the request, and the upstream service records the round trip latency, including time that
the request spent traveling between the two services.

Subsegments 146

AWS X-Ray Developer Guide

Service graph

X-Ray uses the data that your application sends to generate a service graph. Each AWS resource
that sends data to X-Ray appears as a service in the graph. Edges connect the services that work
together to serve requests. Edges connect clients to your application, and your application to the
downstream services and resources that it uses.

Service Names

A segment's name should match the domain name or logical name of the service that
generates the segment. However, this is not enforced. Any application that has permission
to PutTraceSegments can send segments with any name.

A service graph is a JSON document that contains information about the services and resources
that make up your application. The X-Ray console uses the service graph to generate a visualization
or service map.

Service graph 147

https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html

AWS X-Ray Developer Guide

For a distributed application, X-Ray combines nodes from all services that process requests with
the same trace ID into a single service graph. The first service that the request hits adds a tracing
header that is propagated between the front end and services that it calls.

For example, Scorekeep runs a web API that calls a microservice (an AWS Lambda function) to
generate a random name by using a Node.js library. The X-Ray SDK for Java generates the trace
ID and includes it in calls to Lambda. Lambda sends tracing data and passes the trace ID to the
function. The X-Ray SDK for Node.js also uses the trace ID to send data. As a result, nodes for the
API, the Lambda service, and the Lambda function all appear as separate, but connected, nodes on
the trace map.

Service graph data is retained for 30 days.

Traces

A trace ID tracks the path of a request through your application. A trace collects all the segments
generated by a single request. That request is typically an HTTP GET or POST request that travels
through a load balancer, hits your application code, and generates downstream calls to other AWS
services or external web APIs. The first supported service that the HTTP request interacts with adds
a trace ID header to the request, and propagates it downstream to track the latency, disposition,
and other request data.

Traces 148

AWS X-Ray Developer Guide

See AWS X-Ray pricing for information about how X-Ray traces are billed. Trace data is retained for
30 days.

Sampling

To ensure efficient tracing and provide a representative sample of the requests that your
application serves, the X-Ray SDK applies a sampling algorithm to determine which requests get
traced. By default, the X-Ray SDK records the first request each second, and five percent of any
additional requests.

Sampling 149

https://aws.amazon.com/xray/pricing/

AWS X-Ray Developer Guide

To avoid incurring service charges when you are getting started, the default sampling rate is
conservative. You can configure X-Ray to modify the default sampling rule and configure additional
rules that apply sampling based on properties of the service or request.

For example, you might want to disable sampling and trace all requests for calls that modify state
or handle users or transactions. For high-volume read-only calls, like background polling, health
checks, or connection maintenance, you can sample at a low rate and still get enough data to see
any issues that arise.

For more information, see Configuring sampling rules.

Tracing header

All requests are traced, up to a configurable minimum. After reaching that minimum, a percentage
of requests are traced to avoid unnecessary cost. The sampling decision and trace ID are added to
HTTP requests in tracing headers named X-Amzn-Trace-Id. The first X-Ray-integrated service
that the request hits adds a tracing header, which is read by the X-Ray SDK and included in the
response.

Example Tracing header with root trace ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3fe1be46a994272793;Parent=53995c3f42cd8ad8;Sampled=1

Tracing Header Security

A tracing header can originate from the X-Ray SDK, an AWS service, or the client request.
Your application can remove X-Amzn-Trace-Id from incoming requests to avoid issues
caused by users adding trace IDs or sampling decisions to their requests.

The tracing header can also contain a parent segment ID if the request originated from an
instrumented application. For example, if your application calls a downstream HTTP web API
with an instrumented HTTP client, the X-Ray SDK adds the segment ID for the original request
to the tracing header of the downstream request. An instrumented application that serves the
downstream request can record the parent segment ID to connect the two requests.

Tracing header 150

AWS X-Ray Developer Guide

Example Tracing header with root trace ID, parent segment ID and sampling decision

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3fe1be46a994272793;Parent=53995c3f42cd8ad8;Sampled=1

Lineage may be appended to the trace header by Lambda and other AWS services as part of their
processing mechanisms, and should not be directly used.

Example Tracing header with Lineage

X-Amzn-Trace-Id: Root=1-5759e988-
bd862e3fe1be46a994272793;Parent=53995c3f42cd8ad8;Sampled=1;Lineage=25:a87bd80c:1

Filter expressions

Even with sampling, a complex application generates a lot of data. The AWS X-Ray console
provides an easy-to-navigate view of the service graph. It shows health and performance
information that helps you identify issues and opportunities for optimization in your application.
For advanced tracing, you can drill down to traces for individual requests, or use filter expressions
to find traces related to specific paths or users.

Filter expressions 151

AWS X-Ray Developer Guide

Groups

Extending filter expressions, X-Ray also supports the group feature. Using a filter expression, you
can define criteria by which to accept traces into the group.

You can call the group by name or by Amazon Resource Name (ARN) to generate its own service
graph, trace summaries, and Amazon CloudWatch metrics. Once a group is created, incoming traces
are checked against the group’s filter expression as they are stored in the X-Ray service. Metrics for
the number of traces matching each criteria are published to CloudWatch every minute.

Updating a group's filter expression doesn't change data that's already recorded. The update
applies only to subsequent traces. This can result in a merged graph of the new and old
expressions. To avoid this, delete the current group and create a fresh one.

Note

Groups are billed by the number of retrieved traces that match the filter expression. For
more information, see AWS X-Ray pricing.

For more information about groups, see Configuring groups.

Annotations and metadata

When you instrument your application, the X-Ray SDK records information about incoming
and outgoing requests, the AWS resources used, and the application itself. You can add other
information to the segment document as annotations and metadata. Annotations and metadata
are aggregated at the trace level, and can be added to any segment or subsegment.

Annotations are simple key-value pairs that are indexed for use with filter expressions. Use
annotations to record data that you want to use to group traces in the console, or when calling the
GetTraceSummaries API.

X-Ray indexes up to 50 annotations per trace.

Metadata are key-value pairs with values of any type, including objects and lists, but that are not
indexed. Use metadata to record data you want to store in the trace but don't need to use for
searching traces.

Groups 152

https://aws.amazon.com/xray/pricing/
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

You can view annotations and metadata in the segment or subsegment details window, within the
Trace details page in the CloudWatch console.

Errors, faults, and exceptions

X-Ray tracks errors that occur in your application code, and errors that are returned by downstream
services. Errors are categorized as follows.

• Error – Client errors (400 series errors)

• Fault – Server faults (500 series errors)

• Throttle – Throttling errors (429 Too Many Requests)

When an exception occurs while your application is serving an instrumented request, the X-Ray
SDK records details about the exception, including the stack trace, if available. You can view
exceptions under segment details in the X-Ray console.

Errors, faults, and exceptions 153

AWS X-Ray Developer Guide

Security in AWS X-Ray

Cloud security at AWS is the highest priority. As an AWS customer, you benefit from a data center
and network architecture that is built to meet the requirements of the most security-sensitive
organizations.

Security is a shared responsibility between AWS and you. The shared responsibility model describes
this as security of the cloud and security in the cloud:

• Security of the cloud – AWS is responsible for protecting the infrastructure that runs AWS
services in the AWS Cloud. AWS also provides you with services that you can use securely. The
effectiveness of our security is regularly tested and verified by third-party auditors as part of the
AWS compliance programs. To learn about the compliance programs that apply to X-Ray, see
AWS services in Scope by Compliance Program.

• Security in the cloud – Your responsibility is determined by the AWS service that you use. You
are also responsible for other factors including the sensitivity of your data, your organization’s
requirements, and applicable laws and regulations.

This documentation will help you understand how to apply the shared responsibility model when
using X-Ray. The following topics show you how to configure X-Ray to meet your security and
compliance objectives. You'll also learn how to use other AWS services that can help you to monitor
and secure your X-Ray resources.

Topics

• Data protection in AWS X-Ray

• Identity and access management for AWS X-Ray

• Compliance validation for AWS X-Ray

• Resilience in AWS X-Ray

• Infrastructure security in AWS X-Ray

Data protection in AWS X-Ray

AWS X-Ray always encrypts traces and related data at rest. When you need to audit and disable
encryption keys for compliance or internal requirements, you can configure X-Ray to use an AWS
Key Management Service (AWS KMS) key to encrypt data.

Data protection 154

https://aws.amazon.com/compliance/shared-responsibility-model/
https://aws.amazon.com/compliance/programs/
https://aws.amazon.com/compliance/services-in-scope/

AWS X-Ray Developer Guide

X-Ray provides an AWS managed key named aws/xray. Use this key when you just want to audit
key usage in AWS CloudTrail and don't need to manage the key itself. When you need to manage
access to the key or configure key rotation, you can create a customer managed key.

When you change encryption settings, X-Ray spends some time generating and propagating data
keys. While the new key is being processed, X-Ray may encrypt data with a combination of the new
and old settings. Existing data is not re-encrypted when you change encryption settings.

Note

AWS KMS charges when X-Ray uses a KMS key to encrypt or decrypt trace data.

• Default encryption – Free.

• AWS managed key – Pay for key use.

• customer managed key – Pay for key storage and use.

See AWS Key Management Service Pricing for details.

Note

X-Ray insights notifications sends events to Amazon EventBridge, which does not currently
support customer managed keys. For more information, see Data Protection in Amazon
EventBridge.

You must have user-level access to a customer managed key to configure X-Ray to use it, and to
then view encrypted traces. See User permissions for encryption for more information.

CloudWatch console

To configure X-Ray to use a KMS key for encryption using the CloudWatch console

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Choose Settings in the left navigation pane.

3. Choose View settings under Encryption within the X-Ray traces section.

4. Choose Edit in the Encryption configuration section.

Data protection 155

https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/kms/latest/developerguide/logging-using-cloudtrail.html
https://docs.aws.amazon.com/kms/latest/developerguide/create-keys.html
https://aws.amazon.com/kms/pricing/
https://docs.aws.amazon.com/eventbridge/latest/userguide/data-protection.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/data-protection.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

5. Choose Use a KMS key.

6. Choose a key from the dropdown menu:

• aws/xray – Use the AWS managed key.

• key alias – Use a customer managed key in your account.

• Manually enter a key ARN – Use a customer managed key in a different account. Enter
the full Amazon Resource Name (ARN) of the key in the field that appears.

7. Choose Update encryption.

X-Ray console

To configure X-Ray to use a KMS key for encryption using the X-Ray console

1. Open the X-Ray console.

2. Choose Encryption.

3. Choose Use a KMS key.

4. Choose a key from the dropdown menu:

• aws/xray – Use the AWS managed key.

• key alias – Use a customer managed key in your account.

• Manually enter a key ARN – Use a customer managed key in a different account. Enter
the full Amazon Resource Name (ARN) of the key in the field that appears.

5. Choose Apply.

Note

X-Ray does not support asymmetric KMS keys.

If X-Ray is unable to access your encryption key, it stops storing data. This can happen if your user
loses access to the KMS key, or if you disable a key that's currently in use. When this happens, X-Ray
shows a notification in the navigation bar.

To configure encryption settings with the X-Ray API, see Configuring sampling, groups, and
encryption settings with the AWS X-Ray API.

Data protection 156

https://console.aws.amazon.com/xray/home#

AWS X-Ray Developer Guide

Identity and access management for AWS X-Ray

AWS Identity and Access Management (IAM) is an AWS service that helps an administrator securely
control access to AWS resources. IAM administrators control who can be authenticated (signed in)
and authorized (have permissions) to use X-Ray resources. IAM is an AWS service that you can use
with no additional charge.

Topics

• Audience

• Authenticating with identities

• Managing access using policies

• How AWS X-Ray works with IAM

• AWS X-Ray identity-based policy examples

• Troubleshooting AWS X-Ray identity and access

Audience

How you use AWS Identity and Access Management (IAM) differs, depending on the work that you
do in X-Ray.

Service user – If you use the X-Ray service to do your job, then your administrator provides you
with the credentials and permissions that you need. As you use more X-Ray features to do your
work, you might need additional permissions. Understanding how access is managed can help you
request the right permissions from your administrator. If you cannot access a feature in X-Ray, see
Troubleshooting AWS X-Ray identity and access.

Service administrator – If you're in charge of X-Ray resources at your company, you probably have
full access to X-Ray. It's your job to determine which X-Ray features and resources your service
users should access. You must then submit requests to your IAM administrator to change the
permissions of your service users. Review the information on this page to understand the basic
concepts of IAM. To learn more about how your company can use IAM with X-Ray, see How AWS X-
Ray works with IAM.

IAM administrator – If you're an IAM administrator, you might want to learn details about how you
can write policies to manage access to X-Ray. To view example X-Ray identity-based policies that
you can use in IAM, see AWS X-Ray identity-based policy examples.

Identity and access management 157

AWS X-Ray Developer Guide

Authenticating with identities

Authentication is how you sign in to AWS using your identity credentials. You must be
authenticated (signed in to AWS) as the AWS account root user, as an IAM user, or by assuming an
IAM role.

You can sign in to AWS as a federated identity by using credentials provided through an identity
source. AWS IAM Identity Center (IAM Identity Center) users, your company's single sign-on
authentication, and your Google or Facebook credentials are examples of federated identities.
When you sign in as a federated identity, your administrator previously set up identity federation
using IAM roles. When you access AWS by using federation, you are indirectly assuming a role.

Depending on the type of user you are, you can sign in to the AWS Management Console or the
AWS access portal. For more information about signing in to AWS, see How to sign in to your AWS
account in the AWS Sign-In User Guide.

If you access AWS programmatically, AWS provides a software development kit (SDK) and a
command line interface (CLI) to cryptographically sign your requests by using your credentials. If
you don't use AWS tools, you must sign requests yourself. For more information about using the
recommended method to sign requests yourself, see AWS Signature Version 4 for API requests in
the IAM User Guide.

Regardless of the authentication method that you use, you might be required to provide additional
security information. For example, AWS recommends that you use multi-factor authentication
(MFA) to increase the security of your account. To learn more, see Multi-factor authentication in
the AWS IAM Identity Center User Guide and AWS Multi-factor authentication in IAM in the IAM User
Guide.

AWS account root user

When you create an AWS account, you begin with one sign-in identity that has complete access to
all AWS services and resources in the account. This identity is called the AWS account root user and
is accessed by signing in with the email address and password that you used to create the account.
We strongly recommend that you don't use the root user for your everyday tasks. Safeguard your
root user credentials and use them to perform the tasks that only the root user can perform. For
the complete list of tasks that require you to sign in as the root user, see Tasks that require root
user credentials in the IAM User Guide.

Authenticating with identities 158

https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/signin/latest/userguide/how-to-sign-in.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_sigv.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/enable-mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_root-user.html#root-user-tasks

AWS X-Ray Developer Guide

IAM users and groups

An IAM user is an identity within your AWS account that has specific permissions for a single person
or application. Where possible, we recommend relying on temporary credentials instead of creating
IAM users who have long-term credentials such as passwords and access keys. However, if you have
specific use cases that require long-term credentials with IAM users, we recommend that you rotate
access keys. For more information, see Rotate access keys regularly for use cases that require long-
term credentials in the IAM User Guide.

An IAM group is an identity that specifies a collection of IAM users. You can't sign in as a group. You
can use groups to specify permissions for multiple users at a time. Groups make permissions easier
to manage for large sets of users. For example, you could have a group named IAMAdmins and give
that group permissions to administer IAM resources.

Users are different from roles. A user is uniquely associated with one person or application, but
a role is intended to be assumable by anyone who needs it. Users have permanent long-term
credentials, but roles provide temporary credentials. To learn more, see Use cases for IAM users in
the IAM User Guide.

IAM roles

An IAM role is an identity within your AWS account that has specific permissions. It is similar to an
IAM user, but is not associated with a specific person. To temporarily assume an IAM role in the
AWS Management Console, you can switch from a user to an IAM role (console). You can assume a
role by calling an AWS CLI or AWS API operation or by using a custom URL. For more information
about methods for using roles, see Methods to assume a role in the IAM User Guide.

IAM roles with temporary credentials are useful in the following situations:

• Federated user access – To assign permissions to a federated identity, you create a role
and define permissions for the role. When a federated identity authenticates, the identity
is associated with the role and is granted the permissions that are defined by the role. For
information about roles for federation, see Create a role for a third-party identity provider
(federation) in the IAM User Guide. If you use IAM Identity Center, you configure a permission set.
To control what your identities can access after they authenticate, IAM Identity Center correlates
the permission set to a role in IAM. For information about permissions sets, see Permission sets
in the AWS IAM Identity Center User Guide.

• Temporary IAM user permissions – An IAM user or role can assume an IAM role to temporarily
take on different permissions for a specific task.

Authenticating with identities 159

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html#rotate-credentials
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_groups.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/gs-identities-iam-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-console.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_manage-assume.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-idp.html
https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS X-Ray Developer Guide

• Cross-account access – You can use an IAM role to allow someone (a trusted principal) in a
different account to access resources in your account. Roles are the primary way to grant cross-
account access. However, with some AWS services, you can attach a policy directly to a resource
(instead of using a role as a proxy). To learn the difference between roles and resource-based
policies for cross-account access, see Cross account resource access in IAM in the IAM User Guide.

• Cross-service access – Some AWS services use features in other AWS services. For example, when
you make a call in a service, it's common for that service to run applications in Amazon EC2 or
store objects in Amazon S3. A service might do this using the calling principal's permissions,
using a service role, or using a service-linked role.

• Forward access sessions (FAS) – When you use an IAM user or role to perform actions in
AWS, you are considered a principal. When you use some services, you might perform an
action that then initiates another action in a different service. FAS uses the permissions of the
principal calling an AWS service, combined with the requesting AWS service to make requests
to downstream services. FAS requests are only made when a service receives a request that
requires interactions with other AWS services or resources to complete. In this case, you must
have permissions to perform both actions. For policy details when making FAS requests, see
Forward access sessions.

• Service role – A service role is an IAM role that a service assumes to perform actions on your
behalf. An IAM administrator can create, modify, and delete a service role from within IAM. For
more information, see Create a role to delegate permissions to an AWS service in the IAM User
Guide.

• Service-linked role – A service-linked role is a type of service role that is linked to an AWS
service. The service can assume the role to perform an action on your behalf. Service-linked
roles appear in your AWS account and are owned by the service. An IAM administrator can
view, but not edit the permissions for service-linked roles.

• Applications running on Amazon EC2 – You can use an IAM role to manage temporary
credentials for applications that are running on an EC2 instance and making AWS CLI or AWS API
requests. This is preferable to storing access keys within the EC2 instance. To assign an AWS role
to an EC2 instance and make it available to all of its applications, you create an instance profile
that is attached to the instance. An instance profile contains the role and enables programs that
are running on the EC2 instance to get temporary credentials. For more information, see Use an
IAM role to grant permissions to applications running on Amazon EC2 instances in the IAM User
Guide.

Authenticating with identities 160

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_forward_access_sessions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-service.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use_switch-role-ec2.html

AWS X-Ray Developer Guide

Managing access using policies

You control access in AWS by creating policies and attaching them to AWS identities or resources.
A policy is an object in AWS that, when associated with an identity or resource, defines their
permissions. AWS evaluates these policies when a principal (user, root user, or role session) makes
a request. Permissions in the policies determine whether the request is allowed or denied. Most
policies are stored in AWS as JSON documents. For more information about the structure and
contents of JSON policy documents, see Overview of JSON policies in the IAM User Guide.

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

By default, users and roles have no permissions. To grant users permission to perform actions on
the resources that they need, an IAM administrator can create IAM policies. The administrator can
then add the IAM policies to roles, and users can assume the roles.

IAM policies define permissions for an action regardless of the method that you use to perform the
operation. For example, suppose that you have a policy that allows the iam:GetRole action. A
user with that policy can get role information from the AWS Management Console, the AWS CLI, or
the AWS API.

Identity-based policies

Identity-based policies are JSON permissions policy documents that you can attach to an identity,
such as an IAM user, group of users, or role. These policies control what actions users and roles can
perform, on which resources, and under what conditions. To learn how to create an identity-based
policy, see Define custom IAM permissions with customer managed policies in the IAM User Guide.

Identity-based policies can be further categorized as inline policies or managed policies. Inline
policies are embedded directly into a single user, group, or role. Managed policies are standalone
policies that you can attach to multiple users, groups, and roles in your AWS account. Managed
policies include AWS managed policies and customer managed policies. To learn how to choose
between a managed policy or an inline policy, see Choose between managed policies and inline
policies in the IAM User Guide.

Resource-based policies

Resource-based policies are JSON policy documents that you attach to a resource. Examples of
resource-based policies are IAM role trust policies and Amazon S3 bucket policies. In services that
support resource-based policies, service administrators can use them to control access to a specific

Managing access using policies 161

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#access_policies-json
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-choosing-managed-or-inline.html

AWS X-Ray Developer Guide

resource. For the resource where the policy is attached, the policy defines what actions a specified
principal can perform on that resource and under what conditions. You must specify a principal
in a resource-based policy. Principals can include accounts, users, roles, federated users, or AWS
services.

Resource-based policies are inline policies that are located in that service. You can't use AWS
managed policies from IAM in a resource-based policy.

Access control lists (ACLs)

Access control lists (ACLs) control which principals (account members, users, or roles) have
permissions to access a resource. ACLs are similar to resource-based policies, although they do not
use the JSON policy document format.

Amazon S3, AWS WAF, and Amazon VPC are examples of services that support ACLs. To learn more
about ACLs, see Access control list (ACL) overview in the Amazon Simple Storage Service Developer
Guide.

Other policy types

AWS supports additional, less-common policy types. These policy types can set the maximum
permissions granted to you by the more common policy types.

• Permissions boundaries – A permissions boundary is an advanced feature in which you set
the maximum permissions that an identity-based policy can grant to an IAM entity (IAM user
or role). You can set a permissions boundary for an entity. The resulting permissions are the
intersection of an entity's identity-based policies and its permissions boundaries. Resource-based
policies that specify the user or role in the Principal field are not limited by the permissions
boundary. An explicit deny in any of these policies overrides the allow. For more information
about permissions boundaries, see Permissions boundaries for IAM entities in the IAM User Guide.

• Service control policies (SCPs) – SCPs are JSON policies that specify the maximum permissions
for an organization or organizational unit (OU) in AWS Organizations. AWS Organizations is a
service for grouping and centrally managing multiple AWS accounts that your business owns. If
you enable all features in an organization, then you can apply service control policies (SCPs) to
any or all of your accounts. The SCP limits permissions for entities in member accounts, including
each AWS account root user. For more information about Organizations and SCPs, see Service
control policies in the AWS Organizations User Guide.

• Resource control policies (RCPs) – RCPs are JSON policies that you can use to set the maximum
available permissions for resources in your accounts without updating the IAM policies attached

Managing access using policies 162

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_principal.html
https://docs.aws.amazon.com/AmazonS3/latest/userguide/acl-overview.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_boundaries.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_scps.html

AWS X-Ray Developer Guide

to each resource that you own. The RCP limits permissions for resources in member accounts
and can impact the effective permissions for identities, including the AWS account root
user, regardless of whether they belong to your organization. For more information about
Organizations and RCPs, including a list of AWS services that support RCPs, see Resource control
policies (RCPs) in the AWS Organizations User Guide.

• Session policies – Session policies are advanced policies that you pass as a parameter when you
programmatically create a temporary session for a role or federated user. The resulting session's
permissions are the intersection of the user or role's identity-based policies and the session
policies. Permissions can also come from a resource-based policy. An explicit deny in any of these
policies overrides the allow. For more information, see Session policies in the IAM User Guide.

Multiple policy types

When multiple types of policies apply to a request, the resulting permissions are more complicated
to understand. To learn how AWS determines whether to allow a request when multiple policy
types are involved, see Policy evaluation logic in the IAM User Guide.

How AWS X-Ray works with IAM

Before you use IAM to manage access to X-Ray, you should understand what IAM features are
available to use with X-Ray. To get a high-level view of how X-Ray and other AWS services work
with IAM, see AWS services That Work with IAM in the IAM User Guide.

You can use AWS Identity and Access Management (IAM) to grant X-Ray permissions to users and
compute resources in your account. IAM controls access to the X-Ray service at the API level to
enforce permissions uniformly, regardless of which client (console, AWS SDK, AWS CLI) your users
employ.

To use the X-Ray console to view trace maps and segments, you only need read permissions. To
enable console access, add the AWSXrayReadOnlyAccess managed policy to your IAM user.

For local development and testing, create an IAM role with read and write permissions. Assume
the role and store temporary credentials for the role. You can use these credentials with the X-Ray
daemon, the AWS CLI, and the AWS SDK. See using temporary security credentials with the AWS
CLI for more information.

To deploy your instrumented app to AWS, create an IAM role with write permissions and assign it
to the resources running your application. AWSXRayDaemonWriteAccess includes permission to
upload traces, and some read permissions as well to support the use of sampling rules.

How AWS X-Ray works with IAM 163

https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/organizations/latest/userguide/orgs_manage_policies_rcps.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html#policies_session
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_evaluation-logic.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_aws-services-that-work-with-iam.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS X-Ray Developer Guide

The read and write policies do not include permission to configure encryption key settings and
sampling rules. Use AWSXrayFullAccess to access these settings, or add configuration APIs in a
custom policy. For encryption and decryption with a customer managed key that you create, you
also need permission to use the key.

Topics

• X-Ray identity-based policies

• X-Ray resource-based policies

• Authorization based on X-Ray tags

• Running your application locally

• Running your application in AWS

• User permissions for encryption

X-Ray identity-based policies

With IAM identity-based policies, you can specify allowed or denied actions and resources as well
as the conditions under which actions are allowed or denied. X-Ray supports specific actions,
resources, and condition keys. To learn about all of the elements that you use in a JSON policy, see
IAM JSON Policy Elements Reference in the IAM User Guide.

Actions

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Action element of a JSON policy describes the actions that you can use to allow or deny
access in a policy. Policy actions usually have the same name as the associated AWS API operation.
There are some exceptions, such as permission-only actions that don't have a matching API
operation. There are also some operations that require multiple actions in a policy. These
additional actions are called dependent actions.

Include actions in a policy to grant permissions to perform the associated operation.

Policy actions in X-Ray use the following prefix before the action: xray:. For example, to grant
someone permission to retrieve group resource details with the X-Ray GetGroup API operation,
you include the xray:GetGroup action in their policy. Policy statements must include either an
Action or NotAction element. X-Ray defines its own set of actions that describe tasks that you
can perform with this service.

How AWS X-Ray works with IAM 164

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements.html

AWS X-Ray Developer Guide

To specify multiple actions in a single statement, separate them with commas as follows:

"Action": [
 "xray:action1",
 "xray:action2"

You can specify multiple actions using wildcards (*). For example, to specify all actions that begin
with the word Get, include the following action:

"Action": "xray:Get*"

To see a list of X-Ray actions, see Actions Defined by AWS X-Ray in the IAM User Guide.

Resources

Administrators can use AWS JSON policies to specify who has access to what. That is, which
principal can perform actions on what resources, and under what conditions.

The Resource JSON policy element specifies the object or objects to which the action applies.
Statements must include either a Resource or a NotResource element. As a best practice,
specify a resource using its Amazon Resource Name (ARN). You can do this for actions that support
a specific resource type, known as resource-level permissions.

For actions that don't support resource-level permissions, such as listing operations, use a wildcard
(*) to indicate that the statement applies to all resources.

"Resource": "*"

You can control access to resources by using an IAM policy. For actions that support resource-level
permissions, you use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to.

All X-Ray actions can be used in an IAM policy to grant or deny users permission to use that action.
However, not all X-Ray actions support resource-level permissions, which enable you to specify the
resources on which an action can be performed.

For actions that don't support resource-level permissions, you must use "*" as the resource.

The following X-Ray actions support resource-level permissions:

How AWS X-Ray works with IAM 165

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference-arns.html
https://docs.aws.amazon.com/xray/latest/api/API_Operations.html

AWS X-Ray Developer Guide

• CreateGroup

• GetGroup

• UpdateGroup

• DeleteGroup

• CreateSamplingRule

• UpdateSamplingRule

• DeleteSamplingRule

The following is an example of an identity-based permissions policy for a CreateGroup action.
The example shows the use of an ARN relating to Group name local-users with the unique ID as
a wildcard. The unique ID is generated when the group is created, and so it can't be predicted in the
policy in advance. When using GetGroup, UpdateGroup, or DeleteGroup, you can define this as
either a wildcard or the exact ARN, including ID.

Note

The ARN of a sampling rule is defined by its name. Unlike group ARNs, sampling rules have
no uniquely generated ID.

To see a list of X-Ray resource types and their ARNs, see Resources Defined by AWS X-Ray in the
IAM User Guide. To learn with which actions you can specify the ARN of each resource, see Actions
Defined by AWS X-Ray.

Condition keys

X-Ray does not provide any service-specific condition keys, but it does support using some global
condition keys. To see all AWS global condition keys, see AWS Global Condition Context Keys in the
IAM User Guide.

Examples

To view examples of X-Ray identity-based policies, see AWS X-Ray identity-based policy examples.

X-Ray resource-based policies

X-Ray supports resource-based policies for current and future AWS service integration, such
as Amazon SNS active tracing. X-Ray resource-based policies can be updated by other AWS

How AWS X-Ray works with IAM 166

https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html#awsx-ray-resources-for-iam-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/list_awsx-ray.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html

AWS X-Ray Developer Guide

Management Consoles, or through the AWS SDK or CLI. For example, the Amazon SNS console
attempts to automatically configure resource-based policy for sending traces to X-Ray. The
following policy document provides an example of manually configuring X-Ray resource-based
policy.

Example Example X-Ray resource-based policy for Amazon SNS active tracing

This example policy document specifies the permissions that Amazon SNS needs to send trace data
to X-Ray:

{
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "SNSAccess",
 Effect: Allow,
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: [
 "xray:PutTraceSegments",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],
 Resource: "*",
 Condition: {
 StringEquals: {
 "aws:SourceAccount": "account-id"
 },
 StringLike: {
 "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name"
 }
 }
 }
]
 }

Use the CLI to create a resource-based policy that gives Amazon SNS permissions to send trace
data to X-Ray:

aws xray put-resource-policy --policy-name MyResourcePolicy --policy-document
 '{ "Version": "2012-10-17", "Statement": [{ "Sid": "SNSAccess", "Effect": "Allow",

How AWS X-Ray works with IAM 167

AWS X-Ray Developer Guide

 "Principal": { "Service": "sns.amazonaws.com" }, "Action": ["xray:PutTraceSegments",
 "xray:GetSamplingRules", "xray:GetSamplingTargets"], "Resource": "*",
 "Condition": { "StringEquals": { "aws:SourceAccount": "account-id" }, "StringLike":
 { "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name" } } }] }'

To use these examples, replace partition, region, account-id, and topic-name with your
specific AWS partition, region, account ID, and Amazon SNS topic name. To give all Amazon SNS
topics permission to send trace data to X-Ray, replace the topic name with *.

Authorization based on X-Ray tags

You can attach tags to X-Ray groups or sampling rules, or pass tags in a request to X-Ray. To
control access based on tags, you provide tag information in the condition element of a policy
using the xray:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. For more information about tagging X-Ray resources, see Tagging X-Ray sampling
rules and groups.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Managing access to X-Ray groups and sampling rules based on tags.

Running your application locally

Your instrumented application sends trace data to the X-Ray daemon. The daemon buffers
segment documents and uploads them to the X-Ray service in batches. The daemon needs write
permissions to upload trace data and telemetry to the X-Ray service.

When you run the daemon locally, create an IAM role, assume the role and store temporary
credentials in environment variables, or in a file named credentials within a folder named
.aws in your user folder. See using temporary security credentials with the AWS CLI for more
information.

Example ~/.aws/credentials

[default]
aws_access_key_id={access key ID}
aws_secret_access_key={access key}
aws_session_token={AWS session token}

If you already configured credentials for use with the AWS SDK or AWS CLI, the daemon can use
those. If multiple profiles are available, the daemon uses the default profile.

How AWS X-Ray works with IAM 168

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_use.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_temp_use-resources.html#using-temp-creds-sdk-cli

AWS X-Ray Developer Guide

Running your application in AWS

When you run your application on AWS, use a role to grant permission to the Amazon EC2 instance
or Lambda function that runs the daemon.

• Amazon Elastic Compute Cloud (Amazon EC2) – Create an IAM role and attach it to the EC2
instance as an instance profile.

• Amazon Elastic Container Service (Amazon ECS) – Create an IAM role and attach it to container
instances as a container instance IAM role.

• AWS Elastic Beanstalk (Elastic Beanstalk) – Elastic Beanstalk includes X-Ray permissions in its
default instance profile. You can use the default instance profile, or add write permissions to a
custom instance profile.

• AWS Lambda (Lambda) – Add write permissions to your function's execution role.

To create a role for use with X-Ray

1. Open the IAM console.

2. Choose Roles.

3. Choose Create New Role.

4. For Role Name, type xray-application. Choose Next Step.

5. For Role Type, choose Amazon EC2.

6. Attach the following managed policy to give your application access to AWS services:

• AWSXRayDaemonWriteAccess – Gives the X-Ray daemon permission to upload trace data.

If your application uses the AWS SDK to access other services, add policies that grant access to
those services.

7. Choose Next Step.

8. Choose Create Role.

User permissions for encryption

X-Ray encrypts all trace data and by default, and you can configure it to use a key that you
manage. If you choose a AWS Key Management Service customer managed key, you need to ensure

How AWS X-Ray works with IAM 169

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/instance_IAM_role.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts-roles.html#concepts-roles-instance
https://console.aws.amazon.com/iam/home

AWS X-Ray Developer Guide

that the key's access policy lets you grant permission to X-Ray to use it to encrypt. Other users in
your account also need access to the key to view encrypted trace data in the X-Ray console.

For a customer managed key, configure your key with an access policy that allows the following
actions:

• User who configures the key in X-Ray has permission to call kms:CreateGrant and
kms:DescribeKey.

• Users who can access encrypted trace data have permission to call kms:Decrypt.

When you add a user to the Key users group in the key configuration section of the IAM console,
they have permission for both of these operations. Permission only needs to be set on the key
policy, so you don't need any AWS KMS permissions on your users, groups, or roles. For more
information, see Using Key Policies in the AWS KMS Developer Guide.

For default encryption, or if you choose the AWS managed CMK (aws/xray), permission is based
on who has access to X-Ray APIs. Anyone with access to PutEncryptionConfig, included in
AWSXrayFullAccess, can change the encryption configuration. To prevent a user from changing
the encryption key, do not give them permission to use PutEncryptionConfig.

AWS X-Ray identity-based policy examples

By default, users and roles don't have permission to create or modify X-Ray resources. They also
can't perform tasks using the AWS Management Console, AWS CLI, or AWS API. An administrator
must create IAM policies that grant users and roles permission to perform specific API operations
on the specified resources they need. The administrator must then attach those policies to the
users or groups that require those permissions.

To learn how to create an IAM identity-based policy using these example JSON policy documents,
see Creating Policies on the JSON Tab in the IAM User Guide.

Topics

• Policy best practices

• Using the X-Ray console

• Allow users to view their own permissions

• Managing access to X-Ray groups and sampling rules based on tags

• IAM managed policies for X-Ray

Identity-based policy examples 170

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html
https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_create.html#access_policies_create-json-editor

AWS X-Ray Developer Guide

• X-Ray updates to AWS managed policies

• Specifying a resource within an IAM policy

Policy best practices

Identity-based policies determine whether someone can create, access, or delete X-Ray resources in
your account. These actions can incur costs for your AWS account. When you create or edit identity-
based policies, follow these guidelines and recommendations:

• Get started with AWS managed policies and move toward least-privilege permissions – To
get started granting permissions to your users and workloads, use the AWS managed policies
that grant permissions for many common use cases. They are available in your AWS account. We
recommend that you reduce permissions further by defining AWS customer managed policies
that are specific to your use cases. For more information, see AWS managed policies or AWS
managed policies for job functions in the IAM User Guide.

• Apply least-privilege permissions – When you set permissions with IAM policies, grant only the
permissions required to perform a task. You do this by defining the actions that can be taken on
specific resources under specific conditions, also known as least-privilege permissions. For more
information about using IAM to apply permissions, see Policies and permissions in IAM in the
IAM User Guide.

• Use conditions in IAM policies to further restrict access – You can add a condition to your
policies to limit access to actions and resources. For example, you can write a policy condition to
specify that all requests must be sent using SSL. You can also use conditions to grant access to
service actions if they are used through a specific AWS service, such as AWS CloudFormation. For
more information, see IAM JSON policy elements: Condition in the IAM User Guide.

• Use IAM Access Analyzer to validate your IAM policies to ensure secure and functional
permissions – IAM Access Analyzer validates new and existing policies so that the policies
adhere to the IAM policy language (JSON) and IAM best practices. IAM Access Analyzer provides
more than 100 policy checks and actionable recommendations to help you author secure and
functional policies. For more information, see Validate policies with IAM Access Analyzer in the
IAM User Guide.

• Require multi-factor authentication (MFA) – If you have a scenario that requires IAM users or
a root user in your AWS account, turn on MFA for additional security. To require MFA when API
operations are called, add MFA conditions to your policies. For more information, see Secure API
access with MFA in the IAM User Guide.

Identity-based policy examples 171

https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_managed-vs-inline.html#aws-managed-policies
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_job-functions.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access-analyzer-policy-validation.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_credentials_mfa_configure-api-require.html

AWS X-Ray Developer Guide

For more information about best practices in IAM, see Security best practices in IAM in the IAM User
Guide.

Using the X-Ray console

To access the AWS X-Ray console, you must have a minimum set of permissions. These permissions
must allow you to list and view details about the X-Ray resources in your AWS account. If you
create an identity-based policy that is more restrictive than the minimum required permissions, the
console won't function as intended for entities (users or roles) with that policy.

To ensure that those entities can still use the X-Ray console, attach the AWSXRayReadOnlyAccess
AWS managed policy to the entities. This policy is described in more detail in IAM managed policies
for X-Ray. For more information, see Adding Permissions to a User in the IAM User Guide.

You don't need to allow minimum console permissions for users that are making calls only to the
AWS CLI or the AWS API. Instead, allow access to only the actions that match the API operation
that you're trying to perform.

Allow users to view their own permissions

This example shows how you might create a policy that allows IAM users to view the inline and
managed policies that are attached to their user identity. This policy includes permissions to
complete this action on the console or programmatically using the AWS CLI or AWS API.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Sid": "ViewOwnUserInfo",
 "Effect": "Allow",
 "Action": [
 "iam:GetUserPolicy",
 "iam:ListGroupsForUser",
 "iam:ListAttachedUserPolicies",
 "iam:ListUserPolicies",
 "iam:GetUser"
],
 "Resource": ["arn:aws:iam::*:user/${aws:username}"]
 },
 {
 "Sid": "NavigateInConsole",
 "Effect": "Allow",

Identity-based policy examples 172

https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_users_change-permissions.html#users_change_permissions-add-console

AWS X-Ray Developer Guide

 "Action": [
 "iam:GetGroupPolicy",
 "iam:GetPolicyVersion",
 "iam:GetPolicy",
 "iam:ListAttachedGroupPolicies",
 "iam:ListGroupPolicies",
 "iam:ListPolicyVersions",
 "iam:ListPolicies",
 "iam:ListUsers"
],
 "Resource": "*"
 }
]
}

Managing access to X-Ray groups and sampling rules based on tags

You can use conditions in your identity-based policy to control access to X-Ray groups and
sampling rules based on tags. The following example policy could be used to deny a user role the
permissions to create, delete, or update groups with the tags stage:prod or stage:preprod.
For more information about tagging X-Ray sampling rules and groups, see Tagging X-Ray sampling
rules and groups.

To deny the creation of a sampling rule, use aws:RequestTag to indicate tags that cannot
be passed as part of a creation request. To deny the update or deletion of a sampling rule, use
aws:ResourceTag to deny actions based on the tags on those resources.

You can attach these policies (or combine them into a single policy, then attach the policy) to the
users in your account. For the user to make changes to a group or sampling rule, the group or
sampling rule must not be tagged stage=prepod or stage=prod. The condition tag key Stage
matches both Stage and stage because condition key names are not case-sensitive. For more
information about the condition block, see IAM JSON Policy Elements: Condition in the IAM User
Guide.

A user with a role that has the following policy attached cannot add the tag role:admin to
resources, and cannot remove tags from a resource that has role:admin associated with it.

JSON

{
 "Version": "2012-10-17",

Identity-based policy examples 173

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html

AWS X-Ray Developer Guide

 "Statement": [
 {
 "Sid": "AllowAllXRay",
 "Effect": "Allow",
 "Action": "xray:*",
 "Resource": "*"
 },
 {
 "Sid": "DenyRequestTagAdmin",
 "Effect": "Deny",
 "Action": "xray:TagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:RequestTag/role": "admin"
 }
 }
 },
 {
 "Sid": "DenyResourceTagAdmin",
 "Effect": "Deny",
 "Action": "xray:UntagResource",
 "Resource": "*",
 "Condition": {
 "StringEquals": {
 "aws:ResourceTag/role": "admin"
 }
 }
 }
]
}

IAM managed policies for X-Ray

To make granting permissions easy, IAM supports managed policies for each service. A service
can update these managed policies with new permissions when it releases new APIs. AWS X-Ray
provides managed policies for read only, write only, and administrator use cases.

• AWSXrayReadOnlyAccess – Read permissions for using the X-Ray console, AWS CLI, or
AWS SDK to get trace data, trace maps, insights, and X-Ray configuration from the X-Ray API.
Includes Observability Access Manager (OAM) oam:ListSinks and oam:ListAttachedSinks

Identity-based policy examples 174

AWS X-Ray Developer Guide

permissions to allow the console to view traces shared from source accounts as part
of CloudWatch cross-account observability. The BatchGetTraceSummaryById and
GetDistinctTraceGraphs API actions are not intended to be called by your code, and not
included in the AWS CLI and AWS SDKs.

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets",
 "xray:GetSamplingStatisticSummaries",
 "xray:BatchGetTraces",
 "xray:BatchGetTraceSummaryById",
 "xray:GetDistinctTraceGraphs",
 "xray:GetServiceGraph",
 "xray:GetTraceGraph",
 "xray:GetTraceSummaries",
 "xray:GetGroups",
 "xray:GetGroup",
 "xray:ListTagsForResource",
 "xray:ListResourcePolicies",
 "xray:GetTimeSeriesServiceStatistics",
 "xray:GetInsightSummaries",
 "xray:GetInsight",
 "xray:GetInsightEvents",
 "xray:GetInsightImpactGraph",
 "oam:ListSinks"
],
 "Resource": [
 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:ListAttachedLinks"
],
 "Resource": "arn:aws:oam:*:*:sink/*"
 }

Identity-based policy examples 175

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

}

• AWSXRayDaemonWriteAccess – Write permissions for using the X-Ray daemon, AWS CLI,
or AWS SDK to upload segment documents and telemetry to the X-Ray API. Includes read
permissions to get sampling rules and report sampling results.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:PutTraceSegments",
 "xray:PutTelemetryRecords",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets",
 "xray:GetSamplingStatisticSummaries"
],
 "Resource": [
 "*"
]
 }
]
}

• AWSXrayCrossAccountSharingConfiguration – Grants permissions to create, manage, and
view Observability Access Manager links for sharing X-Ray resources between accounts. Used to
enable CloudWatch cross-account observability between source and monitoring accounts.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:Link",
 "oam:ListLinks"
],
 "Resource": "*"

Identity-based policy examples 176

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:DeleteLink",
 "oam:GetLink",
 "oam:TagResource"
],
 "Resource": "arn:aws:oam:*:*:link/*"
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:CreateLink",
 "oam:UpdateLink"
],
 "Resource": [
 "arn:aws:oam:*:*:link/*",
 "arn:aws:oam:*:*:sink/*"
]
 }
]

}

• AWSXrayFullAccess – Permission to use all X-Ray APIs, including read permissions, write
permissions, and permission to configure encryption key settings and sampling rules. Includes
Observability Access Manager (OAM) oam:ListSinks and oam:ListAttachedSinks
permissions to allow the console to view traces shared from source accounts as part of
CloudWatch cross-account observability.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:*",
 "oam:ListSinks"
],
 "Resource": [

Identity-based policy examples 177

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

 "*"
]
 },
 {
 "Effect": "Allow",
 "Action": [
 "oam:ListAttachedLinks"
],
 "Resource": "arn:aws:oam:*:*:sink/*"
 }
]
}

To add a managed policy to an IAM user, group, or role

1. Open the IAM console.

2. Open the role associated with your instance profile, an IAM user, or an IAM group.

3. Under Permissions, attach the managed policy.

X-Ray updates to AWS managed policies

View details about updates to AWS managed policies for X-Ray since this service began tracking
these changes. For automatic alerts about changes to this page, subscribe to the RSS feed on the
X-Ray Document history page.

Change Description Date

IAM managed policies for X-
Ray – Added new AWSXrayCr
ossAccountSharingC
onfiguration , and
updated AWSXrayRe
adOnlyAccess and
AWSXrayFullAccess
policies.

X-Ray added Observabi
lity Access Manager (OAM)
permissions oam:ListS
inks and oam:ListA
ttachedSinks to these
policies to allow the console
to view traces shared from
source accounts as part of
CloudWatch cross-account
observability.

November 27, 2022

Identity-based policy examples 178

https://console.aws.amazon.com/iam/home
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Unified-Cross-Account.html

AWS X-Ray Developer Guide

Change Description Date

IAM managed policies for X-
Ray – Update to AWSXrayRe
adOnlyAccess policy.

X-Ray added an API action,
ListResourcePolicies .

November 15, 2022

Using the X-Ray console
– Update to AWSXrayRe
adOnlyAccess policy

X-Ray added two new
API actions, BatchGetT
raceSummaryById and
GetDistinctTraceGr
aphs .

These actions are not
intended to be called by your
code. Therefore, these API
actions are not included in
the AWS CLI and AWS SDKs.

November 11, 2022

Specifying a resource within an IAM policy

You can control access to resources by using an IAM policy. For actions that support resource-level
permissions, you use an Amazon Resource Name (ARN) to identify the resource that the policy
applies to.

All X-Ray actions can be used in an IAM policy to grant or deny users permission to use that action.
However, not all X-Ray actions support resource-level permissions, which enable you to specify the
resources on which an action can be performed.

For actions that don't support resource-level permissions, you must use "*" as the resource.

The following X-Ray actions support resource-level permissions:

• CreateGroup

• GetGroup

• UpdateGroup

• DeleteGroup

• CreateSamplingRule

Identity-based policy examples 179

https://docs.aws.amazon.com/xray/latest/api/API_Operations.html

AWS X-Ray Developer Guide

• UpdateSamplingRule

• DeleteSamplingRule

The following is an example of an identity-based permissions policy for a CreateGroup action.
The example shows the use of an ARN relating to Group name local-users with the unique ID as
a wildcard. The unique ID is generated when the group is created, and so it can't be predicted in the
policy in advance. When using GetGroup, UpdateGroup, or DeleteGroup, you can define this as
either a wildcard or the exact ARN, including ID.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:CreateGroup"
],
 "Resource": [
 "arn:aws:xray:eu-west-1:123456789012:group/local-users/*"
]
 }
]
}

The following is an example of an identity-based permissions policy for a CreateSamplingRule
action.

JSON

{
 "Version": "2012-10-17",
 "Statement": [
 {
 "Effect": "Allow",
 "Action": [
 "xray:CreateSamplingRule"

Identity-based policy examples 180

AWS X-Ray Developer Guide

],
 "Resource": [
 "arn:aws:xray:eu-west-1:123456789012:sampling-rule/base-
scorekeep"
]
 }
]
}

Note

The ARN of a sampling rule is defined by its name. Unlike group ARNs, sampling rules have
no uniquely generated ID.

Troubleshooting AWS X-Ray identity and access

Use the following information to help you diagnose and fix common issues that you might
encounter when working with X-Ray and IAM.

Topics

• I Am not authorized to perform an action in X-Ray

• I Am not authorized to perform iam:PassRole

• I'm an administrator and want to allow others to access X-Ray

• I want to allow people outside of my AWS account to access my X-Ray resources

I Am not authorized to perform an action in X-Ray

If the AWS Management Console tells you that you're not authorized to perform an action, then
you must contact your administrator for assistance. Your administrator is the person that provided
you with your sign-in credentials.

The following example error occurs when the mateojackson user tries to use the console to view
details about a sampling rule but does not have xray:GetSamplingRules permissions.

Troubleshooting 181

AWS X-Ray Developer Guide

User: arn:aws:iam::123456789012:user/mateojackson is not authorized to
 perform: xray:GetSamplingRules on resource: arn:${Partition}:xray:${Region}:
${Account}:sampling-rule/${SamplingRuleName}

In this case, Mateo asks his administrator to update his policies to allow him to access the sampling
rule resource using the xray:GetSamplingRules action.

I Am not authorized to perform iam:PassRole

If you receive an error that you're not authorized to perform the iam:PassRole action, your
policies must be updated to allow you to pass a role to X-Ray.

Some AWS services allow you to pass an existing role to that service instead of creating a new
service role or service-linked role. To do this, you must have permissions to pass the role to the
service.

The following example error occurs when an IAM user named marymajor tries to use the console
to perform an action in X-Ray. However, the action requires the service to have permissions that are
granted by a service role. Mary does not have permissions to pass the role to the service.

User: arn:aws:iam::123456789012:user/marymajor is not authorized to perform:
 iam:PassRole

In this case, Mary's policies must be updated to allow her to perform the iam:PassRole action.

If you need help, contact your AWS administrator. Your administrator is the person who provided
you with your sign-in credentials.

I'm an administrator and want to allow others to access X-Ray

To allow others to access X-Ray, you must grant permission to the people or applications that need
access. If you are using AWS IAM Identity Center to manage people and applications, you assign
permission sets to users or groups to define their level of access. Permission sets automatically
create and assign IAM policies to IAM roles that are associated with the person or application. For
more information, see Permission sets in the AWS IAM Identity Center User Guide.

If you are not using IAM Identity Center, you must create IAM entities (users or roles) for the people
or applications that need access. You must then attach a policy to the entity that grants them

Troubleshooting 182

https://docs.aws.amazon.com/singlesignon/latest/userguide/permissionsetsconcept.html

AWS X-Ray Developer Guide

the correct permissions in X-Ray. After the permissions are granted, provide the credentials to
the user or application developer. They will use those credentials to access AWS. To learn more
about creating IAM users, groups, policies, and permissions, see IAM Identities and Policies and
permissions in IAM in the IAM User Guide.

I want to allow people outside of my AWS account to access my X-Ray resources

You can create a role that users in other accounts or people outside of your organization can use to
access your resources. You can specify who is trusted to assume the role. For services that support
resource-based policies or access control lists (ACLs), you can use those policies to grant people
access to your resources.

To learn more, consult the following:

• To learn whether X-Ray supports these features, see How AWS X-Ray works with IAM.

• To learn how to provide access to your resources across AWS accounts that you own, see
Providing access to an IAM user in another AWS account that you own in the IAM User Guide.

• To learn how to provide access to your resources to third-party AWS accounts, see Providing
access to AWS accounts owned by third parties in the IAM User Guide.

• To learn how to provide access through identity federation, see Providing access to externally
authenticated users (identity federation) in the IAM User Guide.

• To learn the difference between using roles and resource-based policies for cross-account access,
see Cross account resource access in IAM in the IAM User Guide.

Logging and monitoring in AWS X-Ray

Monitoring is an important part of maintaining the reliability, availability, and performance of your
AWS solutions. You should collect monitoring data from all of the parts of your AWS solution so
that you can more easily debug a multi-point failure if one occurs. AWS provides several tools for
monitoring your X-Ray resources and responding to potential incidents:

AWS CloudTrail Logs

AWS X-Ray integrates with AWS CloudTrail to record API actions made by a user, a role, or an
AWS service in X-Ray. You can use CloudTrail to monitor X-Ray API requests in real time and
store logs in Amazon S3, Amazon CloudWatch Logs, and Amazon CloudWatch Events. For more
information, see Logging X-Ray API calls with AWS CloudTrail.

Logging and monitoring 183

https://docs.aws.amazon.com/IAM/latest/UserGuide/id.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_aws-accounts.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_third-party.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_common-scenarios_federated-users.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies-cross-account-resource-access.html

AWS X-Ray Developer Guide

AWS Config Tracking

AWS X-Ray integrates with AWS Config to record configuration changes made to your X-Ray
encryption resources. You can use AWS Config to inventory X-Ray encryption resources, audit
the X-Ray configuration history, and send notifications based on resource changes. For more
information, see Tracking X-Ray encryption configuration changes with AWS Config.

Amazon CloudWatch Monitoring

You can use the X-Ray SDK for Java to publish unsampled Amazon CloudWatch metrics from
your collected X-Ray segments. These metrics are derived from the segment’s start and end
time, and the error, fault and throttled status flags. Use these trace metrics to expose retries
and dependency issues within subsegments. For more information, see AWS X-Ray metrics for
the X-Ray SDK for Java.

Compliance validation for AWS X-Ray

To learn whether an AWS service is within the scope of specific compliance programs, see AWS
services in Scope by Compliance Program and choose the compliance program that you are
interested in. For general information, see AWS Compliance Programs.

You can download third-party audit reports using AWS Artifact. For more information, see
Downloading Reports in AWS Artifact.

Your compliance responsibility when using AWS services is determined by the sensitivity of your
data, your company's compliance objectives, and applicable laws and regulations. AWS provides the
following resources to help with compliance:

• Security Compliance & Governance – These solution implementation guides discuss architectural
considerations and provide steps for deploying security and compliance features.

• HIPAA Eligible Services Reference – Lists HIPAA eligible services. Not all AWS services are HIPAA
eligible.

• AWS Compliance Resources – This collection of workbooks and guides might apply to your
industry and location.

• AWS Customer Compliance Guides – Understand the shared responsibility model through the
lens of compliance. The guides summarize the best practices for securing AWS services and map
the guidance to security controls across multiple frameworks (including National Institute of
Standards and Technology (NIST), Payment Card Industry Security Standards Council (PCI), and
International Organization for Standardization (ISO)).

Compliance validation 184

https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/services-in-scope/
https://aws.amazon.com/compliance/programs/
https://docs.aws.amazon.com/artifact/latest/ug/downloading-documents.html
https://aws.amazon.com/solutions/security/security-compliance-governance/
https://aws.amazon.com/compliance/hipaa-eligible-services-reference/
https://aws.amazon.com/compliance/resources/
https://d1.awsstatic.com/whitepapers/compliance/AWS_Customer_Compliance_Guides.pdf

AWS X-Ray Developer Guide

• Evaluating Resources with Rules in the AWS Config Developer Guide – The AWS Config service
assesses how well your resource configurations comply with internal practices, industry
guidelines, and regulations.

• AWS Security Hub – This AWS service provides a comprehensive view of your security state within
AWS. Security Hub uses security controls to evaluate your AWS resources and to check your
compliance against security industry standards and best practices. For a list of supported services
and controls, see Security Hub controls reference.

• Amazon GuardDuty – This AWS service detects potential threats to your AWS accounts,
workloads, containers, and data by monitoring your environment for suspicious and malicious
activities. GuardDuty can help you address various compliance requirements, like PCI DSS, by
meeting intrusion detection requirements mandated by certain compliance frameworks.

• AWS Audit Manager – This AWS service helps you continuously audit your AWS usage to simplify
how you manage risk and compliance with regulations and industry standards.

Resilience in AWS X-Ray

The AWS global infrastructure is built around AWS Regions and Availability Zones. AWS Regions
provide multiple physically separated and isolated Availability Zones, which are connected with
low-latency, high-throughput, and highly redundant networking. With Availability Zones, you can
design and operate applications and databases that automatically fail over between Availability
Zones without interruption. Availability Zones are more highly available, fault tolerant, and
scalable than traditional single or multiple data center infrastructures.

For more information about AWS Regions and Availability Zones, see AWS Global Infrastructure.

Infrastructure security in AWS X-Ray

As a managed service, AWS X-Ray is protected by AWS global network security. For information
about AWS security services and how AWS protects infrastructure, see AWS Cloud Security. To
design your AWS environment using the best practices for infrastructure security, see Infrastructure
Protection in Security Pillar AWS Well‐Architected Framework.

You use AWS published API calls to access X-Ray through the network. Clients must support the
following:

• Transport Layer Security (TLS). We require TLS 1.2 and recommend TLS 1.3.

Resilience 185

https://docs.aws.amazon.com/config/latest/developerguide/evaluate-config.html
https://docs.aws.amazon.com/securityhub/latest/userguide/what-is-securityhub.html
https://docs.aws.amazon.com/securityhub/latest/userguide/securityhub-controls-reference.html
https://docs.aws.amazon.com/guardduty/latest/ug/what-is-guardduty.html
https://docs.aws.amazon.com/audit-manager/latest/userguide/what-is.html
https://aws.amazon.com/about-aws/global-infrastructure/
https://aws.amazon.com/security/
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html
https://docs.aws.amazon.com/wellarchitected/latest/security-pillar/infrastructure-protection.html

AWS X-Ray Developer Guide

• Cipher suites with perfect forward secrecy (PFS) such as DHE (Ephemeral Diffie-Hellman) or
ECDHE (Elliptic Curve Ephemeral Diffie-Hellman). Most modern systems such as Java 7 and later
support these modes.

Additionally, requests must be signed by using an access key ID and a secret access key that is
associated with an IAM principal. Or you can use the AWS Security Token Service (AWS STS) to
generate temporary security credentials to sign requests.

Using AWS X-Ray with VPC endpoints

If you use Amazon Virtual Private Cloud (Amazon VPC) to host your AWS resources, you can
establish a private connection between your VPC and X-Ray. This enables resources in your Amazon
VPC to communicate with the X-Ray service without going through the public internet.

Amazon VPC is an AWS service that you can use to launch AWS resources in a virtual network
that you define. With a VPC, you have control over your network settings, such as the IP address
range, subnets, route tables, and network gateways. To connect your VPC to X-Ray, you define an
interface VPC endpoint. The endpoint provides reliable, scalable connectivity to X-Ray without
requiring an internet gateway, network address translation (NAT) instance, or VPN connection. For
more information, see What Is Amazon VPC in the Amazon VPC User Guide.

Interface VPC endpoints are powered by AWS PrivateLink, an AWS technology that enables
private communication between AWS services by using an elastic network interface with private IP
addresses. For more information, see the New – AWS PrivateLink for AWS services blog post and
Getting Started in the Amazon VPC User Guide.

To ensure you can create a VPC endpoint for X-Ray in your chosen AWS Region, see Supported
Regions.

Creating a VPC endpoint for X-Ray

To start using X-Ray with your VPC, create an interface VPC endpoint for X-Ray.

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. Navigate to Endpoints within the navigation pane and choose Create Endpoint.

3. Search for and select the name of the AWS X-Ray service: com.amazonaws.region.xray.

VPC endpoints 186

https://docs.aws.amazon.com/STS/latest/APIReference/welcome.html
https://docs.aws.amazon.com/vpc/latest/privatelink/vpce-interface.html
https://docs.aws.amazon.com/vpc/latest/userguide/
https://aws.amazon.com/blogs/aws/new-aws-privatelink-endpoints-kinesis-ec2-systems-manager-and-elb-apis-in-your-vpc/
https://docs.aws.amazon.com/vpc/latest/userguide/GetStarted.html
https://console.aws.amazon.com/vpc/

AWS X-Ray Developer Guide

4. Select the VPC you want and then select a subnet in your VPC to use the interface endpoint.
An endpoint network interface is created in the selected subnet. You can specify more than
one subnet in different Availability Zones (as supported by the service) to help ensure that
your interface endpoint is resilient to Availability Zone failures. If you do so, an interface
network interface is created in each subnet that you specify.

5. (Optional) Private DNS is enabled by default for the endpoint, so that you can make requests
to X-Ray using its default DNS hostname. You can choose to disable it.

6. Specify the security groups to associate with the endpoint network interface.

Creating a VPC endpoint for X-Ray 187

AWS X-Ray Developer Guide

7. (Optional) Specify custom policy to control permissions to access the X-Ray service. By default,
full access is allowed.

Controlling access to your X-Ray VPC endpoint

A VPC endpoint policy is an IAM resource policy that you attach to an endpoint when you create
or modify the endpoint. If you don't attach a policy when you create an endpoint, Amazon VPC
attaches a default policy for you that allows full access to the service. An endpoint policy doesn't
override or replace IAM user policies or service-specific policies. It's a separate policy for controlling
access from the endpoint to the specified service. Endpoint policies must be written in JSON
format. For more information, see Controlling Access to Services with VPC Endpoints in the
Amazon VPC User Guide.

VPC endpoint policy enables you to control permissions to various X-Ray actions. For example,
you can create a policy to allow only PutTraceSegment and deny all other actions. This restricts
workloads and services in the VPC to send only trace data to X-Ray and deny any other action such
as retrieve data, change encryption config, or create/update groups.

The following is an example of an endpoint policy for X-Ray. This policy allows users connecting to
X-Ray through the VPC to send segment data to X-Ray, and also prevents them from performing
other X-Ray actions.

 {"Statement": [

Controlling access to your X-Ray VPC endpoint 188

https://docs.aws.amazon.com/vpc/latest/userguide/vpc-endpoints-access.html

AWS X-Ray Developer Guide

 {"Sid": "Allow PutTraceSegments",
 "Principal": "*",
 "Action": [
 "xray:PutTraceSegments"
],
 "Effect": "Allow",
 "Resource": "*"
 }
]
 }

To edit the VPC endpoint policy for X-Ray

1. Open the Amazon VPC console at https://console.aws.amazon.com/vpc/.

2. In the navigation pane, choose Endpoints.

3. If you haven't already created the endpoint for X-Ray, follow the steps in Creating a VPC
endpoint for X-Ray.

4. Select the com.amazonaws.region.xray endpoint, and then choose the Policy tab.

5. Choose Edit Policy, and then make your changes.

Supported Regions

X-Ray currently supports VPC endpoints in the following AWS Regions:

• US East (Ohio)

• US East (N. Virginia)

• US West (N. California)

• US West (Oregon)

• Africa (Cape Town)

• Asia Pacific (Hong Kong)

• Asia Pacific (Mumbai)

• Asia Pacific (Osaka)

• Asia Pacific (Seoul)

• Asia Pacific (Singapore)

• Asia Pacific (Sydney)

Supported Regions 189

https://console.aws.amazon.com/vpc/

AWS X-Ray Developer Guide

• Asia Pacific (Tokyo)

• Canada (Central)

• Europe (Frankfurt)

• Europe (Ireland)

• Europe (London)

• Europe (Milan)

• Europe (Paris)

• Europe (Stockholm)

• Middle East (Bahrain)

• South America (São Paulo)

• AWS GovCloud (US-East)

• AWS GovCloud (US-West)

Cross-service confused deputy prevention

The confused deputy problem is a security issue where an entity that doesn't have permission to
perform an action can coerce a more-privileged entity to perform the action. In AWS, cross-service
impersonation can result in the confused deputy problem. Cross-service impersonation can occur
when one service (the calling service) calls another service (the called service). The calling service
can be manipulated to use its permissions to act on another customer's resources in a way it should
not otherwise have permission to access. To prevent this, AWS provides tools that help you protect
your data for all services with service principals that have been given access to resources in your
account.

We recommend using the aws:SourceArn, aws:SourceAccount, aws:SourceOrgID,
and aws:SourceOrgPaths global condition context keys in resource policies to limit the
permissions that xraylong gives another service to the resource. Use aws:SourceArn to associate
only one resource with cross-service access. Use aws:SourceAccount to let any resource in
that account be associated with the cross-service use. Use aws:SourceOrgID to allow any
resource from any account within an organization be associated with the cross-service use. Use
aws:SourceOrgPaths to associate any resource from accounts within an AWS Organizations
path with the cross-service use. For more information about using and understanding paths, see
Understand the AWS Organizations entity path.

Cross-service confused deputy prevention 190

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourcearn
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceaccount
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgid
https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_condition-keys.html#condition-keys-sourceorgpaths
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies_access-advisor-view-data-orgs.html#access_policies_access-advisor-viewing-orgs-entity-path

AWS X-Ray Developer Guide

The most effective way to protect against the confused deputy problem is to use the
aws:SourceArn global condition context key with the full ARN of the resource. If you don't know
the full ARN of the resource or if you are specifying multiple resources, use the aws:SourceArn
global context condition key with wildcard characters (*) for the unknown portions of the ARN. For
example, arn:aws:servicename:*:123456789012:*.

If the aws:SourceArn value does not contain the account ID, such as an Amazon S3 bucket ARN,
you must use both aws:SourceAccount and aws:SourceArn to limit permissions.

To protect against the confused deputy problem at scale, use the aws:SourceOrgID or
aws:SourceOrgPaths global condition context key with the organization ID or organization path
of the resource in your resource-based policies. Policies that include the aws:SourceOrgID or
aws:SourceOrgPaths key will automatically include the correct accounts and you don't have to
manually update the policies when you add, remove, or move accounts in your organization.

The following example shows how you can use the aws:SourceArn and aws:SourceAccount
global condition context keys in xray to prevent the confused deputy problem.

{
 "Sid": "BlockCrossAccountUnlessSameSource",
 "Effect": "Deny",
 "Principal": {
 "AWS": "*"
 },
 "Action": [
 "kms:Decrypt",
 "kms:GenerateDataKeyWithoutPlaintext"
],
 "Resource": "*",
 "Condition": {
 "StringNotEquals": {
 "aws:PrincipalAccount": "123456789012",
 "aws:SourceAccount": "123456789012"
 },
 "ArnNotLike": {
 "aws:SourceArn": "arn:*:*:*:123456789012:*"
 }
 }
 }

Cross-service confused deputy prevention 191

AWS X-Ray Developer Guide

AWS X-Ray sample application

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The AWS X-Ray eb-java-scorekeep sample app, available on GitHub, shows the use of the AWS X-
Ray SDK to instrument incoming HTTP calls, DynamoDB SDK clients, and HTTP clients. The sample
app uses AWS CloudFormation to create DynamoDB tables, compile Java code on instance, and run
the X-Ray daemon without any additional configuration.

See the Scorekeep tutorial to start installing and using an instrumented sample application, using
the AWS Management Console or the AWS CLI.

The sample includes a front-end web app, the API that it calls, and the DynamoDB tables that it
uses to store data. Basic instrumentation with filters, plugins, and instrumented AWS SDK clients
is shown in the project's xray-gettingstarted branch. This is the branch that you deploy in the
getting started tutorial. Because this branch only includes the basics, you can diff it against the
master branch to quickly understand the basics.

192

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray

AWS X-Ray Developer Guide

The sample application shows basic instrumentation in these files:

• HTTP request filter – WebConfig.java

• AWS SDK client instrumentation – build.gradle

193

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/build.gradle

AWS X-Ray Developer Guide

The xray branch of the application includes the use of HTTPClient, Annotations, SQL queries,
custom subsegments, an instrumented AWS Lambda function, and instrumented initialization code
and scripts.

To support user log-in and AWS SDK for JavaScript use in the browser, the xray-cognito branch
adds Amazon Cognito to support user authentication and authorization. With credentials retrieved
from Amazon Cognito, the web app also sends trace data to X-Ray to record request information
from the client's point of view. The browser client appears as its own node on the trace map, and
records additional information, including the URL of the page that the user is viewing, and the
user's ID.

Finally, the xray-worker branch adds an instrumented Python Lambda function that runs
independently, processing items from an Amazon SQS queue. Scorekeep adds an item to the queue
each time a game ends. The Lambda worker, triggered by CloudWatch Events, pulls items from the
queue every few minutes and processes them to store game records in Amazon S3 for analysis.

Topics

• Getting started with the Scorekeep sample application

• Manually instrumenting AWS SDK clients

• Creating additional subsegments

• Recording annotations, metadata, and user IDs

• Instrumenting outgoing HTTP calls

• Instrumenting calls to a PostgreSQL database

• Instrumenting AWS Lambda functions

• Instrumenting startup code

• Instrumenting scripts

• Instrumenting a web app client

• Using instrumented clients in worker threads

Getting started with the Scorekeep sample application

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

Scorekeep tutorial 194

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

This tutorial uses the xray-gettingstarted branch of the Scorekeep sample application, which
uses AWS CloudFormation to create and configure the resources that run the sample application
and X-Ray daemon on Amazon ECS. The application uses the Spring framework to implement a
JSON web API and the AWS SDK for Java to persist data to Amazon DynamoDB. A servlet filter in
the application instruments all incoming requests served by the application, and a request handler
on the AWS SDK client instruments downstream calls to DynamoDB.

You can follow this tutorial using either the AWS Management Console or the AWS CLI.

Sections

• Prerequisites

• Install the Scorekeep application using CloudFormation

• Generate trace data

• View the trace map in the AWS Management Console

• Configuring Amazon SNS notifications

• Explore the sample application

• Optional: Least privilege policy

• Clean up

• Next steps

Prerequisites

This tutorial uses AWS CloudFormation to create and configure the resources that run the sample
application and X-Ray daemon. The following prerequisites are required to install and run through
the tutorial:

1. If you use an IAM user with limited permissions, add the following user policies in the IAM
console:

• AWSCloudFormationFullAccess – to access and use CloudFormation

Prerequisites 195

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://console.aws.amazon.com/iam
https://console.aws.amazon.com/iam

AWS X-Ray Developer Guide

• AmazonS3FullAccess – to upload a template file to CloudFormation using the AWS
Management Console

• IAMFullAccess – to create the Amazon ECS and Amazon EC2 instance roles

• AmazonEC2FullAccess – to create the Amazon EC2 resources

• AmazonDynamoDBFullAccess – to create the DynamoDB tables

• AmazonECS_FullAccess – to create Amazon ECS resources

• AmazonSNSFullAccess – to create the Amazon SNS topic

• AWSXrayReadOnlyAccess – for permission to view the trace map and traces in the X-Ray
console

2. To run through the tutorial using the AWS CLI, install the CLI version 2.7.9 or later, and
configure the CLI with the user from the previous step. Make sure the region is configured
when configuring the AWS CLI with the user. If a region is not configured, you will need to
append --region AWS-REGION to every CLI command.

3. Ensure that Git is installed, in order to clone the sample application repo.

4. Use the following code example to clone the xray-gettingstarted branch of the
Scorekeep repository:

git clone https://github.com/aws-samples/eb-java-scorekeep.git xray-scorekeep -b
 xray-gettingstarted

Install the Scorekeep application using CloudFormation

AWS Management Console

Install the sample application using the AWS Management Console

1. Open the CloudFormation console

2. Choose Create stack and then choose With new resources from the drop-down menu.

3. In the Specify template section, choose Upload a template file.

4. Select Choose file, navigate to the xray-scorekeep/cloudformation folder that was
created when you cloned the git repo, and choose the cf-resources.yaml file.

5. Choose Next to continue.

Install the Scorekeep application using CloudFormation 196

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-quickstart.html#cli-configure-quickstart-config
https://github.com/git-guides/install-git
https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

6. Enter scorekeep into the Stack name textbox, and then choose Next at the bottom
of the page to continue. Note that the rest of this tutorial assumes the stack is named
scorekeep.

7. Scroll to the bottom of the Configure stack options page and choose Next to continue.

8. Scroll to the bottom of the Review page, choose the check-box acknowledging that
CloudFormation may create IAM resources with custom names, and choose Create stack.

9. The CloudFormation stack is now being created. The stack status will be
CREATE_IN_PROGRESS for about five minutes before changing to CREATE_COMPLETE. The
status will refresh periodically, or you can refresh the page.

AWS CLI

Install the sample application using the AWS CLI

1. Navigate to the cloudformation folder of the xray-scorekeep repository that you
cloned earlier in the tutorial:

cd xray-scorekeep/cloudformation/

2. Enter the following AWS CLI command to create the CloudFormation stack:

aws cloudformation create-stack --stack-name scorekeep --capabilities
 "CAPABILITY_NAMED_IAM" --template-body file://cf-resources.yaml

3. Wait until the CloudFormation stack status is CREATE_COMPLETE, which will take about
five minutes. Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].StackStatus"

Generate trace data

The sample application includes a front-end web app. Use the web app to generate traffic to the
API and send trace data to X-Ray. First, retrieve the web app URL using the AWS Management
Console or the AWS CLI:

Generate trace data 197

AWS X-Ray Developer Guide

AWS Management Console

Find the application URL using the AWS Management Console

1. Open the CloudFormation console

2. Choose the scorekeep stack from the list.

3. Choose the Outputs tab on the scorekeep stack page, and choose the
LoadBalancerUrl URL link to open the web application.

AWS CLI

Find the application URL using the AWS CLI

1. Use the following command to display the URL of the web application:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].Outputs[0].OutputValue"

2. Copy this URL and open in a browser to display the Scorekeep web application.

Use the web application to generate trace data

1. Choose Create to create a user and session.

2. Type a game name, set the Rules to Tic Tac Toe, and then choose Create to create a game.

3. Choose Play to start the game.

4. Choose a tile to make a move and change the game state.

Each of these steps generates HTTP requests to the API, and downstream calls to DynamoDB to
read and write user, session, game, move, and state data.

View the trace map in the AWS Management Console

You can see the trace map and traces generated by the sample application in the X-Ray and
CloudWatch consoles.

View the trace map in the AWS Management Console 198

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

X-Ray console

Use the X-Ray console

1. Open the trace map page of the X-Ray console.

2. The console shows a representation of the service graph that X-Ray generates from
the trace data sent by the application. Be sure to adjust the time period of the trace
map if needed, to make sure that it will display all traces since you first started the web
application.

The trace map shows the web app client, the API running in Amazon ECS, and each DynamoDB
table that the application uses. Every request to the application, up to a configurable maximum
number of requests per second, is traced as it hits the API, generates requests to downstream
services, and completes.

You can choose any node in the service graph to view traces for requests that generated traffic
to that node. Currently, the Amazon SNS node is yellow. Drill down to find out why.

View the trace map in the AWS Management Console 199

https://console.aws.amazon.com/xray/home#/service-map

AWS X-Ray Developer Guide

To find the cause of the error

1. Choose the node named SNS. The node details panel is displayed.

2. Choose View traces to access the Trace overview screen.

3. Choose the trace from the Trace list. This trace doesn't have a method or URL because it
was recorded during startup instead of in response to an incoming request.

View the trace map in the AWS Management Console 200

AWS X-Ray Developer Guide

4. Choose the error status icon within the Amazon SNS segment at the bottom of the page, to
open the Exceptions page for the SNS subsegment.

View the trace map in the AWS Management Console 201

AWS X-Ray Developer Guide

5. The X-Ray SDK automatically captures exceptions thrown by instrumented AWS SDK clients
and records the stack trace.

CloudWatch console

Use the CloudWatch console

1. Open the X-Ray trace map page of the CloudWatch console.

2. The console shows a representation of the service graph that X-Ray generates from
the trace data sent by the application. Be sure to adjust the time period of the trace

View the trace map in the AWS Management Console 202

https://console.aws.amazon.com/cloudwatch/home#xray:service-map/map

AWS X-Ray Developer Guide

map if needed, to make sure that it will display all traces since you first started the web
application.

The trace map shows the web app client, the API running in Amazon EC2, and each DynamoDB
table that the application uses. Every request to the application, up to a configurable maximum
number of requests per second, is traced as it hits the API, generates requests to downstream
services, and completes.

You can choose any node in the service graph to view traces for requests that generated traffic
to that node. Currently, the Amazon SNS node is orange. Drill down to find out why.

View the trace map in the AWS Management Console 203

AWS X-Ray Developer Guide

View the trace map in the AWS Management Console 204

AWS X-Ray Developer Guide

To find the cause of the error

1. Choose the node named SNS. The SNS node details panel is displayed below the map.

2. Choose View traces to access the Traces page.

3. Add the bottom of the page, choose the trace from the Traces list. This trace doesn't have
a method or URL because it was recorded during startup instead of in response to an
incoming request.

4. Choose the Amazon SNS subsegment at the bottom of the segments timeline, and choose
the Exceptions tab for the SNS subsegment to view the exception details.

View the trace map in the AWS Management Console 205

AWS X-Ray Developer Guide

The cause indicates that the email address provided in a call to createSubscription made in
the WebConfig class was invalid. In the next section, we'll fix that.

Configuring Amazon SNS notifications

Scorekeep uses Amazon SNS to send notifications when users complete a game. When
the application starts up, it tries to create a subscription for an email address defined in a
CloudFormation stack parameter. That call is currently failing. Configure a notification email to
enable notifications, and resolve the failures highlighted in the trace map.

AWS Management Console

To configure Amazon SNS notifications using the AWS Management Console

1. Open the CloudFormation console

2. Choose the radio button next to the scorekeep stack name in the list, and then choose
Update.

3. Make sure that Use current template is chosen, and then click Next on the Update stack
page.

4. Find the Email parameter in the list, and replace the default value with a valid email
address.

5. Scroll to the bottom of the page and choose Next.

6. Scroll to the bottom of the Review page, choose the check-box acknowledging that
CloudFormation may create IAM resources with custom names, and choose Update stack.

7. The CloudFormation stack is now being updated. The stack status will be
UPDATE_IN_PROGRESS for about five minutes before changing to UPDATE_COMPLETE. The
status will refresh periodically, or you can refresh the page.

Configuring Amazon SNS notifications 206

https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

AWS CLI

To configure Amazon SNS notifications using the AWS CLI

1. Navigate to the xray-scorekeep/cloudformation/ folder you previously created, and
open the cf-resources.yaml file in a text editor.

2. Find the Default value within the Email parameter and change it from UPDATE_ME to a
valid email address.

Parameters:
 Email:
 Type: String
 Default: UPDATE_ME # <- change to a valid abc@def.xyz email address

3. From the cloudformation folder, update the CloudFormation stack with the following
AWS CLI command:

aws cloudformation update-stack --stack-name scorekeep --capabilities
 "CAPABILITY_NAMED_IAM" --template-body file://cf-resources.yaml

4. Wait until the CloudFormation stack status is UPDATE_COMPLETE, which will take a few
minutes. Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].StackStatus"

When the update completes, Scorekeep restarts and creates a subscription to the SNS topic. Check
your email and confirm the subscription to see updates when you complete a game. Open the trace
map to verify that the calls to SNS are no longer failing.

Explore the sample application

The sample application is an HTTP web API in Java that is configured to use the X-Ray SDK for Java.
When you deploy the application with the CloudFormation template, it creates the DynamoDB
tables, Amazon ECS Cluster, and other services required to run Scorekeep on ECS. A task definition
file for ECS is created through CloudFormation. This file defines the container images used per task
in an ECS cluster. These images are obtained from the official X-Ray public ECR. The scorekeep API
container image has the API compiled with Gradle. The container image of the Scorekeep frontend

Explore the sample application 207

AWS X-Ray Developer Guide

container serves the frontend using the nginx proxy server. This server routes requests to paths
starting with /api to the API.

To instrument incoming HTTP requests, the application adds the TracingFilter provided by the
SDK.

Example src/main/java/scorekeep/WebConfig.java - servlet filter

import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
...

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
...

This filter sends trace data about all incoming requests that the application serves, including
request URL, method, response status, start time, and end time.

The application also makes downstream calls to DynamoDB using the AWS SDK for Java.
To instrument these calls, the application simply takes the AWS SDK-related submodules as
dependencies, and the X-Ray SDK for Java automatically instruments all AWS SDK clients.

The application uses Docker to build the source code on-instance with the Gradle Docker
Image and the Scorekeep API Dockerfile file to run the executable JAR that Gradle
generates at its ENTRYPOINT.

Example use of Docker to build via Gradle Docker Image

docker run --rm -v /PATH/TO/SCOREKEEP_REPO/home/gradle/project -w /home/gradle/project
 gradle:4.3 gradle build

Example Dockerfile ENTRYPOINT

ENTRYPOINT ["sh", "-c", "java -Dserver.port=5000 -jar scorekeep-api-1.0.0.jar"]

Explore the sample application 208

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

The build.gradle file downloads the SDK submodules from Maven during compilation by
declaring them as dependencies.

Example build.gradle -- dependencies

...
dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile('org.springframework.boot:spring-boot-starter-test')
 compile('com.amazonaws:aws-java-sdk-dynamodb')
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 ...
}
dependencyManagement {
 imports {
 mavenBom("com.amazonaws:aws-java-sdk-bom:1.11.67")
 mavenBom("com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0")
 }
}

The core, AWS SDK, and AWS SDK Instrumentor submodules are all that's required to automatically
instrument any downstream calls made with the AWS SDK.

To relay the raw segment data to the X-Ray API, the X-Ray daemon is required to listen for traffic
on UDP port 2000. To do so, the application has the X-Ray daemon run in a container that is
deployed alongside the Scorekeep application on ECS as a sidecar container. Check out the X-Ray
daemon topic for more information.

Example X-Ray Daemon Container Definition in an ECS Task Definition

...
Resources:
 ScorekeepTaskDefinition:
 Type: AWS::ECS::TaskDefinition
 Properties:
 ContainerDefinitions:
 ...

 - Cpu: '256'
 Essential: true

Explore the sample application 209

AWS X-Ray Developer Guide

 Image: amazon/aws-xray-daemon
 MemoryReservation: '128'
 Name: xray-daemon
 PortMappings:
 - ContainerPort: '2000'
 HostPort: '2000'
 Protocol: udp
 ...

The X-Ray SDK for Java provides a class named AWSXRay that provides the global recorder, a
TracingHandler that you can use to instrument your code. You can configure the global recorder
to customize the AWSXRayServletFilter that creates segments for incoming HTTP calls. The
sample includes a static block in the WebConfig class that configures the global recorder with
plugins and sampling rules.

Example src/main/java/scorekeep/WebConfig.java - recorder

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.plugins.ECSPlugin;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;
...

@Configuration
public class WebConfig {
 ...

 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
 ECSPlugin()).withPlugin(new EC2Plugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 ...

 }
}

Explore the sample application 210

AWS X-Ray Developer Guide

This example uses the builder to load sampling rules from a file named sampling-rules.json.
Sampling rules determine the rate at which the SDK records segments for incoming requests.

Example src/main/java/resources/sampling-rules.json

{
 "version": 1,
 "rules": [
 {
 "description": "Resource creation.",
 "service_name": "*",
 "http_method": "POST",
 "url_path": "/api/*",
 "fixed_target": 1,
 "rate": 1.0
 },
 {
 "description": "Session polling.",
 "service_name": "*",
 "http_method": "GET",
 "url_path": "/api/session/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 {
 "description": "Game polling.",
 "service_name": "*",
 "http_method": "GET",
 "url_path": "/api/game/*/*",
 "fixed_target": 0,
 "rate": 0.05
 },
 {
 "description": "State polling.",
 "service_name": "*",
 "http_method": "GET",
 "url_path": "/api/state/*/*/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1

Explore the sample application 211

AWS X-Ray Developer Guide

 }
}

The sampling rules file defines four custom sampling rules and the default rule. For each incoming
request, the SDK evaluates the custom rules in the order in which they are defined. The SDK applies
the first rule that matches the request's method, path, and service name. For Scorekeep, the first
rule catches all POST requests (resource creation calls) by applying a fixed target of one request per
second and a rate of 1.0, or 100 percent of requests after the fixed target is satisfied.

The other three custom rules apply a five percent rate with no fixed target to session, game, and
state reads (GET requests). This minimizes the number of traces for periodic calls that the front end
makes automatically every few seconds to ensure the content is up to date. For all other requests,
the file defines a default rate of one request per second and a rate of 10 percent.

The sample application also shows how to use advanced features such as manual SDK client
instrumentation, creating additional subsegments, and outgoing HTTP calls. For more information,
see AWS X-Ray sample application.

Optional: Least privilege policy

The Scorekeep ECS containers access resources using full access policies, such as
AmazonSNSFullAccess and AmazonDynamoDBFullAccess. Using full access policies is not
the best practice for production applications. The following example updates the DynamoDB IAM
policy to improve the security of the application. To learn more about security best practices in IAM
policies, see Identity and access management for AWS X-Ray.

Example cf-resources.yaml template ECSTaskRole definition

ECSTaskRole:
 Type: AWS::IAM::Role
 Properties:
 AssumeRolePolicyDocument:
 Version: "2012-10-17"
 Statement:
 -
 Effect: "Allow"
 Principal:
 Service:
 - "ecs-tasks.amazonaws.com"
 Action:

Optional: Least privilege policy 212

AWS X-Ray Developer Guide

 - "sts:AssumeRole"
 ManagedPolicyArns:
 - "arn:aws:iam::aws:policy/AmazonDynamoDBFullAccess"
 - "arn:aws:iam::aws:policy/AmazonSNSFullAccess"
 - "arn:aws:iam::aws:policy/AWSXrayFullAccess"
 RoleName: "scorekeepRole"

To update your policy, first you identify the ARN of your DynamoDB resources. Then you use the
ARN in a custom IAM policy. Finally, you apply that policy to your instance profile.

To identify the ARN of your DynamoDB resource:

1. Open the DynamoDB console.

2. Choose Tables from the left navigation bar.

3. Choose any of the scorekeep-* to display the table detail page.

4. Under the Overview tab, choose Additional info to expand the section and view the Amazon
Resource Name (ARN). Copy this value.

5. Insert the ARN into the following IAM policy, replacing the AWS_REGION and
AWS_ACCOUNT_ID values with your specific region and account ID. This new policy allows only
the actions specified, instead of the AmazonDynamoDBFullAccess policy which allows any
action.

Example

The tables that the application creates follow a consistent naming convention. You can use the
scorekeep-* format to indicate all Scorekeep tables.

Change your IAM policy

1. Open the Scorekeep task role (scorekeepRole) from the IAM console.

2. Choose the check box next to the AmazonDynamoDBFullAccess policy and choose Remove
to remove this policy.

3. Choose Add permissions, and then Attach policies, and finally Create policy.

4. Choose the JSON tab and paste in the policy created above.

5. Choose Next: Tags at the bottom of the page.

6. Choose Next: Review at the bottom of the page.

7. For Name, assign a name for the policy.

Optional: Least privilege policy 213

https://console.aws.amazon.com/dynamodbv2
https://console.aws.amazon.com/iamv2/home#/roles/details/scorekeepRole

AWS X-Ray Developer Guide

8. Choose Create policy at the bottom of the page.

9. Attach the newly created policy to the scorekeepRole role. It may take a few minutes for the
attached policy to take effect.

If you have attached the new policy to the scorekeepRole role, you must detach it before
deleting the CloudFormation stack, since this attached policy will block the stack from being
deleted. The policy can be automatically detached by deleting the policy.

Remove your custom IAM policy

1. Open the IAM console.

2. Choose Policies from the left navigation bar.

3. Search for the custom policy name you created earlier in this section, and choose the radio
button next to the policy name to highlight it.

4. Choose the Actions drop-down and then choose Delete.

5. Type the name of the custom policy and then choose Delete to confirm deletion . This will
automatically detach the policy from the scorekeepRole role.

Clean up

Follow these steps to delete the Scorekeep application resources:

Note

If you created and attached custom policies using the prior section of this tutorial, you
must remove the policy from the scorekeepRole before deleting the CloudFormation
stack.

AWS Management Console

Delete the sample application using the AWS Management Console

1. Open the CloudFormation console

2. Choose the radio button next to the scorekeep stack name in the list, and then choose
Delete.

Clean up 214

https://console.aws.amazon.com/iam
https://console.aws.amazon.com/cloudformation/

AWS X-Ray Developer Guide

3. The CloudFormation stack is now being deleted. The stack status will be
DELETE_IN_PROGRESS for a few minutes until all resources are deleted. The status will
refresh periodically, or you can refresh the page.

AWS CLI

Delete the sample application using the AWS CLI

1. Enter the following AWS CLI command to delete the CloudFormation stack:

aws cloudformation delete-stack --stack-name scorekeep

2. Wait until the CloudFormation stack no longer exists, which will take about five minutes.
Use the following AWS CLI command to check on the status:

aws cloudformation describe-stacks --stack-name scorekeep --query
 "Stacks[0].StackStatus"

Next steps

Learn more about X-Ray in the next chapter, AWS X-Ray concepts.

To instrument your own app, learn more about the X-Ray SDK for Java or one of the other X-Ray
SDKs:

• X-Ray SDK for Java – AWS X-Ray SDK for Java

• X-Ray SDK for Node.js – AWS X-Ray SDK for Node.js

• X-Ray SDK for .NET – AWS X-Ray SDK for .NET

To run the X-Ray daemon locally or on AWS, see AWS X-Ray daemon.

To contribute to the sample application on GitHub, see eb-java-scorekeep.

Next steps 215

https://github.com/awslabs/eb-java-scorekeep/tree/xray-gettingstarted

AWS X-Ray Developer Guide

Manually instrumenting AWS SDK clients

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the AWS
SDK Instrumentor submodule in your build dependencies.

You can disable automatic client instrumentation by removing the Instrumentor submodule. This
enables you to instrument some clients manually while ignoring others, or use different tracing
handlers on different clients.

To illustrate support for instrumenting specific AWS SDK clients, the application passes a tracing
handler to AmazonDynamoDBClientBuilder as a request handler in the user, game, and session
model. This code change tells the SDK to instrument all calls to DynamoDB using those clients.

Example src/main/java/scorekeep/SessionModel.java – Manual AWS SDK client
instrumentation

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.handlers.TracingHandler;

public class SessionModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Constants.REGION)
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();
 private DynamoDBMapper mapper = new DynamoDBMapper(client);

If you remove the AWS SDK Instrumentor submodule from project dependencies, only the
manually instrumented AWS SDK clients appear in the trace map.

AWS SDK clients 216

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/SessionModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/handlers/TracingHandler.html

AWS X-Ray Developer Guide

Creating additional subsegments

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

In the user model class, the application manually creates subsegments to group all downstream
calls made within the saveUser function and adds metadata.

Example src/main/java/scorekeep/UserModel.java - Custom subsegments

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveUser(User user) {
 // Wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## UserModel.saveUser");
 try {
 mapper.save(user);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

Recording annotations, metadata, and user IDs

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

Custom subsegments 217

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

In the game model class, the application records Game objects in a metadata block each time it
saves a game in DynamoDB. Separately, the application records game IDs in annotations for use
with filter expressions.

Example src/main/java/scorekeep/GameModel.java – Annotations and metadata

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 Segment segment = AWSXRay.getCurrentSegment();
 subsegment.putMetadata("resources", "game", game);
 segment.putAnnotation("gameid", game.getId());
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

In the move controller, the application records user IDs with setUser. User IDs are recorded in a
separate field on segments and are indexed for use with search.

Annotations and metadata 218

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

Example src/main/java/scorekeep/MoveController.java – User ID

import com.amazonaws.xray.AWSXRay;
...
 @RequestMapping(value="/{userId}", method=RequestMethod.POST)
 public Move newMove(@PathVariable String sessionId, @PathVariable String
 gameId, @PathVariable String userId, @RequestBody String move) throws
 SessionNotFoundException, GameNotFoundException, StateNotFoundException,
 RulesException {
 AWSXRay.getCurrentSegment().setUser(userId);
 return moveFactory.newMove(sessionId, gameId, userId, move);
 }

Instrumenting outgoing HTTP calls

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The user factory class shows how the application uses the X-Ray SDK for Java's version of
HTTPClientBuilder to instrument outgoing HTTP calls.

Example src/main/java/scorekeep/UserFactory.java – HTTPClient instrumentation

import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;

 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();
 HttpGet httpGet = new HttpGet("http://uinames.com/api/");
 CloseableHttpResponse response = httpclient.execute(httpGet);
 try {
 HttpEntity entity = response.getEntity();
 InputStream inputStream = entity.getContent();

HTTP clients 219

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveController.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/UserFactory.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/proxies/apache/http/HttpClientBuilder.html

AWS X-Ray Developer Guide

 ObjectMapper mapper = new ObjectMapper();
 Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);
 String name = jsonMap.get("name");
 EntityUtils.consume(entity);
 return name;
 } finally {
 response.close();
 }
 }

If you currently use org.apache.http.impl.client.HttpClientBuilder,
you can simply swap out the import statement for that class with one for
com.amazonaws.xray.proxies.apache.http.HttpClientBuilder.

Instrumenting calls to a PostgreSQL database

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The application-pgsql.properties file adds the X-Ray PostgreSQL tracing interceptor to the
data source created in RdsWebConfig.java.

Example application-pgsql.properties – PostgreSQL database instrumentation

spring.datasource.continue-on-error=true
spring.jpa.show-sql=false
spring.jpa.hibernate.ddl-auto=create-drop
spring.datasource.jdbc-interceptors=com.amazonaws.xray.sql.postgres.TracingInterceptor
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQL94Dialect

SQL clients 220

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/resources/application-pgsql.properties

AWS X-Ray Developer Guide

Note

See Configuring Databases with Elastic Beanstalk in the AWS Elastic Beanstalk Developer
Guide for details on how to add a PostgreSQL database to the application environment.

The X-Ray demo page in the xray branch includes a demo that uses the instrumented data source
to generate traces that show information about the SQL queries that it generates. Navigate to the
/#/xray path in the running application or choose Powered by AWS X-Ray in the navigation bar
to see the demo page.

SQL clients 221

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.managing.db.html

AWS X-Ray Developer Guide

SQL clients 222

AWS X-Ray Developer Guide

Choose Trace SQL queries to simulate game sessions and store the results in the attached
database. Then, choose View traces in AWS X-Ray to see a filtered list of traces that hit the API's /
api/history route.

Choose one of the traces from the list to see the timeline, including the SQL query.

Instrumenting AWS Lambda functions

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Scorekeep uses two AWS Lambda functions. The first is a Node.js function from the lambda branch
that generates random names for new users. When a user creates a session without entering a
name, the application calls a function named random-name with the AWS SDK for Java. The X-
Ray SDK for Java records information about the call to Lambda in a subsegment like any other call
made with an instrumented AWS SDK client.

AWS Lambda functions 223

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Note

Running the random-name Lambda function requires the creation of additional resources
outside of the Elastic Beanstalk environment. See the readme for more information and
instructions: AWS Lambda Integration.

The second function, scorekeep-worker, is a Python function that runs independently of the
Scorekeep API. When a game ends, the API writes the session ID and game ID to an SQS queue. The
worker function reads items from the queue, and calls the Scorekeep API to construct complete
records of each game session for storage in Amazon S3.

Scorekeep includes AWS CloudFormation templates and scripts to create both functions.
Because you need to bundle the X-Ray SDK with the function code, the templates create the
functions without any code. When you deploy Scorekeep, a configuration file included in the
.ebextensions folder creates a source bundle that includes the SDK, and updates the function
code and configuration with the AWS Command Line Interface.

Functions

• Random name

• Worker

Random name

Scorekeep calls the random name function when a user starts a game session without signing in
or specifying a user name. When Lambda processes the call to random-name, it reads the tracing
header, which contains the trace ID and sampling decision written by the X-Ray SDK for Java.

For each sampled request, Lambda runs the X-Ray daemon and writes two segments. The first
segment records information about the call to Lambda that invokes the function. This segment
contains the same information as the subsegment recorded by Scorekeep, but from the Lambda
point of view. The second segment represents the work that the function does.

Lambda passes the function segment to the X-Ray SDK through the function context. When you
instrument a Lambda function, you don't use the SDK to create a segment for incoming requests.
Lambda provides the segment, and you use the SDK to instrument clients and write subsegments.

Random name 224

https://github.com/awslabs/eb-java-scorekeep/tree/xray/README.md#aws-lambda-integration

AWS X-Ray Developer Guide

The random-name function is implemented in Node.js. It uses the SDK for JavaScript in
Node.js to send notifications with Amazon SNS, and the X-Ray SDK for Node.js to instrument
the AWS SDK client. To write annotations, the function creates a custom subsegment with
AWSXRay.captureFunc, and writes annotations in the instrumented function. In Lambda, you
can't write annotations directly to the function segment, only to a subsegment that you create.

Example function/index.js -- Random name Lambda function

var AWSXRay = require('aws-xray-sdk-core');
var AWS = AWSXRay.captureAWS(require('aws-sdk'));

AWS.config.update({region: process.env.AWS_REGION});
var Chance = require('chance');

var myFunction = function(event, context, callback) {
 var sns = new AWS.SNS();
 var chance = new Chance();
 var userid = event.userid;
 var name = chance.first();

 AWSXRay.captureFunc('annotations', function(subsegment){

Random name 225

https://github.com/awslabs/eb-java-scorekeep/tree/xray/function/index.js

AWS X-Ray Developer Guide

 subsegment.addAnnotation('Name', name);
 subsegment.addAnnotation('UserID', event.userid);
 });

 // Notify
 var params = {
 Message: 'Created randon name "' + name + '"" for user "' + userid + '".',
 Subject: 'New user: ' + name,
 TopicArn: process.env.TOPIC_ARN
 };
 sns.publish(params, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 callback(err);
 }
 else {
 console.log(data);
 callback(null, {"name": name});
 }
 });
};

exports.handler = myFunction;

This function is created automatically when you deploy the sample application to Elastic Beanstalk.
The xray branch includes a script to create a blank Lambda function. Configuration files in the
.ebextensions folder build the function package with npm install during deployment, and
then update the Lambda function with the AWS CLI.

Worker

The instrumented worker function is provided in its own branch, xray-worker, as it cannot
run unless you create the worker function and related resources first. See the branch readme for
instructions.

The function is triggered by a bundled Amazon CloudWatch Events event every 5 minutes. When
it runs, the function pulls an item from an Amazon SQS queue that Scorekeep manages. Each
message contains information about a completed game.

The worker pulls the game record and documents from other tables that the game record
references. For example, the game record in DynamoDB includes a list of moves that were executed

Worker 226

https://github.com/awslabs/eb-java-scorekeep/tree/xray-worker/README.md

AWS X-Ray Developer Guide

during the game. The list does not contain the moves themselves, but rather IDs of moves that are
stored in a separate table.

Sessions, and states are stored as references as well. This keeps the entries in the game table from
being too large, but requires additional calls to get all of the information about the game. The
worker dereferences all of these entries and constructs a complete record of the game as a single
document in Amazon S3. When you want to do analytics on the data, you can run queries on it
directly in Amazon S3 with Amazon Athena without running read-heavy data migrations to get
your data out of DynamoDB.

The worker function has active tracing enabled in its configuration in AWS Lambda. Unlike the
random name function, the worker does not receive a request from an instrumented application, so
AWS Lambda doesn't receive a tracing header. With active tracing, Lambda creates the trace ID and
makes sampling decisions.

The X-Ray SDK for Python is just a few lines at the top of the function that import the SDK and run
its patch_all function to patch the AWS SDK for Python (Boto) and HTTclients that it uses to call
Amazon SQS and Amazon S3. When the worker calls the Scorekeep API, the SDK adds the tracing
header to the request to trace calls through the API.

Worker 227

AWS X-Ray Developer Guide

Example _lambda/scorekeep-worker/scorekeep-worker.py -- Worker Lambda function

import os
import boto3
import json
import requests
import time
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

patch_all()
queue_url = os.environ['WORKER_QUEUE']

def lambda_handler(event, context):
 # Create SQS client
 sqs = boto3.client('sqs')
 s3client = boto3.client('s3')

 # Receive message from SQS queue
 response = sqs.receive_message(
 QueueUrl=queue_url,
 AttributeNames=[
 'SentTimestamp'
],
 MaxNumberOfMessages=1,
 MessageAttributeNames=[
 'All'
],
 VisibilityTimeout=0,
 WaitTimeSeconds=0
)
 ...

Instrumenting startup code

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

Instrumenting startup code 228

https://github.com/awslabs/eb-java-scorekeep/tree/xray-worker/_lambda/scorekeep-worker/scorekeep-worker.py

AWS X-Ray Developer Guide

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Java automatically creates segments for incoming requests. As long as a request
is in scope, you can use instrumented clients and record subsegments without issue. If you try to
use an instrumented client in startup code, though, you'll get a SegmentNotFoundException.

Startup code runs outside of the standard request/response flow of a web application, so you need
to create segments manually to instrument it. Scorekeep shows the instrumentation of startup
code in its WebConfig files. Scorekeep calls an SQL database and Amazon SNS during startup.

The default WebConfig class creates an Amazon SNS subscription for notifications. To provide
a segment for the X-Ray SDK to write to when the Amazon SNS client is used, Scorekeep calls
beginSegment and endSegment on the global recorder.

Instrumenting startup code 229

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/exceptions/SegmentNotFoundException.html

AWS X-Ray Developer Guide

Example src/main/java/scorekeep/WebConfig.java – Instrumented AWS SDK client in
startup code

AWSXRay.beginSegment("Scorekeep-init");
if (System.getenv("NOTIFICATION_EMAIL") != null){
 try { Sns.createSubscription(); }
 catch (Exception e) {
 logger.warn("Failed to create subscription for email "+
 System.getenv("NOTIFICATION_EMAIL"));
 }
}
AWSXRay.endSegment();

In RdsWebConfig, which Scorekeep uses when an Amazon RDS database is connected, the
configuration also creates a segment for the SQL client that Hibernate uses when it applies the
database schema during startup.

Example src/main/java/scorekeep/RdsWebConfig.java – Instrumented SQL database
client in startup code

@PostConstruct
public void schemaExport() {
 EntityManagerFactoryImpl entityManagerFactoryImpl = (EntityManagerFactoryImpl)
 localContainerEntityManagerFactoryBean.getNativeEntityManagerFactory();
 SessionFactoryImplementor sessionFactoryImplementor =
 entityManagerFactoryImpl.getSessionFactory();
 StandardServiceRegistry standardServiceRegistry =
 sessionFactoryImplementor.getSessionFactoryOptions().getServiceRegistry();
 MetadataSources metadataSources = new MetadataSources(new
 BootstrapServiceRegistryBuilder().build());
 metadataSources.addAnnotatedClass(GameHistory.class);
 MetadataImplementor metadataImplementor = (MetadataImplementor)
 metadataSources.buildMetadata(standardServiceRegistry);
 SchemaExport schemaExport = new SchemaExport(standardServiceRegistry,
 metadataImplementor);

 AWSXRay.beginSegment("Scorekeep-init");
 schemaExport.create(true, true);
 AWSXRay.endSegment();
}

Instrumenting startup code 230

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/WebConfig.java#L49
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/RdsWebConfig.java#L83

AWS X-Ray Developer Guide

SchemaExport runs automatically and uses an SQL client. Since the client is instrumented,
Scorekeep must override the default implementation and provide a segment for the SDK to use
when the client is invoked.

Instrumenting scripts

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can also instrument code that isn't part of your application. When the X-Ray daemon is
running, it will relay any segments that it receives to X-Ray, even if they are not generated by the
X-Ray SDK. Scorekeep uses its own scripts to instrument the build that compiles the application
during deployment.

Example bin/build.sh – Instrumented build script

SEGMENT=$(python bin/xray_start.py)
gradle build --quiet --stacktrace &> /var/log/gradle.log; GRADLE_RETURN=$?
if ((GRADLE_RETURN != 0)); then
 echo "Gradle failed with exit status $GRADLE_RETURN" >&2
 python bin/xray_error.py "$SEGMENT" "$(cat /var/log/gradle.log)"
 exit 1
fi
python bin/xray_success.py "$SEGMENT"

xray_start.py, xray_error.py and xray_success.py are simple Python scripts that
construct segment objects, convert them to JSON documents, and send them to the daemon over
UDP. If the Gradle build fails, you can find the error message by clicking on the scorekeep-build
node in the X-Ray console trace map.

Instrumenting scripts 231

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/build.sh
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_start.py
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_error.py
https://github.com/awslabs/eb-java-scorekeep/tree/xray/bin/xray_success.py

AWS X-Ray Developer Guide

Instrumenting scripts 232

AWS X-Ray Developer Guide

Instrumenting a web app client

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

In the xray-cognito branch, Scorekeep uses Amazon Cognito to enable users to create an
account and sign in with it to retrieve their user information from an Amazon Cognito user pool.
When a user signs in, Scorekeep uses an Amazon Cognito identity pool to get temporary AWS
credentials for use with the AWS SDK for JavaScript.

The identity pool is configured to let signed-in users write trace data to AWS X-Ray. The web app
uses these credentials to record the signed-in user's ID, the browser path, and the client's view of
calls to the Scorekeep API.

Most of the work is done in a service class named xray. This service class provides methods
for generating the required identifiers, creating in-progress segments, finalizing segments, and
sending segment documents to the X-Ray API.

Example public/xray.js – Record and upload segments

...
 service.beginSegment = function() {
 var segment = {};
 var traceId = '1-' + service.getHexTime() + '-' + service.getHexId(24);

 var id = service.getHexId(16);
 var startTime = service.getEpochTime();

 segment.trace_id = traceId;
 segment.id = id;
 segment.start_time = startTime;
 segment.name = 'Scorekeep-client';
 segment.in_progress = true;

Instrumenting web clients 233

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito
https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito/public/app/xray.js

AWS X-Ray Developer Guide

 segment.user = sessionStorage['userid'];
 segment.http = {
 request: {
 url: window.location.href
 }
 };

 var documents = [];
 documents[0] = JSON.stringify(segment);
 service.putDocuments(documents);
 return segment;
 }

 service.endSegment = function(segment) {
 var endTime = service.getEpochTime();
 segment.end_time = endTime;
 segment.in_progress = false;
 var documents = [];
 documents[0] = JSON.stringify(segment);
 service.putDocuments(documents);
 }

 service.putDocuments = function(documents) {
 var xray = new AWS.XRay();
 var params = {
 TraceSegmentDocuments: documents
 };
 xray.putTraceSegments(params, function(err, data) {
 if (err) {
 console.log(err, err.stack);
 } else {
 console.log(data);
 }
 })
 }

These methods are called in header and transformResponse functions in the resource services
that the web app uses to call the Scorekeep API. To include the client segment in the same trace
as the segment that the API generates, the web app must include the trace ID and segment ID in
a tracing header (X-Amzn-Trace-Id) that the X-Ray SDK can read. When the instrumented Java
application receives a request with this header, the X-Ray SDK for Java uses the same trace ID and
makes the segment from the web app client the parent of its segment.

Instrumenting web clients 234

AWS X-Ray Developer Guide

Example public/app/services.js – Recording segments for angular resource calls and
writing tracing headers

var module = angular.module('scorekeep');
module.factory('SessionService', function($resource, api, XRay) {
 return $resource(api + 'session/:id', { id: '@_id' }, {
 segment: {},
 get: {
 method: 'GET',
 headers: {
 'X-Amzn-Trace-Id': function(config) {
 segment = XRay.beginSegment();
 return XRay.getTraceHeader(segment);
 }
 },
 transformResponse: function(data) {
 XRay.endSegment(segment);
 return angular.fromJson(data);
 },
 },
...

The resulting trace map includes a node for the web app client.

Instrumenting web clients 235

https://github.com/awslabs/eb-java-scorekeep/tree/xray-cognito/public/app/services.js

AWS X-Ray Developer Guide

Traces that include segments from the web app show the URL that the user sees in the browser
(paths starting with /#/). Without client instrumentation, you only get the URL of the API resource
that the web app calls (paths starting with /api/).

Instrumenting web clients 236

AWS X-Ray Developer Guide

Using instrumented clients in worker threads

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Scorekeep uses a worker thread to publish a notification to Amazon SNS when a user wins a game.
Publishing the notification takes longer than the rest of the request operations combined, and
doesn't affect the client or user. Therefore, performing the task asynchronously is a good way to
improve response time.

However, the X-Ray SDK for Java doesn't know which segment was active when the thread is
created. As a result, when you try to use the instrumented AWS SDK for Java client within the
thread, it throws a SegmentNotFoundException, crashing the thread.

Example Web-1.error.log

Exception in thread "Thread-2" com.amazonaws.xray.exceptions.SegmentNotFoundException:
 Failed to begin subsegment named 'AmazonSNS': segment cannot be found.
 at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
 at
 sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:62)
 at
 sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:45)
...

To fix this, the application uses GetTraceEntity to get a reference to the segment in the main
thread, and Entity.run() to safely run the worker thread code with access to the segment's
context.

Example src/main/java/scorekeep/MoveFactory.java – Passing trace context to a worker
thread

import com.amazonaws.xray.AWSXRay;

Worker threads 237

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveFactory.java#L70
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

import com.amazonaws.xray.AWSXRayRecorder;
import com.amazonaws.xray.entities.Entity;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 Entity segment = recorder.getTraceEntity();
 Thread comm = new Thread() {
 public void run() {
 segment.run(() -> {
 Subsegment subsegment = AWSXRay.beginSubsegment("## Send notification");
 Sns.sendNotification("Scorekeep game completed", "Winner: " + userId);
 AWSXRay.endSubsegment();
 }
 }

Because the request is now resolved before the call to Amazon SNS, the application creates a
separate subsegment for the thread. This prevents the X-Ray SDK from closing the segment before
it records the response from Amazon SNS. If no subsegment is open when Scorekeep resolved the
request, the response from Amazon SNS could be lost.

See Passing segment context between threads in a multithreaded application for more information
about multithreading.

Worker threads 238

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

AWS X-Ray daemon

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Note

You can now use the CloudWatch agent to collect metrics, logs and traces from Amazon
EC2 instances and on-premise servers. CloudWatch agent version 1.300025.0 and later can
collect traces from OpenTelemetry or X-Ray client SDKs, and send them to X-Ray. Using the
CloudWatch agent instead of the AWS Distro for OpenTelemetry (ADOT) Collector or X-Ray
daemon to collect traces can help you reduce the number of agents that you manage. See
the CloudWatch agent topic in the CloudWatch User Guide for more information.

The AWS X-Ray daemon is a software application that listens for traffic on UDP port 2000, gathers
raw segment data, and relays it to the AWS X-Ray API. The daemon works in conjunction with the
AWS X-Ray SDKs and must be running so that data sent by the SDKs can reach the X-Ray service.
The X-Ray daemon is an open source project. You can follow the project and submit issues and pull
requests on GitHub: github.com/aws/aws-xray-daemon

On AWS Lambda and AWS Elastic Beanstalk, use those services' integration with X-Ray to run the
daemon. Lambda runs the daemon automatically any time a function is invoked for a sampled
request. On Elastic Beanstalk, use the XRayEnabled configuration option to run the daemon on
the instances in your environment. For more information, see

To run the X-Ray daemon locally, on-premises, or on other AWS services, download it, run it, and
then give it permission to upload segment documents to X-Ray.

239

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://github.com/aws/aws-xray-daemon

AWS X-Ray Developer Guide

Downloading the daemon

You can download the daemon from Amazon S3, Amazon ECR, or Docker Hub, and then run it
locally, or install it on an Amazon EC2 instance on launch.

Amazon S3

X-Ray daemon installers and executables

• Linux (executable) – aws-xray-daemon-linux-3.x.zip (sig)

• Linux (RPM installer) – aws-xray-daemon-3.x.rpm

• Linux (DEB installer) – aws-xray-daemon-3.x.deb

• Linux (ARM64, executable) – aws-xray-daemon-linux-arm64-3.x.zip (sig)

• Linux (ARM64, RPM installer) – aws-xray-daemon-arm64-3.x.rpm

• Linux (ARM64, DEB installer) – aws-xray-daemon-arm64-3.x.deb

• OS X (executable) – aws-xray-daemon-macos-3.x.zip (sig)

• Windows (executable) – aws-xray-daemon-windows-process-3.x.zip (sig)

• Windows (service) – aws-xray-daemon-windows-service-3.x.zip (sig)

These links always point to the latest 3.x release of the daemon. To download a specific release,
do the following:

• If you want to download a release prior to version 3.3.0, replace 3.x with the version
number. For example, 2.1.0. Prior to version 3.3.0, the only available architecture is arm64.
For example, 2.1.0 and arm64.

• If you want to download a release after version 3.3.0, replace 3.x with the version number
and arch with the architecture type.

X-Ray assets are replicated to buckets in every supported region. To use the bucket closest to
you or your AWS resources, replace the region in the above links with your region.

https://s3.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-daemon/aws-xray-
daemon-3.x.rpm

Downloading the daemon 240

https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.rpm
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-3.x.deb
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-arm64-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-linux-arm64-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-arm64-3.x.rpm
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-arm64-3.x.deb
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-macos-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-macos-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-process-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-process-3.x.zip.sig
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-service-3.x.zip
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-daemon-windows-service-3.x.zip.sig

AWS X-Ray Developer Guide

Amazon ECR

As of version 3.2.0 the daemon can be found on Amazon ECR. Before pulling an image you
should authenticate your docker client to the Amazon ECR public registry.

Pull the latest released 3.x version tag by running the following command:

docker pull public.ecr.aws/xray/aws-xray-daemon:3.x

Prior or alpha releases can be downloaded by replacing 3.x with alpha or a specific version
number. It is not recommended to use a daemon image with an alpha tag in a production
environment.

Docker Hub

The daemon can be found on Docker Hub. To download the latest released 3.x version, run the
following command:

docker pull amazon/aws-xray-daemon:3.x

Prior releases of the daemon can be released by replacing 3.x with the desired version.

Verifying the daemon archive's signature

GPG signature files are included for daemon assets compressed in ZIP archives. The public key is
here: aws-xray.gpg.

You can use the public key to verify that the daemon's ZIP archive is original and unmodified. First,
import the public key with GnuPG.

To import the public key

1. Download the public key.

$ BUCKETURL=https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2
$ wget $BUCKETURL/xray-daemon/aws-xray.gpg

2. Import the public key into your keyring.

$ gpg --import aws-xray.gpg

Verifying the daemon archive's signature 241

https://gallery.ecr.aws/xray/aws-xray-daemon
https://docs.aws.amazon.com/AmazonECR/latest/public/public-registries.html#public-registry-auth
https://hub.docker.com/r/amazon/aws-xray-daemon
https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray.gpg
https://gnupg.org/index.html

AWS X-Ray Developer Guide

gpg: /Users/me/.gnupg/trustdb.gpg: trustdb created
gpg: key 7BFE036BFE6157D3: public key "AWS X-Ray <aws-xray@amazon.com>" imported
gpg: Total number processed: 1
gpg: imported: 1

Use the imported key to verify the signature of the daemon's ZIP archive.

To verify an archive's signature

1. Download the archive and signature file.

$ BUCKETURL=https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2
$ wget $BUCKETURL/xray-daemon/aws-xray-daemon-linux-3.x.zip
$ wget $BUCKETURL/xray-daemon/aws-xray-daemon-linux-3.x.zip.sig

2. Run gpg --verify to verify the signature.

$ gpg --verify aws-xray-daemon-linux-3.x.zip.sig aws-xray-daemon-linux-3.x.zip
gpg: Signature made Wed 19 Apr 2017 05:06:31 AM UTC using RSA key ID FE6157D3
gpg: Good signature from "AWS X-Ray <aws-xray@amazon.com>"
gpg: WARNING: This key is not certified with a trusted signature!
gpg: There is no indication that the signature belongs to the owner.
Primary key fingerprint: EA6D 9271 FBF3 6990 277F 4B87 7BFE 036B FE61 57D3

Note the warning about trust. A key is only trusted if you or someone you trust has signed it. This
does not mean that the signature is invalid, only that you have not verified the public key.

Running the daemon

Run the daemon locally from the command line. Use the -o option to run in local mode, and -n to
set the region.

~/Downloads$./xray -o -n us-east-2

For detailed platform-specific instructions, see the following topics:

• Linux (local) – Running the X-Ray daemon on Linux

• Windows (local) – Running the X-Ray daemon on Windows

Running the daemon 242

AWS X-Ray Developer Guide

• Elastic Beanstalk – Running the X-Ray daemon on AWS Elastic Beanstalk

• Amazon EC2 – Running the X-Ray daemon on Amazon EC2

• Amazon ECS – Running the X-Ray daemon on Amazon ECS

You can customize the daemon's behavior further by using command line options or a
configuration file. See Configuring the AWS X-Ray daemon for details.

Giving the daemon permission to send data to X-Ray

The X-Ray daemon uses the AWS SDK to upload trace data to X-Ray, and it needs AWS credentials
with permission to do that.

On Amazon EC2, the daemon uses the instance's instance profile role automatically. For
information about credentials required to run the daemon locally, see running your application
locally.

If you specify credentials in more than one location (credentials file, instance profile, or
environment variables), the SDK provider chain determines which credentials are used. For more
information about providing credentials to the SDK, see Specifying Credentials in the AWS SDK for
Go Developer Guide.

The IAM role or user that the daemon's credentials belong to must have permission to write data to
the service on your behalf.

• To use the daemon on Amazon EC2, create a new instance profile role or add the managed policy
to an existing one.

• To use the daemon on Elastic Beanstalk, add the managed policy to the Elastic Beanstalk default
instance profile role.

• To run the daemon locally, see running your application locally.

For more information, see Identity and access management for AWS X-Ray.

X-Ray daemon logs

The daemon outputs information about its current configuration and segments that it sends to
AWS X-Ray.

Giving the daemon permission to send data to X-Ray 243

https://aws.github.io/aws-sdk-go-v2/docs/configuring-sdk/#specifying-credentials

AWS X-Ray Developer Guide

2016-11-24T06:07:06Z [Info] Initializing AWS X-Ray daemon 2.1.0
2016-11-24T06:07:06Z [Info] Using memory limit of 49 MB
2016-11-24T06:07:06Z [Info] 313 segment buffers allocated
2016-11-24T06:07:08Z [Info] Successfully sent batch of 1 segments (0.123 seconds)
2016-11-24T06:07:09Z [Info] Successfully sent batch of 1 segments (0.006 seconds)

By default, the daemon outputs logs to STDOUT. If you run the daemon in the background, use the
--log-file command line option or a configuration file to set the log file path. You can also set
the log level and disable log rotation. See Configuring the AWS X-Ray daemon for instructions.

On Elastic Beanstalk, the platform sets the location of the daemon logs. See Running the X-Ray
daemon on AWS Elastic Beanstalk for details.

Configuring the AWS X-Ray daemon

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can use command line options or a configuration file to customize the X-Ray daemon's
behavior. Most options are available using both methods, but some are only available in
configuration files and some only at the command line.

To get started, the only option that you need to know is -n or --region, which you use to set the
region that the daemon uses to send trace data to X-Ray.

~/xray-daemon$./xray -n us-east-2

If you are running the daemon locally, that is, not on Amazon EC2, you can add the -o option to
skip checking for instance profile credentials so the daemon will become ready more quickly.

~/xray-daemon$./xray -o -n us-east-2

Configuration 244

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

The rest of the command line options let you configure logging, listen on a different port, limit the
amount of memory that the daemon can use, or assume a role to send trace data to a different
account.

You can pass a configuration file to the daemon to access advanced configuration options and do
things like limit the number of concurrent calls to X-Ray, disable log rotation, and send traffic to a
proxy.

Sections

• Supported environment variables

• Using command line options

• Using a configuration file

Supported environment variables

The X-Ray daemon supports the following environment variables:

• AWS_REGION – Specifies the AWS Region of the X-Ray service endpoint.

• HTTPS_PROXY – Specifies a proxy address for the daemon to upload segments through. This can
be either the DNS domain names or IP addresses and port numbers used by your proxy servers.

Using command line options

Pass these options to the daemon when you run it locally or with a user data script.

Command Line Options

• -b, --bind – Listen for segment documents on a different UDP port.

--bind "127.0.0.1:3000"

Default – 2000.

• -t, --bind-tcp – Listen for calls to the X-Ray service on a different TCP port.

-bind-tcp "127.0.0.1:3000"

Default – 2000.

Supported environment variables 245

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html#cli-quick-configuration-region

AWS X-Ray Developer Guide

• -c, --config – Load a configuration file from the specified path.

--config "/home/ec2-user/xray-daemon.yaml"

• -f, --log-file – Output logs to the specified file path.

--log-file "/var/log/xray-daemon.log"

• -l, --log-level – Log level, from most verbose to least: dev, debug, info, warn, error, prod.

--log-level warn

Default – prod

• -m, --buffer-memory – Change the amount of memory in MB that buffers can use (minimum
3).

--buffer-memory 50

Default – 1% of available memory.

• -o, --local-mode – Don't check for EC2 instance metadata.

• -r, --role-arn – Assume the specified IAM role to upload segments to a different account.

--role-arn "arn:aws:iam::123456789012:role/xray-cross-account"

• -a, --resource-arn – Amazon Resource Name (ARN) of the AWS resource running the
daemon.

• -p, --proxy-address – Upload segments to AWS X-Ray through a proxy. The proxy server's
protocol must be specified.

--proxy-address "http://192.0.2.0:3000"

• -n, --region – Send segments to X-Ray service in a specific region.

• -v, --version – Show AWS X-Ray daemon version.

• -h, --help – Show the help screen.

Using command line options 246

AWS X-Ray Developer Guide

Using a configuration file

You can also use a YAML format file to configure the daemon. Pass the configuration file to the
daemon by using the -c option.

~$./xray -c ~/xray-daemon.yaml

Configuration file options

• TotalBufferSizeMB – Maximum buffer size in MB (minimum 3). Choose 0 to use 1% of host
memory.

• Concurrency – Maximum number of concurrent calls to AWS X-Ray to upload segment
documents.

• Region – Send segments to AWS X-Ray service in a specific region.

• Socket – Configure the daemon's binding.

• UDPAddress – Change the port on which the daemon listens.

• TCPAddress – Listen for calls to the X-Ray service on a different TCP port.

• Logging – Configure logging behavior.

• LogRotation – Set to false to disable log rotation.

• LogLevel – Change the log level, from most verbose to least: dev, debug, info or prod,
warn, error, prod. The default is prod, which is equivalent to info.

• LogPath – Output logs to the specified file path.

• LocalMode – Set to true to skip checking for EC2 instance metadata.

• ResourceARN – Amazon Resource Name (ARN) of the AWS resource running the daemon.

• RoleARN – Assume the specified IAM role to upload segments to a different account.

• ProxyAddress – Upload segments to AWS X-Ray through a proxy.

• Endpoint – Change the X-Ray service endpoint to which the daemon sends segment
documents.

• NoVerifySSL – Disable TLS certificate verification.

• Version – Daemon configuration file format version. The file format version is a required field.

Using a configuration file 247

AWS X-Ray Developer Guide

Example Xray-daemon.yaml

This configuration file changes the daemon's listening port to 3000, turns off checks for instance
metadata, sets a role to use for uploading segments, and changes region and logging options.

Socket:
 UDPAddress: "127.0.0.1:3000"
 TCPAddress: "127.0.0.1:3000"
Region: "us-west-2"
Logging:
 LogLevel: "warn"
 LogPath: "/var/log/xray-daemon.log"
LocalMode: true
RoleARN: "arn:aws:iam::123456789012:role/xray-cross-account"
Version: 2

Running the X-Ray daemon locally

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can run the AWS X-Ray daemon locally on Linux, MacOS, Windows, or in a Docker container.
Run the daemon to relay trace data to X-Ray when you are developing and testing your
instrumented application. Download and extract the daemon by using the instructions here.

When running locally, the daemon can read credentials from an AWS SDK credentials file (.aws/
credentials in your user directory) or from environment variables. For more information, see
Giving the daemon permission to send data to X-Ray.

The daemon listens for UDP data on port 2000. You can change the port and other options by
using a configuration file and command line options. For more information, see Configuring the
AWS X-Ray daemon.

Run the daemon locally 248

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Running the X-Ray daemon on Linux

You can run the daemon executable from the command line. Use the -o option to run in local
mode, and -n to set the region.

~/xray-daemon$./xray -o -n us-east-2

To run the daemon in the background, use &.

~/xray-daemon$./xray -o -n us-east-2 &

Terminate a daemon process running in the background with pkill.

~$ pkill xray

Running the X-Ray daemon in a Docker container

To run the daemon locally in a Docker container, save the following text to a file named
Dockerfile. Download the complete example image on Amazon ECR. See downloading the
daemon for more information.

Example Dockerfile – Amazon Linux

FROM amazonlinux
RUN yum install -y unzip
RUN curl -o daemon.zip https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-linux-3.x.zip
RUN unzip daemon.zip && cp xray /usr/bin/xray
ENTRYPOINT ["/usr/bin/xray", "-t", "0.0.0.0:2000", "-b", "0.0.0.0:2000"]
EXPOSE 2000/udp
EXPOSE 2000/tcp

Build the container image with docker build.

~/xray-daemon$ docker build -t xray-daemon .

Run the image in a container with docker run.

~/xray-daemon$ docker run \

Running the X-Ray daemon on Linux 249

https://gallery.ecr.aws/xray/aws-xray-daemon

AWS X-Ray Developer Guide

 --attach STDOUT \
 -v ~/.aws/:/root/.aws/:ro \
 --net=host \
 -e AWS_REGION=us-east-2 \
 --name xray-daemon \
 -p 2000:2000/udp \
 xray-daemon -o

This command uses the following options:

• --attach STDOUT – View output from the daemon in the terminal.

• -v ~/.aws/:/root/.aws/:ro – Give the container read-only access to the .aws directory to
let it read your AWS SDK credentials.

• AWS_REGION=us-east-2 – Set the AWS_REGION environment variable to tell the daemon
which region to use.

• --net=host – Attach the container to the host network. Containers on the host network can
communicate with each other without publishing ports.

• -p 2000:2000/udp – Map UDP port 2000 on your machine to the same port on the container.
This is not required for containers on the same network to communicate, but it does let you send
segments to the daemon from the command line or from an application not running in Docker.

• --name xray-daemon – Name the container xray-daemon instead of generating a random
name.

• -o (after the image name) – Append the -o option to the entry point that runs the daemon
within the container. This option tells the daemon to run in local mode to prevent it from trying
to read Amazon EC2 instance metadata.

To stop the daemon, use docker stop. If you make changes to the Dockerfile and build a new
image, you need to delete the existing container before you can create another one with the same
name. Use docker rm to delete the container.

$ docker stop xray-daemon
$ docker rm xray-daemon

Running the X-Ray daemon on Windows

You can run the daemon executable from the command line. Use the -o option to run in local
mode, and -n to set the region.

Running the X-Ray daemon on Windows 250

AWS X-Ray Developer Guide

> .\xray_windows.exe -o -n us-east-2

Use a PowerShell script to create and run a service for the daemon.

Example PowerShell script - Windows

if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue){
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
}
if (Get-Item -path aws-xray-daemon -ErrorAction SilentlyContinue) {
 Remove-Item -Recurse -Force aws-xray-daemon
}

$currentLocation = Get-Location
$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
$zipPath = "$currentLocation\$zipFileName"
$destPath = "$currentLocation\aws-xray-daemon"
$daemonPath = "$destPath\xray.exe"
$daemonLogPath = "C:\inetpub\wwwroot\xray-daemon.log"
$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-
daemon/aws-xray-daemon-windows-service-3.x.zip"

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

sc.exe create AWSXRayDaemon binPath= "$daemonPath -f $daemonLogPath"
sc.exe start AWSXRayDaemon

Running the X-Ray daemon on OS X

You can run the daemon executable from the command line. Use the -o option to run in local
mode, and -n to set the region.

~/xray-daemon$./xray_mac -o -n us-east-2

To run the daemon in the background, use &.

~/xray-daemon$./xray_mac -o -n us-east-2 &

Running the X-Ray daemon on OS X 251

AWS X-Ray Developer Guide

Use nohup to prevent the daemon from terminating when the terminal is closed.

~/xray-daemon$ nohup ./xray_mac &

Running the X-Ray daemon on AWS Elastic Beanstalk

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

To relay trace data from your application to AWS X-Ray, you can run the X-Ray daemon on your
Elastic Beanstalk environment's Amazon EC2 instances. For a list of supported platforms, see
Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk Developer Guide.

Note

The daemon uses your environment's instance profile for permissions. For instructions
about adding permissions to the Elastic Beanstalk instance profile, see Giving the daemon
permission to send data to X-Ray.

Elastic Beanstalk platforms provide a configuration option that you can set to run the daemon
automatically. You can enable the daemon in a configuration file in your source code or by
choosing an option in the Elastic Beanstalk console. When you enable the configuration option, the
daemon is installed on the instance and runs as a service.

The version included on Elastic Beanstalk platforms might not be the latest version. See the
Supported Platforms topic to find out the version of the daemon that is available for your platform
configuration.

Elastic Beanstalk does not provide the X-Ray daemon on the Multicontainer Docker (Amazon ECS)
platform.

On Elastic Beanstalk 252

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/concepts.platforms.html

AWS X-Ray Developer Guide

Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon

Use the console to turn on X-Ray integration, or configure it in your application source code with a
configuration file.

To enable the X-Ray daemon in the Elastic Beanstalk console

1. Open the Elastic Beanstalk console.

2. Navigate to the management console for your environment.

3. Choose Configuration.

4. Choose Software Settings.

5. For X-Ray daemon, choose Enabled.

6. Choose Apply.

You can include a configuration file in your source code to make your configuration portable
between environments.

Example .ebextensions/xray-daemon.config

option_settings:
 aws:elasticbeanstalk:xray:
 XRayEnabled: true

Elastic Beanstalk passes a configuration file to the daemon and outputs logs to a standard location.

On Windows Server Platforms

• Configuration file – C:\Program Files\Amazon\XRay\cfg.yaml

• Logs – c:\Program Files\Amazon\XRay\logs\xray-service.log

On Linux Platforms

• Configuration file – /etc/amazon/xray/cfg.yaml

• Logs – /var/log/xray/xray.log

Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon 253

https://console.aws.amazon.com/elasticbeanstalk
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environments-console.html

AWS X-Ray Developer Guide

Elastic Beanstalk provides tools for pulling instance logs from the AWS Management Console or
command line. You can tell Elastic Beanstalk to include the X-Ray daemon logs by adding a task
with a configuration file.

Example .ebextensions/xray-logs.config - Linux

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 /var/log/xray/xray.log

Example .ebextensions/xray-logs.config - Windows server

files:
 "c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 c:\Progam Files\Amazon\XRay\logs\xray-service.log

See Viewing Logs from Your Elastic Beanstalk Environment's Amazon EC2 Instances in the AWS
Elastic Beanstalk Developer Guide for more information.

Downloading and running the X-Ray daemon manually (advanced)

If the X-Ray daemon isn't available for your platform configuration, you can download it from
Amazon S3 and run it with a configuration file.

Use an Elastic Beanstalk configuration file to download and run the daemon.

Example .ebextensions/xray.config - Linux

commands:
 01-stop-tracing:
 command: yum remove -y xray
 ignoreErrors: true
 02-copy-tracing:

Downloading and running the X-Ray daemon manually (advanced) 254

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/using-features.logging.html

AWS X-Ray Developer Guide

 command: curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-
daemon/aws-xray-daemon-3.x.rpm -o /home/ec2-user/xray.rpm
 03-start-tracing:
 command: yum install -y /home/ec2-user/xray.rpm

files:
 "/opt/elasticbeanstalk/tasks/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 /var/log/xray/xray.log
 "/etc/amazon/xray/cfg.yaml" :
 mode: "000644"
 owner: root
 group: root
 content: |
 Logging:
 LogLevel: "debug"
 Version: 2

Example .ebextensions/xray.config - Windows server

container_commands:
 01-execute-config-script:
 command: Powershell.exe -ExecutionPolicy Bypass -File c:\\temp\\installDaemon.ps1
 waitAfterCompletion: 0

files:
 "c:/temp/installDaemon.ps1":
 content: |
 if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
 }

 $targetLocation = "C:\Program Files\Amazon\XRay"
 if ((Test-Path $targetLocation) -eq 0) {
 mkdir $targetLocation
 }

 $zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
 $zipPath = "$targetLocation\$zipFileName"

Downloading and running the X-Ray daemon manually (advanced) 255

AWS X-Ray Developer Guide

 $destPath = "$targetLocation\aws-xray-daemon"
 if ((Test-Path $destPath) -eq 1) {
 Remove-Item -Recurse -Force $destPath
 }

 $daemonPath = "$destPath\xray.exe"
 $daemonLogPath = "$targetLocation\xray-daemon.log"
 $url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/
xray-daemon/aws-xray-daemon-windows-service-3.x.zip"

 Invoke-WebRequest -Uri $url -OutFile $zipPath
 Add-Type -Assembly "System.IO.Compression.Filesystem"
 [io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

 New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
 "`"$daemonPath`" -f `"$daemonLogPath`""
 sc.exe start AWSXRayDaemon
 encoding: plain
 "c:/Program Files/Amazon/ElasticBeanstalk/config/taillogs.d/xray-daemon.conf" :
 mode: "000644"
 owner: root
 group: root
 content: |
 C:\Program Files\Amazon\XRay\xray-daemon.log

These examples also add the daemon's log file to the Elastic Beanstalk tail logs task, so that it's
included when you request logs with the console or Elastic Beanstalk Command Line Interface (EB
CLI).

Running the X-Ray daemon on Amazon EC2

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

On Amazon EC2 256

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

You can run the X-Ray daemon on the following operating systems on Amazon EC2:

• Amazon Linux

• Ubuntu

• Windows Server (2012 R2 and newer)

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the daemon permission to send data to X-Ray.

Use a user data script to run the daemon automatically when you launch the instance.

Example User data script - Linux

#!/bin/bash
curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-xray-
daemon-3.x.rpm -o /home/ec2-user/xray.rpm
yum install -y /home/ec2-user/xray.rpm

Example User data script - Windows server

<powershell>
if (Get-Service "AWSXRayDaemon" -ErrorAction SilentlyContinue) {
 sc.exe stop AWSXRayDaemon
 sc.exe delete AWSXRayDaemon
}

$targetLocation = "C:\Program Files\Amazon\XRay"
if ((Test-Path $targetLocation) -eq 0) {
 mkdir $targetLocation
}

$zipFileName = "aws-xray-daemon-windows-service-3.x.zip"
$zipPath = "$targetLocation\$zipFileName"
$destPath = "$targetLocation\aws-xray-daemon"
if ((Test-Path $destPath) -eq 1) {
 Remove-Item -Recurse -Force $destPath
}

$daemonPath = "$destPath\xray.exe"
$daemonLogPath = "$targetLocation\xray-daemon.log"
$url = "https://s3.dualstack.us-west-2.amazonaws.com/aws-xray-assets.us-west-2/xray-
daemon/aws-xray-daemon-windows-service-3.x.zip"

On Amazon EC2 257

AWS X-Ray Developer Guide

Invoke-WebRequest -Uri $url -OutFile $zipPath
Add-Type -Assembly "System.IO.Compression.Filesystem"
[io.compression.zipfile]::ExtractToDirectory($zipPath, $destPath)

New-Service -Name "AWSXRayDaemon" -StartupType Automatic -BinaryPathName
 "`"$daemonPath`" -f `"$daemonLogPath`""
sc.exe start AWSXRayDaemon
</powershell>

Running the X-Ray daemon on Amazon ECS

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

In Amazon ECS, create a Docker image that runs the X-Ray daemon, upload it to a Docker image
repository, and then deploy it to your Amazon ECS cluster. You can use port mappings and network
mode settings in your task definition file to allow your application to communicate with the
daemon container.

Using the official Docker image

X-Ray provides a Docker container image on Amazon ECR that you can deploy alongside your
application. See downloading the daemon for more information.

Example Task definition

 {
 "name": "xray-daemon",
 "image": "amazon/aws-xray-daemon",
 "cpu": 32,

On Amazon ECS 258

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://gallery.ecr.aws/xray/aws-xray-daemon

AWS X-Ray Developer Guide

 "memoryReservation": 256,
 "portMappings" : [
 {
 "hostPort": 0,
 "containerPort": 2000,
 "protocol": "udp"
 }
]
 }

Create and build a Docker image

For custom configuration, you may need to define your own Docker image.

Add managed policies to your task role to grant the daemon permission to upload trace data to X-
Ray. For more information, see Giving the daemon permission to send data to X-Ray.

Use one of the following Dockerfiles to create an image that runs the daemon.

Example Dockerfile – Amazon Linux

FROM amazonlinux
RUN yum install -y unzip
RUN curl -o daemon.zip https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/
xray-daemon/aws-xray-daemon-linux-3.x.zip
RUN unzip daemon.zip && cp xray /usr/bin/xray
ENTRYPOINT ["/usr/bin/xray", "-t", "0.0.0.0:2000", "-b", "0.0.0.0:2000"]
EXPOSE 2000/udp
EXPOSE 2000/tcp

Note

Flags -t and -b are required to specify a binding address to listen to the loopback of a
multi-container environment.

Example Dockerfile – Ubuntu

For Debian derivatives, you also need to install certificate authority (CA) certificates to avoid issues
when downloading the installer.

Create and build a Docker image 259

AWS X-Ray Developer Guide

FROM ubuntu:16.04
RUN apt-get update && apt-get install -y --force-yes --no-install-recommends apt-
transport-https curl ca-certificates wget && apt-get clean && apt-get autoremove && rm
 -rf /var/lib/apt/lists/*
RUN wget https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-
xray-daemon-3.x.deb
RUN dpkg -i aws-xray-daemon-3.x.deb
ENTRYPOINT ["/usr/bin/xray", "--bind=0.0.0.0:2000", "--bind-tcp=0.0.0.0:2000"]
EXPOSE 2000/udp
EXPOSE 2000/tcp

In your task definition, the configuration depends on the networking mode that you use. Bridge
networking is the default and can be used in your default VPC. In a bridge network, set the
AWS_XRAY_DAEMON_ADDRESS environment variable to tell the X-Ray SDK which container-port to
reference and set the host port. For example, you could publish UDP port 2000, and create a link
from your application container to the daemon container.

Example Task definition

 {
 "name": "xray-daemon",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/xray-daemon",
 "cpu": 32,
 "memoryReservation": 256,
 "portMappings" : [
 {
 "hostPort": 0,
 "containerPort": 2000,
 "protocol": "udp"
 }
]
 },
 {
 "name": "scorekeep-api",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/scorekeep-api",
 "cpu": 192,
 "memoryReservation": 512,
 "environment": [
 { "name" : "AWS_REGION", "value" : "us-east-2" },
 { "name" : "NOTIFICATION_TOPIC", "value" : "arn:aws:sns:us-
east-2:123456789012:scorekeep-notifications" },

Create and build a Docker image 260

AWS X-Ray Developer Guide

 { "name" : "AWS_XRAY_DAEMON_ADDRESS", "value" : "xray-daemon:2000" }
],
 "portMappings" : [
 {
 "hostPort": 5000,
 "containerPort": 5000
 }
],
 "links": [
 "xray-daemon"
]
 }

If you run your cluster in the private subnet of a VPC, you can use the awsvpc network mode
to attach an elastic network interface (ENI) to your containers. This enables you to avoid using
links. Omit the host port in the port mappings, the link, and the AWS_XRAY_DAEMON_ADDRESS
environment variable.

Example VPC task definition

{
 "family": "scorekeep",
 "networkMode":"awsvpc",
 "containerDefinitions": [
 {
 "name": "xray-daemon",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/xray-daemon",
 "cpu": 32,
 "memoryReservation": 256,
 "portMappings" : [
 {
 "containerPort": 2000,
 "protocol": "udp"
 }
]
 },
 {
 "name": "scorekeep-api",
 "image": "123456789012.dkr.ecr.us-east-2.amazonaws.com/scorekeep-api",
 "cpu": 192,
 "memoryReservation": 512,
 "environment": [
 { "name" : "AWS_REGION", "value" : "us-east-2" },

Create and build a Docker image 261

https://docs.aws.amazon.com/AmazonECS/latest/developerguide/task-networking.html

AWS X-Ray Developer Guide

 { "name" : "NOTIFICATION_TOPIC", "value" : "arn:aws:sns:us-
east-2:123456789012:scorekeep-notifications" }
],
 "portMappings" : [
 {
 "containerPort": 5000
 }
]
 }
]
}

Configure command line options in the Amazon ECS console

Command line options override any conflicting values in your image's config file. Command line
options are typically used for local testing, but can also be used for convenience while setting
environment variables, or to control the startup process.

By adding command line options, you are updating the Docker CMD that is passed to the container.
For more information, see the Docker run reference.

To set a command line option

1. Open the Amazon ECS classic console at https://console.aws.amazon.com/ecs/.

2. From the navigation bar, choose the region that contains your task definition.

3. In the navigation pane, choose Task Definitions.

4. On the Task Definitions page, select the box to the left of the task definition to revise and
choose Create new revision.

5. On the Create new revision of Task Definition page, select the container.

6. In the ENVIRONMENT section, add your comma-separated list of command line options to the
Command field.

7. Choose Update.

8. Verify the information and choose Create.

The following example shows how to write a comma-separated command line option for the
RoleARN option. The RoleARN option assumes the specified IAM role to upload segments to a
different account.

Configure command line options in the Amazon ECS console 262

https://docs.docker.com/engine/reference/run/#overriding-dockerfile-image-defaults
https://console.aws.amazon.com/ecs/

AWS X-Ray Developer Guide

Example

--role-arn, arn:aws:iam::123456789012:role/xray-cross-account

To learn more about the available command line options in X-Ray, see Configuring the AWS X-Ray
Daemon.

Configure command line options in the Amazon ECS console 263

AWS X-Ray Developer Guide

Integrating AWS X-Ray with other AWS services

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Many AWS services provide varying levels of X-Ray integration, including sampling and adding
headers to incoming requests, running the X-Ray daemon, and automatically sending trace data to
X-Ray. Integration with X-Ray can include the following:

• Active instrumentation – Samples and instruments incoming requests

• Passive instrumentation – Instruments requests that have been sampled by another service

• Request tracing – Adds a tracing header to all incoming requests and propagates it downstream

• Tooling – Runs the X-Ray daemon to receive segments from the X-Ray SDK

Note

The X-Ray SDKs include plugins for additional integration with AWS services. For example,
you can use the X-Ray SDK for Java Elastic Beanstalk plugin to add information about the
Elastic Beanstalk environment that runs your application, including the environment name
and ID.

Here are some examples of AWS services that are integrated with X-Ray:

• AWS Distro for OpenTelemetry (ADOT) – With ADOT, engineers can instrument their applications
once and send correlated metrics and traces to multiple AWS monitoring solutions including
Amazon CloudWatch, AWS X-Ray, Amazon OpenSearch Service, and Amazon Managed Service
for Prometheus.

264

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

• AWS Lambda – Active and passive instrumentation of incoming requests on all runtimes. AWS
Lambda adds two nodes to your trace map, one for the AWS Lambda service, and one for the
function. When you enable instrumentation, AWS Lambda also runs the X-Ray daemon on Java
and Node.js runtimes for use with the X-Ray SDK.

• Amazon API Gateway – Active and passive instrumentation. API Gateway uses sampling rules to
determine which requests to record, and adds a node for the gateway stage to your service map.

• AWS Elastic Beanstalk – Tooling. Elastic Beanstalk includes the X-Ray daemon on the following
platforms:

• Java SE – 2.3.0 and later configurations

• Tomcat – 2.4.0 and later configurations

• Node.js – 3.2.0 and later configurations

• Windows Server – All configurations other than Windows Server Core that have been released
after December 9th, 2016

You can use the Elastic Beanstalk console to tell Elastic Beanstalk to run the daemon on these
platforms, or use the XRayEnabled option in the aws:elasticbeanstalk:xray namespace.

• Elastic Load Balancing – Request tracing on Application Load Balancers. The Application Load
Balancer adds the trace ID to the request header before sending it to a target group.

• Amazon EventBridge – Passive instrumentation. If a service that publishes events to EventBridge
is instrumented with the X-Ray SDK, event targets will receive the tracing header and can
continue to propagate the original trace ID.

• Amazon Simple Notification Service – Passive instrumentation. If an Amazon SNS publisher
traces its client with the X-Ray SDK, subscribers can retrieve the tracing header and continue to
propagate the original trace from the publisher with the same trace ID.

• Amazon Simple Queue Service – Passive instrumentation. If a service traces requests by using
the X-Ray SDK, Amazon SQS can send the tracing header and continue to propagate the original
trace from the sender to the consumer with a consistent trace ID.

• Amazon Bedrock AgentCore – AgentCore supports distributed tracing through X-Ray integration,
allowing you to track requests as they flow through your agent applications. When you enable
observability for your AgentCore resources, you can propagate trace context across service
boundaries and gain visibility into the performance of your AI agents and tools.

Choose from the following topics to explore the full set of integrated AWS services.

Topics

265

AWS X-Ray Developer Guide

• Amazon Bedrock AgentCore and AWS X-Ray

• Amazon Elastic Compute Cloud and AWS X-Ray

• Amazon SNS and AWS X-Ray

• Amazon SQS and AWS X-Ray

• Amazon S3 and AWS X-Ray

• AWS Distro for OpenTelemetry and AWS X-Ray

• Tracking X-Ray encryption configuration changes with AWS Config

• AWS AppSync and AWS X-Ray

• Amazon API Gateway active tracing support for AWS X-Ray

• Amazon EC2 and AWS App Mesh

• AWS App Runner and X-Ray

• Logging X-Ray API calls with AWS CloudTrail

• CloudWatch integration with X-Ray

• AWS Elastic Beanstalk and AWS X-Ray

• Elastic Load Balancing and AWS X-Ray

• Amazon EventBridge and AWS X-Ray

• AWS Lambda and AWS X-Ray

• AWS Step Functions and AWS X-Ray

Amazon Bedrock AgentCore and AWS X-Ray

Amazon Bedrock AgentCore integrates with AWS X-Ray to provide distributed tracing capabilities
for your AI agents and tools. This integration allows you to track requests as they flow through
your agent applications, helping you identify performance bottlenecks and troubleshoot issues.

AgentCore supports distributed tracing through X-Ray integration, allowing you to monitor the
performance of your AI agents and tools. When you enable observability for your AgentCore
resources, you can propagate trace context across service boundaries and gain visibility into
how your agents interact with other AWS services. For more information, see Amazon Bedrock
AgentCore.

AgentCore supports the following X-Ray features:

Amazon Bedrock AgentCore 266

https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/what-is-genesis.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/what-is-genesis.html

AWS X-Ray Developer Guide

• Propagation of trace context to downstream services

• Custom instrumentation using the AWS Distro for OpenTelemetry (ADOT) SDK

Setting up X-Ray with AgentCore

To use X-Ray with AgentCore, you need to enable CloudWatch Transaction Search in your AWS
account. This is a one-time setup that allows AgentCore to send trace data to X-Ray. For more
information, see Enable transaction search .

For more information about setting up observability for AgentCore, see Add observability to your
Amazon Bedrock AgentCore agent or tool .

Using trace headers with AgentCore

AgentCore supports the X-Ray trace header format for distributed tracing. You can include the X-
Amzn-Trace-Id header in your requests to AgentCore to maintain trace context across service
boundaries.

Amazon Elastic Compute Cloud and AWS X-Ray

You can install and run the X-Ray daemon on an Amazon EC2 instance with a user data script. See
Running the X-Ray daemon on Amazon EC2 for instructions.

Use an instance profile to grant the daemon permission to upload trace data to X-Ray. For more
information, see Giving the daemon permission to send data to X-Ray.

Amazon SNS and AWS X-Ray

You can use AWS X-Ray with Amazon Simple Notification Service (Amazon SNS) to trace and
analyze requests as they travel through your SNS topics to your SNS-supported subscription
services. Use X-Ray tracing with Amazon SNS to analyze latencies in your messages and their
back-end services, such as how long a request spends in a topic, and how long it takes to deliver
the message to each of the topic’s subscriptions. Amazon SNS supports X-Ray tracing for both
standard and FIFO topics.

If you publish to an Amazon SNS topic from a service that’s already instrumented with X-Ray,
Amazon SNS passes the trace context from publisher to subscribers. In addition, you can turn on

Amazon S3 267

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Transaction-Search.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/observability-configure.html
https://docs.aws.amazon.com/bedrock-agentcore/latest/devguide/observability-configure.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html

AWS X-Ray Developer Guide

active tracing to send segment data about your Amazon SNS subscriptions to X-Ray for messages
published from an instrumented SNS client. Turn on active tracing for an Amazon SNS topic by
using the Amazon SNS console, or by using the Amazon SNS API or CLI. See Instrumenting your
application for more information about instrumenting your SNS clients.

Configure Amazon SNS active tracing

You can use the Amazon SNS console or the AWS CLI or SDK to configure Amazon SNS active
tracing.

When you use the Amazon SNS console, Amazon SNS attempts to create the necessary permissions
for SNS to call X-Ray. The attempt can be rejected if you don't have sufficient permissions to
modify X-Ray resource policies. For more information about these permissions, see Identity and
access management in Amazon SNS and Example cases for Amazon SNS access control in the
Amazon Simple Notification Service Developer Guide. For more information about turning on
active tracing using the Amazon SNS console, see Enabling active tracing on an Amazon SNS topic
in the Amazon Simple Notification Service Developer Guide.

When using the AWS CLI or SDK to turn on active tracing, you must manually configure the
permissions using resource-based policies. Use PutResourcePolicy to configure X-Ray with the
necessary resource-based policy to allow Amazon SNS to send traces to X-Ray.

Example Example X-Ray resource-based policy for Amazon SNS active tracing

This example policy document specifies the permissions that Amazon SNS needs to send trace data
to X-Ray:

{
 Version: "2012-10-17",
 Statement: [
 {
 Sid: "SNSAccess",
 Effect: Allow,
 Principal: {
 Service: "sns.amazonaws.com",
 },
 Action: [
 "xray:PutTraceSegments",
 "xray:GetSamplingRules",
 "xray:GetSamplingTargets"
],

Configure Amazon SNS active tracing 268

https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-authentication-and-access-control.html
https://docs.aws.amazon.com/sns/latest/dg/sns-access-policy-use-cases.html
https://docs.aws.amazon.com/sns/latest/dg/sns-active-tracing.html
https://docs.aws.amazon.com/xray/latest/api/API_PutResourcePolicy.html

AWS X-Ray Developer Guide

 Resource: "*",
 Condition: {
 StringEquals: {
 "aws:SourceAccount": "account-id"
 },
 StringLike: {
 "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name"
 }
 }
 }
]
 }

Use the CLI to create a resource-based policy that gives Amazon SNS permissions to send trace
data to X-Ray:

aws xray put-resource-policy --policy-name MyResourcePolicy --policy-document
 '{ "Version": "2012-10-17", "Statement": [{ "Sid": "SNSAccess", "Effect": "Allow",
 "Principal": { "Service": "sns.amazonaws.com" }, "Action": ["xray:PutTraceSegments",
 "xray:GetSamplingRules", "xray:GetSamplingTargets"], "Resource": "*",
 "Condition": { "StringEquals": { "aws:SourceAccount": "account-id" }, "StringLike":
 { "aws:SourceArn": "arn:partition:sns:region:account-id:topic-name" } } }] }'

To use these examples, replace partition, region, account-id, and topic-name with your
specific AWS partition, region, account ID, and Amazon SNS topic name. To give all Amazon SNS
topics permission to send trace data to X-Ray, replace the topic name with *.

View Amazon SNS publisher and subscriber traces in the X-Ray console

Use the X-Ray console to view a trace map and trace details that display a connected view of
Amazon SNS publishers and subscribers. When Amazon SNS active tracing is turned on for a topic,
the X-Ray trace map and trace details map displays connected nodes for Amazon SNS publishers,
the Amazon SNS topic, and downstream subscribers:

View Amazon SNS publisher and subscriber traces in the X-Ray console 269

AWS X-Ray Developer Guide

After choosing a trace that spans an Amazon SNS publisher and subscriber, the X-Ray trace details
page displays a trace details map and segment timeline.

Example Example timeline with Amazon SNS publisher and subscriber

This example shows a timeline that includes an Amazon SNS publisher that sends a message to an
Amazon SNS topic, which is processed by an Amazon SQS subscriber.

The example timeline above provides details about the Amazon SNS message flow:

• The SNS segment represents the round-trip duration of the Publish API call from the client.

• The myTopic segment represents the latency of the Amazon SNS response to the publish
request.

• The SQS subsegment represents the round-trip time it takes Amazon SNS to publish the
message to an Amazon SQS queue.

• The time between the myTopic segment and the SQS subsegment represents the time that the
message spends in the Amazon SNS system.

Example Example timeline with batched Amazon SNS messages

If multiple Amazon SNS messages are batched within a single trace, the segment timeline displays
segments that represent each message that's processed.

View Amazon SNS publisher and subscriber traces in the X-Ray console 270

AWS X-Ray Developer Guide

Amazon SQS and AWS X-Ray

AWS X-Ray integrates with Amazon Simple Queue Service (Amazon SQS) to trace messages that
are passed through an Amazon SQS queue. If a service traces requests by using the X-Ray SDK,
Amazon SQS can send the tracing header and continue to propagate the original trace from the
sender to the consumer with a consistent trace ID. Trace continuity enables users to track, analyze,
and debug throughout downstream services.

AWS X-Ray supports tracing event-driven applications using Amazon SQS and AWS Lambda. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by a downstream Lambda function. Traces from upstream message producers are
automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application. For more information, see tracing event-driven applications.

Amazon SQS 271

AWS X-Ray Developer Guide

Amazon SQS supports the following tracing header instrumentation:

• Default HTTP Header – The X-Ray SDK automatically populates the trace header as an HTTP
header when you call Amazon SQS through the AWS SDK. The default trace header is carried
by X-Amzn-Trace-Id and corresponds to all messages included in a SendMessage or
SendMessageBatch request. To learn more about the default HTTP header, see Tracing header.

• AWSTraceHeader System Attribute – The AWSTraceHeader is a message system attribute
reserved by Amazon SQS to carry the X-Ray trace header with messages in the queue.
AWSTraceHeader is available for use even when auto-instrumentation through the X-Ray
SDK is not, for example when building a tracing SDK for a new language. When both header
instrumentations are set, the message system attribute overrides the HTTP trace header.

When running on Amazon EC2, Amazon SQS supports processing one message at a time. This
applies when running on an on-premises host, and when using container services, such as AWS
Fargate, Amazon ECS, or AWS App Mesh.

The trace header is excluded from both Amazon SQS message size and message attribute quotas.
Enabling X-Ray tracing will not exceed your Amazon SQS quotas. To learn more about AWS quotas,
see Amazon SQS Quotas.

Send the HTTP trace header

Sender components in Amazon SQS can send the trace header automatically through the
SendMessageBatch or SendMessage call. When AWS SDK clients are instrumented, they can
be automatically tracked through all languages supported through the X-Ray SDK. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

Send the HTTP trace header 272

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_MessageSystemAttributeValue.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/sqs-limits.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessageBatch.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_SendMessage.html

AWS X-Ray Developer Guide

To learn how to trace AWS SDK calls with your preferred language, see the following topics in the
supported SDKs:

• Go – Tracing AWS SDK calls with the X-Ray SDK for Go

• Java – Tracing AWS SDK calls with the X-Ray SDK for Java

• Node.js – Tracing AWS SDK calls with the X-Ray SDK for Node.js

• Python – Tracing AWS SDK calls with the X-Ray SDK for Python

• Ruby – Tracing AWS SDK calls with the X-Ray SDK for Ruby

• .NET – Tracing AWS SDK calls with the X-Ray SDK for .NET

Retrieve the trace header and recover trace context

If you are using a Lambda downstream consumer, trace context propagation is automatic. To
continue context propagation with other Amazon SQS consumers, you must manually instrument
the handoff to the receiver component.

There are three main steps to recovering the trace context:

• Receive the message from the queue for the AWSTraceHeader attribute by calling the
ReceiveMessage API.

• Retrieve the trace header from the attribute.

• Recover the trace ID from the header. Optionally, add more metrics to the segment.

The following is an example implementation written with the X-Ray SDK for Java.

Example : Retrieve the trace header and recover trace context

// Receive the message from the queue, specifying the "AWSTraceHeader"
ReceiveMessageRequest receiveMessageRequest = new ReceiveMessageRequest()
 .withQueueUrl(QUEUE_URL)
 .withAttributeNames("AWSTraceHeader");
List<Message> messages = sqs.receiveMessage(receiveMessageRequest).getMessages();

if (!messages.isEmpty()) {
 Message message = messages.get(0);

 // Retrieve the trace header from the AWSTraceHeader message system attribute
 String traceHeaderStr = message.getAttributes().get("AWSTraceHeader");

Retrieve the trace header and recover trace context 273

https://docs.aws.amazon.com/AWSSimpleQueueService/latest/APIReference/API_ReceiveMessage.html

AWS X-Ray Developer Guide

 if (traceHeaderStr != null) {
 TraceHeader traceHeader = TraceHeader.fromString(traceHeaderStr);

 // Recover the trace context from the trace header
 Segment segment = AWSXRay.getCurrentSegment();
 segment.setTraceId(traceHeader.getRootTraceId());
 segment.setParentId(traceHeader.getParentId());

 segment.setSampled(traceHeader.getSampled().equals(TraceHeader.SampleDecision.SAMPLED));
 }
}

Amazon S3 and AWS X-Ray

AWS X-Ray integrates with Amazon S3 to trace upstream requests to update your application's
S3 buckets. If a service traces requests by using the X-Ray SDK, Amazon S3 can send the tracing
headers to downstream event subscribers such as AWS Lambda, Amazon SQS, and Amazon SNS. X-
Ray enables trace messages for Amazon S3 event notifications.

You can use the X-Ray trace map to view the connections between Amazon S3 and other services
that your application uses. You can also use the console to view metrics such as average latency
and failure rates. For more information about the X-Ray console, see Use the X-Ray console.

Amazon S3 supports the default http header instrumentation. The X-Ray SDK automatically
populates the trace header as an HTTP header when you call Amazon S3 through the AWS SDK.
The default trace header is carried by X-Amzn-Trace-Id. To learn more about tracing headers,
see Tracing header on the concept page. Amazon S3 trace context propagation supports the
following subscribers: Lambda, SQS and SNS. Because SQS and SNS don't emit segment data
themselves, they won't appear in your trace or trace map when triggered by S3, even though they
will propagate the tracing header to downstream services.

Configure Amazon S3 event notifications

With the Amazon S3 notification feature, you receive notifications when certain events happen in
your bucket. These notifications can then be propagated to the following destinations within your
application:

• Amazon Simple Notification Service (Amazon SNS)

• Amazon Simple Queue Service (Amazon SQS)

Amazon S3 274

AWS X-Ray Developer Guide

• AWS Lambda

For a list of supported events, see Supported event types in the Amazon S3 developer guide.

Amazon SNS and Amazon SQS

To publish notifications to an SNS topic or an SQS queue, you must first grant Amazon S3
permissions. To grant these permissions, you attach an AWS Identity and Access Management (IAM)
policy to the destination SNS topic or SQS queue. To learn more about the IAM policies required,
see Granting permissions to publish messages to an SNS topic or an SQS queue.

For information about integrating SNS and SQS with X-Ray see, Amazon SNS and AWS X-Ray and
Amazon SQS and AWS X-Ray.

AWS Lambda

When you use the Amazon S3 console to configure event notifications on an S3 bucket for a
Lambda function, the console sets up the necessary permissions on the Lambda function so that
Amazon S3 has permissions to invoke the function from the bucket. For more information, see How
Do I Enable and Configure Event Notifications for an S3 Bucket? in the Amazon Simple Storage
Service Console User Guide.

You can also grant Amazon S3 permissions from AWS Lambda to invoke your Lambda function. For
more information, see Tutorial: Using AWS Lambda with Amazon S3 in the AWS Lambda Developer
Guide.

For more information about integrating Lambda with X-Ray, see Instrumenting Java code in AWS
Lambda.

AWS Distro for OpenTelemetry and AWS X-Ray

Use the AWS Distro for OpenTelemetry (ADOT) to collect and send metrics and traces to AWS X-
Ray and other monitoring solutions, such as Amazon CloudWatch, Amazon OpenSearch Service,
and Amazon Managed Service for Prometheus.

AWS Distro for OpenTelemetry

The AWS Distro for OpenTelemetry (ADOT) is an AWS distribution based on the Cloud Native
Computing Foundation (CNCF) OpenTelemetry project. OpenTelemetry provides a single set of

AWS Distro for OpenTelemetry 275

https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#supported-notification-event-types
https://docs.aws.amazon.com/AmazonS3/latest/dev/NotificationHowTo.html#grant-sns-sqs-permission-for-s3
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/AmazonS3/latest/user-guide/enable-event-notifications.html
https://docs.aws.amazon.com/lambda/latest/dg/with-s3-example.html
https://docs.aws.amazon.com/lambda/latest/dg/java-tracing.html
https://docs.aws.amazon.com/lambda/latest/dg/java-tracing.html

AWS X-Ray Developer Guide

open source APIs, libraries, and agents to collect distributed traces and metrics. This toolkit is
a distribution of upstream OpenTelemetry components including SDKs, auto-instrumentation
agents, and collectors that are tested, optimized, secured, and supported by AWS.

With ADOT, engineers can instrument their applications once and send correlated metrics and
traces to multiple AWS monitoring solutions including Amazon CloudWatch, AWS X-Ray, Amazon
OpenSearch Service, and Amazon Managed Service for Prometheus.

ADOT is integrated with a growing number of AWS services to simplify sending traces and metrics
to monitoring solutions such as X-Ray. Some examples of services integrated with ADOT include:

• AWS Lambda – AWS managed Lambda layers for ADOT provides a plug-and-play user experience
by automatically instrumenting a Lambda function, packaging OpenTelemetry together with
an out-of-the-box configuration for AWS Lambda and X-Ray in an easy to setup layer. Users can
enable and disable OpenTelemetry for their Lambda function without changing code. For more
information, see AWS Distro for OpenTelemetry Lambda

• Amazon Elastic Container Service (ECS) – Collect metrics and traces from Amazon ECS
applications using the AWS Distro for OpenTelemetry Collector, to send to X-Ray and other
monitoring solutions. For more information, see Collecting application trace data in the Amazon
ECS developer guide.

• AWS App Runner – App Runner supports sending traces to X-Ray using the AWS Distro for
OpenTelemetry (ADOT). Use ADOT SDKs to collect trace data for your containerized applications,
and use X-Ray to analyze and gain insights into your instrumented application. For more
information, see AWS App Runner and X-Ray.

For more information about the AWS Distro for OpenTelemetry, including integration with
additional AWS services, see the AWS Distro for OpenTelemetry Documentation.

For more information about instrumenting your application with AWS Distro for OpenTelemetry
and X-Ray, see Instrumenting your application with the AWS Distro for OpenTelemetry.

Tracking X-Ray encryption configuration changes with AWS
Config

AWS X-Ray integrates with AWS Config to record configuration changes made to your X-Ray
encryption resources. You can use AWS Config to inventory X-Ray encryption resources, audit the
X-Ray configuration history, and send notifications based on resource changes.

AWS Config 276

https://aws-otel.github.io/docs/getting-started/lambda
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/trace-data.html
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

AWS Config supports logging the following X-Ray encryption resource changes as events:

• Configuration changes – Changing or adding an encryption key, or reverting to the default X-
Ray encryption setting.

Use the following instructions to learn how to create a basic connection between X-Ray and AWS
Config.

Creating a Lambda function trigger

You must have the ARN of a custom AWS Lambda function before you can generate a custom
AWS Config rule. Follow these instructions to create a basic function with Node.js that
returns a compliant or non-compliant value back to AWS Config based on the state of the
XrayEncryptionConfig resource.

To create a Lambda function with an AWS::XrayEncryptionConfig change trigger

1. Open the Lambda console. Choose Create function.

2. Choose Blueprints, and then filter the blueprints library for the config-rule-change-triggered
blueprint. Either click the link in the blueprint's name or choose Configure to continue.

3. Define the following fields to configure the blueprint:

• For Name, type a name.

• For Role, choose Create new role from template(s).

• For Role name, type a name.

• For Policy templates, choose AWS Config Rules permissions.

4. Choose Create function to create and display your function in the AWS Lambda console.

5. Edit your function code to replace AWS::EC2::Instance with
AWS::XrayEncryptionConfig. You can also update the description field to reflect this
change.

Default Code

 if (configurationItem.resourceType !== 'AWS::EC2::Instance') {
 return 'NOT_APPLICABLE';
 } else if (ruleParameters.desiredInstanceType ===
 configurationItem.configuration.instanceType) {
 return 'COMPLIANT';

Creating a Lambda function trigger 277

https://console.aws.amazon.com/lambda/home

AWS X-Ray Developer Guide

 }
 return 'NON_COMPLIANT';

Updated Code

 if (configurationItem.resourceType !== 'AWS::XRay::EncryptionConfig') {
 return 'NOT_APPLICABLE';
 } else if (ruleParameters.desiredInstanceType ===
 configurationItem.configuration.instanceType) {
 return 'COMPLIANT';
 }
 return 'NON_COMPLIANT';

6. Add the following to your execution role in IAM for access to X-Ray. These permissions allow
read-only access to your X-Ray resources. Failure to provide access to the appropriate resources
will result in an out of scope message from AWS Config when it evaluates the Lambda function
associated with the rule.

 {
 "Sid": "Stmt1529350291539",
 "Action": [
 "xray:GetEncryptionConfig"
],
 "Effect": "Allow",
 "Resource": "*"
 }

Creating a custom AWS Config rule for x-ray

When the Lambda function is created, note the function's ARN, and go to the AWS Config console
to create your custom rule.

To create an AWS Config rule for X-Ray

1. Open the Rules page of the AWS Config console.

2. Choose Add rule, and then choose Add custom rule.

3. In AWS Lambda Function ARN, insert the ARN associated with the Lambda function you want
to use.

4. Choose the type of trigger to set:

Creating a custom AWS Config rule for x-ray 278

https://console.aws.amazon.com/config/home#/rules/view

AWS X-Ray Developer Guide

• Configuration changes – AWS Config triggers the evaluation when any resource that
matches the rule's scope changes in configuration. The evaluation runs after AWS Config
sends a configuration item change notification.

• Periodic – AWS Config runs evaluations for the rule at a frequency that you choose (for
example, every 24 hours).

5. For Resource type, choose EncryptionConfig in the X-Ray section.

6. Choose Save.

The AWS Config console begins to evaluate the rule's compliance immediately. The evaluation can
take several minutes to complete.

Now that this rule is compliant, AWS Config can begin to compile an audit history. AWS
Config records resource changes in the form of a timeline. For each change in the timeline of
events, AWS Config generates a table in a from/to format to show what changed in the JSON
representation of the encryption key. The two field changes associated with EncryptionConfig are
Configuration.type and Configuration.keyID.

Example results

Following is an example of an AWS Config timeline showing changes made at specific dates and
times.

Following is an example of an AWS Config change entry. The from/to format illustrates what
changed. This example shows that the default X-Ray encryption settings were changed to a defined
encryption key.

Example results 279

AWS X-Ray Developer Guide

Amazon SNS notifications

To be notified of configuration changes, set AWS Config to publish Amazon SNS notifications. For
more information, see Monitoring AWS Config Resource Changes by Email.

AWS AppSync and AWS X-Ray

You can enable and trace requests for AWS AppSync. For more information, see Tracing with AWS
X-Ray for instructions.

When X-Ray tracing is enabled for an AWS AppSync API, an AWS Identity and Access Management
service-linked role is automatically created in your account with the appropriate permissions. This
allows AWS AppSync to send traces to X-Ray in a secure way.

Amazon API Gateway active tracing support for AWS X-Ray

You can use X-Ray to trace and analyze user requests as they travel through your Amazon API
Gateway APIs to the underlying services. API Gateway supports X-Ray tracing for all API Gateway
endpoint types: Regional, edge-optimized, and private. You can use X-Ray with Amazon API
Gateway in all AWS Regions where X-Ray is available. For more information, see Trace API Gateway
API Execution with AWS X-Ray in the Amazon API Gateway Developer Guide.

Note

X-Ray only supports tracing for REST APIs through API Gateway.

Amazon API Gateway provides active tracing support for AWS X-Ray. Enable active tracing on your
API stages to sample incoming requests and send traces to X-Ray.

Amazon SNS notifications 280

https://docs.aws.amazon.com/config/latest/developerguide/monitoring-resource-changes-by-email.html
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html
https://docs.aws.amazon.com/appsync/latest/devguide/x-ray-tracing.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/using-service-linked-roles.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-xray.html

AWS X-Ray Developer Guide

To enable active tracing on an API stage

1. Open the API Gateway console at https://console.aws.amazon.com/apigateway/.

2. Choose an API.

3. Choose a stage.

4. On the Logs/Tracing tab, choose Enable X-Ray Tracing and then choose Save Changes.

5. Choose Resources in the left side navigation panel.

6. To redeploy the API with the new settings, choose the Actions dropdown, and then choose
Deploy API.

API Gateway uses sampling rules that you define in the X-Ray console to determine which requests
to record. You can create rules that only apply to APIs, or that apply only to requests that contain
certain headers. API Gateway records headers in attributes on the segment, along with details
about the stage and request. For more information, see Configuring sampling rules.

Note

When tracing REST APIs with API Gateway HTTP integration, each segment's service name
is set to the request URL path from API Gateway to your HTTP integration endpoint,
resulting in a service node on the X-Ray trace map for each unique URL path. A large
number of URL paths may cause the trace map to exceed the limit of 10,000 nodes,
resulting in an error.
To minimize the number of service nodes created by API Gateway, consider passing
parameters within the URL query string or in the request body via POST. Either approach
will ensure parameters are not part of the URL path, which may result in fewer distinct URL
paths and service nodes.

For all incoming requests, API Gateway adds a tracing header to incoming HTTP requests that don't
already have one.

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

API Gateway 281

https://console.aws.amazon.com/apigateway/
https://docs.aws.amazon.com/apigateway/latest/developerguide/setup-http-integrations.html

AWS X-Ray Developer Guide

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

If active tracing is disabled, the stage still records a segment if the request comes from a service
that sampled the request and started a trace. For example, an instrumented web application can
call an API Gateway API with an HTTP client. When you instrument an HTTP client with the X-Ray
SDK, it adds a tracing header to the outgoing request that contains the sampling decision. API
Gateway reads the tracing header and creates a segment for sampled requests.

If you use API Gateway to generate a Java SDK for your API, you can instrument the SDK client
by adding a request handler with the client builder, in the same way that you would manually
instrument an AWS SDK client. See Tracing AWS SDK calls with the X-Ray SDK for Java for
instructions.

Amazon EC2 and AWS App Mesh

AWS X-Ray integrates with AWS App Mesh to manage Envoy proxies for microservices. App Mesh
provides a version of Envoy that you can configure to send trace data to the X-Ray daemon running
in a container of the same task or pod. X-Ray supports tracing with the following App Mesh
compatible services:

• Amazon Elastic Container Service (Amazon ECS)

• Amazon Elastic Kubernetes Service (Amazon EKS)

• Amazon Elastic Compute Cloud (Amazon EC2)

Use the following instructions to learn how to enable X-Ray tracing through App Mesh.

App Mesh 282

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-generate-sdk.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/what-is-app-mesh.html

AWS X-Ray Developer Guide

To configure the Envoy proxy to send data to X-Ray, set the ENABLE_ENVOY_XRAY_TRACING
environment variable in its container definition.

Note

The App Mesh version of Envoy does not currently send traces based on configured
sampling rules. Instead, it uses a fixed sampling rate of 5% for Envoy version 1.16.3 or
newer, or a 50% sampling rate for Envoy versions prior to 1.16.3.

App Mesh 283

https://docs.aws.amazon.com/app-mesh/latest/userguide/envoy.html#envoy-config
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html

AWS X-Ray Developer Guide

Example Envoy container definition for Amazon ECS

{
 "name": "envoy",
 "image": "public.ecr.aws/appmesh/aws-appmesh-envoy:envoy-version",
 "essential": true,
 "environment": [
 {
 "name": "APPMESH_VIRTUAL_NODE_NAME",
 "value": "mesh/myMesh/virtualNode/myNode"
 },
 {
 "name": "ENABLE_ENVOY_XRAY_TRACING",
 "value": "1"
 }
],
 "healthCheck": {
 "command": [
 "CMD-SHELL",
 "curl -s http://localhost:9901/server_info | cut -d' ' -f3 | grep -q live"
],
 "startPeriod": 10,
 "interval": 5,
 "timeout": 2,
 "retries": 3
 }

Note

To learn more about available Envoy region addresses, see Envoy image in the AWS App
Mesh User Guide.

For details on running the X-Ray daemon in a container, see Running the X-Ray daemon on Amazon
ECS. For a sample application that includes a service mesh, microservice, Envoy proxy, and X-Ray
daemon, deploy the colorapp sample in the App Mesh Examples GitHub repository.

Learn More

• Getting Started with AWS App Mesh

• Getting Started with AWS App Mesh and Amazon ECS

App Mesh 284

https://docs.aws.amazon.com/app-mesh/latest/userguide/envoy.html
https://github.com/aws/aws-app-mesh-examples/tree/master/examples
https://docs.aws.amazon.com/app-mesh/latest/userguide/getting_started.html
https://docs.aws.amazon.com/app-mesh/latest/userguide/mesh-getting-started-ecs.html

AWS X-Ray Developer Guide

AWS App Runner and X-Ray

AWS App Runner is an AWS service that provides a fast, simple, and cost-effective way to deploy
from source code or a container image directly to a scalable and secure web application in the AWS
Cloud. You don't need to learn new technologies, decide which compute service to use, or know
how to provision and configure AWS resources. See What is AWS App Runner for more information.

AWS App Runner sends traces to X-Ray by integrating with the AWS Distro for OpenTelemetry
(ADOT). Use ADOT SDKs to collect trace data for your containerized applications, and use X-Ray to
analyze and gain insights into your instrumented application. For more information, see Tracing for
your App Runner application with X-Ray.

Logging X-Ray API calls with AWS CloudTrail

AWS X-Ray is integrated with AWS CloudTrail, a service that provides a record of actions taken
by a user, role, or an AWS service. CloudTrail captures all API calls for X-Ray as events. The calls
captured include calls from the X-Ray console and code calls to the X-Ray API operations. Using the
information collected by CloudTrail, you can determine the request that was made to X-Ray, the IP
address from which the request was made, when it was made, and additional details.

Every event or log entry contains information about who generated the request. The identity
information helps you determine the following:

• Whether the request was made with root user or user credentials.

• Whether the request was made on behalf of an IAM Identity Center user.

• Whether the request was made with temporary security credentials for a role or federated user.

• Whether the request was made by another AWS service.

CloudTrail is active in your AWS account when you create the account and you automatically
have access to the CloudTrail Event history. The CloudTrail Event history provides a viewable,
searchable, downloadable, and immutable record of the past 90 days of recorded management
events in an AWS Region. For more information, see Working with CloudTrail Event history in the
AWS CloudTrail User Guide. There are no CloudTrail charges for viewing the Event history.

For an ongoing record of events in your AWS account past 90 days, create a trail or a CloudTrail
Lake event data store.

App Runner 285

https://docs.aws.amazon.com/apprunner/latest/dg/what-is-apprunner.html
https://docs.aws.amazon.com/apprunner/latest/dg/monitor-xray.html
https://docs.aws.amazon.com/apprunner/latest/dg/monitor-xray.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-user-guide.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/view-cloudtrail-events.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html

AWS X-Ray Developer Guide

CloudTrail trails

A trail enables CloudTrail to deliver log files to an Amazon S3 bucket. All trails created using the
AWS Management Console are multi-Region. You can create a single-Region or a multi-Region
trail by using the AWS CLI. Creating a multi-Region trail is recommended because you capture
activity in all AWS Regions in your account. If you create a single-Region trail, you can view only
the events logged in the trail's AWS Region. For more information about trails, see Creating a
trail for your AWS account and Creating a trail for an organization in the AWS CloudTrail User
Guide.

You can deliver one copy of your ongoing management events to your Amazon S3 bucket at no
charge from CloudTrail by creating a trail, however, there are Amazon S3 storage charges. For
more information about CloudTrail pricing, see AWS CloudTrail Pricing. For information about
Amazon S3 pricing, see Amazon S3 Pricing.

CloudTrail Lake event data stores

CloudTrail Lake lets you run SQL-based queries on your events. CloudTrail Lake converts existing
events in row-based JSON format to Apache ORC format. ORC is a columnar storage format
that is optimized for fast retrieval of data. Events are aggregated into event data stores, which
are immutable collections of events based on criteria that you select by applying advanced
event selectors. The selectors that you apply to an event data store control which events persist
and are available for you to query. For more information about CloudTrail Lake, see Working
with AWS CloudTrail Lake in the AWS CloudTrail User Guide.

CloudTrail Lake event data stores and queries incur costs. When you create an event data
store, you choose the pricing option you want to use for the event data store. The pricing
option determines the cost for ingesting and storing events, and the default and maximum
retention period for the event data store. For more information about CloudTrail pricing, see
AWS CloudTrail Pricing.

Topics

• X-Ray management events in CloudTrail

• X-Ray data events in CloudTrail

• X-Ray event examples

CloudTrail 286

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-create-and-update-a-trail.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/creating-trail-organization.html
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/s3/pricing/
https://orc.apache.org/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-concepts.html#adv-event-selectors
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/cloudtrail-lake-manage-costs.html#cloudtrail-lake-manage-costs-pricing-option
https://aws.amazon.com/cloudtrail/pricing/

AWS X-Ray Developer Guide

X-Ray management events in CloudTrail

AWS X-Ray integrates with AWS CloudTrail to record API actions made by a user, a role, or an AWS
service in X-Ray. You can use CloudTrail to monitor X-Ray API requests in real time and store logs in
Amazon S3, Amazon CloudWatch Logs, and Amazon CloudWatch Events. X-Ray supports logging
the following actions as events in CloudTrail log files:

Supported API Actions

• PutEncryptionConfig

• GetEncryptionConfig

• CreateGroup

• UpdateGroup

• DeleteGroup

• GetGroup

• GetGroups

• GetInsight

• GetInsightEvents

• GetInsightImpactGraph

• GetInsightSummaries

• GetSamplingStatisticSummaries

X-Ray data events in CloudTrail

Data events provide information about the resource operations performed on or in a resource (for
example, PutTraceSegments, which uploads segment documents to X-Ray).

These are also known as data plane operations. Data events are often high-volume activities.
By default, CloudTrail doesn’t log data events. The CloudTrail Event history doesn't record data
events.

Additional charges apply for data events. For more information about CloudTrail pricing, see AWS
CloudTrail Pricing.

You can log data events for the X-Ray resource types by using the CloudTrail console, AWS CLI, or
CloudTrail API operations. For more information about how to log data events, see Logging data

X-Ray management events in CloudTrail 287

https://docs.aws.amazon.com/xray/latest/api/API_PutEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_GetEncryptionConfig.html
https://docs.aws.amazon.com/xray/latest/api/API_CreateGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_UpdateGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_DeleteGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_GetGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_GetGroups.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsight.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsightEvents.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsightImpactGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetInsightSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingStatisticSummaries.html
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://aws.amazon.com/cloudtrail/pricing/
https://aws.amazon.com/cloudtrail/pricing/
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console

AWS X-Ray Developer Guide

events with the AWS Management Console and Logging data events with the AWS Command Line
Interface in the AWS CloudTrail User Guide.

The following table lists the X-Ray resource types for which you can log data events. The Data
event type (console) column shows the value to choose from the Data event type list on the
CloudTrail console. The resources.type value column shows the resources.type value, which
you would specify when configuring advanced event selectors using the AWS CLI or CloudTrail
APIs. The Data APIs logged to CloudTrail column shows the API calls logged to CloudTrail for the
resource type.

Data event type (console) resources.type value Data APIs logged to
CloudTrail

X-Ray trace AWS::XRay::Trace • PutTraceSegments

• GetTraceSummaries

• GetTraceGraph

• GetServiceGraph

• BatchGetTraces

• GetTimeSeriesServi
ceStatistics

• PutTelemetryRecords

• GetSamplingTargets

You can configure advanced event selectors to filter on the eventName and readOnly fields to
log only those events that are important to you. However, you cannot select events by adding the
resources.ARN field selector, because X-Ray traces do not have ARNs. For more information
about these fields, see AdvancedFieldSelector in the AWS CloudTrail API Reference. The following is
an example of how to run the put-event-selectors AWS CLI command to log data events on a
CloudTrail trail. You must run the command in or specify the Region in which the trail was created;
otherwise, the operation returns an InvalidHomeRegionException exception.

aws cloudtrail put-event-selectors --trail-name myTrail --advanced-event-selectors \
'{
 "AdvancedEventSelectors": [
 {
 "FieldSelectors": [

X-Ray data events in CloudTrail 288

https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#logging-data-events-console
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/awscloudtrail/latest/userguide/logging-data-events-with-cloudtrail.html#creating-data-event-selectors-with-the-AWS-CLI
https://docs.aws.amazon.com/xray/latest/api/API_PutTraceSegments.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceGraph.html
https://docs.aws.amazon.com/xray/latest/api/API_GetServiceGraphs.html
https://docs.aws.amazon.com/xray/latest/api/API_BatchGetTraces.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTimeSeriesServiceStatistics.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTimeSeriesServiceStatistics.html
https://docs.aws.amazon.com/xray/latest/api/API_PutTelemetryRecords.html
https://docs.aws.amazon.com/xray/latest/api/API_GetSamplingTargets.html
https://docs.aws.amazon.com/awscloudtrail/latest/APIReference/API_AdvancedFieldSelector.html
https://awscli.amazonaws.com/v2/documentation/api/latest/reference/cloudtrail/put-event-selectors.html

AWS X-Ray Developer Guide

 { "Field": "eventCategory", "Equals": ["Data"] },
 { "Field": "resources.type", "Equals": ["AWS::XRay::Trace"] },
 { "Field": "eventName", "Equals":
 ["PutTraceSegments","GetSamplingTargets"] }
],
 "Name": "Log X-Ray PutTraceSegments and GetSamplingTargets data events"
 }
]
}'

X-Ray event examples

Management event example, GetEncryptionConfig

The following is an example of the X-Ray GetEncryptionConfig log entry in CloudTrail.

Example

{
 "eventVersion"=>"1.05",
 "userIdentity"=>{
 "type"=>"AssumedRole",
 "principalId"=>"AROAJVHBZWD3DN6CI2MHM:MyName",
 "arn"=>"arn:aws:sts::123456789012:assumed-role/MyRole/MyName",
 "accountId"=>"123456789012",
 "accessKeyId"=>"AKIAIOSFODNN7EXAMPLE",
 "sessionContext"=>{
 "attributes"=>{
 "mfaAuthenticated"=>"false",
 "creationDate"=>"2023-7-01T00:24:36Z"
 },
 "sessionIssuer"=>{
 "type"=>"Role",
 "principalId"=>"AROAJVHBZWD3DN6CI2MHM",
 "arn"=>"arn:aws:iam::123456789012:role/MyRole",
 "accountId"=>"123456789012",
 "userName"=>"MyRole"
 }
 }
 },
 "eventTime"=>"2023-7-01T00:24:36Z",
 "eventSource"=>"xray.amazonaws.com",
 "eventName"=>"GetEncryptionConfig",

X-Ray event examples 289

AWS X-Ray Developer Guide

 "awsRegion"=>"us-east-2",
 "sourceIPAddress"=>"33.255.33.255",
 "userAgent"=>"aws-sdk-ruby2/2.11.19 ruby/2.3.1 x86_64-linux",
 "requestParameters"=>nil,
 "responseElements"=>nil,
 "requestID"=>"3fda699a-32e7-4c20-37af-edc2be5acbdb",
 "eventID"=>"039c3d45-6baa-11e3-2f3e-e5a036343c9f",
 "eventType"=>"AwsApiCall",
 "recipientAccountId"=>"123456789012"
}

Data event example, PutTraceSegments

The following is an example of the X-Ray PutTraceSegments data event log entry in CloudTrail.

Example

{
 "eventVersion": "1.09",
 "userIdentity": {
 "type": "AssumedRole",
 "principalId": "AROAWYXPW54Y4NEXAMPLE:i-0dzz2ac111c83zz0z",
 "arn": "arn:aws:sts::012345678910:assumed-role/my-service-role/
i-0dzz2ac111c83zz0z",
 "accountId": "012345678910",
 "accessKeyId": "AKIAIOSFODNN7EXAMPLE",
 "sessionContext": {
 "sessionIssuer": {
 "type": "Role",
 "principalId": "AROAWYXPW54Y4NEXAMPLE",
 "arn": "arn:aws:iam::012345678910:role/service-role/my-service-role",
 "accountId": "012345678910",
 "userName": "my-service-role"
 },
 "attributes": {
 "creationDate": "2024-01-22T17:34:11Z",
 "mfaAuthenticated": "false"
 },
 "ec2RoleDelivery": "2.0"
 }
 },
 "eventTime": "2024-01-22T18:22:05Z",
 "eventSource": "xray.amazonaws.com",

X-Ray event examples 290

AWS X-Ray Developer Guide

 "eventName": "PutTraceSegments",
 "awsRegion": "us-west-2",
 "sourceIPAddress": "198.51.100.0",
 "userAgent": "aws-sdk-ruby3/3.190.0 md/internal ua/2.0 api/xray#1.0.0 os/linux md/
x86_64 lang/ruby#2.7.8 md/2.7.8 cfg/retry-mode#legacy",
 "requestParameters": {
 "traceSegmentDocuments": [
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0000",
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0000",
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0001",
 "trace_id:1-00zzz24z-EXAMPLE4f4e41754c77d0002"
]
 },
 "responseElements": {
 "unprocessedTraceSegments": []
 },
 "requestID": "5zzzzz64-acbd-46ff-z544-451a3ebcb2f8",
 "eventID": "4zz51z7z-77f9-44zz-9bd7-6c8327740f2e",
 "readOnly": false,
 "resources": [
 {
 "type": "AWS::XRay::Trace"
 }
],
 "eventType": "AwsApiCall",
 "managementEvent": false,
 "recipientAccountId": "012345678910",
 "eventCategory": "Data",
 "tlsDetails": {
 "tlsVersion": "TLSv1.2",
 "cipherSuite": "ZZZZZ-RSA-AAA128-GCM-SHA256",
 "clientProvidedHostHeader": "example.us-west-2.xray.cloudwatch.aws.dev"
 }
}

CloudWatch integration with X-Ray

AWS X-Ray integrates with CloudWatch Application Signals, CloudWatch RUM, and CloudWatch
Synthetics to make it easier to monitor the health of your applications. Enable your application
for Application Signals to monitor and troubleshoot the operational health of your services, client
pages, Synthetics canaries, and service dependencies.

CloudWatch 291

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html

AWS X-Ray Developer Guide

By correlating CloudWatch metrics, logs, and X-Ray traces, the X-Ray trace map provides an end-
to-end view of your services to help you quickly pinpoint performance bottlenecks and identify
impacted users.

With CloudWatch RUM, you can perform real user monitoring to collect and view client-side data
about your web application performance from actual user sessions in near-real time. With AWS X-
Ray and CloudWatch RUM, you can analyze and debug the request path starting from end users
of your application through downstream AWS managed services. This helps you identify latency
trends and errors that impact your end users.

Topics

• CloudWatch RUM and AWS X-Ray

• Debugging CloudWatch synthetics canaries using X-Ray

CloudWatch RUM and AWS X-Ray

With Amazon CloudWatch RUM, you can perform real user monitoring to collect and view client-
side data about your web application performance from actual user sessions in near-real time.
With AWS X-Ray and CloudWatch RUM, you can analyze and debug the request path starting from
end users of your application through downstream AWS managed services. This helps you identify
latency trends and errors that impact your end users.

After you turn on X-Ray tracing of user sessions, CloudWatch RUM adds an X-Ray trace header to
allowed HTTP requests, and records an X-Ray segment for allowed HTTP requests. You can then
see traces and segments from these user sessions in the X-Ray and CloudWatch consoles, including
the X-Ray trace map.

Note

CloudWatch RUM doesn't integrate with X-Ray sampling rules. Instead, choose a sampling
percentage when you set up your application to use CloudWatch RUM. Traces sent from
CloudWatch RUM might incur additional costs. For more information, see AWS X-Ray
pricing.

By default, client-side traces sent from CloudWatch RUM aren't connected to server-side traces. To
connect client-side traces with server-side traces, configure the CloudWatch RUM web client to add
an X-Ray trace header to these HTTP requests.

CloudWatch RUM 292

https://aws.amazon.com/xray/pricing/
https://aws.amazon.com/xray/pricing/

AWS X-Ray Developer Guide

Warning

Configuring the CloudWatch RUM web client to add an X-Ray trace header to HTTP
requests can cause cross-origin resource sharing (CORS) to fail. To avoid this, add the X-
Amzn-Trace-Id HTTP header to the list of allowed headers on your downstream service's
CORS configuration. If you are using API Gateway as your downstream, see Enabling CORS
for a REST API resource. We strongly recommend that you test your application before
adding a client-side X-Ray trace header in a production environment. For more information,
see the CloudWatch RUM web client documentation.

For more information about real user monitoring in CloudWatch, see Use CloudWatch RUM. To set
up your application to use CloudWatch RUM, including tracing user sessions with X-Ray, see Set up
an application to use CloudWatch RUM.

Debugging CloudWatch synthetics canaries using X-Ray

CloudWatch Synthetics is a fully managed service that enables you to monitor your endpoints and
APIs using scripted canaries that run 24 hours per day, once per minute.

You can customize canary scripts to check for changes in:

• Availability

• Latency

• Transactions

• Broken or dead links

• Step-by-step task completions

• Page load errors

• Load Latencies for UI assets

• Complex wizard flows

• Checkout flows in your application

Canaries follow the same routes and perform the same actions and behaviors as your customers,
and continually verify the customer experience.

To learn more about setting up Synthetics tests, see Using Synthetics to Create and Manage
Canaries.

CloudWatch Synthetics 293

https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/how-to-cors.html
https://github.com/aws-observability/aws-rum-web/blob/main/docs/cdn_installation.md#http
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM-get-started.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-RUM-get-started.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch_Synthetics_Canaries.html

AWS X-Ray Developer Guide

The following examples show common use cases for debugging issues that your Synthetics
canaries raise. Each example demonstrates a key strategy for debugging using either the trace map
or the X-Ray Analytics console.

For more information about how to read and interact with the trace map, see Viewing the Service
Map.

For more information about how to read and interact with the X-Ray Analytics console, see
Interacting with the AWS X-Ray Analytics Console.

Topics

• View canaries with increased error reporting in the trace map

• Use trace details maps for individual traces to view each request in detail

CloudWatch Synthetics 294

https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-analytics.html

AWS X-Ray Developer Guide

• Determine the root cause of ongoing failures in upstream and downstream services

• Identify performance bottlenecks and trends

• Compare latency and error or fault rates before and after changes

• Determine the required canary coverage for all APIs and URLs

• Use groups to focus on synthetics tests

View canaries with increased error reporting in the trace map

To see which canaries have an increase in errors, faults, throttling rates, or slow response
times within your X-Ray trace map, you can highlight Synthetics canary client nodes using the
Client::Synthetic filter. Clicking a node displays the response time distribution of the entire
request. Clicking an edge between two nodes shows details about the requests that traveled that
connection. You can also view "remote" inferred nodes for related downstream services in your
trace map.

When you click the Synthetics node, there is a View in Synthetics button on side panel which
redirects you to the Synthetics console where you can check the canary details.

CloudWatch Synthetics 295

AWS X-Ray Developer Guide

Use trace details maps for individual traces to view each request in detail

To determine which service results in the most latency or is causing an error, invoke the trace
details map by selecting the trace in the trace map. Individual trace details maps display the end-
to-end path of a single request. Use this to understand the services invoked, and visualize the
upstream and downstream services.

CloudWatch Synthetics 296

AWS X-Ray Developer Guide

Determine the root cause of ongoing failures in upstream and downstream
services

Once you receive a CloudWatch alarm for failures in a Synthetics canary, use the statistical
modeling on trace data in X-Ray to determine the probable root cause of the issue within the X-Ray
Analytics console. In the Analytics console, the Response Time Root Cause table shows recorded
entity paths. X-Ray determines which path in your trace is the most likely cause for the response
time. The format indicates a hierarchy of entities that are encountered, ending in a response time
root cause.

The following example shows that the Synthetics test for API “XXX” running on API Gateway is
failing due to a throughput capacity exception from the Amazon DynamoDB table.

CloudWatch Synthetics 297

AWS X-Ray Developer Guide

CloudWatch Synthetics 298

AWS X-Ray Developer Guide

Identify performance bottlenecks and trends

You can view trends in the performance of your endpoint over time using continuous traffic from
your Synthetics canaries to populate a trace details map over a period of time.

Compare latency and error or fault rates before and after changes

Pinpoint the time a change occurred to correlate that change to an increase in issues caught
by your canaries. Use the X-Ray Analytics console to define the before and after time ranges as
different trace sets, creating a visual differentiation in the response time distribution.

CloudWatch Synthetics 299

AWS X-Ray Developer Guide

Determine the required canary coverage for all APIs and URLs

Use X-Ray Analytics to compare the experience of canaries with the users. The UI below shows a
blue trend line for canaries and a green line for the users. You can also identify that two out of the
three URLs don’t have canary tests.

CloudWatch Synthetics 300

AWS X-Ray Developer Guide

Use groups to focus on synthetics tests

You can create an X-Ray group using a filter expression to focus on a certain set of workflows, such
as a Synthetics tests for application “www” running on AWS Elastic Beanstalk. Use the complex
keywords service() and edge() to filter through services and edges.

Example Group filter expression

"edge(id(name: "www", type: "client::Synthetics"), id(name: "www", type:
 "AWS::ElasticBeanstalk::Environment"))"

CloudWatch Synthetics 301

AWS X-Ray Developer Guide

AWS Elastic Beanstalk and AWS X-Ray

Important

End of support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the timeline, see X-Ray SDK and daemon end
of support timeline and for information on migrating to OpenTelemetry, see Migrating
from X-Ray instrumentation to OpenTelemetry instrumentation .

Elastic Beanstalk 302

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

AWS Elastic Beanstalk platforms include the X-Ray daemon. You can run the daemon by setting an
option in the Elastic Beanstalk console or with a configuration file.

On the Java SE platform, you can use a Buildfile file to build your application with Maven or Gradle
on-instance. The X-Ray SDK for Java and AWS SDK for Java are available from Maven, so you can
deploy only your application code and build on-instance to avoid bundling and uploading all of
your dependencies.

You can use Elastic Beanstalk environment properties to configure the X-Ray SDK. The method that
Elastic Beanstalk uses to pass environment properties to your application varies by platform. Use
the X-Ray SDK's environment variables or system properties depending on your platform.

• Node.js platform – Use environment variables

• Java SE platform – Use environment variables

• Tomcat platform – Use system properties

For more information, see Configuring AWS X-Ray Debugging in the AWS Elastic Beanstalk
Developer Guide.

Elastic Load Balancing and AWS X-Ray

Elastic Load Balancing application load balancers add a trace ID to incoming HTTP requests in a
header named X-Amzn-Trace-Id.

X-Amzn-Trace-Id: Root=1-5759e988-bd862e3fe1be46a994272793

X-Ray trace ID format

An X-Ray trace_id consists of three numbers separated by hyphens. For example, 1-58406520-
a006649127e371903a2de979. This includes:

• The version number, which is 1.

• The time of the original request in Unix epoch time using 8 hexadecimal digits.

For example, 10:00AM December 1st, 2016 PST in epoch time is 1480615200 seconds or
58406520 in hexadecimal digits.

• A globally unique 96-bit identifier for the trace in 24 hexadecimal digits.

Elastic Load Balancing 303

https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create_deploy_nodejs.container.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-se-platform.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/java-tomcat-platform.html
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/environment-configuration-debugging.html

AWS X-Ray Developer Guide

Load balancers do not send data to X-Ray, and do not appear as a node on your service map.

For more information, see Request Tracing for Your Application Load Balancer in the Elastic Load
Balancing Developer Guide.

Amazon EventBridge and AWS X-Ray

AWS X-Ray integrates with Amazon EventBridge to trace events that are passed through
EventBridge. If a service that is instrumented with the X-Ray SDK sends events to EventBridge,
the trace context is propagated to downstream event targets within the tracing header. The X-Ray
SDK automatically picks up the tracing header and applies it to any subsequent instrumentation.
This continuity enables users to trace, analyze, and debug throughout downstream services and
provides a more complete view of their system.

For more information, see EventBridge X-Ray Integration in the EventBridge User Guide.

Viewing source and targets on the X-Ray service map

The X-Ray trace map displays an EventBridge event node that connects source and target services,
as in the following example:

Propagate the trace context to event targets

The X-Ray SDK enables the EventBridge event source to propagate trace context to downstream
event targets. The following language-specific examples demonstrate calling EventBridge from a
Lambda function on which active tracing is enabled:

EventBridge 304

https://docs.aws.amazon.com/elasticloadbalancing/latest/application/load-balancer-request-tracing.html
https://docs.aws.amazon.com/eventbridge/latest/userguide/eb-xray-integ.html
https://docs.aws.amazon.com/lambda/latest/dg/services-xray.html#services-xray-api

AWS X-Ray Developer Guide

Java

Add the necessary dependencies for X-Ray:

• AWS X-Ray SDK for Java

• AWS X-Ray Recorder SDK for Java

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;
import com.amazonaws.services.lambda.runtime.events.SQSEvent;
import com.amazonaws.xray.AWSXRay;
import com.amazonaws.services.eventbridge.AmazonEventBridge;
import com.amazonaws.services.eventbridge.AmazonEventBridgeClientBuilder;
import com.amazonaws.services.eventbridge.model.PutEventsRequest;
import com.amazonaws.services.eventbridge.model.PutEventsRequestEntry;
import com.amazonaws.services.eventbridge.model.PutEventsResult;
import com.amazonaws.services.eventbridge.model.PutEventsResultEntry;
import com.amazonaws.xray.handlers.TracingHandler;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.lang.StringBuilder;
import java.util.Map;
import java.util.List;
import java.util.Date;
import java.util.Collections;

/*
 Add the necessary dependencies for XRay:
 https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-xray
 https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk
*/
public class Handler implements RequestHandler<SQSEvent, String>{
 private static final Logger logger = LoggerFactory.getLogger(Handler.class);

 /*
 build EventBridge client
 */

Propagate the trace context to event targets 305

https://mvnrepository.com/artifact/com.amazonaws/aws-java-sdk-xray/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk/

AWS X-Ray Developer Guide

 private static final AmazonEventBridge eventsClient =
 AmazonEventBridgeClientBuilder
 .standard()
 // instrument the EventBridge client with the XRay Tracing Handler.
 // the AWSXRay globalRecorder will retrieve the tracing-context
 // from the lambda function and inject it into the HTTP header.
 // be sure to enable 'active tracing' on the lambda function.
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();

 @Override
 public String handleRequest(SQSEvent event, Context context)
 {
 PutEventsRequestEntry putEventsRequestEntry0 = new PutEventsRequestEntry();
 putEventsRequestEntry0.setTime(new Date());
 putEventsRequestEntry0.setSource("my-lambda-function");
 putEventsRequestEntry0.setDetailType("my-lambda-event");
 putEventsRequestEntry0.setDetail("{\"lambda-source\":\"sqs\"}");
 PutEventsRequest putEventsRequest = new PutEventsRequest();
 putEventsRequest.setEntries(Collections.singletonList(putEventsRequestEntry0));
 // send the event(s) to EventBridge
 PutEventsResult putEventsResult = eventsClient.putEvents(putEventsRequest);
 try {
 logger.info("Put Events Result: {}", putEventsResult);
 } catch(Exception e) {
 e.getStackTrace();
 }
 return "success";
 }
}

Python

Add the following dependency to your requirements.txt file:

aws-xray-sdk==2.4.3

import boto3
from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

apply the XRay handler to all clients.
patch_all()

Propagate the trace context to event targets 306

AWS X-Ray Developer Guide

client = boto3.client('events')

def lambda_handler(event, context):
 response = client.put_events(
 Entries=[
 {
 'Source': 'foo',
 'DetailType': 'foo',
 'Detail': '{\"foo\": \"foo\"}'
 },
]
)
 return response

Go

package main

import (
 "context"
 "github.com/aws/aws-lambda-go/lambda"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-sdk-go/aws/session"
 "github.com/aws/aws-xray-sdk-go/xray"
 "github.com/aws/aws-sdk-go/service/eventbridge"
 "fmt"
)

var client = eventbridge.New(session.New())

func main() {
 //Wrap the eventbridge client in the AWS XRay tracer
 xray.AWS(client.Client)
 lambda.Start(handleRequest)
}

func handleRequest(ctx context.Context, event events.SQSEvent) (string, error) {
 _, err := callEventBridge(ctx)
 if err != nil {
 return "ERROR", err
 }

Propagate the trace context to event targets 307

AWS X-Ray Developer Guide

 return "success", nil
}

func callEventBridge(ctx context.Context) (string, error) {
 entries := make([]*eventbridge.PutEventsRequestEntry, 1)
 detail := "{ \"foo\": \"foo\"}"
 detailType := "foo"
 source := "foo"
 entries[0] = &eventbridge.PutEventsRequestEntry{
 Detail: &detail,
 DetailType: &detailType,
 Source: &source,
 }

 input := &eventbridge.PutEventsInput{
 Entries: entries,
 }

 // Example sending a request using the PutEventsRequest method.
 resp, err := client.PutEventsWithContext(ctx, input)

 success := "yes"
 if err == nil { // resp is now filled
 success = "no"
 fmt.Println(resp)
 }
 return success, err
}

Node.js

const AWSXRay = require('aws-xray-sdk')
//Wrap the aws-sdk client in the AWS XRay tracer
const AWS = AWSXRay.captureAWS(require('aws-sdk'))
const eventBridge = new AWS.EventBridge()

exports.handler = async (event) => {

 let myDetail = { "name": "Alice" }

 const myEvent = {
 Entries: [{

Propagate the trace context to event targets 308

AWS X-Ray Developer Guide

 Detail: JSON.stringify({ myDetail }),
 DetailType: 'myDetailType',
 Source: 'myApplication',
 Time: new Date
 }]
 }

 // Send to EventBridge
 const result = await eventBridge.putEvents(myEvent).promise()

 // Log the result
 console.log('Result: ', JSON.stringify(result, null, 2))

}

C#

Add the following X-Ray packages to your C# dependencies:

<PackageReference Include="AWSXRayRecorder.Core" Version="2.6.2" />
<PackageReference Include="AWSXRayRecorder.Handlers.AwsSdk" Version="2.7.2" />

using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading.Tasks;
using Amazon;
using Amazon.Util;
using Amazon.Lambda;
using Amazon.Lambda.Model;
using Amazon.Lambda.Core;
using Amazon.EventBridge;
using Amazon.EventBridge.Model;
using Amazon.Lambda.SQSEvents;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.AwsSdk;
using Newtonsoft.Json;
using Newtonsoft.Json.Serialization;

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.Json.JsonSerializer))]

namespace blankCsharp

Propagate the trace context to event targets 309

AWS X-Ray Developer Guide

{
 public class Function
 {
 private static AmazonEventBridgeClient eventClient;

 static Function() {
 initialize();
 }

 static async void initialize() {
 //Wrap the AWS SDK clients in the AWS XRay tracer
 AWSSDKHandler.RegisterXRayForAllServices();
 eventClient = new AmazonEventBridgeClient();
 }

 public async Task<PutEventsResponse> FunctionHandler(SQSEvent invocationEvent,
 ILambdaContext context)
 {
 PutEventsResponse response;
 try
 {
 response = await callEventBridge();
 }
 catch (AmazonLambdaException ex)
 {
 throw ex;
 }

 return response;
 }

 public static async Task<PutEventsResponse> callEventBridge()
 {
 var request = new PutEventsRequest();
 var entry = new PutEventsRequestEntry();
 entry.DetailType = "foo";
 entry.Source = "foo";
 entry.Detail = "{\"instance_id\":\"A\"}";
 List<PutEventsRequestEntry> entries = new List<PutEventsRequestEntry>();
 entries.Add(entry);
 request.Entries = entries;
 var response = await eventClient.PutEventsAsync(request);
 return response;
 }

Propagate the trace context to event targets 310

AWS X-Ray Developer Guide

 }
}

AWS Lambda and AWS X-Ray

Important

End of support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the timeline, see X-Ray SDK and daemon end
of support timeline and for information on migrating to OpenTelemetry, see Migrating
from X-Ray instrumentation to OpenTelemetry instrumentation .

You can use AWS X-Ray to trace your AWS Lambda functions. Lambda runs the X-Ray daemon
and records a segment with details about invoking and running the function. For further
instrumentation, you can bundle the X-Ray SDK with your function to record outgoing calls and
add annotations and metadata.

If your Lambda function is called by another instrumented service, Lambda traces requests that
have already been sampled without any additional configuration. The upstream service can
be an instrumented web application or another Lambda function. Your service can invoke the
function directly with an instrumented AWS SDK client, or by calling an API Gateway API with an
instrumented HTTP client.

AWS X-Ray supports tracing event-driven applications using AWS Lambda and Amazon SQS. Use
the CloudWatch console to see a connected view of each request as it's queued with Amazon SQS
and processed by a downstream Lambda function. Traces from upstream message producers are
automatically linked to traces from downstream Lambda consumer nodes, creating an end-to-end
view of the application. For more information, see tracing event-driven applications.

Note

If you have traces enabled for a downstream Lambda function, you must also have traces
enabled for the root Lambda function that calls the downstream function in order for the
downstream function to generate traces.

Lambda 311

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

If your Lambda function runs on a schedule, or is invoked by a service that is not instrumented, you
can configure Lambda to sample and record invocations with active tracing.

To configure X-Ray integration on an AWS Lambda function

1. Open the AWS Lambda console.

2. Select Functions from the left navigation bar.

3. Choose your function.

4. On the Configuration tab, scroll down to the Additional monitoring tools card. You can also
find this card by selecting Monitoring and operations tools on the left navigation pane.

5. Select Edit.

6. Under AWS X-Ray, enable Active tracing.

On runtimes with a corresponding X-Ray SDK, Lambda also runs the X-Ray daemon.

X-Ray SDKs on Lambda

• X-Ray SDK for Go – Go 1.7 and newer runtimes

• X-Ray SDK for Java – Java 8 runtime

• X-Ray SDK for Node.js – Node.js 4.3 and newer runtimes

• X-Ray SDK for Python – Python 2.7, Python 3.6, and newer runtimes

• X-Ray SDK for .NET – .NET Core 2.0 and newer runtimes

To use the X-Ray SDK on Lambda, bundle it with your function code each time you create a new
version. You can instrument your Lambda functions with the same methods that you use to
instrument applications running on other services. The primary difference is that you don't use the
SDK to instrument incoming requests, make sampling decisions, and create segments.

The other difference between instrumenting Lambda functions and web applications is that the
segment that Lambda creates and sends to X-Ray can't be modified by your function code. You can
create subsegments and record annotations and metadata on them, but you can't add annotations
and metadata to the parent segment.

For more information, see Using AWS X-Ray in the AWS Lambda Developer Guide.

Lambda 312

https://console.aws.amazon.com/lambda
https://docs.aws.amazon.com/lambda/latest/dg/lambda-x-ray.html

AWS X-Ray Developer Guide

AWS Step Functions and AWS X-Ray

AWS X-Ray integrates with AWS Step Functions to trace and analyze requests for Step Functions.
You can visualize the components of your state machine, identify performance bottlenecks, and
troubleshoot requests that resulted in an error. For more information, see AWS X-Ray and Step
Functions in the AWS Step Functions Developer Guide.

To enable X-Ray tracing when creating a new state machine

1. Open the Step Functions console at https://console.aws.amazon.com/states/.

2. Choose Create a state machine.

3. On the Define state machine page, choose either Author with code snippets or Start with
a template. If you choose to run a sample project, you can't enable X-Ray tracing during
creation. Instead, enable X-Ray tracing after you create your state machine.

4. Choose Next.

5. On the Specify details page, configure your state machine.

6. Choose Enable X-Ray tracing.

To enable X-Ray tracing in an existing state machine

1. In the Step Functions console, select the state machine for which you want to enable tracing.

2. Choose Edit.

3. Choose Enable X-Ray tracing.

4. (Optional) Auto-generate a new role for your state machine to include X-Ray permissions by
choosing Create new role from the Permissions window.

5. Choose Save.

Step Functions 313

https://docs.aws.amazon.com/step-functions/latest/dg/concepts-xray-tracing.html
https://docs.aws.amazon.com/step-functions/latest/dg/concepts-xray-tracing.html
https://console.aws.amazon.com/states/

AWS X-Ray Developer Guide

Note

When you create a new state machine, it's automatically traced if the request is sampled
and tracing is enabled in an upstream service such as Amazon API Gateway or AWS
Lambda. For any existing state machine not configured through the console, for example
through an AWS CloudFormation template, check that you have an IAM policy that grants
sufficient permissions to enable X-Ray traces.

Step Functions 314

AWS X-Ray Developer Guide

Instrumenting your application for AWS X-Ray

Important

End of support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the timeline, see X-Ray SDK and daemon end
of support timeline and for information on migrating to OpenTelemetry, see Migrating
from X-Ray instrumentation to OpenTelemetry instrumentation .

Instrumenting your application involves sending trace data for incoming and outbound requests
and other events within your application, along with metadata about each request. There are
several different instrumentation options you can choose from or combine, based on your
particular requirements:

• Auto instrumentation – instrument your application with zero code changes, typically via
configuration changes, adding an auto-instrumentation agent, or other mechanisms.

• Library instrumentation – make minimal application code changes to add pre-built
instrumentation targeting specific libraries or frameworks, such as the AWS SDK, Apache HTTP
clients, or SQL clients.

• Manual instrumentation – add instrumentation code to your application at each location where
you want to send trace information.

There are several SDKs, agents, and tools that can be used to instrument your application for X-Ray
tracing.

Topics

• Instrumenting your application with the AWS Distro for OpenTelemetry

• Instrumenting your application with AWS X-Ray SDKs

• Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs

315

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Instrumenting your application with the AWS Distro for
OpenTelemetry

The AWS Distro for OpenTelemetry (ADOT) is an AWS distribution based on the Cloud Native
Computing Foundation (CNCF) OpenTelemetry project. OpenTelemetry provides a single set of
open source APIs, libraries, and agents to collect distributed traces and metrics. This toolkit is
a distribution of upstream OpenTelemetry components including SDKs, auto-instrumentation
agents, and collectors that are tested, optimized, secured, and supported by AWS.

With ADOT, engineers can instrument their applications once and send correlated metrics and
traces to multiple AWS monitoring solutions including Amazon CloudWatch, AWS X-Ray, and
Amazon OpenSearch Service.

Using X-Ray with ADOT requires two components: an OpenTelemetry SDK enabled for use with
X-Ray, and the AWS Distro for OpenTelemetry Collector enabled for use with X-Ray. For more
information about using the AWS Distro for OpenTelemetry with AWS X-Ray and other AWS
services, see the AWS Distro for OpenTelemetry Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

Note

You can now use the CloudWatch agent to collect metrics, logs and traces from Amazon
EC2 instances and on-premise servers. CloudWatch agent version 1.300025.0 and later can
collect traces from OpenTelemetry or X-Ray client SDKs, and send them to X-Ray. Using the
CloudWatch agent instead of the AWS Distro for OpenTelemetry (ADOT) Collector or X-Ray
daemon to collect traces can help you reduce the number of agents that you manage. See
the CloudWatch agent topic in the CloudWatch User Guide for more information.

ADOT includes the following:

• AWS Distro for OpenTelemetry Go

• AWS Distro for OpenTelemetry Java

• AWS Distro for OpenTelemetry JavaScript

• AWS Distro for OpenTelemetry Python

• AWS Distro for OpenTelemetry .NET

Instrumenting your application with the AWS Distro for OpenTelemetry 316

https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
https://aws-otel.github.io/docs/getting-started/go-sdk
https://aws-otel.github.io/docs/getting-started/java-sdk
https://aws-otel.github.io/docs/getting-started/javascript-sdk
https://aws-otel.github.io/docs/getting-started/python-sdk
https://aws-otel.github.io/docs/getting-started/dotnet-sdk

AWS X-Ray Developer Guide

ADOT currently includes auto-instrumentation support for Java and Python. In addition, ADOT
enables auto-instrumentation of AWS Lambda functions and their downstream requests using
Java, Node.js, and Python runtimes, via ADOT Managed Lambda Layers.

ADOT SDKs for Java and Go support X-Ray centralized sampling rules. If you need support for X-
Ray sampling rules in other languages, consider using an AWS X-Ray SDK.

Note

You can send now send W3C trace IDs to X-Ray. By default, traces that are created with
OpenTelemetry have a trace ID format that's based on the W3C Trace Context specification.
This is different from the format for trace IDs that are created using an X-Ray SDK or by
AWS services that are integrated with X-Ray. To ensure that trace IDs in W3C format are
accepted by X-Ray, you must use AWS X-Ray Exporter version 0.86.0 or later, which is
included with ADOT Collector version 0.34.0 and later. Previous versions of the exporter
validate trace ID timestamps, which might cause W3C trace IDs to be rejected.

Instrumenting your application with AWS X-Ray SDKs

AWS X-Ray includes a set of language-specific SDKs for instrumenting your application to send
traces to X-Ray. Each X-Ray SDK provides the following:

• Interceptors to add to your code to trace incoming HTTP requests

• Client handlers to instrument AWS SDK clients that your application uses to call other AWS
services

• An HTTP client to instrument calls to other internal and external HTTP web services

X-Ray SDKs also support instrumenting calls to SQL databases, automatic AWS SDK client
instrumentation, and other features. Instead of sending trace data directly to X-Ray, the SDK
sends JSON segment documents to a daemon process listening for UDP traffic. The X-Ray daemon
buffers segments in a queue and uploads them to X-Ray in batches.

The following language-specific SDKs are provided:

• AWS X-Ray SDK for Go

• AWS X-Ray SDK for Java

Instrumenting your application with AWS X-Ray SDKs 317

https://aws-otel.github.io/docs/getting-started/java-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/python-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/lambda
https://www.w3.org/TR/trace-context/
https://aws-otel.github.io/docs/getting-started/x-ray
https://aws-otel.github.io/download

AWS X-Ray Developer Guide

• AWS X-Ray SDK for Node.js

• AWS X-Ray SDK for Python

• AWS X-Ray SDK for .NET

• AWS X-Ray SDK for Ruby

X-Ray currently includes auto-instrumentation support for Java.

Choosing between the AWS Distro for OpenTelemetry and X-
Ray SDKs

The SDKs included with X-Ray are part of a tightly integrated instrumentation solution offered by
AWS. The AWS Distro for OpenTelemetry is part of a broader industry solution in which X-Ray is
only one of many tracing solutions. You can implement end-to-end tracing in X-Ray using either
approach, but it’s important to understand the differences in order to determine the most useful
approach for you.

We recommend instrumenting your application with the AWS Distro for OpenTelemetry if you need
the following:

• The ability to send traces to multiple different tracing back ends without having to re-instrument
your code

• Support for a large number of library instrumentations for each language, maintained by the
OpenTelemetry community

• Fully managed Lambda layers that package everything you need to collect telemetry data,
without requiring code changes when using Java, Python, or Node.js

Note

AWS Distro for OpenTelemetry offers a simpler getting started experience for
instrumenting your Lambda functions. However, due to the flexibility OpenTelemetry
offers, your Lambda function will require additional memory and invocations may
experience cold start latency increases, which can lead to additional charges. If you're
optimizing for low-latency and do not require OpenTelemetry's advanced capabilities
such as dynamically configurable back end destinations, you may want to use the AWS X-
Ray SDK to instrument your application.

Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs 318

AWS X-Ray Developer Guide

We recommend choosing an X-Ray SDK for instrumenting your application if you need the
following:

• A tightly integrated single-vendor solution

• Integration with X-Ray centralized sampling rules, including the ability to configure sampling
rules from the X-Ray console and automatically use them across multiple hosts, when using
Node.js, Python, Ruby, or .NET

Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs 319

AWS X-Ray Developer Guide

Transaction Search

Transaction Search is an interactive analytics experience you can use to get complete visibility of
your application transaction spans. Spans are the fundamental units of operation in a distributed
trace and represent specific actions or tasks in an application or system. Every span records details
about a particular segment of the transaction. These details include start and end times, duration,
and associated metadata, which can include business attributes like customer IDs and order IDs.
Spans are arranged in a parent-child hierarchy. This heirarchy forms a complete trace mapping the
flow of a transaction across different components or services.

For more information, see Transaction Search.

320

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Transaction-Search.html

AWS X-Ray Developer Guide

OpenTelemetry Protocol (OTLP) Endpoint

OpenTelemetry is an open-source observability framework that provides IT teams with
standardized protocols and tools for collecting and routing telemetry data. It delivers a unified
format for instrumenting, generating, gathering, and exporting application telemetry data,
such as metrics, logs, and traces to monitoring platforms for analysis and insights. By using
OpenTelemetry, teams can avoid vendor lock-in, ensuring flexibility in their observability solutions.

You can use OpenTelemetry to directly send traces to an OpenTelemetry Protocol (OTLP) endpoint,
and get out-of-the box application performance monitoring experiences in CloudWatch Application
Signals.

For more information, see OpenTelemetry.

321

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Intro.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Intro.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-OpenTelemetry-Sections.html

AWS X-Ray Developer Guide

Working with Go

There are two ways to instrument your Go application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Go – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Go – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

With the AWS Distro for OpenTelemetry Go, you can instrument your applications once and send
correlated metrics and traces to multiple AWS monitoring solutions including Amazon CloudWatch,
AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with AWS Distro for OpenTelemetry
requires two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro
for OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry Go documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

AWS Distro for OpenTelemetry Go 322

https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://aws-otel.github.io/docs/getting-started/go-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Go is a set of libraries for Go applications that provide classes and methods
for generating and sending trace data to the X-Ray daemon. Trace data includes information
about incoming HTTP requests served by the application, and calls that the application makes to
downstream services using the AWS SDK, HTTP clients, or an SQL database connector. You can also
create segments manually and add debug information in annotations and metadata.

Download the SDK from its GitHub repository with go get:

$ go get -u github.com/aws/aws-xray-sdk-go/...

For web applications, start by using the xray.Handler function to trace incoming requests. The
message handler creates a segment for each traced request, and completes the segment when
the response is sent. While the segment is open you can use the SDK client's methods to add
information to the segment and create subsegments to trace downstream calls. The SDK also
automatically records exceptions that your application throws while the segment is open.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

X-Ray SDK for Go 323

https://github.com/aws-observability
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws/aws-xray-sdk-go

AWS X-Ray Developer Guide

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

Next, wrap your client with a call to the AWS function. This step ensures that X-Ray instruments
calls to any client methods. You can also instrument calls to SQL databases.

After you start using the SDK, customize its behavior by configuring the recorder and middleware.
You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

X-Ray SDK for Go 324

AWS X-Ray Developer Guide

Requirements

The X-Ray SDK for Go requires Go 1.9 or later.

The SDK depends on the following libraries at compile and runtime:

• AWS SDK for Go version 1.10.0 or newer

These dependencies are declared in the SDK's README.md file.

Reference documentation

Once you have downloaded the SDK, build and host the documentation locally to view it in a web
browser.

To view the reference documentation

1. Navigating to the $GOPATH/src/github.com/aws/aws-xray-sdk-go (Linux or Mac)
directory or the %GOPATH%\src\github.com\aws\aws-xray-sdk-go (Windows) folder

2. Run the godoc command.

$ godoc -http=:6060

3. Opening a browser at http://localhost:6060/pkg/github.com/aws/aws-xray-sdk-
go/.

Configuring the X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Requirements 325

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

You can specify the configuration for X-Ray SDK for Go through environment variables, by calling
Configure with a Config object, or by assuming default values. Environment variables take
precedence over Config values, which take precedence over any default value.

Sections

• Service plugins

• Sampling rules

• Logging

• Environment variables

• Using configure

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

Configuration 326

AWS X-Ray Developer Guide

To use a plugin, import one of the following packages.

"github.com/aws/aws-xray-sdk-go/awsplugins/ec2"
"github.com/aws/aws-xray-sdk-go/awsplugins/ecs"
"github.com/aws/aws-xray-sdk-go/awsplugins/beanstalk"

Each plugin has an explicit Init() function call that loads the plugin.

Example ec2.Init()

import (
 "os"

 "github.com/aws/aws-xray-sdk-go/awsplugins/ec2"
 "github.com/aws/aws-xray-sdk-go/xray"
)

func init() {

Configuration 327

AWS X-Ray Developer Guide

 // conditionally load plugin
 if os.Getenv("ENVIRONMENT") == "production" {
 ec2.Init()
 }

 xray.Configure(xray.Config{
 ServiceVersion: "1.2.3",
 })
}

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request each second, and five percent of any additional requests per host. This can
occur if the host doesn't have permission to call sampling APIs, or can't connect to the X-
Ray daemon, which acts as a TCP proxy for API calls made by the SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [

Configuration 328

AWS X-Ray Developer Guide

 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To provide backup rules, point to the local sampling JSON file by using
NewCentralizedStrategyWithFilePath.

Example main.go – Local sampling rule

s, _ := sampling.NewCentralizedStrategyWithFilePath("sampling.json") // path to local
 sampling json
xray.Configure(xray.Config{SamplingStrategy: s})

To use only local rules, point to the local sampling JSON file by using
NewLocalizedStrategyFromFilePath.

Configuration 329

AWS X-Ray Developer Guide

Example main.go – Disable sampling

s, _ := sampling.NewLocalizedStrategyFromFilePath("sampling.json") // path to local
 sampling json
xray.Configure(xray.Config{SamplingStrategy: s})

Logging

Note

The xray.Config{} fields LogLevel and LogFormat are deprecated starting with
version 1.0.0-rc.10.

X-Ray uses the following interface for logging. The default logger writes to stdout at
LogLevelInfo and above.

type Logger interface {
 Log(level LogLevel, msg fmt.Stringer)
}

const (
 LogLevelDebug LogLevel = iota + 1
 LogLevelInfo
 LogLevelWarn
 LogLevelError
)

Example write to io.Writer

xray.SetLogger(xraylog.NewDefaultLogger(os.Stderr, xraylog.LogLevelError))

Environment variables

You can use environment variables to configure the X-Ray SDK for Go. The SDK supports the
following variables.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Configuration 330

AWS X-Ray Developer Guide

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

• AWS_XRAY_TRACING_NAME – Set the service name that the SDK uses for segments.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK sends trace data to 127.0.0.1:2000. Use this variable if you have configured the
daemon to listen on a different port or if it is running on a different host.

• AWS_XRAY_CONTEXT_MISSING – Set the value to determine how the SDK handles missing
context errors. Errors related to missing segments or subsegments can occur when you attempt
to use an instrumented client in the startup code when no request is open, or in code that
spawns a new thread.

• RUNTIME_ERROR – By default, the SDK is set to throw a runtime exception.

• LOG_ERROR – Set to log an error and continue.

Environment variables override equivalent values set in code.

Using configure

You can also configure the X-Ray SDK for Go using the Configure method. Configure takes one
argument, a Config object, with the following, optional fields.

DaemonAddr

This string specifies the host and port of the X-Ray daemon listener. If not specified, X-Ray uses
the value of the AWS_XRAY_DAEMON_ADDRESS environment variable. If that value is not set, it
uses "127.0.0.1:2000".

ServiceVersion

This string specifies the version of the service. If not specified, X-Ray uses the empty string ("").

Configuration 331

AWS X-Ray Developer Guide

SamplingStrategy

This SamplingStrategy object specifies which of your application calls are traced. If not
specified, X-Ray uses a LocalizedSamplingStrategy, which takes the strategy as defined in
xray/resources/DefaultSamplingRules.json.

StreamingStrategy

This StreamingStrategy object specifies whether to stream a segment when
RequiresStreaming returns true. If not specified, X-Ray uses a DefaultStreamingStrategy
that streams a sampled segment if the number of subsegments is greater than 20.

ExceptionFormattingStrategy

This ExceptionFormattingStrategy object specifies how you want to handle various
exceptions. If not specified, X-Ray uses a DefaultExceptionFormattingStrategy with an
XrayError of type error, the error message, and stack trace.

Instrumenting incoming HTTP requests with the X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use xray.Handler to instrument incoming HTTP requests. The X-Ray SDK for Go implements
the standard Go library http.Handler interface in the xray.Handler class to intercept web
requests. The xray.Handler class wraps the provided http.Handler with xray.Capture using
the request's context, parsing the incoming headers, adding response headers if needed, and sets
HTTP-specific trace fields.

Incoming requests 332

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

When you use this class to handle HTTP requests and responses, the X-Ray SDK for Go creates a
segment for each sampled request. This segment includes timing, method, and disposition of the
HTTP request. Additional instrumentation creates subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

The following example intercepts requests on port 8000 and returns "Hello!" as a response. It
creates the segment myApp and instruments calls through any application.

Example main.go

func main() {
 http.Handle("/", xray.Handler(xray.NewFixedSegmentNamer("MyApp"),
 http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello!"))
 })))

 http.ListenAndServe(":8000", nil)
}

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

Incoming requests 333

AWS X-Ray Developer Guide

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The handler creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

Incoming requests 334

AWS X-Ray Developer Guide

To use the same name for all request segments, specify the name of your application when you
create the handler, as shown in the previous section.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request doesn't match the pattern. To name segments
dynamically, use NewDynamicSegmentNamer to configure the default name and pattern to match.

Example main.go

If the hostname in the request matches the pattern *.example.com, use the hostname.
Otherwise, use MyApp.

func main() {
 http.Handle("/", xray.Handler(xray.NewDynamicSegmentNamer("MyApp", "*.example.com"),
 http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello!"))
 })))

 http.ListenAndServe(":8000", nil)
}

Tracing AWS SDK calls with the X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

AWS SDK clients 335

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Go tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

To trace AWS SDK clients, wrap the client object with the xray.AWS() call as shown in the
following example.

Example main.go

var dynamo *dynamodb.DynamoDB
func main() {
 dynamo = dynamodb.New(session.Must(session.NewSession()))
 xray.AWS(dynamo.Client)
}

Then, when you use the AWS SDK client, use the withContext version of the call method, and
pass it the context from the http.Request object passed to the handler.

Example main.go – AWS SDK call

func listTablesWithContext(ctx context.Context) {
 output := dynamo.ListTablesWithContext(ctx, &dynamodb.ListTablesInput{})
 doSomething(output)
}

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,

AWS SDK clients 336

AWS X-Ray Developer Guide

 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

Tracing calls to downstream HTTP web services with the X-Ray SDK for
Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to microservices or public HTTP APIs, you can use the
xray.Client to instrument those calls as subsegments of your Go application, as shown in the
following example, where http-client is an HTTP client.

Outgoing HTTP calls 337

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

The client creates a shallow copy of the provided HTTP client, defaulting to
http.DefaultClient, with roundtripper wrapped with xray.RoundTripper.

Example

<caption>main.go – HTTP client</caption>

myClient := xray.Client(http-client)

<caption>main.go – Trace downstream HTTP call with ctxhttp library</caption>

The following example instruments the outgoing HTTP call with the ctxhttp library using
xray.Client. ctx can be passed from the upstream call. This ensures that the existing segment
context is used. For example, X-Ray does not allow a new segment to be created within a Lambda
function, so the existing Lambda segment context should be used.

resp, err := ctxhttp.Get(ctx, xray.Client(nil), url)

Tracing SQL queries with the X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

To trace SQL calls to PostgreSQL or MySQL, replacing sql.Open calls to xray.SQLContext, as
shown in the following example. Use URLs instead of configuration strings if possible.

Example main.go

func main() {
 db, err := xray.SQLContext("postgres", "postgres://user:password@host:port/db")
 row, err := db.QueryRowContext(ctx, "SELECT 1") // Use as normal

SQL queries 338

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

}

Generating custom subsegments with the X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

Use the Capture method to create a subsegment around a function.

Example main.go – Custom subsegment

func criticalSection(ctx context.Context) {
 //this is an example of a subsegment
 xray.Capture(ctx, "GameModel.saveGame", func(ctx1 context.Context) error {
 var err error

 section.Lock()
 result := someLockedResource.Go()
 section.Unlock()

 xray.AddMetadata(ctx1, "ResourceResult", result)
 })

The following screenshot shows an example of how the saveGame subsegment might appear in
traces for the application Scorekeep.

Custom subsegments 339

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Add annotations and metadata to segments with the X-Ray SDK for Go

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can record additional information about requests, the environment, or your application with
annotations and metadata. You can add annotations and metadata to the segments that the X-Ray
SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Go

• Recording metadata with the X-Ray SDK for Go

• Recording user IDs with the X-Ray SDK for Go

Annotations and metadata 340

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Recording annotations with the X-Ray SDK for Go

Use annotations to record information on segments that you want indexed for search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than a dot or period (.)

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations, call AddAnnotation with a string containing the metadata you want to
associate with the segment.

xray.AddAnnotation(key string, value interface{})

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling AddAnnotation twice with the same key overwrites previously recorded values
on the same segment.

To find traces that have annotations with specific values, use the annotation[key] keyword in a
filter expression.

Recording metadata with the X-Ray SDK for Go

Use metadata to record information on segments that you don't need indexed for search.

To record metadata, call AddMetadata with a string containing the metadata you want to
associate with the segment.

xray.AddMetadata(key string, value interface{})

Recording user IDs with the X-Ray SDK for Go

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from AWSXRay.

Annotations and metadata 341

AWS X-Ray Developer Guide

import (
 "context"
 "github.com/aws/aws-xray-sdk-go/xray"
)

mySegment := xray.GetSegment(context)

2. Call setUser with a String ID of the user who sent the request.

mySegment.User = "U12345"

To find traces for a user ID, use the user keyword in a filter expression.

Annotations and metadata 342

AWS X-Ray Developer Guide

Working with Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

There are two ways to instrument your Java application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Java – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Java – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Java

With the AWS Distro for OpenTelemetry (ADOT) Java, you can instrument your applications once
and send correlated metrics and traces to multiple AWS monitoring solutions including Amazon
CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with ADOT requires
two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro for
OpenTelemetry Collector enabled for use with X-Ray. ADOT Java includes auto-instrumentation
support, enabling your application to send traces without code changes.

To get started, see the AWS Distro for OpenTelemetry Java documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

AWS Distro for OpenTelemetry Java 343

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/java-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Java is a set of libraries for Java web applications that provide classes and
methods for generating and sending trace data to the X-Ray daemon. Trace data includes
information about incoming HTTP requests served by the application, and calls that the application
makes to downstream services using the AWS SDK, HTTP clients, or an SQL database connector.
You can also create segments manually and add debug information in annotations and metadata.

The X-Ray SDK for Java is an open source project. You can follow the project and submit issues and
pull requests on GitHub: github.com/aws/aws-xray-sdk-java

Start by adding AWSXRayServletFilter as a servlet filter to trace incoming requests. A servlet
filter creates a segment. While the segment is open, you can use the SDK client's methods to add
information to the segment and create subsegments to trace downstream calls. The SDK also
automatically records exceptions that your application throws while the segment is open.

Starting in release 1.3, you can instrument your application using aspect-oriented programming
(AOP) in Spring. What this means is that you can instrument your application, while it is running on
AWS, without adding any code to your application's runtime.

Next, use the X-Ray SDK for Java to instrument your AWS SDK for Java clients by including the SDK
Instrumentor submodule in your build configuration. Whenever you make a call to a downstream
AWS service or resource with an instrumented client, the SDK records information about the call
in a subsegment. AWS services and the resources that you access within the services appear as
downstream nodes on the trace map to help you identify errors and throttling issues on individual
connections.

X-Ray SDK for Java 344

https://github.com/aws-observability
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws/aws-xray-sdk-java

AWS X-Ray Developer Guide

If you don't want to instrument all downstream calls to AWS services, you can leave out the
Instrumentor submodule and choose which clients to instrument. Instrument individual clients by
adding a TracingHandler to an AWS SDK service client.

Other X-Ray SDK for Java submodules provide instrumentation for downstream calls to HTTP
web APIs and SQL databases. You can use the X-Ray SDK for Java versions of HTTPClient and
HTTPClientBuilder in the Apache HTTP submodule to instrument Apache HTTP clients. To
instrument SQL queries, add the SDK's interceptor to your data source.

After you start using the SDK, customize its behavior by configuring the recorder and servlet
filter. You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
many subsegments, one for each call made with an instrumented client. You can organize and
group subsegments by wrapping client calls in custom subsegments. You can create a custom
subsegment for an entire function or any section of code, and record metadata and annotations on
the subsegment instead of writing everything on the parent segment.

Submodules

You can download the X-Ray SDK for Java from Maven. The X-Ray SDK for Java is split into
submodules by use case, with a bill of materials for version management:

Submodules 345

AWS X-Ray Developer Guide

• aws-xray-recorder-sdk-core (required) – Basic functionality for creating segments and
transmitting segments. Includes AWSXRayServletFilter for instrumenting incoming requests.

• aws-xray-recorder-sdk-aws-sdk – Instruments calls to AWS services made with AWS SDK
for Java clients by adding a tracing client as a request handler.

• aws-xray-recorder-sdk-aws-sdk-v2 – Instruments calls to AWS services made with AWS
SDK for Java 2.2 and later clients by adding a tracing client as a request intereceptor.

• aws-xray-recorder-sdk-aws-sdk-instrumentor – With aws-xray-recorder-sdk-
aws-sdk, instruments all AWS SDK for Java clients automatically.

• aws-xray-recorder-sdk-aws-sdk-v2-instrumentor – With aws-xray-recorder-sdk-
aws-sdk-v2, instruments all AWS SDK for Java 2.2 and later clients automatically.

• aws-xray-recorder-sdk-apache-http – Instruments outbound HTTP calls made with
Apache HTTP clients.

• aws-xray-recorder-sdk-spring – Provides interceptors for Spring AOP Framework
applications.

• aws-xray-recorder-sdk-sql-postgres – Instruments outbound calls to a PostgreSQL
database made with JDBC.

• aws-xray-recorder-sdk-sql-mysql – Instruments outbound calls to a MySQL database
made with JDBC.

• aws-xray-recorder-sdk-bom – Provides a bill of materials that you can use to specify the
version to use for all submodules.

• aws-xray-recorder-sdk-metrics – Publish unsampled Amazon CloudWatch metrics from
your collected X-Ray segments.

If you use Maven or Gradle to build your application, add the X-Ray SDK for Java to your build
configuration.

For reference documentation of the SDK's classes and methods, see AWS X-Ray SDK for Java API
Reference.

Requirements

The X-Ray SDK for Java requires Java 8 or later, Servlet API 3, the AWS SDK, and Jackson.

The SDK depends on the following libraries at compile and runtime:

Requirements 346

https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-core/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-v2/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-instrumentor/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-aws-sdk-v2-instrumentor/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-apache-http/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-spring/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-postgres/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-sql-mysql/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-bom/
https://mvnrepository.com/artifact/com.amazonaws/aws-xray-recorder-sdk-metrics/
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc

AWS X-Ray Developer Guide

• AWS SDK for Java version 1.11.398 or later

• Servlet API 3.1.0

These dependencies are declared in the SDK's pom.xml file and are included automatically if you
build using Maven or Gradle.

If you use a library that is included in the X-Ray SDK for Java, you must use the included version.
For example, if you already depend on Jackson at runtime and include JAR files in your deployment
for that dependency, you must remove those JAR files because the SDK JAR includes its own
versions of Jackson libraries.

Dependency management

The X-Ray SDK for Java is available from Maven:

• Group – com.amazonaws

• Artifact – aws-xray-recorder-sdk-bom

• Version – 2.11.0

If you use Maven to build your application, add the SDK as a dependency in your pom.xml file.

Example pom.xml - dependencies

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-bom</artifactId>
 <version>2.11.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
</dependencyManagement>
<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
 </dependency>
 <dependency>

Dependency management 347

AWS X-Ray Developer Guide

 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-apache-http</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-aws-sdk-instrumentor</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-sql-postgres</artifactId>
 </dependency>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-sql-mysql</artifactId>
 </dependency>
</dependencies>

For Gradle, add the SDK as a compile-time dependency in your build.gradle file.

Example build.gradle - dependencies

dependencies {
 compile("org.springframework.boot:spring-boot-starter-web")
 testCompile("org.springframework.boot:spring-boot-starter-test")
 compile("com.amazonaws:aws-java-sdk-dynamodb")
 compile("com.amazonaws:aws-xray-recorder-sdk-core")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk")
 compile("com.amazonaws:aws-xray-recorder-sdk-aws-sdk-instrumentor")
 compile("com.amazonaws:aws-xray-recorder-sdk-apache-http")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-postgres")
 compile("com.amazonaws:aws-xray-recorder-sdk-sql-mysql")
 testCompile("junit:junit:4.11")
}
dependencyManagement {
 imports {
 mavenBom('com.amazonaws:aws-java-sdk-bom:1.11.39')
 mavenBom('com.amazonaws:aws-xray-recorder-sdk-bom:2.11.0')
 }
}

Dependency management 348

AWS X-Ray Developer Guide

If you use Elastic Beanstalk to deploy your application, you can use Maven or Gradle to build on-
instance each time you deploy, instead of building and uploading a large archive that includes all of
your dependencies. See the sample application for an example that uses Gradle.

AWS X-Ray auto-instrumentation agent for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The AWS X-Ray auto-instrumentation agent for Java is a tracing solution that instruments your
Java web applications with minimal development effort. The agent enables tracing for servlet-
based applications and all of the agent's downstream requests made with supported frameworks
and libraries. This includes downstream Apache HTTP requests, AWS SDK requests, and SQL
queries made using a JDBC driver. The agent propagates X-Ray context, including all active
segments and subsegments, across threads. All of the configurations and versatility of the X-Ray
SDK are still available with the Java agent. Suitable defaults were chosen to ensure that the agent
works with minimal effort.

The X-Ray agent solution is best suited for servlet-based, request-response Java web application
servers. If your application uses an asynchronous framework, or is not well modeled as a request-
response service, you might want to consider manual instrumentation with the SDK instead.

The X-Ray agent is built using the Distributed Systems Comprehension toolkit, or DiSCo. DiSCo
is an open source framework for building Java agents that can be used in distributed systems.
While it is not necessary to understand DiSCo to use the X-Ray agent, you can learn more about the
project by visiting its homepage on GitHub. The X-Ray agent is also fully open-sourced. To view the
source code, make contributions, or raise issues about the agent, visit its repository on GitHub.

Sample application

The eb-java-scorekeep sample application is adapted to be instrumented with the X-Ray agent.
This branch contains no servlet filter or recorder configuration, as these functions are done by

Auto-instrumentation agent 349

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/awslabs/disco
https://github.com/aws/aws-xray-java-agent
https://github.com/aws-samples/eb-java-scorekeep/tree/xray-agent

AWS X-Ray Developer Guide

the agent. To run the application locally or using AWS resources, follow the steps in the sample
application's readme file. The instructions for using the sample app to generate X-Ray traces are in
the sample app’s tutorial.

Getting started

To get started with the X-Ray auto-instrumentation Java agent in your own application, follow
these steps.

1. Run the X-Ray daemon in your environment. For more information, see AWS X-Ray daemon.

2. Download the latest distribution of the agent. Unzip the archive and note its location in your file
system. Its contents should look like the following.

disco
disco-java-agent.jar
disco-plugins
 ### aws-xray-agent-plugin.jar
 ### disco-java-agent-aws-plugin.jar
 ### disco-java-agent-sql-plugin.jar
 ### disco-java-agent-web-plugin.jar

3. Modify the JVM arguments of your application to include the following, which enables the
agent. Ensure the -javaagent argument is placed before the -jar argument if applicable.
The process to modify JVM arguments varies depending on the tools and frameworks you use
to launch your Java server. Consult the documentation of your server framework for specific
guidance.

-javaagent:/<path-to-disco>/disco-java-agent.jar=pluginPath=/<path-to-disco>/disco-
plugins

4. To specify how the name of your application appears on the X-Ray
console, set the AWS_XRAY_TRACING_NAME environment variable or the
com.amazonaws.xray.strategy.tracingName system property. If no name is provided, a
default name is used.

5. Restart your server or container. Incoming requests and their downstream calls are now traced. If
you don’t see the expected results, see the section called “Troubleshooting”.

Auto-instrumentation agent 350

https://github.com/aws/aws-xray-java-agent/releases/latest/download/xray-agent.zip

AWS X-Ray Developer Guide

Configuration

The X-Ray agent is configured by an external, user-provided JSON file. By default, this file is
at the root of the user’s classpath (for example, in their resources directory) named xray-
agent.json. You can configure a custom location for the config file by setting the
com.amazonaws.xray.configFile system property to the absolute filesystem path of your
configuration file.

An example configuration file is shown next.

{
 "serviceName": "XRayInstrumentedService",
 "contextMissingStrategy": "LOG_ERROR",
 "daemonAddress": "127.0.0.1:2000",
 "tracingEnabled": true,
 "samplingStrategy": "CENTRAL",
 "traceIdInjectionPrefix": "prefix",
 "samplingRulesManifest": "/path/to/manifest",
 "awsServiceHandlerManifest": "/path/to/manifest",
 "awsSdkVersion": 2,
 "maxStackTraceLength": 50,
 "streamingThreshold": 100,
 "traceIdInjection": true,
 "pluginsEnabled": true,
 "collectSqlQueries": false
}

Configuration specification

The following table describes valid values for each property. Property names are case sensitive,
but their keys are not. For properties that can be overridden by environment variables and system
properties, the order of priority is always environment variable, then system property, and then
configuration file. For information about properties that you can override, see Environment
variables. All fields are optional.

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

serviceNa
me

String Any string The name
of your
instrumen

AWS_XRAY_
TRACING_N
AME

com.amazo
naws.xray
.strategy

XRayInstr
umentedSe
rvice

Auto-instrumentation agent 351

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

ted service
as it will
appear in
the X-Ray
console.

.tracingN
ame

contextMi
ssingStra
tegy

String LOG_ERROR
,
IGNORE_ER
ROR

The action
taken by
the agent
when it
attempts
to use
the X-Ray
segment
context
but none is
present.

AWS_XRAY_
CONTEXT_M
ISSING

com.amazo
naws.xray
.strategy
.contextM
issingStr
ategy

LOG_ERROR

daemonAdd
ress

String Formatted
IP address
and port,
or list
of TCP
and UDP
address

The
address
the agent
uses to
communica
te with
the X-Ray
daemon.

AWS_XRAY_
DAEMON_AD
DRESS

com.amazo
naws.xray
.emitter.
daemonAdd
ress

127.0.0.1
:2000

tracingEn
abled

Boolean True, False Enables
instrumen
tation by
the X-Ray
agent.

AWS_XRAY_
TRACING_E
NABLED

com.amazo
naws.xray
.tracingE
nabled

TRUE

Auto-instrumentation agent 352

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

samplingS
trategy

String CENTRAL,
LOCAL,
NONE, ALL

The
sampling
strategy
used
by the
agent. ALL
captures
all
requests,
 NONE
captures
no
requests.
See
sampling
rules.

N/A N/A CENTRAL

traceIdIn
jectionPr
efix

String Any string Includes
the
provided
prefix
before
injected
trace IDs in
logs.

N/A N/A None
(empty
string)

Auto-instrumentation agent 353

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

samplingR
ulesManif
est

String An
absolute
file path

The path
to a
custom
sampling
rules file
to be used
as the
source of
sampling
rules for
the local
sampling
strategy,
or the
fallback
rules for
the central
strategy.

N/A N/A DefaultSa
mplingRul
es.json

awsServic
eHandlerM
anifest

String An
absolute
file path

The path
to a
custom
parameter
allow list,
which
captures
additiona
l informati
on from
AWS SDK
clients.

N/A N/A DefaultOp
erationPa
rameterWh
itelist.json

Auto-instrumentation agent 354

https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-core/src/main/resources/com/amazonaws/xray/strategy/sampling/DefaultSamplingRules.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-core/src/main/resources/com/amazonaws/xray/strategy/sampling/DefaultSamplingRules.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-core/src/main/resources/com/amazonaws/xray/strategy/sampling/DefaultSamplingRules.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json
https://github.com/aws/aws-xray-sdk-java/blob/master/aws-xray-recorder-sdk-aws-sdk-v2/src/main/resources/com/amazonaws/xray/interceptors/DefaultOperationParameterWhitelist.json

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

awsSdkVer
sion

Integer 1, 2 Version of
the AWS
SDK for
Java you’re
using.
Ignored if
awsServic
eHandlerM
anifest is
not also
set.

N/A N/A 2

maxStackT
raceLength

Integer Non-
negative
integers

The
maximum
lines of a
stack trace
to record
in a trace.

N/A N/A 50

streaming
Threshold

Integer Non-
negative
integers

After at
least this
many
subsegmen
ts are
closed,
they are
streamed
to the
daemon
out-of-ba
nd to avoid
chunks
being too
large.

N/A N/A 100

Auto-instrumentation agent 355

https://docs.aws.amazon.com/sdk-for-java/index.html
https://docs.aws.amazon.com/sdk-for-java/index.html
https://docs.aws.amazon.com/sdk-for-java/index.html

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

traceIdIn
jection

Boolean True, False Enables X-
Ray trace
ID injection
into logs
if the
dependenc
ies and
configura
tion
described
in logging
config are
also
added.
Otherwise
, does
nothing.

N/A N/A TRUE

pluginsEn
abled

Boolean True, False Enables
plugins
that record
metadata
about
the AWS
environme
nts you’re
operating
in. See
plugins.

N/A N/A TRUE

Auto-instrumentation agent 356

AWS X-Ray Developer Guide

Property
name

Type Valid
values

Descripti
on

Environme
nt variable

System
property

Default

collectSq
lQueries

Boolean True, False Records
SQL query
strings
in SQL
subsegmen
ts on a
best-effort
basis.

N/A N/A FALSE

contextPr
opagation

Boolean True, False Automatic
ally
propagate
s X-Ray
context
between
threads
if true.
Otherwise
, uses
Thread
Local
to store
context
and
manual
propagati
on across
threads is
required.

N/A N/A TRUE

Logging configuration

The X-Ray agent's log level can be configured in the same way as the X-Ray SDK for Java. See
Logging for more information on configuring logging with the X-Ray SDK for Java.

Auto-instrumentation agent 357

AWS X-Ray Developer Guide

Manual instrumentation

If you’d like to perform manual instrumentation in addition to the agent’s auto-instrumentation,
add the X-Ray SDK as a dependency to your project. Note that the SDK's custom servlet filters
mentioned in Tracing Incoming Requests are not compatible with the X-Ray agent.

Note

You must use the latest version of the X-Ray SDK to perform manual instrumentation while
also using the agent.

If you are working in a Maven project, add the following dependencies to your pom.xml file.

<dependencies>
 <dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-core</artifactId>
 <version>2.11.0</version>
 </dependency>
 </dependencies>

If you are working in a Gradle project, add the following dependencies to your build.gradle file.

implementation 'com.amazonaws:aws-xray-recorder-sdk-core:2.11.0'

You can add custom subsegments in addition to annotations, metadata, and user IDs while using
the agent, just as you would with the normal SDK. The agent automatically propagates context
across threads, so no workarounds to propagate context should be necessary when working with
multithreaded applications.

Troubleshooting

Since the agent offers fully automatic instrumentation, it can be difficult to identify the root cause
of a problem when you are experiencing issues. If the X-Ray agent is not working as expected for
you, review the following problems and solutions. The X-Ray agent and SDK use Jakarta Commons
Logging (JCL). To see the logging output, ensure that a bridge connecting JCL to your logging
backend is on the classpath, as in the following example: log4j-jcl or jcl-over-slf4j.

Auto-instrumentation agent 358

AWS X-Ray Developer Guide

Problem: I’ve enabled the Java agent on my application but don’t see anything on the X-Ray
console

Is the X-Ray daemon running on the same machine?

If not, see the X-Ray daemon documentation to set it up.

In your application logs, do you see a message like "Initializing the X-Ray agent recorder"?

If you have correctly added the agent to your application, this message is logged at INFO level
when your application starts, before it starts taking requests. If this message is not there, then the
Java agent is not running with your Java process. Make sure you’ve followed all the setup steps
correctly with no typos.

In your application logs, do you see several error messages saying something like "Suppressing
AWS X-Ray context missing exception"?

These errors occur because the agent is trying to instrument downstream requests, like AWS SDK
requests or SQL queries, but the agent was unable to automatically create a segment. If you see
many of these errors, the agent might not be the best tool for your use case and you might want to
consider manual instrumentation with the X-Ray SDK instead. Alternatively, you can enable X-Ray
SDK debug logs to see the stack trace of where the context-missing exceptions are occurring. You
can wrap these portions of your code with custom segments, which should resolve these errors.
For an example of wrapping downstream requests with custom segments, see the sample code
in instrumenting startup code.

Problem: Some of the segments I expect do not appear on the X-Ray console

Does your application use multithreading?

If some segments that you expect to be created are not appearing in your console, background
threads in your application might be the cause. If your application performs tasks using
background threads that are “fire and forget,” like making a one-off call to a Lambda function
with the AWS SDK, or polling some HTTP endpoint periodically, that may confuse the agent
while it is propagating context across threads. To verify this is your problem, enable X-Ray SDK
debug logs and check for messages like: Not emitting segment named <NAME > as it parents in-
progress subsegments. To work around this, you can try joining the background threads before
your server returns to ensure all the work done in them is recorded. Or, you can set the agent’s
contextPropagation configuration to false to disable context propagation in background

Auto-instrumentation agent 359

https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html

AWS X-Ray Developer Guide

threads. If you do this, you’ll have to manually instrument those threads with custom segments or
ignore the context missing exceptions they produce.

Have you set up sampling rules?

If there are seemingly random or unexpected segments appearing on the X-Ray console, or the
segments you expect to be on the console aren’t, you might be experiencing a sampling issue. The
X-Ray agent applies centralized sampling to all segments it creates, using the rules from the X-Ray
console. The default rule is 1 segment per second, plus 5% of segments afterward, are sampled.
This means segments that are created rapidly with the agent might not be sampled. To resolve
this, you should create custom sampling rules on the X-Ray console that appropriately sample the
desired segments. For more information, see sampling.

Configuring the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Java includes a class named AWSXRay that provides the global recorder. This is a
TracingHandler that you can use to instrument your code. You can configure the global recorder
to customize the AWSXRayServletFilter that creates segments for incoming HTTP calls.

Sections

• Service plugins

• Sampling rules

• Logging

• Segment listeners

• Environment variables

• System properties

Configuration 360

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

• Amazon EKS – EKSPlugin adds the container ID, cluster name, pod ID, and the CloudWatch Logs
Group.

Configuration 361

AWS X-Ray Developer Guide

To use a plugin, call withPlugin on your AWSXRayRecorderBuilder.

Example src/main/java/scorekeep/WebConfig.java - recorder

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.plugins.ElasticBeanstalkPlugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

@Configuration
public class WebConfig {
...
 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
 EC2Plugin()).withPlugin(new ElasticBeanstalkPlugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }
}

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request each second, and five percent of any additional requests per host. This can

Configuration 362

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorderBuilder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/EC2Plugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/ElasticBeanstalkPlugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/sampling/LocalizedSamplingStrategy.html

AWS X-Ray Developer Guide

occur if the host doesn't have permission to call sampling APIs, or can't connect to the X-
Ray daemon, which acts as a TCP proxy for API calls made by the SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

Configuration 363

AWS X-Ray Developer Guide

To provide backup rules in Spring, configure the global recorder with a
CentralizedSamplingStrategy in a configuration class.

Example src/main/java/myapp/WebConfig.java - recorder configuration

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

@Configuration
public class WebConfig {

 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder.standard().withPlugin(new
 EC2Plugin());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new CentralizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
}

For Tomcat, add a listener that extends ServletContextListener and register the listener in
the deployment descriptor.

Example src/com/myapp/web/Startup.java

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

import java.net.URL;
import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

public class Startup implements ServletContextListener {

 @Override
 public void contextInitialized(ServletContextEvent event) {

Configuration 364

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorderBuilder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/EC2Plugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/sampling/LocalizedSamplingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorderBuilder.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/plugins/EC2Plugin.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/sampling/LocalizedSamplingStrategy.html

AWS X-Ray Developer Guide

 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin());

 URL ruleFile = Startup.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new CentralizedSamplingStrategy(ruleFile));

 AWSXRay.setGlobalRecorder(builder.build());
 }

 @Override
 public void contextDestroyed(ServletContextEvent event) { }
}

Example WEB-INF/web.xml

...
 <listener>
 <listener-class>com.myapp.web.Startup</listener-class>
 </listener>

To use local rules only, replace the CentralizedSamplingStrategy with a
LocalizedSamplingStrategy.

builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

Logging

By default, the SDK outputs ERROR-level messages to your application logs. You can enable debug-
level logging on the SDK to output more detailed logs to your application log file. Valid log levels
are DEBUG, INFO, WARN, ERROR, and FATAL. FATAL log level silences all log messages because the
SDK does not log at fatal level.

Example application.properties

Set the logging level with the logging.level.com.amazonaws.xray property.

logging.level.com.amazonaws.xray = DEBUG

Use debug logs to identify issues, such as unclosed subsegments, when you generate subsegments
manually.

Configuration 365

AWS X-Ray Developer Guide

Trace ID injection into logs

To expose the current fully qualified trace ID to your log statements, you can inject the ID into the
mapped diagnostic context (MDC). Using the SegmentListener interface, methods are called
from the X-Ray recorder during segment lifecycle events. When a segment or subsegment begins,
the qualified trace ID is injected into the MDC with the key AWS-XRAY-TRACE-ID. When that
segment ends, the key is removed from the MDC. This exposes the trace ID to the logging library in
use. When a subsegment ends, its parent ID is injected into the MDC.

Example fully qualified trace ID

The fully qualified ID is represented as TraceID@EntityID

1-5df42873-011e96598b447dfca814c156@541b3365be3dafc3

This feature works with Java applications instrumented with the AWS X-Ray SDK for Java, and
supports the following logging configurations:

• SLF4J front-end API with Logback backend

• SLF4J front-end API with Log4J2 backend

• Log4J2 front-end API with Log4J2 backend

See the following tabs for the needs of each front end and each backend.

SLF4J Frontend

1. Add the following Maven dependency to your project.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-slf4j</artifactId>
 <version>2.11.0</version>
</dependency>

2. Include the withSegmentListener method when building the AWSXRayRecorder. This
adds a SegmentListener class, which automatically injects new trace IDs into the SLF4J
MDC.

The SegmentListener takes an optional string as a parameter to configure the log
statement prefix. The prefix can be configured in the following ways:

Configuration 366

AWS X-Ray Developer Guide

• None – Uses the default AWS-XRAY-TRACE-ID prefix.

• Empty – Uses an empty string (e.g. "").

• Custom – Uses a custom prefix as defined in the string.

Example AWSXRayRecorderBuilder statement

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard().withSegmentListener(new SLF4JSegmentListener("CUSTOM-
PREFIX"));

Log4J2 front end

1. Add the following Maven dependency to your project.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-log4j</artifactId>
 <version>2.11.0</version>
</dependency>

2. Include the withSegmentListener method when building the AWSXRayRecorder. This
will add a SegmentListener class, which automatically injects new fully qualified trace
IDs into the SLF4J MDC.

The SegmentListener takes an optional string as a parameter to configure the log
statement prefix. The prefix can be configured in the following ways:

• None – Uses the default AWS-XRAY-TRACE-ID prefix.

• Empty – Uses an empty string (e.g. "") and removes the prefix.

• Custom – Uses the custom prefix defined in the string.

Example AWSXRayRecorderBuilder statement

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard().withSegmentListener(new Log4JSegmentListener("CUSTOM-
PREFIX"));

Configuration 367

AWS X-Ray Developer Guide

Logback backend

To insert the trace ID into your log events, you must modify the logger's PatternLayout,
which formats each logging statement.

1. Find where the patternLayout is configured. You can do this programmatically, or
through an XML configuration file. To learn more, see Logback configuration.

2. Insert %X{AWS-XRAY-TRACE-ID} anywhere in the patternLayout to insert the trace
ID in future logging statements. %X{} indicates that you are retrieving a value with
the provided key from the MDC. To learn more about PatternLayouts in Logback, see
PatternLayout.

Log4J2 backend

1. Find where the patternLayout is configured. You can do this programmatically, or
through a configuration file written in XML, JSON, YAML, or properties format.

To learn more about configuring Log4J2 through a configuration file, see Configuration.

To learn more about configuring Log4J2 programmatically, see Programmatic
Configuration.

2. Insert %X{AWS-XRAY-TRACE-ID} anywhere in the PatternLayout to insert the trace
ID in future logging statements. %X{} indicates that you are retrieving a value with the
provided key from the MDC. To learn more about PatternLayouts in Log4J2, see Pattern
Layout.

Trace ID Injection Example

The following shows a PatternLayout string modified to include the trace ID. The trace ID is
printed after the thread name (%t) and before the log level (%-5p).

Example PatternLayout With ID injection

%d{HH:mm:ss.SSS} [%t] %X{AWS-XRAY-TRACE-ID} %-5p %m%n

AWS X-Ray automatically prints the key and the trace ID in the log statement for easy parsing. The
following shows a log statement using the modified PatternLayout.

Configuration 368

http://logback.qos.ch/manual/configuration.html
https://logback.qos.ch/manual/layouts.html#ClassicPatternLayout
https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/customconfig.html
https://logging.apache.org/log4j/2.x/manual/customconfig.html
https://logging.apache.org/log4j/2.x/manual/layouts.html#Pattern_Layout
https://logging.apache.org/log4j/2.x/manual/layouts.html#Pattern_Layout

AWS X-Ray Developer Guide

Example Log statement with ID injection

2019-09-10 18:58:30.844 [nio-5000-exec-4] AWS-XRAY-TRACE-ID:
 1-5d77f256-19f12e4eaa02e3f76c78f46a@1ce7df03252d99e1 WARN 1 - Your logging message
 here

The logging message itself is housed in the pattern %m and is set when calling the logger.

Segment listeners

Segment listeners are an interface to intercept lifecycle events such as the beginning and
ending of segments produced by the AWSXRayRecorder. Implementation of a segment
listener event function might be to add the same annotation to all subsegments when they
are created with onBeginSubsegment, log a message after each segment is sent to the
daemon using afterEndSegment, or to record queries sent by the SQL interceptors using
beforeEndSubsegment to verify if the subsegment represents an SQL query, adding additional
metadata if so.

To see the full list of SegmentListener functions, visit the documentation for the AWS X-Ray
Recorder SDK for Java API.

The following example shows how to add a consistent annotation to all subsegments on
creation with onBeginSubsegment and to print a log message at the end of each segment with
afterEndSegment.

Example MySegmentListener.java

import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
import com.amazonaws.xray.listeners.SegmentListener;

public class MySegmentListener implements SegmentListener {

 @Override
 public void onBeginSubsegment(Subsegment subsegment) {
 subsegment.putAnnotation("annotationKey", "annotationValue");
 }

 @Override
 public void afterEndSegment(Segment segment) {

Configuration 369

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#onBeginSubsegment-com.amazonaws.xray.entities.Subsegment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#afterEndSegment-com.amazonaws.xray.entities.Segment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#beforeEndSubsegment-com.amazonaws.xray.entities.Subsegment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#onBeginSubsegment-com.amazonaws.xray.entities.Subsegment-
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/listeners/SegmentListener.html#afterEndSegment-com.amazonaws.xray.entities.Segment-

AWS X-Ray Developer Guide

 // Be mindful not to mutate the segment
 logger.info("Segment with ID " + segment.getId());
 }
}

This custom segment listener is then referenced when building the AWSXRayRecorder.

Example AWSXRayRecorderBuilder statement

AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard().withSegmentListener(new MySegmentListener());

Environment variables

You can use environment variables to configure the X-Ray SDK for Java. The SDK supports the
following variables.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_LOG_GROUP – Set the name of a log group to log group associated with your application.
If your log group uses the same AWS account and region as your application, X-Ray will

Configuration 370

AWS X-Ray Developer Guide

automatically search for your application's segment data using this specified log group. For more
information about log groups, see Working with log groups and streams.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set on the servlet filter's segment naming strategy.

Environment variables override equivalent system properties and values set in code.

System properties

You can use system properties as a JVM-specific alternative to environment variables. The SDK
supports the following properties:

• com.amazonaws.xray.strategy.tracingName – Equivalent to AWS_XRAY_TRACING_NAME.

• com.amazonaws.xray.emitters.daemonAddress – Equivalent to
AWS_XRAY_DAEMON_ADDRESS.

• com.amazonaws.xray.strategy.contextMissingStrategy – Equivalent to
AWS_XRAY_CONTEXT_MISSING.

If both a system property and the equivalent environment variable are set, the environment
variable value is used. Either method overrides values set in code.

Tracing incoming requests with the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Incoming requests 371

https://docs.aws.amazon.com/AmazonCloudWatch/latest/logs/Working-with-log-groups-and-streams.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Use a Filter to instrument incoming HTTP requests. When you add the X-Ray servlet filter to
your application, the X-Ray SDK for Java creates a segment for each sampled request. This segment
includes timing, method, and disposition of the HTTP request. Additional instrumentation creates
subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The message handler creates a segment for each incoming request with an http block that
contains the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

Incoming requests 372

AWS X-Ray Developer Guide

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Adding a tracing filter to your application (Tomcat)

• Adding a tracing filter to your application (spring)

• Configuring a segment naming strategy

Adding a tracing filter to your application (Tomcat)

For Tomcat, add a <filter> to your project's web.xml file. Use the fixedName parameter to
specify a service name to apply to segments created for incoming requests.

Example WEB-INF/web.xml - Tomcat

<filter>
 <filter-name>AWSXRayServletFilter</filter-name>
 <filter-class>com.amazonaws.xray.javax.servlet.AWSXRayServletFilter</filter-class>
 <init-param>
 <param-name>fixedName</param-name>
 <param-value>MyApp</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>AWSXRayServletFilter</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

Adding a tracing filter to your application (spring)

For Spring, add a Filter to your WebConfig class. Pass the segment name to the
AWSXRayServletFilter constructor as a string.

Example src/main/java/myapp/WebConfig.java - spring

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;

Incoming requests 373

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
}

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
initialize the servlet filter, as shown in the previous section. This has the same effect as creating a
fixed SegmentNamingStrategy by calling SegmentNamingStrategy.fixed() and passing it to
the AWSXRayServletFilter constructor.

Incoming requests 374

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/SegmentNamingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html

AWS X-Ray Developer Guide

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request does not match the pattern. To name
segments dynamically in Tomcat, use the dynamicNamingRecognizedHosts and
dynamicNamingFallbackName to define the pattern and default name, respectively.

Example WEB-INF/web.xml - servlet filter with dynamic naming

<filter>
 <filter-name>AWSXRayServletFilter</filter-name>
 <filter-class>com.amazonaws.xray.javax.servlet.AWSXRayServletFilter</filter-class>
 <init-param>
 <param-name>dynamicNamingRecognizedHosts</param-name>
 <param-value>*.example.com</param-value>
 </init-param>
 <init-param>
 <param-name>dynamicNamingFallbackName</param-name>
 <param-value>MyApp</param-value>
 </init-param>
</filter>
<filter-mapping>
 <filter-name>AWSXRayServletFilter</filter-name>
 <url-pattern>*</url-pattern>
</filter-mapping>

For Spring, create a dynamic SegmentNamingStrategy by calling
SegmentNamingStrategy.dynamic(), and pass it to the AWSXRayServletFilter constructor.

Example src/main/java/myapp/WebConfig.java - servlet filter with dynamic naming

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.strategy.SegmentNamingStrategy;

Incoming requests 375

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/SegmentNamingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/SegmentNamingStrategy.html

AWS X-Ray Developer Guide

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter(SegmentNamingStrategy.dynamic("MyApp",
 "*.example.com"));
 }
}

Tracing AWS SDK calls with the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Java tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

The X-Ray SDK for Java automatically instruments all AWS SDK clients when you include the
aws-sdk and an aws-sdk-instrumentor submodules in your build. If you don't include the
Instrumentor submodule, you can choose to instrument some clients while excluding others.

To instrument individual clients, remove the aws-sdk-instrumentor submodule from your build
and add an XRayClient as a TracingHandler on your AWS SDK client using the service's client
builder.

For example, to instrument an AmazonDynamoDB client, pass a tracing handler to
AmazonDynamoDBClientBuilder.

AWS SDK clients 376

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Example MyModel.java - DynamoDB client

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.handlers.TracingHandler;

...
public class MyModel {
 private AmazonDynamoDB client = AmazonDynamoDBClientBuilder.standard()
 .withRegion(Regions.fromName(System.getenv("AWS_REGION")))
 .withRequestHandlers(new TracingHandler(AWSXRay.getGlobalRecorder()))
 .build();
...

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

AWS SDK clients 377

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/handlers/TracingHandler.html

AWS X-Ray Developer Guide

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

To instrument downstream calls to AWS services with AWS SDK for Java 2.2 and later, you can
omit the aws-xray-recorder-sdk-aws-sdk-v2-instrumentor module from your build
configuration. Include the aws-xray-recorder-sdk-aws-sdk-v2 module instead, then
instrument individual clients by configuring them with a TracingInterceptor.

Example AWS SDK for Java 2.2 and later - tracing interceptor

import com.amazonaws.xray.interceptors.TracingInterceptor;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;
//...
public class MyModel {
private DynamoDbClient client = DynamoDbClient.builder()
.region(Region.US_WEST_2)
.overrideConfiguration(ClientOverrideConfiguration.builder()
.addExecutionInterceptor(new TracingInterceptor())
.build()
)
.build();
//...

Tracing calls to downstream HTTP web services with the X-Ray SDK for
Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

Outgoing HTTP calls 378

AWS X-Ray Developer Guide

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Java's version of HttpClient to instrument those calls and add the API to the service graph as
a downstream service.

The X-Ray SDK for Java includes DefaultHttpClient and HttpClientBuilder classes that can
be used in place of the Apache HttpComponents equivalents to instrument outgoing HTTP calls.

• com.amazonaws.xray.proxies.apache.http.DefaultHttpClient -
org.apache.http.impl.client.DefaultHttpClient

• com.amazonaws.xray.proxies.apache.http.HttpClientBuilder -
org.apache.http.impl.client.HttpClientBuilder

These libraries are in the aws-xray-recorder-sdk-apache-http submodule.

You can replace your existing import statements with the X-Ray equivalent to instrument all
clients, or use the fully qualified name when you initialize a client to instrument specific clients.

Example HttpClientBuilder

import com.fasterxml.jackson.databind.ObjectMapper;
import org.apache.http.HttpEntity;
import org.apache.http.client.methods.CloseableHttpResponse;
import org.apache.http.client.methods.HttpGet;
import org.apache.http.impl.client.CloseableHttpClient;
import org.apache.http.util.EntityUtils;
import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;
...
 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();
 HttpGet httpGet = new HttpGet("http://names.example.com/api/");
 CloseableHttpResponse response = httpclient.execute(httpGet);
 try {
 HttpEntity entity = response.getEntity();
 InputStream inputStream = entity.getContent();
 ObjectMapper mapper = new ObjectMapper();
 Map<String, String> jsonMap = mapper.readValue(inputStream, Map.class);

Outgoing HTTP calls 379

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/proxies/apache/http/HttpClientBuilder.html

AWS X-Ray Developer Guide

 String name = jsonMap.get("name");
 EntityUtils.consume(entity);
 return name;
 } finally {
 response.close();
 }
 }

When you instrument a call to a downstream web api, the X-Ray SDK for Java records a
subsegment with information about the HTTP request and response. X-Ray uses the subsegment to
generate an inferred segment for the remote API.

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {

Outgoing HTTP calls 380

AWS X-Ray Developer Guide

 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL queries with the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

SQL Interceptors

Instrument SQL database queries by adding the X-Ray SDK for Java JDBC interceptor to your data
source configuration.

• PostgreSQL – com.amazonaws.xray.sql.postgres.TracingInterceptor

• MySQL – com.amazonaws.xray.sql.mysql.TracingInterceptor

These interceptors are in the aws-xray-recorder-sql-postgres and aws-
xray-recorder-sql-mysql submodules, respectively. They implement
org.apache.tomcat.jdbc.pool.JdbcInterceptor and are compatible with Tomcat
connection pools.

SQL queries 381

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Note

SQL interceptors do not record the SQL query itself within subsegments for security
purposes.

For Spring, add the interceptor in a properties file and build the data source with Spring Boot's
DataSourceBuilder.

Example src/main/java/resources/application.properties - PostgreSQL JDBC
interceptor

spring.datasource.continue-on-error=true
spring.jpa.show-sql=false
spring.jpa.hibernate.ddl-auto=create-drop
spring.datasource.jdbc-interceptors=com.amazonaws.xray.sql.postgres.TracingInterceptor
spring.jpa.database-platform=org.hibernate.dialect.PostgreSQL94Dialect

Example src/main/java/myapp/WebConfig.java - Data source

import org.springframework.boot.autoconfigure.EnableAutoConfiguration;
import org.springframework.boot.autoconfigure.jdbc.DataSourceBuilder;
import org.springframework.boot.context.properties.ConfigurationProperties;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.jpa.repository.config.EnableJpaRepositories;

import javax.servlet.Filter;
import javax.sql.DataSource;
import java.net.URL;

@Configuration
@EnableAutoConfiguration
@EnableJpaRepositories("myapp")
public class RdsWebConfig {

 @Bean
 @ConfigurationProperties(prefix = "spring.datasource")
 public DataSource dataSource() {
 logger.info("Initializing PostgreSQL datasource");
 return DataSourceBuilder.create()
 .driverClassName("org.postgresql.Driver")

SQL queries 382

AWS X-Ray Developer Guide

 .url("jdbc:postgresql://" + System.getenv("RDS_HOSTNAME") + ":" +
 System.getenv("RDS_PORT") + "/ebdb")
 .username(System.getenv("RDS_USERNAME"))
 .password(System.getenv("RDS_PASSWORD"))
 .build();
 }
...
}

For Tomcat, call setJdbcInterceptors on the JDBC data source with a reference to the X-Ray
SDK for Java class.

Example src/main/myapp/model.java - Data source

import org.apache.tomcat.jdbc.pool.DataSource;
...
DataSource source = new DataSource();
source.setUrl(url);
source.setUsername(user);
source.setPassword(password);
source.setDriverClassName("com.mysql.jdbc.Driver");
source.setJdbcInterceptors("com.amazonaws.xray.sql.mysql.TracingInterceptor;");

The Tomcat JDBC Data Source library is included in the X-Ray SDK for Java, but you can declare it
as a provided dependency to document that you use it.

Example pom.xml - JDBC data source

<dependency>
 <groupId>org.apache.tomcat</groupId>
 <artifactId>tomcat-jdbc</artifactId>
 <version>8.0.36</version>
 <scope>provided</scope>
</dependency>

Native SQL Tracing Decorator

• Add aws-xray-recorder-sdk-sql to your dependencies.

• Decorate your database datasource, connection, or statement.

dataSource = TracingDataSource.decorate(dataSource)
connection = TracingConnection.decorate(connection)

SQL queries 383

https://github.com/aws/aws-xray-sdk-java/tree/master/aws-xray-recorder-sdk-sql

AWS X-Ray Developer Guide

statement = TracingStatement.decorateStatement(statement)
preparedStatement = TracingStatement.decoratePreparedStatement(preparedStatement,
 sql)
callableStatement = TracingStatement.decorateCallableStatement(callableStatement,
 sql)

Generating custom subsegments with the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the beginSubsegment and endSubsegment methods.

Example GameModel.java - custom subsegment

import com.amazonaws.xray.AWSXRay;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("Save Game");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 mapper.save(game);
 } catch (Exception e) {

Custom subsegments 384

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

In this example, the code within the subsegment loads the game's session from DynamoDB with
a method on the session model, and uses the AWS SDK for Java's DynamoDB mapper to save the
game. Wrapping this code in a subsegment makes the calls DynamoDB children of the Save Game
subsegment in the trace view in the console.

If the code in your subsegment throws checked exceptions, wrap it in a try block and call
AWSXRay.endSubsegment() in a finally block to ensure that the subsegment is always closed.
If a subsegment is not closed, the parent segment cannot be completed and won't be sent to X-
Ray.

For code that doesn't throw checked exceptions, you can pass the code to
AWSXRay.CreateSubsegment as a Lambda function.

Example Subsegment Lambda function

import com.amazonaws.xray.AWSXRay;

AWSXRay.createSubsegment("getMovies", (subsegment) -> {
 // function code
});

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for Java
generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{

Custom subsegments 385

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

For asynchronous and multi-threaded programming, you must manually pass the subsegment to
the endSubsegment() method to ensure it is closed correctly because the X-Ray context may be
modified during async execution. If an asynchronous subsegment is closed after its parent segment
is closed, this method will automatically stream the entire segment to the X-Ray daemon.

Example Asynchronous Subsegment

@GetMapping("/api")
public ResponseEntity<?> api() {
 CompletableFuture.runAsync(() -> {
 Subsegment subsegment = AWSXRay.beginSubsegment("Async Work");
 try {
 Thread.sleep(3000);
 } catch (InterruptedException e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment(subsegment);
 }
 });
 return ResponseEntity.ok().build();
}

Add annotations and metadata to segments with the X-Ray SDK for
Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

Annotations and metadata 386

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can record additional information about requests, the environment, or your application with
annotations and metadata. You can add annotations and metadata to the segments that the X-Ray
SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Java

• Recording metadata with the X-Ray SDK for Java

• Recording user IDs with the X-Ray SDK for Java

Recording annotations with the X-Ray SDK for Java

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than a dot or period (.)

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

Annotations and metadata 387

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

To record annotations

1. Get a reference to the current segment or subsegment from AWSXRay.

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
...
Segment document = AWSXRay.getCurrentSegment();

or

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;
...
Subsegment document = AWSXRay.getCurrentSubsegment();

2. Call putAnnotation with a String key, and a Boolean, Number, or String value.

document.putAnnotation("mykey", "my value");

The following example shows how to call putAnnotation with a String key that includes a
dot, and a Boolean, Number, or String value.

document.putAnnotation("testkey.test", "my value");

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling putAnnotation twice with the same key overwrites previously recorded values
on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotation[key] keyword in a
filter expression.

Example src/main/java/scorekeep/GameModel.java – Annotations and metadata

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment

Annotations and metadata 388

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

 Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 Segment segment = AWSXRay.getCurrentSegment();
 subsegment.putMetadata("resources", "game", game);
 segment.putAnnotation("gameid", game.getId());
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

Recording metadata with the X-Ray SDK for Java

Use metadata to record information on segments or subsegments that you don't need indexed for
search. Metadata values can be strings, numbers, Booleans, or any object that can be serialized into
a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment from AWSXRay.

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
...
Segment document = AWSXRay.getCurrentSegment();

or

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Subsegment;
...
Subsegment document = AWSXRay.getCurrentSubsegment();

Annotations and metadata 389

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

2. Call putMetadata with a String namespace, String key, and a Boolean, Number, String, or
Object value.

document.putMetadata("my namespace", "my key", "my value");

or

Call putMetadata with just a key and value.

document.putMetadata("my key", "my value");

If you don't specify a namespace, the SDK uses default. Calling putMetadata twice with the
same key overwrites previously recorded values on the same segment or subsegment.

Example src/main/java/scorekeep/GameModel.java – Annotations and metadata

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
import com.amazonaws.xray.entities.Subsegment;
...
 public void saveGame(Game game) throws SessionNotFoundException {
 // wrap in subsegment
 Subsegment subsegment = AWSXRay.beginSubsegment("## GameModel.saveGame");
 try {
 // check session
 String sessionId = game.getSession();
 if (sessionModel.loadSession(sessionId) == null) {
 throw new SessionNotFoundException(sessionId);
 }
 Segment segment = AWSXRay.getCurrentSegment();
 subsegment.putMetadata("resources", "game", game);
 segment.putAnnotation("gameid", game.getId());
 mapper.save(game);
 } catch (Exception e) {
 subsegment.addException(e);
 throw e;
 } finally {
 AWSXRay.endSubsegment();
 }
 }

Annotations and metadata 390

https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/GameModel.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Subsegment.html

AWS X-Ray Developer Guide

Recording user IDs with the X-Ray SDK for Java

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from AWSXRay.

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.entities.Segment;
...
Segment document = AWSXRay.getCurrentSegment();

2. Call setUser with a string ID of the user who sent the request.

document.setUser("U12345");

You can call setUser in your controllers to record the user ID as soon as your application starts
processing a request. If you will only use the segment to set the user ID, you can chain the calls in a
single line.

Example src/main/java/scorekeep/MoveController.java – User ID

import com.amazonaws.xray.AWSXRay;
...
 @RequestMapping(value="/{userId}", method=RequestMethod.POST)
 public Move newMove(@PathVariable String sessionId, @PathVariable String
 gameId, @PathVariable String userId, @RequestBody String move) throws
 SessionNotFoundException, GameNotFoundException, StateNotFoundException,
 RulesException {
 AWSXRay.getCurrentSegment().setUser(userId);
 return moveFactory.newMove(sessionId, gameId, userId, move);
 }

To find traces for a user ID, use the user keyword in a filter expression.

Annotations and metadata 391

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Segment.html
https://github.com/awslabs/eb-java-scorekeep/tree/xray/src/main/java/scorekeep/MoveController.java
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRay.html

AWS X-Ray Developer Guide

AWS X-Ray metrics for the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

This topic describes the AWS X-Ray namespace, metrics, and dimensions. You can use the X-
Ray SDK for Java to publish unsampled Amazon CloudWatch metrics from your collected X-Ray
segments. These metrics are derived from the segment’s start and end time, and the error, fault,
and throttled status flags. Use these trace metrics to expose retries and dependency issues within
subsegments.

CloudWatch is a metrics repository. A metric is the fundamental concept in CloudWatch and
represents a time-ordered set of data points. You (or AWS services) publish metrics data points into
CloudWatch and you retrieve statistics about those data points as an ordered set of time-series
data.

Metrics are uniquely defined by a name, a namespace, and one or more dimensions. Each data
point has a timestamp and, optionally, a unit of measure. When you request statistics, the returned
data stream is identified by namespace, metric name, and dimension.

For more information about CloudWatch, see the Amazon CloudWatch User Guide.

X-Ray CloudWatch metrics

The ServiceMetrics/SDK namespace includes the following metrics.

Metric Statistics available Description Units

Latency Average, Minimum,
Maximum, Count

The difference
between the start
and end time.

Milliseconds

Monitoring 392

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/DeveloperGuide/

AWS X-Ray Developer Guide

Metric Statistics available Description Units

Average, minimum,
and maximum all
describe operation
al latency. Count
describes call count.

ErrorRate Average, Sum The rate of requests
that failed with a
4xx Client Error
status code, resulting
in an error.

Percent

FaultRate Average, Sum The rate of traces
that failed with a
5xx Server Error
status code, resulting
in a fault.

Percent

ThrottleRate Average, Sum The rate of throttled
traces that return
a 429 status code.
This is a subset of the
ErrorRate metric.

Percent

OkRate Average, Sum The rate of traced
requests resulting in
an OK status code.

Percent

X-Ray CloudWatch dimensions

Use the dimensions in the following table to refine the metrics returned for your X-Ray
instrumented Java applications.

Monitoring 393

AWS X-Ray Developer Guide

Dimension Description

ServiceType The type of the service, for example,
AWS::EC2::Instance or NONE, if not
known.

ServiceName The canonical name for the service.

Enable X-Ray CloudWatch metrics

Use the following procedure to enable trace metrics in your instrumented Java application.

To configure trace metrics

1. Add the aws-xray-recorder-sdk-metrics package as an Apache Maven dependency. For
more information, see X-Ray SDK for Java Submodules.

2. Enable a new MetricsSegmentListener() as part of the global recorder build.

Example src/com/myapp/web/Startup.java

import com.amazonaws.xray.AWSXRay;
import com.amazonaws.xray.AWSXRayRecorderBuilder;
import com.amazonaws.xray.plugins.EC2Plugin;
import com.amazonaws.xray.plugins.ElasticBeanstalkPlugin;
import com.amazonaws.xray.strategy.sampling.LocalizedSamplingStrategy;

@Configuration
public class WebConfig {
...
 static {
 AWSXRayRecorderBuilder builder = AWSXRayRecorderBuilder
 .standard()
 .withPlugin(new EC2Plugin())
 .withPlugin(new ElasticBeanstalkPlugin())
 .withSegmentListener(new
 MetricsSegmentListener());

 URL ruleFile = WebConfig.class.getResource("/sampling-rules.json");
 builder.withSamplingStrategy(new LocalizedSamplingStrategy(ruleFile));

Monitoring 394

AWS X-Ray Developer Guide

 AWSXRay.setGlobalRecorder(builder.build());
 }
}

3. Deploy the CloudWatch agent to collect metrics using Amazon Elastic Compute Cloud
(Amazon EC2), Amazon Elastic Container Service (Amazon ECS), or Amazon Elastic Kubernetes
Service (Amazon EKS):

• To configure Amazon EC2, see Installing the CloudWatch agent.

• To configure Amazon ECS, see Monitor Amazon ECS containers using Container Insights.

• To configure Amazon EKS, see Install the CloudWatch agent by using the Amazon
CloudWatch Observability EKS add-on.

4. Configure the SDK to communicate with the CloudWatch agent. By default, the SDK
communicates with the CloudWatch agent on the address 127.0.0.1. You can configure
alternate addresses by setting the environment variable or Java property to address:port.

Example Environment variable

AWS_XRAY_METRICS_DAEMON_ADDRESS=address:port

Example Java property

com.amazonaws.xray.metrics.daemonAddress=address:port

To validate configuration

1. Sign in to the AWS Management Console and open the CloudWatch console at https://
console.aws.amazon.com/cloudwatch/.

2. Open the Metrics tab to observe the influx of your metrics.

3. (Optional) In the CloudWatch console, on the Logs tab, open the ServiceMetricsSDK log
group. Look for a log stream that matches the host metrics, and confirm the log messages.

Monitoring 395

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-on-EC2-Instance.html
https://docs.aws.amazon.com/AmazonECS/latest/developerguide/cloudwatch-container-insights.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/install-CloudWatch-Observability-EKS-addon.html
https://console.aws.amazon.com/cloudwatch/
https://console.aws.amazon.com/cloudwatch/

AWS X-Ray Developer Guide

Passing segment context between threads in a multithreaded
application

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When you create a new thread in your application, the AWSXRayRecorder doesn't maintain
a reference to the current segment or subsegment Entity. If you use an instrumented
client in the new thread, the SDK tries to write to a segment that doesn't exist, causing a
SegmentNotFoundException.

To avoid throwing exceptions during development, you can configure the recorder with a
ContextMissingStrategy that tells it to log an error instead. You can configure the strategy in code
with SetContextMissingStrategy, or configure equivalent options with an environment variable or
system property.

One way to address the error is to use a new segment by calling beginSegment when you start the
thread and endSegment when you close it. This works if you are instrumenting code that doesn't
run in response to an HTTP request, like code that runs when your application starts.

If you use multiple threads to handle incoming requests, you can pass the current segment
or subsegment to the new thread and provide it to the global recorder. This ensures that the
information recorded within the new thread is associated with the same segment as the rest of
the information recorded about that request. Once the segment is available in the new thread, you
can execute any runnable with access to that segment's context using the segment.run(() ->
{ ... }) method.

See Using instrumented clients in worker threads for an example.

Multithreading 396

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/exceptions/SegmentNotFoundException.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/strategy/ContextMissingStrategy.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#setContextMissingStrategy(com.amazonaws.xray.strategy.ContextMissingStrategy)
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#beginSegment(java.lang.String)
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#endSegment--

AWS X-Ray Developer Guide

Using X-Ray with Asynchronous Programming

The X-Ray SDK for Java can be used in asynchronous Java programs with
SegmentContextExecutors. The SegmentContextExecutor implements the Executor interface,
which means it can be passed into all asynchronous operations of a CompletableFuture. This
ensures that any asynchronous operations will be executed with the correct segment in its context.

Example Example App.java: Passing SegmentContextExecutor to CompletableFuture

DynamoDbAsyncClient client = DynamoDbAsyncClient.create();

AWSXRay.beginSegment();

// ...

client.getItem(request).thenComposeAsync(response -> {
 // If we did not provide the segment context executor, this request would not be
 traced correctly.
 return client.getItem(request2);
}, SegmentContextExecutors.newSegmentContextExecutor());

AOP with Spring and the X-Ray SDK for Java

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

This topic describes how to use the X-Ray SDK and the Spring Framework to instrument your
application without changing its core logic. This means that there is now a non-invasive way to
instrument your applications running remotely in AWS.

To enable AOP in spring

1. Configure Spring

AOP with Spring 397

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/contexts/SegmentContextExecutors.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

2. Add a tracing filter to your application

3. Annotate your code or implement an interface

4. Activate X-Ray in your application

Configuring Spring

You can use Maven or Gradle to configure Spring to use AOP to instrument your application.

If you use Maven to build your application, add the following dependency in your pom.xml file.

<dependency>
 <groupId>com.amazonaws</groupId>
 <artifactId>aws-xray-recorder-sdk-spring</artifactId>
 <version>2.11.0</version>
</dependency>

For Gradle, add the following dependency in your build.gradle file.

compile 'com.amazonaws:aws-xray-recorder-sdk-spring:2.11.0'

Configuring Spring Boot

In addition to the Spring dependency described in the previous section, if you’re using Spring Boot,
add the following dependency if it’s not already on your classpath.

Maven:

<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-aop</artifactId>
 <version>2.5.2</version>
</dependency>

Gradle:

compile 'org.springframework.boot:spring-boot-starter-aop:2.5.2'

AOP with Spring 398

AWS X-Ray Developer Guide

Adding a tracing filter to your application

Add a Filter to your WebConfig class. Pass the segment name to the AWSXRayServletFilter
constructor as a string. For more information about tracing filters and instrumenting incoming
requests, see Tracing incoming requests with the X-Ray SDK for Java.

Example src/main/java/myapp/WebConfig.java - spring

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import javax.servlet.Filter;
import com.amazonaws.xray.javax.servlet.AWSXRayServletFilter;

@Configuration
public class WebConfig {

 @Bean
 public Filter TracingFilter() {
 return new AWSXRayServletFilter("Scorekeep");
 }
}

Jakarta Support

Spring 6 uses Jakarta instead of Javax for its Enterprise Edition. To support this new namespace, X-
Ray has created a parallel set of classes that live in their own Jakarta namespace.

For the filter classes, replace javax with jakarta. When configuring a segment naming strategy,
add jakarta before the naming strategy class name, as in the following example:

package myapp;
import org.springframework.context.annotation.Configuration;
import org.springframework.context.annotation.Bean;
import jakarta.servlet.Filter;
import com.amazonaws.xray.jakarta.servlet.AWSXRayServletFilter;
import com.amazonaws.xray.strategy.jakarta.SegmentNamingStrategy;

@Configuration
public class WebConfig {
 @Bean

AOP with Spring 399

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/javax/servlet/AWSXRayServletFilter.html
https://spring.io/blog/2022/11/16/spring-framework-6-0-goes-ga

AWS X-Ray Developer Guide

 public Filter TracingFilter() {
 return new AWSXRayServletFilter(SegmentNamingStrategy.dynamic("Scorekeep"));
 }
}

Annotating your code or implementing an interface

Your classes must either be annotated with the @XRayEnabled annotation, or implement the
XRayTraced interface. This tells the AOP system to wrap the functions of the affected class for X-
Ray instrumentation.

Activating X-Ray in your application

To activate X-Ray tracing in your application, your code must extend the abstract class
BaseAbstractXRayInterceptor by overriding the following methods.

• generateMetadata—This function allows customization of the metadata attached to the
current function’s trace. By default, the class name of the executing function is recorded in the
metadata. You can add more data if you need additional information.

• xrayEnabledClasses—This function is empty, and should remain so. It serves as the host
for a pointcut instructing the interceptor about which methods to wrap. Define the pointcut
by specifying which of the classes that are annotated with @XRayEnabled to trace. The
following pointcut statement tells the interceptor to wrap all controller beans annotated with
the @XRayEnabled annotation.

@Pointcut(“@within(com.amazonaws.xray.spring.aop.XRayEnabled) && bean(*Controller)”)

If your project is using Spring Data JPA, consider extending from AbstractXRayInterceptor
instead of BaseAbstractXRayInterceptor.

Example

The following code extends the abstract class BaseAbstractXRayInterceptor.

@Aspect
@Component
public class XRayInspector extends BaseAbstractXRayInterceptor {
 @Override

AOP with Spring 400

AWS X-Ray Developer Guide

 protected Map<String, Map<String, Object>> generateMetadata(ProceedingJoinPoint
 proceedingJoinPoint, Subsegment subsegment) throws Exception {
 return super.generateMetadata(proceedingJoinPoint, subsegment);
 }

 @Override
 @Pointcut("@within(com.amazonaws.xray.spring.aop.XRayEnabled) && bean(*Controller)")

 public void xrayEnabledClasses() {}

}

The following code is a class that will be instrumented by X-Ray.

@Service
@XRayEnabled
public class MyServiceImpl implements MyService {
 private final MyEntityRepository myEntityRepository;

 @Autowired
 public MyServiceImpl(MyEntityRepository myEntityRepository) {
 this.myEntityRepository = myEntityRepository;
 }

 @Transactional(readOnly = true)
 public List<MyEntity> getMyEntities(){
 try(Stream<MyEntity> entityStream = this.myEntityRepository.streamAll()){

 return entityStream.sorted().collect(Collectors.toList());
 }
 }
}

If you've configured your application correctly, you should see the complete call stack of the
application, from the controller down through the service calls, as shown in the following screen
shot of the console.

AOP with Spring 401

AWS X-Ray Developer Guide

AOP with Spring 402

AWS X-Ray Developer Guide

Working with Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

There are two ways to instrument your Node.js application to send traces to X-Ray:

• AWS Distro for OpenTelemetry JavaScript – An AWS distribution that provides a set of open
source libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Node.js – A set of libraries for generating and sending traces to X-Ray via the
X-Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry JavaScript

With the AWS Distro for OpenTelemetry (ADOT) JavaScript, you can instrument your applications
once and send correlated metrics and traces to multiple AWS monitoring solutions including
Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with AWS Distro
for OpenTelemetry requires two components: an OpenTelemetry SDK enabled for use with X-Ray,
and the AWS Distro for OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry JavaScript documentation.

AWS Distro for OpenTelemetry JavaScript 403

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/javascript-sdk

AWS X-Ray Developer Guide

Note

ADOT JavaScript is supported for all server-side Node.js applications. ADOT JavaScript is
not able to export data to X-Ray from browser clients.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Node.js is a library for Express web applications and Node.js Lambda functions
that provides classes and methods for generating and sending trace data to the X-Ray daemon.
Trace data includes information about incoming HTTP requests served by the application, and calls
that the application makes to downstream services using the AWS SDK or HTTP clients.

Note

The X-Ray SDK for Node.js is an open source project that is supported for Node.js versions
14.x and up. You can follow the project and submit issues and pull requests on GitHub:
github.com/aws/aws-xray-sdk-node

If you use Express, start by adding the SDK as middleware on your application server to trace
incoming requests. The middleware creates a segment for each traced request, and completes

X-Ray SDK for Node.js 404

https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction
https://github.com/aws-observability
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws/aws-xray-sdk-node

AWS X-Ray Developer Guide

the segment when the response is sent. While the segment is open you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls.
The SDK also automatically records exceptions that your application throws while the segment is
open.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

Next, use the X-Ray SDK for Node.js to instrument your AWS SDK for JavaScript in Node.js clients.
Whenever you make a call to a downstream AWS service or resource with an instrumented client,
the SDK records information about the call in a subsegment. AWS services and the resources that
you access within the services appear as downstream nodes on the trace map to help you identify
errors and throttling issues on individual connections.

The X-Ray SDK for Node.js also provides instrumentation for downstream calls to HTTP web APIs
and SQL queries. Wrap your HTTP client in the SDK's capture method to record information about
outgoing HTTP calls. For SQL clients, use the capture method for your database type.

The middleware applies sampling rules to incoming requests to determine which requests to
trace. You can configure the X-Ray SDK for Node.js to adjust the sampling behavior or to record
information about the AWS compute resources on which your application runs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

X-Ray SDK for Node.js 405

AWS X-Ray Developer Guide

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

For reference documentation about the SDK's classes and methods, see the AWS X-Ray SDK for
Node.js API Reference.

Requirements

The X-Ray SDK for Node.js requires Node.js and the following libraries:

• atomic-batcher – 1.0.2

• cls-hooked – 4.2.2

• pkginfo – 0.4.0

• semver – 5.3.0

The SDK pulls these libraries in when you install it with NPM.

To trace AWS SDK clients, the X-Ray SDK for Node.js requires a minimum version of the AWS SDK
for JavaScript in Node.js.

• aws-sdk – 2.7.15

Dependency management

The X-Ray SDK for Node.js is available from NPM.

• Package – aws-xray-sdk

Requirements 406

https://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference
https://docs.aws.amazon.com//xray-sdk-for-nodejs/latest/reference
https://www.npmjs.com/package/aws-xray-sdk

AWS X-Ray Developer Guide

For local development, install the SDK in your project directory with npm.

~/nodejs-xray$ npm install aws-xray-sdk
aws-xray-sdk@3.3.3
 ### aws-xray-sdk-core@3.3.3
 # ### @aws-sdk/service-error-classification@3.15.0
 # ### @aws-sdk/types@3.15.0
 # ### @types/cls-hooked@4.3.3
 # # ### @types/node@15.3.0
 # ### atomic-batcher@1.0.2
 # ### cls-hooked@4.2.2
 # # ### async-hook-jl@1.7.6
 # # # ### stack-chain@1.3.7
 # # ### emitter-listener@1.1.2
 # # ### shimmer@1.2.1
 # ### semver@5.7.1
 ### aws-xray-sdk-express@3.3.3
 ### aws-xray-sdk-mysql@3.3.3
 ### aws-xray-sdk-postgres@3.3.3

Use the --save option to save the SDK as a dependency in your application's package.json.

~/nodejs-xray$ npm install aws-xray-sdk --save
aws-xray-sdk@3.3.3

If your application has any dependencies whose versions conflict with the X-Ray SDK's
dependencies, both versions will be installed to ensure compatibility. For more details, see the
official NPM documentation for dependency resolution.

Node.js samples

Work with the AWS X-Ray SDK for Node.js to get an end-to-end view of requests as they travel
through your Node.js applications.

• Node.js sample application on GitHub.

Node.js samples 407

http://npm.github.io/how-npm-works-docs/npm3/how-npm3-works.html
https://github.com/aws-samples/aws-xray-sdk-node-sample

AWS X-Ray Developer Guide

Configuring the X-Ray SDK for Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can configure the X-Ray SDK for Node.js with plugins to include information about the service
that your application runs on, modify the default sampling behavior, or add sampling rules that
apply to requests to specific paths.

Sections

• Service plugins

• Sampling rules

• Logging

• X-Ray daemon address

• Environment variables

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

To use a plugin, configure the X-Ray SDK for Node.js client by using the config method.

Configuration 408

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Example app.js - plugins

var AWSXRay = require('aws-xray-sdk');
AWSXRay.config([AWSXRay.plugins.EC2Plugin,AWSXRay.plugins.ElasticBeanstalkPlugin]);

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request each second, and five percent of any additional requests per host. This can
occur if the host doesn't have permission to call sampling APIs, or can't connect to the X-
Ray daemon, which acts as a TCP proxy for API calls made by the SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",

Configuration 409

AWS X-Ray Developer Guide

 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To configure backup rules, tell the X-Ray SDK for Node.js to load sampling rules from a file with
setSamplingRules.

Example app.js - sampling rules from a file

var AWSXRay = require('aws-xray-sdk');
AWSXRay.middleware.setSamplingRules('sampling-rules.json');

You can also define your rules in code and pass them to setSamplingRules as an object.

Example app.js - sampling rules from an object

var AWSXRay = require('aws-xray-sdk');
var rules = {
 "rules": [{ "description": "Player moves.", "service_name": "*", "http_method": "*",
 "url_path": "/api/move/*", "fixed_target": 0, "rate": 0.05 }],
 "default": { "fixed_target": 1, "rate": 0.1 },
 "version": 1

Configuration 410

AWS X-Ray Developer Guide

 }

AWSXRay.middleware.setSamplingRules(rules);

To use only local rules, call disableCentralizedSampling.

AWSXRay.middleware.disableCentralizedSampling()

Logging

To log output from the SDK, call AWSXRay.setLogger(logger), where logger is an object that
provides standard logging methods (warn, info, etc.).

By default the SDK will log error messages to the console using the standard methods
on the console object. The log level of the built-in logger can be set by using either the
AWS_XRAY_DEBUG_MODE or AWS_XRAY_LOG_LEVEL environment variables. For a list of valid log
level values, see Environment variables.

If you wish to provide a different format or destination for the logs then you can provide the SDK
with your own implementation of the logger interface as shown below. Any object that implements
this interface can be used. This means that many logging libraries, e.g. Winston, could be used and
passed to the SDK directly.

Example app.js - logging

var AWSXRay = require('aws-xray-sdk');

// Create your own logger, or instantiate one using a library.
var logger = {
 error: (message, meta) => { /* logging code */ },
 warn: (message, meta) => { /* logging code */ },
 info: (message, meta) => { /* logging code */ },
 debug: (message, meta) => { /* logging code */ }
}

AWSXRay.setLogger(logger);
AWSXRay.config([AWSXRay.plugins.EC2Plugin]);

Call setLogger before you run other configuration methods to ensure that you capture output
from those operations.

Configuration 411

AWS X-Ray Developer Guide

X-Ray daemon address

If the X-Ray daemon listens on a port or host other than 127.0.0.1:2000, you can configure the
X-Ray SDK for Node.js to send trace data to a different address.

AWSXRay.setDaemonAddress('host:port');

You can specify the host by name or by IPv4 address.

Example app.js - daemon address

var AWSXRay = require('aws-xray-sdk');
AWSXRay.setDaemonAddress('daemonhost:8082');

If you configured the daemon to listen on different ports for TCP and UDP, you can specify both in
the daemon address setting.

Example app.js - daemon address on separate ports

var AWSXRay = require('aws-xray-sdk');
AWSXRay.setDaemonAddress('tcp:daemonhost:8082 udp:daemonhost:8083');

You can also set the daemon address by using the AWS_XRAY_DAEMON_ADDRESS environment
variable.

Environment variables

You can use environment variables to configure the X-Ray SDK for Node.js. The SDK supports the
following variables.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Configuration 412

AWS X-Ray Developer Guide

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_XRAY_DEBUG_MODE – Set to TRUE to configure the SDK to output logs to the console, at
debug level.

• AWS_XRAY_LOG_LEVEL – Set a log level for the default logger. Valid values are debug, info,
warn, error, and silent. This value is ignored when AWS_XRAY_DEBUG_MODE is set to TRUE.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
segment name that you set on the Express middleware.

Tracing incoming requests with the X-Ray SDK for Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can use the X-Ray SDK for Node.js to trace incoming HTTP requests that your Express and
Restify applications serve on an EC2 instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon
ECS.

Incoming requests 413

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

The X-Ray SDK for Node.js provides middleware for applications that use the Express and
Restify frameworks. When you add the X-Ray middleware to your application, the X-Ray SDK for
Node.js creates a segment for each sampled request. This segment includes timing, method, and
disposition of the HTTP request. Additional instrumentation creates subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The message handler creates a segment for each incoming request with an http block that
contains the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

Incoming requests 414

AWS X-Ray Developer Guide

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Tracing incoming requests with Express

• Tracing incoming requests with restify

• Configuring a segment naming strategy

Tracing incoming requests with Express

To use the Express middleware, initialize the SDK client and use the middleware returned by the
express.openSegment function before you define your routes.

Example app.js - Express

var app = express();

var AWSXRay = require('aws-xray-sdk');
app.use(AWSXRay.express.openSegment('MyApp'));

app.get('/', function (req, res) {
 res.render('index');
});

app.use(AWSXRay.express.closeSegment());

After you define your routes, use the output of express.closeSegment as shown to handle any
errors returned by the X-Ray SDK for Node.js.

Tracing incoming requests with restify

To use the Restify middleware, initialize the SDK client and run enable. Pass it your Restify server
and segment name.

Example app.js - restify

var AWSXRay = require('aws-xray-sdk');
var AWSXRayRestify = require('aws-xray-sdk-restify');

Incoming requests 415

AWS X-Ray Developer Guide

var restify = require('restify');
var server = restify.createServer();
AWSXRayRestify.enable(server, 'MyApp'));

server.get('/', function (req, res) {
 res.render('index');
});

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
initialize the middleware, as shown in the previous sections.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

Incoming requests 416

AWS X-Ray Developer Guide

A dynamic naming strategy defines a pattern that hostnames should match, and a default name
to use if the hostname in the HTTP request does not match the pattern. To name segments
dynamically, use AWSXRay.middleware.enableDynamicNaming.

Example app.js - dynamic segment names

If the hostname in the request matches the pattern *.example.com, use the hostname.
Otherwise, use MyApp.

var app = express();

var AWSXRay = require('aws-xray-sdk');
app.use(AWSXRay.express.openSegment('MyApp'));
AWSXRay.middleware.enableDynamicNaming('*.example.com');

app.get('/', function (req, res) {
 res.render('index');
});

app.use(AWSXRay.express.closeSegment());

Tracing AWS SDK calls with the X-Ray SDK for Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Node.js tracks the calls downstream in subsegments. Traced AWS
services, and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

AWS SDK clients 417

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Instrument AWS SDK clients that you create via the AWS SDK for JavaScript V2 or AWS SDK for
JavaScript V3. Each AWS SDK version provides different methods for instrumenting AWS SDK
clients.

Note

Currently, the AWS X-Ray SDK for Node.js returns less segment information when
instrumenting AWS SDK for JavaScript V3 clients, as compared to instrumenting V2 clients.
For instance, subsegments representing calls to DynamoDB will not return the table name.
If you need this segment information in your traces, consider using the AWS SDK for
JavaScript V2.

AWS SDK for JavaScript V2

You can instrument all AWS SDK V2 clients by wrapping your aws-sdk require statement in a
call to AWSXRay.captureAWS.

Example app.js - AWS SDK instrumentation

const AWS = AWSXRay.captureAWS(require('aws-sdk'));

To instrument individual clients, wrap your AWS SDK client in a call to
AWSXRay.captureAWSClient. For example, to instrument an AmazonDynamoDB client:

Example app.js - DynamoDB client instrumentation

 const AWSXRay = require('aws-xray-sdk');
...
 const ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());

Warning

Do not use both captureAWS and captureAWSClient together. This will lead to
duplicate subsegments.

If you want to use TypeScript with ECMAScript modules (ESM) to load your JavaScript code, use
the following example to import libraries:

AWS SDK clients 418

https://docs.aws.amazon.com/sdk-for-javascript/v2/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/welcome.html
https://docs.aws.amazon.com/sdk-for-javascript/v3/developer-guide/welcome.html
https://www.typescriptlang.org/docs/handbook/typescript-in-5-minutes.html
https://nodejs.org/api/esm.html

AWS X-Ray Developer Guide

Example app.js - AWS SDK instrumentation

import * as AWS from 'aws-sdk';
import * as AWSXRay from 'aws-xray-sdk';

To instrument all AWS clients with ESM, use the following code:

Example app.js - AWS SDK instrumentation

import * as AWS from 'aws-sdk';
import * as AWSXRay from 'aws-xray-sdk';
const XRAY_AWS = AWSXRay.captureAWS(AWS);
const ddb = new XRAY_AWS.DynamoDB();

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the
service map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the
table name to the segment for calls that target a table. In the console, each table appears as a
separate node in the service map, with a generic DynamoDB node for calls that don't target a
table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",

AWS SDK clients 419

AWS X-Ray Developer Guide

 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

AWS SDK for JavaScript V3

The AWS SDK for JavaScript V3 is modular, so your code only loads the modules it needs.
Because of this, it isn't possible to instrument all AWS SDK clients as V3 does not support the
captureAWS method.

If you want to use TypeScript with ECMAScript Modules (ESM) to load your JavaScript code, you
can use the following example to import libraries:

import * as AWS from 'aws-sdk';
import * as AWSXRay from 'aws-xray-sdk';

Instrument each AWS SDK client using the AWSXRay.captureAWSv3Client method. For
example, to instrument an AmazonDynamoDB client:

Example app.js - DynamoDB client instrumentation using SDK for Javascript V3

 const AWSXRay = require('aws-xray-sdk');
 const { DynamoDBClient } = require("@aws-sdk/client-dynamodb");
...
 const ddb = AWSXRay.captureAWSv3Client(new DynamoDBClient({ region:
 "region" }));

When using AWS SDK for JavaScript V3, metadata such as table name, bucket and key name, or
queue name, are not currently returned, and therefore the trace map will not contain discrete
nodes for each named resource as it would when instrumenting AWS SDK clients using the AWS
SDK for JavaScript V2.

AWS SDK clients 420

AWS X-Ray Developer Guide

Example Subsegment for a call to DynamoDB to save an item, when using the AWS SDK for
JavaScript V3

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

Tracing calls to downstream HTTP web services using the X-Ray SDK for
Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Node.js client to instrument those calls and add the API to the service graph as a downstream
service.

Outgoing HTTP calls 421

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Pass your http or https client to the X-Ray SDK for Node.js captureHTTPs method to trace
outgoing calls.

Note

Calls using third-party HTTP request libraries, such as Axios or Superagent, are supported
through the captureHTTPsGlobal() API and will still be traced when they use the native
http module.

Example app.js - HTTP client

var AWSXRay = require('aws-xray-sdk');
var http = AWSXRay.captureHTTPs(require('http'));

To enable tracing on all HTTP clients, call captureHTTPsGlobal before you load http.

Example app.js - HTTP client (global)

var AWSXRay = require('aws-xray-sdk');
AWSXRay.captureHTTPsGlobal(require('http'));
var http = require('http');

When you instrument a call to a downstream web API, the X-Ray SDK for Node.js records a
subsegment that contains information about the HTTP request and response. X-Ray uses the
subsegment to generate an inferred segment for the remote API.

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"

Outgoing HTTP calls 422

https://docs.aws.amazon.com/xray-sdk-for-nodejs/latest/reference/module-http_p.html

AWS X-Ray Developer Guide

 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL queries with the X-Ray SDK for Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

SQL queries 423

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Instrument SQL database queries by wrapping your SQL client in the corresponding X-Ray SDK for
Node.js client method.

• PostgreSQL – AWSXRay.capturePostgres()

var AWSXRay = require('aws-xray-sdk');
var pg = AWSXRay.capturePostgres(require('pg'));
var client = new pg.Client();

• MySQL – AWSXRay.captureMySQL()

var AWSXRay = require('aws-xray-sdk');
var mysql = AWSXRay.captureMySQL(require('mysql'));
...
var connection = mysql.createConnection(config);

When you use an instrumented client to make SQL queries, the X-Ray SDK for Node.js records
information about the connection and query in a subsegment.

Including additional data in SQL subsegments

You can add additional information to subsegments generated for SQL queries, as long as it's
mapped to an allow-listed SQL field. For example, to record the sanitized SQL query string in a
subsegment, you can add it directly to the subsegment's SQL object.

Example Assign SQL to subsegment

 const queryString = 'SELECT * FROM MyTable';
connection.query(queryString, ...);

// Retrieve the most recently created subsegment
const subs = AWSXRay.getSegment().subsegments;

if (subs & & subs.length > 0) {
 var sqlSub = subs[subs.length - 1];
 sqlSub.sql.sanitized_query = queryString;
}

For a full list of allow-listed SQL fields, see SQL Queries in the AWS X-Ray Developer Guide.

SQL queries 424

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-segmentdocuments.html#api-segmentdocuments-sql

AWS X-Ray Developer Guide

Generating custom subsegments with the X-Ray SDK for Node.js

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

Custom Express subsegments

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

To create a custom subsegment for a function that makes calls to downstream services, use the
captureAsyncFunc function.

Example app.js - custom subsegments Express

var AWSXRay = require('aws-xray-sdk');

app.use(AWSXRay.express.openSegment('MyApp'));

app.get('/', function (req, res) {
 var host = 'api.example.com';

 AWSXRay.captureAsyncFunc('send', function(subsegment) {
 sendRequest(host, function() {
 console.log('rendering!');
 res.render('index');
 subsegment.close();
 });
 });
});

app.use(AWSXRay.express.closeSegment());

Custom subsegments 425

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

function sendRequest(host, cb) {
 var options = {
 host: host,
 path: '/',
 };

 var callback = function(response) {
 var str = '';

 response.on('data', function (chunk) {
 str += chunk;
 });

 response.on('end', function () {
 cb();
 });
 }

 http.request(options, callback).end();
};

In this example, the application creates a custom subsegment named send for calls to the
sendRequest function. captureAsyncFunc passes a subsegment that you must close within the
callback function when the asynchronous calls that it makes are complete.

For synchronous functions, you can use the captureFunc function, which closes the subsegment
automatically as soon as the function block finishes executing.

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for
Node.js generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }

Custom subsegments 426

AWS X-Ray Developer Guide

 },

Custom Lambda subsegments

The SDK is configured to automatically create a placeholder facade segment when it
detects it's running in Lambda. To create a basic subsegement, which will create a single
AWS::Lambda::Function node on the X-Ray trace map, call and repurpose the facade segment.
If you manually create a new segment with a new ID (while sharing the trace ID, parent ID and the
sampling decision) you will be able to send a new segment.

Example app.js - manual custom subsegments

const segment = AWSXRay.getSegment(); //returns the facade segment
const subsegment = segment.addNewSubsegment('subseg');
...
subsegment.close();
//the segment is closed by the SDK automatically

Add annotations and metadata to segments with the X-Ray SDK for
Node.js

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can record additional information about requests, the environment, or your application with
annotations and metadata. You can add annotations and metadata to the segments that the X-Ray
SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Annotations and metadata 427

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Node.js

• Recording metadata with the X-Ray SDK for Node.js

• Recording user IDs with the X-Ray SDK for Node.js

Recording annotations with the X-Ray SDK for Node.js

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than a dot or period (.)

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment.

var AWSXRay = require('aws-xray-sdk');
...
var document = AWSXRay.getSegment();

2. Call addAnnotation with a String key, and a Boolean, Number, or String value.

document.addAnnotation("mykey", "my value");

The following example shows how to call putAnnotation with a String key that includes a
dot, and a Boolean, Number, or String value.

Annotations and metadata 428

AWS X-Ray Developer Guide

document.putAnnotation("testkey.test", "my value");

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling addAnnotation twice with the same key overwrites previously recorded values
on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotation[key] keyword in a
filter expression.

Example app.js - annotations

var AWS = require('aws-sdk');
var AWSXRay = require('aws-xray-sdk');
var ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());
...
app.post('/signup', function(req, res) {
 var item = {
 'email': {'S': req.body.email},
 'name': {'S': req.body.name},
 'preview': {'S': req.body.previewAccess},
 'theme': {'S': req.body.theme}
 };

 var seg = AWSXRay.getSegment();
 seg.addAnnotation('theme', req.body.theme);

 ddb.putItem({
 'TableName': ddbTable,
 'Item': item,
 'Expected': { email: { Exists: false } }
 }, function(err, data) {
...

Recording metadata with the X-Ray SDK for Node.js

Use metadata to record information on segments or subsegments that you don't need indexed
for search. Metadata values can be strings, numbers, Booleans, or any other object that can be
serialized into a JSON object or array.

Annotations and metadata 429

AWS X-Ray Developer Guide

To record metadata

1. Get a reference to the current segment or subsegment.

var AWSXRay = require('aws-xray-sdk');
...
var document = AWSXRay.getSegment();

2. Call addMetadata with a string key, a Boolean, number, string, or object value, and a string
namespace.

document.addMetadata("my key", "my value", "my namespace");

or

Call addMetadata with just a key and value.

document.addMetadata("my key", "my value");

If you don't specify a namespace, the SDK uses default. Calling addMetadata twice with the
same key overwrites previously recorded values on the same segment or subsegment.

Recording user IDs with the X-Ray SDK for Node.js

Record user IDs on request segments to identify the user who sent the request. This operation
isn’t compatible with AWS Lambda functions because segments in Lambda environments are
immutable. The setUser call can be applied only to segments, not subsegments.

To record user IDs

1. Get a reference to the current segment or subsegment.

var AWSXRay = require('aws-xray-sdk');
...
var document = AWSXRay.getSegment();

2. Call setUser() with a string ID of the user who sent the request.

var user = 'john123';

Annotations and metadata 430

AWS X-Ray Developer Guide

AWSXRay.getSegment().setUser(user);

You can call setUser to record the user ID as soon as your express application starts processing a
request. If you will use the segment only to set the user ID, you can chain the calls in a single line.

Example app.js - user ID

var AWS = require('aws-sdk');
var AWSXRay = require('aws-xray-sdk');
var uuidv4 = require('uuid/v4');
var ddb = AWSXRay.captureAWSClient(new AWS.DynamoDB());
...
 app.post('/signup', function(req, res) {
 var userId = uuidv4();
 var item = {
 'userId': {'S': userId},
 'email': {'S': req.body.email},
 'name': {'S': req.body.name}
 };

 var seg = AWSXRay.getSegment().setUser(userId);

 ddb.putItem({
 'TableName': ddbTable,
 'Item': item,
 'Expected': { email: { Exists: false } }
 }, function(err, data) {
...

To find traces for a user ID, use the user keyword in a filter expression.

Annotations and metadata 431

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-filters.html

AWS X-Ray Developer Guide

Working with Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

There are two ways to instrument your Python application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Python – An AWS distribution that provides a set of open
source libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Python – A set of libraries for generating and sending traces to X-Ray via the
X-Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Python

With the AWS Distro for OpenTelemetry (ADOT) Python, you can instrument your applications once
and send correlated metrics and traces to multiple AWS monitoring solutions including Amazon
CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with ADOT requires
two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro for
OpenTelemetry Collector enabled for use with X-Ray. ADOT Python includes auto-instrumentation
support, enabling your application to send traces without code changes.

To get started, see the AWS Distro for OpenTelemetry Python documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

AWS Distro for OpenTelemetry Python 432

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/python-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Python is a library for Python web applications that provides classes and
methods for generating and sending trace data to the X-Ray daemon. Trace data includes
information about incoming HTTP requests served by the application, and calls that the application
makes to downstream services using the AWS SDK, HTTP clients, or an SQL database connector.
You can also create segments manually and add debug information in annotations and metadata.

You can download the SDK with pip.

$ pip install aws-xray-sdk

Note

The X-Ray SDK for Python is an open source project. You can follow the project and submit
issues and pull requests on GitHub: github.com/aws/aws-xray-sdk-python

If you use Django or Flask, start by adding the SDK middleware to your application to trace
incoming requests. The middleware creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open, you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls.
The SDK also automatically records exceptions that your application throws while the segment is
open. For other applications, you can create segments manually.

X-Ray SDK for Python 433

https://github.com/aws-observability
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws/aws-xray-sdk-python

AWS X-Ray Developer Guide

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

See Worker for a example Python function instrumented in Lambda.

Next, use the X-Ray SDK for Python to instrument downstream calls by patching your application's
libraries. The SDK supports the following libraries.

Supported Libraries

• botocore, boto3 – Instrument AWS SDK for Python (Boto) clients.

• pynamodb – Instrument PynamoDB's version of the Amazon DynamoDB client.

• aiobotocore, aioboto3 – Instrument asyncio-integrated versions of SDK for Python clients.

• requests, aiohttp – Instrument high-level HTTP clients.

• httplib, http.client – Instrument low-level HTTP clients and the higher level libraries that
use them.

• sqlite3 – Instrument SQLite clients.

• mysql-connector-python – Instrument MySQL clients.

• pg8000 – Instrument Pure-Python PostgreSQL interface.

• psycopg2 – Instrument PostgreSQL database adapter.

• pymongo – Instrument MongoDB clients.

• pymysql – Instrument PyMySQL based clients for MySQL and MariaDB.

Whenever your application makes calls to AWS, an SQL database, or other HTTP services, the SDK
records information about the call in a subsegment. AWS services and the resources that you access

X-Ray SDK for Python 434

https://pypi.python.org/pypi/botocore
https://pypi.python.org/pypi/boto3
https://pypi.python.org/pypi/pynamodb/
https://pypi.python.org/pypi/aiobotocore
https://pypi.python.org/pypi/aioboto3
https://docs.python.org/3/library/asyncio.html
https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/aiohttp
https://docs.python.org/2/library/httplib.html
https://docs.python.org/3/library/http.client.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.python.org/pypi/mysql-connector-python
https://pypi.org/project/pg8000/
https://pypi.org/project/psycopg2/
https://pypi.org/project/pymongo/
https://pypi.org/project/PyMySQL/

AWS X-Ray Developer Guide

within the services appear as downstream nodes on the trace map to help you identify errors and
throttling issues on individual connections.

After you start using the SDK, customize its behavior by configuring the recorder and middleware.
You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can
create a custom subsegment for an entire function or any section of code. You can then you can
record metadata and annotations on the subsegment instead of writing everything on the parent
segment.

For reference documentation for the SDK's classes and methods, see the AWS X-Ray SDK for
Python API Reference.

Requirements

The X-Ray SDK for Python supports the following language and library versions.

• Python – 2.7, 3.4, and newer

• Django – 1.10 and newer

Requirements 435

https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference
https://docs.aws.amazon.com/xray-sdk-for-python/latest/reference

AWS X-Ray Developer Guide

• Flask – 0.10 and newer

• aiohttp – 2.3.0 and newer

• AWS SDK for Python (Boto) – 1.4.0 and newer

• botocore – 1.5.0 and newer

• enum – 0.4.7 and newer, for Python versions 3.4.0 and older

• jsonpickle – 1.0.0 and newer

• setuptools – 40.6.3 and newer

• wrapt – 1.11.0 and newer

Dependency management

The X-Ray SDK for Python is available from pip.

• Package – aws-xray-sdk

Add the SDK as a dependency in your requirements.txt file.

Example requirements.txt

aws-xray-sdk==2.4.2
boto3==1.4.4
botocore==1.5.55
Django==1.11.3

If you use Elastic Beanstalk to deploy your application, Elastic Beanstalk installs all of the packages
in requirements.txt automatically.

Configuring the X-Ray SDK for Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more

Dependency management 436

AWS X-Ray Developer Guide

information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Python has a class named xray_recorder that provides the global recorder.
You can configure the global recorder to customize the middleware that creates segments for
incoming HTTP calls.

Sections

• Service plugins

• Sampling rules

• Logging

• Recorder configuration in code

• Recorder configuration with Django

• Environment variables

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

Configuration 437

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

To use a plugin, call configure on the xray_recorder.

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

xray_recorder.configure(service='My app')
plugins = ('ElasticBeanstalkPlugin', 'EC2Plugin')
xray_recorder.configure(plugins=plugins)
patch_all()

Note

Since plugins are passed in as a tuple, be sure to include a trailing , when specifying a
single plugin. For example, plugins = ('EC2Plugin',)

You can also use environment variables, which take precedence over values set in code, to
configure the recorder.

Configure plugins before patching libraries to record downstream calls.

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Configuration 438

AWS X-Ray Developer Guide

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request each second, and five percent of any additional requests per host. This can
occur if the host doesn't have permission to call sampling APIs, or can't connect to the X-
Ray daemon, which acts as a TCP proxy for API calls made by the SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

Configuration 439

AWS X-Ray Developer Guide

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be
recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To configure backup sampling rules, call xray_recorder.configure, as shown in the following
example, where rules is either a dictionary of rules or the absolute path to a JSON file containing
sampling rules.

xray_recorder.configure(sampling_rules=rules)

To use only local rules, configure the recorder with a LocalSampler.

from aws_xray_sdk.core.sampling.local.sampler import LocalSampler
xray_recorder.configure(sampler=LocalSampler())

You can also configure the global recorder to disable sampling and instrument all incoming
requests.

Example main.py – Disable sampling

xray_recorder.configure(sampling=False)

Logging

The SDK uses Python’s built-in logging module with a default WARNING logging level. Get a
reference to the logger for the aws_xray_sdk class and call setLevel on it to configure the
different log level for the library and the rest of your application.

Example app.py – Logging

logging.basicConfig(level='WARNING')

Configuration 440

AWS X-Ray Developer Guide

logging.getLogger('aws_xray_sdk').setLevel(logging.ERROR)

Use debug logs to identify issues, such as unclosed subsegments, when you generate subsegments
manually.

Recorder configuration in code

Additional settings are available from the configure method on xray_recorder.

• context_missing – Set to LOG_ERROR to avoid throwing exceptions when your instrumented
code attempts to record data when no segment is open.

• daemon_address – Set the host and port of the X-Ray daemon listener.

• service – Set a service name that the SDK uses for segments.

• plugins – Record information about your application's AWS resources.

• sampling – Set to False to disable sampling.

• sampling_rules – Set the path of the JSON file containing your sampling rules.

Example main.py – Disable context missing exceptions

from aws_xray_sdk.core import xray_recorder

xray_recorder.configure(context_missing='LOG_ERROR')

Recorder configuration with Django

If you use the Django framework, you can use the Django settings.py file to configure options
on the global recorder.

• AUTO_INSTRUMENT (Django only) – Record subsegments for built-in database and template
rendering operations.

• AWS_XRAY_CONTEXT_MISSING – Set to LOG_ERROR to avoid throwing exceptions when your
instrumented code attempts to record data when no segment is open.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments.

• PLUGINS – Record information about your application's AWS resources.

• SAMPLING – Set to False to disable sampling.

Configuration 441

AWS X-Ray Developer Guide

• SAMPLING_RULES – Set the path of the JSON file containing your sampling rules.

To enable recorder configuration in settings.py, add the Django middleware to the list of
installed apps.

Example settings.py – Installed apps

INSTALLED_APPS = [
 ...
 'django.contrib.sessions',
 'aws_xray_sdk.ext.django',
]

Configure the available settings in a dict named XRAY_RECORDER.

Example settings.py – Installed apps

XRAY_RECORDER = {
 'AUTO_INSTRUMENT': True,
 'AWS_XRAY_CONTEXT_MISSING': 'LOG_ERROR',
 'AWS_XRAY_DAEMON_ADDRESS': '127.0.0.1:5000',
 'AWS_XRAY_TRACING_NAME': 'My application',
 'PLUGINS': ('ElasticBeanstalkPlugin', 'EC2Plugin', 'ECSPlugin'),
 'SAMPLING': False,
}

Environment variables

You can use environment variables to configure the X-Ray SDK for Python. The SDK supports the
following variables:

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set programmatically.

• AWS_XRAY_SDK_ENABLED – When set to false, disables the SDK. By default, the SDK is enabled
unless the environment variable is set to false.

• When disabled, the global recorder automatically generates dummy segments and
subsegments that are not sent to the daemon, and automatic patching is disabled.
Middlewares are written as a wrapper over the global recorder. All segment and subsegment
generation through the middleware also become dummy segment and dummy subsegments.

Configuration 442

AWS X-Ray Developer Guide

• Set the value of AWS_XRAY_SDK_ENABLED through the environment variable or through direct
interaction with the global_sdk_config object from the aws_xray_sdk library. Settings to
the environment variable override these interactions.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable
if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

Environment variables override values set in code.

Tracing incoming requests with the X-Ray SDK for Python middleware

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Incoming requests 443

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

When you add the middleware to your application and configure a segment name, the X-Ray SDK
for Python creates a segment for each sampled request. This segment includes timing, method,
and disposition of the HTTP request. Additional instrumentation creates subsegments on this
segment.

The X-Ray SDK for Python supports the following middleware to instrument incoming HTTP
requests:

• Django

• Flask

• Bottle

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

See Worker for a example Python function instrumented in Lambda.

For scripts or Python applications on other frameworks, you can create segments manually.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

Incoming requests 444

AWS X-Ray Developer Guide

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The middleware creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Adding the middleware to your application (Django)

• Adding the middleware to your application (flask)

• Adding the middleware to your application (Bottle)

• Instrumenting Python code manually

• Configuring a segment naming strategy

Adding the middleware to your application (Django)

Add the middleware to the MIDDLEWARE list in your settings.py file. The X-Ray middleware
should be the first line in your settings.py file to ensure that requests that fail in other
middleware are recorded.

Example settings.py - X-Ray SDK for Python middleware

MIDDLEWARE = [
 'aws_xray_sdk.ext.django.middleware.XRayMiddleware',
 'django.middleware.security.SecurityMiddleware',
 'django.contrib.sessions.middleware.SessionMiddleware',
 'django.middleware.common.CommonMiddleware',

Incoming requests 445

AWS X-Ray Developer Guide

 'django.middleware.csrf.CsrfViewMiddleware',
 'django.contrib.auth.middleware.AuthenticationMiddleware',
 'django.contrib.messages.middleware.MessageMiddleware',
 'django.middleware.clickjacking.XFrameOptionsMiddleware'
]

Add the X-Ray SDK Django app to the INSTALLED_APPS list in your settings.py file. This will
allow the X-Ray recorder to be configured during your app's startup.

Example settings.py - X-Ray SDK for Python Django app

INSTALLED_APPS = [
 'aws_xray_sdk.ext.django',
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
]

Configure a segment name in your settings.py file.

Example settings.py – Segment name

XRAY_RECORDER = {
 'AWS_XRAY_TRACING_NAME': 'My application',
 'PLUGINS': ('EC2Plugin',),
}

This tells the X-Ray recorder to trace requests served by your Django application with the default
sampling rate. You can configure the recorder your Django settings file to apply custom sampling
rules or change other settings.

Note

Since plugins are passed in as a tuple, be sure to include a trailing , when specifying a
single plugin. For example, plugins = ('EC2Plugin',)

Incoming requests 446

AWS X-Ray Developer Guide

Adding the middleware to your application (flask)

To instrument your Flask application, first configure a segment name on the xray_recorder.
Then, use the XRayMiddleware function to patch your Flask application in code.

Example app.py

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware

app = Flask(__name__)

xray_recorder.configure(service='My application')
XRayMiddleware(app, xray_recorder)

This tells the X-Ray recorder to trace requests served by your Flask application with the default
sampling rate. You can configure the recorder in code to apply custom sampling rules or change
other settings.

Adding the middleware to your application (Bottle)

To instrument your Bottle application, first configure a segment name on the xray_recorder.
Then, use the XRayMiddleware function to patch your Bottle application in code.

Example app.py

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.ext.bottle.middleware import XRayMiddleware

app = Bottle()

xray_recorder.configure(service='fallback_name', dynamic_naming='My application')
app.install(XRayMiddleware(xray_recorder))

This tells the X-Ray recorder to trace requests served by your Bottle application with the default
sampling rate. You can configure the recorder in code to apply custom sampling rules or change
other settings.

Incoming requests 447

AWS X-Ray Developer Guide

Instrumenting Python code manually

If you don't use Django or Flask, you can create segments manually. You can create a segment for
each incoming request, or create segments around patched HTTP or AWS SDK clients to provide
context for the recorder to add subsegments.

Example main.py – Manual instrumentation

from aws_xray_sdk.core import xray_recorder

Start a segment
segment = xray_recorder.begin_segment('segment_name')
Start a subsegment
subsegment = xray_recorder.begin_subsegment('subsegment_name')

Add metadata and annotations
segment.put_metadata('key', dict, 'namespace')
subsegment.put_annotation('key', 'value')

Close the subsegment and segment
xray_recorder.end_subsegment()
xray_recorder.end_segment()

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

Incoming requests 448

AWS X-Ray Developer Guide

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
configure the recorder, as shown in the previous sections.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request doesn't match the pattern. To name segments
dynamically in Django, add the DYNAMIC_NAMING setting to your settings.py file.

Example settings.py – Dynamic naming

XRAY_RECORDER = {
 'AUTO_INSTRUMENT': True,
 'AWS_XRAY_TRACING_NAME': 'My application',
 'DYNAMIC_NAMING': '*.example.com',
 'PLUGINS': ('ElasticBeanstalkPlugin', 'EC2Plugin')
}

You can use '*' in the pattern to match any string, or '?' to match any single character. For Flask,
configure the recorder in code.

Example main.py – Segment name

from aws_xray_sdk.core import xray_recorder
xray_recorder.configure(service='My application')
xray_recorder.configure(dynamic_naming='*.example.com')

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

Incoming requests 449

AWS X-Ray Developer Guide

Patching libraries to instrument downstream calls

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

To instrument downstream calls, use the X-Ray SDK for Python to patch the libraries that your
application uses. The X-Ray SDK for Python can patch the following libraries.

Supported Libraries

• botocore, boto3 – Instrument AWS SDK for Python (Boto) clients.

• pynamodb – Instrument PynamoDB's version of the Amazon DynamoDB client.

• aiobotocore, aioboto3 – Instrument asyncio-integrated versions of SDK for Python clients.

• requests, aiohttp – Instrument high-level HTTP clients.

• httplib, http.client – Instrument low-level HTTP clients and the higher level libraries that
use them.

• sqlite3 – Instrument SQLite clients.

• mysql-connector-python – Instrument MySQL clients.

• pg8000 – Instrument Pure-Python PostgreSQL interface.

• psycopg2 – Instrument PostgreSQL database adapter.

• pymongo – Instrument MongoDB clients.

• pymysql – Instrument PyMySQL based clients for MySQL and MariaDB.

When you use a patched library, the X-Ray SDK for Python creates a subsegment for the call and
records information from the request and response. A segment must be available for the SDK to
create the subsegment, either from the SDK middleware or from AWS Lambda.

Patching libraries 450

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://pypi.python.org/pypi/botocore
https://pypi.python.org/pypi/boto3
https://pypi.python.org/pypi/pynamodb/
https://pypi.python.org/pypi/aiobotocore
https://pypi.python.org/pypi/aioboto3
https://docs.python.org/3/library/asyncio.html
https://pypi.python.org/pypi/requests
https://pypi.python.org/pypi/aiohttp
https://docs.python.org/2/library/httplib.html
https://docs.python.org/3/library/http.client.html
https://docs.python.org/3/library/sqlite3.html
https://pypi.python.org/pypi/mysql-connector-python
https://pypi.org/project/pg8000/
https://pypi.org/project/psycopg2/
https://pypi.org/project/pymongo/
https://pypi.org/project/PyMySQL/

AWS X-Ray Developer Guide

Note

If you use SQLAlchemy ORM, you can instrument your SQL queries by importing the
SDK's version of SQLAlchemy's session and query classes. See Use SQLAlchemy ORM for
instructions.

To patch all available libraries, use the patch_all function in aws_xray_sdk.core. Some
libraries, such as httplib and urllib, may need to enable double patching by calling
patch_all(double_patch=True).

Example main.py – Patch all supported libraries

import boto3
import botocore
import requests
import sqlite3

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch_all

patch_all()

To patch a single library, call patch with a tuple of the library name. In order to achieve this, you
will need to provide a single element list.

Example main.py – Patch specific libraries

import boto3
import botocore
import requests
import mysql-connector-python

from aws_xray_sdk.core import xray_recorder
from aws_xray_sdk.core import patch

libraries = (['botocore'])
patch(libraries)

Patching libraries 451

https://github.com/aws/aws-xray-sdk-python/blob/master/README.md#use-sqlalchemy-orm

AWS X-Ray Developer Guide

Note

In some cases, the key that you use to patch a library does not match the library name.
Some keys serve as aliases for one or more libraries.

Libraries Aliases

• httplib – httplib and http.client

• mysql – mysql-connector-python

Tracing context for asynchronous work

For asyncio integrated libraries, or to create subsegments for asynchronous functions, you must
also configure the X-Ray SDK for Python with an async context. Import the AsyncContext class
and pass an instance of it to the X-Ray recorder.

Note

Web framework support libraries, such as AIOHTTP, are not handled through the
aws_xray_sdk.core.patcher module. They will not appear in the patcher catalog of
supported libraries.

Example main.py – Patch aioboto3

import asyncio
import aioboto3
import requests

from aws_xray_sdk.core.async_context import AsyncContext
from aws_xray_sdk.core import xray_recorder
xray_recorder.configure(service='my_service', context=AsyncContext())
from aws_xray_sdk.core import patch

libraries = (['aioboto3'])
patch(libraries)

Patching libraries 452

https://docs.python.org/2/library/httplib.html
https://docs.python.org/3/library/http.client.html
https://pypi.python.org/pypi/mysql-connector-python

AWS X-Ray Developer Guide

Tracing AWS SDK calls with the X-Ray SDK for Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Python tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

The X-Ray SDK for Python automatically instruments all AWS SDK clients when you patch the
botocore library. You cannot instrument individual clients.

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200

AWS SDK clients 453

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

Tracing calls to downstream HTTP web services using the X-Ray SDK for
Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray SDK
for Python to instrument those calls and add the API to the service graph as a downstream service.

To instrument HTTP clients, patch the library that you use to make outgoing calls. If you use
requests or Python's built in HTTP client, that's all you need to do. For aiohttp, also configure
the recorder with an async context.

If you use aiohttp 3's client API, you also need to configure the ClientSession's with an
instance of the tracing configuration provided by the SDK.

Outgoing HTTP calls 454

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Example aiohttp 3 client API

from aws_xray_sdk.ext.aiohttp.client import aws_xray_trace_config

async def foo():
 trace_config = aws_xray_trace_config()
 async with ClientSession(loop=loop, trace_configs=[trace_config]) as session:
 async with session.get(url) as resp
 await resp.read()

When you instrument a call to a downstream web API, the X-Ray SDK for Python records a
subsegment that contains information about the HTTP request and response. X-Ray uses the
subsegment to generate an inferred segment for the remote API.

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,

Outgoing HTTP calls 455

https://github.com/aws/aws-xray-sdk-python#trace-aiohttp-client-requests

AWS X-Ray Developer Guide

 "parent_id": "004f72be19cddc2a",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Generating custom subsegments with the X-Ray SDK for Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the begin_subsegment and end_subsegment methods.

Example main.py – Custom subsegment

from aws_xray_sdk.core import xray_recorder

subsegment = xray_recorder.begin_subsegment('annotations')
subsegment.put_annotation('id', 12345)
xray_recorder.end_subsegment()

Custom subsegments 456

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

To create a subsegment for a synchronous function, use the @xray_recorder.capture
decorator. You can pass a name for the subsegment to the capture function or leave it out to use
the function name.

Example main.py – Function subsegment

from aws_xray_sdk.core import xray_recorder

@xray_recorder.capture('## create_user')
def create_user():
...

For an asynchronous function, use the @xray_recorder.capture_async decorator, and pass an
async context to the recorder.

Example main.py – Asynchronous function subsegment

from aws_xray_sdk.core.async_context import AsyncContext
from aws_xray_sdk.core import xray_recorder
xray_recorder.configure(service='my_service', context=AsyncContext())

@xray_recorder.capture_async('## create_user')
async def create_user():
 ...

async def main():
 await myfunc()

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for
Python generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"

Custom subsegments 457

AWS X-Ray Developer Guide

 }
 },

Add annotations and metadata to segments with the X-Ray SDK for
Python

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can record additional information about requests, the environment, or your application with
annotations and metadata. You can add annotations and metadata to the segments that the X-Ray
SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Python

• Recording metadata with the X-Ray SDK for Python

• Recording user IDs with the X-Ray SDK for Python

Annotations and metadata 458

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Recording annotations with the X-Ray SDK for Python

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than a dot or period (.)

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment from xray_recorder.

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_segment()

or

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_subsegment()

2. Call put_annotation with a String key, and a Boolean, Number, or String value.

document.put_annotation("mykey", "my value");

The following example shows how to call putAnnotation with a String key that includes a
dot, and a Boolean, Number, or String value.

document.putAnnotation("testkey.test", "my value");

Alternatively, you can use the put_annotation method on the xray_recorder. This method
records annotations on the current subsegment or, if no subsegment is open, on the segment.

Annotations and metadata 459

AWS X-Ray Developer Guide

xray_recorder.put_annotation("mykey", "my value");

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling put_annotation twice with the same key overwrites previously recorded
values on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotation[key] keyword in a
filter expression.

Recording metadata with the X-Ray SDK for Python

Warning

Don't add objects with circular references as metadata values in the X-Ray SDK for Python.
These objects can't be serialized into JSON and may create infinite loops in the SDK. Also,
avoid adding large, complex objects as metadata to prevent performance issues.

Use metadata to record information on segments or subsegments that you don't need indexed for
search. Metadata values can be strings, numbers, Booleans, or any object that can be serialized into
a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment from xray_recorder.

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_segment()

or

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_subsegment()

2. Call put_metadata with a String key; a Boolean, Number, String, or Object value; and a String
namespace.

Annotations and metadata 460

AWS X-Ray Developer Guide

document.put_metadata("my key", "my value", "my namespace");

or

Call put_metadata with just a key and value.

document.put_metadata("my key", "my value");

Alternatively, you can use the put_metadata method on the xray_recorder. This method
records metadata on the current subsegment or, if no subsegment is open, on the segment.

xray_recorder.put_metadata("my key", "my value");

If you don't specify a namespace, the SDK uses default. Calling put_metadata twice with the
same key overwrites previously recorded values on the same segment or subsegment.

Recording user IDs with the X-Ray SDK for Python

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from xray_recorder.

from aws_xray_sdk.core import xray_recorder
...
document = xray_recorder.current_segment()

2. Call setUser with a String ID of the user who sent the request.

document.set_user("U12345");

You can call set_user in your controllers to record the user ID as soon as your application starts
processing a request.

To find traces for a user ID, use the user keyword in a filter expression.

Annotations and metadata 461

AWS X-Ray Developer Guide

Instrumenting web frameworks deployed to serverless environments

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The AWS X-Ray SDK for Python supports instrumenting web frameworks deployed in serverless
applications. Serverless is the native architecture of the cloud that enables you to shift more of
your operational responsibilities to AWS, increasing your agility and innovation.

Serverless architecture is a software application model that enables you to build and run
applications and services without thinking about servers. It eliminates infrastructure management
tasks such as server or cluster provisioning, patching, operating system maintenance, and capacity
provisioning. You can build serverless solutions for nearly any type of application or backend
service, and everything required to run and scale your application with high availability is handled
for you.

This tutorial shows you how to automatically instrument AWS X-Ray on a web framework, such
as Flask or Django, that is deployed to a serverless environment. X-Ray instrumentation of the
application enables you to view all downstream calls that are made, starting from Amazon API
Gateway through your AWS Lambda function, and the outgoing calls your application makes.

The X-Ray SDK for Python supports the following Python application frameworks:

• Flask version 0.8, or later

• Django version 1.0, or later

This tutorial develops an example serverless application that is deployed to Lambda and invoked
by API Gateway. This tutorial uses Zappa to automatically deploy the application to Lambda and to
configure the API Gateway endpoint.

Instrument serverless applications 462

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Prerequisites

• Zappa

• Python – Version 2.7 or 3.6.

• AWS CLI – Verify that your AWS CLI is configured with the account and AWS Region in which you
will deploy your application.

• Pip

• Virtualenv

Step 1: Create an environment

In this step, you create a virtual environment using virtualenv to host an application.

1. Using the AWS CLI, create a directory for the application. Then change to the new directory.

mkdir serverless_application
cd serverless_application

2. Next, create a virtual environment within your new directory. Use the following command to
activate it.

Create our virtual environment
virtualenv serverless_env

Activate it
source serverless_env/bin/activate

3. Install X-Ray, Flask, Zappa, and the Requests library to your environment.

Install X-Ray, Flask, Zappa, and Requests into your environment
pip install aws-xray-sdk flask zappa requests

4. Add application code to the serverless_application directory. For this example, we can
build off of Flasks's Hello World example.

In the serverless_application directory, create a file named my_app.py. Then use a
text editor to add the following commands. This application instruments the Requests library,
patches the Flask application's middleware, and opens the endpoint '/'.

Instrument serverless applications 463

https://github.com/Miserlou/Zappa
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-configure.html
https://pypi.org/project/pip/
https://virtualenv.pypa.io/en/latest/
https://flask.palletsprojects.com/en/3.0.x/quickstart/

AWS X-Ray Developer Guide

Import the X-Ray modules
from aws_xray_sdk.ext.flask.middleware import XRayMiddleware
from aws_xray_sdk.core import patcher, xray_recorder
from flask import Flask
import requests

Patch the requests module to enable automatic instrumentation
patcher.patch(('requests',))

app = Flask(__name__)

Configure the X-Ray recorder to generate segments with our service name
xray_recorder.configure(service='My First Serverless App')

Instrument the Flask application
XRayMiddleware(app, xray_recorder)

@app.route('/')
def hello_world():
 resp = requests.get("https://aws.amazon.com")
 return 'Hello, World: %s' % resp.url

Step 2: Create and deploy a zappa environment

In this step you will use Zappa to automatically configure an API Gateway endpoint and then
deploy to Lambda.

1. Initialize Zappa from within the serverless_application directory. For this example,
we used the default settings, but if you have customization preferences, Zappa displays
configuration instructions.

zappa init

What do you want to call this environment (default 'dev'): dev
...
What do you want to call your bucket? (default 'zappa-*******'): zappa-*******
...
...
It looks like this is a Flask application.
What's the modular path to your app's function?

Instrument serverless applications 464

AWS X-Ray Developer Guide

This will likely be something like 'your_module.app'.
We discovered: my_app.app
Where is your app's function? (default 'my_app.app'): my_app.app
...
Would you like to deploy this application globally? (default 'n') [y/n/
(p)rimary]: n

2. Enable X-Ray. Open the zappa_settings.json file and verify that it looks similar to the
example.

{
 "dev": {
 "app_function": "my_app.app",
 "aws_region": "us-west-2",
 "profile_name": "default",
 "project_name": "serverless-exam",
 "runtime": "python2.7",
 "s3_bucket": "zappa-*********"
 }
}

3. Add "xray_tracing": true as an entry to the configuration file.

{
 "dev": {
 "app_function": "my_app.app",
 "aws_region": "us-west-2",
 "profile_name": "default",
 "project_name": "serverless-exam",
 "runtime": "python2.7",
 "s3_bucket": "zappa-*********",
 "xray_tracing": true
 }
}

4. Deploy the application. This automatically configures the API Gateway endpoint and uploads
your code to Lambda.

zappa deploy

...
Deploying API Gateway..

Instrument serverless applications 465

AWS X-Ray Developer Guide

Deployment complete!: https://**********.execute-api.us-west-2.amazonaws.com/dev

Step 3: Enable X-Ray tracing for API Gateway

In this step you will interact with the API Gateway console to enable X-Ray tracing.

1. Sign in to the AWS Management Console and open the API Gateway console at https://
console.aws.amazon.com/apigateway/.

2. Find your newly generated API. It should look something like serverless-exam-dev.

3. Choose Stages.

4. Choose the name of your deployment stage. The default is dev.

5. On the Logs/Tracing tab, select the Enable X-Ray Tracing box.

6. Choose Save Changes.

7. Access the endpoint in your browser. If you used the example Hello World application, it
should display the following.

"Hello, World: https://aws.amazon.com/"

Step 4: View the created trace

In this step you will interact with the X-Ray console to view the trace created by the example
application. For a more detailed walkthrough on trace analysis, see Viewing the Service Map.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. View segments generated by API Gateway, the Lambda function, and the Lambda container.

3. Under the Lambda function segment, view a subsegment named My First Serverless
App. It's followed by a second subsegment named https://aws.amazon.com.

4. During initialization, Lambda might also generate a third subsegment named
initialization.

Instrument serverless applications 466

https://console.aws.amazon.com/apigateway/
https://console.aws.amazon.com/apigateway/
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html#xray-console-servicemap
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Step 5: Clean up

Always terminate resources you are no longer using to avoid the accumulation of unexpected costs.
As this tutorial demonstrates, tools such as Zappa streamline serverless redeployment.

To remove your application from Lambda, API Gateway, and Amazon S3, run the following
command in your project directory by using the AWS CLI.

zappa undeploy dev

Instrument serverless applications 467

AWS X-Ray Developer Guide

Next steps

Add more features to your application by adding AWS clients and instrumenting them with X-Ray.
Learn more about serverless computing options at Serverless on AWS.

Instrument serverless applications 468

https://aws.amazon.com/serverless

AWS X-Ray Developer Guide

Working with .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

There are two ways to instrument your .NET application to send traces to X-Ray:

• AWS Distro for OpenTelemetry .NET – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for .NET – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry .NET

With the AWS Distro for OpenTelemetry .NET, you can instrument your applications once and send
correlated metrics and traces to multiple AWS monitoring solutions including Amazon CloudWatch,
AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with AWS Distro for OpenTelemetry
requires two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro
for OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry .NET documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

AWS Distro for OpenTelemetry .NET 469

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/dotnet-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for .NET is a library for instrumenting C# .NET web applications, .NET Core web
applications, and .NET Core functions on AWS Lambda. It provides classes and methods for
generating and sending trace data to the X-Ray daemon. This includes information about incoming
requests served by the application, and calls that the application makes to downstream AWS
services, HTTP web APIs, and SQL databases.

Note

The X-Ray SDK for .NET is an open source project. You can follow the project and submit
issues and pull requests on GitHub: github.com/aws/aws-xray-sdk-dotnet

For web applications, start by adding a message handler to your web configuration to trace
incoming requests. The message handler creates a segment for each traced request, and completes
the segment when the response is sent. While the segment is open you can use the SDK client's
methods to add information to the segment and create subsegments to trace downstream calls.
The SDK also automatically records exceptions that your application throws while the segment is
open.

For Lambda functions called by an instrumented application or service, Lambda reads the tracing
header and traces sampled requests automatically. For other functions, you can configure Lambda
to sample and trace incoming requests. In either case, Lambda creates the segment and provides it
to the X-Ray SDK.

X-Ray SDK for .NET 470

https://github.com/aws-observability
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://github.com/aws/aws-xray-sdk-dotnet

AWS X-Ray Developer Guide

Note

On Lambda, the X-Ray SDK is optional. If you don't use it in your function, your service
map will still include a node for the Lambda service, and one for each Lambda function.
By adding the SDK, you can instrument your function code to add subsegments to the
function segment recorded by Lambda. See AWS Lambda and AWS X-Ray for more
information.

Next, use the X-Ray SDK for .NET to instrument your AWS SDK for .NET clients. Whenever you
make a call to a downstream AWS service or resource with an instrumented client, the SDK records
information about the call in a subsegment. AWS services and the resources that you access
within the services appear as downstream nodes on the trace map to help you identify errors and
throttling issues on individual connections.

The X-Ray SDK for .NET also provides instrumentation for downstream calls to HTTP web APIs and
SQL databases. The GetResponseTraced extension method for System.Net.HttpWebRequest
traces outgoing HTTP calls. You can use the X-Ray SDK for .NET's version of SqlCommand to
instrument SQL queries.

After you start using the SDK, customize its behavior by configuring the recorder and message
handler. You can add plugins to record data about the compute resources running your application,
customize sampling behavior by defining sampling rules, and set the log level to see more or less
information from the SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

X-Ray SDK for .NET 471

AWS X-Ray Developer Guide

When you have many instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

For reference documentation about the SDK's classes and methods, see the following:

• AWS X-Ray SDK for .NET API Reference

• AWS X-Ray SDK for .NET Core API Reference

The same package supports both .NET and .NET Core, but the classes that are used vary. Examples
in this chapter link to the .NET API reference unless the class is specific to .NET Core.

Requirements

The X-Ray SDK for .NET requires the .NET Framework 4.5 or later and AWS SDK for .NET.

For .NET Core applications and functions, the SDK requires .NET Core 2.0 or later.

Adding the X-Ray SDK for .NET to your application

Use NuGet to add the X-Ray SDK for .NET to your application.

To install the X-Ray SDK for .NET with NuGet package manager in Visual Studio

1. Choose Tools, NuGet Package Manager, Manage NuGet Packages for Solution.

2. Search for AWSXRayRecorder.

3. Choose the package, and then choose Install.

Dependency management

The X-Ray SDK for .NET is available from Nuget. Install the SDK using the package manager:

Install-Package AWSXRayRecorder -Version 2.10.1

The AWSXRayRecorder v2.10.1 nuget package has the following dependencies:

Requirements 472

https://docs.aws.amazon.com//xray-sdk-for-dotnet/latest/reference
https://docs.aws.amazon.com//xray-sdk-for-dotnetcore/latest/reference
https://www.nuget.org/packages/AWSXRayRecorder/

AWS X-Ray Developer Guide

NET Framework 4.5

AWSXRayRecorder (2.10.1)
|
|-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- AWSSDK.Core (>= 3.3.25.1)
|
|-- AWSXRayRecorder.Handlers.AspNet (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.AwsSdk (>= 2.8.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.EntityFramework (>= 1.1.1)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- EntityFramework (>= 6.2.0)
|
|-- AWSXRayRecorder.Handlers.SqlServer (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
|
|-- AWSXRayRecorder.Handlers.System.Net (>= 2.7.3)
 |-- AWSXRayRecorder.Core (>= 2.10.1)

NET Framework 2.0

AWSXRayRecorder (2.10.1)
|
|-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- AWSSDK.Core (>= 3.3.25.1)
| |-- Microsoft.AspNetCore.Http (>= 2.0.0)
| |-- Microsoft.Extensions.Configuration (>= 2.0.0)
| |-- System.Net.Http (>= 4.3.4)
|
|-- AWSXRayRecorder.Handlers.AspNetCore (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- Microsoft.AspNetCore.Http.Extensions (>= 2.0.0)
| |-- Microsoft.AspNetCore.Mvc.Abstractions (>= 2.0.0)
|
|-- AWSXRayRecorder.Handlers.AwsSdk (>= 2.8.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)

Dependency management 473

AWS X-Ray Developer Guide

|
|-- AWSXRayRecorder.Handlers.EntityFramework (>= 1.1.1)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- Microsoft.EntityFrameworkCore.Relational (>= 3.1.0)
|
|-- AWSXRayRecorder.Handlers.SqlServer (>= 2.7.3)
| |-- AWSXRayRecorder.Core (>= 2.10.1)
| |-- System.Data.SqlClient (>= 4.4.0)
|
|-- AWSXRayRecorder.Handlers.System.Net (>= 2.7.3)
 |-- AWSXRayRecorder.Core (>= 2.10.1)

For more details about dependency management, refer to Microsoft's documentation about Nuget
dependency and Nuget dependency resolution.

Configuring the X-Ray SDK for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can configure the X-Ray SDK for .NET with plugins to include information about the service
that your application runs on, modify the default sampling behavior, or add sampling rules that
apply to requests to specific paths.

For .NET web applications, add keys to the appSettings section of your Web.config file.

Example Web.config

<configuration>
 <appSettings>
 <add key="AWSXRayPlugins" value="EC2Plugin"/>
 <add key="SamplingRuleManifest" value="sampling-rules.json"/>
 </appSettings>

Configuration 474

https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/dependencies
https://docs.microsoft.com/en-us/dotnet/standard/library-guidance/dependencies
https://docs.microsoft.com/en-us/nuget/concepts/dependency-resolution
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

</configuration>

For .NET Core, create a file named appsettings.json with a top-level key named XRay.

Example .NET appsettings.json

{
 "XRay": {
 "AWSXRayPlugins": "EC2Plugin",
 "SamplingRuleManifest": "sampling-rules.json"
 }
}

Then, in your application code, build a configuration object and use it to initialize the X-Ray
recorder. Do this before you initialize the recorder.

Example .NET Core Program.cs – Recorder configuration

using Amazon.XRay.Recorder.Core;
...
AWSXRayRecorder.InitializeInstance(configuration);

If you are instrumenting a .NET Core web application, you can also pass the configuration object
to the UseXRay method when you configure the message handler. For Lambda functions, use the
InitializeInstance method as shown above.

For more information on the .NET Core configuration API, see Configure an ASP.NET Core App on
docs.microsoft.com.

Sections

• Plugins

• Sampling rules

• Logging (.NET)

• Logging (.NET Core)

• Environment variables

Plugins

Use plugins to add data about the service that is hosting your application.

Configuration 475

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.microsoft.com/en-us/aspnet/core/fundamentals/configuration/?tabs=basicconfiguration

AWS X-Ray Developer Guide

Plugins

• Amazon EC2 – EC2Plugin adds the instance ID, Availability Zone, and the CloudWatch Logs
Group.

• Elastic Beanstalk – ElasticBeanstalkPlugin adds the environment name, version label, and
deployment ID.

• Amazon ECS – ECSPlugin adds the container ID.

To use a plugin, configure the X-Ray SDK for .NET client by adding the AWSXRayPlugins setting.
If multiple plugins apply to your application, specify all of them in the same setting, separated by
commas.

Example Web.config - plugins

<configuration>
 <appSettings>
 <add key="AWSXRayPlugins" value="EC2Plugin,ElasticBeanstalkPlugin"/>
 </appSettings>
</configuration>

Example .NET Core appsettings.json – Plugins

{
 "XRay": {
 "AWSXRayPlugins": "EC2Plugin,ElasticBeanstalkPlugin"
 }
}

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional
requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Configuration 476

AWS X-Ray Developer Guide

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request each second, and five percent of any additional requests per host. This can
occur if the host doesn't have permission to call sampling APIs, or can't connect to the X-
Ray daemon, which acts as a TCP proxy for API calls made by the SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

On AWS Lambda, you cannot modify the sampling rate. If your function is called by an
instrumented service, calls that generated requests that were sampled by that service will be

Configuration 477

AWS X-Ray Developer Guide

recorded by Lambda. If active tracing is enabled and no tracing header is present, Lambda makes
the sampling decision.

To configure backup rules, tell the X-Ray SDK for .NET to load sampling rules from a file with the
SamplingRuleManifest setting.

Example .NET Web.config - sampling rules

<configuration>
 <appSettings>
 <add key="SamplingRuleManifest" value="sampling-rules.json"/>
 </appSettings>
</configuration>

Example .NET Core appsettings.json – Sampling rules

{
 "XRay": {
 "SamplingRuleManifest": "sampling-rules.json"
 }
}

To use only local rules, build the recorder with a LocalizedSamplingStrategy. If you have
backup rules configured, remove that configuration.

Example .NET global.asax – Local sampling rules

var recorder = new AWSXRayRecorderBuilder().WithSamplingStrategy(new
 LocalizedSamplingStrategy("samplingrules.json")).Build();
AWSXRayRecorder.InitializeInstance(recorder: recorder);

Example .NET Core Program.cs – Local sampling rules

var recorder = new AWSXRayRecorderBuilder().WithSamplingStrategy(new
 LocalizedSamplingStrategy("sampling-rules.json")).Build();
AWSXRayRecorder.InitializeInstance(configuration,recorder);

Configuration 478

AWS X-Ray Developer Guide

Logging (.NET)

The X-Ray SDK for .NET uses the same logging mechanism as the AWS SDK for .NET. If you already
configured your application to log AWS SDK for .NET output, the same configuration applies to
output from the X-Ray SDK for .NET.

To configure logging, add a configuration section named aws to your App.config file or
Web.config file.

Example Web.config - logging

...
<configuration>
 <configSections>
 <section name="aws" type="Amazon.AWSSection, AWSSDK.Core"/>
 </configSections>
 <aws>
 <logging logTo="Log4Net"/>
 </aws>
</configuration>

For more information, see Configuring Your AWS SDK for .NET Application in the AWS SDK for .NET
Developer Guide.

Logging (.NET Core)

The X-Ray SDK for .NET uses the same logging options as the AWS SDK for .NET.
To configure logging for .NET Core applications, pass the logging option to the
AWSXRayRecorder.RegisterLogger method.

For example, to use log4net, create a configuration file that defines the logger, the output format,
and the file location.

Example .NET Core log4net.config

<?xml version="1.0" encoding="utf-8" ?>
<log4net>
 <appender name="FileAppender" type="log4net.Appender.FileAppender,log4net">
 <file value="c:\logs\sdk-log.txt" />
 <layout type="log4net.Layout.PatternLayout">
 <conversionPattern value="%date [%thread] %level %logger - %message%newline" />

Configuration 479

https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-other.html#config-setting-awslogging
https://docs.aws.amazon.com/sdk-for-net/latest/developer-guide/net-dg-config.html
https://docs.aws.amazon.com/sdk-for-net/v3/developer-guide/net-dg-config-other.html#config-setting-awslogging

AWS X-Ray Developer Guide

 </layout>
 </appender>
 <logger name="Amazon">
 <level value="DEBUG" />
 <appender-ref ref="FileAppender" />
 </logger>
</log4net>

Then, create the logger and apply the configuration in your program code.

Example .NET Core Program.cs – Logging

using log4net;
using Amazon.XRay.Recorder.Core;

class Program
{
 private static ILog log;
 static Program()
 {
 var logRepository = LogManager.GetRepository(Assembly.GetEntryAssembly());
 XmlConfigurator.Configure(logRepository, new FileInfo("log4net.config"));
 log = LogManager.GetLogger(typeof(Program));
 AWSXRayRecorder.RegisterLogger(LoggingOptions.Log4Net);
 }
 static void Main(string[] args)
 {
 ...
 }
}

For more information on configuring log4net, see Configuration on logging.apache.org.

Environment variables

You can use environment variables to configure the X-Ray SDK for .NET. The SDK supports the
following variables.

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set on the servlet filter's segment naming strategy.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK uses 127.0.0.1:2000 for both trace data (UDP) and sampling (TCP). Use this variable

Configuration 480

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://logging.apache.org/log4net/release/manual/configuration.html

AWS X-Ray Developer Guide

if you have configured the daemon to listen on a different port or if it is running on a different
host.

Format

• Same port – address:port

• Different ports – tcp:address:port udp:address:port

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

Instrumenting incoming HTTP requests with the X-Ray SDK for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

Use a message handler to instrument incoming HTTP requests. When you add the X-Ray
message handler to your application, the X-Ray SDK for .NET creates a segment for each sampled

Incoming requests 481

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

request. This segment includes timing, method, and disposition of the HTTP request. Additional
instrumentation creates subsegments on this segment.

Note

For AWS Lambda functions, Lambda creates a segment for each sampled request. See AWS
Lambda and AWS X-Ray for more information.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

The message handler creates a segment for each incoming request with an http block that
contains the following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Sections

• Instrumenting incoming requests (.NET)

Incoming requests 482

AWS X-Ray Developer Guide

• Instrumenting incoming requests (.NET Core)

• Configuring a segment naming strategy

Instrumenting incoming requests (.NET)

To instrument requests served by your application, call RegisterXRay in the Init method of
your global.asax file.

Example global.asax - message handler

using System.Web.Http;
using Amazon.XRay.Recorder.Handlers.AspNet;

namespace SampleEBWebApplication
{
 public class MvcApplication : System.Web.HttpApplication
 {
 public override void Init()
 {
 base.Init();
 AWSXRayASPNET.RegisterXRay(this, "MyApp");
 }
 }
}

Instrumenting incoming requests (.NET Core)

To instrument requests served by your application, call UseXRay method before any other
middleware in the Configure method of your Startup class as ideally X-Ray middleware should
be the first middleware to process the request and last middleware to process the response in the
pipeline.

Note

For .NET Core 2.0, if you have a UseExceptionHandler method in the application, make
sure to call UseXRay after UseExceptionHandler method to ensure exceptions are
recorded.

Incoming requests 483

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_AspNet.htm

AWS X-Ray Developer Guide

Example Startup.cs

<caption>.NET Core 2.1 and above</caption>

using Microsoft.AspNetCore.Builder;

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 app.UseXRay("MyApp");
 // additional middleware
 ...
 }

<caption>.NET Core 2.0</caption>

using Microsoft.AspNetCore.Builder;

public void Configure(IApplicationBuilder app, IHostingEnvironment env)
 {
 app.UseExceptionHandler("/Error");
 app.UseXRay("MyApp");
 // additional middleware
 ...
 }

The UseXRay method can also take a configuration object as a second argument.

app.UseXRay("MyApp", configuration);

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

Incoming requests 484

AWS X-Ray Developer Guide

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
initialize the message handler, as shown in the previous section. This has the same effect as
creating a FixedSegmentNamingStrategy and passing it to the RegisterXRay method.

AWSXRayASPNET.RegisterXRay(this, new FixedSegmentNamingStrategy("MyApp"));

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

A dynamic naming strategy defines a pattern that hostnames should match, and a default name
to use if the hostname in the HTTP request does not match the pattern. To name segments
dynamically, create a DynamicSegmentNamingStrategy and pass it to the RegisterXRay
method.

AWSXRayASPNET.RegisterXRay(this, new DynamicSegmentNamingStrategy("MyApp",
 "*.example.com"));

Tracing AWS SDK calls with the X-Ray SDK for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

AWS SDK clients 485

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/T_Amazon_XRay_Recorder_Core_Strategies_FixedSegmentNamingStrategy.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/T_Amazon_XRay_Recorder_Core_Strategies_DynamicSegmentNamingStrategy.htm

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for .NET tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

You can instrument all of your AWS SDK for .NET clients by calling
RegisterXRayForAllServices before you create them.

Example SampleController.cs - DynamoDB client instrumentation

using Amazon;
using Amazon.Util;
using Amazon.DynamoDBv2;
using Amazon.DynamoDBv2.DocumentModel;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.AwsSdk;

namespace SampleEBWebApplication.Controllers
{
 public class SampleController : ApiController
 {
 AWSSDKHandler.RegisterXRayForAllServices();
 private static readonly Lazy<AmazonDynamoDBClient> LazyDdbClient = new
 Lazy<AmazonDynamoDBClient>(() =>
 {
 var client = new AmazonDynamoDBClient(EC2InstanceMetadata.Region ??
 RegionEndpoint.USEast1);
 return client;
 });

To instrument clients for some services and not others, call RegisterXRay instead of
RegisterXRayForAllServices. Replace the highlighted text with the name of the service's
client interface.

AWSSDKHandler.RegisterXRay<IAmazonDynamoDB>()

AWS SDK clients 486

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_AwsSdk.htm

AWS X-Ray Developer Guide

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

AWS SDK clients 487

AWS X-Ray Developer Guide

Tracing calls to downstream HTTP web services with the X-Ray SDK
for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to microservices or public HTTP APIs, you can use the X-Ray
SDK for .NET's GetResponseTraced extension method for System.Net.HttpWebRequest to
instrument those calls and add the API to the service graph as a downstream service.

Example HttpWebRequest

using System.Net;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.System.Net;

private void MakeHttpRequest()
{
 HttpWebRequest request = (HttpWebRequest)WebRequest.Create("http://names.example.com/
api");
 request.GetResponseTraced();
}

For asynchronous calls, use GetAsyncResponseTraced.

request.GetAsyncResponseTraced();

If you use system.net.http.httpclient, use the HttpClientXRayTracingHandler
delegating handler to record calls.

Example HttpClient

using System.Net.Http;

Outgoing HTTP calls 488

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_System_Net.htm
https://msdn.microsoft.com/en-us/library/system.net.http.httpclient.aspx

AWS X-Ray Developer Guide

using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.System.Net;

private void MakeHttpRequest()
{
 var httpClient = new HttpClient(new HttpClientXRayTracingHandler(new
 HttpClientHandler()));
 httpClient.GetAsync(URL);
}

When you instrument a call to a downstream web API, the X-Ray SDK for .NET records a
subsegment with information about the HTTP request and response. X-Ray uses the subsegment to
generate an inferred segment for the API.

Example Subsegment for a downstream HTTP call

{
 "id": "004f72be19cddc2a",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "name": "names.example.com",
 "namespace": "remote",
 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 }
}

Example Inferred segment for a downstream HTTP call

{
 "id": "168416dc2ea97781",
 "name": "names.example.com",
 "trace_id": "1-62be1272-1b71c4274f39f122afa64eab",
 "start_time": 1484786387.131,
 "end_time": 1484786387.501,
 "parent_id": "004f72be19cddc2a",

Outgoing HTTP calls 489

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_System_Net.htm

AWS X-Ray Developer Guide

 "http": {
 "request": {
 "method": "GET",
 "url": "https://names.example.com/"
 },
 "response": {
 "content_length": -1,
 "status": 200
 }
 },
 "inferred": true
}

Tracing SQL queries with the X-Ray SDK for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for .NET provides a wrapper class for System.Data.SqlClient.SqlCommand,
named TraceableSqlCommand, that you can use in place of SqlCommand. You can initialize an
SQL command with the TraceableSqlCommand class.

Tracing SQL queries with synchronous and asynchronous methods

The following examples show how to use the TraceableSqlCommand to automatically trace SQL
Server queries synchronously and asynchronously.

Example Controller.cs - SQL client instrumentation (synchronous)

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.SqlServer;

SQL queries 490

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_SqlServer.htm

AWS X-Ray Developer Guide

private void QuerySql(int id)
{
 var connectionString = ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var sqlCommand = new TraceableSqlCommand("SELECT " + id, sqlConnection))
 {
 sqlCommand.Connection.Open();
 sqlCommand.ExecuteNonQuery();
 }
}

You can execute the query asynchronously by using the ExecuteReaderAsync method.

Example Controller.cs - SQL client instrumentation (asynchronous)

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.SqlServer;
private void QuerySql(int id)
{
 var connectionString = ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var sqlCommand = new TraceableSqlCommand("SELECT " + id, sqlConnection))
 {
 await sqlCommand.ExecuteReaderAsync();
 }
}

Collecting SQL queries made to SQL Server

You can enable the capture of SqlCommand.CommandText as part of the subsegment created
by your SQL query. SqlCommand.CommandText appears as the field sanitized_query in the
subsegment JSON. By default, this feature is disabled for security.

Note

Do not enable the collection feature if you are including sensitive information as clear text
in your SQL queries.

You can enable the collection of SQL queries in two ways:

SQL queries 491

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_SqlServer.htm

AWS X-Ray Developer Guide

• Set the CollectSqlQueries property to true in the global configuration for your application.

• Set the collectSqlQueries parameter in the TraceableSqlCommand instance to true to
collect calls within the instance.

Enable the global CollectSqlQueries property

The following examples show how to enable the CollectSqlQueries property for .NET and .NET
Core.

.NET

To set the CollectSqlQueries property to true in the global configuration of your
application in .NET, modify the appsettings of your App.config or Web.config file, as
shown.

Example App.config Or Web.config – Enable SQL Query collection globally

<configuration>
<appSettings>
 <add key="CollectSqlQueries" value="true">
</appSettings>
</configuration>

.NET Core

To set the CollectSqlQueries property to true in the global configuration of your
application in .NET Core, modify your appsettings.json file under the X-Ray key, as shown.

Example appsettings.json – Enable SQL Query collection globally

{
 "XRay": {
 "CollectSqlQueries":"true"
 }
}

Enable the collectSqlQueries parameter

You can set the collectSqlQueries parameter in the TraceableSqlCommand instance to
true to collect the SQL query text for SQL Server queries made using that instance. Setting the

SQL queries 492

AWS X-Ray Developer Guide

parameter to false disables the CollectSqlQuery feature for the TraceableSqlCommand
instance.

Note

The value of collectSqlQueries in the TraceableSqlCommand instance overrides the
value set in the global configuration of the CollectSqlQueries property.

Example Example Controller.cs – Enable SQL Query collection for the instance

using Amazon;
using Amazon.Util;
using Amazon.XRay.Recorder.Core;
using Amazon.XRay.Recorder.Handlers.SqlServer;

private void QuerySql(int id)
{
 var connectionString = ConfigurationManager.AppSettings["RDS_CONNECTION_STRING"];
 using (var sqlConnection = new SqlConnection(connectionString))
 using (var command = new TraceableSqlCommand("SELECT " + id, sqlConnection,
 collectSqlQueries: true))
 {
 command.ExecuteNonQuery();
 }
}

Creating additional subsegments

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Custom subsegments 493

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm
https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Handlers_SqlServer.htm
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the BeginSubsegment and EndSubsegment methods. Perform
any work in the subsegment in a try block and use AddException to trace exceptions. Call
EndSubsegment in a finally block to ensure that the subsegment is closed.

Example Controller.cs – Custom subsegment

AWSXRayRecorder.Instance.BeginSubsegment("custom method");
try
{
 DoWork();
}
catch (Exception e)
{
 AWSXRayRecorder.Instance.AddException(e);
}
finally
{
 AWSXRayRecorder.Instance.EndSubsegment();
}

When you create a subsegment within a segment or another subsegment, the X-Ray SDK for .NET
generates an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

Custom subsegments 494

AWS X-Ray Developer Guide

Add annotations and metadata to segments with the X-Ray SDK
for .NET

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can record additional information about requests, the environment, or your application with
annotations and metadata. You can add annotations and metadata to the segments that the X-Ray
SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

Sections

• Recording annotations with the X-Ray SDK for .NET

• Recording metadata with the X-Ray SDK for .NET

Recording annotations with the X-Ray SDK for .NET

Use annotations to record information on segments or subsegments that you want indexed for
search.

The following are required for all annotations in X-Ray:

Annotations and metadata 495

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than a dot or period (.)

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations outside of a AWS Lambda function

1. Get an instance of AWSXRayRecorder.

using Amazon.XRay.Recorder.Core;
...
AWSXRayRecorder recorder = AWSXRayRecorder.Instance;

2. Call addAnnotation with a String key and a Boolean, Int32, Int64, Double, or String value.

recorder.AddAnnotation("mykey", "my value");

The following example shows how to call putAnnotation with a String key that includes a
dot, and a Boolean, Number, or String value.

document.putAnnotation("testkey.test", "my value");

To record annotations inside of a AWS Lambda function

Both segments and subsegments inside a Lambda function are managed by the Lambda runtime
environment. If you want to add an annotation to a segment or subsegment inside a Lambda
function, you must do the following:

1. Create the segment or subsegment inside the Lambda function.

2. Add the annotation to the segment or subsegment.

3. End the segment or subsegment.

The following code example shows you how to add an annotation to a subsegment inside a
Lambda function:

Annotations and metadata 496

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm

AWS X-Ray Developer Guide

#Create the subsegment
AWSXRayRecorder.Instance.BeginSubsegment("custom method");
#Add an annotation
AWSXRayRecorder.Instance.AddAnnotation("My", "Annotation");
try
{
 YourProcess(); #Your function
}
catch (Exception e)
{
 AWSXRayRecorder.Instance.AddException(e);
}
finally #End the subsegment
{
 AWSXRayRecorder.Instance.EndSubsegment();
}

The X-Ray SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling the addAnnotation operation twice with the same key overwrites a previously
recorded value on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotation[key] keyword in a
filter expression.

Recording metadata with the X-Ray SDK for .NET

Use metadata to record information on segments or subsegments that you don't need to index for
use inside a search. Metadata values can be strings, numbers, booleans, or any other object that
can be serialized into a JSON object or array.

To record metadata

1. Get an instance of AWSXRayRecorder, as shown in the following code example:

using Amazon.XRay.Recorder.Core;
...
AWSXRayRecorder recorder = AWSXRayRecorder.Instance;

2. Call AddMetadata with a string namespace, string key, and an object value, as shown in the
following code example:

Annotations and metadata 497

https://docs.aws.amazon.com/xray-sdk-for-dotnet/latest/reference/html/N_Amazon_XRay_Recorder_Core.htm

AWS X-Ray Developer Guide

recorder.AddMetadata("my namespace", "my key", "my value");

You can also call the AddMetadata operation using just a key and value pair, as shown in the
following code example:

recorder.AddMetadata("my key", "my value");

If you don't specify a value for the namespace, the X-Ray SDK uses default. Calling the
AddMetadata operation twice with the same key overwrites a previously recorded value on the
same segment or subsegment.

Annotations and metadata 498

AWS X-Ray Developer Guide

Working with Ruby

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

There are two ways to instrument your Ruby application to send traces to X-Ray:

• AWS Distro for OpenTelemetry Ruby – An AWS distribution that provides a set of open source
libraries for sending correlated metrics and traces to multiple AWS monitoring solutions,
including Amazon CloudWatch, AWS X-Ray, and Amazon OpenSearch Service, via the AWS Distro
for OpenTelemetry Collector.

• AWS X-Ray SDK for Ruby – A set of libraries for generating and sending traces to X-Ray via the X-
Ray daemon.

For more information, see Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs.

AWS Distro for OpenTelemetry Ruby

With the AWS Distro for OpenTelemetry (ADOT) Ruby, you can instrument your applications once
and send correlated metrics and traces to multiple AWS monitoring solutions including Amazon
CloudWatch, AWS X-Ray, and Amazon OpenSearch Service. Using X-Ray with ADOT requires
two components: an OpenTelemetry SDK enabled for use with X-Ray, and the AWS Distro for
OpenTelemetry Collector enabled for use with X-Ray.

To get started, see the AWS Distro for OpenTelemetry Ruby documentation.

For more information about using the AWS Distro for OpenTelemetry with AWS X-Ray and
other AWS services, see AWS Distro for OpenTelemetry or the AWS Distro for OpenTelemetry
Documentation.

AWS Distro for OpenTelemetry Ruby 499

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/collector
https://aws-otel.github.io/docs/getting-started/ruby-sdk
https://aws-otel.github.io/
https://aws-otel.github.io/docs/introduction
https://aws-otel.github.io/docs/introduction

AWS X-Ray Developer Guide

For more information about language support and usage, see AWS Observability on GitHub.

AWS X-Ray SDK for Ruby

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK is a library for Ruby web applications that provides classes and methods for
generating and sending trace data to the X-Ray daemon. Trace data includes information about
incoming HTTP requests served by the application, and calls that the application makes to
downstream services using the AWS SDK, HTTP clients, or an active record client. You can also
create segments manually and add debug information in annotations and metadata.

You can download the SDK by adding it to your gemfile and running bundle install.

Example Gemfile

gem 'aws-sdk'

If you use Rails, start by adding the X-Ray SDK middleware to trace incoming requests. A request
filter creates a segment. While the segment is open, you can use the SDK client's methods to add
information to the segment and create subsegments to trace downstream calls. The SDK also
automatically records exceptions that your application throws while the segment is open. For non-
Rails applications, you can create segments manually.

Next, use the X-Ray SDK to instrument your AWS SDK for Ruby, HTTP, and SQL clients by
configuring the recorder to patch the associated libraries. Whenever you make a call to a
downstream AWS service or resource with an instrumented client, the SDK records information
about the call in a subsegment. AWS services and the resources that you access within the services
appear as downstream nodes on the trace map to help you identify errors and throttling issues on
individual connections.

X-Ray SDK for Ruby 500

https://github.com/aws-observability
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Once you get going with the SDK, customize its behavior by configuring the recorder. You can add
plugins to record data about the compute resources running your application, customize sampling
behavior by defining sampling rules, and provide a logger to see more or less information from the
SDK in your application logs.

Record additional information about requests and the work that your application does in
annotations and metadata. Annotations are simple key-value pairs that are indexed for use with
filter expressions, so that you can search for traces that contain specific data. Metadata entries
are less restrictive and can record entire objects and arrays — anything that can be serialized into
JSON.

Annotations and Metadata

Annotations and metadata are arbitrary text that you add to segments with the X-Ray SDK.
Annotations are indexed for use with filter expressions. Metadata are not indexed, but can
be viewed in the raw segment with the X-Ray console or API. Anyone that you grant read
access to X-Ray can view this data.

When you have a lot of instrumented clients in your code, a single request segment can contain
a large number of subsegments, one for each call made with an instrumented client. You can
organize and group subsegments by wrapping client calls in custom subsegments. You can create
a custom subsegment for an entire function or any section of code, and record metadata and
annotations on the subsegment instead of writing everything on the parent segment.

For reference documentation for the SDK's classes and methods, see the AWS X-Ray SDK for Ruby
API Reference.

Requirements

The X-Ray SDK requires Ruby 2.3 or later and is compatible with the following libraries:

• AWS SDK for Ruby version 3.0 or later

• Rails version 5.1 or later

Requirements 501

https://docs.aws.amazon.com/xray-sdk-for-ruby/latest/reference
https://docs.aws.amazon.com/xray-sdk-for-ruby/latest/reference

AWS X-Ray Developer Guide

Configuring the X-Ray SDK for Ruby

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

The X-Ray SDK for Ruby has a class named XRay.recorder that provides the global recorder. You
can configure the global recorder to customize the middleware that creates segments for incoming
HTTP calls.

Sections

• Service plugins

• Sampling rules

• Logging

• Recorder configuration in code

• Recorder configuration with rails

• Environment variables

Service plugins

Use plugins to record information about the service hosting your application.

Plugins

• Amazon EC2 – ec2 adds the instance ID and Availability Zone.

• Elastic Beanstalk – elastic_beanstalk adds the environment name, version label, and
deployment ID.

• Amazon ECS – ecs adds the container ID.

Configuration 502

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

To use plugins, specify it in the configuration object that you pass to the recorder.

Example main.rb – Plugin configuration

my_plugins = %I[ec2 elastic_beanstalk]

config = {
 plugins: my_plugins,
 name: 'my app',
}

XRay.recorder.configure(config)

You can also use environment variables, which take precedence over values set in code, to
configure the recorder.

The SDK also uses plugin settings to set the origin field on the segment. This indicates the type
of AWS resource that runs your application. When you use multiple plugins, the SDK uses the
following resolution order to determine the origin: ElasticBeanstalk > EKS > ECS > EC2.

Sampling rules

The SDK uses the sampling rules you define in the X-Ray console to determine which requests to
record. The default rule traces the first request each second, and five percent of any additional

Configuration 503

AWS X-Ray Developer Guide

requests across all services sending traces to X-Ray. Create additional rules in the X-Ray console to
customize the amount of data recorded for each of your applications.

The SDK applies custom rules in the order in which they are defined. If a request matches multiple
custom rules, the SDK applies only the first rule.

Note

If the SDK can't reach X-Ray to get sampling rules, it reverts to a default local rule of the
first request each second, and five percent of any additional requests per host. This can
occur if the host doesn't have permission to call sampling APIs, or can't connect to the X-
Ray daemon, which acts as a TCP proxy for API calls made by the SDK.

You can also configure the SDK to load sampling rules from a JSON document. The SDK can use
local rules as a backup for cases where X-Ray sampling is unavailable, or use local rules exclusively.

Example sampling-rules.json

{
 "version": 2,
 "rules": [
 {
 "description": "Player moves.",
 "host": "*",
 "http_method": "*",
 "url_path": "/api/move/*",
 "fixed_target": 0,
 "rate": 0.05
 }
],
 "default": {
 "fixed_target": 1,
 "rate": 0.1
 }
}

This example defines one custom rule and a default rule. The custom rule applies a five-percent
sampling rate with no minimum number of requests to trace for paths under /api/move/. The
default rule traces the first request each second and 10 percent of additional requests.

Configuration 504

AWS X-Ray Developer Guide

The disadvantage of defining rules locally is that the fixed target is applied by each instance of the
recorder independently, instead of being managed by the X-Ray service. As you deploy more hosts,
the fixed rate is multiplied, making it harder to control the amount of data recorded.

To configure backup rules, define a hash for the document in the configuration object that you pass
to the recorder.

Example main.rb – Backup rule configuration

require 'aws-xray-sdk'
my_sampling_rules = {
 version: 1,
 default: {
 fixed_target: 1,
 rate: 0.1
 }
}
config = {
 sampling_rules: my_sampling_rules,
 name: 'my app',
}
XRay.recorder.configure(config)

To store the sampling rules independently, define the hash in a separate file and require the file to
pull it into your application.

Example config/sampling-rules.rb

my_sampling_rules = {
 version: 1,
 default: {
 fixed_target: 1,
 rate: 0.1
 }
}

Example main.rb – Sampling rule from a file

require 'aws-xray-sdk'
require 'config/sampling-rules.rb'

config = {

Configuration 505

AWS X-Ray Developer Guide

 sampling_rules: my_sampling_rules,
 name: 'my app',
}
XRay.recorder.configure(config)

To use only local rules, require the sampling rules and configure the LocalSampler.

Example main.rb – Local rule sampling

require 'aws-xray-sdk'
require 'aws-xray-sdk/sampling/local/sampler'

config = {
 sampler: LocalSampler.new,
 name: 'my app',
}
XRay.recorder.configure(config)

You can also configure the global recorder to disable sampling and instrument all incoming
requests.

Example main.rb – Disable sampling

require 'aws-xray-sdk'
config = {
 sampling: false,
 name: 'my app',
}
XRay.recorder.configure(config)

Logging

By default, the recorder outputs info-level events to $stdout. You can customize logging by
defining a logger in the configuration object that you pass to the recorder.

Example main.rb – Logging

require 'aws-xray-sdk'
config = {
 logger: my_logger,
 name: 'my app',
}

Configuration 506

https://ruby-doc.org/stdlib-2.4.2/libdoc/logger/rdoc/Logger.html

AWS X-Ray Developer Guide

XRay.recorder.configure(config)

Use debug logs to identify issues, such as unclosed subsegments, when you generate subsegments
manually.

Recorder configuration in code

Additional settings are available from the configure method on XRay.recorder.

• context_missing – Set to LOG_ERROR to avoid throwing exceptions when your instrumented
code attempts to record data when no segment is open.

• daemon_address – Set the host and port of the X-Ray daemon listener.

• name – Set a service name that the SDK uses for segments.

• naming_pattern – Set a domain name pattern to use dynamic naming.

• plugins – Record information about your application's AWS resources with plugins.

• sampling – Set to false to disable sampling.

• sampling_rules – Set the hash containing your sampling rules.

Example main.rb – Disable context missing exceptions

require 'aws-xray-sdk'
config = {
 context_missing: 'LOG_ERROR'
}

XRay.recorder.configure(config)

Recorder configuration with rails

If you use the Rails framework, you can configure options on the global recorder in a Ruby file
under app_root/initializers. The X-Ray SDK supports an additional configuration key for use
with Rails.

• active_record – Set to true to record subsegments for Active Record database transactions.

Configure the available settings in a configuration object named
Rails.application.config.xray.

Configuration 507

AWS X-Ray Developer Guide

Example config/initializers/aws_xray.rb

Rails.application.config.xray = {
 name: 'my app',
 patch: %I[net_http aws_sdk],
 active_record: true
}

Environment variables

You can use environment variables to configure the X-Ray SDK for Ruby. The SDK supports the
following variables:

• AWS_XRAY_TRACING_NAME – Set a service name that the SDK uses for segments. Overrides the
service name that you set on the servlet filter's segment naming strategy.

• AWS_XRAY_DAEMON_ADDRESS – Set the host and port of the X-Ray daemon listener. By default,
the SDK sends trace data to 127.0.0.1:2000. Use this variable if you have configured the
daemon to listen on a different port or if it is running on a different host.

• AWS_XRAY_CONTEXT_MISSING – Set to RUNTIME_ERROR to throw exceptions when your
instrumented code attempts to record data when no segment is open.

Valid Values

• RUNTIME_ERROR – Throw a runtime exception.

• LOG_ERROR – Log an error and continue (default).

• IGNORE_ERROR – Ignore error and continue.

Errors related to missing segments or subsegments can occur when you attempt to use an
instrumented client in startup code that runs when no request is open, or in code that spawns a
new thread.

Environment variables override values set in code.

Tracing incoming requests with the X-Ray SDK for Ruby middleware

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive

Incoming requests 508

AWS X-Ray Developer Guide

updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can use the X-Ray SDK to trace incoming HTTP requests that your application serves on an EC2
instance in Amazon EC2, AWS Elastic Beanstalk, or Amazon ECS.

If you use Rails, use the Rails middleware to instrument incoming HTTP requests. When you add
the middleware to your application and configure a segment name, the X-Ray SDK for Ruby creates
a segment for each sampled request. Any segments created by additional instrumentation become
subsegments of the request-level segment that provides information about the HTTP request and
response. This information includes timing, method, and disposition of the request.

Each segment has a name that identifies your application in the service map. The segment can be
named statically, or you can configure the SDK to name it dynamically based on the host header
in the incoming request. Dynamic naming lets you group traces based on the domain name in the
request, and apply a default name if the name doesn't match an expected pattern (for example, if
the host header is forged).

Forwarded Requests

If a load balancer or other intermediary forwards a request to your application, X-Ray takes
the client IP from the X-Forwarded-For header in the request instead of from the source
IP in the IP packet. The client IP that is recorded for a forwarded request can be forged, so
it should not be trusted.

When a request is forwarded, the SDK sets an additional field in the segment to indicate this. If the
segment contains the field x_forwarded_for set to true, the client IP was taken from the X-
Forwarded-For header in the HTTP request.

The middleware creates a segment for each incoming request with an http block that contains the
following information:

• HTTP method – GET, POST, PUT, DELETE, etc.

• Client address – The IP address of the client that sent the request.

Incoming requests 509

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

• Response code – The HTTP response code for the completed request.

• Timing – The start time (when the request was received) and end time (when the response was
sent).

• User agent — The user-agent from the request.

• Content length — The content-length from the response.

Using the rails middleware

To use the middleware, update your gemfile to include the required railtie.

Example Gemfile - rails

gem 'aws-xray-sdk', require: ['aws-xray-sdk/facets/rails/railtie']

To use the middleware, you must also configure the recorder with a name that represents the
application in the trace map.

Example config/initializers/aws_xray.rb

Rails.application.config.xray = {
 name: 'my app'
}

Instrumenting code manually

If you don't use Rails, create segments manually. You can create a segment for each incoming
request, or create segments around patched HTTP or AWS SDK clients to provide context for the
recorder to add subsegments.

Start a segment
segment = XRay.recorder.begin_segment 'my_service'
Start a subsegment
subsegment = XRay.recorder.begin_subsegment 'outbound_call', namespace: 'remote'

Add metadata or annotation here if necessary
my_annotations = {
 k1: 'v1',
 k2: 1024
}
segment.annotations.update my_annotations

Incoming requests 510

http://api.rubyonrails.org/classes/Rails/Railtie.html

AWS X-Ray Developer Guide

Add metadata to default namespace
subsegment.metadata[:k1] = 'v1'

Set user for the segment (subsegment is not supported)
segment.user = 'my_name'

End segment/subsegment
XRay.recorder.end_subsegment
XRay.recorder.end_segment

Configuring a segment naming strategy

AWS X-Ray uses a service name to identify your application and distinguish it from the other
applications, databases, external APIs, and AWS resources that your application uses. When the X-
Ray SDK generates segments for incoming requests, it records your application's service name in
the segment's name field.

The X-Ray SDK can name segments after the hostname in the HTTP request header. However, this
header can be forged, which could result in unexpected nodes in your service map. To prevent the
SDK from naming segments incorrectly due to requests with forged host headers, you must specify
a default name for incoming requests.

If your application serves requests for multiple domains, you can configure the SDK to use a
dynamic naming strategy to reflect this in segment names. A dynamic naming strategy allows the
SDK to use the hostname for requests that match an expected pattern, and apply the default name
to requests that don't.

For example, you might have a single application serving requests to three subdomains–
www.example.com, api.example.com, and static.example.com. You can use a dynamic
naming strategy with the pattern *.example.com to identify segments for each subdomain with
a different name, resulting in three service nodes on the service map. If your application receives
requests with a hostname that doesn't match the pattern, you will see a fourth node on the service
map with a fallback name that you specify.

To use the same name for all request segments, specify the name of your application when you
configure the recorder, as shown in the previous sections.

A dynamic naming strategy defines a pattern that hostnames should match, and a default
name to use if the hostname in the HTTP request doesn't match the pattern. To name segments
dynamically, specify a naming pattern in the config hash.

Incoming requests 511

AWS X-Ray Developer Guide

Example main.rb – Dynamic naming

config = {
 naming_pattern: '*mydomain*',
 name: 'my app',
}

XRay.recorder.configure(config)

You can use '*' in the pattern to match any string, or '?' to match any single character.

Note

You can override the default service name that you define in code with the
AWS_XRAY_TRACING_NAME environment variable.

Patching libraries to instrument downstream calls

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

To instrument downstream calls, use the X-Ray SDK for Ruby to patch the libraries that your
application uses. The X-Ray SDK for Ruby can patch the following libraries.

Supported Libraries

• net/http – Instrument HTTP clients.

• aws-sdk – Instrument AWS SDK for Ruby clients.

Patching libraries 512

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://ruby-doc.org/stdlib-2.4.2/libdoc/net/http/rdoc/Net/HTTP.html
https://aws.amazon.com/sdk-for-ruby

AWS X-Ray Developer Guide

When you use a patched library, the X-Ray SDK for Ruby creates a subsegment for the
call and records information from the request and response. A segment must be available
for the SDK to create the subsegment, either from the SDK middleware or a call to
XRay.recorder.begin_segment.

To patch libraries, specify them in the configuration object that you pass to the X-Ray recorder.

Example main.rb – Patch libraries

require 'aws-xray-sdk'

config = {
 name: 'my app',
 patch: %I[net_http aws_sdk]
}

XRay.recorder.configure(config)

Tracing AWS SDK calls with the X-Ray SDK for Ruby

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

When your application makes calls to AWS services to store data, write to a queue, or send
notifications, the X-Ray SDK for Ruby tracks the calls downstream in subsegments. Traced AWS
services and resources that you access within those services (for example, an Amazon S3 bucket or
Amazon SQS queue), appear as downstream nodes on the trace map in the X-Ray console.

The X-Ray SDK for Ruby automatically instruments all AWS SDK clients when you patch the aws-
sdk library. You cannot instrument individual clients.

AWS SDK clients 513

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

For all services, you can see the name of the API called in the X-Ray console. For a subset of
services, the X-Ray SDK adds information to the segment to provide more granularity in the service
map.

For example, when you make a call with an instrumented DynamoDB client, the SDK adds the table
name to the segment for calls that target a table. In the console, each table appears as a separate
node in the service map, with a generic DynamoDB node for calls that don't target a table.

Example Subsegment for a call to DynamoDB to save an item

{
 "id": "24756640c0d0978a",
 "start_time": 1.480305974194E9,
 "end_time": 1.4803059742E9,
 "name": "DynamoDB",
 "namespace": "aws",
 "http": {
 "response": {
 "content_length": 60,
 "status": 200
 }
 },
 "aws": {
 "table_name": "scorekeep-user",
 "operation": "UpdateItem",
 "request_id": "UBQNSO5AEM8T4FDA4RQDEB94OVTDRVV4K4HIRGVJF66Q9ASUAAJG",
 }
}

When you access named resources, calls to the following services create additional nodes in the
service map. Calls that don't target specific resources create a generic node for the service.

• Amazon DynamoDB – Table name

• Amazon Simple Storage Service – Bucket and key name

• Amazon Simple Queue Service – Queue name

AWS SDK clients 514

AWS X-Ray Developer Guide

Generating custom subsegments with the X-Ray SDK

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

Subsegments extend a trace's segment with details about work done in order to serve a request.
Each time you make a call with an instrumented client, the X-Ray SDK records the information
generated in a subsegment. You can create additional subsegments to group other subsegments,
to measure the performance of a section of code, or to record annotations and metadata.

To manage subsegments, use the begin_subsegment and end_subsegment methods.

subsegment = XRay.recorder.begin_subsegment name: 'annotations', namespace: 'remote'
my_annotations = { id: 12345 }
subsegment.annotations.update my_annotations
XRay.recorder.end_subsegment

To create a subsegment for a function, wrap it in a call to XRay.recorder.capture.

XRay.recorder.capture('name_for_subsegment') do |subsegment|
 resp = myfunc() # myfunc is your function
 subsegment.annotations.update k1: 'v1'
 resp
end

When you create a subsegment within a segment or another subsegment, the X-Ray SDK generates
an ID for it and records the start time and end time.

Example Subsegment with metadata

"subsegments": [{
 "id": "6f1605cd8a07cb70",
 "start_time": 1.480305974194E9,

Custom subsegments 515

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

 "end_time": 1.4803059742E9,
 "name": "Custom subsegment for UserModel.saveUser function",
 "metadata": {
 "debug": {
 "test": "Metadata string from UserModel.saveUser"
 }
 },

Add annotations and metadata to segments with the X-Ray SDK for
Ruby

Note

End-of-support notice – On February 25th, 2027, AWS X-Ray will discontinue support
for AWS X-Ray SDKs and daemon. After February 25th, 2027, you will no longer receive
updates or releases. For more information on the support timeline, see X-Ray SDK and
daemon end of support timeline. We recommend to migrate to OpenTelemetry. For more
information on migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to
OpenTelemetry instrumentation .

You can record additional information about requests, the environment, or your application with
annotations and metadata. You can add annotations and metadata to the segments that the X-Ray
SDK creates, or to custom subsegments that you create.

Annotations are key-value pairs with string, number, or Boolean values. Annotations are indexed
for use with filter expressions. Use annotations to record data that you want to use to group traces
in the console, or when calling the GetTraceSummaries API.

Metadata are key-value pairs that can have values of any type, including objects and lists, but are
not indexed for use with filter expressions. Use metadata to record additional data that you want
stored in the trace but don't need to use with search.

In addition to annotations and metadata, you can also record user ID strings on segments. User IDs
are recorded in a separate field on segments and are indexed for use with search.

Sections

• Recording annotations with the X-Ray SDK for Ruby

• Recording metadata with the X-Ray SDK for Ruby

Annotations and metadata 516

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/api/API_GetTraceSummaries.html

AWS X-Ray Developer Guide

• Recording user IDs with the X-Ray SDK for Ruby

Recording annotations with the X-Ray SDK for Ruby

Use annotations to record information on segments or subsegments that you want indexed for
search.

Annotation Requirements

• Keys – The key for an X-Ray annotation can have up to 500 alphanumeric characters. You cannot
use spaces or symbols other than a dot or period (.)

• Values – The value for an X-Ray annotation can have up to 1,000 Unicode characters.

• The number of Annotations – You can use up to 50 annotations per trace.

To record annotations

1. Get a reference to the current segment or subsegment from xray_recorder.

require 'aws-xray-sdk'
...
document = XRay.recorder.current_segment

or

require 'aws-xray-sdk'
...
document = XRay.recorder.current_subsegment

2. Call update with a hash value.

my_annotations = { id: 12345 }
document.annotations.update my_annotations

The following is an example that shows how to call update with an annotation key that
contains a dot.

my_annotations = { testkey.test: 12345 }
document.annotations.update my_annotations

Annotations and metadata 517

AWS X-Ray Developer Guide

The SDK records annotations as key-value pairs in an annotations object in the segment
document. Calling add_annotations twice with the same key overwrites previously recorded
values on the same segment or subsegment.

To find traces that have annotations with specific values, use the annotation[key] keyword in a
filter expression.

Recording metadata with the X-Ray SDK for Ruby

Use metadata to record information on segments or subsegments that you don't need indexed for
search. Metadata values can be strings, numbers, Booleans, or any object that can be serialized into
a JSON object or array.

To record metadata

1. Get a reference to the current segment or subsegment from xray_recorder.

require 'aws-xray-sdk'
...
document = XRay.recorder.current_segment

or

require 'aws-xray-sdk'
...
document = XRay.recorder.current_subsegment

2. Call metadata with a String key; a Boolean, Number, String, or Object value; and a String
namespace.

my_metadata = {
 my_namespace: {
 key: 'value'
 }
}
subsegment.metadata my_metadata

Calling metadata twice with the same key overwrites previously recorded values on the same
segment or subsegment.

Annotations and metadata 518

AWS X-Ray Developer Guide

Recording user IDs with the X-Ray SDK for Ruby

Record user IDs on request segments to identify the user who sent the request.

To record user IDs

1. Get a reference to the current segment from xray_recorder.

require 'aws-xray-sdk'
...
document = XRay.recorder.current_segment

2. Set the user field on the segment to a String ID of the user who sent the request.

segment.user = 'U12345'

You can set the user in your controllers to record the user ID as soon as your application starts
processing a request.

To find traces for a user ID, use the user keyword in a filter expression.

Annotations and metadata 519

AWS X-Ray Developer Guide

X-Ray SDK and daemon end of support timeline

The following table lists the dates and the level of support for X-Ray SDKs and daemon.

SDK and daemon
phase

Start date End date Support provided

General availability NA February 25th, 2026 X-Ray SDKs and
daemon are fully
supported. AWS
provides regular SDK
and daemon releases
that include bug and
security fixes.

Maintenance mode February 25th, 2026 February 25th, 2027 AWS will limit X-Ray
SDK and daemon
releases to address
only critical security
issues. No new
feature enhanceme
nts.

End of support February 25th, 2027 NA X-Ray SDKs and
daemon will no
longer receive
updates or releases.
All published releases
will continue to be
available through
public package
managers and the
code will remain on
GitHub.

520

AWS X-Ray Developer Guide

Before February 25th, 2027 we recommend that you migrate to OpenTelemetry solutions for
instrumenting your application and sending traces to AWS X-Ray. For more information on
migrating to OpenTelemetry, see Migrating from X-Ray instrumentation to OpenTelemetry
instrumentation .

521

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html

AWS X-Ray Developer Guide

Migrating from X-Ray instrumentation to OpenTelemetry
instrumentation

Note

The AWS X-Ray SDKs and daemon enter maintenance mode on February 25th, 2026 and
reach end of support on February 25th, 2027. After February 25th, 2027, you will no longer
receive updates or releases. For more information on the dates and the level of support for
X-Ray SDKs and daemon, see X-Ray SDK and daemon end of support timeline.

X-Ray is transitioning to OpenTelemetry (OTel) as its primary instrumentation standard for
application tracing and observability. This strategic shift aligns AWS with industry best practices
and offers customers a more comprehensive, flexible, and future-ready solution for their
observability needs. OpenTelemetry's wide adoption in the industry enables tracing of requests
across diverse systems, including those outside AWS that may not directly integrate with X-Ray.

This chapter provides recommendations for a smooth transition, and emphasizes the importance of
migrating to OpenTelemetry-based solutions to ensure continued support and access to the latest
features in application instrumentation and observability.

It is recommended to adopt OpenTelemetry as the observability solution for instrumenting your
application.

Topics

• Understanding OpenTelemetry

• Understanding OpenTelemetry concepts for migration

• Migration overview

• Migrating from X-Ray Daemon to AWS CloudWatch agent or OpenTelemetry collector

• Migrating to OpenTelemetry Java

• Migrate to OpenTelemetry Go

• Migrate to OpenTelemetry Node.js

• Migrate to OpenTelemetry .NET

• Migrate to OpenTelemetry Python

522

AWS X-Ray Developer Guide

• Migrate to OpenTelemetry Ruby

Understanding OpenTelemetry

OpenTelemetry is an industry-standard observability framework that provides standardized
protocols and tools for collecting telemetry data. It offers a unified approach to instrumenting,
generating, collecting, and exporting telemetry data such as metrics, logs, and traces.

When you migrate from X-Ray SDKs to OpenTelemetry, you get the following benefits:

• Enhanced framework and library instrumentation support

• Support for additional programming languages

• Automatic instrumentation capabilities

• Flexible sampling configuration options

• Unified collection of metrics, logs, and traces

The OpenTelemetry collector provides more options for data collection formats and export
destinations than the X-Ray daemon.

OpenTelemetry support in AWS

AWS provides multiple solutions for working with OpenTelemetry:

• AWS Distro for OpenTelemetry

Export OpenTelemetry traces as segments to X-Ray.

For more information, see AWS Distro for OpenTelemetry.

• CloudWatch Application Signals

Export customized OpenTelemetry traces and metrics to monitor application health.

For more information, see Working with Application Signals.

• CloudWatch OTel Endpoint

Export OpenTelemetry traces to X-Ray using the HTTP OTel endpoint with native OpenTelemetry
instrumentation.

Understanding OpenTelemetry 523

https://aws-otel.github.io/
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html

AWS X-Ray Developer Guide

For more information, see Using OTel endpoints.

Using OpenTelemetry with AWS CloudWatch

AWS CloudWatch supports OpenTelemetry traces through client-side application instrumentation
and native AWS CloudWatch services such as Application Signals, Trace, Map, Metrics, and Logs. For
more information, see OpenTelemetry.

Understanding OpenTelemetry concepts for migration

The following table maps X-Ray concepts to their OpenTelemetry equivalents. Understanding
these mappings helps you translate your existing X-Ray instrumentation to OpenTelemetry:

X-Ray concept OpenTelemetry concept

X-Ray Recorder Tracer Provider and Tracers

Service Plugins Resource Detector

Segment (Server) Span

Sub-segment (non-Server) Span

X-Ray Sampling Rules OpenTelemetry Sampling (Customizable)

X-Ray Emitter Span Exporter (Customizable)

Annotations/Metadata Attributes

Library Instrumentation Library Instrumentation

X-Ray Trace Context Span Context

X-Ray Trace Context Propagation W3C Trace Context Propagation

X-Ray Trace Sampling OpenTelemetry Trace Sampling

N/A Span Processing

Understanding OpenTelemetry concepts for migration 524

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-OTLPEndpoint.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-OpenTelemetry-Sections.html

AWS X-Ray Developer Guide

X-Ray concept OpenTelemetry concept

N/A Baggage

X-Ray Daemon OpenTelemetry Collector

Note

For more information about OpenTelemetry concepts, see the OpenTelemetry
documentation.

Comparing features

The following table shows which features are supported in both services. Use this information to
identify any gaps you need to address during migration:

Feature X-Ray instrumentation OpenTelemetry instrumen
tation

Library instrumentation Supported Supported

X-Ray sampling Supported Supported in OTel Java/.NET/
Go

Supported in ADOT Java/.NET
/Python/Node.js

X-Ray trace context propagati
on

Supported Supported

Resource detection Supported Supported

Segment annotations Supported Supported

Segment metadata Supported Supported

Zero-code auto-instrumentati
on

Supported in Java Supported in OTel Java/.NET/
Python/Node.js

Comparing features 525

https://opentelemetry.io/docs
https://opentelemetry.io/docs

AWS X-Ray Developer Guide

Feature X-Ray instrumentation OpenTelemetry instrumen
tation

Supported in ADOT Java/.NET
/Python/Node.js

Manually trace creation Supported Supported

Setting up and configuring tracing

To create traces in OpenTelemetry, you need a tracer. You get a tracer by initializing a Tracer
Provider in your application. This is similar to how you use the X-Ray Recorder to configure X-Ray
and create segments and subsegments in an X-Ray trace.

Note

The OpenTelemetry Tracer Provider offers more configuration options than the X-Ray
Recorder.

Understanding trace data structure

After understanding the basic concepts and feature mappings, you can learn about specific
implementation details like trace data structure and sampling.

OpenTelemetry uses spans instead of segments and subsegments to structure trace data. Each
span includes the following components:

• Name

• Unique ID

• Start and end timestamps

• Span kind

• Span context

• Attributes (key-value metadata)

• Events (timestamped logs)

• Links to other spans

Setting up and configuring tracing 526

AWS X-Ray Developer Guide

• Status information

• Parent span references

When you migrate to OpenTelemetry, your spans are automatically converted to X-Ray segments
or subsegments. This ensures your existing CloudWatch console experience remains unchanged.

Working with span attributes

The X-Ray SDK provides two ways to add data to segments and subsegments:

Annotations

Key-value pairs that are indexed for filtering and searching

Metadata

Key-value pairs containing complex data that isn't indexed for searching

By default, OpenTelemetry span attributes are converted to metadata in X-Ray raw data. To
convert specific attributes to annotations instead, add their keys to the aws.xray.annotations
attributes list.

• For more information about OpenTelemetry concepts, see OpenTelemetry Traces

• For details about how OpenTelemetry data maps to X-Ray data, see OpenTelemetry to X-Ray
data model translation

Detecting resources in your environment

OpenTelemetry uses Resource Detectors to collect metadata about the resources that generate
telemetry data. This metadata is stored as Resource Attributes. For example, an entity producing
telemetry could be an Amazon ECS cluster or an Amazon EC2 instance, and the Resource Attributes
that can be recorded from these entities can include the Amazon ECS Cluster ARN or Amazon EC2
Instance ID.

• For information about supported resource types, see OpenTelemetry Resource Semantic
Conventions

• For information about X-Ray service plugins, see Configuring the X-Ray SDK

Detecting resources in your environment 527

https://opentelemetry.io/docs/concepts/signals/traces/
https://aws-otel.github.io/docs/getting-started/X-Ray#otel-to-X-Ray-data-model-translation-behavior-of-aws-X-Ray-exporter
https://aws-otel.github.io/docs/getting-started/X-Ray#otel-to-X-Ray-data-model-translation-behavior-of-aws-X-Ray-exporter
https://opentelemetry.io/docs/reference/specification/resource/semantic_conventions/
https://opentelemetry.io/docs/reference/specification/resource/semantic_conventions/
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python-configuration.html

AWS X-Ray Developer Guide

Managing sampling strategies

Trace sampling helps you manage costs by collecting data from a representative subset of requests
instead of all requests. Both OpenTelemetry and X-Ray support sampling, but implement it
differently.

Note

Sampling fewer than 100% of traces reduces your observability costs while maintaining
meaningful insights into your application's performance.

OpenTelemetry provides several built-in sampling strategies and lets you create custom ones. You
can also configure an X-Ray Remote Sampler in some SDK languages to use X-Ray sampling rules
with OpenTelemetry.

The additional sampling strategies from OpenTelemetry are:

• Parent-based Sampling – Respects the parent span's sampling decision before applying
additional sampling strategies

• Trace ID Ratio Based Sampling – >Randomly samples a specified percentage of spans

• Tail sampling – Applies sampling rules to complete traces in the OpenTelemetry Collector

• Custom samplers – Implement your own sampling logic using the sampling interface

For information about X-Ray sampling rules, see Sampling rules in the X-Ray console

For information about OpenTelemetry tail sampling, see Tail sampling processor

Managing trace context

X-Ray SDKs manage the Segment Context to correctly handle parent-child relationships between
Segments and Subsegments in a trace. OpenTelemetry uses a similar mechanism to ensure that
spans have the correct parent span. It stores and propagates tracing data throughout a request
context. For example, when your application processes a request and creates a server span to
represent that request, OpenTelemetry will store the server span in the OpenTelemetry Context
so that when a child span is created, that child span can reference the span in the Context as its
parent.

Managing sampling strategies 528

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://github.com/open-telemetry/opentelemetry-collector-contrib/tree/main/processor/tailsamplingprocessor

AWS X-Ray Developer Guide

Propagating trace context

Both X-Ray and OpenTelemetry use HTTP headers to propagate trace context across services. This
allows you to link trace data generated by different services and maintain sampling decisions.

The X-Ray SDK automatically propagates trace context using the X-Ray trace header. When one
service calls another, the trace header contains the context needed to maintain parent-child
relationships between traces.

OpenTelemetry supports multiple trace header formats for context propagation, including:

• W3C Trace Context (default)

• X-Ray trace header

• Other custom formats

Note

You can configure OpenTelemetry to use one or more header formats. For example, use the
X-Ray Propagator to send trace context to AWS services that support X-Ray tracing.

Configure and use the X-Ray Propagator to enable tracing across AWS services. This allows you to
propagate trace context to API Gateway endpoints and other services that support X-Ray.

• For information about X-Ray trace headers, see Tracing header in the X-Ray Developer Guide

• For information about OpenTelemetry context propagation, see Context and Context
Propagation in the OpenTelemetry documentation

Using library instrumentation

Both X-Ray and OpenTelemetry provide library instrumentation that requires minimal code
changes to add tracing to your applications.

X-Ray provides library instrumentation functionalities. This allows you to add pre-built X-Ray
instrumentations with minimal application code changes. These instrumentations support specific
libraries like the AWS SDK and HTTP Clients, as well as web frameworks like Spring Boot or
Express.js.

Propagating trace context 529

https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-tracingheader
https://opentelemetry.io/docs/concepts/context-propagation/
https://opentelemetry.io/docs/concepts/context-propagation/

AWS X-Ray Developer Guide

OpenTelemetry's instrumentation libraries generate detailed spans for your libraries through
library hooks or automatic code modification, requiring minimal code changes.

To determine if OpenTelemetry's Library Instrumentations supports your library, search for it in the
OpenTelemetry Registry at OpenTelemetry Registry.

Exporting traces

X-Ray and OpenTelemetry use different methods to export trace data.

X-Ray trace export

The X-Ray SDKs use an emitter to send trace data:

• Sends segments and subsegments to the X-Ray Daemon

• Uses UDP for non-blocking I/O

• Configured by default in the SDK

OpenTelemetry trace export

OpenTelemetry uses configurable Span Exporters to send trace data:

• Uses http/protobuf or grpc protocols

• Exports spans to endpoints monitored by the OpenTelemetry Collector or CloudWatch Agent

• Allows for custom exporter configurations

Processing and forwarding traces

Both X-Ray and OpenTelemetry provide components to receive, process, and forward trace data.

X-Ray trace processing

The X-Ray Daemon handles trace processing:

• Listens for UDP traffic from X-Ray SDKs

• Batches segments and subsegments

• Uploads batches to the X-Ray service

Exporting traces 530

https://opentelemetry.io/ecosystem/registry/

AWS X-Ray Developer Guide

OpenTelemetry trace processing

The OpenTelemetry Collector handles trace processing:

• Receives traces from instrumented services

• Processes and optionally modifies trace data

• Sends processed traces to various backends, including X-Ray

Note

The AWS CloudWatch Agent can also receive and send OpenTelemetry traces to X-Ray. For
more information, see Collect metrics and traces with OpenTelemetry.

Span processing (OpenTelemetry-specific concept)

OpenTelemetry uses Span Processors to modify spans as they're created:

• Allows reading and modifying spans at creation or completion

• Enables custom logic for span handling

Baggage (OpenTelemetry-soecific concept)

OpenTelemetry's Baggage feature allows propagation of key-value data:

• Enables passing arbitrary data alongside trace context

• Useful for propagating application-specific information across service boundaries

For information about the OpenTelemetry Collector, see OpenTelemetry Collector

For information about X-Ray concepts, see X-Ray concepts in the X-Ray Developer Guide

Migration overview

This section provides an overview of the code changes required for migration. The list below are
language-specific guidance and X-Ray Daemon migration steps.

Span processing (OpenTelemetry-specific concept) 531

AmazonCloudWatch/latest/monitoring/CloudWatch-Agent-OpenTelemetry-metrics.html
https://opentelemetry.io/docs/collector/
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html

AWS X-Ray Developer Guide

Important

To fully migrate from X-Ray instrumentation to OpenTelemetry instrumentation, you need
to:

1. Replace X-Ray SDK usage with an OpenTelemetry solution

2. Replace the X-Ray Daemon with the CloudWatch Agent or OpenTelemetry Collector
(with X-Ray Exporter)

• Migrating to OpenTelemetry Java

• Migrate to OpenTelemetry Go

• Migrate to OpenTelemetry Node.js

• Migrate to OpenTelemetry .NET

• Migrate to OpenTelemetry Python

• Migrate to OpenTelemetry Ruby

Recommendations for new and existing applications

For new and existing applications, it is recommended to use the following solutions to enable
tracing in your applications:

Instrumentation

• OpenTelemetry SDKs

• AWS Distro for OpenTelemetry Instrumentation

Data Collection

• OpenTelemetry Collector

• CloudWatch Agent

After migrating to OpenTelemetry-based solutions, your CloudWatch experience will remain the
same. You will still be able to view your traces in the same format in the CloudWatch console’s
Traces and Trace Map pages, or retrieve your trace data through the X-Ray APIs.

Recommendations for new and existing applications 532

https://docs.aws.amazon.com/xray/latest/devguide/xray-api.html

AWS X-Ray Developer Guide

Tracing setup changes

You need to replace the X-Ray setup with an OpenTelemetry setup.

Comparison of X-Ray and OpenTelemetry setup

Feature X-Ray SDK OpenTelemetry

Default configurations • X-Ray Centralized Sampling

• X-Ray Trace Context
propagation

• Trace Export to X-Ray
Daemon

• Exporting traces to
OpenTelemetry Collector or
CloudWatch Agent (HTTP/
gRPC)

• W3C Trace Context
propagation

Manual configurations • Local sampling rules

• Resource detection plug-ins

• X-Ray Sampling (may
not be available for all
languages)

• Resource detection

• X-Ray Trace Context
propagation

Library instrumentation changes

Update your code to use OpenTelemetry Library Instrumentation instead of X-Ray Library
Instrumentation for AWS SDK, HTTP Clients, Web Frameworks, and other libraries. This generates
OpenTelemetry Traces instead of X-Ray Traces.

Note

Code changes vary by language and library. Refer to the language-specific migration guides
for detailed instructions.

Lambda environment instrumentation changes

To use OpenTelemetry in your Lambda functions, choose one of these setup options:

Tracing setup changes 533

AWS X-Ray Developer Guide

1. Use an auto-instrumentation Lambda Layer:

• (Recommended) CloudWatch Application Signals Lambda layer

Note

To use only tracing, set the Lambda environment variable
OTEL_AWS_APPLICATION_SIGNALS_ENABLED=false.

• AWS managed Lambda Layer for ADOT

2. Manually set up OpenTelemetry for your Lambda function:

• Configure a Simple Span Processor with an X-Ray UDP Span Exporter

• Set up an X-Ray Lambda propagator

Manually creating trace data

Replace X-Ray segments and sub-segments with OpenTelemetry Spans:

• Use an OpenTelemetry Tracer to create Spans

• Add attributes to Spans (equivalent to X-Ray metadata and annotations)

Important

When sent to X-Ray:

• Server Spans convert to X-Ray segments

• Other Spans convert to X-Ray sub-segments

• Attributes convert to metadata by default

To convert an attribute to an annotation, add its key to the aws.xray.annotations attribute
list. For more information, see Enable Customized X-Ray Annotations.

Manually creating trace data 534

AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Signals-Enable-LambdaMain.html
https://aws-otel.github.io/docs/getting-started/lambda
https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations

AWS X-Ray Developer Guide

Migrating from X-Ray Daemon to AWS CloudWatch agent or
OpenTelemetry collector

You can use either the CloudWatch agent or OpenTelemetry collector to receive traces from your
instrumented applications and send them to X-Ray.

Note

The CloudWatch agent version 1.300025.0 and later can collect OpenTelemetry traces.
Using the CloudWatch agent instead of the X-Ray Daemon reduces the number of agents
you need to manage. For more information, see Collecting metrics, logs, and traces with
the CloudWatch agent.

Sections

• Migrating on Amazon EC2 or on-premises servers

• Migrating on Amazon ECS

• Migrating on Elastic Beanstalk

Migrating on Amazon EC2 or on-premises servers

Important

Stop the X-Ray Daemon process before using the CloudWatch agent or OpenTelemetry
collector to prevent port conflicts.

Existing X-Ray Daemon setup

Installing the daemon

Your existing X-Ray Daemon usage was installed using one of these methods:

Manual installation

Download and run the executable file from the X-Ray daemon Amazon S3 bucket.

Migrating from X-Ray Daemon to AWS CloudWatch agent or OpenTelemetry collector 535

AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html
AmazonCloudWatch/latest/monitoring/Install-CloudWatch-Agent.html

AWS X-Ray Developer Guide

Automatic installation

Use this script to install the daemon when launching an instance:

#!/bin/bash
curl https://s3.us-east-2.amazonaws.com/aws-xray-assets.us-east-2/xray-daemon/aws-
xray-daemon-3.x.rpm \
 -o /home/ec2-user/xray.rpm
yum install -y /home/ec2-user/xray.rpm

Configuring the daemon

Your existing X-Ray Daemon usage was configured using either:

• Command line arguments

• Configuration file (xray-daemon.yaml)

Example Using a configuration file

./xray -c ~/xray-daemon.yaml

Running the daemon

Your existing X-Ray Daemon usage was started with the following command:

~/xray-daemon$./xray -o -n us-east-1

Removing the daemon

To remove the X-Ray Daemon from your Amazon EC2 instance:

1. Stop the daemon service:

systemctl stop xray

2. Delete the configuration file:

rm ~/path/to/xray-daemon.yaml

3. If configured, remove the log file:

Migrating on Amazon EC2 or on-premises servers 536

AWS X-Ray Developer Guide

Note

The log file location depends on your configuration:

• Command line configuration: /var/log/xray-daemon.log

• Configuration file: Check the LogPath setting

Setting up the CloudWatch agent

Installing the agent

For installation instructions, see Installing the CloudWatch agent on an on-premises server.

Configuring the agent

1. Create a configuration file to enable trace collection. For more information, see Creating the
CloudWatch agent configuration file.

2. Set up IAM permissions:

• Attach an IAM role or specify credentials for the agent. For more information, see Setting up
IAM roles.

• Make sure the role or credentials include the xray:PutTraceSegments permission.

Starting the agent

For instructions to start the agent, see Starting the CloudWatch agent using the command line.

Setting up the OpenTelemetry collector

Installing the collector

Download and install the OpenTelemetry collector for your operating system. For instructions, see
Installing the collector.

Configuring the collector

Configure the following components in your collector:

• awsproxy extension

Migrating on Amazon EC2 or on-premises servers 537

AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html#install-CloudWatch-Agent-iam_user-first
AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file.html
AmazonCloudWatch/latest/monitoring/create-cloudwatch-agent-configuration-file.html
AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html#install-CloudWatch-Agent-iam_permissions-first
AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html#install-CloudWatch-Agent-iam_permissions-first
AmazonCloudWatch/latest/monitoring/install-CloudWatch-Agent-commandline-fleet.html#start-CloudWatch-Agent-EC2-commands-fleet
https://opentelemetry.io/docs/collector/installation/

AWS X-Ray Developer Guide

Required for X-Ray sampling

• OTel receivers

Collects traces from your application

• xray exporter

Sends traces to X-Ray

Example Sample collector configuration — otel-collector-config.yaml

extensions:
 awsproxy:
 endpoint: 127.0.0.1:2000
 health_check:

receivers:
 otlp:
 protocols:
 grpc:
 endpoint: 127.0.0.1:4317
 http:
 endpoint: 127.0.0.1:4318

processors:
 batch:

exporters:
 awsxray:
 region: 'us-east-1'

service:
 pipelines:
 traces:
 receivers: [otlp]
 exporters: [awsxray]
 extensions: [awsproxy, health_check]

Migrating on Amazon EC2 or on-premises servers 538

AWS X-Ray Developer Guide

Important

Configure AWS credentials with the xray:PutTraceSegments permission. For more
information, see Specifying credentials.

Starting the collector

Run the collector with your configuration file:

otelcol --config=otel-collector-config.yaml

Migrating on Amazon ECS

Important

Your task role must have the xray:PutTraceSegments permission for any collector you
use.
Stop any existing X-Ray Daemon container before running the CloudWatch agent or
OpenTelemetry collector container on the same host to prevent port conflicts.

Using the CloudWatch agent

1. Get the Docker image from Amazon ECR Public Gallery.

2. Create a configuration file named cw-agent-otel.json:

{
 "traces": {
 "traces_collected": {
 "xray": {
 "tcp_proxy": {
 "bind_address": "0.0.0.0:2000"
 }
 },
 "otlp": {
 "grpc_endpoint": "0.0.0.0:4317",
 "http_endpoint": "0.0.0.0:4318"
 }

Migrating on Amazon ECS 539

sdk-for-go/v1/developer-guide/configuring-sdk.html#specifying-credentials
https://gallery.ecr.aws/cloudwatch-agent/cloudwatch-agent

AWS X-Ray Developer Guide

 }
 }
}

3. Store the configuration in Systems Manager Parameter Store:

1. Open the https://console.aws.amazon.com/systems-manager/

2. Choose Create parameter

3. Enter the following values:

• Name: /ecs/cwagent/otel-config

• Tier: Standard

• Type: String

• Data type: Text

• Value: [Paste the cw-agent-otel.json configuration here]

4. Create a task definition using bridge network mode:

In your task definition, the configuration depends on the networking mode that you use.
Bridge networking is the default and can be used in your default VPC. In a bridge network,
set the OTEL_EXPORTER_OTLP_TRACES_ENDPOINTenvironment variable to tell the
OpenTelemetry SDK what the endpoint and port are for the CloudWatch agent. You should
also create a link from your application container to the Collector container for traces to be
sent from the OpenTelemetry SDK in your application to the Collector container.

Example CloudWatch agent task definition

{
 "containerDefinitions": [
 {
 "name": "cwagent",
 "image": "public.ecr.aws/cloudwatch-agent/cloudwatch-agent:latest",
 "portMappings": [
 {
 "containerPort": 4318,
 "hostPort": 4318,
 "protocol": "tcp"
 },
 {
 "containerPort": 4317,
 "hostPort": 4317,

Migrating on Amazon ECS 540

https://console.aws.amazon.com/systems-manager/

AWS X-Ray Developer Guide

 "protocol": "tcp"
 },
 {
 "containerPort": 2000,
 "hostPort": 2000,
 "protocol": "tcp"
 }
],
 "secrets": [
 {
 "name": "CW_CONFIG_CONTENT",
 "valueFrom": "/ecs/cwagent/otel-config"
 }
]
 },
 {
 "name": "application",
 "image": "APPLICATION_IMAGE",
 "links": ["cwagent"],
 "environment": [
 {
 "name": "OTEL_EXPORTER_OTLP_TRACES_ENDPOINT",
 "value": "http://cwagent:4318/v1/traces"
 }
]
 }
]
}

For more information, see Deploying the CloudWatch agent to collect Amazon EC2 instance-level
metrics on Amazon ECS .

Using the OpenTelemetry collector

1. Get the Docker image otel/opentelemetry-collector-contrib from Docker Hub.

2. Create a configuration file called otel-collector-config.yaml using the same content as
shown in the Amazon EC2 configuring the collector section, but update the endpoints to use
0.0.0.0 instead of 127.0.0.1.

3. To use this configuration in Amazon ECS, you can store the configuration in Systems Manager
Parameter Store. First, go to Systems Manager Parameter Store console, and choose Create new
parameter . Create a new parameter with the following information:

Migrating on Amazon ECS 541

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-instancelevel.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/deploy-container-insights-ECS-instancelevel.html
https://hub.docker.com/r/otel/opentelemetry-collector-contrib

AWS X-Ray Developer Guide

• Name: /ecs/otel/config (this name will be referenced in the Task Definition for the Collector)

• Tier: Standard

• Type: String

• Data type: Text

• Value: [Paste the otel-collector-config.yaml configuration here]

4. Create a task definition to deploy the OpenTelemetry collector using the bridge network mode
as an example.

In the task definition, the configuration depends on the networking mode that you use. Bridge
networking is the default and can be used in your default VPC. In a bridge network, set the
OTEL_EXPORTER_OTLP_TRACES_ENDPOINT environment variable to tell the OpenTelemetry
SDK what the endpoint and port are for the OpenTelemetry Collector. You should also create
a link from your application container to the Collector container for traces to be sent from the
OpenTelemetry SDK in your application to the Collector container.

Example OpenTelemetry collector task definition

{
 "containerDefinitions": [
 {
 "name": "otel-collector",
 "image": "otel/opentelemetry-collector-contrib",
 "portMappings": [
 {
 "containerPort": 2000,
 "hostPort": 2000
 },
 {
 "containerPort": 4317,
 "hostPort": 4317
 },
 {
 "containerPort": 4318,
 "hostPort": 4318
 }
],
 "command": [
 "--config",
 "env:SSM_CONFIG"
],

Migrating on Amazon ECS 542

AWS X-Ray Developer Guide

 "secrets": [
 {
 "name": "SSM_CONFIG",
 "valueFrom": "/ecs/otel/config"
 }
]
 },
 {
 "name": "application",
 "image": "APPLICATION_IMAGE",
 "links": ["otel-collector"],
 "environment": [
 {
 "name": "OTEL_EXPORTER_OTLP_TRACES_ENDPOINT",
 "value": "http://otel-collector:4318/v1/traces"
 }
]
 }
]
}

Migrating on Elastic Beanstalk

Important

Stop the X-Ray Daemon process before using the CloudWatch agent to prevent port
conflicts.

Your existing X-Ray Daemon integration was turned on by using the Elastic Beanstalk console, or by
configuring X-Ray Daemon in your application source code with a configuration file.

Using the CloudWatch agent

On the Amazon Linux 2 platform, configure the CloudWatch agent using an .ebextensions
configuration file:

1. Create a directory named .ebextensions in your project root

2. Create a file named cloudwatch.config within the .ebextensions directory with the
following content:

Migrating on Elastic Beanstalk 543

AWS X-Ray Developer Guide

files:
 "/opt/aws/amazon-cloudwatch-agent/etc/config.json":
 mode: "0644"
 owner: root
 group: root
 content: |
 {
 "traces": {
 "traces_collected": {
 "otlp": {
 "grpc_endpoint": "12.0.0.1:4317",
 "http_endpoint": "12.0.0.1:4318"
 }
 }
 }
 }
container_commands:
 start_agent:
 command: /opt/aws/amazon-cloudwatch-agent/bin/amazon-cloudwatch-agent-ctl -a
 append-config -c file:/opt/aws/amazon-cloudwatch-agent/etc/config.json -s

3. Include the .ebextensions directory in your application source bundle when you deploy

For more information about Elastic Beanstalk configuration files, see Advanced environment
customization with configuration files.

Migrating to OpenTelemetry Java

This section provides guidance on migrating from the X-Ray SDK to the OpenTelemetry SDK for
Java applications.

Sections

• Zero code automatic instrumentation solution

• Manual instrumentation solutions with the SDK

• Tracing incoming requests (spring framework instrumentation)

• AWS SDK v2 instrumentation

• Instrumenting outgoing HTTP calls

• Instrumentation support for other libraries

Migrating to OpenTelemetry Java 544

elasticbeanstalk/latest/dg/ebextensions.html
elasticbeanstalk/latest/dg/ebextensions.html

AWS X-Ray Developer Guide

• Manually creating trace data

• Lambda instrumentation

Zero code automatic instrumentation solution

With X-Ray Java agent

To enable the X-Ray Java agent, your application's JVM arguments were required to be
modified.

-javaagent:/path-to-disco/disco-java-agent.jar=pluginPath=/path-to-disco/disco-
plugins

With OpenTelemetry-based Java agent

To use OpenTelemetry-based Java agents.

• Use the AWS Distro for OpenTelemetry (ADOT) Auto-Instrumentation Java agent for
automatic instrumentation with the ADOT Java agent. For more information, see Auto-
Instrumentation for Traces and Metrics with the Java agent. If you only want tracing, disable
the OTEL_METRICS_EXPORTER=none environment variable. to export metrics from the
Java agent.

(Optional) You can also enable CloudWatch Application Signals when automatically
instrumenting your applications on AWS with the ADOT Java auto-instrumentation to
monitor current application health and track long-term application performance. Application
Signals provides an unified, application-centric view of your applications, services, and
dependencies, and helps monitor and triage application health. For more information, see
Application Signals.

• Use the OpenTelemetry Java agent for automatic instrumentation. For more information, see
Zero-code instrumentation with the Java Agent.

Manual instrumentation solutions with the SDK

Tracing setup with X-Ray SDK

To instrument your code with the X-Ray SDK for Java, first, the AWSXRay class was required to
be configured with service plug-ins and local sampling rules, then a provided recorder was used.

Zero code automatic instrumentation solution 545

https://aws-otel.github.io/docs/getting-started/java-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/java-sdk/auto-instr
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://opentelemetry.io/docs/zero-code/java/agent/

AWS X-Ray Developer Guide

static {
 AWSXRayRecorderBuilder builder =
 AWSXRayRecorderBuilder.standard().withPlugin(new EC2Plugin()).withPlugin(new
 ECSPlugin());
 AWSXRay.setGlobalRecorder(builder.build());
}

Tracing setup with OpenTelemetry SDK

The following dependencies are required.

<dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-bom</artifactId>
 <version>1.49.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 <dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-instrumentation-bom</artifactId>
 <version>2.15.0</version>
 <type>pom</type>
 <scope>import</scope>
 </dependency>
 </dependencies>
 </dependencyManagement>
 <dependencies>
 <dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-sdk</artifactId>
 </dependency>
 <dependency>
 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-api</artifactId>
 </dependency>
 <dependency>
 <groupId>io.opentelemetry.semconv</groupId>
 <artifactId>opentelemetry-semconv</artifactId>
 </dependency>
 <dependency>

Manual instrumentation solutions with the SDK 546

AWS X-Ray Developer Guide

 <groupId>io.opentelemetry</groupId>
 <artifactId>opentelemetry-exporter-otlp</artifactId>
 </dependency>
 <dependency>
 <groupId>io.opentelemetry.contrib</groupId>
 <artifactId>opentelemetry-aws-xray</artifactId>
 <version>1.46.0</version>
 </dependency>
 <dependency>
 <groupId>io.opentelemetry.contrib</groupId>
 <artifactId>opentelemetry-aws-xray-propagator</artifactId>
 <version>1.46.0-alpha</version>
 </dependency>
 <dependency>
 <groupId>io.opentelemetry.contrib</groupId>
 <artifactId>opentelemetry-aws-resources</artifactId>
 <version>1.46.0-alpha</version>
 </dependency>
 </dependencies>

Configure the OpenTelemetry SDK by instantiating a TracerProvider and globally register an
OpenTelemetrySdk object. Configure these components:

• An OTLP Span Exporter (for example, OtlpGrpcSpanExporter) - Required for exporting traces
to the CloudWatch agent or OpenTelemetry Collector

• An AWS X-Ray Propagator – Required for propagating the Trace Context to AWS Services that
are integrated with X-Ray

• An AWS X-Ray Remote Sampler – Required if you need to sample requests using X-Ray
Sampling Rules

• Resource Detectors(for example, EcsResource or Ec2Resource) – Detect metadata of the host
running your application

import io.opentelemetry.api.common.Attributes;
import io.opentelemetry.context.propagation.ContextPropagators;
import io.opentelemetry.contrib.aws.resource.Ec2Resource;
import io.opentelemetry.contrib.aws.resource.EcsResource;
import io.opentelemetry.contrib.awsxray.AwsXrayRemoteSampler;
import io.opentelemetry.contrib.awsxray.propagator.AwsXrayPropagator;
import io.opentelemetry.exporter.otlp.trace.OtlpGrpcSpanExporter;
import io.opentelemetry.sdk.OpenTelemetrySdk;
import io.opentelemetry.sdk.resources.Resource;

Manual instrumentation solutions with the SDK 547

AWS X-Ray Developer Guide

import io.opentelemetry.sdk.trace.SdkTracerProvider;
import io.opentelemetry.sdk.trace.export.BatchSpanProcessor;
import io.opentelemetry.sdk.trace.samplers.Sampler;
import static io.opentelemetry.semconv.ServiceAttributes.SERVICE_NAME;

// ...

 private static final Resource otelResource =
 Resource.create(Attributes.of(SERVICE_NAME, "YOUR_SERVICE_NAME"))
 .merge(EcsResource.get())
 .merge(Ec2Resource.get());
 private static final SdkTracerProvider sdkTracerProvider =
 SdkTracerProvider.builder()
 .addSpanProcessor(BatchSpanProcessor.create(
 OtlpGrpcSpanExporter.getDefault()
))
 .addResource(otelResource)
 .setSampler(Sampler.parentBased(
 AwsXrayRemoteSampler.newBuilder(otelResource).build()
))
 .build();
 // Globally registering a TracerProvider makes it available throughout the
 application to create as many Tracers as needed.
 private static final OpenTelemetrySdk openTelemetry =
 OpenTelemetrySdk.builder()
 .setTracerProvider(sdkTracerProvider)

 .setPropagators(ContextPropagators.create(AwsXrayPropagator.getInstance()))
 .buildAndRegisterGlobal();

Tracing incoming requests (spring framework instrumentation)

With X-Ray SDK

For information on how to use the X-Ray SDK with the spring framework to instrument
your application, see AOP with Spring and the X-Ray SDK for Java. To enable AOP in Spring,
complete these steps.

1. Configure Spring

2. Adding a tracing filter to your application

3. Annotate your code or implement an interface

Tracing incoming requests (spring framework instrumentation) 548

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-aop-spring.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-aop-spring.html#xray-sdk-java-aop-spring-configuration
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-aop-spring.html#xray-sdk-java-aop-filters-spring
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-aop-spring.html#xray-sdk-java-aop-annotate-or-implement

AWS X-Ray Developer Guide

4. Activate X-Ray in your application

With OpenTelemetry SDK

OpenTelemetry provides instrumentation libraries to collect traces for incoming requests for
Spring Boot applications. To enable Spring Boot instrumentation with minimal configuration,
include the following dependency.

<dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-spring-boot-starter</artifactId>
 </dependency>

For more information on how to enable and configure Spring Boot instrumentation for your
OpenTelemetry setup, see OpenTelemetry's Getting started.

Using OpenTelemetry-based Java agents

The default recommended method for instrumenting Spring Boot applications is by using the
OpenTelemetry Java agent with bytecode instrumentation, which also provides more out-of-
the-box instrumentations and configurations when compared to directly using the SDK. For get
started, see Zero code automatic instrumentation solution.

AWS SDK v2 instrumentation

With X-Ray SDK

The X-Ray SDK for Java can automatically instrument all AWS SDK v2 clients when you added
the aws-xray-recorder-sdk-aws-sdk-v2-instrumentor sub-module in your build.

To instrument individual clients downstream client calls to AWS services with AWS SDK for
Java 2.2 and later, the aws-xray-recorder-sdk-aws-sdk-v2-instrumentor module
from your build configuration was excluded and the aws-xray-recorder-sdk-aws-sdk-
v2 module was included. Individual clients were instrumented by configuring them with a
TracingInterceptor.

import com.amazonaws.xray.interceptors.TracingInterceptor;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration
import software.amazon.awssdk.services.dynamodb.DynamoDbClient;

AWS SDK v2 instrumentation 549

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-java-aop-spring.html#xray-sdk-java-aop-activate-xray
https://opentelemetry.io/docs/zero-code/java/spring-boot-starter/getting-started/
https://opentelemetry.io/docs/zero-code/java/agent/

AWS X-Ray Developer Guide

//...

public class MyModel {
 private DynamoDbClient client = DynamoDbClient.builder()
 .region(Region.US_WEST_2)
 .overrideConfiguration(
 ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(new TracingInterceptor())
 .build()
)
 .build();
//...

With OpenTelemetry SDK

To automatically instrument all AWS SDK clients, add the opentelemetry-aws-sdk-2.2-
autoconfigure sub-module.

<dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-aws-sdk-2.2-autoconfigure</artifactId>
 <version>2.15.0-alpha</version>
 <scope>runtime</scope>
 </dependency>

To instrument individual AWSSDK clients, add the opentelemetry-aws-sdk-2.2 sub-
module.

<dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-aws-sdk-2.2</artifactId>
 <version>2.15.0-alpha</version>
 <scope>compile</scope>
 </dependency>

Then, register an interceptor when creating an AWS SDK Client.

import io.opentelemetry.instrumentation.awssdk.v2_2.AwsSdkTelemetry;

// ...

AWS SDK v2 instrumentation 550

AWS X-Ray Developer Guide

 AwsSdkTelemetry telemetry = AwsSdkTelemetry.create(openTelemetry);
 private final S3Client S3_CLIENT = S3Client.builder()
 .overrideConfiguration(ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(telemetry.newExecutionInterceptor())
 .build())
 .build();

Instrumenting outgoing HTTP calls

With X-Ray SDK

To instrument outgoing HTTP requests with X-Ray, the X-Ray SDK for Java’s version of the
Apache HttpClient was required.

import com.amazonaws.xray.proxies.apache.http.HttpClientBuilder;
...
 public String randomName() throws IOException {
 CloseableHttpClient httpclient = HttpClientBuilder.create().build();

With OpenTelemetry SDK

Similarly to the X-Ray Java SDK, OpenTelemetry provides an ApacheHttpClientTelemetry
class that has a builder method that allows creation of an instance of an the
HttpClientBuilder to provide OpenTelemetry-based spans and context propagation for
Apache HttpClient.

<dependency>
 <groupId>io.opentelemetry.instrumentation</groupId>
 <artifactId>opentelemetry-apache-httpclient-5.2</artifactId>
 <version>2.15.0-alpha</version>
 <scope>compile</scope>
 </dependency>

The following is a code example from the opentelemetry-java-instrumentation . The HTTP
Client provided by newHttpClient() will generate traces for executed requests.

import io.opentelemetry.api.OpenTelemetry;
import
 io.opentelemetry.instrumentation.apachehttpclient.v5_2.ApacheHttpClientTelemetry;

Instrumenting outgoing HTTP calls 551

https://github.com/open-telemetry/opentelemetry-java-instrumentation/tree/main/instrumentation/apache-httpclient/apache-httpclient-5.2/library

AWS X-Ray Developer Guide

import org.apache.hc.client5.http.classic.HttpClient;
import org.apache.hc.client5.http.impl.classic.HttpClientBuilder;

public class ApacheHttpClientConfiguration {

 private OpenTelemetry openTelemetry;

 public ApacheHttpClientConfiguration(OpenTelemetry openTelemetry) {
 this.openTelemetry = openTelemetry;
 }

 // creates a new http client builder for constructing http clients with open
 telemetry instrumentation
 public HttpClientBuilder createBuilder() {
 return
 ApacheHttpClientTelemetry.builder(openTelemetry).build().newHttpClientBuilder();
 }

 // creates a new http client with open telemetry instrumentation
 public HttpClient newHttpClient() {
 return ApacheHttpClientTelemetry.builder(openTelemetry).build().newHttpClient();
 }
}

Instrumentation support for other libraries

Find the full list of supported Library instrumentations for OpenTelemetry Java in its respective
instrumentation GitHub repository , under Supported libraries, frameworks, application servers,
and JVMs .

Alternatively, you can search the OpenTelemetry Registry to find out if OpenTelemetry supports
instrumentation. To start searching, see Registry.

Manually creating trace data

With X-Ray SDK

With the X-Ray SDK, the beginSegment and beginSubsegment methods are needed to
manually create X-Ray segments and sub-segments.

 Segment segment = xrayRecorder.beginSegment("ManualSegment");

Instrumentation support for other libraries 552

https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/docs/supported-libraries.md
https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/docs/supported-libraries.md
https://opentelemetry.io/ecosystem/registry/

AWS X-Ray Developer Guide

 segment.putAnnotation("annotationKey", "annotationValue");
 segment.putMetadata("metadataKey", "metadataValue");

 try {
 Subsegment subsegment =
 xrayRecorder.beginSubsegment("ManualSubsegment");
 subsegment.putAnnotation("key", "value");

 // Do something here

 } catch (Exception e) {
 subsegment.addException(e);
 } finally {
 xrayRecorder.endSegment();
 }

With OpenTelemetry SDK

You can use custom spans to monitor the performance of internal activities that are not
captured by instrumentation libraries. Note that only span kind server are converted into X-Ray
segments, all other spans are converted into X-Ray sub-segments.

First, you will need to create a Tracer in order to generate spans, which you can obtain through
the openTelemetry.getTracer method. This will provide a Tracer instance from the
TracerProvider that was registered globally in the Manual instrumentation solutions with
the SDK example. You can create as many Tracer instances as needed, but it is common to have
one Tracer for an entire application.

Tracer tracer = openTelemetry.getTracer("my-app");

You can use the Tracer to create spans.

import io.opentelemetry.api.common.AttributeKey;
import io.opentelemetry.api.trace.Span;
import io.opentelemetry.api.trace.SpanKind;
import io.opentelemetry.api.trace.Tracer;
import io.opentelemetry.context.Scope;

...

// SERVER span will become an X-Ray segment

Manually creating trace data 553

AWS X-Ray Developer Guide

Span span = tracer.spanBuilder("get-token")
 .setKind(SpanKind.SERVER)
 .setAttribute("key", "value")
 .startSpan();
try (Scope ignored = span.makeCurrent()) {

 span.setAttribute("metadataKey", "metadataValue");
 span.setAttribute("annotationKey", "annotationValue");

 // The following ensures that "annotationKey: annotationValue" is an annotation in
 X-Ray raw data.
 span.setAttribute(AttributeKey.stringArrayKey("aws.xray.annotations"),
 List.of("annotationKey"));

 // Do something here
}

span.end();

Spans have a default type of INTERNAL.

// Default span of type INTERNAL will become an X-Ray subsegment
Span span = tracer.spanBuilder("process-header")
 .startSpan();
try (Scope ignored = span.makeCurrent()) {
 doProcessHeader();
}

Adding annotations and metadata to traces with OpenTelemetry SDK

In the above example, the setAttribute method is used to add attributes to each span. By
default, all the span attributes will be converted into metadata in X-Ray raw data. To ensure
that an attribute is converted into an annotation and not metadata, the above example adds
that attribute’s key to the list of the aws.xray.annotations attribute. For more information,
see Enable the Customized X-Ray Annotations and Annotations and metadata.

With OpenTelemetry-based Java agents

If you are using the Java agent to automatically instrument your application, you need to
perform manual instrumentation in your application. For example, to instrument code within
the application for sections that are not covered by any auto-instrumentation library.

Manually creating trace data 554

https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-annotations

AWS X-Ray Developer Guide

To perform manual instrumentation with the agent, you need to use the opentelemetry-api
artifact. The artifact version cannot be newer than the agent version.

import io.opentelemetry.api.GlobalOpenTelemetry;
import io.opentelemetry.api.trace.Span;

// ...

 Span parentSpan = Span.current();
 Tracer tracer = GlobalOpenTelemetry.getTracer("my-app");
 Span span = tracer.spanBuilder("my-span-name")
 .setParent(io.opentelemetry.context.Context.current().with(parentSpan))
 .startSpan();
 span.end();

Lambda instrumentation

With X-Ray SDK

Using the X-Ray SDK, after your Lambda has Active Tracing enabled, there is no additional
configuration required to use the X-Ray SDK. Lambda will create a segment representing the
Lambda handler invocation, and you can create sub-segments or instrument libraries using the
X-Ray SDK without any additional configuration.

With OpenTelemetry-based solutions

Auto-instrumentation Lambda layers – You can automatically instrument your Lambda with
AWS vended Lambda layers using the following solutions:

• CloudWatch Application Signals Lambda layer (Recommended)

Note

This Lambda layer has CloudWatch Application Signals enabled by default, which
enables performance and health monitoring for your Lambda application by
collecting both metrics and traces. For just tracing, set the Lambda environment
variable OTEL_AWS_APPLICATION_SIGNALS_ENABLED=false.

• Enables performance and health monitoring for your Lambda application

Lambda instrumentation 555

AWS X-Ray Developer Guide

• Collects both metrics and traces by default

• AWS managed Lambda layer for ADOT Java. For more information, see AWS Distro for
OpenTelemetry Lambda Support For Java.

To use manual instrumentation along with auto-instrumentation layer, see Manual
instrumentation solutions with the SDK. For reduced cold starts, consider using OpenTelemetry
manual instrumentation to generate OpenTelemetry traces for your Lambda function.

OpenTelemetry manual instrumentation for AWS Lambda

Consider the following Lambda function code that makes an Amazon S3 ListBuckets call.

package example;

import com.amazonaws.services.lambda.runtime.Context;
import com.amazonaws.services.lambda.runtime.RequestHandler;

import software.amazon.awssdk.services.s3.S3Client;
import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsResponse;
import software.amazon.awssdk.services.s3.model.S3Exception;

public class ListBucketsLambda implements RequestHandler<String, String> {

 private final S3Client S3_CLIENT = S3Client.builder()
 .build();

 @Override
 public String handleRequest(String input, Context context) {
 try {
 ListBucketsResponse response = makeListBucketsCall();
 context.getLogger().log("response: " + response.toString());
 return "Success";
 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private ListBucketsResponse makeListBucketsCall() {
 try {
 ListBucketsRequest listBucketsRequest = ListBucketsRequest.builder()

Lambda instrumentation 556

https://aws-otel.github.io/docs/getting-started/lambda/lambda-java
https://aws-otel.github.io/docs/getting-started/lambda/lambda-java

AWS X-Ray Developer Guide

 .build();
 ListBucketsResponse response = S3_CLIENT.listBuckets(listBucketsRequest);
 return response;
 } catch (S3Exception e) {
 throw new RuntimeException("Failed to call S3 listBuckets" +
 e.awsErrorDetails().errorMessage(), e);
 }
 }
}

Here are the dependencies.

dependencies {
 implementation('com.amazonaws:aws-lambda-java-core:1.2.3')
 implementation('software.amazon.awssdk:s3:2.28.29')
 implementation('org.slf4j:slf4j-nop:2.0.16')
}

To manually instrument your Lambda handler and the Amazon S3 client, do the following.

1. Replace your function classes that implement RequestHandler (or RequestStreamHandler)
with those that extend TracingRequestHandler (or TracingRequestStreamHandler).

2. Instantiate a TracerProvider and globally register an OpenTelemetrySdk object. The
TracerProvider is recommended to be configured with:

a. A Simple Span Processor with an X-Ray UDP span exporter to send Traces to Lambda’s
UDP X-Ray endpoint

b. A ParentBased always on sampler (Default if not configured)

c. A Resource with service.name set to the Lambda function name

d. An X-Ray Lambda propagator

3. Change the handleRequest method to doHandleRequest and pass the
OpenTelemetrySdk object to the base class.

4. Instrument the Amazon S3 client with the OpenTemetry AWS SDK instrumentation by
registering the interceptor when building the client.

You need the following OpenTelemetry-related dependencies.

dependencies {

Lambda instrumentation 557

AWS X-Ray Developer Guide

 ...

 implementation("software.amazon.distro.opentelemetry:aws-distro-opentelemetry-xray-
udp-span-exporter:0.1.0")

 implementation(platform('io.opentelemetry.instrumentation:opentelemetry-
instrumentation-bom:2.14.0'))
 implementation(platform('io.opentelemetry:opentelemetry-bom:1.48.0'))

 implementation('io.opentelemetry:opentelemetry-sdk')
 implementation('io.opentelemetry:opentelemetry-api')
 implementation('io.opentelemetry.contrib:opentelemetry-aws-xray-propagator:1.45.0-
alpha')
 implementation('io.opentelemetry.contrib:opentelemetry-aws-resources:1.45.0-alpha')
 implementation('io.opentelemetry.instrumentation:opentelemetry-aws-lambda-
core-1.0:2.14.0-alpha')
 implementation('io.opentelemetry.instrumentation:opentelemetry-aws-sdk-2.2:2.14.0-
alpha')
}

The following code demonstrates the Lambda function after the required changes. You can create
additional custom spans to complement the automatically provided spans.

package example;

import java.time.Duration;

import com.amazonaws.services.lambda.runtime.Context;

import io.opentelemetry.api.common.Attributes;
import io.opentelemetry.context.propagation.ContextPropagators;
import io.opentelemetry.contrib.aws.resource.LambdaResource;
import io.opentelemetry.contrib.awsxray.propagator.AwsXrayLambdaPropagator;
import io.opentelemetry.instrumentation.awslambdacore.v1_0.TracingRequestHandler;
import io.opentelemetry.instrumentation.awssdk.v2_2.AwsSdkTelemetry;
import io.opentelemetry.sdk.OpenTelemetrySdk;
import io.opentelemetry.sdk.resources.Resource;
import io.opentelemetry.sdk.trace.SdkTracerProvider;
import io.opentelemetry.sdk.trace.export.SimpleSpanProcessor;
import io.opentelemetry.sdk.trace.samplers.Sampler;
import static io.opentelemetry.semconv.ServiceAttributes.SERVICE_NAME;
import software.amazon.awssdk.core.client.config.ClientOverrideConfiguration;
import software.amazon.awssdk.services.s3.S3Client;

Lambda instrumentation 558

AWS X-Ray Developer Guide

import software.amazon.awssdk.services.s3.model.ListBucketsRequest;
import software.amazon.awssdk.services.s3.model.ListBucketsResponse;
import software.amazon.awssdk.services.s3.model.S3Exception;
import
 software.amazon.distro.opentelemetry.exporter.xray.udp.trace.AwsXrayUdpSpanExporterBuilder;

public class ListBucketsLambda extends TracingRequestHandler<String, String> {
 private static final Resource lambdaResource = LambdaResource.get();
 private static final SdkTracerProvider sdkTracerProvider =
 SdkTracerProvider.builder()
 .addSpanProcessor(SimpleSpanProcessor.create(
 new AwsXrayUdpSpanExporterBuilder().build()
))
 .addResource(
 lambdaResource
 .merge(Resource.create(Attributes.of(SERVICE_NAME,
 System.getenv("AWS_LAMBDA_FUNCTION_NAME"))))
)
 .setSampler(Sampler.parentBased(Sampler.alwaysOn()))
 .build();
 private static final OpenTelemetrySdk openTelemetry =
 OpenTelemetrySdk.builder()
 .setTracerProvider(sdkTracerProvider)

 .setPropagators(ContextPropagators.create(AwsXrayLambdaPropagator.getInstance()))
 .buildAndRegisterGlobal();
 private static final AwsSdkTelemetry telemetry =
 AwsSdkTelemetry.create(openTelemetry);
 private final S3Client S3_CLIENT = S3Client.builder()
 .overrideConfiguration(ClientOverrideConfiguration.builder()
 .addExecutionInterceptor(telemetry.newExecutionInterceptor())
 .build())
 .build();

 public ListBucketsLambda() {
 super(openTelemetry, Duration.ofMillis(0));
 }

 @Override
 public String doHandleRequest(String input, Context context) {
 try {
 ListBucketsResponse response = makeListBucketsCall();
 context.getLogger().log("response: " + response.toString());
 return "Success";

Lambda instrumentation 559

AWS X-Ray Developer Guide

 } catch (Exception e) {
 throw new RuntimeException(e);
 }
 }

 private ListBucketsResponse makeListBucketsCall() {
 try {
 ListBucketsRequest listBucketsRequest = ListBucketsRequest.builder()
 .build();
 ListBucketsResponse response = S3_CLIENT.listBuckets(listBucketsRequest);
 return response;
 } catch (S3Exception e) {
 throw new RuntimeException("Failed to call S3 listBuckets" +
 e.awsErrorDetails().errorMessage(), e);
 }
 }
}

When invoking the Lambda function, you will see the following trace under Trace Map in the
CloudWatch console.

Lambda instrumentation 560

AWS X-Ray Developer Guide

Migrate to OpenTelemetry Go

Use the following code examples to manually instrument your Go applications with the
OpenTelemetry SDK when migrating from X-Ray.

Manual instrumentation with the SDK

Tracing setup with X-Ray SDK

When using the X-Ray SDK for Go, service plugins or local sampling rules were required to be
configured before instrumenting your code.

func init() {
 if os.Getenv("ENVIRONMENT") == "production" {
 ec2.Init()
 }

 xray.Configure(xray.Config{
 DaemonAddr: "127.0.0.1:2000",
 ServiceVersion: "1.2.3",
 })
}

Set up tracing with OpenTelemetry SDK

Configure the OpenTelemetry SDK by instantiating a TracerProvider and registering it as the
global tracer provider. We recommend configuring the following components:

• OTLP Trace Exporter – Required for exporting traces to the CloudWatch Agent or
OpenTelemetry Collector

• X-Ray Propagator – Required for propagating the trace context to AWS services integrated
with X-Ray

• X-Ray Remote Sampler – Required for sampling requests using X-Ray sampling rules

• Resource detectors – To detect metadata of the host running your application

import (

Migrate to OpenTelemetry Go 561

AWS X-Ray Developer Guide

 "go.opentelemetry.io/contrib/detectors/aws/ec2"
 "go.opentelemetry.io/contrib/propagators/aws/xray"
 "go.opentelemetry.io/contrib/samplers/aws/xray"
 "go.opentelemetry.io/otel"
 "go.opentelemetry.io/otel/exporters/otlp/otlptrace/otlptracegrpc"
 "go.opentelemetry.io/otel/sdk/trace"
)

func setupTracing() error {
 ctx := context.Background()

 exporterEndpoint := os.Getenv("OTEL_EXPORTER_OTLP_ENDPOINT")
 if exporterEndpoint == "" {
 exporterEndpoint = "localhost:4317"
 }

 traceExporter, err := otlptracegrpc.New(ctx,
 otlptracegrpc.WithInsecure(),
 otlptracegrpc.WithEndpoint(exporterEndpoint))
 if err != nil {
 return fmt.Errorf("failed to create OTLP trace exporter: %v", err)
 }

 remoteSampler, err := xray.NewRemoteSampler(ctx, "my-service-name", "ec2")
 if err != nil {
 return fmt.Errorf("failed to create X-Ray Remote Sampler: %v", err)
 }

 ec2Resource, err := ec2.NewResourceDetector().Detect(ctx)
 if err != nil {
 return fmt.Errorf("failed to detect EC2 resource: %v", err)
 }

 tp := trace.NewTracerProvider(
 trace.WithSampler(remoteSampler),
 trace.WithBatcher(traceExporter),
 trace.WithResource(ec2Resource),
)

 otel.SetTracerProvider(tp)
 otel.SetTextMapPropagator(xray.Propagator{})

 return nil
}

Manual instrumentation with the SDK 562

AWS X-Ray Developer Guide

Tracing incoming requests (HTTP handler instrumentation)

With X-Ray SDK

To instrument an HTTP handler with X-Ray, the X-Ray handler method was used to generate
segments using NewFixedSegmentNamer.

func main() {
 http.Handle("/", xray.Handler(xray.NewFixedSegmentNamer("myApp"),
 http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
 w.Write([]byte("Hello!"))
 })))
 http.ListenAndServe(":8000", nil)
}

With OpenTelemetry SDK

To instrument an HTTP handler with OpenTelemetry, use the OpenTelemetry's newHandler
method to wrap your original handler code.

import (
 "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp"
)

helloHandler := func(w http.ResponseWriter, req *http.Request) {
 ctx := req.Context()
 span := trace.SpanFromContext(ctx)
 span.SetAttributes(attribute.Bool("isHelloHandlerSpan", true),
 attribute.String("attrKey", "attrValue"))

 _, _ = io.WriteString(w, "Hello World!\n")
}

otelHandler := otelhttp.NewHandler(http.HandlerFunc(helloHandler), "Hello")

http.Handle("/hello", otelHandler)

Tracing incoming requests (HTTP handler instrumentation) 563

AWS X-Ray Developer Guide

err = http.ListenAndServe(":8080", nil)
if err != nil {
 log.Fatal(err)
}

AWS SDK for Go v2 instrumentation

With X-Ray SDK

To instrument outgoing AWS requests from AWS SDK, your clients were instrumented as
follows:

// Create a segment
ctx, root := xray.BeginSegment(context.TODO(), "AWSSDKV2_Dynamodb")
defer root.Close(nil)

cfg, err := config.LoadDefaultConfig(ctx, config.WithRegion("us-west-2"))
if err != nil {
 log.Fatalf("unable to load SDK config, %v", err)
}
// Instrumenting AWS SDK v2
awsv2.AWSV2Instrumentor(&cfg.APIOptions)
// Using the Config value, create the DynamoDB client
svc := dynamodb.NewFromConfig(cfg)
// Build the request with its input parameters
_, err = svc.ListTables(ctx, &dynamodb.ListTablesInput{
 Limit: aws.Int32(5),
})
if err != nil {
 log.Fatalf("failed to list tables, %v", err)
}

With OpenTelemetry SDK

Tracing support for downstream AWS SDK calls is provided by OpenTelemetry's AWS SDK for
Go v2 Instrumentation. Here's an example of tracing an S3 client call:

import (

AWS SDK for Go v2 instrumentation 564

AWS X-Ray Developer Guide

 ...

 "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"

 "go.opentelemetry.io/otel"
 oteltrace "go.opentelemetry.io/otel/trace"
 awsConfig "github.com/aws/aws-sdk-go-v2/config"
 "go.opentelemetry.io/contrib/instrumentation/github.com/aws/aws-sdk-go-v2/
otelaws"
)

...

 // init aws config
 cfg, err := awsConfig.LoadDefaultConfig(ctx)
 if err != nil {
 panic("configuration error, " + err.Error())
 }

 // instrument all aws clients
 otelaws.AppendMiddlewares(&.APIOptions)

 // Call to S3
 s3Client := s3.NewFromConfig(cfg)
 input := &s3.ListBucketsInput{}
 result, err := s3Client.ListBuckets(ctx, input)
 if err != nil {
 fmt.Printf("Got an error retrieving buckets, %v", err)
 return
 }

Instrumenting outgoing HTTP calls

With X-Ray SDK

To instrument outgoing HTTP calls with X-Ray, the xray.Client was used to create a copy of a
provided HTTP client.

Instrumenting outgoing HTTP calls 565

AWS X-Ray Developer Guide

myClient := xray.Client(http-client)

resp, err := ctxhttp.Get(ctx, xray.Client(nil), url)

With OpenTelemetry SDK

To instrument HTTP clients with OpenTelemetry, use OpenTelemetry's otelhttp.NewTransport
method to wrap the http.DefaultTransport.

import (
 "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp"
)

// Create an instrumented HTTP client.
httpClient := &http.Client{
 Transport: otelhttp.NewTransport(
 http.DefaultTransport,
),
}

req, err := http.NewRequestWithContext(ctx, http.MethodGet, "https://api.github.com/
repos/aws-observability/aws-otel-go/releases/latest", nil)
if err != nil {
 fmt.Printf("failed to create http request, %v\n", err)
}
res, err := httpClient.Do(req)
if err != nil {
 fmt.Printf("failed to make http request, %v\n", err)
}
// Request body must be closed
defer func(Body io.ReadCloser) {
 err := Body.Close()
 if err != nil {
 fmt.Printf("failed to close http response body, %v\n", err)
 }
}(res.Body)

Instrumentation support for other libraries

You can find the full list of supported library instrumentations for OpenTelemetry Go under
Instrumentation packages .

Instrumentation support for other libraries 566

https://github.com/open-telemetry/opentelemetry-go-contrib/tree/main/instrumentation#instrumentation-packages

AWS X-Ray Developer Guide

Alternatively, you can search the OpenTelemetry registry to find out if OpenTelemetry supports
instrumentation for your library under Registry.

Manually creating trace data

With X-Ray SDK

With the X-Ray SDK, the BeginSegment and BeginSubsegment methods was required to
manually create X-Ray segments and sub-segments.

// Start a segment
ctx, seg := xray.BeginSegment(context.Background(), "service-name")
// Start a subsegment
subCtx, subSeg := xray.BeginSubsegment(ctx, "subsegment-name")

// Add metadata or annotation here if necessary
xray.AddAnnotation(subCtx, "annotationKey", "annotationValue")
xray.AddMetadata(subCtx, "metadataKey", "metadataValue")

subSeg.Close(nil)
// Close the segment
seg.Close(nil)

With OpenTelemetry SDK

Use custom spans to monitor the performance of internal activities that are not captured
by instrumentation libraries. Note that only spans of kind Server are converted into X-Ray
segments, all other spans are converted into X-Ray sub-segments.

First, you will need to create a Tracer to generate spans, which you can obtain through the
otel.Tracer method. This will provide a Tracer instance from the TracerProvider that was
registered globally in the Tracing Setup example. You can create as many Tracer instances as
needed, but it is common to have one Tracer for an entire application.

 tracer := otel.Tracer("application-tracer")

import (
 ...

Manually creating trace data 567

https://opentelemetry.io/ecosystem/registry/

AWS X-Ray Developer Guide

 oteltrace "go.opentelemetry.io/otel/trace"
)

...

 var attributes = []attribute.KeyValue{
 attribute.KeyValue{Key: "metadataKey", Value:
 attribute.StringValue("metadataValue")},
 attribute.KeyValue{Key: "annotationKey", Value:
 attribute.StringValue("annotationValue")},
 attribute.KeyValue{Key: "aws.xray.annotations", Value:
 attribute.StringSliceValue([]string{"annotationKey"})},
 }

 ctx := context.Background()

 parentSpanContext, parentSpan := tracer.Start(ctx,
 "ParentSpan", oteltrace.WithSpanKind(oteltrace.SpanKindServer),
 oteltrace.WithAttributes(attributes...))
 _, childSpan := tracer.Start(parentSpanContext, "ChildSpan",
 oteltrace.WithSpanKind(oteltrace.SpanKindInternal))

 // ...

 childSpan.End()
 parentSpan.End()

Adding annotations and metadata to traces with OpenTelemetry SDK

In the above example, the WithAttributes method is used to add attributes to each span.
Note that by default, all the span attributes are converted into metadata in X-Ray raw data. To
ensure that an attribute is converted into an annotation and not metadata, add the attribute's
key to the list of the aws.xray.annotations attribute. For more information, see Enable The
Customized X-Ray Annotations .

Lambda manual instrumentation

With X-Ray SDK

With the X-Ray SDK, after your Lambda has Active Tracing was enabled, there were no
additional configurations required to use the X-Ray SDK. Lambda created a segment

Lambda manual instrumentation 568

https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations
https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations

AWS X-Ray Developer Guide

representing the Lambda handler invocation, and you created sub-segments using the X-Ray
SDK without any additional configuration.

With OpenTelemetry SDK

The following Lambda function code (without instrumentation) makes an Amazon S3
ListBuckets call and outgoing HTTP request.

package main

import (
 "context"
 "encoding/json"
 "fmt"
 "io"
 "net/http"
 "os"

 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 awsconfig "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"
)

func lambdaHandler(ctx context.Context) (interface{}, error) {
 // Initialize AWS config.
 cfg, err := awsconfig.LoadDefaultConfig(ctx)
 if err != nil {
 panic("configuration error, " + err.Error())
 }

 s3Client := s3.NewFromConfig(cfg)

 // Create an HTTP client.
 httpClient := &http.Client{
 Transport: http.DefaultTransport,
 }

 input := &s3.ListBucketsInput{}
 result, err := s3Client.ListBuckets(ctx, input)
 if err != nil {
 fmt.Printf("Got an error retrieving buckets, %v", err)
 }

Lambda manual instrumentation 569

AWS X-Ray Developer Guide

 fmt.Println("Buckets:")
 for _, bucket := range result.Buckets {
 fmt.Println(*bucket.Name + ": " + bucket.CreationDate.Format("2006-01-02
 15:04:05 Monday"))
 }
 fmt.Println("End Buckets.")

 req, err := http.NewRequestWithContext(ctx, http.MethodGet, "https://
api.github.com/repos/aws-observability/aws-otel-go/releases/latest", nil)
 if err != nil {
 fmt.Printf("failed to create http request, %v\n", err)
 }
 res, err := httpClient.Do(req)
 if err != nil {
 fmt.Printf("failed to make http request, %v\n", err)
 }
 defer func(Body io.ReadCloser) {
 err := Body.Close()
 if err != nil {
 fmt.Printf("failed to close http response body, %v\n", err)
 }
 }(res.Body)

 var data map[string]interface{}
 err = json.NewDecoder(res.Body).Decode(&data)
 if err != nil {
 fmt.Printf("failed to read http response body, %v\n", err)
 }
 fmt.Printf("Latest ADOT Go Release is '%s'\n", data["name"])

 return events.APIGatewayProxyResponse{
 StatusCode: http.StatusOK,
 Body: os.Getenv("_X_AMZN_TRACE_ID"),
 }, nil
}

func main() {
 lambda.Start(lambdaHandler)
}

To manually instrument your Lambda handler and the Amazon S3 client, do the following:

Lambda manual instrumentation 570

AWS X-Ray Developer Guide

1. In main(), instantiate a TracerProvider (tp) and register it as the global tracer provider. The
TracerProvider is recommended to be configured with:

a. Simple Span Processor with an X-Ray UDP span exporter to send Traces to Lambda's UDP
X-Ray endpoint

b. Resource with service.name set to the Lambda function name

2. Change the usage of lambda.Start(lambdaHandler) to
lambda.Start(otellambda.InstrumentHandler(lambdaHandler,
xrayconfig.WithRecommendedOptions(tp)...)).

3. Instrument the Amazon S3 client with the OpenTemetry AWS SDK instrumentation by
appending OpenTelemetry middleware for aws-sdk-go-v2 into the Amazon S3 client
configuration.

4. Instrument the http client by using OpenTelemetry's otelhttp.NewTransport method to
wrap the http.DefaultTransport.

The following code is an example of how the Lambda Function will look like after the
changes. You may manually create additional custom spans in addition to the spans provided
automatically.

package main

import (
 "context"
 "encoding/json"
 "fmt"
 "io"
 "net/http"
 "os"

 "github.com/aws-observability/aws-otel-go/exporters/xrayudp"
 "github.com/aws/aws-lambda-go/events"
 "github.com/aws/aws-lambda-go/lambda"
 awsconfig "github.com/aws/aws-sdk-go-v2/config"
 "github.com/aws/aws-sdk-go-v2/service/s3"

 lambdadetector "go.opentelemetry.io/contrib/detectors/aws/lambda"
 "go.opentelemetry.io/contrib/instrumentation/github.com/aws/aws-lambda-go/
otellambda"
 "go.opentelemetry.io/contrib/instrumentation/github.com/aws/aws-lambda-go/
otellambda/xrayconfig"

Lambda manual instrumentation 571

AWS X-Ray Developer Guide

 "go.opentelemetry.io/contrib/instrumentation/github.com/aws/aws-sdk-go-v2/
otelaws"
 "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp"
 "go.opentelemetry.io/contrib/propagators/aws/xray"
 "go.opentelemetry.io/otel"
 "go.opentelemetry.io/otel/attribute"
 "go.opentelemetry.io/otel/sdk/resource"
 "go.opentelemetry.io/otel/sdk/trace"
 semconv "go.opentelemetry.io/otel/semconv/v1.26.0"
)

func lambdaHandler(ctx context.Context) (interface{}, error) {
 // Initialize AWS config.
 cfg, err := awsconfig.LoadDefaultConfig(ctx)
 if err != nil {
 panic("configuration error, " + err.Error())
 }

 // Instrument all AWS clients.
 otelaws.AppendMiddlewares(&cfg.APIOptions)
 // Create an instrumented S3 client from the config.
 s3Client := s3.NewFromConfig(cfg)

 // Create an instrumented HTTP client.
 httpClient := &http.Client{
 Transport: otelhttp.NewTransport(
 http.DefaultTransport,
),
 }

 // return func(ctx context.Context) (interface{}, error) {
 input := &s3.ListBucketsInput{}
 result, err := s3Client.ListBuckets(ctx, input)
 if err != nil {
 fmt.Printf("Got an error retrieving buckets, %v", err)
 }

 fmt.Println("Buckets:")
 for _, bucket := range result.Buckets {
 fmt.Println(*bucket.Name + ": " + bucket.CreationDate.Format("2006-01-02
 15:04:05 Monday"))
 }
 fmt.Println("End Buckets.")

Lambda manual instrumentation 572

AWS X-Ray Developer Guide

 req, err := http.NewRequestWithContext(ctx, http.MethodGet, "https://
api.github.com/repos/aws-observability/aws-otel-go/releases/latest", nil)
 if err != nil {
 fmt.Printf("failed to create http request, %v\n", err)
 }
 res, err := httpClient.Do(req)
 if err != nil {
 fmt.Printf("failed to make http request, %v\n", err)
 }
 defer func(Body io.ReadCloser) {
 err := Body.Close()
 if err != nil {
 fmt.Printf("failed to close http response body, %v\n", err)
 }
 }(res.Body)

 var data map[string]interface{}
 err = json.NewDecoder(res.Body).Decode(&data)
 if err != nil {
 fmt.Printf("failed to read http response body, %v\n", err)
 }
 fmt.Printf("Latest ADOT Go Release is '%s'\n", data["name"])

 return events.APIGatewayProxyResponse{
 StatusCode: http.StatusOK,
 Body: os.Getenv("_X_AMZN_TRACE_ID"),
 }, nil
}

func main() {
 ctx := context.Background()
 detector := lambdadetector.NewResourceDetector()
 lambdaResource, err := detector.Detect(context.Background())
 if err != nil {
 fmt.Printf("failed to detect lambda resources: %v\n", err)
 }

 var attributes = []attribute.KeyValue{
 attribute.KeyValue{Key: semconv.ServiceNameKey, Value:
 attribute.StringValue(os.Getenv("AWS_LAMBDA_FUNCTION_NAME"))},
 }
 customResource := resource.NewWithAttributes(semconv.SchemaURL, attributes...)
 mergedResource, _ := resource.Merge(lambdaResource, customResource)

Lambda manual instrumentation 573

AWS X-Ray Developer Guide

 xrayUdpExporter, _ := xrayudp.NewSpanExporter(ctx)
 tp := trace.NewTracerProvider(
 trace.WithSpanProcessor(trace.NewSimpleSpanProcessor(xrayUdpExporter)),
 trace.WithResource(mergedResource),
)

 defer func(ctx context.Context) {
 err := tp.Shutdown(ctx)
 if err != nil {
 fmt.Printf("error shutting down tracer provider: %v", err)
 }
 }(ctx)

 otel.SetTracerProvider(tp)
 otel.SetTextMapPropagator(xray.Propagator{})

 lambda.Start(otellambda.InstrumentHandler(lambdaHandler,
 xrayconfig.WithRecommendedOptions(tp)...))
}

When invoking Lambda, you will see the following trace in the Trace Map in the CloudWatch
console:

Lambda manual instrumentation 574

AWS X-Ray Developer Guide

Migrate to OpenTelemetry Node.js

This section explains how to migrate your Node.js applications from X-Ray SDK to OpenTelemetry.
It covers both automatic and manual instrumentation approaches, and provides specific examples
for common use cases.

The X-Ray Node.js SDK helps you manually instrument your Node.js applications for tracing. This
section provides code examples for migrating from X-Ray to OpenTelemetry instrumentation.

Sections

• Zero code automatic instrumentation solutions

• Manual instrumentation solutions

• Tracing incoming requests

• AWS SDK JavaScript V3 instrumentation

• Instrumenting outgoing HTTP calls

• Instrumentation support for other libraries

• Manually creating trace data

• Lambda instrumentation

Zero code automatic instrumentation solutions

To trace requests with the X-Ray SDK for Node.js, you must modify your application code. With
OpenTelemetry, you can use zero-code auto-instrumentation solutions to trace requests.

Zero code automatic instrumentation with OpenTelemetry-based automatic instrumentations.

1. Using the AWS Distro for OpenTelemetry (ADOT) auto-instrumentation for Node.js – For
automatic instrumentation for Node.js application, see Tracing and Metrics with the AWS Distro
for OpenTelemetry JavaScript Auto-Instrumentation.

(Optional) You can also enable CloudWatch Application Signals when automatically
instrumenting your applications on AWS with the ADOT JavaScript auto-instrumentation to
monitor current application health and track long-term application performance against your
business objectives. Application Signals provides you with a unified, application-centric view
of your applications, services, and dependencies, and helps you monitor and triage application
health. For more information, see Application Signals.

Migrate to OpenTelemetry Node.js 575

https://aws-otel.github.io/docs/getting-started/js-sdk/trace-metric-auto-instr
https://aws-otel.github.io/docs/getting-started/js-sdk/trace-metric-auto-instr
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html

AWS X-Ray Developer Guide

2. Using the OpenTelemetry JavaScript zero-code automatic instrumentation – For automatic
instrumentation with the OpenTelemetry JavaScript, see JavaScript zero-code instrumentation .

Manual instrumentation solutions

Tracing setup with X-Ray SDK

When the X-Ray SDK for Node.js was used, the aws-xray-sdk package was required to
configure the X-Ray SDK with service plug-ins or local sampling rules before using the SDK to
instrument your code.

var AWSXRay = require('aws-xray-sdk');

AWSXRay.config([AWSXRay.plugins.EC2Plugin,AWSXRay.plugins.ElasticBeanstalkPlugin]);
AWSXRay.middleware.setSamplingRules(<path to file>);

Tracing setup with OpenTelemetry SDK

Note

AWS X-Ray Remote Sampling is currently not available to be configured for
OpenTelemetry JS. However, support for X-Ray Remote Sampling is currently available
through the ADOT Auto-Instrumentation for Node.js.

For the code example below, you will need the following dependencies:

npm install --save \
 @opentelemetry/api \
 @opentelemetry/sdk-node \
 @opentelemetry/exporter-trace-otlp-proto \
 @opentelemetry/propagator-aws-xray \
 @opentelemetry/resource-detector-aws

Manual instrumentation solutions 576

https://opentelemetry.io/docs/zero-code/js/

AWS X-Ray Developer Guide

You must set up and configure the OpenTelemetry SDK before running your application code.
This can be done by using the –-require flag. Create a file named instrumentation.js, which will
contain your OpenTelemetry instrumentation configuration and setup.

It is recommend that you configure the following components:

• OTLPTraceExporter – Required for exporting traces to the CloudWatch Agent/OpenTelemetry
Collector

• AWSXRayPropagator – Required for propagating the Trace Context to AWS Services that are
integrated with X-Ray

• Resource Detectors (for example, Amazon EC2 Resource Detector) - To detect metadata of the
host running your application

/*instrumentation.js*/
// Require dependencies
const { NodeSDK } = require('@opentelemetry/sdk-node');
const { OTLPTraceExporter } = require('@opentelemetry/exporter-trace-otlp-proto');
const { AWSXRayPropagator } = require("@opentelemetry/propagator-aws-xray");
const { detectResources } = require('@opentelemetry/resources');
const { awsEc2Detector } = require('@opentelemetry/resource-detector-aws');

const resource = detectResources({
 detectors: [awsEc2Detector],
});

const _traceExporter = new OTLPTraceExporter({
 url: 'http://localhost:4318/v1/traces'
});

const sdk = new NodeSDK({
 resource: resource,
 textMapPropagator: new AWSXRayPropagator(),
 traceExporter: _traceExporter
});

sdk.start();

Then, you can run your application with your OpenTelemetry setup like:

Manual instrumentation solutions 577

https://nodejs.org/api/cli.html#-r---require-module

AWS X-Ray Developer Guide

node --require ./instrumentation.js app.js

You can use OpenTelemetry SDK library instrumentations to automatically create spans for
libraries such as the AWS SDK. Enabling these will automatically create spans for modules such
as the AWS SDK for JavaScript v3. OpenTelemetry provides the option to enable all library
instrumentations or specify which library instrumentations to enable.

To enable all instrumentations, install the @opentelemetry/auto-instrumentations-
node package:

npm install @opentelemetry/auto-instrumentations-node

Next, update the configuration to enable all library instrumentations as shown below.

const { getNodeAutoInstrumentations } = require('@opentelemetry/auto-
instrumentations-node');

...

const sdk = new NodeSDK({
 resource: resource,
 instrumentations: [getNodeAutoInstrumentations()],
 textMapPropagator: new AWSXRayPropagator(),
 traceExporter: _traceExporter
});

Tracing setup with ADOT auto-instrumentation for Node.js

You can use the ADOT auto-instrumentation for Node.js to automatically configure
OpenTelemetry for your Node.js applications. By using ADOT Auto-Instrumentation, you do not
need to make manual code changes to trace incoming requests, or to trace libraries such as the
AWS SDK or HTTP clients. For more information, see Tracing and metrics with the AWS Distro
for OpenTelemetry JavaScript Auto-Instrumentation.

ADOT auto-instrumentation for Node.js supports:

Manual instrumentation solutions 578

https://aws-otel.github.io/docs/getting-started/js-sdk/trace-metric-auto-instr
https://aws-otel.github.io/docs/getting-started/js-sdk/trace-metric-auto-instr

AWS X-Ray Developer Guide

• X-Ray remote sampling through environment variable – export
OTEL_TRACES_SAMPLER=xray

• X-Ray trace context propagation (enabled by default)

• Resource detection (resource detection for Amazon EC2, Amazon ECS, and Amazon EKS
environments are enabled by default)

• Automatic library instrumentations for all supported OpenTelemetry instrumentations, which
can be disabled/enabled selectively through OTEL_NODE_ENABLED_INSTRUMENTATIONS
and OTEL_NODE_DISABLED_INSTRUMENTATIONS environment variables

• Manual creation of Spans

Tracing incoming requests

With X-Ray SDK

Express.js

With the X-Ray SDK to trace incoming HTTP requests received by Express.js
applications, the two middlewares AWSXRay.express.openSegment(<name>) and
AWSXRay.express.closeSegment() were required to wrap all of your defined routes in
order to trace them.

app.use(xrayExpress.openSegment('defaultName'));

...

app.use(xrayExpress.closeSegment());

Restify

To trace incoming HTTP requests received by Restify applications, the middleware from the
X-Ray SDK was used by running enable from the aws-xray-sdk-restify module on the
Restify Server:

var AWSXRay = require('aws-xray-sdk');
var AWSXRayRestify = require('aws-xray-sdk-restify');

Tracing incoming requests 579

AWS X-Ray Developer Guide

var restify = require('restify');
var server = restify.createServer();
AWSXRayRestify.enable(server, 'MyApp'));

With OpenTelemetry SDK

Express.js

Tracing support for incoming requests for Express.js is provided by the OpenTelemetry
HTTP instrumentation and OpenTelemetry express instrumentation. Install the following
dependencies with npm:

npm install --save @opentelemetry/instrumentation-http @opentelemetry/
instrumentation-express

Update the OpenTelemetry SDK Configuration to enable instrumentation for the express
module:

const { HttpInstrumentation } = require('@opentelemetry/instrumentation-http');
const { ExpressInstrumentation } = require('@opentelemetry/instrumentation-
express');
...

const sdk = new NodeSDK({
 ...

 instrumentations: [
 ...
 // Express instrumentation requires HTTP instrumentation
 new HttpInstrumentation(),
 new ExpressInstrumentation(),
],
});

Restify

Tracing incoming requests 580

https://github.com/open-telemetry/opentelemetry-js/tree/main/experimental/packages/opentelemetry-instrumentation-http
https://github.com/open-telemetry/opentelemetry-js/tree/main/experimental/packages/opentelemetry-instrumentation-http
https://github.com/open-telemetry/opentelemetry-js-contrib/tree/main/plugins/node/opentelemetry-instrumentation-express

AWS X-Ray Developer Guide

For Restify applications, you will need the OpenTelemetry Restify instrumentation. Install the
following dependency:

npm install --save @opentelemetry/instrumentation-restify

Update the OpenTelemetry SDK Configuration to enable instrumentation for the restify
module:

const { RestifyInstrumentation } = require('@opentelemetry/instrumentation-
restify');
...

const sdk = new NodeSDK({
 ...

 instrumentations: [
 ...
 new RestifyInstrumentation(),
],
});

AWS SDK JavaScript V3 instrumentation

With X-Ray SDK

To instrument outgoing AWS requests from AWS SDK, you instrumented clients like the
following example:

import { S3, PutObjectCommand } from '@aws-sdk/client-s3';

const s3 = AWSXRay.captureAWSv3Client(new S3({}));

await s3.send(new PutObjectCommand({
 Bucket: bucketName,
 Key: keyName,

AWS SDK JavaScript V3 instrumentation 581

https://github.com/open-telemetry/opentelemetry-js-contrib/tree/main/plugins/node/opentelemetry-instrumentation-restify

AWS X-Ray Developer Guide

 Body: 'Hello!',
}));

With OpenTelemetry SDK

Tracing support for downstream AWS SDK calls to DynamoDB, Amazon S3, and others is
provided by the OpenTelemetry AWS SDK instrumentation. Install the following dependency
with npm:

npm install --save @opentelemetry/instrumentation-aws-sdk

Update the OpenTelemetry SDK Configuration with the AWS SDK instrumentation.

import { AwsInstrumentation } from '@opentelemetry/instrumentation-aws-sdk';
...

const sdk = new NodeSDK({
 ...

 instrumentations: [
 ...
 new AwsInstrumentation()
],
});

Instrumenting outgoing HTTP calls

With X-Ray SDK

To instrument outgoing HTTP requests with X-Ray, it was required to instrument clients. For
example, see below.

Individual HTTP clients

Instrumenting outgoing HTTP calls 582

AWS X-Ray Developer Guide

var AWSXRay = require('aws-xray-sdk');
var http = AWSXRay.captureHTTPs(require('http'));

All HTTP clients (global)

var AWSXRay = require('aws-xray-sdk');
AWSXRay.captureHTTPsGlobal(require('http'));
var http = require('http');

With OpenTelemetry SDK

Tracing support for Node.js HTTP clients is provided by the OpenTelemetry HTTP
Instrumentation. Install the following dependency with npm:

npm install --save @opentelemetry/instrumentation-http

Update the OpenTelemetry SDK Configuration as follows:

const { HttpInstrumentation } = require('@opentelemetry/instrumentation-http');
...

const sdk = new NodeSDK({
 ...

 instrumentations: [
 ...
 new HttpInstrumentation(),
],
});

Instrumentation support for other libraries

You can find the full list of supported library instrumentations for OpenTelemetry JavaScript under
Supported instrumentations .

Instrumentation support for other libraries 583

https://github.com/open-telemetry/opentelemetry-js-contrib/tree/main/metapackages/auto-instrumentations-node#supported-instrumentations

AWS X-Ray Developer Guide

Alternatively, you can search the OpenTelemetry registry to find out if OpenTelemetry supports
instrumentation for your library under Registry.

Manually creating trace data

With X-Ray SDK

Using X-Ray, the aws-xray-sdk package code was required to manually create segments and
their child sub-segments to trace your application.

var AWSXRay = require('aws-xray-sdk');

AWSXRay.enableManualMode();

var segment = new AWSXRay.Segment('myApplication');

captureFunc('1', function(subsegment1) {
 captureFunc('2', function(subsegment2) {

 }, subsegment1);
}, segment);

segment.close();
segment.flush();

With OpenTelemetry SDK

You can create and use custom spans to monitor the performance of internal activities that are
not captured by instrumentation libraries. Note that only spans of kind Server are converted
into X-Ray segments, all other spans are converted into X-Ray sub-segments. For more
information, see Segments.

You will need a Tracer instance after you have configured the OpenTelemetry SDK in Tracing
Setup to create Spans. You can create as many Tracer instances as needed, but it is common to
have one Tracer for an entire application.

const { trace, SpanKind } = require('@opentelemetry/api');

Manually creating trace data 584

https://opentelemetry.io/ecosystem/registry/
https://docs.aws.amazon.com/xray/latest/devguide/xray-concepts.html#xray-concepts-segments

AWS X-Ray Developer Guide

// Get a tracer instance
const tracer = trace.getTracer('your-tracer-name');

...

 // This span will appear as a segment in X-Ray
 tracer.startActiveSpan('server', { kind: SpanKind.SERVER }, span => {
 // Do work here

 // This span will appear as a subsegment in X-Ray
 tracer.startActiveSpan('operation2', { kind: SpanKind.INTERNAL }, innerSpan => {
 // Do more work here

 innerSpan.end();
 });
 span.end();
 });

Adding annotations and metadata to traces with OpenTelemetry SDK

You can also add custom key-value pairs as attributes in your spans. Note that by default, all
these span attributes will be converted into metadata in X-Ray raw data. To ensure that an
attribute is converted into an annotation and not metadata, add the attribute's key to the list of
the aws.xray.annotations attribute. For more information, see Enable The Customized X-
Ray Annotations.

 tracer.startActiveSpan('server', { kind: SpanKind.SERVER }, span => {
 span.setAttribute('metadataKey', 'metadataValue');
 span.setAttribute('annotationKey', 'annotationValue');

 // The following ensures that "annotationKey: annotationValue" is an annotation
 in X-Ray raw data.
 span.setAttribute('aws.xray.annotations', ['annotationKey']);

 // Do work here

 span.end();
 });

Manually creating trace data 585

https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations
https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations

AWS X-Ray Developer Guide

Lambda instrumentation

With X-Ray SDK

After you enable Active Tracing for your Lambda function, the X-Ray SDK was required without
additional configuration. Lambda creates a segment representing the Lambda handler
invocation, and you created sub-segments or instrument libraries using the X-Ray SDK without
any additional configuration.

With OpenTelemetry SDK

You can automatically instrument your Lambda with AWS vended Lambda layers. There are two
solutions:

• (Recommended) CloudWatch Application Signals lambda layer

Note

This Lambda layer has CloudWatch Application Signals enabled by
default, which enables performance and health monitoring for your
Lambda application by collecting both metrics and traces. If you
only want tracing, you should set the Lambda environment variable
OTEL_AWS_APPLICATION_SIGNALS_ENABLED=false. For more information, see
Enable your applications on Lambda .

• AWS managed Lambda layer for ADOT JS. For more information, see AWS Distro for
OpenTelemetry Lambda Support For JavaScript.

Manually creating Spans with Lambda instrumentation

While the ADOT JavaScript Lambda Layer provides automatic instrumentation for your Lambda
function, you might find the need to perform manual instrumentation in your Lambda, for
example, to provide custom data or to instrument code within the Lambda function itself that is
not covered by library instrumentations.

To perform manual instrumentation alongside the automatic instrumentation, you will need to
add @opentelemetry/api as a dependency. The version of this dependency is recommended
to be the same version of the same dependency that is used by the ADOT JavaScript SDK. You
can use the OpenTelemetry API to manually create spans in your Lambda function.

Lambda instrumentation 586

https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Signals-Enable-LambdaMain.html
https://aws-otel.github.io/docs/getting-started/lambda/lambda-js
https://aws-otel.github.io/docs/getting-started/lambda/lambda-js

AWS X-Ray Developer Guide

To add the @opentelemetry/api dependency using NPM:

npm install @opentelemetry/api

Migrate to OpenTelemetry .NET

When using X-Ray Tracing in your .NET applications, the X-Ray .NET SDK with manual efforts is
used for instrumentation.

This section provides code examples in the Manual instrumentation solutions with the SDK
section for migrating from the X-Ray manual instrumentation solution to OpenTelemetry
manual Instrumentation solutions for .NET. Alternatively, you can migrate from X-Ray manual
instrumentation to OpenTelemetry automatic instrumentation solutions to instrument .NET
applications without having to modify application source code in the Zero code automatic
instrumentation solutions section.

Sections

• Zero code automatic instrumentation solutions

• Manual instrumentation solutions with the SDK

• Manually creating trace data

• Tracing incoming requests (ASP.NET and ASP.NET core instrumentation)

• AWS SDK instrumentation

• Instrumenting outgoing HTTP calls

• Instrumentation support for other libraries

• Lambda instrumentation

Zero code automatic instrumentation solutions

OpenTelemetry provides zero-code auto-instrumentation solutions. These solutions trace requests
without requiring changes to your application code.

OpenTelemetry-based automatic instrumentation options

Migrate to OpenTelemetry .NET 587

AWS X-Ray Developer Guide

1. Using the AWS Distro for OpenTelemetry (ADOT) auto-Instrumentation for .NET – To
automatically instrument .NET applications, see Tracing and Metrics with the AWS Distro for
OpenTelemetry .NET Auto-Instrumentation.

(Optional) Enable CloudWatch Application Signals when automatically instrumenting your
applications on AWS with the ADOT .NET auto-instrumentation to:

• Monitor current application health

• Track long-term application performance against business objectives

• Get a unified, application-centric view of your applications, services, and dependencies

• Monitor and triage application health

For more information, see Application Signals.

2. Using the OpenTelemetry .Net zero-code automatic instrumentation – To automatically
instrument with OpenTelemetry .Net, see Tracing and Metrics with the AWS Distro for
OpenTelemetry .NET Auto-Instrumentation.

Manual instrumentation solutions with the SDK

Tracing configuration with X-Ray SDK

For .NET web applications, the X-Ray SDK is configured in the appSettings section of the
Web.config file.

Example Web.config

<configuration>
 <appSettings>
 <add key="AWSXRayPlugins" value="EC2Plugin"/>
 </appSettings>
</configuration>

For .NET Core, a file named appsettings.json with a top-level key named XRay is used, and
then a configuration object is built o initialize the X-Ray recorder.

Example for .NET appsettings.json

Manual instrumentation solutions with the SDK 588

https://aws-otel.github.io/docs/getting-started/dotnet-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/dotnet-sdk/auto-instr
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Monitoring-Sections.html
https://aws-otel.github.io/docs/getting-started/dotnet-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/dotnet-sdk/auto-instr

AWS X-Ray Developer Guide

{
 "XRay": {
 "AWSXRayPlugins": "EC2Plugin"
 }
}

Example for .NET Core Program.cs – Recorder configuration

using Amazon.XRay.Recorder.Core;
...
AWSXRayRecorder.InitializeInstance(configuration);

Tracing configuration with OpenTelemetry SDK

Add these dependencies:

dotnet add package OpenTelemetry
dotnet add package OpenTelemetry.Contrib.Extensions.AWSXRay
dotnet add package OpenTelemetry.Sampler.AWS --prerelease
dotnet add package OpenTelemetry.Resources.AWS
dotnet add package OpenTelemetry.Exporter.OpenTelemetryProtocol
dotnet add package OpenTelemetry.Extensions.Hosting
dotnet add package OpenTelemetry.Instrumentation.AspNetCore

For your .NET application, configure the OpenTelemetry SDK by setting up the Global
TracerProvider. The following example configuration also enables instrumentation for ASP.NET
Core. To instrument ASP.NET, see Tracing incoming requests (ASP.NET and ASP.NET core
instrumentation). To use OpenTelemetry with other frameworks, see Registry for more libraries
for supported frameworks.

It is recommend that you configure the following components:

• An OTLP Exporter – Required for exporting traces to the CloudWatch Agent/
OpenTelemetry Collector

• An AWS X-Ray Propagator – Required for propagating the Trace Context to AWS Services that
are integrated with X-Ray

Manual instrumentation solutions with the SDK 589

https://opentelemetry.io/ecosystem/registry/
https://docs.aws.amazon.com/xray/latest/devguide/xray-services.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services.html

AWS X-Ray Developer Guide

• An AWS X-Ray Remote Sampler – Required if you need to sample requests using X-Ray
sampling rules

• Resource Detectors (for example, Amazon EC2 Resource Detector) - To detect metadata
of the host running your application

using OpenTelemetry;
using OpenTelemetry.Contrib.Extensions.AWSXRay.Trace;
using OpenTelemetry.Sampler.AWS;
using OpenTelemetry.Trace;
using OpenTelemetry.Resources;

var builder = WebApplication.CreateBuilder(args);

var serviceName = "MyServiceName";
var serviceVersion = "1.0.0";

var resourceBuilder = ResourceBuilder
 .CreateDefault()
 .AddService(serviceName: serviceName)
 .AddAWSEC2Detector();

builder.Services.AddOpenTelemetry()
 .ConfigureResource(resource => resource
 .AddAWSEC2Detector()
 .AddService(
 serviceName: serviceName,
 serviceVersion: serviceVersion))
 .WithTracing(tracing => tracing
 .AddSource(serviceName)
 .AddAspNetCoreInstrumentation()
 .AddOtlpExporter()
 .SetSampler(AWSXRayRemoteSampler.Builder(resourceBuilder.Build())
 .SetEndpoint("http://localhost:2000")
 .Build()));

Sdk.SetDefaultTextMapPropagator(new AWSXRayPropagator()); // configure X-Ray
 propagator

Manual instrumentation solutions with the SDK 590

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-sampling.html

AWS X-Ray Developer Guide

To use OpenTelemetry for a console app, add the following OpenTelemetry configuration at the
startup of your program.

using OpenTelemetry;
using OpenTelemetry.Contrib.Extensions.AWSXRay.Trace;
using OpenTelemetry.Trace;
using OpenTelemetry.Resources;

var serviceName = "MyServiceName";

var resourceBuilder = ResourceBuilder
 .CreateDefault()
 .AddService(serviceName: serviceName)
 .AddAWSEC2Detector();

var tracerProvider = Sdk.CreateTracerProviderBuilder()
 .AddSource(serviceName)
 .ConfigureResource(resource =>
 resource
 .AddAWSEC2Detector()
 .AddService(
 serviceName: serviceName,
 serviceVersion: serviceVersion
)
)
 .AddOtlpExporter() // default address localhost:4317
 .SetSampler(new TraceIdRatioBasedSampler(1.00))
 .Build();

Sdk.SetDefaultTextMapPropagator(new AWSXRayPropagator()); // configure X-Ray
 propagator

Manually creating trace data

With X-Ray SDK

With the X-Ray SDK, the BeginSegment and BeginSubsegment methods were needed to
manually create X-Ray segments and sub-segments.

Manually creating trace data 591

AWS X-Ray Developer Guide

using Amazon.XRay.Recorder.Core;

AWSXRayRecorder.Instance.BeginSegment("segment name"); // generates `TraceId` for
 you
try
{
 // Do something here
 // can create custom subsegments
 AWSXRayRecorder.Instance.BeginSubsegment("subsegment name");
 try
 {
 DoSometing();
 }
 catch (Exception e)
 {
 AWSXRayRecorder.Instance.AddException(e);
 }
 finally
 {
 AWSXRayRecorder.Instance.EndSubsegment();
 }
}
catch (Exception e)
{
 AWSXRayRecorder.Instance.AddException(e);
}
finally
{
 AWSXRayRecorder.Instance.EndSegment();
}

With OpenTelemetry SDK

In .NET, you can use the activity API to create custom spans to monitor the performance of
internal activities that are not captured by instrumentation libraries. Note that only spans of
kind Server are converted into X-Ray segments, all other spans are converted into X-Ray sub-
egments.

You can create as many ActivitySource instances as needed, but it is recommended to have
only one for an entire application/service.

Manually creating trace data 592

AWS X-Ray Developer Guide

using System.Diagnostics;

ActivitySource activitySource = new ActivitySource("ActivitySourceName",
 "ActivitySourceVersion");

...

using (var activity = activitySource.StartActivity("ActivityName",
 ActivityKind.Server)) // this will be translated to a X-Ray Segment
{
 // Do something here

 using (var internalActivity = activitySource.StartActivity("ActivityName",
 ActivityKind.Internal)) // this will be translated to an X-Ray Subsegment
 {
 // Do something here
 }
}

Adding annotations and metadata to traces with OpenTelemetry SDK

You can also add custom key-value pairs as attributes onto your spans by using the SetTag
method on an activity. Note that by default, all the span attributes will be converted into
metadata in X-Ray raw data. To ensure that an attribute is converted into an annotation and not
metadata, you can add that attribute's key to the list of aws.xray.annotations attribute.

using (var activity = activitySource.StartActivity("ActivityName",
 ActivityKind.Server)) // this will be translated to a X-Ray Segment
{
 activity.SetTag("metadataKey", "metadataValue");
 activity.SetTag("annotationKey", "annotationValue");
 string[] annotationKeys = {"annotationKey"};
 activity.SetTag("aws.xray.annotations", annotationKeys);

 // Do something here

Manually creating trace data 593

AWS X-Ray Developer Guide

 using (var internalActivity = activitySource.StartActivity("ActivityName",
 ActivityKind.Internal)) // this will be translated to an X-Ray Subsegment
 {
 // Do something here
 }
}

With OpenTelemetry automatic instrumentation

If you are using an OpenTelemetry automatic instrumentation solution for .NET, and if you need
to perform manual instrumentation in your application, for example, to instrument code within
the application itself for sections that are not covered by any auto-instrumentation library.

Since there can only be one global TracerProvider, manual instrumentation should not
instantiate its own TracerProvider if used together alongside auto-instrumentation. When
TracerProvider is used, custom manual tracing works the same way when using automatic
instrumentation or manual instrumentation through the OpenTelemetry SDK.

Tracing incoming requests (ASP.NET and ASP.NET core instrumentation)

With X-Ray SDK

To instrument requests served by the ASP.NET application, see https://docs.aws.amazon.com/
xray/latest/devguide/xray-sdk-dotnet-messagehandler.html for information on how to call
RegisterXRay in the Init method of your global.asax file.

AWSXRayASPNET.RegisterXRay(this, "MyApp");

To instrument requests served by your ASP.NET core application, the UseXRay method is called
before any other middleware in the Configure method of your Startup class.

app.UseXRay("MyApp");

Tracing incoming requests (ASP.NET and ASP.NET core instrumentation) 594

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet-messagehandler.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-dotnet-messagehandler.html

AWS X-Ray Developer Guide

With OpenTelemetry SDK

OpenTelemetry also provides instrumentation libraries to collect traces for incoming web
requests for ASP.NET and ASP.NET core. The following section lists the steps needed to add and
enable these library instrumentations for your OpenTelemetry configuration, including how to
add ASP.NET or ASP.NET core instrumentation when creating the Tracer Provider.

For information on how to enable OpenTelemetry.Instrumentation.AspNet, see
Steps to enable OpenTelemetry.Instrumentation.AspNet and for information on
how to enable OpenTelemetry.Instrumentation.AspNetCore, see Steps to enable
OpenTelemetry.Instrumentation.AspNetCore .

AWS SDK instrumentation

With X-Ray SDK

Install all AWS SDK clients by calling RegisterXRayForAllServices().

using Amazon.XRay.Recorder.Handlers.AwsSdk;
AWSSDKHandler.RegisterXRayForAllServices(); //place this before any instantiation of
 AmazonServiceClient
AmazonDynamoDBClient client = new AmazonDynamoDBClient(RegionEndpoint.USWest2); //
 AmazonDynamoDBClient is automatically registered with X-Ray

Use one of the following methods for specific AWS service client instrumentation.

AWSSDKHandler.RegisterXRay<IAmazonDynamoDB>(); // Registers specific type of
 AmazonServiceClient : All instances of IAmazonDynamoDB created after this line are
 registered
AWSSDKHandler.RegisterXRayManifest(String path); // To configure custom AWS Service
 Manifest file. This is optional, if you have followed "Configuration" section

With OpenTelemetry SDK

For the following code example, you will need the following dependency:

AWS SDK instrumentation 595

https://learn.microsoft.com/en-us/aspnet/overview
https://learn.microsoft.com/en-us/aspnet/core/?view=aspnetcore-9.0
https://github.com/open-telemetry/opentelemetry-dotnet-contrib/tree/main/src/OpenTelemetry.Instrumentation.AspNet#steps-to-enable-opentelemetryinstrumentationaspnet
https://github.com/open-telemetry/opentelemetry-dotnet-contrib/tree/main/src/OpenTelemetry.Instrumentation.AspNetCore#steps-to-enable-opentelemetryinstrumentationaspnetcore
https://github.com/open-telemetry/opentelemetry-dotnet-contrib/tree/main/src/OpenTelemetry.Instrumentation.AspNetCore#steps-to-enable-opentelemetryinstrumentationaspnetcore

AWS X-Ray Developer Guide

dotnet add package OpenTelemetry.Instrumentation.AWS

To instrument the AWS SDK, update the OpenTelemetry SDK configuration where the Global
TracerProvider is setup.

builder.Services.AddOpenTelemetry()
 ...
 .WithTracing(tracing => tracing
 .AddAWSInstrumentation()
 ...

Instrumenting outgoing HTTP calls

With X-Ray SDK

The X-Ray .NET SDK traces outgoing HTTP calls through the extension methods
GetResponseTraced() or GetAsyncResponseTraced() when using
System.Net.HttpWebRequest, or by using the HttpClientXRayTracingHandler handler
when using System.Net.Http.HttpClient.

With OpenTelemetry SDK

For the following code example, you will need the following dependency:

dotnet add package OpenTelemetry.Instrumentation.Http

To instrument System.Net.Http.HttpClient and System.Net.HttpWebRequest, update
the OpenTelemetry SDK configuration where the Global TracerProvider is setup.

builder.Services.AddOpenTelemetry()
 ...
 .WithTracing(tracing => tracing
 .AddHttpClientInstrumentation()
 ...

Instrumenting outgoing HTTP calls 596

AWS X-Ray Developer Guide

Instrumentation support for other libraries

You can search and filter the OpenTelemetry Registry for .NET Instrumentation Libraries to find out
if OpenTelemetry supports instrumentation for your Library. See the Registry to start searching.

Lambda instrumentation

With X-Ray SDK

The following procedure was required to use the X-Ray SDK with Lambda:

1. Enable Active Tracing on your Lambda function

2. The Lambda service creates a segment that represents your handler's invocation

3. Create sub-segments or instrument libraries using the X-Ray SDK

With OpenTelemetry-based solutions

You can automatically instrument your Lambda with AWS vended Lambda layers. There are two
solutions:

• (Recommended) CloudWatch Application Signals lambda layer

• For better performance, you may want to consider using OpenTelemetry Manual
Instrumentation to generate OpenTelemetry traces for your Lambda function.

OpenTelemetry manual instrumentation for AWS Lambda

The following is the Lambda function code (without instrumentation) example.

using System;
using System.Text;
using System.Threading.Tasks;
using Amazon.Lambda.Core;
using Amazon.S3;
using Amazon.S3.Model;

// Assembly attribute to enable Lambda function logging

Instrumentation support for other libraries 597

https://opentelemetry.io/ecosystem/registry/
https://docs.aws.amazon.com/lambda/latest/dg/monitoring-application-signals.html

AWS X-Ray Developer Guide

[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

namespace ExampleLambda;

public class ListBucketsHandler
{
 private static readonly AmazonS3Client s3Client = new();

 // new Lambda function handler passed in
 public async Task<string> HandleRequest(object input, ILambdaContext context)
 {
 try
 {
 var DoListBucketsAsyncResponse = await DoListBucketsAsync();
 context.Logger.LogInformation($"Results:
 {DoListBucketsAsyncResponse.Buckets}");

 context.Logger.LogInformation($"Successfully called ListBucketsAsync");
 return "Success!";
 }
 catch (Exception ex)
 {
 context.Logger.LogError($"Failed to call ListBucketsAsync: {ex.Message}");
 throw;
 }
 }

 private async Task<ListBucketsResponse> DoListBucketsAsync()
 {
 try
 {
 var putRequest = new ListBucketsRequest
 {
 };

 var response = await s3Client.ListBucketsAsync(putRequest);
 return response;
 }
 catch (AmazonS3Exception ex)
 {
 throw new Exception($"Failed to call ListBucketsAsync: {ex.Message}", ex);
 }
 }

Lambda instrumentation 598

AWS X-Ray Developer Guide

}

To manually instrument your Lambda handler and the Amazon S3 client, do the following.

1. Instantiate a TracerProvider – The TracerProvider is recommended to be configured with
an XrayUdpSpanExporter, a ParentBased Always On Sampler, and a Resource with
service.name set to the Lambda function name.

2. Instrument the Amazon S3 client with the OpenTemetry AWS SDK instrumentation by calling
AddAWSInstrumentation() to add AWS SDK client instrumentation to TracerProvider

3. Create a wrapper function with the same signature as the original Lambda function. Call
AWSLambdaWrapper.Trace() API and pass TracerProvider, the original Lambda function,
and its inputs as parameters. Set the wrapper function as the Lambda handler input.

For the following code example, you will need the following dependencies:

dotnet add package OpenTelemetry.Instrumentation.AWSLambda
dotnet add package OpenTelemetry.Instrumentation.AWS
dotnet add package OpenTelemetry.Resources.AWS
dotnet add package AWS.Distro.OpenTelemetry.Exporter.Xray.Udp

The following code demonstrates the Lambda function after the required changes. You can create
additional custom spans to complement the automatically provided spans.

using Amazon.Lambda.Core;
using Amazon.S3;
using Amazon.S3.Model;
using OpenTelemetry;
using OpenTelemetry.Instrumentation.AWSLambda;
using OpenTelemetry.Trace;
using AWS.Distro.OpenTelemetry.Exporter.Xray.Udp;
using OpenTelemetry.Resources;

// Assembly attribute to enable Lambda function logging
[assembly:
 LambdaSerializer(typeof(Amazon.Lambda.Serialization.SystemTextJson.DefaultLambdaJsonSerializer))]

Lambda instrumentation 599

AWS X-Ray Developer Guide

namespace ExampleLambda;

public class ListBucketsHandler
{
 private static readonly AmazonS3Client s3Client = new();

 TracerProvider tracerProvider = Sdk.CreateTracerProviderBuilder()
 .AddAWSLambdaConfigurations()
 .AddProcessor(
 new SimpleActivityExportProcessor(
 // AWS_LAMBDA_FUNCTION_NAME Environment Variable will be defined in AWS
 Lambda Environment
 new
 XrayUdpExporter(ResourceBuilder.CreateDefault().AddService(Environment.GetEnvironmentVariable("AWS_LAMBDA_FUNCTION_NAME")).Build())
)
)
 .AddAWSInstrumentation()
 .SetSampler(new ParentBasedSampler(new AlwaysOnSampler()))
 .Build();

 // new Lambda function handler passed in
 public async Task<string> HandleRequest(object input, ILambdaContext context)
 => await AWSLambdaWrapper.Trace(tracerProvider, OriginalHandleRequest, input,
 context);

 public async Task<string> OriginalHandleRequest(object input, ILambdaContext
 context)
 {
 try
 {
 var DoListBucketsAsyncResponse = await DoListBucketsAsync();
 context.Logger.LogInformation($"Results:
 {DoListBucketsAsyncResponse.Buckets}");

 context.Logger.LogInformation($"Successfully called ListBucketsAsync");
 return "Success!";
 }
 catch (Exception ex)
 {
 context.Logger.LogError($"Failed to call ListBucketsAsync: {ex.Message}");
 throw;
 }
 }

Lambda instrumentation 600

AWS X-Ray Developer Guide

 private async Task<ListBucketsResponse> DoListBucketsAsync()
 {
 try
 {
 var putRequest = new ListBucketsRequest
 {
 };

 var response = await s3Client.ListBucketsAsync(putRequest);
 return response;
 }
 catch (AmazonS3Exception ex)
 {
 throw new Exception($"Failed to call ListBucketsAsync: {ex.Message}", ex);
 }
 }
}

When invoking this Lambda, you will see the following trace in the Trace Map in the CloudWatch
console:

Migrate to OpenTelemetry Python

This guide helps you migrate Python applications from X-Ray SDK to OpenTelemetry
instrumentation. It covers both automatic and manual instrumentation approaches, with code
examples for common scenarios.

Sections

• Zero code automatic instrumentation solutions

• Manually instrument your applications

• Tracing setup initialization

Migrate to OpenTelemetry Python 601

AWS X-Ray Developer Guide

• Tracing incoming requests

• AWS SDK instrumentation

• Instrumenting outgoing HTTP calls through requests

• Instrumentation support for other libraries

• Manually creating trace data

• Lambda instrumentation

Zero code automatic instrumentation solutions

With X-Ray SDK, you had to modify your application code to trace requests. OpenTelemetry offers
zero-code auto-instrumentation solutions to trace requests. With OpenTelemetry, you have the
option of using zero-code auto-instrumentation solutions to trace requests.

Zero code with OpenTelemetry-based automatic instrumentations

1. Using the AWS Distro for OpenTelemetry (ADOT) auto-Instrumentation for Python – For
automatic instrumentation for Python applications, see Tracing and Metrics with the AWS Distro
for OpenTelemetry Python Auto-Instrumentation.

(Optional) You can also enable CloudWatch Application Signals when automatically
instrumenting your applications on AWS with the ADOT Python auto-instrumentation to
monitor current application health and track long-term application performance against your
business objectives. Application Signals provides you with a unified, application-centric view
of your applications, services, and dependencies, and helps you monitor and triage application
health.

2. Using the OpenTelemetry Python zero-code automatic instrumentation – For automatic
instrumentation with the OpenTelemetry Python, see Python zero-code instrumentation.

Manually instrument your applications

You can manually instrument your applications using the pip command.

With X-Ray SDK

pip install aws-xray-sdk

Zero code automatic instrumentation solutions 602

https://aws-otel.github.io/docs/getting-started/python-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/python-sdk/auto-instr
https://opentelemetry.io/docs/zero-code/python/

AWS X-Ray Developer Guide

With OpenTelemetry SDK

pip install opentelemetry-api opentelemetry-sdk opentelemetry-exporter-otlp
 opentelemetry-propagator-aws-xray

Tracing setup initialization

With X-Ray SDK

In X-Ray, the global xray_recorder is initialized and used it to generate segments and sub-
segments.

With OpenTelemetry SDK

Note

X-Ray Remote Sampling is currently not available to be configured for OpenTelemetry
Python. However, support for X-Ray Remote Sampling is currently available through the
ADOT Auto-Instrumentation for Python.

In OpenTelemetry, you need to initialize a global TracerProvider. Using this
TracerProvider, you can acquire a Tracer that you can use to generate spans anywhere in
your application. It is recommend that you configure the following components:

• OTLPSpanExporter – Required for exporting traces to the CloudWatch Agent/
OpenTelemetry Collector

• An AWS X-Ray Propagator – Required for propagating the Trace Context to AWS Services that
are integrated with X-Ray

from opentelemetry import (
 trace,
 propagate

Tracing setup initialization 603

https://opentelemetry.io/docs/concepts/signals/traces/#tracer

AWS X-Ray Developer Guide

)
from opentelemetry.sdk.trace import TracerProvider

from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter
from opentelemetry.sdk.trace.export import BatchSpanProcessor
from opentelemetry.propagators.aws import AwsXRayPropagator

Sends generated traces in the OTLP format to an OTel Collector running on port
 4318
otlp_exporter = OTLPSpanExporter(endpoint="http://localhost:4318/v1/traces")
Processes traces in batches as opposed to immediately one after the other
span_processor = BatchSpanProcessor(otlp_exporter)
More configurations can be done here. We will visit them later.

Sets the global default tracer provider
provider = TracerProvider(active_span_processor=span_processor)
trace.set_tracer_provider(provider)

Configures the global propagator to use the X-Ray Propagator
propagate.set_global_textmap(AwsXRayPropagator())

Creates a tracer from the global tracer provider
tracer = trace.get_tracer("my.tracer.name")
Use this tracer to create Spans

With ADOT auto-Instrumentation for Python

You can use the ADOT auto-instrumentation for Python to automatically configure OpenTelemetry
for your Python applications. By using ADOT auto-instrumentation, you do not need to make
manual code changes to trace incoming requests, or to trace libraries such as the AWS SDK or HTTP
clients. For more information, see Tracing and Metrics with the AWS Distro for OpenTelemetry
Python Auto-Instrumentation.

ADOT auto-instrumentation for Python supports:

• X-Ray remote sampling through the environment variable export
OTEL_TRACES_SAMPLER=xray

• X-Ray trace context propagation (enabled by default)

Tracing setup initialization 604

https://aws-otel.github.io/docs/getting-started/python-sdk/auto-instr
https://aws-otel.github.io/docs/getting-started/python-sdk/auto-instr

AWS X-Ray Developer Guide

• Resource detection (resource detection for Amazon EC2, Amazon ECS, and Amazon EKS
environments are enabled by default)

• Automatic library instrumentations for all supported OpenTelemetry
instrumentations are enabled by default. You can disable selectively through the
OTEL_PYTHON_DISABLED_INSTRUMENTATIONS environment variable. (all are enabled by
default)

• Manual creation of Spans

From X-Ray service plug-ins to OpenTelemetry AWS resource providers

The X-Ray SDK provides plug-ins that you could add to the xray_recorder to capture the
platform specific information from the hosted service like Amazon EC2, Amazon ECS, and Elastic
Beanstalk. It's similar to the Resource Providers in OpenTelemetry that captures the information as
Resource attributes. There are multiple Resource Providers available for different AWS platforms.

• Start by installing the AWS extension package, pip install opentelemetry-sdk-
extension-aws

• Configure the desired resource detector. The following example shows how to configure the
Amazon EC2 resource provider in OpenTelemetry SDK

from opentelemetry import trace
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.extension.aws.resource.ec2 import (
 AwsEc2ResourceDetector,
)
from opentelemetry.sdk.resources import get_aggregated_resources

provider = TracerProvider(
 active_span_processor=span_processor,
 resource=get_aggregated_resources([
 AwsEc2ResourceDetector(),
]))

trace.set_tracer_provider(provider)

Tracing setup initialization 605

AWS X-Ray Developer Guide

Tracing incoming requests

With X-Ray SDK

The X-Ray Python SDK supports application frameworks like Django, Flask, and Bottle in
tracing the incoming requests for Python applications running on them. This is done by adding
XRayMiddleware to the application for each framework.

With OpenTelemetry SDK

OpenTelemetry provides instrumentations for Django and Flask through the specific
instrumentation libraries. There is no instrumentation for Bottle available in OpenTelemetry,
applications can still be traced by using the OpenTelemetry WSGI Instrumentation .

For the following code example, you need the following dependency:

pip install opentelemetry-instrumentation-flask

You must initialize the OpenTelemetry SDK and register the global TracerProvider before
adding instrumentations for your application framework. Without it, the trace operations
will be no-ops. Once you have configured the global TracerProvider, you can use the
instrumentor for your application framework. The following example demonstrates a Flask
application.

from flask import Flask
from opentelemetry import trace
from opentelemetry.instrumentation.flask import FlaskInstrumentor
from opentelemetry.sdk.extension.aws.resource import AwsEc2ResourceDetector
from opentelemetry.sdk.resources import get_aggregated_resources
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.trace.export import BatchSpanProcessor, ConsoleSpanExporter

provider = TracerProvider(resource=get_aggregated_resources(
 [
 AwsEc2ResourceDetector(),
]))

processor = BatchSpanProcessor(ConsoleSpanExporter())

Tracing incoming requests 606

https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/django/django.html
https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/flask/flask.html
https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/wsgi/wsgi.html

AWS X-Ray Developer Guide

provider.add_span_processor(processor)
trace.set_tracer_provider(provider)

Creates a tracer from the global tracer provider
tracer = trace.get_tracer("my.tracer.name")

app = Flask(__name__)

Instrument the Flask app
FlaskInstrumentor().instrument_app(app)

@app.route('/')
def hello_world():
 return 'Hello World!'

if __name__ == '__main__':
 app.run()

AWS SDK instrumentation

With X-Ray SDK

The X-Ray Python SDK traces the AWS SDK client request by patching the botocore library.
For more information, see Tracing AWS SDK calls with the X-Ray SDK for Python . In your
application, the patch_all() method is used to instrument all the libraries or patch
selectively using the botocore or boto3libraries using patch((['botocore'])). Any of
the chosen method instruments all the Boto3 clients in your application and generates a sub-
segment for any call made using these clients.

With OpenTelemetry SDK

For the following code example, you will need the following dependency:

pip install opentelemetry-instrumentation-botocore

AWS SDK instrumentation 607

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python-awssdkclients.html

AWS X-Ray Developer Guide

Use the OpenTelemetry Botocore Instrumentation programmatically to instrument all
the Boto3 clients in your application. The following example demonstrates the botocore
instrumentation.

import boto3
import opentelemetry.trace as trace
from botocore.exceptions import ClientError
from opentelemetry.sdk.trace import TracerProvider
from opentelemetry.sdk.resources import get_aggregated_resources
from opentelemetry.sdk.trace.export import (
 BatchSpanProcessor,
 ConsoleSpanExporter,
)
from opentelemetry.instrumentation.botocore import BotocoreInstrumentor

provider = TracerProvider()
processor = BatchSpanProcessor(ConsoleSpanExporter())
provider.add_span_processor(processor)
trace.set_tracer_provider(provider)

Creates a tracer from the global tracer provider
tracer = trace.get_tracer("my.tracer.name")

Instrument BotoCore
BotocoreInstrumentor().instrument()

Initialize S3 client
s3 = boto3.client("s3", region_name="us-east-1")

Your bucket name
bucket_name = "my-example-bucket"

Get bucket location (as an example of describing it)
try:
 response = s3.get_bucket_location(Bucket=bucket_name)
 region = response.get("LocationConstraint") or "us-east-1"
 print(f"Bucket '{bucket_name}' is in region: {region}")

 # Optionally, get bucket's creation date via list_buckets
 buckets = s3.list_buckets()
 for bucket in buckets["Buckets"]:
 if bucket["Name"] == bucket_name:

AWS SDK instrumentation 608

https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/botocore/botocore.html

AWS X-Ray Developer Guide

 print(f"Bucket created on: {bucket['CreationDate']}")
 break
except ClientError as e:
 print(f"Failed to describe bucket: {e}")

Instrumenting outgoing HTTP calls through requests

With X-Ray SDK

The X-Ray Python SDK traces outgoing HTTP calls through requests by patching the requests
library. For more information, see Tracing calls to downstream HTTP web services using
the X-Ray SDK for Python. In your application, you can use the patch_all() method
to instrument all the libraries or by selectively patching the requests libraries by using
patch((['requests'])). Any of the option instruments the requests library, generating a
sub-segment for any call made through requests.

With OpenTelemetry SDK

For the following code example, you will need the following dependency:

pip install opentelemetry-instrumentation-requests

Use the OpenTelemetry Requests Instrumentation programmatically to instrument the
requests library to generate traces for HTTP requests made by it in your application. For
more information, see OpenTelemetry requests Instrumentation . The following example
demonstrates the requests library instrumentation.

from opentelemetry.instrumentation.requests import RequestsInstrumentor

Instrument Requests
RequestsInstrumentor().instrument()

...

 example_session = requests.Session()
 example_session.get(url="https://example.com")

Instrumenting outgoing HTTP calls through requests 609

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python-httpclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python-httpclients.html
https://opentelemetry-python-contrib.readthedocs.io/en/latest/instrumentation/requests/requests.html

AWS X-Ray Developer Guide

Alternatively, you can also instrument the underlying urllib3 library to trace HTTP requests:

pip install opentelemetry-instrumentation-urllib3
from opentelemetry.instrumentation.urllib3 import URLLib3Instrumentor

Instrument urllib3
URLLib3Instrumentor().instrument()

...

 example_session = requests.Session()
 example_session.get(url="https://example.com")

Instrumentation support for other libraries

You can find the full list of supported Library instrumentations for OpenTelemetry Python under
Supported libraries, frameworks, application servers, and JVMs .

Alternatively, you can search the OpenTelemetry Registry to find out if OpenTelemetry supports
instrumentation. See the Registry to start searching.

Manually creating trace data

You can create segments and sub-segments using the xray_recorder in your Python application.
For more information, see Instrumenting Python code manually . You can also manually add
annotations and metadata to the trace data.

Creating spans With OpenTelemetry SDK

Use the start_as_current_span API to start a span and set it for creating spans. For examples
on creating spans, see Creating spans. Once a span is started and is in the current scope, you can
add more information to it by adding attributes, events, exceptions, links, and so on. Like how we
have segments and sub-segments in X-Ray, there are different kinds of spans in OpenTelemetry.
Only the SERVER kind spans are converted to X-Ray segments while others are converted to X-Ray
sub-segments.

Instrumentation support for other libraries 610

https://github.com/open-telemetry/opentelemetry-java-instrumentation/blob/main/docs/supported-libraries.md
https://opentelemetry.io/ecosystem/registry/
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-python-middleware.html#xray-sdk-python-middleware-manual
https://opentelemetry.io/docs/languages/python/instrumentation/#creating-spans

AWS X-Ray Developer Guide

from opentelemetry import trace
from opentelemetry.trace import SpanKind

import time

tracer = trace.get_tracer("my.tracer.name")

Create a new span to track some work
with tracer.start_as_current_span("parent", kind=SpanKind.SERVER) as parent_span:
 time.sleep(1)

 # Create a nested span to track nested work
 with tracer.start_as_current_span("child", kind=SpanKind.CLIENT) as child_span:
 time.sleep(2)
 # the nested span is closed when it's out of scope

 # Now the parent span is the current span again
 time.sleep(1)

 # This span is also closed when it goes out of scope

Adding annotations and metadata to traces with OpenTelemetry SDK

The X-Ray Python SDK provides separate APIs, put_annotation and put_metadata for adding
annotations and metadata to a trace. In OpenTelemetry SDK, the annotations and metadata are
simply attributes on a span, added through the set_attribute API.

Span attributes that you want them to be annotations on a trace are added under the reserved key
aws.xray.annotations whose value is a list of key-value pairs of annotations. All the other span
attributes become metadata on the converted segment or sub-segment.

Additionally, if you are using the ADOT collector you can configure which span attributes should
be converted to X-Ray annotations by specifying the indexed_attributes in the collector
configuration.

The below example demonstrates how to add annotations and metadata to a trace using
OpenTelemetry SDK.

with tracer.start_as_current_span("parent", kind=SpanKind.SERVER) as parent_span:

Manually creating trace data 611

AWS X-Ray Developer Guide

 parent_span.set_attribute("TransactionId", "qwerty12345")
 parent_span.set_attribute("AccountId", "1234567890")

 # This will convert the TransactionId and AccountId to be searchable X-Ray
 annotations
 parent_span.set_attribute("aws.xray.annotations", ["TransactionId", "AccountId"])

 with tracer.start_as_current_span("child", kind=SpanKind.CLIENT) as child_span:

 # The MicroTransactionId will be converted to X-Ray metadata for the child
 subsegment
 child_span.set_attribute("MicroTransactionId", "micro12345")

Lambda instrumentation

To monitor your lambda functions on X-Ray, you enable X-Ray and added appropriate permissions
to the function invocation role. Additionally, if you are tracing downstream requests from your
function, you would be instrumenting the code with X-Ray Python SDK.

With OpenTelemetry for X-Ray, it is recommended to use the CloudWatch Application Signals
lambda layer with Application Signals turned off. This will auto-instrument your function and
will generate spans for the function invocation and any downstream request from your function.
Besides tracing, if you are interested in using Application Signals to monitor the health of your
function, see Enable your applications on Lambda .

• Find the required Lambda layer ARN for your function from AWS Lambda Layer for
OpenTelemetry ARNs and add it.

• Set the following environment variables for your function.

• AWS_LAMBDA_EXEC_WRAPPER=/opt/otel-instrument – This loads the auto-
instrumentation for the function

• OTEL_AWS_APPLICATION_SIGNALS_ENABLED=false – This will disable Application Signals
monitoring

Manually creating spans with Lambda instrumentation

Additionally, you can generate custom spans within your function to track work. You can do by
using only the opentelemetry-api package in conjunction with the Application Signals lambda
layer auto-instrumentation.

Lambda instrumentation 612

https://docs.aws.amazon.com/lambda/latest/dg/monitoring-application-signals.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Signals-Enable-LambdaMain.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Signals-Enable-LambdaMain.html#Enable-Lambda-Layers
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Application-Signals-Enable-LambdaMain.html#Enable-Lambda-Layers

AWS X-Ray Developer Guide

1. Include the opentelemetry-api as a dependency in your function

2. The following code snippet is a sample to generate custom spans

from opentelemetry import trace

Get the tracer (auto‑configured by the Application Signals layer)
tracer = trace.get_tracer(__name__)

def handler(event, context):
 # This span is a child of the layer's root span
 with tracer.start_as_current_span("my-custom-span") as span:
 span.set_attribute("key1", "value1")
 span.add_event("custom-event", {"detail": "something happened"})

 # Any logic you want to trace
 result = some_internal_logic()

 return {
 "statusCode": 200,
 "body": result
 }

Migrate to OpenTelemetry Ruby

To migrate your Ruby applications from X-Ray SDK to OpenTelemetry instrumentation, use the
following code examples and guidance for manual instrumentation.

Sections

• Manually instrument your solutions with the SDK

• Tracing incoming requests (Rails instrumentation)

• AWS SDK instrumentation

• Instrumenting outgoing HTTP calls

• Instrumentation support for other libraries

• Manually creating trace data

• Lambda manual instrumentation

Migrate to OpenTelemetry Ruby 613

AWS X-Ray Developer Guide

Manually instrument your solutions with the SDK

Tracing setup with X-Ray SDK

X-Ray SDK for Ruby required you to configure your code with service plug-ins.

require 'aws-xray-sdk'

XRay.recorder.configure(plugins: [:ec2, :elastic_beanstalk])

Tracing setup with OpenTelemetry SDK

Note

X-Ray remote sampling is currently not available to be configured for OpenTelemetry
Ruby.

For a Ruby on Rails application, place your configuration code in a Rails initializer. For more
information, see Getting Started. For all manually instrumented Ruby programs, you must use
the OpenTelemetry::SDK.configure method to configure the OpenTelemetry Ruby SDK.

First, install the following packages:

bundle add opentelemetry-sdk opentelemetry-exporter-otlp opentelemetry-propagator-
xray

Next, configure the OpenTelemetry SDK through the configuration code that runs when your
program initializes. It is recommend that you configure the following components:

• OTLP Exporter – Required for exporting traces to the CloudWatch agent and
OpenTelemetry collector

• An AWSX-Ray Propagator – Required for propagating the trace context to AWS services
that are integrated with X-Ray

require 'opentelemetry-sdk'
require 'opentelemetry-exporter-otlp'

Manually instrument your solutions with the SDK 614

https://opentelemetry.io/docs/languages/ruby/getting-started/#initialization

AWS X-Ray Developer Guide

Import the gem containing the AWS X-Ray for OTel Ruby ID Generator and propagator
require 'opentelemetry-propagator-xray'

OpenTelemetry::SDK.configure do |c|
 c.service_name = 'my-service-name'

 c.add_span_processor(
 # Use the BatchSpanProcessor to send traces in groups instead of one at a time
 OpenTelemetry::SDK::Trace::Export::BatchSpanProcessor.new(
 # Use the default OLTP Exporter to send traces to the ADOT Collector
 OpenTelemetry::Exporter::OTLP::Exporter.new(
 # The OpenTelemetry Collector is running as a sidecar and listening on port
 4318
 endpoint:"http://127.0.0.1:4318/v1/traces"
)
)
)

 # The X-Ray Propagator injects the X-Ray Tracing Header into downstream calls
 c.propagators = [OpenTelemetry::Propagator::XRay::TextMapPropagator.new]
end

OpenTelemetry SDKs also have the concept of library instrumentations. Enabling these will
automatically create spans for libraries such as the AWS SDK. OpenTelemetry provides the
option to enable all library instrumentations or specify which library instrumentations to
enable.

To enable all instrumentations, first install the opentelemetry-instrumentation-all
package:

bundle add opentelemetry-instrumentation-all

Next, update the configuration to enable all library instrumentations as shown below:

require 'opentelemetry/instrumentation/all'
...

OpenTelemetry::SDK.configure do |c|
 ...

Manually instrument your solutions with the SDK 615

AWS X-Ray Developer Guide

 c.use_all() # Enable all instrumentations
end

OpenTelemetry SDKs also have the concept of library instrumentations. Enabling these will
automatically create spans for libraries such as the AWS SDK. OpenTelemetry provides the
option to enable all library instrumentations or specify which library instrumentations to
enable.

To enable all instrumentations, first install the opentelemetry-instrumentation-all
package:

bundle add opentelemetry-instrumentation-all

Next, update the configuration to enable all library instrumentations as shown below:

require 'opentelemetry/instrumentation/all'
...

OpenTelemetry::SDK.configure do |c|
 ...

 c.use_all() # Enable all instrumentations
end

Tracing incoming requests (Rails instrumentation)

With X-Ray SDK

With X-Ray SDK, X-Ray tracing is configured for the Rails framework upon initialization.

Example – config/initializers/aws_xray.rb

Rails.application.config.xray = {
 name: 'my app',
 patch: %I[net_http aws_sdk],
 active_record: true

Tracing incoming requests (Rails instrumentation) 616

AWS X-Ray Developer Guide

}

With OpenTelemetry SDK

First, install the following packages:

bundle add opentelemetry-instrumentation-rack opentelemetry-instrumentation-
rails opentelemetry-instrumentation-action_pack opentelemetry-instrumentation-
active_record opentelemetry-instrumentation-action_view

Next, update the configuration to enable instrumentation for your Rails application as shown
below:

During SDK configuration
OpenTelemetry::SDK.configure do |c|

 ...

 c.use 'OpenTelemetry::Instrumentation::Rails'
 c.use 'OpenTelemetry::Instrumentation::Rack'
 c.use 'OpenTelemetry::Instrumentation::ActionPack'
 c.use 'OpenTelemetry::Instrumentation::ActiveSupport'
 c.use 'OpenTelemetry::Instrumentation::ActionView'

 ...

end

AWS SDK instrumentation

With X-Ray SDK

To instrument outgoing AWS requests from AWS SDK, the AWS SDK clients are patched with X-
Ray like the following example:

require 'aws-xray-sdk'
require 'aws-sdk-s3'

AWS SDK instrumentation 617

AWS X-Ray Developer Guide

Patch AWS SDK clients
XRay.recorder.configure(plugins: [:aws_sdk])

Use the instrumented client
s3 = Aws::S3::Client.new
s3.list_buckets

With OpenTelemetry SDK

AWS SDK for Ruby V3 provides support for recording and emitting OpenTelemetry traces.
For information on how to configure OpenTelemetry for a service client, see Configuring
observability features in the AWS SDK for Ruby .

Instrumenting outgoing HTTP calls

When making HTTP calls to external services, you might need to manually instrument the calls if
automatic instrumentation isn’t available or doesn’t provide enough detail.

With X-Ray SDK

To instrument downstream calls, the X-Ray SDK for Ruby was used to patch the net/http
library that your application uses:

require 'aws-xray-sdk'

config = {
 name: 'my app',
 patch: %I[net_http]
}

XRay.recorder.configure(config)

With OpenTelemetry SDK

To enable the net/http instrumentation using OpenTelemetry, first install the
opentelemetry-instrumentation-net_http package:

bundle add opentelemetry-instrumentation-net_http

Instrumenting outgoing HTTP calls 618

sdk-for-ruby/v3/developer-guide/observability.html
sdk-for-ruby/v3/developer-guide/observability.html

AWS X-Ray Developer Guide

Next, update the configuration to enable the net/http instrumentation as shown below:

OpenTelemetry::SDK.configure do |c|
 ...

 c.use 'OpenTelemetry::Instrumentation::Net::HTTP'
 ...

end

Instrumentation support for other libraries

You can find the full list of supported Library instrumentations for OpenTelemetry Ruby under
opentelemetry-ruby-contrib .

Alternatively, you can search the OpenTelemetry Registry to find out if OpenTelemetry supports
instrumentation. For more information, see Registry.

Manually creating trace data

With X-Ray SDK

Using X-Ray, the aws-xray-sdk package required you to manually create segments and their
child sub-segments to trace your application. You may have also added X-Ray annotations and
metadata to your segments or sub-segments:

require 'aws-xray-sdk'
...

Start a segment
segment = XRay.recorder.begin_segment('my-service')

Add annotations (indexed key-value pairs)
segment.annotations[:user_id] = 'user-123'
segment.annotations[:payment_status] = 'completed'

Add metadata (non-indexed data)
segment.metadata[:order] = {
 id: 'order-456',

Instrumentation support for other libraries 619

https://github.com/open-telemetry/opentelemetry-ruby-contrib/tree/main/instrumentation
https://opentelemetry.io/ecosystem/registry/

AWS X-Ray Developer Guide

 items: [
 { product_id: 'prod-1', quantity: 2 },
 { product_id: 'prod-2', quantity: 1 }
],
 total: 67.99
}

Add metadata to a specific namespace
segment.metadata(namespace: 'payment') do |metadata|
 metadata[:transaction_id] = 'tx-789'
 metadata[:payment_method] = 'credit_card'
end

Create a subsegment with annotations and metadata
segment.subsegment('payment-processing') do |subsegment1|
 subsegment1.annotations[:payment_id] = 'pay-123'
 subsegment1.metadata[:details] = { amount: 67.99, currency: 'USD' }

 # Create a nested subsegment
 subsegment1.subsegment('operation-2') do |subsegment2|
 # Do more work...
 end
end

Close the segment
segment.close

With OpenTelemetry SDK

You can use custom spans to monitor the performance of internal activities that are not
captured by instrumentation libraries. Note that only spans of kind server are converted into
X-Ray segments, all other spans are converted into X-Ray sub-segments. By default, spans are
INTERNAL.

First, create a Tracer in order to generate spans, which you can obtain through the
OpenTelemetry.tracer_provider.tracer('<YOUR_TRACER_NAME>') method. This
will provide a Tracer instance that is registered globally in you application's OpenTelemetry
configuration. It is common to have a single Tracer for an entire application. Create an
OpenTelemetry tracer and use it to create spans:

require 'opentelemetry-sdk'

Manually creating trace data 620

AWS X-Ray Developer Guide

...

Get a tracer
tracer = OpenTelemetry.tracer_provider.tracer('my-application')

Create a server span (equivalent to X-Ray segment)
tracer.in_span('my-application', kind: OpenTelemetry::Trace::SpanKind::SERVER) do |
span|
 # Do work...

 # Create nested spans of default kind INTERNAL will become an X-Ray subsegment
 tracer.in_span('operation-1') do |child_span1|
 # Set attributes (equivalent to X-Ray annotations and metadata)
 child_span1.set_attribute('key', 'value')

 # Do more work...
 tracer.in_span('operation-2') do |child_span2|
 # Do more work...
 end
 end
end

Adding annotations and metadata to traces with OpenTelemetry SDK

Use the set_attribute method to add attributes to each span. Note that by default, all these
span attributes will be converted into metadata in X-Ray raw data. To ensure that an attribute
is converted into an annotation and not metadata, you can add that attributes key to the list of
aws.xray.annotations attribute. For more information, see Enable The Customized X-Ray
Annotations .

SERVER span will become an X-Ray segment
tracer.in_span('my-server-operation', kind: OpenTelemetry::Trace::SpanKind::SERVER)
 do |span|
 # Your server logic here
 span.set_attribute('attribute.key', 'attribute.value')
 span.set_attribute("metadataKey", "metadataValue")
 span.set_attribute("annotationKey1", "annotationValue")

 # Create X-Ray annotations
 span.set_attribute("aws.xray.annotations", ["annotationKey1"])
end

Manually creating trace data 621

https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations
https://aws-otel.github.io/docs/getting-started/x-ray#enable-the-customized-x-ray-annotations

AWS X-Ray Developer Guide

Lambda manual instrumentation

With X-Ray SDK

After Active Tracing was enabled on Lambda, there are no additional configurations required to
use the X-Ray SDK. Lambda will create a segment representing the Lambda handler invocation,
and you can create sub-segments or instrument libraries using the X-Ray SDK without any
additional configuration.

With OpenTelemetry SDK

Consider the following sample Lambda function code (without instrumentation):

require 'json'
def lambda_handler(event:, context:)
 # TODO implement
 { statusCode: 200, body: JSON.generate('Hello from Lambda!') }
end

To manually instrument your Lambda, you will need to:

1. Add the following gems for your Lambda

gem 'opentelemetry-sdk'
gem 'opentelemetry-exporter-otlp'
gem 'opentelemetry-propagator-xray'
gem 'aws-distro-opentelemetry-exporter-xray-udp'
gem 'opentelemetry-instrumentation-aws_lambda'
gem 'opentelemetry-propagator-xray', '~> 0.24.0' # Requires version v0.24.0 or
 higher

2. Initialize OpenTelemetry SDK outside your Lambda Handler. The OpenTelemetry SDK is
recommended to be configured with:

1. A simple span processor with an X-Ray UDP span exporter to send Traces to Lambda's
UDP X-Ray endpoint

2. An X-Ray Lambda propagator

Lambda manual instrumentation 622

AWS X-Ray Developer Guide

3. service_name configuration to be set to the Lambda function name

3. In your Lambda handler class, add the following lines to instrument your Lambda Handler:

 class Handler
 extend OpenTelemetry::Instrumentation::AwsLambda::Wrap
 ...

 instrument_handler :process
 end

The following code demonstrates the Lambda function after the required changes. You can
create additional custom spans to complement the automatically provided spans.

require 'json'
require 'opentelemetry-sdk'
require 'aws/distro/opentelemetry/exporter/xray/udp'
require 'opentelemetry/propagator/xray'
require 'opentelemetry/instrumentation/aws_lambda'

Initialize OpenTelemetry SDK outside handler
OpenTelemetry::SDK.configure do |c|
 # Configure the AWS Distro for OpenTelemetry X-Ray Lambda exporter
 c.add_span_processor(
 OpenTelemetry::SDK::Trace::Export::SimpleSpanProcessor.new(
 AWS::Distro::OpenTelemetry::Exporter::XRay::UDP::AWSXRayUDPSpanExporter.new
)
)

 # Configure X-Ray Lambda propagator
 c.propagators = [OpenTelemetry::Propagator::XRay.lambda_text_map_propagator]

 # Set minimal resource information
 c.resource = OpenTelemetry::SDK::Resources::Resource.create({
 OpenTelemetry::SemanticConventions::Resource::SERVICE_NAME =>
 ENV['AWS_LAMBDA_FUNCTION_NAME']
 })
 c.use 'OpenTelemetry::Instrumentation::AwsLambda'
end

module LambdaFunctions
 class Handler

Lambda manual instrumentation 623

AWS X-Ray Developer Guide

 extend OpenTelemetry::Instrumentation::AwsLambda::Wrap
 def self.process(event:, context:)
 "Hello!"
 end
 instrument_handler :process
 end
end

The following is an example trace map of an instrumented Lambda function written in Ruby.

You can also use Lambda layers to configure OpenTelemetry for your Lambda. For more
information, see OpenTelemetry AWS-Lambda Instrumentation .

Lambda manual instrumentation 624

https://github.com/open-telemetry/opentelemetry-ruby-contrib/tree/main/instrumentation/aws_lambda#usage

AWS X-Ray Developer Guide

Creating X-Ray resources with AWS CloudFormation

AWS X-Ray is integrated with AWS CloudFormation, a service that helps you to model and set up
your AWS resources so that you can spend less time creating and managing your resources and
infrastructure. You create a template that describes all the AWS resources that you want, and AWS
CloudFormation provisions and configures those resources for you.

When you use AWS CloudFormation, you can reuse your template to set up your X-Ray resources
consistently and repeatedly. Describe your resources once, and then provision the same resources
over and over in multiple AWS accounts and Regions.

X-Ray and AWS CloudFormation templates

To provision and configure resources for X-Ray and related services, you must understand AWS
CloudFormation templates. Templates are formatted text files in JSON or YAML. These templates
describe the resources that you want to provision in your AWS CloudFormation stacks. If you're
unfamiliar with JSON or YAML, you can use AWS CloudFormation Designer to help you get started
with AWS CloudFormation templates. For more information, see What is AWS CloudFormation
Designer? in the AWS CloudFormation User Guide.

X-Ray supports creating AWS::XRay::Group, AWS::XRay::SamplingRule, and
AWS::XRay::ResourcePolicy resources in AWS CloudFormation. For more information,
including examples of JSON and YAML templates, see the X-Ray resource type reference in the AWS
CloudFormation User Guide.

Learn more about AWS CloudFormation

To learn more about AWS CloudFormation, see the following resources:

• AWS CloudFormation

• AWS CloudFormation User Guide

• AWS CloudFormation API Reference

• AWS CloudFormation Command Line Interface User Guide

X-Ray and AWS CloudFormation templates 625

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/working-with-templates-cfn-designer.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-xray-group.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-xray-samplingrule.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-xray-resourcepolicy.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/AWS_XRay.html
https://aws.amazon.com/cloudformation/
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/APIReference/Welcome.html
https://docs.aws.amazon.com/cloudformation-cli/latest/userguide/what-is-cloudformation-cli.html

AWS X-Ray Developer Guide

Tagging X-Ray sampling rules and groups

Tags are words or phrases that you can use to identify and organize your AWS resources. You can
add multiple tags to each resource. Each tag includes a key and an optional value that you define.
For example, a tag key might be domain, and the tag value might be example.com. You can
search and filter your resources based on tags that you add. For more information about ways to
use tags, see Tagging AWS resources in the AWS General Reference.

You can use tags to enforce tag-based permissions on CloudFront distributions. For more
information, see Controlling Access to AWS Resources Using Resource Tags.

Note

Tag Editor and AWS Resource Groups do not currently support X-Ray resources. You add
and manage tags by using the AWS X-Ray console or API.

You can apply tags to resources by using the X-Ray console, API, AWS CLI, SDKs, and AWS Tools for
Windows PowerShell. For more information, see the following documentation:

• X-Ray API – See the following operations in the AWS X-Ray API Reference:

• ListTagsForResource

• CreateSamplingRule

• CreateGroup

• TagResource

• UntagResource

• AWS CLI – See xray in the AWS CLI Command Reference

• SDKs – See the applicable SDK documentation on the AWS Documentation page

Note

If you cannot add or change tags on an X-Ray resource, or you cannot add a resource that
has specific tags, you might not have permissions to perform this operation. To request
access, contact an AWS user in your enterprise who has Administrator permissions in X-Ray.

626

https://docs.aws.amazon.com/general/latest/gr/aws_tagging.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/ARG/latest/userguide/tag-editor.html
https://docs.aws.amazon.com/ARG/latest/userguide/welcome.html
https://docs.aws.amazon.com/xray/latest/api/API_ListTagsForResource.html
https://docs.aws.amazon.com/xray/latest/api/API_CreateSamplingRule.html
https://docs.aws.amazon.com/xray/latest/api/API_CreateGroup.html
https://docs.aws.amazon.com/xray/latest/api/API_TagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html
https://docs.aws.amazon.com/cli/latest/reference/xray/index.html
https://docs.aws.amazon.com/

AWS X-Ray Developer Guide

Topics

• Tag restrictions

• Managing tags in the console

• Managing tags in the AWS CLI

• Control access to X-Ray resources based on tags

Tag restrictions

The following restrictions apply to tags.

• Maximum number of tags per resource – 50

• Maximum key length – 128 Unicode characters

• Maximum value length – 256 Unicode characters

• Valid values for key and value – a-z, A-Z, 0-9, space, and the following characters: _ . : / = + - and
@

• Tag keys and values are case sensitive.

• Don't use aws: as a prefix for keys; it's reserved for AWS use.

Note

You cannot edit or delete system tags.

Managing tags in the console

You can add optional tags as you create an X-Ray group or sampling rule. Tags can also be changed
or deleted in the console later.

The following procedures explain how to add, edit, and delete tags for your groups and sampling
rules in the X-Ray console.

Topics

• Add tags to a new group (console)

• Add tags to a new sampling rule (console)

• Edit or delete tags for a group (console)

Tag restrictions 627

AWS X-Ray Developer Guide

• Edit or delete tags for a sampling rule (console)

Add tags to a new group (console)

As you create a new X-Ray group, you can add optional tags on the Create group page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Groups.

3. Choose Create group.

4. On the Create group page, specify a name and filter expression for the group. For more
information about these properties, see Configuring groups.

5. In Tags, enter a tag key, and optionally, a tag value. For example, you can enter a tag key of
Stage, and a tag value of Production, to indicate that this group is for production use. As
you add a tag, a new line appears for you to add another tag, if needed. See Tag restrictions in
this topic for limitations on tags.

6. When you are finished adding tags, choose Create group.

Add tags to a new sampling rule (console)

As you create a new X-Ray sampling rule, you can add tags on the Create sampling rule page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Sampling.

3. Choose Create sampling rule.

4. On the Create sampling rule page, specify a name, priority, limits, matching criteria, and
matching attributes. For more information about these properties, see Configuring sampling
rules.

5. In Tags, enter a tag key, and optionally, a tag value. For example, you can enter a tag key of
Stage, and a tag value of Production, to indicate that this sampling rule is for production
use. As you add a tag, a new line appears for you to add another tag, if needed. See Tag
restrictions in this topic for limitations on tags.

6. When you are finished adding tags, choose Create sampling rule.

Add tags to a new group (console) 628

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home

AWS X-Ray Developer Guide

Edit or delete tags for a group (console)

You can change or delete tags on an X-Ray group on the Edit group page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Groups.

3. In the Groups table, choose the name of a group.

4. On the Edit group page, in Tags, edit tag keys and values. You cannot have duplicate tag keys.
Tag values are optional; you can delete values if desired. For more information about other
properties on the Edit group page, see Configuring groups. See Tag restrictions in this topic
for limitations on tags.

5. To delete a tag, choose X at the right of the tag.

6. When you are finished editing or deleting tags, choose Update group.

Edit or delete tags for a sampling rule (console)

You can change or delete tags on an X-Ray sampling rule on the Edit sampling rule page.

1. Sign in to the AWS Management Console and open the X-Ray console at https://
console.aws.amazon.com/xray/home.

2. In the navigation pane, expand Configuration, and choose Sampling.

3. In the Sampling rules table, choose the name of a sampling rule.

4. In Tags, edit tag keys and values. You cannot have duplicate tag keys. Tag values are optional;
you can delete values if desired. For more information about other properties on the Edit
sampling rule page, see Configuring sampling rules. See Tag restrictions in this topic for
limitations on tags.

5. To delete a tag, choose X at the right of the tag.

6. When you are finished editing or deleting tags, choose Update sampling rule.

Managing tags in the AWS CLI

You can add tags when you create an X-Ray group or sampling rule. You can also use the AWS CLI
to create and manage tags. To update tags on an existing group or sampling rule, use the AWS X-
Ray console, or the TagResource or UntagResource APIs.

Edit or delete tags for a group (console) 629

https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://console.aws.amazon.com/xray/home
https://docs.aws.amazon.com/xray/latest/api/API_TagResource.html
https://docs.aws.amazon.com/xray/latest/api/API_UntagResource.html

AWS X-Ray Developer Guide

Topics

• Add tags to a new X-Ray group or sampling rule (CLI)

• Add tags to an existing resource (CLI)

• List tags on a resource (CLI)

• Delete tags on a resource (CLI)

Add tags to a new X-Ray group or sampling rule (CLI)

To add optional tags as you're creating a new X-Ray group or sampling rule, use one of the
following commands.

• To add tags to a new group, run the following command, replacing group_name with the name
of your group, mydomain.com with the endpoint of your service, key_name with a tag key,
and optionally, value with a tag value. For more information about how to create a group, see
Groups.

aws xray create-group \
 --group-name "group_name" \
 --filter-expression "service(\"mydomain.com\") {fault OR error}" \
 --tags [{"Key": "key_name","Value": "value"},{"Key": "key_name","Value": "value"}]

The following is an example.

aws xray create-group \
 --group-name "AdminGroup" \
 --filter-expression "service(\"mydomain.com\") {fault OR error}" \
 --tags [{"Key": "Stage","Value": "Prod"},{"Key": "Department","Value": "QA"}]

• To add tags to a new sampling rule, run the following command, replacing key_name with
a tag key, and optionally, value with a tag value. This command specifies the values in the
--sampling-rule parameter as a JSON file. For more information about how to create a
sampling rule, see Sampling rules.

aws xray create-sampling-rule \
 --cli-input-json file://file_name.json

Add tags to a new X-Ray group or sampling rule (CLI) 630

AWS X-Ray Developer Guide

The following are the contents of the JSON file file_name.json that is specified by the --
cli-input-json parameter.

{
 "SamplingRule": {
 "RuleName": "rule_name",
 "RuleARN": "string",
 "ResourceARN": "string",
 "Priority": integer,
 "FixedRate": double,
 "ReservoirSize": integer,
 "ServiceName": "string",
 "ServiceType": "string",
 "Host": "string",
 "HTTPMethod": "string",
 "URLPath": "string",
 "Version": integer,
 "Attributes": {"attribute_name": "value","attribute_name": "value"...}
 }
 "Tags": [
 {
 "Key":"key_name",
 "Value":"value"
 },
 {
 "Key":"key_name",
 "Value":"value"
 }
]
}

The following command is an example.

aws xray create-sampling-rule \
 --cli-input-json file://9000-base-scorekeep.json

The following are the contents of the example 9000-base-scorekeep.json file specified by
the --cli-input-json parameter.

{
 "SamplingRule": {

Add tags to a new X-Ray group or sampling rule (CLI) 631

AWS X-Ray Developer Guide

 "RuleName": "base-scorekeep",
 "ResourceARN": "*",
 "Priority": 9000,
 "FixedRate": 0.1,
 "ReservoirSize": 5,
 "ServiceName": "Scorekeep",
 "ServiceType": "*",
 "Host": "*",
 "HTTPMethod": "*",
 "URLPath": "*",
 "Version": 1
 }
 "Tags": [
 {
 "Key":"Stage",
 "Value":"Prod"
 },
 {
 "Key":"Department",
 "Value":"QA"
 }
]
}

Add tags to an existing resource (CLI)

You can run the tag-resource command to add tags to an existing X-Ray group or sampling
rule This method might be simpler than adding tags by running update-group or update-
sampling-rule.

To add tags to a group or a sampling rule, run the following command, replacing the ARN with the
ARN of the resource, and specifying the keys and optional values of tags that you want to add.

aws xray tag-resource \
 --resource-arn "ARN" \
 --tag-keys [{"Key":"key_name","Value":"value"}, {"Key":"key_name","Value":"value"}]

The following is an example.

aws xray tag-resource \
 --resource-arn "arn:aws:xray:us-east-2:01234567890:group/AdminGroup" \

Add tags to an existing resource (CLI) 632

AWS X-Ray Developer Guide

 --tag-keys [{"Key": "Stage","Value": "Prod"},{"Key": "Department","Value": "QA"}]

List tags on a resource (CLI)

You can run the list-tags-for-resource command to list tags of an X-Ray group or sampling
rule.

To list the tags that are associated with a group or a sampling rule, run the following command,
replacing the ARN with the ARN of the resource.

aws xray list-tags-for-resource \
 --resource-arn "ARN"

The following is an example.

aws xray list-tags-for-resource \
 --resource-arn "arn:aws:xray:us-east-2:01234567890:group/AdminGroup"

Delete tags on a resource (CLI)

You can run the untag-resource command to remove tags from an X-Ray group or sampling
rule.

To remove tags from a group or a sampling rule, run the following command, replacing the ARN
with the ARN of the resource, and specifying the keys of tags that you want to remove.

You can remove only entire tags with the untag-resource command. To remove tag values, use
the X-Ray console, or delete tags and add new tags with the same keys, but different or empty
values.

aws xray untag-resource \
 --resource-arn "ARN" \
 --tag-keys ["key_name","key_name"]

The following is an example.

aws xray untag-resource \
 --resource-arn "arn:aws:xray:us-east-2:01234567890:group/group_name" \
 --tag-keys ["Stage","Department"]

List tags on a resource (CLI) 633

AWS X-Ray Developer Guide

Control access to X-Ray resources based on tags

You can attach tags to X-Ray groups or sampling rules, or pass tags in a request to X-Ray. To
control access based on tags, you provide tag information in the condition element of a policy
using the xray:ResourceTag/key-name, aws:RequestTag/key-name, or aws:TagKeys
condition keys. To learn more about these condition keys, see Controlling access to AWS resources
using resource tags.

To view an example identity-based policy for limiting access to a resource based on the tags on
that resource, see Managing access to X-Ray groups and sampling rules based on tags.

Control access to X-Ray resources based on tags 634

https://docs.aws.amazon.com/IAM/latest/UserGuide/reference_policies_elements_condition.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/access_tags.html

AWS X-Ray Developer Guide

Troubleshooting AWS X-Ray

This topic lists common errors and issues that you might encounter when using the X-Ray API,
console, or SDKs. If you find an issue that is not listed here, you can use the Feedback button on
this page to report it.

Sections

• X-Ray trace map and trace details pages

• X-Ray SDK for Java

• X-Ray SDK for Node.js

• The X-Ray daemon

X-Ray trace map and trace details pages

The following sections can help if you're having issues using the X-Ray trace map and Trace details
page:

I don't see all of my CloudWatch logs

How to configure logs so that they appear in the X-Ray trace map and trace details pages depends
on the service.

• API Gateway logs appear if logging is turned on in API Gateway.

Not all service map nodes support viewing the associated logs. View logs for the following node
types:

• Lambda context

• Lambda function

• API Gateway stage

• Amazon ECS cluster

• Amazon ECS instance

• Amazon ECS service

• Amazon ECS task

X-Ray trace map and trace details pages 635

AWS X-Ray Developer Guide

• Amazon EKS cluster

• Amazon EKS namespace

• Amazon EKS node

• Amazon EKS pod

• Amazon EKS service

I don't see all of my alarms on the X-Ray trace map

The X-Ray trace map shows only the alert icon for a node if any alarms that are associated with
that node are in the ALARM state.

The trace map associates alarms with nodes using the following logic:

• If the node represents an AWS service, then all alarms with the namespace associated with that
service are associated with the node. For example, a node of type AWS::Kinesis is linked with
all alarms that are based on metrics in the CloudWatch namespace AWS/Kinesis.

• If the node represents an AWS resource, then the alarms on that specific resource are linked.
For example, a node of type AWS::DynamoDB::Table with the name “MyTable” is linked to all
alarms that are based on a metric with the namespace AWS/DynamoDB and have the TableName
dimension set to MyTable.

• If the node is of unknown type, which is identified by a dashed border around the name, then no
alarms are associated with that node.

I don't see some AWS resources on the trace map

Not every AWS resource is represented by a dedicated node. Some AWS services are represented by
a single node for all requests to the service. The following resource types are displayed with a node
per resource:

• AWS::DynamoDB::Table

• AWS::Lambda::Function

Lambda functions are represented by two nodes—one for the Lambda container, and one for the
function. This helps to identify cold start problems with Lambda functions. Lambda container
nodes are associated with alarms and dashboards in the same way as Lambda function nodes.

• AWS::ApiGateway::Stage

I don't see all of my alarms on the X-Ray trace map 636

AWS X-Ray Developer Guide

• AWS::SQS::Queue

• AWS::SNS::Topic

There are too many nodes on the trace map

Use X-Ray groups to break your map into multiple maps. For more information, see Using Filter
Expressions with Groups.

X-Ray SDK for Java

Error: Exception in thread "Thread-1" com.amazonaws.xray.exceptions.SegmentNotFoundException:
Failed to begin subsegment named 'AmazonSNS': segment cannot be found.

This error indicates that the X-Ray SDK attempted to record an outgoing call to AWS, but couldn't
find an open segment. This can occur in the following situations:

• A servlet filter is not configured – The X-Ray SDK creates segments for incoming requests with
a filter named AWSXRayServletFilter. Configure a servlet filter to instrument incoming
requests.

• You're using instrumented clients outside of servlet code – If you use an instrumented client to
make calls in startup code or other code that doesn't run in response to an incoming request, you
must create a segment manually. See Instrumenting startup code for examples.

• You're using instrumented clients in worker threads – When you create a new thread, the X-
Ray recorder loses its reference to the open segment. You can use the getTraceEntity and
setTraceEntity methods to get a reference to the current segment or subsegment (Entity),
and pass it back to the recorder inside of the thread. See Using instrumented clients in worker
threads for an example.

X-Ray SDK for Node.js

Issue: CLS does not work with Sequelize

Pass the X-Ray SDK for Node.js namespace to Sequelize with the cls method.

var AWSXRay = require('aws-xray-sdk');
const Sequelize = require('sequelize');
Sequelize.cls = AWSXRay.getNamespace();

There are too many nodes on the trace map 637

https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#getTraceEntity--
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/AWSXRayRecorder.html#setTraceEntity--
https://docs.aws.amazon.com/xray-sdk-for-java/latest/javadoc/com/amazonaws/xray/entities/Entity.html

AWS X-Ray Developer Guide

const sequelize = new Sequelize(...);

Issue: CLS does not work with Bluebird

Use cls-bluebird to get Bluebird working with CLS.

var AWSXRay = require('aws-xray-sdk');
var Promise = require('bluebird');
var clsBluebird = require('cls-bluebird');
clsBluebird(AWSXRay.getNamespace());

The X-Ray daemon

Issue: The daemon is using the wrong credentials

The daemon uses the AWS SDK to load credentials. If you use multiple methods of providing
credentials, the method with the highest precedence is used. See Running the daemon for more
information.

The X-Ray daemon 638

AWS X-Ray Developer Guide

Document History for AWS X-Ray

The following table describes the important changes to the documentation for AWS X-Ray. For
notification about updates to this documentation, you can subscribe to an RSS feed.

Latest documentation update: March 07, 2024

Change Description Date

Added end-of-support notice
for AWS X-Ray SDKs and
daemon

On February 25th, 2027,
AWS X-Ray will discontinue
support for AWS X-Ray SDKs
and daemon. We recommend
to migrate to OpenTelem
etry. For more informati
on, see Migrating from X-
Ray instrumentation to
OpenTelemetry instrumen
tation.

August 22, 2025

Added functionality Migrating from X-Ray to
OpenTelemetry. For more
information, see Migrating
from X-Ray instrumentation
to OpenTelemetry instrumen
tation.

June 13, 2025

Added functionality AWS X-Ray now supports
Transaction Search. For more
information, see Transaction
Search.

November 21, 2024

Added functionality AWS X-Ray now supports
OpenTelemetry Protocol
(OTLP) Endpoint. For more
information, see OpenTelem
etry.

November 21, 2024

639

https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-migration.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Transaction-Search.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-Transaction-Search.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-OpenTelemetry-Sections.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/CloudWatch-OpenTelemetry-Sections.html

AWS X-Ray Developer Guide

Added functionality X-Ray now logs data events,
including PutTraceS
egments , GetTraceS
ummaries , and BatchGetT
races to AWS CloudTrai
l. X-Ray also now logs the
GetSamplingStatist
icSummaries managemen
t event to CloudTrail. For
more information, see
Logging X-Ray API calls with
AWS CloudTrail.

March 7, 2024

Added functionality X-Ray now supports trace
IDs created via OpenTelem
etry or any other framework
which conforms to the W3C
Trace Context specification.
For more information, see
Sending trace data to X-Ray.

October 25, 2023

Added functionality You can now configure
Amazon SNS active tracing,
enabling you to trace
and analyze requests as
they travel through your
Amazon SNS topics. For more
information, see Amazon SNS
and AWS X-Ray.

February 8, 2023

Updated X-Ray SDK for
Node.js topic

Added details for instrumen
ting clients using the AWS
SDK for JavaScript V3. For
details, see Tracing AWS SDK
calls with the X-Ray SDK for
Node.js.

February 7, 2023

640

https://docs.aws.amazon.com/xray/latest/devguide/xray-api-cloudtrail.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-cloudtrail.html
https://www.w3.org/TR/trace-context/
https://www.w3.org/TR/trace-context/
https://docs.aws.amazon.com/xray/latest/devguide/xray-api-sendingdata.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-sns.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs-awssdkclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs-awssdkclients.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-sdk-nodejs-awssdkclients.html

AWS X-Ray Developer Guide

Updated IAM managed policy
details

Added IAM permission for
cross-account observability to
the AWSXRayReadOnlyAcc
ess , AWSXRayFullAccess
and AWSXrayCrossAccoun
tSharingConfigurat
ion managed policies. For
details, see IAM managed
policies for X-Ray.

February 7, 2023

Added functionality AWS X-Ray now supports
cross-account observability,
enabling you to monitor and
troubleshoot applications
that span across multiple
accounts within an AWS
Region. For details, see Cross-
account tracing.

November 27, 2022

Added functionality You can now view linked
traces between message
producers, an Amazon SQS
queue, and consumers,
providing a connected view
of traces sent from event-dri
ven applications. For more
information, see tracing
event-driven applications.

November 20, 2022

Updated IAM managed policy
details

Added IAM permission for
listing resource policies to
the AWSXRayReadOnlyAcc
ess managed policy. For
details, see IAM managed
policies for X-Ray.

November 15, 2022

641

https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-crossaccount.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-crossaccount.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-tracelinking.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-tracelinking.html
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#xray-permissions-managedpolicies

AWS X-Ray Developer Guide

Updated IAM console
permissions and managed
policy details

The set of IAM permissions
the X-Ray console uses has
been updated, along with the
description of the AWSXRayRe
adOnlyAccess managed
policy. For details, see Using
the X-Ray console.

November 11, 2022

Added AWS Distro for
OpenTelemetry Ruby

AWS Distro for OpenTelem
etry (ADOT) provides a single
set of open source APIs,
libraries, and agents to collect
distributed traces and metrics.
ADOT Ruby enables you
to instrument your Ruby
application for X-Ray and
other tracing back-ends. For
more information, see AWS
Distro for OpenTelemetry
Ruby.

February 7, 2022

Added functionality You can now view traces and
configure X-Ray from the
CloudWatch console. For
more information, see X-Ray
console.

January 24, 2022

Integrated CloudWatch RUM With AWS X-Ray and
CloudWatch RUM, you can
analyze and debug the
request path starting from
end users of your applicati
on through downstream AWS
managed services. For more
information, see CloudWatch
RUM and AWS X-Ray.

December 3, 2021

642

https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-console
https://docs.aws.amazon.com/xray/latest/devguide/xray-ruby-opentel-sdk.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-ruby-opentel-sdk.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-ruby-opentel-sdk.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console.html
https://docs.aws.amazon.com/xray/latest/devguide/services-cloudwatch-RUM.html
https://docs.aws.amazon.com/xray/latest/devguide/services-cloudwatch-RUM.html

AWS X-Ray Developer Guide

Integrated AWS Distro for
OpenTelemetry

The AWS Distro for
OpenTelemetry (ADOT)
provides a single set of open
source APIs, libraries, and
agents to collect distribut
ed traces and metrics. ADOT
enables you to instrument
your application for X-Ray
and other tracing back-ends
. For more information, see
Instrumenting your app.

September 23, 2021

Added functionality AWS X-Ray now integrates
with Amazon Virtual Private
Cloud, enabling resources
in your Amazon VPC to
communicate with the X-Ray
service without going through
the public internet. For more
information, see Using AWS
X-Ray with VPC endpoints.

May 20, 2021

Added functionality AWS X-Ray now integrates
with AWS CloudFormation,
enabling you to provision and
configure X-Ray resources
. For more information, see
Creating X-Ray resources with
CloudFormation.

May 6, 2021

643

https://docs.aws.amazon.com/xray/latest/devguide/xray-instrumenting-your-app.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-security-vpc-endpoint.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-security-vpc-endpoint.html
https://docs.aws.amazon.com/xray/latest/devguide/creating-resources-with-cloudformation.html
https://docs.aws.amazon.com/xray/latest/devguide/creating-resources-with-cloudformation.html

AWS X-Ray Developer Guide

Added functionality AWS X-Ray now integrate
s with Amazon EventBrid
ge to trace events that are
passed through EventBrid
ge. This provides users with a
more complete view of their
system. For more information,
see Amazon EventBridge and
AWS X-Ray.

March 2, 2021

Added daemon to ECR The daemon can now be
downloaded from Amazon
ECR. For more informati
on, see Downloading the
daemon.

March 1, 2021

Added functionality AWS X-Ray now supports
insights related notificat
ions to Amazon EventBrid
ge. This allows you to take
automatic actions on insights
using EventBridge. For more
information, see Insights
Notifications.

October 15, 2020

Added Downloadable
Daemons

AWS X-Ray introduce
s support daemon for
Linux ARM64. For more
information, see AWS X-Ray
daemonbrazil ws

October 1, 2020

644

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-eventbridge.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-eventbridge.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html#xray-daemon-downloading
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html#xray-daemon-downloading
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-insights.html#xray-console-insight-notifications
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-insights.html#xray-console-insight-notifications
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-daemon.html

AWS X-Ray Developer Guide

Added functionality AWS X-Ray now supports
active integration with
Amazon CloudWatch
Synthetics. This allows you to
see details about a Synthetic
s canary client node such as
response time and status.
You can also do analysis
in the Analytics console
based on information from
a Synthetics canary client
node. For more information,
see Debugging CloudWatch
synthetics canaries using X-
Ray .

September 24, 2020

Added functionality AWS X-Ray now supports
tracing end-to-end workflows
for AWS Step Functions
. You can visualize the
components of your state
machine, identify performan
ce bottlenecks, and troublesh
oot requests that resulted in
an error. For more informati
on, see AWS Step Functions
and AWS X-Ray.

September 14, 2020

645

https://docs.aws.amazon.com/xray/latest/devguide/xray-services-cloudwatch-synthetics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-cloudwatch-synthetics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-cloudwatch-synthetics.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-stepfunctions.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-services-stepfunctions.html

AWS X-Ray Developer Guide

Added functionality AWS X-Ray introduces
insights to continuously
analyze trace data in your
account to identify emergent
issues in your applications.
Insights records incidents and
track incident impact until
resolution. For more informati
on, see Using insights in the
AWS X-Ray console

September 3, 2020

Added functionality AWS X-Ray introduces the
Java auto-instrumentation
agent, enabling customers
to collect trace data without
having to modify existing
Java-based application. You
can now trace Java web
and servlet based applicati
ons with minimal configura
tion change and no code
change. For more informati
on, see AWS X-Ray auto-inst
rumentation agent for Java.

September 3, 2020

Added functionality AWS X-Ray has added a new
Groups page to the X-Ray
console to help ease the
creation and management
of groups of traces. For more
information, see Configuring
groups in the X-Ray console.

August 24, 2020

646

https://docs.aws.amazon.com/xray/latest/devguide/xray-console-insights.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-insights.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-x-ray-auto-instrumentation-agent-for-java.html
https://docs.aws.amazon.com/xray/latest/devguide/aws-x-ray-auto-instrumentation-agent-for-java.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-groups.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-console-groups.html

AWS X-Ray Developer Guide

Added functionality AWS X-Ray now lets you
add tags to groups and
sampling rules. You can also
control access to groups and
sampling rules based on tags.
For more information, see
Tagging X-Ray sampling rules
and groups and Managing
access to X-Ray groups and
sampling rules based on tags.

August 24, 2020

647

https://docs.aws.amazon.com/xray/latest/devguide/xray-tagging.html
https://docs.aws.amazon.com/xray/latest/devguide/xray-tagging.html
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-manage-sampling-tags
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-manage-sampling-tags
https://docs.aws.amazon.com/xray/latest/devguide/security_iam_id-based-policy-examples.html#security_iam_id-based-policy-examples-manage-sampling-tags

	AWS X-Ray
	Table of Contents
	What is AWS X-Ray?
	Getting started with X-Ray
	Choosing an interface
	Use an SDK
	Use the ADOT SDK
	Use the X-Ray SDK

	Use a console
	Use the Amazon CloudWatch console
	Use the X-Ray console
	Explore the X-Ray console
	Using the X-Ray trace map
	Viewing the trace map
	Filtering the trace map by group
	Trace map legend and options

	Viewing traces and trace details
	Viewing traces
	Exploring the trace timeline
	Viewing segment details
	Viewing subsegment details

	Using filter expressions
	Filter expression details
	Using filter expressions with groups
	Filter expression syntax
	Boolean keywords
	Number keywords
	String keywords
	Complex keywords
	id function

	Cross-account tracing
	Configure cross-account observability
	Viewing cross-account traces
	Trace map
	Traces
	Trace details

	Tracing event-driven applications
	View linked traces in the trace map
	View linked trace details
	Select a single trace within a set of linked traces

	Using latency histograms
	Latency
	Interpreting service details

	Using X-Ray insights
	Enable insights in the X-Ray console
	Enable insights notifications
	Insight overview
	Review an insight's progress

	Interacting with the Analytics console
	Console features
	Features

	Response time distribution
	Time series activity
	Workflow examples
	Observe faults on the service graph
	Identify response time peaks
	View all traces marked with a status code
	View all items in a subgroup and associated to a user
	Compare two sets of traces with different criteria
	Identify a trace of interest and view its details

	Configuring groups
	Create a group
	Apply a group
	Edit a group
	Clone a group
	Delete a group
	View group metrics in Amazon CloudWatch

	Configuring sampling rules
	Configuring sampling rules
	Customizing sampling rules
	Sampling rule options
	Sampling rule examples
	Configuring your service to use sampling rules
	Viewing sampling results
	Next steps

	Console deep linking
	Traces
	Filter expressions
	Time range
	Region
	Combined

	Use the X-Ray API
	Using the AWS X-Ray API with the AWS CLI
	Prerequisites
	Generate trace data
	Use the X-Ray API
	Cleanup

	Sending trace data to AWS X-Ray
	Generating trace IDs
	Using PutTraceSegments
	Sending segment documents to the X-Ray daemon

	Getting data from AWS X-Ray
	Retrieving the service graph
	Retrieving the service graph by group
	Retrieving traces
	Retrieving and refining root cause analytics

	Configuring sampling, groups, and encryption settings with the AWS X-Ray API
	Encryption settings
	Sampling rules
	Groups

	Using sampling rules with the X-Ray API
	AWS X-Ray segment documents
	Segment fields
	Subsegments
	HTTP request data
	Annotations
	Metadata
	AWS resource data
	Errors and exceptions
	SQL queries

	AWS X-Ray concepts
	Segments
	Subsegments
	Service graph
	Traces
	Sampling
	Tracing header
	Filter expressions
	Groups
	Annotations and metadata
	Errors, faults, and exceptions

	Security in AWS X-Ray
	
	Data protection in AWS X-Ray
	Identity and access management for AWS X-Ray
	Audience
	Authenticating with identities
	AWS account root user
	IAM users and groups
	IAM roles

	Managing access using policies
	Identity-based policies
	Resource-based policies
	Access control lists (ACLs)
	Other policy types
	Multiple policy types

	How AWS X-Ray works with IAM
	X-Ray identity-based policies
	Actions
	Resources
	Condition keys
	Examples

	X-Ray resource-based policies
	Authorization based on X-Ray tags
	Running your application locally
	Running your application in AWS
	User permissions for encryption

	AWS X-Ray identity-based policy examples
	Policy best practices
	Using the X-Ray console
	Allow users to view their own permissions
	Managing access to X-Ray groups and sampling rules based on tags
	IAM managed policies for X-Ray
	X-Ray updates to AWS managed policies
	Specifying a resource within an IAM policy

	Troubleshooting AWS X-Ray identity and access
	I Am not authorized to perform an action in X-Ray
	I Am not authorized to perform iam:PassRole
	I'm an administrator and want to allow others to access X-Ray
	I want to allow people outside of my AWS account to access my X-Ray resources

	Logging and monitoring in AWS X-Ray
	Compliance validation for AWS X-Ray
	Resilience in AWS X-Ray
	Infrastructure security in AWS X-Ray
	Using AWS X-Ray with VPC endpoints
	Creating a VPC endpoint for X-Ray
	Controlling access to your X-Ray VPC endpoint
	Supported Regions

	Cross-service confused deputy prevention

	AWS X-Ray sample application
	Getting started with the Scorekeep sample application
	Prerequisites
	Install the Scorekeep application using CloudFormation
	Generate trace data
	View the trace map in the AWS Management Console
	Configuring Amazon SNS notifications
	Explore the sample application
	Optional: Least privilege policy
	Clean up
	Next steps

	Manually instrumenting AWS SDK clients
	Creating additional subsegments
	Recording annotations, metadata, and user IDs
	Instrumenting outgoing HTTP calls
	Instrumenting calls to a PostgreSQL database
	Instrumenting AWS Lambda functions
	Random name
	Worker

	Instrumenting startup code
	Instrumenting scripts
	Instrumenting a web app client
	Using instrumented clients in worker threads

	AWS X-Ray daemon
	Downloading the daemon
	Verifying the daemon archive's signature
	Running the daemon
	Giving the daemon permission to send data to X-Ray
	X-Ray daemon logs
	Configuring the AWS X-Ray daemon
	Supported environment variables
	Using command line options
	Using a configuration file

	Running the X-Ray daemon locally
	Running the X-Ray daemon on Linux
	Running the X-Ray daemon in a Docker container
	Running the X-Ray daemon on Windows
	Running the X-Ray daemon on OS X

	Running the X-Ray daemon on AWS Elastic Beanstalk
	Using the Elastic Beanstalk X-Ray integration to run the X-Ray daemon
	Downloading and running the X-Ray daemon manually (advanced)

	Running the X-Ray daemon on Amazon EC2
	Running the X-Ray daemon on Amazon ECS
	Using the official Docker image
	Create and build a Docker image
	Configure command line options in the Amazon ECS console

	Integrating AWS X-Ray with other AWS services
	Amazon Bedrock AgentCore and AWS X-Ray
	Setting up X-Ray with AgentCore
	Using trace headers with AgentCore

	Amazon Elastic Compute Cloud and AWS X-Ray
	Amazon SNS and AWS X-Ray
	Configure Amazon SNS active tracing
	View Amazon SNS publisher and subscriber traces in the X-Ray console

	Amazon SQS and AWS X-Ray
	Send the HTTP trace header
	Retrieve the trace header and recover trace context

	Amazon S3 and AWS X-Ray
	Configure Amazon S3 event notifications
	Amazon SNS and Amazon SQS
	AWS Lambda

	AWS Distro for OpenTelemetry and AWS X-Ray
	AWS Distro for OpenTelemetry

	Tracking X-Ray encryption configuration changes with AWS Config
	Creating a Lambda function trigger
	Creating a custom AWS Config rule for x-ray
	Example results
	Amazon SNS notifications

	AWS AppSync and AWS X-Ray
	Amazon API Gateway active tracing support for AWS X-Ray
	Amazon EC2 and AWS App Mesh
	AWS App Runner and X-Ray
	Logging X-Ray API calls with AWS CloudTrail
	X-Ray management events in CloudTrail
	X-Ray data events in CloudTrail
	X-Ray event examples
	Management event example, GetEncryptionConfig
	Data event example, PutTraceSegments

	CloudWatch integration with X-Ray
	CloudWatch RUM and AWS X-Ray
	Debugging CloudWatch synthetics canaries using X-Ray
	View canaries with increased error reporting in the trace map
	Use trace details maps for individual traces to view each request in detail
	Determine the root cause of ongoing failures in upstream and downstream services
	Identify performance bottlenecks and trends
	Compare latency and error or fault rates before and after changes
	Determine the required canary coverage for all APIs and URLs
	Use groups to focus on synthetics tests

	AWS Elastic Beanstalk and AWS X-Ray
	Elastic Load Balancing and AWS X-Ray
	Amazon EventBridge and AWS X-Ray
	Viewing source and targets on the X-Ray service map
	Propagate the trace context to event targets

	AWS Lambda and AWS X-Ray
	AWS Step Functions and AWS X-Ray

	Instrumenting your application for AWS X-Ray
	Instrumenting your application with the AWS Distro for OpenTelemetry
	Instrumenting your application with AWS X-Ray SDKs
	Choosing between the AWS Distro for OpenTelemetry and X-Ray SDKs

	Transaction Search
	OpenTelemetry Protocol (OTLP) Endpoint
	Working with Go
	AWS Distro for OpenTelemetry Go
	AWS X-Ray SDK for Go
	Requirements
	Reference documentation
	Configuring the X-Ray SDK for Go
	Service plugins
	Sampling rules
	Logging
	Environment variables
	Using configure

	Instrumenting incoming HTTP requests with the X-Ray SDK for Go
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for Go
	Tracing calls to downstream HTTP web services with the X-Ray SDK for Go
	Tracing SQL queries with the X-Ray SDK for Go
	Generating custom subsegments with the X-Ray SDK for Go
	Add annotations and metadata to segments with the X-Ray SDK for Go
	Recording annotations with the X-Ray SDK for Go
	Recording metadata with the X-Ray SDK for Go
	Recording user IDs with the X-Ray SDK for Go

	Working with Java
	AWS Distro for OpenTelemetry Java
	AWS X-Ray SDK for Java
	Submodules
	Requirements
	Dependency management
	AWS X-Ray auto-instrumentation agent for Java
	Sample application
	Getting started
	Configuration
	Configuration specification
	Logging configuration
	Manual instrumentation

	Troubleshooting
	Problem: I’ve enabled the Java agent on my application but don’t see anything on the X-Ray console
	Problem: Some of the segments I expect do not appear on the X-Ray console

	Configuring the X-Ray SDK for Java
	Service plugins
	Sampling rules
	Logging
	Trace ID injection into logs

	Segment listeners
	Environment variables
	System properties

	Tracing incoming requests with the X-Ray SDK for Java
	Adding a tracing filter to your application (Tomcat)
	Adding a tracing filter to your application (spring)
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for Java
	Tracing calls to downstream HTTP web services with the X-Ray SDK for Java
	Tracing SQL queries with the X-Ray SDK for Java
	SQL Interceptors
	Native SQL Tracing Decorator

	Generating custom subsegments with the X-Ray SDK for Java
	Add annotations and metadata to segments with the X-Ray SDK for Java
	Recording annotations with the X-Ray SDK for Java
	Recording metadata with the X-Ray SDK for Java
	Recording user IDs with the X-Ray SDK for Java

	AWS X-Ray metrics for the X-Ray SDK for Java
	X-Ray CloudWatch metrics
	X-Ray CloudWatch dimensions
	Enable X-Ray CloudWatch metrics

	Passing segment context between threads in a multithreaded application
	Using X-Ray with Asynchronous Programming

	AOP with Spring and the X-Ray SDK for Java
	Configuring Spring
	Configuring Spring Boot
	Adding a tracing filter to your application
	Jakarta Support
	Annotating your code or implementing an interface
	Activating X-Ray in your application
	Example

	Working with Node.js
	AWS Distro for OpenTelemetry JavaScript
	AWS X-Ray SDK for Node.js
	Requirements
	Dependency management
	Node.js samples
	Configuring the X-Ray SDK for Node.js
	Service plugins
	Sampling rules
	Logging
	X-Ray daemon address
	Environment variables

	Tracing incoming requests with the X-Ray SDK for Node.js
	Tracing incoming requests with Express
	Tracing incoming requests with restify
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for Node.js
	Tracing calls to downstream HTTP web services using the X-Ray SDK for Node.js
	Tracing SQL queries with the X-Ray SDK for Node.js
	Including additional data in SQL subsegments

	Generating custom subsegments with the X-Ray SDK for Node.js
	Custom Express subsegments
	Custom Lambda subsegments

	Add annotations and metadata to segments with the X-Ray SDK for Node.js
	Recording annotations with the X-Ray SDK for Node.js
	Recording metadata with the X-Ray SDK for Node.js
	Recording user IDs with the X-Ray SDK for Node.js

	Working with Python
	AWS Distro for OpenTelemetry Python
	AWS X-Ray SDK for Python
	Requirements
	Dependency management
	Configuring the X-Ray SDK for Python
	Service plugins
	Sampling rules
	Logging
	Recorder configuration in code
	Recorder configuration with Django
	Environment variables

	Tracing incoming requests with the X-Ray SDK for Python middleware
	Adding the middleware to your application (Django)
	Adding the middleware to your application (flask)
	Adding the middleware to your application (Bottle)
	Instrumenting Python code manually
	Configuring a segment naming strategy

	Patching libraries to instrument downstream calls
	Tracing context for asynchronous work

	Tracing AWS SDK calls with the X-Ray SDK for Python
	Tracing calls to downstream HTTP web services using the X-Ray SDK for Python
	Generating custom subsegments with the X-Ray SDK for Python
	Add annotations and metadata to segments with the X-Ray SDK for Python
	Recording annotations with the X-Ray SDK for Python
	Recording metadata with the X-Ray SDK for Python
	Recording user IDs with the X-Ray SDK for Python

	Instrumenting web frameworks deployed to serverless environments
	Prerequisites
	Step 1: Create an environment
	Step 2: Create and deploy a zappa environment
	Step 3: Enable X-Ray tracing for API Gateway
	Step 4: View the created trace
	Step 5: Clean up
	Next steps

	Working with .NET
	AWS Distro for OpenTelemetry .NET
	AWS X-Ray SDK for .NET
	Requirements
	Adding the X-Ray SDK for .NET to your application
	Dependency management
	NET Framework 4.5
	NET Framework 2.0

	Configuring the X-Ray SDK for .NET
	Plugins
	Sampling rules
	Logging (.NET)
	Logging (.NET Core)
	Environment variables

	Instrumenting incoming HTTP requests with the X-Ray SDK for .NET
	Instrumenting incoming requests (.NET)
	Instrumenting incoming requests (.NET Core)
	Configuring a segment naming strategy

	Tracing AWS SDK calls with the X-Ray SDK for .NET
	Tracing calls to downstream HTTP web services with the X-Ray SDK for .NET
	Tracing SQL queries with the X-Ray SDK for .NET
	Tracing SQL queries with synchronous and asynchronous methods
	Collecting SQL queries made to SQL Server
	Enable the global CollectSqlQueries property
	Enable the collectSqlQueries parameter

	Creating additional subsegments
	Add annotations and metadata to segments with the X-Ray SDK for .NET
	Recording annotations with the X-Ray SDK for .NET
	Recording metadata with the X-Ray SDK for .NET

	Working with Ruby
	AWS Distro for OpenTelemetry Ruby
	AWS X-Ray SDK for Ruby
	Requirements
	Configuring the X-Ray SDK for Ruby
	Service plugins
	Sampling rules
	Logging
	Recorder configuration in code
	Recorder configuration with rails
	Environment variables

	Tracing incoming requests with the X-Ray SDK for Ruby middleware
	Using the rails middleware
	Instrumenting code manually
	Configuring a segment naming strategy

	Patching libraries to instrument downstream calls
	Tracing AWS SDK calls with the X-Ray SDK for Ruby
	Generating custom subsegments with the X-Ray SDK
	Add annotations and metadata to segments with the X-Ray SDK for Ruby
	Recording annotations with the X-Ray SDK for Ruby
	Recording metadata with the X-Ray SDK for Ruby
	Recording user IDs with the X-Ray SDK for Ruby

	X-Ray SDK and daemon end of support timeline
	Migrating from X-Ray instrumentation to OpenTelemetry instrumentation
	Understanding OpenTelemetry
	OpenTelemetry support in AWS
	Using OpenTelemetry with AWS CloudWatch

	Understanding OpenTelemetry concepts for migration
	Comparing features
	Setting up and configuring tracing
	Understanding trace data structure
	Working with span attributes

	Detecting resources in your environment
	Managing sampling strategies
	Managing trace context
	Propagating trace context
	Using library instrumentation
	Exporting traces
	X-Ray trace export
	OpenTelemetry trace export

	Processing and forwarding traces
	X-Ray trace processing
	OpenTelemetry trace processing

	Span processing (OpenTelemetry-specific concept)
	Baggage (OpenTelemetry-soecific concept)

	Migration overview
	Recommendations for new and existing applications
	Tracing setup changes
	Library instrumentation changes
	Lambda environment instrumentation changes
	Manually creating trace data

	Migrating from X-Ray Daemon to AWS CloudWatch agent or OpenTelemetry collector
	Migrating on Amazon EC2 or on-premises servers
	Existing X-Ray Daemon setup
	Installing the daemon
	Configuring the daemon
	Running the daemon
	Removing the daemon

	Setting up the CloudWatch agent
	Installing the agent
	Configuring the agent
	Starting the agent

	Setting up the OpenTelemetry collector
	Installing the collector
	Configuring the collector
	Starting the collector

	Migrating on Amazon ECS
	Using the CloudWatch agent
	Using the OpenTelemetry collector

	Migrating on Elastic Beanstalk
	Using the CloudWatch agent

	Migrating to OpenTelemetry Java
	Zero code automatic instrumentation solution
	Manual instrumentation solutions with the SDK
	Tracing incoming requests (spring framework instrumentation)
	AWS SDK v2 instrumentation
	Instrumenting outgoing HTTP calls
	Instrumentation support for other libraries
	Manually creating trace data
	Lambda instrumentation

	Migrate to OpenTelemetry Go
	Manual instrumentation with the SDK
	Tracing incoming requests (HTTP handler instrumentation)
	AWS SDK for Go v2 instrumentation
	Instrumenting outgoing HTTP calls
	Instrumentation support for other libraries
	Manually creating trace data
	Lambda manual instrumentation

	Migrate to OpenTelemetry Node.js
	Zero code automatic instrumentation solutions
	Manual instrumentation solutions
	Tracing incoming requests
	AWS SDK JavaScript V3 instrumentation
	Instrumenting outgoing HTTP calls
	Instrumentation support for other libraries
	Manually creating trace data
	Lambda instrumentation

	Migrate to OpenTelemetry .NET
	Zero code automatic instrumentation solutions
	Manual instrumentation solutions with the SDK
	Manually creating trace data
	Tracing incoming requests (ASP.NET and ASP.NET core instrumentation)
	AWS SDK instrumentation
	Instrumenting outgoing HTTP calls
	Instrumentation support for other libraries
	Lambda instrumentation

	Migrate to OpenTelemetry Python
	Zero code automatic instrumentation solutions
	Manually instrument your applications
	Tracing setup initialization
	Tracing incoming requests
	AWS SDK instrumentation
	Instrumenting outgoing HTTP calls through requests
	Instrumentation support for other libraries
	Manually creating trace data
	Lambda instrumentation

	Migrate to OpenTelemetry Ruby
	Manually instrument your solutions with the SDK
	Tracing incoming requests (Rails instrumentation)
	AWS SDK instrumentation
	Instrumenting outgoing HTTP calls
	Instrumentation support for other libraries
	Manually creating trace data
	Lambda manual instrumentation

	Creating X-Ray resources with AWS CloudFormation
	X-Ray and AWS CloudFormation templates
	Learn more about AWS CloudFormation

	Tagging X-Ray sampling rules and groups
	Tag restrictions
	Managing tags in the console
	Add tags to a new group (console)
	Add tags to a new sampling rule (console)
	Edit or delete tags for a group (console)
	Edit or delete tags for a sampling rule (console)

	Managing tags in the AWS CLI
	Add tags to a new X-Ray group or sampling rule (CLI)
	Add tags to an existing resource (CLI)
	List tags on a resource (CLI)
	Delete tags on a resource (CLI)

	Control access to X-Ray resources based on tags

	Troubleshooting AWS X-Ray
	X-Ray trace map and trace details pages
	I don't see all of my CloudWatch logs
	I don't see all of my alarms on the X-Ray trace map
	I don't see some AWS resources on the trace map
	There are too many nodes on the trace map

	X-Ray SDK for Java
	X-Ray SDK for Node.js
	The X-Ray daemon

	Document History for AWS X-Ray

