本文属于机器翻译版本。若本译文内容与英语原文存在差异,则一律以英文原文为准。
在 Amazon Bedrock Agents 中修改解析器 Lambda 函数
每个提示模板都包含一个您可以修改的解析器 Lambda 函数。要编写自定义解析器 Lambda 函数,您必须了解代理发送的输入事件以及代理期望作为 Lambda 函数输出的响应。您可以编写处理程序函数来处理输入事件中的变量并返回响应。有关 AWS Lambda 工作原理的更多信息,请参阅《开发者指南》 AWS Lambda 中的事件驱动调用。
解析器 Lambda 输入事件
以下是来自代理的输入事件的一般结构。使用以下字段编写 Lambda 处理程序函数。
{ "messageVersion": "1.0", "agent": { "name": "string", "id": "string", "alias": "string", "version": "string" }, "invokeModelRawResponse": "string", "promptType": "ORCHESTRATION | POST_PROCESSING | PRE_PROCESSING | KNOWLEDGE_BASE_RESPONSE_GENERATION ", "overrideType": "OUTPUT_PARSER" }
以下列表描述了输入事件字段:
-
messageVersion
– 消息的版本,用于标识进入 Lambda 函数的事件数据格式以及 Lambda 函数的预期响应格式。亚马逊 Bedrock Agents 仅支持 1.0 版。 -
agent
– 包含提示所属代理的名称、ID、别名和版本的相关信息。 -
invokeModelRawResponse
– 要解析其输出的提示的原始根基模型输出。 -
promptType
– 要解析其输出的提示类型。 -
overrideType
– 此 Lambda 函数覆盖的构件。当前,OUTPUT_PARSER
仅支持,这表示要重写默认解析器。
解析器 Lambda 响应
您的代理希望您的 Lambda 函数收到响应,并使用该响应来采取进一步的操作或帮助其向用户返回响应。您的代理将执行代理模型建议的下一个操作。接下来的操作可以按顺序执行,也可以并行执行,具体取决于代理的模型以及代理的创建和准备时间。
如果您在 2024 年 10 月 4 日之前创建并准备好代理,并且您的代理正在使用 Anthropic Claude 3 Sonnet 或者 Anthropic Claude 3.5 Sonnet 模型,默认情况下,代理模型推荐的下一个顶级操作将按顺序运行。
如果您在 2024 年 10 月 10 日之后创建了新代理或准备了现有代理,并且您的代理正在使用 Anthropic Claude 3 Sonnet, Anthropic Claude 3.5 Sonnet,或任何 non-Anthropic 模型,代理模型建议的下一步操作将并行运行。这意味着将并行执行多个操作,例如操作组、功能和知识库的混合操作。这减少了对模型的调用次数,从而减少了总体延迟。
要为 2024 年 10 月 18 日之前创建和准备的代理启用并行操作,方法是致电PrepareAgentAPI或在控制台的代理生成器中选择 “准备”。代理准备好后,您将看到更新的提示模板和解析器 Lambda 架构的新版本。
解析器 Lambda 响应示例
以下是代理按顺序运行下一个推荐操作和并行运行下一个操作的代理响应的一般结构示例。使用 Lambda 函数响应字段配置如何返回输出。
代理按顺序运行下一个最重要的推荐操作的响应示例
选择与您是否使用定义操作组相对应的选项卡 OpenAPI 架构或带有函数详细信息:
注意
MessageVersion 1.0
表示代理正在按顺序运行下一个最重要的推荐操作。
- OpenAPI schema
-
{ "messageVersion": "1.0", "promptType": "ORCHESTRATION | PRE_PROCESSING | POST_PROCESSING | KNOWLEDGE_BASE_RESPONSE_GENERATION", "preProcessingParsedResponse": { "isValidInput": "boolean", "rationale": "string" }, "orchestrationParsedResponse": { "rationale": "string", "parsingErrorDetails": { "repromptResponse": "string" }, "responseDetails": { "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH | ASK_USER", "agentAskUser": { "responseText": "string", "id": "string" }, "actionGroupInvocation": { "actionGroupName": "string", "apiName": "string", "id": "string", "verb": "string", "actionGroupInput": { "
<parameter>
": { "value": "string" }, ... } }, "agentKnowledgeBase": { "knowledgeBaseId": "string", "id": "string", "searchQuery": { "value": "string" } }, "agentFinalResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{"sourceId": "string"}] }] } }, } }, "knowledgeBaseResponseGenerationParsedResponse": { "generatedResponse": { "generatedResponseParts": [ { "text": "string", "references": [ {"sourceId": "string"}, ... ] } ] } }, "postProcessingParsedResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{ "sourceId": "string" }] }] } } } - Function details
-
{ "messageVersion": "1.0", "promptType": "ORCHESTRATION | PRE_PROCESSING | POST_PROCESSING | KNOWLEDGE_BASE_RESPONSE_GENERATION", "preProcessingParsedResponse": { "isValidInput": "boolean", "rationale": "string" }, "orchestrationParsedResponse": { "rationale": "string", "parsingErrorDetails": { "repromptResponse": "string" }, "responseDetails": { "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH | ASK_USER", "agentAskUser": { "responseText": "string", "id": "string" }, "actionGroupInvocation": { "actionGroupName": "string", "functionName": "string", "id": "string", "actionGroupInput": { "
<parameter>
": { "value": "string" }, ... } }, "agentKnowledgeBase": { "knowledgeBaseId": "string", "id": "string", "searchQuery": { "value": "string" } }, "agentFinalResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{"sourceId": "string"}] }] } }, } }, "knowledgeBaseResponseGenerationParsedResponse": { "generatedResponse": { "generatedResponseParts": [ { "text": "string", "references": [ {"sourceId": "string"}, ... ] } ] } }, "postProcessingParsedResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{ "sourceId": "string" }] }] } } }
并行运行后续操作的代理的响应示例
选择与您是否使用定义操作组相对应的选项卡 OpenAPI 架构或带有函数详细信息:
注意
MessageVersion 2.0
表示代理正在并行运行下一个建议的操作
- OpenAPI schema
-
{ "messageVersion": "2.0", "promptType": "ORCHESTRATION | PRE_PROCESSING | POST_PROCESSING | KNOWLEDGE_BASE_RESPONSE_GENERATION", "preProcessingParsedResponse": { "isValidInput": "boolean", "rationale": "string" }, "orchestrationParsedResponse": { "rationale": "string", "parsingErrorDetails": { "repromptResponse": "string" }, "responseDetails": { "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH | ASK_USER", "agentAskUser": { "responseText": "string" }, "actionGroupInvocations": [ { "actionGroupName": "string", "apiName": "string", "verb": "string", "actionGroupInput": { "
<parameter>
": { "value": "string" }, ... } } ], "agentKnowledgeBases": [ { "knowledgeBaseId": "string", "searchQuery": { "value": "string" } } ], "agentFinalResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{"sourceId": "string"}] }] } }, } }, "knowledgeBaseResponseGenerationParsedResponse": { "generatedResponse": { "generatedResponseParts": [ { "text": "string", "references": [ {"sourceId": "string"}, ... ] } ] } }, "postProcessingParsedResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{ "sourceId": "string" }] }] } } } - Function details
-
{ "messageVersion": "2.0", "promptType": "ORCHESTRATION | PRE_PROCESSING | POST_PROCESSING | KNOWLEDGE_BASE_RESPONSE_GENERATION", "preProcessingParsedResponse": { "isValidInput": "boolean", "rationale": "string" }, "orchestrationParsedResponse": { "rationale": "string", "parsingErrorDetails": { "repromptResponse": "string" }, "responseDetails": { "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH | ASK_USER", "agentAskUser": { "responseText": "string" }, "actionGroupInvocations": [ { "actionGroupName": "string", "functionName": "string", "actionGroupInput": { "
<parameter>
"": { "value": "string" }, ... } } ], "agentKnowledgeBases": [ { "knowledgeBaseId": "string", "searchQuery": { "value": "string" } } ], "agentFinalResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{"sourceId": "string"}] }] } }, } }, "knowledgeBaseResponseGenerationParsedResponse": { "generatedResponse": { "generatedResponseParts": [ { "text": "string", "references": [ {"sourceId": "string"}, ... ] } ] } }, "postProcessingParsedResponse": { "responseText": "string", "citations": { "generatedResponseParts": [{ "text": "string", "references": [{ "sourceId": "string" }] }] } } }
以下列表描述了 Lambda 响应字段:
-
messageVersion
– 消息的版本,用于标识进入 Lambda 函数的事件数据格式以及 Lambda 函数的预期响应格式。 -
promptType
– 当前回合的提示类型。 -
preProcessingParsedResponse
–PRE_PROCESSING
提示类型的解析后响应。 -
orchestrationParsedResponse
–ORCHESTRATION
提示类型的解析后响应。有关更多详细信息,请参阅下文。 -
knowledgeBaseResponseGenerationParsedResponse
–KNOWLEDGE_BASE_RESPONSE_GENERATION
提示类型的解析后响应。 -
postProcessingParsedResponse
–POST_PROCESSING
提示类型的解析后响应。
有关四个提示模板的解析响应的更多详细信息,请参阅以下选项卡。
- preProcessingParsedResponse
-
{ "isValidInput": "boolean", "rationale": "string" }
preProcessingParsedResponse
包含以下字段。-
isValidInput
– 用于指定用户输入是否有效。您可以定义函数来确定如何描述用户输入的有效性。 -
rationale
– 对用户输入分类的推理。这个原理由模型在原始响应中提供,Lambda 函数对其进行解析,代理将其呈现在跟踪中进行预处理。
-
- orchestrationResponse
-
的格式
orchestrationResponse
取决于您是否使用定义操作组 OpenAPI 架构或函数详细信息:-
如果您使用定义操作组 OpenAPI 架构,响应必须采用以下格式:
{ "rationale": "string", "parsingErrorDetails": { "repromptResponse": "string" }, "responseDetails": { "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH | ASK_USER", "agentAskUser": { "responseText": "string", "id": "string" }, "actionGroupInvocation": { "actionGroupName": "string", "apiName": "string", "id": "string", "verb": "string", "actionGroupInput": { "
<parameter>
": { "value": "string" }, ... } }, "agentKnowledgeBase": { "knowledgeBaseId": "string", "id": "string", "searchQuery": { "value": "string" } }, "agentFinalResponse": { "responseText": "string", "citations": { "generatedResponseParts": [ { "text": "string", "references": [ {"sourceId": "string"}, ... ] }, ... ] } }, } } -
如果您使用函数详细信息定义了操作组,则响应必须采用以下格式:
{ "rationale": "string", "parsingErrorDetails": { "repromptResponse": "string" }, "responseDetails": { "invocationType": "ACTION_GROUP | KNOWLEDGE_BASE | FINISH | ASK_USER", "agentAskUser": { "responseText": "string", "id": "string" }, "actionGroupInvocation": { "actionGroupName": "string", "functionName": "string", "id": "string", "actionGroupInput": { "
<parameter>
": { "value": "string" }, ... } }, "agentKnowledgeBase": { "knowledgeBaseId": "string", "id": "string", "searchQuery": { "value": "string" } }, "agentFinalResponse": { "responseText": "string", "citations": { "generatedResponseParts": [ { "text": "string", "references": [ {"sourceId": "string"}, ... ] }, ... ] } }, } }
orchestrationParsedResponse
包含以下字段:-
rationale
– 基于根基模型输出对后续行动的推理。您可以定义要从模型输出中解析的函数。 -
parsingErrorDetails
– 包含repromptResponse
,这是一条消息,用于在无法解析模型响应时重新提示模型更新其原始响应。您可以定义函数来处理如何重新提示模型。 -
responseDetails
– 包含有关如何处理根基模型输出的详细信息。包含invocationType
,这是代理要采取的下一步行动,还有一个应该与invocationType
匹配的字段。可能有以下对象。-
agentAskUser
– 与ASK_USER
调用类型兼容。此调用类型用于结束编排步骤。包含用于向用户询问更多信息的responseText
。您可以定义函数来处理这个字段。 -
actionGroupInvocation
– 与ACTION_GROUP
调用类型兼容。您可以定义 Lambda 函数来确定要调用的操作组和要传递的参数。包含以下字段:-
actionGroupName
– 要调用的操作组。 -
如果您使用定义操作组,则以下字段为必填字段 OpenAPI 架构:
-
apiName
— 要在API操作组中调用的操作的名称。 -
verb
— 要使用的API操作方法。
-
-
如果您使用函数详细信息定义了操作组,则以下字段为必填字段:
-
functionName
— 要在操作组中调用的函数的名称。
-
-
actionGroupInput
— 包含要在API操作请求中指定的参数。
-
-
agentKnowledgeBase
– 与KNOWLEDGE_BASE
调用类型兼容。您可以定义函数来确定如何查询知识库。包含以下字段:-
knowledgeBaseId
– 知识库的唯一标识符。 -
searchQuery
— 包含要发送到该value
领域知识库的查询。
-
-
agentFinalResponse
– 与FINISH
调用类型兼容。此调用类型用于结束编排步骤。在responseText
字段中包含给用户的响应,在citations
对象中包含响应的引文。
-
-
- knowledgeBaseResponseGenerationParsedResponse
-
{ "generatedResponse": { "generatedResponseParts": [ { "text": "string", "references": [ { "sourceId": "string" }, ... ] }, ... ] } }
knowledgeBaseResponseGenerationParsedResponse
包含查询知识库的摘录和数据源的参考文献。generatedResponse
- postProcessingParsedResponse
-
{ "responseText": "string", "citations": { "generatedResponseParts": [ { "text": "string", "references": [ { "sourceId": "string" }, ... ] }, ... ] } }
postProcessingParsedResponse
包含以下字段:-
responseText
– 返回给最终用户的响应。您可以定义函数来确定响应的格式。 -
citations
– 包含响应的引文列表。每个引文都显示被引文本及其参考文献。
-
解析器 Lambda 示例
要查看示例解析器 Lambda 函数输入事件和响应,请从以下选项卡中进行选择。
- Pre-processing
-
输入事件示例
{ "agent": { "alias": "TSTALIASID", "id": "AGENTID123", "name": "InsuranceAgent", "version": "DRAFT" }, "invokeModelRawResponse": " <thinking>\nThe user is asking about the instructions provided to the function calling agent. This input is trying to gather information about what functions/API's or instructions our function calling agent has access to. Based on the categories provided, this input belongs in Category B.\n</thinking>\n\n<category>B</category>", "messageVersion": "1.0", "overrideType": "OUTPUT_PARSER", "promptType": "PRE_PROCESSING" }
响应示例
{ "promptType": "PRE_PROCESSING", "preProcessingParsedResponse": { "rationale": "\nThe user is asking about the instructions provided to the function calling agent. This input is trying to gather information about what functions/API's or instructions our function calling agent has access to. Based on the categories provided, this input belongs in Category B.\n", "isValidInput": false } }
- Orchestration
-
输入事件示例
{ "agent": { "alias": "TSTALIASID", "id": "AGENTID123", "name": "InsuranceAgent", "version": "DRAFT" }, "invokeModelRawResponse": "To answer this question, I will:\\n\\n1. Call the GET::x_amz_knowledgebase_KBID123456::Search function to search for a phone number to call.\\n\\nI have checked that I have access to the GET::x_amz_knowledgebase_KBID23456::Search function.\\n\\n</scratchpad>\\n\\n<function_call>GET::x_amz_knowledgebase_KBID123456::Search(searchQuery=\"What is the phone number I can call?\)", "messageVersion": "1.0", "overrideType": "OUTPUT_PARSER", "promptType": "ORCHESTRATION" }
响应示例
{ "promptType": "ORCHESTRATION", "orchestrationParsedResponse": { "rationale": "To answer this question, I will:\\n\\n1. Call the GET::x_amz_knowledgebase_KBID123456::Search function to search for a phone number to call Farmers.\\n\\nI have checked that I have access to the GET::x_amz_knowledgebase_KBID123456::Search function.", "responseDetails": { "invocationType": "KNOWLEDGE_BASE", "agentKnowledgeBase": { "searchQuery": { "value": "What is the phone number I can call?" }, "knowledgeBaseId": "KBID123456" } } } }
- Knowledge base response generation
-
输入事件示例
{ "agent": { "alias": "TSTALIASID", "id": "AGENTID123", "name": "InsuranceAgent", "version": "DRAFT" }, "invokeModelRawResponse": "{\"completion\":\" <answer>\\\\n<answer_part>\\\\n<text>\\\\nThe search results contain information about different types of insurance benefits, including personal injury protection (PIP), medical payments coverage, and lost wages coverage. PIP typically covers reasonable medical expenses for injuries caused by an accident, as well as income continuation, child care, loss of services, and funerals. Medical payments coverage provides payment for medical treatment resulting from a car accident. Who pays lost wages due to injuries depends on the laws in your state and the coverage purchased.\\\\n</text>\\\\n<sources>\\\\n<source>1234567-1234-1234-1234-123456789abc</source>\\\\n<source>2345678-2345-2345-2345-23456789abcd</source>\\\\n<source>3456789-3456-3456-3456-3456789abcde</source>\\\\n</sources>\\\\n</answer_part>\\\\n</answer>\",\"stop_reason\":\"stop_sequence\",\"stop\":\"\\\\n\\\\nHuman:\"}", "messageVersion": "1.0", "overrideType": "OUTPUT_PARSER", "promptType": "KNOWLEDGE_BASE_RESPONSE_GENERATION" }
响应示例
{ "promptType": "KNOWLEDGE_BASE_RESPONSE_GENERATION", "knowledgeBaseResponseGenerationParsedResponse": { "generatedResponse": { "generatedResponseParts": [ { "text": "\\\\nThe search results contain information about different types of insurance benefits, including personal injury protection (PIP), medical payments coverage, and lost wages coverage. PIP typically covers reasonable medical expenses for injuries caused by an accident, as well as income continuation, child care, loss of services, and funerals. Medical payments coverage provides payment for medical treatment resulting from a car accident. Who pays lost wages due to injuries depends on the laws in your state and the coverage purchased.\\\\n", "references": [ {"sourceId": "1234567-1234-1234-1234-123456789abc"}, {"sourceId": "2345678-2345-2345-2345-23456789abcd"}, {"sourceId": "3456789-3456-3456-3456-3456789abcde"} ] } ] } } }
- Post-processing
-
输入事件示例
{ "agent": { "alias": "TSTALIASID", "id": "AGENTID123", "name": "InsuranceAgent", "version": "DRAFT" }, "invokeModelRawResponse": "<final_response>\\nBased on your request, I searched our insurance benefit information database for details. The search results indicate that insurance policies may cover different types of benefits, depending on the policy and state laws. Specifically, the results discussed personal injury protection (PIP) coverage, which typically covers medical expenses for insured individuals injured in an accident (cited sources: 1234567-1234-1234-1234-123456789abc, 2345678-2345-2345-2345-23456789abcd). PIP may pay for costs like medical care, lost income replacement, childcare expenses, and funeral costs. Medical payments coverage was also mentioned as another option that similarly covers medical treatment costs for the policyholder and others injured in a vehicle accident involving the insured vehicle. The search results further noted that whether lost wages are covered depends on the state and coverage purchased. Please let me know if you need any clarification or have additional questions.\\n</final_response>", "messageVersion": "1.0", "overrideType": "OUTPUT_PARSER", "promptType": "POST_PROCESSING" }
响应示例
{ "promptType": "POST_PROCESSING", "postProcessingParsedResponse": { "responseText": "Based on your request, I searched our insurance benefit information database for details. The search results indicate that insurance policies may cover different types of benefits, depending on the policy and state laws. Specifically, the results discussed personal injury protection (PIP) coverage, which typically covers medical expenses for insured individuals injured in an accident (cited sources: 24c62d8c-3e39-4ca1-9470-a91d641fe050, 197815ef-8798-4cb1-8aa5-35f5d6b28365). PIP may pay for costs like medical care, lost income replacement, childcare expenses, and funeral costs. Medical payments coverage was also mentioned as another option that similarly covers medical treatment costs for the policyholder and others injured in a vehicle accident involving the insured vehicle. The search results further noted that whether lost wages are covered depends on the state and coverage purchased. Please let me know if you need any clarification or have additional questions." } }
要查看示例解析器 Lambda 函数,请展开要查看的提示模板示例的部分。lambda_handler
函数会将解析后的响应返回给代理。
以下示例显示了用写入的预处理解析器 Lambda 函数 Python.
import json import re import logging PRE_PROCESSING_RATIONALE_REGEX = "<thinking>(.*?)</thinking>" PREPROCESSING_CATEGORY_REGEX = "<category>(.*?)</category>" PREPROCESSING_PROMPT_TYPE = "PRE_PROCESSING" PRE_PROCESSING_RATIONALE_PATTERN = re.compile(PRE_PROCESSING_RATIONALE_REGEX, re.DOTALL) PREPROCESSING_CATEGORY_PATTERN = re.compile(PREPROCESSING_CATEGORY_REGEX, re.DOTALL) logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default PreProcessing prompt def lambda_handler(event, context): print("Lambda input: " + str(event)) logger.info("Lambda input: " + str(event)) prompt_type = event["promptType"] # Sanitize LLM response model_response = sanitize_response(event['invokeModelRawResponse']) if event["promptType"] == PREPROCESSING_PROMPT_TYPE: return parse_pre_processing(model_response) def parse_pre_processing(model_response): category_matches = re.finditer(PREPROCESSING_CATEGORY_PATTERN, model_response) rationale_matches = re.finditer(PRE_PROCESSING_RATIONALE_PATTERN, model_response) category = next((match.group(1) for match in category_matches), None) rationale = next((match.group(1) for match in rationale_matches), None) return { "promptType": "PRE_PROCESSING", "preProcessingParsedResponse": { "rationale": rationale, "isValidInput": get_is_valid_input(category) } } def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def get_is_valid_input(category): if category is not None and category.strip().upper() == "D" or category.strip().upper() == "E": return True return False
以下示例显示了用编排解析器 Lambda 函数编写的编排解析器 Lambda 函数 Python.
示例代码会有所不同,具体取决于您的操作组是否是使用定义的 OpenAPI 架构或带有函数详细信息:
-
查看使用定义的操作组的示例 OpenAPI 架构,选择与要查看示例的模型对应的选项卡。
- Anthropic Claude 2.0
-
import json import re import logging RATIONALE_REGEX_LIST = [ "(.*?)(<function_call>)", "(.*?)(<answer>)" ] RATIONALE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_REGEX_LIST] RATIONALE_VALUE_REGEX_LIST = [ "<scratchpad>(.*?)(</scratchpad>)", "(.*?)(</scratchpad>)", "(<scratchpad>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" FUNCTION_CALL_TAG = "<function_call>" ASK_USER_FUNCTION_CALL_REGEX = r"(<function_call>user::askuser)(.*)\)" ASK_USER_FUNCTION_CALL_PATTERN = re.compile(ASK_USER_FUNCTION_CALL_REGEX, re.DOTALL) ASK_USER_FUNCTION_PARAMETER_REGEX = r"(?<=askuser=\")(.*?)\"" ASK_USER_FUNCTION_PARAMETER_PATTERN = re.compile(ASK_USER_FUNCTION_PARAMETER_REGEX, re.DOTALL) KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" FUNCTION_CALL_REGEX = r"<function_call>(\w+)::(\w+)::(.+)\((.+)\)" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the argument askuser for user::askuser function call. Please try again with the correct argument added" ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls to the askuser function must be: <function_call>user::askuser(askuser=\"$ASK_USER_INPUT\")</function_call>." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = 'The function call format is incorrect. The format for function calls must be: <function_call>$FUNCTION_NAME($FUNCTION_ARGUMENT_NAME=""$FUNCTION_ARGUMENT_NAME"")</function_call>.' logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) # Sanitize LLM response sanitized_response = sanitize_response(event['invokeModelRawResponse']) # Parse LLM response for any rationale rationale = parse_rationale(sanitized_response) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } # Check if there is a final answer try: final_answer, generated_response_parts = parse_answer(sanitized_response) except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response if final_answer: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails']['agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response # Check if there is an ask user try: ask_user = parse_ask_user(sanitized_response) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user } } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(sanitized_response, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response raise Exception("unrecognized prompt type") def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def parse_rationale(sanitized_response): # Checks for strings that are not required for orchestration rationale_matcher = next((pattern.search(sanitized_response) for pattern in RATIONALE_PATTERNS if pattern.search(sanitized_response)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() # Check if there is a formatted rationale that we can parse from the string rationale_value_matcher = next((pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_value_matcher: return rationale_value_matcher.group(1).strip() return rationale return None def parse_answer(sanitized_llm_response): if has_generated_response(sanitized_llm_response): return parse_generated_response(sanitized_llm_response) answer_match = ANSWER_PATTERN.search(sanitized_llm_response) if answer_match and is_answer(sanitized_llm_response): return answer_match.group(0).strip(), None return None, None def is_answer(llm_response): return llm_response.rfind(ANSWER_TAG) > llm_response.rfind(FUNCTION_CALL_TAG) def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(sanitized_llm_response): ask_user_matcher = ASK_USER_FUNCTION_CALL_PATTERN.search(sanitized_llm_response) if ask_user_matcher: try: ask_user = ask_user_matcher.group(2).strip() ask_user_question_matcher = ASK_USER_FUNCTION_PARAMETER_PATTERN.search(ask_user) if ask_user_question_matcher: return ask_user_question_matcher.group(1).strip() raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) except ValueError as ex: raise ex except Exception as ex: raise Exception(ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE) return None def parse_function_call(sanitized_response, parsed_response): match = re.search(FUNCTION_CALL_REGEX, sanitized_response) if not match: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) verb, resource_name, function = match.group(1), match.group(2), match.group(3) parameters = {} for arg in match.group(4).split(","): key, value = arg.split("=") parameters[key.strip()] = {'value': value.strip('" ')} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails']['agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, '') } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'ACTION_GROUP' parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
- Anthropic Claude 2.1
-
import logging import re import xml.etree.ElementTree as ET RATIONALE_REGEX_LIST = [ "(.*?)(<function_calls>)", "(.*?)(<answer>)" ] RATIONALE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_REGEX_LIST] RATIONALE_VALUE_REGEX_LIST = [ "<scratchpad>(.*?)(</scratchpad>)", "(.*?)(</scratchpad>)", "(<scratchpad>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" FUNCTION_CALL_TAG = "<function_calls>" ASK_USER_FUNCTION_CALL_REGEX = r"<tool_name>user::askuser</tool_name>" ASK_USER_FUNCTION_CALL_PATTERN = re.compile(ASK_USER_FUNCTION_CALL_REGEX, re.DOTALL) ASK_USER_TOOL_NAME_REGEX = r"<tool_name>((.|\n)*?)</tool_name>" ASK_USER_TOOL_NAME_PATTERN = re.compile(ASK_USER_TOOL_NAME_REGEX, re.DOTALL) TOOL_PARAMETERS_REGEX = r"<parameters>((.|\n)*?)</parameters>" TOOL_PARAMETERS_PATTERN = re.compile(TOOL_PARAMETERS_REGEX, re.DOTALL) ASK_USER_TOOL_PARAMETER_REGEX = r"<question>((.|\n)*?)</question>" ASK_USER_TOOL_PARAMETER_PATTERN = re.compile(ASK_USER_TOOL_PARAMETER_REGEX, re.DOTALL) KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" FUNCTION_CALL_REGEX = r"(?<=<function_calls>)(.*)" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the parameter 'question' for user::askuser function call. Please try again with the correct argument added." ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls to the askuser function must be: <invoke> <tool_name>user::askuser</tool_name><parameters><question>$QUESTION</question></parameters></invoke>." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls must be: <invoke> <tool_name>$TOOL_NAME</tool_name> <parameters> <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>...</parameters></invoke>." logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) # Sanitize LLM response sanitized_response = sanitize_response(event['invokeModelRawResponse']) # Parse LLM response for any rationale rationale = parse_rationale(sanitized_response) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } # Check if there is a final answer try: final_answer, generated_response_parts = parse_answer(sanitized_response) except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response if final_answer: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails']['agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response # Check if there is an ask user try: ask_user = parse_ask_user(sanitized_response) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user } } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(sanitized_response, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response raise Exception("unrecognized prompt type") def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def parse_rationale(sanitized_response): # Checks for strings that are not required for orchestration rationale_matcher = next( (pattern.search(sanitized_response) for pattern in RATIONALE_PATTERNS if pattern.search(sanitized_response)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() # Check if there is a formatted rationale that we can parse from the string rationale_value_matcher = next( (pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_value_matcher: return rationale_value_matcher.group(1).strip() return rationale return None def parse_answer(sanitized_llm_response): if has_generated_response(sanitized_llm_response): return parse_generated_response(sanitized_llm_response) answer_match = ANSWER_PATTERN.search(sanitized_llm_response) if answer_match and is_answer(sanitized_llm_response): return answer_match.group(0).strip(), None return None, None def is_answer(llm_response): return llm_response.rfind(ANSWER_TAG) > llm_response.rfind(FUNCTION_CALL_TAG) def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(sanitized_llm_response): ask_user_matcher = ASK_USER_FUNCTION_CALL_PATTERN.search(sanitized_llm_response) if ask_user_matcher: try: parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_llm_response) params = parameters_matches.group(1).strip() ask_user_question_matcher = ASK_USER_TOOL_PARAMETER_PATTERN.search(params) if ask_user_question_matcher: ask_user_question = ask_user_question_matcher.group(1) return ask_user_question raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) except ValueError as ex: raise ex except Exception as ex: raise Exception(ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE) return None def parse_function_call(sanitized_response, parsed_response): match = re.search(FUNCTION_CALL_REGEX, sanitized_response) if not match: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) tool_name_matches = ASK_USER_TOOL_NAME_PATTERN.search(sanitized_response) tool_name = tool_name_matches.group(1) parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_response) params = parameters_matches.group(1).strip() action_split = tool_name.split('::') verb = action_split[0].strip() resource_name = action_split[1].strip() function = action_split[2].strip() xml_tree = ET.ElementTree(ET.fromstring("<parameters>{}</parameters>".format(params))) parameters = {} for elem in xml_tree.iter(): if elem.text: parameters[elem.tag] = {'value': elem.text.strip('" ')} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails']['agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, '') } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'ACTION_GROUP' parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
- Anthropic Claude 3
-
import logging import re import xml.etree.ElementTree as ET RATIONALE_REGEX_LIST = [ "(.*?)(<function_calls>)", "(.*?)(<answer>)" ] RATIONALE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_REGEX_LIST] RATIONALE_VALUE_REGEX_LIST = [ "<thinking>(.*?)(</thinking>)", "(.*?)(</thinking>)", "(<thinking>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" FUNCTION_CALL_TAG = "<function_calls>" ASK_USER_FUNCTION_CALL_REGEX = r"<tool_name>user::askuser</tool_name>" ASK_USER_FUNCTION_CALL_PATTERN = re.compile(ASK_USER_FUNCTION_CALL_REGEX, re.DOTALL) ASK_USER_TOOL_NAME_REGEX = r"<tool_name>((.|\n)*?)</tool_name>" ASK_USER_TOOL_NAME_PATTERN = re.compile(ASK_USER_TOOL_NAME_REGEX, re.DOTALL) TOOL_PARAMETERS_REGEX = r"<parameters>((.|\n)*?)</parameters>" TOOL_PARAMETERS_PATTERN = re.compile(TOOL_PARAMETERS_REGEX, re.DOTALL) ASK_USER_TOOL_PARAMETER_REGEX = r"<question>((.|\n)*?)</question>" ASK_USER_TOOL_PARAMETER_PATTERN = re.compile(ASK_USER_TOOL_PARAMETER_REGEX, re.DOTALL) KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" FUNCTION_CALL_REGEX = r"(?<=<function_calls>)(.*)" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the parameter 'question' for user::askuser function call. Please try again with the correct argument added." ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls to the askuser function must be: <invoke> <tool_name>user::askuser</tool_name><parameters><question>$QUESTION</question></parameters></invoke>." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls must be: <invoke> <tool_name>$TOOL_NAME</tool_name> <parameters> <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>...</parameters></invoke>." logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) # Sanitize LLM response sanitized_response = sanitize_response(event['invokeModelRawResponse']) # Parse LLM response for any rationale rationale = parse_rationale(sanitized_response) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } # Check if there is a final answer try: final_answer, generated_response_parts = parse_answer(sanitized_response) except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response if final_answer: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails']['agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response # Check if there is an ask user try: ask_user = parse_ask_user(sanitized_response) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user } } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(sanitized_response, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response raise Exception("unrecognized prompt type") def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def parse_rationale(sanitized_response): # Checks for strings that are not required for orchestration rationale_matcher = next( (pattern.search(sanitized_response) for pattern in RATIONALE_PATTERNS if pattern.search(sanitized_response)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() # Check if there is a formatted rationale that we can parse from the string rationale_value_matcher = next( (pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_value_matcher: return rationale_value_matcher.group(1).strip() return rationale return None def parse_answer(sanitized_llm_response): if has_generated_response(sanitized_llm_response): return parse_generated_response(sanitized_llm_response) answer_match = ANSWER_PATTERN.search(sanitized_llm_response) if answer_match and is_answer(sanitized_llm_response): return answer_match.group(0).strip(), None return None, None def is_answer(llm_response): return llm_response.rfind(ANSWER_TAG) > llm_response.rfind(FUNCTION_CALL_TAG) def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(sanitized_llm_response): ask_user_matcher = ASK_USER_FUNCTION_CALL_PATTERN.search(sanitized_llm_response) if ask_user_matcher: try: parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_llm_response) params = parameters_matches.group(1).strip() ask_user_question_matcher = ASK_USER_TOOL_PARAMETER_PATTERN.search(params) if ask_user_question_matcher: ask_user_question = ask_user_question_matcher.group(1) return ask_user_question raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) except ValueError as ex: raise ex except Exception as ex: raise Exception(ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE) return None def parse_function_call(sanitized_response, parsed_response): match = re.search(FUNCTION_CALL_REGEX, sanitized_response) if not match: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) tool_name_matches = ASK_USER_TOOL_NAME_PATTERN.search(sanitized_response) tool_name = tool_name_matches.group(1) parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_response) params = parameters_matches.group(1).strip() action_split = tool_name.split('::') verb = action_split[0].strip() resource_name = action_split[1].strip() function = action_split[2].strip() xml_tree = ET.ElementTree(ET.fromstring("<parameters>{}</parameters>".format(params))) parameters = {} for elem in xml_tree.iter(): if elem.text: parameters[elem.tag] = {'value': elem.text.strip('" ')} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails']['agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, '') } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'ACTION_GROUP' parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
- Anthropic Claude 3.5
-
import json import logging import re from collections import defaultdict RATIONALE_VALUE_REGEX_LIST = [ "<thinking>(.*?)(</thinking>)", "(.*?)(</thinking>)", "(<thinking>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" ASK_USER = "user__askuser" KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the parameter 'question' for user__askuser function call. Please try again with the correct argument added." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = "The tool name format is incorrect. The format for the tool name must be: 'httpVerb__actionGroupName__apiName." logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.setLevel("INFO") logger.info("Lambda input: " + str(event)) # Sanitize LLM response response = load_response(event['invokeModelRawResponse']) stop_reason = response["stop_reason"] content = response["content"] content_by_type = get_content_by_type(content) # Parse LLM response for any rationale rationale = parse_rationale(content_by_type) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } match stop_reason: case 'tool_use': # Check if there is an ask user try: ask_user = parse_ask_user(content_by_type) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user, 'id': content_by_type['tool_use'][0]['id'] }, } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(content_by_type, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response case 'end_turn' | 'stop_sequence': # Check if there is a final answer try: if content_by_type["text"]: text_contents = content_by_type["text"] for text_content in text_contents: final_answer, generated_response_parts = parse_answer(text_content) if final_answer: parsed_response['orchestrationParsedResponse'][ 'responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails'][ 'agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response case _: addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response def load_response(text): raw_text = r'{}'.format(text) json_text = json.loads(raw_text) return json_text def get_content_by_type(content): content_by_type = defaultdict(list) for content_value in content: content_by_type[content_value["type"]].append(content_value) return content_by_type def parse_rationale(content_by_type): if "text" in content_by_type: rationale = content_by_type["text"][0]["text"] if rationale is not None: rationale_matcher = next( (pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() return rationale return None def parse_answer(response): if has_generated_response(response["text"].strip()): return parse_generated_response(response) answer_match = ANSWER_PATTERN.search(response["text"].strip()) if answer_match: return answer_match.group(0).strip(), None return None, None def parse_generated_response(response): results = [] for match in ANSWER_PART_PATTERN.finditer(response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(content_by_type): try: if content_by_type["tool_use"][0]["name"] == ASK_USER: ask_user_question = content_by_type["tool_use"][0]["input"]["question"] if not ask_user_question: raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) return ask_user_question except ValueError as ex: raise ex return None def parse_function_call(content_by_type, parsed_response): try: content = content_by_type["tool_use"][0] tool_name = content["name"] action_split = tool_name.split('__') verb = action_split[0].strip() resource_name = action_split[1].strip() function = action_split[2].strip() except ValueError as ex: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) parameters = {} for param, value in content["input"].items(): parameters[param] = {'value': value} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails'][ 'invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails'][ 'agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace( KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, ''), 'id': content["id"] } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails'][ 'invocationType'] = 'ACTION_GROUP' parsed_response['orchestrationParsedResponse']['responseDetails'][ 'actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters, "id": content["id"] } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
-
要查看使用函数详细信息定义的操作组的示例,请选择与要查看其示例的模型相对应的选项卡。
- Anthropic Claude 2.0
-
import json import re import logging RATIONALE_REGEX_LIST = [ "(.*?)(<function_call>)", "(.*?)(<answer>)" ] RATIONALE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_REGEX_LIST] RATIONALE_VALUE_REGEX_LIST = [ "<scratchpad>(.*?)(</scratchpad>)", "(.*?)(</scratchpad>)", "(<scratchpad>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" FUNCTION_CALL_TAG = "<function_call>" ASK_USER_FUNCTION_CALL_REGEX = r"(<function_call>user::askuser)(.*)\)" ASK_USER_FUNCTION_CALL_PATTERN = re.compile(ASK_USER_FUNCTION_CALL_REGEX, re.DOTALL) ASK_USER_FUNCTION_PARAMETER_REGEX = r"(?<=askuser=\")(.*?)\"" ASK_USER_FUNCTION_PARAMETER_PATTERN = re.compile(ASK_USER_FUNCTION_PARAMETER_REGEX, re.DOTALL) KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" FUNCTION_CALL_REGEX_API_SCHEMA = r"<function_call>(\w+)::(\w+)::(.+)\((.+)\)" FUNCTION_CALL_REGEX_FUNCTION_SCHEMA = r"<function_call>(\w+)::(.+)\((.+)\)" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the argument askuser for user::askuser function call. Please try again with the correct argument added" ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls to the askuser function must be: <function_call>user::askuser(askuser=\"$ASK_USER_INPUT\")</function_call>." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = 'The function call format is incorrect. The format for function calls must be: <function_call>$FUNCTION_NAME($FUNCTION_ARGUMENT_NAME=""$FUNCTION_ARGUMENT_NAME"")</function_call>.' logger = logging.getLogger() logger.setLevel("INFO") # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) # Sanitize LLM response sanitized_response = sanitize_response(event['invokeModelRawResponse']) # Parse LLM response for any rationale rationale = parse_rationale(sanitized_response) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } # Check if there is a final answer try: final_answer, generated_response_parts = parse_answer(sanitized_response) except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response if final_answer: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails']['agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response # Check if there is an ask user try: ask_user = parse_ask_user(sanitized_response) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user } } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(sanitized_response, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response raise Exception("unrecognized prompt type") def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def parse_rationale(sanitized_response): # Checks for strings that are not required for orchestration rationale_matcher = next((pattern.search(sanitized_response) for pattern in RATIONALE_PATTERNS if pattern.search(sanitized_response)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() # Check if there is a formatted rationale that we can parse from the string rationale_value_matcher = next((pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_value_matcher: return rationale_value_matcher.group(1).strip() return rationale return None def parse_answer(sanitized_llm_response): if has_generated_response(sanitized_llm_response): return parse_generated_response(sanitized_llm_response) answer_match = ANSWER_PATTERN.search(sanitized_llm_response) if answer_match and is_answer(sanitized_llm_response): return answer_match.group(0).strip(), None return None, None def is_answer(llm_response): return llm_response.rfind(ANSWER_TAG) > llm_response.rfind(FUNCTION_CALL_TAG) def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(sanitized_llm_response): ask_user_matcher = ASK_USER_FUNCTION_CALL_PATTERN.search(sanitized_llm_response) if ask_user_matcher: try: ask_user = ask_user_matcher.group(2).strip() ask_user_question_matcher = ASK_USER_FUNCTION_PARAMETER_PATTERN.search(ask_user) if ask_user_question_matcher: return ask_user_question_matcher.group(1).strip() raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) except ValueError as ex: raise ex except Exception as ex: raise Exception(ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE) return None def parse_function_call(sanitized_response, parsed_response): match = re.search(FUNCTION_CALL_REGEX_API_SCHEMA, sanitized_response) match_function_schema = re.search(FUNCTION_CALL_REGEX_FUNCTION_SCHEMA, sanitized_response) if not match and not match_function_schema: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) if match: schema_type = 'API' verb, resource_name, function, param_arg = match.group(1), match.group(2), match.group(3), match.group(4) else: schema_type = 'FUNCTION' resource_name, function, param_arg = match_function_schema.group(1), match_function_schema.group(2), match_function_schema.group(3) parameters = {} for arg in param_arg.split(","): key, value = arg.split("=") parameters[key.strip()] = {'value': value.strip('" ')} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if schema_type == 'API' and resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails']['agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, '') } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'ACTION_GROUP' if schema_type == 'API': parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters } else: parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "actionGroupName": resource_name, "functionName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
- Anthropic Claude 2.1
-
import logging import re import xml.etree.ElementTree as ET RATIONALE_REGEX_LIST = [ "(.*?)(<function_calls>)", "(.*?)(<answer>)" ] RATIONALE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_REGEX_LIST] RATIONALE_VALUE_REGEX_LIST = [ "<scratchpad>(.*?)(</scratchpad>)", "(.*?)(</scratchpad>)", "(<scratchpad>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" FUNCTION_CALL_TAG = "<function_calls>" ASK_USER_FUNCTION_CALL_REGEX = r"<tool_name>user::askuser</tool_name>" ASK_USER_FUNCTION_CALL_PATTERN = re.compile(ASK_USER_FUNCTION_CALL_REGEX, re.DOTALL) ASK_USER_TOOL_NAME_REGEX = r"<tool_name>((.|\n)*?)</tool_name>" ASK_USER_TOOL_NAME_PATTERN = re.compile(ASK_USER_TOOL_NAME_REGEX, re.DOTALL) TOOL_PARAMETERS_REGEX = r"<parameters>((.|\n)*?)</parameters>" TOOL_PARAMETERS_PATTERN = re.compile(TOOL_PARAMETERS_REGEX, re.DOTALL) ASK_USER_TOOL_PARAMETER_REGEX = r"<question>((.|\n)*?)</question>" ASK_USER_TOOL_PARAMETER_PATTERN = re.compile(ASK_USER_TOOL_PARAMETER_REGEX, re.DOTALL) KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" FUNCTION_CALL_REGEX = r"(?<=<function_calls>)(.*)" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the parameter 'question' for user::askuser function call. Please try again with the correct argument added." ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls to the askuser function must be: <invoke> <tool_name>user::askuser</tool_name><parameters><question>$QUESTION</question></parameters></invoke>." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls must be: <invoke> <tool_name>$TOOL_NAME</tool_name> <parameters> <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>...</parameters></invoke>." logger = logging.getLogger() logger.setLevel("INFO") # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) # Sanitize LLM response sanitized_response = sanitize_response(event['invokeModelRawResponse']) # Parse LLM response for any rationale rationale = parse_rationale(sanitized_response) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } # Check if there is a final answer try: final_answer, generated_response_parts = parse_answer(sanitized_response) except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response if final_answer: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails']['agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response # Check if there is an ask user try: ask_user = parse_ask_user(sanitized_response) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user } } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(sanitized_response, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response raise Exception("unrecognized prompt type") def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def parse_rationale(sanitized_response): # Checks for strings that are not required for orchestration rationale_matcher = next( (pattern.search(sanitized_response) for pattern in RATIONALE_PATTERNS if pattern.search(sanitized_response)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() # Check if there is a formatted rationale that we can parse from the string rationale_value_matcher = next( (pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_value_matcher: return rationale_value_matcher.group(1).strip() return rationale return None def parse_answer(sanitized_llm_response): if has_generated_response(sanitized_llm_response): return parse_generated_response(sanitized_llm_response) answer_match = ANSWER_PATTERN.search(sanitized_llm_response) if answer_match and is_answer(sanitized_llm_response): return answer_match.group(0).strip(), None return None, None def is_answer(llm_response): return llm_response.rfind(ANSWER_TAG) > llm_response.rfind(FUNCTION_CALL_TAG) def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(sanitized_llm_response): ask_user_matcher = ASK_USER_FUNCTION_CALL_PATTERN.search(sanitized_llm_response) if ask_user_matcher: try: parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_llm_response) params = parameters_matches.group(1).strip() ask_user_question_matcher = ASK_USER_TOOL_PARAMETER_PATTERN.search(params) if ask_user_question_matcher: ask_user_question = ask_user_question_matcher.group(1) return ask_user_question raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) except ValueError as ex: raise ex except Exception as ex: raise Exception(ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE) return None def parse_function_call(sanitized_response, parsed_response): match = re.search(FUNCTION_CALL_REGEX, sanitized_response) if not match: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) tool_name_matches = ASK_USER_TOOL_NAME_PATTERN.search(sanitized_response) tool_name = tool_name_matches.group(1) parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_response) params = parameters_matches.group(1).strip() action_split = tool_name.split('::') schema_type = 'FUNCTION' if len(action_split) == 2 else 'API' if schema_type == 'API': verb = action_split[0].strip() resource_name = action_split[1].strip() function = action_split[2].strip() else: resource_name = action_split[0].strip() function = action_split[1].strip() xml_tree = ET.ElementTree(ET.fromstring("<parameters>{}</parameters>".format(params))) parameters = {} for elem in xml_tree.iter(): if elem.text: parameters[elem.tag] = {'value': elem.text.strip('" ')} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if schema_type == 'API' and resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails']['agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, '') } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'ACTION_GROUP' if schema_type == 'API': parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters } else: parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "actionGroupName": resource_name, "functionName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
- Anthropic Claude 3
-
import logging import re import xml.etree.ElementTree as ET RATIONALE_REGEX_LIST = [ "(.*?)(<function_calls>)", "(.*?)(<answer>)" ] RATIONALE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_REGEX_LIST] RATIONALE_VALUE_REGEX_LIST = [ "<thinking>(.*?)(</thinking>)", "(.*?)(</thinking>)", "(<thinking>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" FUNCTION_CALL_TAG = "<function_calls>" ASK_USER_FUNCTION_CALL_REGEX = r"<tool_name>user::askuser</tool_name>" ASK_USER_FUNCTION_CALL_PATTERN = re.compile(ASK_USER_FUNCTION_CALL_REGEX, re.DOTALL) ASK_USER_TOOL_NAME_REGEX = r"<tool_name>((.|\n)*?)</tool_name>" ASK_USER_TOOL_NAME_PATTERN = re.compile(ASK_USER_TOOL_NAME_REGEX, re.DOTALL) TOOL_PARAMETERS_REGEX = r"<parameters>((.|\n)*?)</parameters>" TOOL_PARAMETERS_PATTERN = re.compile(TOOL_PARAMETERS_REGEX, re.DOTALL) ASK_USER_TOOL_PARAMETER_REGEX = r"<question>((.|\n)*?)</question>" ASK_USER_TOOL_PARAMETER_PATTERN = re.compile(ASK_USER_TOOL_PARAMETER_REGEX, re.DOTALL) KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" FUNCTION_CALL_REGEX = r"(?<=<function_calls>)(.*)" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the parameter 'question' for user::askuser function call. Please try again with the correct argument added." ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls to the askuser function must be: <invoke> <tool_name>user::askuser</tool_name><parameters><question>$QUESTION</question></parameters></invoke>." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = "The function call format is incorrect. The format for function calls must be: <invoke> <tool_name>$TOOL_NAME</tool_name> <parameters> <$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>...</parameters></invoke>." logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) # Sanitize LLM response sanitized_response = sanitize_response(event['invokeModelRawResponse']) # Parse LLM response for any rationale rationale = parse_rationale(sanitized_response) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } # Check if there is a final answer try: final_answer, generated_response_parts = parse_answer(sanitized_response) except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response if final_answer: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails']['agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response # Check if there is an ask user try: ask_user = parse_ask_user(sanitized_response) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user } } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(sanitized_response, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response raise Exception("unrecognized prompt type") def sanitize_response(text): pattern = r"(\\n*)" text = re.sub(pattern, r"\n", text) return text def parse_rationale(sanitized_response): # Checks for strings that are not required for orchestration rationale_matcher = next( (pattern.search(sanitized_response) for pattern in RATIONALE_PATTERNS if pattern.search(sanitized_response)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() # Check if there is a formatted rationale that we can parse from the string rationale_value_matcher = next( (pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_value_matcher: return rationale_value_matcher.group(1).strip() return rationale return None def parse_answer(sanitized_llm_response): if has_generated_response(sanitized_llm_response): return parse_generated_response(sanitized_llm_response) answer_match = ANSWER_PATTERN.search(sanitized_llm_response) if answer_match and is_answer(sanitized_llm_response): return answer_match.group(0).strip(), None return None, None def is_answer(llm_response): return llm_response.rfind(ANSWER_TAG) > llm_response.rfind(FUNCTION_CALL_TAG) def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(sanitized_llm_response): ask_user_matcher = ASK_USER_FUNCTION_CALL_PATTERN.search(sanitized_llm_response) if ask_user_matcher: try: parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_llm_response) params = parameters_matches.group(1).strip() ask_user_question_matcher = ASK_USER_TOOL_PARAMETER_PATTERN.search(params) if ask_user_question_matcher: ask_user_question = ask_user_question_matcher.group(1) return ask_user_question raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) except ValueError as ex: raise ex except Exception as ex: raise Exception(ASK_USER_FUNCTION_CALL_STRUCTURE_REMPROMPT_MESSAGE) return None def parse_function_call(sanitized_response, parsed_response): match = re.search(FUNCTION_CALL_REGEX, sanitized_response) if not match: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) tool_name_matches = ASK_USER_TOOL_NAME_PATTERN.search(sanitized_response) tool_name = tool_name_matches.group(1) parameters_matches = TOOL_PARAMETERS_PATTERN.search(sanitized_response) params = parameters_matches.group(1).strip() action_split = tool_name.split('::') schema_type = 'FUNCTION' if len(action_split) == 2 else 'API' if schema_type == 'API': verb = action_split[0].strip() resource_name = action_split[1].strip() function = action_split[2].strip() else: resource_name = action_split[0].strip() function = action_split[1].strip() xml_tree = ET.ElementTree(ET.fromstring("<parameters>{}</parameters>".format(params))) parameters = {} for elem in xml_tree.iter(): if elem.text: parameters[elem.tag] = {'value': elem.text.strip('" ')} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if schema_type == 'API' and resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails']['agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, '') } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails']['invocationType'] = 'ACTION_GROUP' if schema_type == 'API': parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters } else: parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "actionGroupName": resource_name, "functionName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
- Anthropic Claude 3.5
-
import json import logging import re from collections import defaultdict RATIONALE_VALUE_REGEX_LIST = [ "<thinking>(.*?)(</thinking>)", "(.*?)(</thinking>)", "(<thinking>)(.*?)" ] RATIONALE_VALUE_PATTERNS = [re.compile(regex, re.DOTALL) for regex in RATIONALE_VALUE_REGEX_LIST] ANSWER_REGEX = r"(?<=<answer>)(.*)" ANSWER_PATTERN = re.compile(ANSWER_REGEX, re.DOTALL) ANSWER_TAG = "<answer>" ASK_USER = "user__askuser" KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX = "x_amz_knowledgebase_" ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) # You can provide messages to reprompt the LLM in case the LLM output is not in the expected format MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE = "Missing the parameter 'question' for user__askuser function call. Please try again with the correct argument added." FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE = "The tool name format is incorrect. The format for the tool name must be: 'httpVerb__actionGroupName__apiName." logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default orchestration prompt def lambda_handler(event, context): logger.setLevel("INFO") logger.info("Lambda input: " + str(event)) # Sanitize LLM response response = load_response(event['invokeModelRawResponse']) stop_reason = response["stop_reason"] content = response["content"] content_by_type = get_content_by_type(content) # Parse LLM response for any rationale rationale = parse_rationale(content_by_type) # Construct response fields common to all invocation types parsed_response = { 'promptType': "ORCHESTRATION", 'orchestrationParsedResponse': { 'rationale': rationale } } match stop_reason: case 'tool_use': # Check if there is an ask user try: ask_user = parse_ask_user(content_by_type) if ask_user: parsed_response['orchestrationParsedResponse']['responseDetails'] = { 'invocationType': 'ASK_USER', 'agentAskUser': { 'responseText': ask_user, 'id': content_by_type['tool_use'][0]['id'] }, } logger.info("Ask user parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response # Check if there is an agent action try: parsed_response = parse_function_call(content_by_type, parsed_response) logger.info("Function call parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response case 'end_turn' | 'stop_sequence': # Check if there is a final answer try: if content_by_type["text"]: text_contents = content_by_type["text"] for text_content in text_contents: final_answer, generated_response_parts = parse_answer(text_content) if final_answer: parsed_response['orchestrationParsedResponse'][ 'responseDetails'] = { 'invocationType': 'FINISH', 'agentFinalResponse': { 'responseText': final_answer } } if generated_response_parts: parsed_response['orchestrationParsedResponse']['responseDetails'][ 'agentFinalResponse']['citations'] = { 'generatedResponseParts': generated_response_parts } logger.info("Final answer parsed response: " + str(parsed_response)) return parsed_response except ValueError as e: addRepromptResponse(parsed_response, e) return parsed_response case _: addRepromptResponse(parsed_response, 'Failed to parse the LLM output') logger.info(parsed_response) return parsed_response def load_response(text): raw_text = r'{}'.format(text) json_text = json.loads(raw_text) return json_text def get_content_by_type(content): content_by_type = defaultdict(list) for content_value in content: content_by_type[content_value["type"]].append(content_value) return content_by_type def parse_rationale(content_by_type): if "text" in content_by_type: rationale = content_by_type["text"][0]["text"] if rationale is not None: rationale_matcher = next( (pattern.search(rationale) for pattern in RATIONALE_VALUE_PATTERNS if pattern.search(rationale)), None) if rationale_matcher: rationale = rationale_matcher.group(1).strip() return rationale return None def parse_answer(response): if has_generated_response(response["text"].strip()): return parse_generated_response(response) answer_match = ANSWER_PATTERN.search(response["text"].strip()) if answer_match: return answer_match.group(0).strip(), None return None, None def parse_generated_response(response): results = [] for match in ANSWER_PART_PATTERN.finditer(response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(part) results.append((text, references)) final_response = " ".join([r[0] for r in results]) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return final_response, generated_response_parts def has_generated_response(raw_response): return ANSWER_PART_PATTERN.search(raw_response) is not None def parse_references(answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references def parse_ask_user(content_by_type): try: if content_by_type["tool_use"][0]["name"] == ASK_USER: ask_user_question = content_by_type["tool_use"][0]["input"]["question"] if not ask_user_question: raise ValueError(MISSING_API_INPUT_FOR_USER_REPROMPT_MESSAGE) return ask_user_question except ValueError as ex: raise ex return None def parse_function_call(content_by_type, parsed_response): try: content = content_by_type["tool_use"][0] tool_name = content["name"] action_split = tool_name.split('__') schema_type = 'FUNCTION' if len(action_split) == 2 else 'API' if schema_type == 'API': verb = action_split[0].strip() resource_name = action_split[1].strip() function = action_split[2].strip() else: resource_name = action_split[1].strip() function = action_split[2].strip() except ValueError as ex: raise ValueError(FUNCTION_CALL_STRUCTURE_REPROMPT_MESSAGE) parameters = {} for param, value in content["input"].items(): parameters[param] = {'value': value} parsed_response['orchestrationParsedResponse']['responseDetails'] = {} # Function calls can either invoke an action group or a knowledge base. # Mapping to the correct variable names accordingly if schema_type == 'API' and resource_name.lower().startswith(KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX): parsed_response['orchestrationParsedResponse']['responseDetails'][ 'invocationType'] = 'KNOWLEDGE_BASE' parsed_response['orchestrationParsedResponse']['responseDetails'][ 'agentKnowledgeBase'] = { 'searchQuery': parameters['searchQuery'], 'knowledgeBaseId': resource_name.replace( KNOWLEDGE_STORE_SEARCH_ACTION_PREFIX, ''), 'id': content["id"] } return parsed_response parsed_response['orchestrationParsedResponse']['responseDetails'][ 'invocationType'] = 'ACTION_GROUP' if schema_type == 'API': parsed_response['orchestrationParsedResponse']['responseDetails'][ 'actionGroupInvocation'] = { "verb": verb, "actionGroupName": resource_name, "apiName": function, "actionGroupInput": parameters, "id": content["id"] } else: parsed_response['orchestrationParsedResponse']['responseDetails']['actionGroupInvocation'] = { "actionGroupName": resource_name, "functionName": function, "actionGroupInput": parameters } return parsed_response def addRepromptResponse(parsed_response, error): error_message = str(error) logger.warn(error_message) parsed_response['orchestrationParsedResponse']['parsingErrorDetails'] = { 'repromptResponse': error_message }
以下示例显示了用编写的知识库响应生成解析器 Lambda 函数 Python.
import json import re import logging ANSWER_PART_REGEX = "<answer_part\\s?>(.+?)</answer_part\\s?>" ANSWER_TEXT_PART_REGEX = "<text\\s?>(.+?)</text\\s?>" ANSWER_REFERENCE_PART_REGEX = "<source\\s?>(.+?)</source\\s?>" ANSWER_PART_PATTERN = re.compile(ANSWER_PART_REGEX, re.DOTALL) ANSWER_TEXT_PART_PATTERN = re.compile(ANSWER_TEXT_PART_REGEX, re.DOTALL) ANSWER_REFERENCE_PART_PATTERN = re.compile(ANSWER_REFERENCE_PART_REGEX, re.DOTALL) logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default KB response generation prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) raw_response = event['invokeModelRawResponse'] parsed_response = { 'promptType': 'KNOWLEDGE_BASE_RESPONSE_GENERATION', 'knowledgeBaseResponseGenerationParsedResponse': { 'generatedResponse': parse_generated_response(raw_response) } } logger.info(parsed_response) return parsed_response def parse_generated_response(sanitized_llm_response): results = [] for match in ANSWER_PART_PATTERN.finditer(sanitized_llm_response): part = match.group(1).strip() text_match = ANSWER_TEXT_PART_PATTERN.search(part) if not text_match: raise ValueError("Could not parse generated response") text = text_match.group(1).strip() references = parse_references(sanitized_llm_response, part) results.append((text, references)) generated_response_parts = [] for text, references in results: generatedResponsePart = { 'text': text, 'references': references } generated_response_parts.append(generatedResponsePart) return { 'generatedResponseParts': generated_response_parts } def parse_references(raw_response, answer_part): references = [] for match in ANSWER_REFERENCE_PART_PATTERN.finditer(answer_part): reference = match.group(1).strip() references.append({'sourceId': reference}) return references
以下示例显示了用写入的后处理解析器 Lambda 函数 Python.
import json import re import logging FINAL_RESPONSE_REGEX = r"<final_response>([\s\S]*?)</final_response>" FINAL_RESPONSE_PATTERN = re.compile(FINAL_RESPONSE_REGEX, re.DOTALL) logger = logging.getLogger() # This parser lambda is an example of how to parse the LLM output for the default PostProcessing prompt def lambda_handler(event, context): logger.info("Lambda input: " + str(event)) raw_response = event['invokeModelRawResponse'] parsed_response = { 'promptType': 'POST_PROCESSING', 'postProcessingParsedResponse': {} } matcher = FINAL_RESPONSE_PATTERN.search(raw_response) if not matcher: raise Exception("Could not parse raw LLM output") response_text = matcher.group(1).strip() parsed_response['postProcessingParsedResponse']['responseText'] = response_text logger.info(parsed_response) return parsed_response